WO2023127350A1 - 摺動部材および軸受 - Google Patents

摺動部材および軸受 Download PDF

Info

Publication number
WO2023127350A1
WO2023127350A1 PCT/JP2022/042950 JP2022042950W WO2023127350A1 WO 2023127350 A1 WO2023127350 A1 WO 2023127350A1 JP 2022042950 W JP2022042950 W JP 2022042950W WO 2023127350 A1 WO2023127350 A1 WO 2023127350A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
sliding
mass
porous layer
layer
Prior art date
Application number
PCT/JP2022/042950
Other languages
English (en)
French (fr)
Inventor
直樹 佐藤
拓実 八城
隆 赤川
勇司 川又
良一 鈴木
Original Assignee
千住金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千住金属工業株式会社 filed Critical 千住金属工業株式会社
Publication of WO2023127350A1 publication Critical patent/WO2023127350A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/04Alloys containing less than 50% by weight of each constituent containing tin or lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present disclosure relates to a sliding member and a bearing composed of the sliding member.
  • Lead-bronze sintered bearing alloys are widely used as sliding parts materials for automobiles and general industrial machinery.
  • the main components of lead bronze are Cu, Sn, and Pb, and are specified in JIS H5120 etc. as copper alloy castings.
  • the copper alloy defined as CAC603 (hereinafter referred to as LBC3) is used for medium-high speed/high load bearings, large engine bearings, and the like.
  • LBC3 the copper alloy defined as CAC603 (hereinafter referred to as LBC3) is used for medium-high speed/high load bearings, large engine bearings, and the like.
  • About 10% by mass of lead is contained in this copper alloy, and plays a role of improving friction characteristics as a solid lubricant.
  • lead which is a soft metal, is easily plastically deformed, it acts as a lubricant between two surfaces in friction, resulting in a material with excellent frictional properties.
  • LBC3 which is a general-purpose product, suffers from significant wear and seizure in usage environments such as boundary lubrication where sufficient lubrication cannot be obtained due to high-speed and high-load usage environments, and improvement is an issue. It's becoming
  • JP-A-2008-50688 and JP-A-2005-163074 as a lead-free sliding material, a Cu-Sn-Bi alloy copper-based slide containing Cu as a main component and Sn and Bi added to the Cu base is disclosed. dynamic materials have been proposed.
  • a sliding member includes: a metal substrate; a porous layer formed on one surface of the metal base; A sliding layer covering the porous layer, The sliding layer is formed of a resin composition, The porous layer is a matrix phase comprising Cu and Sn; and hard particles dispersed in the matrix phase, the hard particles comprising a Laves phase composed of Co, Mo and Si.
  • a sliding member includes: a metal substrate; a porous layer formed on one surface of the metal base; A sliding layer covering the porous layer, The sliding layer is formed of a resin composition, Hard particle powder containing a Laves phase composed of Co, Mo and Si is dispersed in the sliding layer.
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration of a sliding member according to one embodiment.
  • FIG. 2A is a backscattered electron composition image of a cross-sectional structure of a sliding member according to one embodiment.
  • FIG. 2B is a backscattered electron composition image of the cross-sectional structure of the porous layer of the sliding member according to one embodiment.
  • FIG. 2C is an EPMA mapping image of Sn in the cross-sectional structure of the porous layer of the sliding member according to the embodiment.
  • FIG. 2D is an EPMA mapping image of Co of the cross-sectional structure of the porous layer of the sliding member according to the embodiment.
  • FIG. 2E is an EPMA mapping image of Mo of the cross-sectional structure of the porous layer of the sliding member according to the embodiment.
  • FIG. 2F is an EPMA mapping image of Si of the cross-sectional structure of the porous layer of the sliding member according to the embodiment.
  • FIG. 3A is a backscattered electron composition image of a cross-sectional structure of a sliding member according to one modification of one embodiment.
  • FIG. 3B is an EPMA mapping image of Sn of the cross-sectional structure of the sliding member according to one modification of the embodiment.
  • FIG. 3C is an EPMA mapping image of Co of the cross-sectional structure of the sliding member according to one modification of the embodiment.
  • FIG. 3D is an EPMA mapping image of Mo of the cross-sectional structure of the sliding member according to one modification of the embodiment.
  • FIG. 3E is an EPMA mapping image of Si of the cross-sectional structure of the sliding member according to one modification of the embodiment.
  • FIG. 4 is a vertical cross-sectional view showing a schematic configuration of a sliding member according to another modification of the embodiment.
  • FIG. 5A is a backscattered electron composition image of a cross-sectional structure of a sliding layer of a sliding member according to Modification 1 of the embodiment.
  • 5B is an EPMA mapping image of Mo of the cross-sectional structure of the sliding layer of the sliding member according to the first modification of the embodiment.
  • FIG. 5C is an EPMA mapping image of S of the cross-sectional structure of the sliding layer of the sliding member according to the first modification of the embodiment.
  • FIG. 6A is a backscattered electron composition image of a cross-sectional structure of a sliding layer of a sliding member according to a second modification of one embodiment.
  • FIG. 6B is an EPMA mapping image of Co of the cross-sectional structure of the sliding layer of the sliding member according to the second modification of the embodiment.
  • FIG. 6C is an EPMA mapping image of Mo of the cross-sectional structure of the sliding layer of the sliding member according to the second modification of the embodiment.
  • FIG. 6D is an EPMA mapping image of Si of the cross-sectional structure of the sliding layer of the sliding member according to the second modification of the embodiment.
  • FIG. 7 is a perspective view showing a schematic configuration of a bearing according to one embodiment.
  • FIG. 8 is a diagram showing a manufacturing process of the sliding member according to one embodiment.
  • FIG. 9 is a diagram showing a schematic configuration of a thrust tester.
  • FIG. 10 is a graph showing thermal resistance versus circumferential speed for the test pieces of Example 1 and Comparative Example 1; 11 is a graph showing the limiting PV curves for the specimens of Example 1 and Comparative Example 1.
  • FIG. 12 is a graph showing critical PV curves for the specimens of Examples 2-4.
  • FIG. 13 is a graph showing limiting PV curves for the specimens of Examples 5-8.
  • 14 is a graph showing limiting PV curves for the test pieces of Example 8 and Comparative Examples 1 and 2.
  • FIG. 15 is a graph showing the amount of wear at a surface pressure of 10 MPa for the test pieces of Examples 4, 7 and 8 and Comparative Examples 1 and 2.
  • FIG. 10 is a graph showing thermal resistance versus circumferential speed for the test pieces of Example 1 and Comparative Example 1
  • 11 is a graph showing the limiting PV curves for the specimens of Example 1 and Comparative Example 1.
  • FIG. 12 is a graph showing critical
  • the term “main component” refers to a component contained in an amount of 50% by mass or more relative to the entire composition.
  • hard particle powder refers to the powder in the mixed powder before sintering or the powder dispersed in the resin composition of the sliding layer. refers to the particles in the porous layer after consolidation.
  • Cu and Sn contained in the hard particle powder migrate to some extent into the matrix phase during sintering.
  • the content of each constituent element in the hard particles is different from the content of each constituent element in the hard particle powder (hard particles are different from the content of Sn and Cu in the chemical composition of hard particles). It is a particle with a composition that is somewhat lower than that of powder).
  • a sliding member includes: a metal substrate; a porous layer formed on one surface of the metal base; A sliding layer covering the porous layer, The sliding layer is formed of a resin composition, The porous layer is a matrix phase comprising Cu and Sn; and hard particles dispersed in the matrix phase, the hard particles comprising a Laves phase composed of Co, Mo and Si.
  • a sliding member according to a second aspect of the embodiment is the sliding member according to the first aspect,
  • the porous layer is It further has a compound phase dispersed in the matrix phase, the compound phase containing Co, Fe, Ni, Si and Cr.
  • a sliding member according to a third aspect of the embodiment is the sliding member according to the first or second aspect,
  • the content of the hard particles is 40% by mass or less when the entire porous layer is taken as 100% by mass.
  • a sliding member according to a fourth aspect of the embodiment is the sliding member according to any one of the first to third aspects, In the sliding layer, at least one of a hard particle powder containing a Laves phase composed of Co, Mo and Si, a powder containing MoS2 , and a bronze powder containing no Laves phase is dispersed. ing.
  • a sliding member includes: a metal substrate; a porous layer formed on one surface of the metal base; A sliding layer covering the porous layer, The sliding layer is formed of a resin composition, Hard particle powder containing a Laves phase composed of Co, Mo and Si is dispersed in the sliding layer.
  • a sliding member according to a sixth aspect of the embodiment is the sliding member according to any one of the first to fifth aspects,
  • the ratio of the thickness of the porous layer to the thickness of the sliding layer is 6:4 to 8:2.
  • a sliding member according to a seventh aspect of the embodiment is the sliding member according to any one of the first to sixth aspects,
  • the sum of the hard particle content and the hard particle powder content is 1 to 20 mass % when the total of the porous layer and the sliding layer is taken as 100 mass %.
  • a bearing according to an eighth aspect of the embodiment includes: A bearing composed of the sliding member according to any one of the first to seventh aspects, It has a cylindrical inner peripheral surface, and the inner peripheral surface is composed of the sliding layer.
  • FIG. 1 is a vertical cross-sectional view showing a schematic configuration of a sliding member 1 according to an embodiment
  • FIG. 2A is a backscattered electron composition image of the cross-sectional structure of the sliding member 1.
  • the sliding member 1 includes a metal substrate 2, a porous layer 3 formed on one surface of the metal substrate 2, and a porous layer 3 covering the porous layer 3.
  • a sliding layer 4 is provided.
  • the material of the metal substrate 2 is not particularly limited as long as it has strength and shape stability to the extent that it can be used as the backing metal base material of the bearing.
  • a copper-plated steel sheet in which a Fe-based plate material is plated with Cu may be used.
  • the porous layer 3 is formed by sintering metal powder (a mixed powder described later or an alloy powder obtained by alloying the mixed powder during spraying) on the surface of the metal substrate 2 .
  • the thickness of the porous layer 3 may be such that at least two pieces of metal powder can be stacked and sintered, and may be, for example, 0.3 mm or less.
  • the porous layer 3 has a matrix phase containing Cu and Sn and hard particles dispersed in the matrix phase.
  • 2B is a backscattered electron composition image of the cross-sectional structure of the porous layer 3.
  • FIG. FIG. 2C is a Sn mapping image of the cross-sectional structure of the porous layer 3 by an electron probe microanalyzer (EPMA)
  • FIG. 2D is a Co mapping image
  • FIG. 2E is a Mo mapping image
  • 2F is a mapping image of Si.
  • the porous layer 3 is formed by sintering alloy powder obtained by alloying the mixed powder described later during spraying.
  • the hard particles are finely divided and uniformly dispersed in the matrix phase by being made into an alloy powder.
  • the porous layer 3 may not contain hard particles.
  • FIG. 3A is a backscattered electron composition image of the cross-sectional structure of the sliding member 1 in which the porous layer 3 does not contain hard particles and hard particle powder 4a is dispersed in the sliding layer 4, and FIG. , EPMA mapping images of Sn, FIG. 3C is an EPMA mapping image of Co, FIG. 3D is an EPMA mapping image of Mo, and FIG. 3E is an EPMA mapping image of Si.
  • the matrix phase is a bronze-based alloy containing Cu as a main component and further containing Sn.
  • the matrix phase may consist of a solid solution of Cu, Sn and Ni.
  • Bi particles may be distributed in the grain boundaries of the matrix phase.
  • Bi on the friction surface where the sliding layer 4 wears and a part of the porous layer 3 is exposed, Bi exhibits a self-lubricating effect similar to that of Pb in conventional lead bronze, thereby Friction can be reduced by acting as a lubricant in
  • the hard particles comprise a Laves phase composed of Co, Mo and Si.
  • the hard particle powder 4a contains a Laves phase composed of Co, Mo and Si.
  • the Laves phase is an intermetallic compound based on the AB2 type composed of the A element and the B element with an atomic radius ratio of about 1.2 : 1.
  • the Laves phase composed of Co, Mo and Si (more specifically, Co 3 Mo 2 Si) is a Laves phase in which the A element is Mo, the B element is Co, and 25 at % of Co is replaced with Si.
  • the Laves phase composed of Co 3 Mo 2 Si has a Vickers hardness of Hv 1000-1200.
  • Mo in the Laves phase and S in the lubricating oil can form a sulfide coating of MoS 2 on the friction surface.
  • MoS 2 is a material known as a sulfide that replaces the solid lubricity of lead and contributes to the improvement of friction characteristics. , when friction occurs, the bonds between sulfur are selectively cut, lubrication occurs, which can effectively suppress wear.
  • Mo oxides produced on the friction surface by oxidation of Mo in the Laves phase during sliding also exhibit a lubricating effect and can effectively suppress wear.
  • the hard particle content may be, for example, 40% by mass or less when the entire porous layer 3 is taken as 100% by mass.
  • the content of the hard particles may be, for example, 0.1% by mass or more when the entire porous layer 3 is 100% by mass. If the content of the hard particles is 0.1% by mass or more, the effect of reducing wear of the porous layer 3 as described above can be obtained. Further, when the entire porous layer 3 is 100% by mass, the content of the Laves phase composed of Co, Mo and Si may be, for example, 0.1 to 20% by mass.
  • the hard particle powder 4a is dispersed in the sliding layer 4, which will be described later, and the porous layer 3 does not contain hard particles, when the entire porous layer 3 is taken as 100% by mass, Cu and Sn The total content may be 99.9% or more.
  • the porous layer 3 may further have a compound phase dispersed in the matrix phase.
  • the compound phase contains Co, Fe, Ni, Si and Cr.
  • the formation of the compound phase in the matrix phase can increase the hardness of the matrix phase, which can work advantageously to improve seizure resistance.
  • the sliding layer 4 is formed by impregnating the porous layer 3 with a resin composition to a predetermined thickness and baking the resin composition impregnated in the porous layer 3 .
  • the thickness of the sliding layer 4 may be set to be thicker on average than the thickness of the porous layer 3 so that the porous layer 3 is not exposed.
  • the resin composition of the sliding layer 4 contains fluororesin as a main component.
  • fluororesin serving as the base resin of the resin composition
  • examples of the fluororesin serving as the base resin of the resin composition include PTFE (polytetrafluoroethylene), PFA (perfluoroalkoxyalkane), FEP (perfluoroethylene prepene copolymer), EFFE (ethylenetetrafluoroethylene copolymer), and the like. may be used.
  • the resin composition contains PTFE as a fluororesin as a main component, and may contain other fluororesins such as PFA other than PTFE as optional additives.
  • the content of the other fluororesin included as an optional component may be 0 vol % or more and 20 vol % or less in the resin composition.
  • PTFE resins include Polyflon (registered trademark) D-210C, F-201 (manufactured by Daikin Industries, Ltd.), Fluon (registered trademark) AD911D (manufactured by Asahi Glass Co., Ltd.), Teflon (registered trademark) 31JR, 6C-J ( manufactured by Mitsui DuPont Fluorochemicals) and the like.
  • the resin composition of the sliding layer 4 contains hard particle powder 4a containing a Laves phase composed of Co, Mo and Si, molybdenum disulfide (MoS 2 ) At least one of powder 4b and bronze powder containing no Laves phase may be dispersed. If the porous layer 3 does not contain hard particles, it is essential that the sliding layer 4 contains hard particle powder 4a.
  • FIG. 5A is a backscattered electron composition image of the cross-sectional structure of the sliding layer 4 in which the molybdenum disulfide powder 4b is dispersed in the resin composition
  • FIG. 5B is a mapping image of Mo by EPMA
  • FIG. is a mapping image of S by EPMA.
  • MoS 2 is a material known as a sulfide that replaces the solid lubricity of lead and contributes to the improvement of friction characteristics. Since the bond between sulfur is weak, when friction occurs, the bond between sulfur is selectively cut to cause lubrication, which can effectively suppress wear.
  • FIG. 6A is a backscattered electron composition image of the cross-sectional structure of the sliding layer 4 in which the hard particle powder 4a is dispersed in the resin composition
  • FIG. 6B is a mapping image of Co by EPMA
  • FIG. It is a mapping image of Mo by EPMA
  • FIG. 6D is a mapping image of Si by EPMA.
  • the hard particle powder 4a dispersed in the sliding layer 4 is considered to receive a higher load than the resin composition forming the sliding layer 4.
  • the phase precipitates on the friction surface and supports the load, which can work advantageously to reduce wear of the sliding layer 4 .
  • the resin composition of the sliding layer 4 includes zinc compounds (ZnS (zinc sulfide), ZnO (zinc oxide), ZnSO 4 (zinc sulfate, etc.), carbon fiber, iron oxide, barium sulfate, aramid Fiber, graphite, calcium compounds (CaCO 3 (calcium carbonate), CaSO 4 (calcium sulfate), Ca (OH) 2 (calcium hydroxide), etc.), zinc, zinc alloys, or any one or more of them, optionally added
  • ZnS zinc compounds
  • ZnO zinc oxide
  • ZnSO 4 zinc sulfate
  • carbon fiber iron oxide
  • barium sulfate barium sulfate
  • aramid Fiber graphite
  • calcium compounds CaCO 3 (calcium carbonate), CaSO 4 (calcium sulfate), Ca (OH) 2 (calcium hydroxide), etc.
  • zinc alloys or any one or more of them, optionally added
  • the resin composition contains a zinc compound, deformation of
  • the resin composition contains carbon fibers
  • the value of the dynamic friction force and the change between the static friction force and the dynamic friction force can be improved, and the sliding characteristics can be improved.
  • iron in addition to improving wear resistance, it is possible to improve the elastic modulus.
  • Including barium sulfate or aramid fibers in the resin composition inhibits the improvement of the elastic modulus due to the addition of zinc compounds.
  • graphite in the resin composition, the frictional resistance can be reduced without inhibiting the improvement of the elastic modulus by the addition of the zinc compound.
  • a calcium compound, zinc, or a zinc alloy in the resin composition the wear resistance can be improved without inhibiting the improvement of the elastic modulus due to the addition of the zinc compound.
  • the ratio of the thickness of the porous layer 3 to the thickness of the sliding layer 4 may be 6:4 to 8:2, for example 7:3.
  • the porous layer 3 contains hard particles, but the sliding layer 4 does not contain the hard particle powder 4a
  • the porous layer 3 does not contain hard particles, but the sliding layer 4 contains hard particle powder 4a
  • the porous layer 3 contains hard particles
  • the sliding layer 4 contains hard particle powder 4a
  • the entirety of the porous layer 3 and the sliding layer 4 that is, the entirety of the sliding member 1 to the metal substrate 2 is 100% by mass
  • the total content of the hard particles and the hard particle powder 4a may be 1 to 20% by mass, for example, 15% by mass. good too.
  • FIG. 7 is a perspective view showing a schematic configuration of the bearing 20 according to one embodiment.
  • the bearing 20 is, for example, a slide bearing, and is configured such that the sliding member 1 having the above-described structure is formed in an annular shape with the sliding layer 4 inside.
  • the bearing 20 supports a shaft 21, which is an object to be slid, on a sliding layer 4 forming a cylindrical inner peripheral surface.
  • the bearing 20 can be applied in either a form in which the shaft 21 rotates or a form in which the shaft 21 moves linearly.
  • the bearing 20 may be used, for example, in a sliding part in which oil is used in a form of linear motion, such as a shock absorber of an automobile or the like.
  • the bearing 20 may be used in a sliding portion in which oil is used in a rotational motion, such as a gear pump that delivers oil by rotating a gear-shaped member.
  • Another form of the bearing according to the present embodiment is a rolling bearing used in a transmission or the like.
  • FIG. 8 is a diagram showing the manufacturing process of the sliding member 1. As shown in FIG.
  • a mixed powder is produced by mixing a first powder containing Cu and Sn and a hard particle powder containing a Laves phase composed of Co, Mo and Si (step S10 ).
  • a second powder containing Cu, Co, Fe, Ni, Si and Cr may be further mixed to produce a mixed powder.
  • the first powder is a bronze-based alloy powder containing Cu as a main component and further containing Sn.
  • the first powder may further contain Bi or P.
  • Bi Bi particles are precipitated in the matrix phase 10 during sintering of the mixed powder (that is, step S12), which will be described later, and Bi is similar to Pb in conventional lead bronze. Since it exhibits a lubricating action, it is possible to achieve low friction.
  • the first powder contains P, hydrogen embrittlement can be suppressed by removing (deoxidizing) oxygen mixed in copper.
  • the content of each constituent element of the first powder may be Sn: 10 to 11% by mass and Cu: balance.
  • the blending amount of the first powder in the mixed powder is the remaining amount obtained by subtracting the total blending amount of the powders other than the first powder from the blending amount of the entire mixed powder.
  • the hard particle powder is an alloy powder containing Cu and a Laves phase composed of Co, Mo and Si, and is a hard particle powder containing Cu, Si, Fe, Mo, Co and Cr.
  • the hard particle powder may further contain Sn, and may contain 1% by mass or more of Sn, for example.
  • the solidus temperature of the hard particle powder containing no Sn reaches nearly 1450°C. It becomes possible to solid phase sinter the material.
  • Sn included in the hard particle powder dissolves into the Cu—Sn matrix phase side of the first powder during sintering, and is diffusion-bonded. As sintering progresses due to powder shrinkage via Sn, solid-solution strengthening can occur due to Sn in the matrix phase and Sn included in the hard particle powder.
  • the content of each constituent element in the hard particle powder is Co: 14 to 20% by mass, Mo: 24 to 28% by mass, Si: 3 to 7% by mass, Fe: 2 to 16% by mass, Cr: 1 to 10% by mass, and Cu: balance.
  • the content of each constituent element in the hard particle powder is Co: 14 to 20% by mass, Mo: 24 to 28% by mass, Si: 3 when the whole hard particle powder is 100% by mass. 7% by mass, Fe: 2 to 16% by mass, Cr: 1 to 10% by mass, Sn: 1 to 15% by mass, Cu: balance.
  • the content of the hard particle powder may be 1 to 40% by mass, and 1 to 3% by mass. preferable. Since Cu and Sn are dissolved out of the hard particle powder during sintering, the hard particle content in the sliding layer 3 varies depending on the amount of the hard particle powder in the mixed powder.
  • the second powder is an alloy powder containing Cu as a main component and further containing Co, Fe, Ni, Si and Cr.
  • the second powder may further contain Sn, and may contain, for example, 1% by mass or more of Sn.
  • the solidus temperature of the second powder, which does not contain Sn, reaches nearly 1240°C. It becomes possible to solid phase sinter the material.
  • Sn is included, the content of each constituent element in the second powder is Co: 0.6 to 4.6% by mass and Fe: 1.6 to 5% when the second powder is 100% by mass.
  • the balance may
  • the amount of the second powder may be 2 to 38% by mass, preferably 10 to 38% by mass, when the entire mixed powder is 100% by mass. 19% by mass is more preferred.
  • the amount of the hard particle powder may be 1 to 40% by mass, and the amount of the second powder may be 15 to 18% by mass when the entire mixed powder is 100% by mass. In this case, excellent shear workability can be achieved.
  • the first powder, the hard particle powder and the second powder can each be produced by spraying, for example, by gas atomization.
  • the heat source for melting may be high frequency
  • the crucible (with a nozzle at the bottom) may be made of zirconia.
  • the particle size of the first powder may be, for example, 45 ⁇ m to 180 ⁇ m.
  • the hard particle powder may be a fine powder having a particle size of 53 ⁇ m or less.
  • the particle size of the second powder may be between 53 ⁇ m and 150 ⁇ m.
  • particle size refers to particle size distribution measured by a laser diffraction/scattering method using a particle size distribution analyzer MT3300EXII manufactured by Microtrac Bell. This measurement method is a measurement method according to the test procedure after the step of extracting powder from the paste in "4.2.3 Laser Diffraction Particle Size Distribution Measurement Test" of JIS Z3284-2.
  • a mixed powder containing the first powder and the hard particle powder is sprayed on one surface of the metal substrate 2 (step S11).
  • the mixed powder may contain a second powder.
  • alloy powder obtained by alloying the mixed powder by atomization may be sprayed on one surface of the metal substrate 2 during spraying.
  • the mixed powder (or alloy powder) dispersed on the metal substrate 2 is sintered at 800 to 900° C. to form the porous layer 3 (step S12).
  • the solidus temperatures of the hard particle powder and the second powder, which do not contain Sn reach nearly 1450°C and 1240°C, respectively.
  • the hard particle powder and the second powder can be solid-phase sintered to the metal base material 3 (back metal base material) near 800°C.
  • Sn included in the hard particle powder dissolves into the Cu—Sn matrix phase side of the first powder during sintering, and is diffusion-bonded. As sintering progresses due to powder shrinkage via Sn, solid-solution strengthening occurs due to Sn in the matrix phase and Sn included in the hard particle powder, and finally a high-strength alloy can be formed. .
  • a predetermined amount of resin composition is supplied onto the porous layer 3 formed on the surface of the metal substrate 2, and the resin composition is pressed against the porous layer 3. Then, the porous layer 3 is impregnated with the resin composition (step S13).
  • the resin composition supplied onto the porous layer 3 includes at least one of hard particle powder 4a containing a Laves phase composed of Co, Mo and Si, and molybdenum disulfide (MoS 2 ) powder 4b. more than one may be distributed.
  • the amount of the resin composition supplied onto the porous layer 3 is an amount that covers the porous layer 3 with a thickness that does not expose the porous layer 3 from the surface of the sliding layer 4 after baking the resin composition described later. is.
  • step S14 by heating the resin composition at a temperature exceeding the melting point of the resin contained in the resin composition, the resin is melted and the organic solvent is volatilized, and then the resin is cured to form the sliding layer 4. form (step S14).
  • Heating the resin composition at a predetermined temperature to form the sliding layer 4 is called baking.
  • the melting point of polytetrafluoroethylene used as the resin is 327°C.
  • the sliding layer 4 is baked by heating the resin composition at a temperature (for example, 400 to 500° C.) exceeding the melting point of polytetrafluoroethylene using a baking furnace.
  • the metal base material 2 on which the porous layer 3 and the sliding layer 4 are formed is rolled (step S15).
  • the sliding member 1 (see FIGS. 1 to 4) having the structure described above is manufactured.
  • the rolled metal base material (sliding member 1) is processed into a winding bush shape with the sliding layer on the inside, thereby manufacturing the bearing 20 (see FIG. 7) having the above-described configuration.
  • the inventors of the present invention first produced samples of the first powder, the hard particle powder, and the second powder, respectively, by atomization by the gas atomization method, with the mass ratios of the chemical components shown in Table 1 below. That is, the sample of the first powder has a composition of 10.75% by mass of Sn, less than 0.1% by mass of P, and the balance of Cu. Further, the hard particle powder sample contains 4.5% by mass of Sn, 5% by mass of Si, 15% by mass of Fe, 16% by mass of Co, 4% by mass of Cr, 26% by mass of Mo, and the balance of Cu. It is composed of the following composition. The sample of the second powder contained 7.8% by mass of Sn, 12% by mass of Ni, 2.5% by mass of Si, 3.6% by mass of Fe, 2.6% by mass of Co, and 1% of Cr. % by mass, and the balance is Cu.
  • test pieces of Examples 1 to 8 were produced by the following procedure. That is, samples of the first powder, the hard particle powder, and the second powder are mixed at a mass ratio of 80:2:18 to prepare a mixed powder, and then the mixed powder is alloyed during spraying by an atomizing process to obtain an alloy powder. was made.
  • the grain size of the alloy powder is 53-180 ⁇ m. Since needle-shaped particles were included in the particles of the alloy powder during spraying, the powder was classified with a sieve to remove the needle-shaped particles, and the powder was sprinkled on the backing metal base material SS400, sintered at a temperature of 870 ° C., for a sintering time. It was sintered for 60 minutes to form a porous layer.
  • Table 1 shows calculated values and measured values of the mixing ratio of the first powder, the hard particle powder and the second powder in the mixed powder, and the composition ratio of the alloy powder (sintered powder) forming the porous layer.
  • the porous layer is impregnated with a resin composition having a composition shown in Table 2 below, which is further mixed with 2 vol% of graphite powder (not shown in Table 2 below).
  • a sliding layer covering the porous layer was formed, and then rolling was performed to prepare test pieces of Examples 1 to 8. Therefore, the sliding layers of Examples 1 to 8 all contained graphite powder.
  • 3A to 3E show a backscattered electron image of the cross-sectional structure of the porous layer in the test piece of Example 1 and mapping images of Sn, Co, Mo, and Si by EPMA.
  • Example 9 a test piece of Example 9 was produced by the following procedure. That is, only the first powder was sprinkled on the backing metal base material SS400, and sintered at a sintering temperature of 870° C. for a sintering time of 60 minutes to form a porous layer. Next, the porous layer is impregnated with a resin composition having a composition shown in Table 2 below, which is further mixed with 2 vol% of graphite powder (not shown in Table 2 below). was fired to form a sliding layer covering the porous layer, and then rolled to prepare a test piece of Example 9.
  • a test piece of Comparative Example 1 was produced by rolling after sintering LBC3 on a back metal base material SS400.
  • back metal base material carbon steel
  • bronze powder having a particle size of 180 ⁇ m or less, Cu: the balance, Sn: 10 to 11.5%, P: 0.1% or less was sprinkled, and the sintering temperature was 870 ° C.
  • the porous layer is impregnated with a resin composition having the following composition, and the resin composition is fired to obtain a porous layer.
  • a test piece of Comparative Example 2 which is a resin composite bearing, was produced by forming a sliding layer covering the matte layer and then rolling it.
  • the formulation (% by volume) of the resin composition of Comparative Example 2 is as follows. PTFE resin: 98%, graphite 2%
  • the dimensions of the test pieces of Examples 1 to 8 and Comparative Examples 1 and 2 are all 40 mm square ⁇ plate thickness 1 mm (lining thickness 0.3 mm, backing metal thickness 0.7 mm).
  • the thickness of the lining means the length in the thickness direction from the surface of the back metal to the surface of the sliding layer (resin layer in Examples 1 to 8 and Comparative Example 2, LBC 3 in Comparative Example 1).
  • the limit PV value is used to determine the applicable range.
  • the inventors of the present invention focused on obtaining a linear relationship between ⁇ PV and T (lubricating oil temperature).
  • the ⁇ PV value was determined for the deterioration starting temperature (80° C.) of the lubricating oil, and the PV value was analyzed from the friction coefficient ⁇ value obtained at that time.
  • the peripheral speed was set at three levels of 0.2 m/s, 1 m/s, and 3 m/s.
  • the load was a step load of 0.6 MPa/30 s, and the value obtained by dividing the load when the friction coefficient reached 0.5 or the back surface temperature of the test piece reached 200° C. by the friction cross-sectional area of 254 mm 2 was defined as the seizure surface pressure.
  • the mating material is S45C carbo-nitriding, which is hard and tough, and the surface roughness is Ra 0.17 ⁇ m.
  • (2) Wear resistance evaluation The wear test was conducted under operating conditions of constant surface pressure and peripheral speed, surface pressure 1 MPa, 5 MPa, 10 MPa, peripheral speed 0.2 m / s, 3 m / s (conditions where the test piece is almost saturated). and conditions that generate heat in a short time) were combined for a total of 6 levels.
  • the continuous operation time was basically set to 1 hour, but was set so that the tester was stopped by the operation of the limiter when the temperature of the back surface of the test piece reached 200°C.
  • the mating material used was a cylindrical ring obtained by carbo-nitriding S45C described in the above seizure resistance evaluation, and the surface roughness of the sliding contact surface was polished to Ra 0.17 ⁇ m.
  • FIG. 10 shows measured values of thermal resistance versus peripheral speed for the test pieces of Example 1 and Comparative Example 1
  • FIG. 11 shows the critical PV curves.
  • the thermal resistance was obtained for each peripheral speed from the slope of the linear approximate straight line obtained from the frictional heat generation amount Q generated on the contact surface and the lubricating oil temperature.
  • the amount of heat generated by friction Q was analyzed using the following formula (1) from the load, speed, and coefficient of friction.
  • the test piece of Example 1 is a test piece containing hard particles containing a Laves phase composed of Co, Mo and Si in the porous layer.
  • the sliding layer of the test piece of Example 1 is composed of PTFE and graphite powder, and does not contain MoS 2 powder or hard particle powder.
  • FIG. 11 it was confirmed that the test piece of Example 1 had a higher PV value as a whole than the test piece of Comparative Example 1, and that the seizure resistance was improved.
  • the test piece of Example 1 has lower thermal resistance than the test piece of Comparative Example 1 in the low peripheral speed range of 0.2 m/s, and the seizure surface pressure is 1.5 m/s. It reached 40 MPa or more, which is 35 times higher, and it was confirmed that excellent anti-seizure performance was exhibited.
  • FIG. 12 shows limiting PV curves for the test pieces of Examples 2-4
  • FIG. 13 shows limiting PV curves for the test pieces of Examples 5-8
  • FIG. 14 shows limiting PV curves for the specimens of Example 8 and Comparative Examples 1 and 2.
  • the specimens of Examples 2 to 4, in which MoS 2 powder was added to the sliding layer were all similar to those of Example 1, in which MoS 2 was not added to the sliding layer. It was confirmed that the PV value was overall higher than that of the test piece of No. 2, and the seizure resistance was improved. Also, referring to FIG. 12, looking at the effect of MoS2 powder on the seizure surface pressure with respect to the peripheral speed, the seizure surface pressure in the low speed range of 0.2 m/s is about 50 MPa, and in the medium speed range of 1 m/s. was about 15 MPa in the high speed range of 3 m/s, and about 10 MPa in the high speed range of 3 m/s.
  • test pieces of Examples 5 to 8, in which hard particles are dispersed in the porous layer and hard particle powder is added in the sliding layer are It was also confirmed that the PV value was higher overall than the test piece of Example 1, in which no hard particle powder was added to the sliding layer, and the seizure resistance was improved. Although illustration is omitted, the test piece of Example 9, in which hard particles are not dispersed in the porous layer and hard particle powder is added to the sliding layer, also exhibits good seizure resistance. It was confirmed that Also, referring to FIG.
  • Example 5 with 1% by mass of hard particle powder has 81.8 MPa, and 5% by mass of hard particle powder is applied.
  • the seizure surface pressure was 65.2 MPa in Example 6 and 70.7 MPa in Example 7 containing 10% by mass of the hard particle powder.
  • Example 5 with 1% by mass of hard particle powder is 20.1 MPa
  • Example 6 with 5% by mass of hard particle powder is 19.9 MPa
  • Example with 10% by mass of hard particle powder 7 was 37.1 MPa, and an improvement in seizure property was recognized.
  • Example 5 with 1% by mass of hard particle powder is 7.8 MPa
  • Example 6 with 5% by mass of hard particle powder is 8.3 MPa
  • Example 7 with 10% by mass of hard particle powder is 11. 0.6 MPa.
  • the test piece of Example 8 to which 15% by mass of hard particle powder was added had a seizing surface pressure of about It was confirmed that the value was twice as high. From the above, it is presumed that the amount of the hard particle powder added to the sliding layer is preferably 10% by mass or more.
  • FIG. 15 shows the amount of wear at a surface pressure of 10 MPa for the test pieces of Examples 4, 7, 8, 9 and Comparative Example.
  • Example 4 in which hard particles are dispersed in the porous layer and 10% by mass of MoS 2 powder is added to the sliding layer, is 0.5%. 01 mm/km, hard particles are dispersed in the porous layer, and 10% by mass of hard particle powder is added to the sliding layer.
  • Example 8 0.0054 mm/km in Example 8, 0.0027 mm/km in Example 9 in which hard particles are not dispersed in the porous layer and 15% by mass of hard particle powder is added to the sliding layer; Comparative Example 1 was 0.048 mm/km, and Comparative Example 2 was 0.033 mm/km.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

摺動部材は、 金属基材と、金属基材の一の面に形成される多孔質層と、多孔質層を被覆する摺動層を備える。摺動層は、樹脂組成物で形成されており、多孔質層は、CuおよびSnを含むマトリックス相と、マトリックス相中に分散している硬質粒子であって、Co、MoおよびSiの組成で構成されるラーベス相を含む硬質粒子と、を有する。

Description

摺動部材および軸受
 本開示は、摺動部材および当該摺動部材から構成される軸受に関する。
 鉛青銅系焼結軸受合金は自動車や一般産業機械の摺動部材料として広く用いられている。鉛青銅の主成分は、Cu、Sn、Pbであり、銅合金鋳物としてJIS H5120などで規定されている。この中で、CAC603(以下LBC3と称する)として規定されている銅合金は、中高速・高荷重用軸受、大形エンジン用軸受などが用途として挙げられている。この銅合金中に質量で10%程度含まれている鉛は、固体潤滑剤として摩擦特性を向上させる役割を担っている。軟質金属である鉛が容易に塑性変形することで、摩擦する二面間の間で潤滑剤として働き、結果的に摩擦特性の優れた材料となる。
 しかしながら、汎用品であるLBC3では、使用環境の高速化や高荷重化などにより、十分な潤滑が得られない境界潤滑のような使用環境においては著しい摩耗や焼付が発生し、その改善が課題となっている。
 特開2008-50688号公報、特開2005-163074号公報では、鉛を含まない摺動材料として、Cuを主成分としてCu基にSnとBiを添加したCu-Sn-Bi合金の銅系摺動材料が提案されている。
 LBC3よりも耐焼付性の点で改善された摺動部材および軸受を提供することが望まれる。
 一態様に係る摺動部材は、
 金属基材と、
 前記金属基材の一の面に形成される多孔質層と、
 前記多孔質層を被覆する摺動層を備え、
 前記摺動層は、樹脂組成物で形成され、
 前記多孔質層は、
 CuおよびSnを含むマトリックス相と、
 前記マトリックス相中に分散している硬質粒子であって、Co、MoおよびSiの組成で構成されるラーベス相を含む硬質粒子と、を有する。
 別の態様に係る摺動部材は、
 金属基材と、
 前記金属基材の一の面に形成される多孔質層と、
 前記多孔質層を被覆する摺動層を備え、
 前記摺動層は、樹脂組成物で形成され、
 前記摺動層中には、Co、MoおよびSiの組成で構成されるラーベス相を含む硬質粒子粉末が分散されている。
図1は、一実施の形態に係る摺動部材の概略構成を示す縦断面図である。 図2Aは、一実施の形態に係る摺動部材の断面組織の反射電子組成像である。 図2Bは、一実施の形態に係る摺動部材の多孔質層の断面組織の反射電子組成像である。 図2Cは、一実施の形態に係る摺動部材の多孔質層の断面組織のEPMAによるSnのマッピング画像である。 図2Dは、一実施の形態に係る摺動部材の多孔質層の断面組織のEPMAによるCoのマッピング画像である。 図2Eは、一実施の形態に係る摺動部材の多孔質層の断面組織のEPMAによるMoのマッピング画像である。 図2Fは、一実施の形態に係る摺動部材の多孔質層の断面組織のEPMAによるSiのマッピング画像である。 図3Aは、一実施の形態の一変形例に係る摺動部材の断面組織の反射電子組成像である。 図3Bは、一実施の形態の一変形例に係る摺動部材の断面組織のEPMAによるSnのマッピング画像である。 図3Cは、一実施の形態の一変形例に係る摺動部材の断面組織のEPMAによるCoのマッピング画像である。 図3Dは、一実施の形態の一変形例に係る摺動部材の断面組織のEPMAによるMoのマッピング画像である。 図3Eは、一実施の形態の一変形例に係る摺動部材の断面組織のEPMAによるSiのマッピング画像である。 図4は、一実施の形態の別の一変形例に係る摺動部材の概略構成を示す縦断面図である。 図5Aは、一実施の形態の第1変形例に係る摺動部材の摺動層の断面組織の反射電子組成像である。 図5Bは、一実施の形態の第1変形例に係る摺動部材の摺動層の断面組織のEPMAによるMoのマッピング画像である。 図5Cは、一実施の形態の第1変形例に係る摺動部材の摺動層の断面組織のEPMAによるSのマッピング画像である。 図6Aは、一実施の形態の第2変形例に係る摺動部材の摺動層の断面組織の反射電子組成像である。 図6Bは、一実施の形態の第2変形例に係る摺動部材の摺動層の断面組織のEPMAによるCoのマッピング画像である。 図6Cは、一実施の形態の第2変形例に係る摺動部材の摺動層の断面組織のEPMAによるMoのマッピング画像である。 図6Dは、一実施の形態の第2変形例に係る摺動部材の摺動層の断面組織のEPMAによるSiのマッピング画像である。 図7は、一実施の形態に係る軸受の概略構成を示す斜視図である。 図8は、一実施の形態に係る摺動部材の製造工程を示す図である。 図9は、スラスト試験機の概略構成を示す図である。 図10は、実施例1および比較例1の試験片についての周速に対する熱抵抗を示すグラフである。 図11は、実施例1および比較例1の試験片についての限界PV曲線を示すグラフである。 図12は、実施例2~4の試験片についての限界PV曲線を示すグラフである。 図13は、実施例5~8の試験片についての限界PV曲線を示すグラフである。 図14は、実施例8および比較例1、2の試験片についての限界PV曲線を示すグラフである。 図15は、実施例4、7、8および比較例1、2の試験片についての面圧10MPaにおける摩耗量を示すグラフである。
 本明細書において、組成に関する「%」は、特に指定しない限り「質量%」である。また、本明細書において、「○○~△△」(○○、△△はいずれも数字)は、特に指定しない限り「○○以上△△以下」を意味する。また、本明細書において、「主成分」とは、組成物全体に対して50質量%以上含まれている成分をいう。また、本明細書において、「硬質粒子粉末」とは、焼結前の混合粉末中の粉末または摺動層の樹脂組成物中に分散している粉末をいい、「硬質粒子」とは、焼結後の多孔質層中の粒子をいう。後述するように、焼結時に硬質粒子粉末に含まれるCuとSnがマトリックス相中にある程度移動するため、多孔質層中の硬質粒子の含有量は、混合粉末中の硬質粒子粉末の配合量から変動し、硬質粒子中の各構成元素の含有量は、硬質粒子粉末中の各構成元素の含有量とは異なるものとなる(硬質粒子は、化学成分のうちSnとCuの含有率が硬質粒子粉末に比べてある程度下がった組成の粒子である)。
 実施形態の第1の態様に係る摺動部材は、
 金属基材と、
 前記金属基材の一の面に形成される多孔質層と、
 前記多孔質層を被覆する摺動層を備え、
 前記摺動層は、樹脂組成物で形成され、
 前記多孔質層は、
 CuおよびSnを含むマトリックス相と、
 前記マトリックス相中に分散している硬質粒子であって、Co、MoおよびSiの組成で構成されるラーベス相を含む硬質粒子と、を有する。
 実施形態の第2の態様に係る摺動部材は、第1の態様に係る摺動部材であって、
 前記多孔質層は、
 前記マトリックス相中に分散している化合物相であって、Co、Fe、Ni、SiおよびCrを含む化合物相をさらに有する。
 実施形態の第3の態様に係る摺動部材は、第1または2の態様に係る摺動部材であって、
 前記多孔質層全体を100質量%とした時に前記硬質粒子の含有率は40質量%以下である。
 実施形態の第4の態様に係る摺動部材は、第1~3のいずれかの態様に係る摺動部材であって、
 前記摺動層中には、Co、MoおよびSiの組成で構成されるラーベス相を含む硬質粒子粉末と、MoSを含む粉末と、ラーベス相を含まない青銅粉末の少なくとも1つ以上が分散されている。
 実施形態の第5の態様に係る摺動部材は、
 金属基材と、
 前記金属基材の一の面に形成される多孔質層と、
 前記多孔質層を被覆する摺動層を備え、
 前記摺動層は、樹脂組成物で形成され、
 前記摺動層中には、Co、MoおよびSiの組成で構成されるラーベス相を含む硬質粒子粉末が分散されている。
 実施形態の第6の態様に係る摺動部材は、第1~5のいずれかの態様に係る摺動部材であって、
 前記多孔質層の厚みと前記摺動層の厚みの比率は、6:4~8:2である。
 実施形態の第7の態様に係る摺動部材は、第1~6のいずれかの態様に係る摺動部材であって、
 前記多孔質層と前記摺動層とを合わせた全体を100質量%とした時に前記硬質粒子の含有率と前記硬質粒子粉末の含有率との合計は1~20質量%である。
 実施形態の第8の態様に係る軸受は、
 第1~7のいずれかの態様に係る摺動部材から構成される軸受であって、
 円筒状の内周面を有し、前記内周面が前記摺動層で構成されている。
 以下に、添付の図面を参照して、実施の形態の具体例を詳細に説明する。
<摺動部材の構成>
 図1は、一実施の形態に係る摺動部材1の概略構成を示す縦断面図であり、図2Aは、摺動部材1の断面組織の反射電子組成像である。図1および図2Aに示すように、摺動部材1は、金属基材2と、金属基材2の一の面である表面に形成される多孔質層3と、多孔質層3を被覆する摺動層4と、を備えている。
 このうち金属基材2の材質は、軸受の裏金母材として利用できる程度の強度および形状安定性を有するものであれば、特に限定されないが、たとえば、低炭素鋼(SPCC,SS400など)であってもよいし、Fe系の板材にCuがめっきされた銅メッキ鋼板であってもよい。
 多孔質層3は、金属基材2の表面に、金属粉末(後述する混合粉末、または噴霧時に混合粉末を合金化させた合金粉末)が焼結されて形成されている。多孔質層3の厚さは、金属粉末が少なくとも2個以上重なって焼結され得る厚さであってもよく、たとえば0.3mm以下であってもよい。
 多孔質層3は、CuおよびSnを含むマトリックス相と、マトリックス相中に分散している硬質粒子とを有している。図2Bは、多孔質層3の断面組織の反射電子組成像である。図2Cは、多孔質層3の断面組織の電子線マイクロアナライザ(Electron Probe Micro Analyzer;EPMA)によるSnのマッピング画像であり、図2Dは、Coのマッピング画像であり、図2Eは、Moのマッピング画像であり、図2Fは、Siのマッピング画像である。なお、図2B~図2Fに示す例では、多孔質層3は、後述する混合粉末を噴霧時に合金化させた合金粉末が焼結されて形成されたものである。合金粉末にされることで、粉末の焼結が促進してネックが形成され、粉末同士が十分に接合され得る。また、合金粉末にされることで、硬質粒子が微細化され、マトリックス相中に一様に分散される。一変形例として、後述する摺動層4中に硬質粒子粉末4aが分散されている場合には、多孔質層3は硬質粒子を含んでいなくてもよい。図3Aは、多孔質層3が硬質粒子を含んでおらず、摺動層4中に硬質粒子粉末4aが分散されている摺動部材1の断面組織の反射電子組成像であり、図3Bは、EPMAによるSnのマッピング画像であり、図3Cは、EPMAによるCoのマッピング画像であり、図3Dは、EPMAによるMoのマッピング画像であり、図3Eは、EPMAによるSiのマッピング画像である。
 図2Cおよび図3Bに示すように、マトリックス相は、主成分としてCuを含み、さらにSnを含む青銅系合金である。マトリックス相は、Cu、SnおよびNiの固溶体で構成されていてもよい。
 マトリックス相の結晶粒界にはBi粒子が分布していてもよい。この場合、摺動層4が摩耗して多孔質層3の一部が露出される摩擦面においてBiが従来の鉛青銅のPbと同様の自己潤滑作用を発現し、摩擦する二面間の間で潤滑剤として働くことで、摩擦低減を図ることができる。
 図2D~図2Fに示すように、硬質粒子は、Co、MoおよびSiの組成で構成されるラーベス相を含んでいる。また、図3B~図3Eに示すように、硬質粒子粉末4aは、Co、MoおよびSiの組成で構成されるラーベス相を含んでいる。ここで、ラーベス相とは、原子半径比が1.2:1付近となるA元素とB元素からなるAB型を基本とした金属間化合物であり、MgZn(C14)型、MgCu(C15)型、MgNi(C36)型の3種の構造がある。Co、MoおよびSiの組成(より詳しくは、CoMoSi)で構成されるラーベス相は、A元素をMo、B元素をCoとし、Coの25at%をSiに置換したラーベス相であり、六方晶構造を有するMgZn型である。CoMoSiで構成されるラーベス相のビッカース硬さは、Hv1000~1200である。
 摺動層4が摩耗して多孔質層3の一部が露出される際に、マトリックス相の中に分散している硬質粒子は、マトリックス相となる軟質な青銅よりも高い荷重を受けると考えられるが、Co、MoおよびSiの組成で構成される硬いラーベス相が摩擦面に析出して負荷を支えることで、多孔質層3の摩耗低減に有利に作用し得る。また、摺動層4中に硬質粒子粉末4aが分散されている場合でも、摺動層4が摩耗して硬質粒子粉末4aが露出した際に上記と同様の効果を得ることができる。
 また、本実施の形態では、ラーベス相中のMoと潤滑油中のSによって摩擦面にMoSの硫化被膜が形成され得る。MoSは、鉛の固体潤滑性を代替させ摩擦特性の向上に寄与する硫化物として知られている材料であり、モリブデン間、モリブデンと硫黄間の結合に比べて、硫黄間の結合が弱いため、摩擦が起こると選択的に硫黄間の結合が切れることによって潤滑が起こり、摩耗の抑制に有効に作用し得る。また、ラーベス相中のMoの摺動中の酸化によって摩擦面に生じるMo酸化物も潤滑効果を発揮して摩耗の抑制に有効に作用し得る。
 多孔質層3が硬質粒子を含んでいる場合には、多孔質層3全体を100質量%とした時に、硬質粒子の含有率は、たとえば40質量%以下であってもよい。多孔質層3全体を100質量%とした時に、硬質粒子の含有量は、たとえば0.1質量%以上であってもよい。硬質粒子の含有量が0.1質量%以上であれば、上述したような多孔質層3の摩耗低減の効果が得られる。また、多孔質層3全体を100質量%とした時に、Co、MoおよびSiの組成で構成されるラーベス相の含有率は、たとえば0.1~20質量%であってもよい。後述する摺動層4中に硬質粒子粉末4aが分散されており、多孔質層3が硬質粒子を含んでいない場合には、多孔質層3全体を100質量%とした時に、CuおよびSnの含有率の合計は、99.9%以上であってもよい。
 多孔質層3は、マトリックス相中に分散している化合物相をさらに有していてもよい。
 化合物相は、Co、Fe、Ni、SiおよびCrを含んでいる。マトリックス相の中に化合物相が形成されることで、マトリックス相の硬度を高めることができ、耐焼付性の向上に有利に作用し得る。
 摺動層4は、多孔質層3に樹脂組成物が所定の厚さで含浸され、多孔質層3に含浸された樹脂組成物が焼成されて形成される。摺動層4の厚さ(金属基材2の表面からの厚さ)は、多孔質層3が露出しないように、多孔質層3の厚さより平均して厚く設定されてもよい。
 摺動層4の樹脂組成物は、主成分としてフッ素樹脂を含む。樹脂組成物のベース樹脂となるフッ素樹脂としては、たとえばPTFE(ポリテトラフルオロエチレン)、PFA(パーフルオロアルコキシアルカン)、FEP(パーフルオロエチレンプリペンコポリマー)、EFFE(エチレンテトラフルオロエチレンコポリマー)などが用いられてもよい。
 樹脂組成物は、フッ素樹脂としてPTFEを主成分として含み、PTFE以外のPFA等の他のフッ素樹脂を任意の添加物として含んでもよい。任意の成分として含まれる他のフッ素樹脂の含有量は、樹脂組成物中0vol%以上20vol%以下であってもよい。
 PTFE樹脂の市販品としては、ポリフロン(登録商標) D-210C、F-201(ダイキン工業社製)、Fluon(登録商標) AD911D(旭硝子社製)、テフロン(登録商標) 31JR、6C-J(三井・デュポンフロロケミカル社製)などを挙げることができる。
 一変形例として、図4に示すように、摺動層4の樹脂組成物中には、Co、MoおよびSiの組成で構成されるラーベス相を含む硬質粒子粉末4aと、二硫化モリブデン(MoS)粉末4bと、ラーベス相を含まない青銅粉末のうちの少なくとも1つ以上が分散されていてもよい。なお、多孔質層3が硬質粒子を含んでいない場合には、摺動層4中に硬質粒子粉末4aが分散されていることは必須である。
 図5Aは、樹脂組成物中に二硫化モリブデン粉末4bが分散されている摺動層4の断面組織の反射電子組成像であり、図5Bは、EPMAによるMoのマッピング画像であり、図5Cは、EPMAによるSのマッピング画像である。上述したように、MoSは、鉛の固体潤滑性を代替させ摩擦特性の向上に寄与する硫化物として知られている材料であり、モリブデン間、モリブデンと硫黄間の結合に比べて、硫黄間の結合が弱いため、摩擦が起こると選択的に硫黄間の結合が切れることによって潤滑が起こり、摩耗の抑制に有効に作用し得る。
 図6Aは、樹脂組成物中に硬質粒子粉末4aが分散されている摺動層4の断面組織の反射電子組成像であり、図6Bは、EPMAによるCoのマッピング画像であり、図6Cは、EPMAによるMoのマッピング画像であり、図6Dは、EPMAによるSiのマッピング画像である。摺動層4中に分散している硬質粒子粉末4aは、摺動層4を形成する樹脂組成物よりも高い荷重を受けると考えられるが、Co、MoおよびSiの組成で構成される硬いラーベス相が摩擦面に析出して負荷を支えることで、摺動層4の摩耗低減に有利に作用し得る。
 別の一変形例として、摺動層4の樹脂組成物は、亜鉛化合物(ZnS(硫化亜鉛)、ZnO(酸化亜鉛)、ZnSO(硫酸亜鉛など)、炭素繊維、酸化鉄、硫酸バリウム、アラミド繊維、黒鉛、カルシウム化合物(CaCO(炭酸カルシウム)、CaSO(硫酸カルシウム)、Ca(OH)(水酸化カルシウム)など)、亜鉛、亜鉛合金のいずれか、または複数種を、任意の添加物として含んでいてもよい。樹脂組成物が亜鉛化合物を含むことで、弾性率の向上により摺動層4の変形が抑制され、外力により摺動層4が変形して接触面積が増減することが抑制され得る。また、樹脂組成物が炭素繊維を含むことで、動摩擦力の値、および静摩擦力と動摩擦力の変化を改善し、摺動特性を改善することができる。樹脂組成物が酸化鉄を含むことで、耐摩耗性の向上に加え、弾性率を向上させることができる。樹脂組成物が硫酸バリウムまたはアラミド繊維を含むことで、亜鉛化合物の添加により弾性率を改善することを阻害することなく、耐摩耗性を高くすることができる。樹脂組成物が黒鉛を含むことで、亜鉛化合物の添加により弾性率を改善することを阻害することなく、摩擦抵抗を低下させることができる。樹脂組成物がカルシウム化合物、亜鉛または亜鉛合金を含むことで、亜鉛化合物の添加により弾性率を改善することを阻害することなく、耐摩耗性を改善させることができる。
 多孔質層3の厚みと摺動層4の厚みの比率は、6:4~8:2であってもよく、たとえば7:3であってもよい。
 本実施の形態に係る摺動部材1として、(1)多孔質層3に硬質粒子が含まれるが、摺動層4には硬質粒子粉末4aが含まれない態様、(2)多孔質層3には硬質粒子が含まれないが、摺動層4に硬質粒子粉末4aが含まれる態様、(3)多孔質層3に硬質粒子が含まれ、かつ、摺動層4に硬質粒子粉末4aが含まれる態様の3つがあるが、(1)~(3)のいずれの態様おいても、多孔質層3と摺動層4とを合わせた全体(すなわち、摺動部材1全体から金属基材2を除いたもの)を100質量%とした時に、硬質粒子の含有率と硬質粒子粉末4aの含有率との合計は1~20質量%であってもよく、たとえば、15質量%であってもよい。
<軸受の構成>
 次に、一実施の形態に係る軸受20の構成について説明する。図7は、一実施の形態に係る軸受20の概略構成を示す斜視図である。図7に示すように、軸受20は、たとえばすべり軸受であり、上述した構成を有する摺動部材1を、摺動層4を内側として環状に構成される。軸受20は、円筒状の内周面を形成する摺動層4にて被摺動物である軸21を支持する。
 軸受20は、軸21が回転運動する形態、あるいは直線運動する形態のいずれであっても適用可能である。軸受20は、たとえば、自動車等のショックアブソーバ等、直線運動する形態で油が用いられる摺動部に使用されてもよい。また、軸受20は、歯車状の部材が回転することで、油を送出するギアポンプ等、回転運動する形態で油が用いられる摺動部に使用されてもよい。また本実施の形態に係る軸受の別形態として、トランスミッション等で用いられる転がり軸受も挙げられる。
<摺動部材および軸受の製造方法>
 次に、図8を参照し、本実施の形態に係る摺動部材1および軸受20の製造方法について説明する。図8は、摺動部材1の製造工程を示す図である。
 図8に示すように、まず、CuおよびSnを含む第1粉末と、Co、MoおよびSiの組成で構成されるラーベス相を含む硬質粒子粉末とを混合して混合粉末を作製する(ステップS10)。第1粉末および硬質粒子粉末に加えて、さらにCu、Co、Fe、Ni、SiおよびCrを含む第2粉末を混合して混合粉末を作製してもよい。
 ここで、第1粉末は、主成分としてCuを含み、さらにSnを含む青銅系合金粉末である。第1粉末は、BiまたはPをさらに含んでいてもよい。第1粉末がBiを含む場合には、後述する混合粉末の焼結時(すなわちステップS12)に、マトリックス相10の中にBi粒子が析出し、Biが従来の鉛青銅のPbと同様の自己潤滑作用を発現するため、低摩擦化を図ることができる。また、第1粉末がPを含む場合には、銅に混入した酸素を除去(脱酸)して水素脆化を抑制することができる。第1粉末の各構成元素の含有量は、Sn:10~11質量%、Cu:残部であってもよい。更にBiを含有する場合は、Bi:7~9質量%、Pを含有する場合は、P:0.02質量%以下が好ましい。混合粉末における第1粉末の配合量は、混合粉末全体の配合量より第1粉末以外の粉末の合計配合量を差し引いた残部の量である。
 硬質粒子粉末は、Co、MoおよびSiの組成で構成されるラーベス相とCuを含む合金粉末であって、Cu、Si、Fe、Mo、CoおよびCrを含む硬質粒子粉末である。硬質粒子粉末は、Snをさらに含んでいてもよく、たとえば、Snを1質量%以上含んでいてもよい。Snを含まない硬質粒子粉末の固相温度は1450℃近くに達するが、Snを含有させることで、硬質粒子粉末の固相温度を低減させることができ、800℃近くで硬質粒子粉末を裏金母材へ固相焼結させることが可能となる。また、硬質粒子粉末に内包されたSnは、焼結時に第1粉末によるCu-Snマトリックス相側へ固溶し、拡散接合される。Snを介しての粉末収縮により焼結が進行することで、マトリックス相中のSnと硬質粒子粉末に内包されたSnによる固溶強化が発現し得る。硬質粒子粉末中の各構成元素の含有量は、硬質粒子粉末全体を100質量%とした時にCo:14~20質量%、Mo:24~28質量%、Si:3~7質量%、Fe:2~16質量%、Cr:1~10質量%、Cu:残部であってもよい。Snを含む場合には、硬質粒子粉末中の各構成元素の含有量は、硬質粒子粉末全体 を100質量%とした時にCo:14~20質量%、Mo:24~28質量%、Si:3~7質量%、Fe:2~16質量%、Cr:1~10質量%、Sn:1~15質量%、Cu:残部であってもよい。混合粉末全体を100質量%とした時(すなわち摺動層3全体を100質量%とした時)に硬質粒子粉末の配合量は1~40質量%であってもよく、1~3質量%が好ましい。焼結時に硬質粒子粉末よりCuとSnが溶け出すため、摺動層3中の硬質粒子の含有量は、混合粉末中の硬質粒子粉末の配合量から変動する。
 第2粉末は、主成分としてCuを含み、さらにCo、Fe、Ni、SiおよびCrを含む合金粉末である。第2粉末は、Snをさらに含んでいてもよく、たとえば、Snを1質量%以上含んでいてもよい。Snを含まない第2粉末の固相温度は1240℃近くに達するが、Snを含有させることで、第2粉末の固相温度を低減させることができ、800℃近くで第2粉末を裏金母材へ固相焼結させることが可能となる。Snを含む場合には、第2粉末中の各構成元素の含有量は、第2粉末全体を100質量%とした時にCo:0.6~4.6質量%、Fe:1.6~5.6質量%、Ni:10~14質量%、Si:0.5~4.5質量%、Cr:0.5~1.5質量%、Sn:1~15質量%、Cu:残部であってもよい。混合粉末中に第2粉末を含む場合は、混合粉末全体を100質量%とした時に第2粉末の配合量は2~38質量%であってもよく、10~38質量%が好ましく、17~19質量%がより好ましい。
 混合粉末全体を100質量%とした時に硬質粒子粉末の配合量は1~40質量%であり、第2粉末の配合量は15~18質量%であってもよい。この場合、優れた剪断加工性を実現できる。
 第1粉末、硬質粒子粉末および第2粉末はそれぞれ、たとえばガスアトマイズ法による噴霧により製造することできる。ガスアトマイズ法において、溶解の熱源は高周波であってもよく、ルツボ(底部にノズル付)にはジルコニア質を使用してもよい。
 第1粉末の粒径は、たとえば45μm~180μmであってもよい。硬質粒子粉末の粒径は、53μm以下の微粉であってもよい。第2粉末の粒径は、53μm~150μmであってもよい。ここで「粒径」とは、マイクロトラック・ベル社製 粒子径分布測定装置MT3300EXIIを用いたレーザー回折・散乱法により測定される粒子径分布をいう。この測定方法は、JIS Z3284-2の「4.2.3のレーザー回折式粒度分布測定試験」のうちペーストから粉末を抽出する工程以降の試験手順に準じた測定方法である。
 次に、図8に示すように、金属基材2の一の面上に第1粉末、硬質粒子粉末を含む混合粉末を散布する(ステップS11)。混合粉末は、第2粉末を含んでもよい。ステップS11において、噴霧時にアトマイズ処理により混合粉末を合金化させた合金粉末を金属基材2の一の面上に散布してもよい。そして、金属基材2上に散布された混合粉末(または合金粉末)を800~900℃で焼結して多孔質層3を形成する(ステップS12)。上述したように、Snを含まない硬質粒子粉末、第2粉末の固相温度はそれぞれ1450℃、1240℃近くに達するが、Snを含有させることで、硬質粒子粉末、第2粉末の固相温度を低減させることができ、800℃近くで硬質粒子粉末、第2粉末を金属基材3(裏金母材)へ固相焼結させることが可能となる。また、硬質粒子粉末に内包されたSnは、焼結時に第1粉末によるCu-Snマトリックス相側へ固溶し、拡散接合される。Snを介しての粉末収縮により焼結が進行することで、マトリックス相中のSnと硬質粒子粉末に内包されたSnによる固溶強化が発現し、最終的には高強度の合金が形成され得る。
 次に、図8に示すように、金属基材2の表面に形成された多孔質層3上に、所定の量の樹脂組成物を供給し、樹脂組成物を多孔質層3に押圧することで、樹脂組成物を多孔質層3に含浸させる(ステップS13)。多孔質層3上に供給される樹脂組成物には、Co、MoおよびSiの組成で構成されるラーベス相を含む硬質粒子粉末4aと、二硫化モリブデン(MoS)粉末4bのうちの少なくとも1つ以上が分散されていてもよい。多孔質層3上に供給される樹脂組成物の量は、後述する樹脂組成物の焼成後に、多孔質層3が摺動層4の表面から露出しない厚さで多孔質層3を被覆する量である。
 次に、樹脂組成物に含まれる樹脂の融点を超える温度で樹脂組成物を加熱することで、樹脂を溶融させるとともに有機溶剤を揮発させたのち、樹脂を硬化させることで、摺動層4を形成する(ステップS14)。樹脂組成物を所定の温度で加熱して摺動層4を形成することを焼成と称する。なお、樹脂として使用されるポリテトラフルオロエチレンの融点は、327℃である。図8に示す例では、焼成炉を使用して、ポリテトラフルオロエチレンの融点を超える温度(たとえば400~500℃)で樹脂組成物を加熱することで、摺動層4を焼成する。
 次に、図8に示すように、多孔質層3および摺動層4が形成された金属基材2を圧延する(ステップS15)。これにより、上述した構成を有する摺動部材1(図1~図4参照)が製造される。その後、圧延された金属基材(摺動部材1)を、摺動層を内側として巻ブッシュ状に加工することで、上述した構成を有する軸受20(図7参照)が製造される。
<実施例>
 次に、本実施の形態に係る具体的な実施例について説明する。
(試験片の作製)
 本件発明者らは、まず、第1粉末、硬質粒子粉末および第2粉末のサンプルをそれぞれ、ガスアトマイズ法による噴霧により、下表1に示す化学成分の質量比にて作製した。すなわち、第1粉末のサンプルは、Snが10.75質量%、Pが0.1質量%未満、Cuが残部となる組成で構成されている。また、硬質粒子粉末のサンプルは、Snが4.5質量%、Siが5質量%、Feが15質量%、Coが16質量%、Crが4質量%、Moが26質量%、Cuが残部となる組成で構成されている。また、第2粉末のサンプルは、Snが7.8質量%、Niが12質量%、Siが2.5質量%、Feが3.6質量%、Coが2.6質量%、Crが1質量%、Cuが残部となる組成で構成されている。
Figure JPOXMLDOC01-appb-T000001
 次に、実施例1~8の試験片を、以下の手順にて作製した。すなわち、第1粉末と硬質粒子粉末と第2粉末のサンプルを、質量比80:2:18にて混合して混合粉末を作製したのち、混合粉末をアトマイズ処理により噴霧時に合金化させて合金粉末を作製した。合金粉末の粒径は53~180μmである。合金粉末の粒子中には、噴霧時に針状の粒子が入ったため、篩で分級して針状粒子を取り除いた粉末を、裏金母材SS400上に散布し、焼結温度870℃、焼結時間60分で焼結して多孔質層を形成した。混合粉末中の第1粉末、硬質粒子粉末、第2粉末の配合割合、多孔質層を形成する合金粉末(焼結粉末)の組成比率の計算値および測定値を上表1に示す。
 次に、下表2に示す組成の樹脂組成物であって、さらに黒鉛粉末(下表2では記載を省略)を2vol%混合した樹脂組成物を多孔質層に含浸させたのち、樹脂組成物を焼成することで、多孔質層を被覆する摺動層を形成し、その後、圧延を施工することで、実施例1~8の試験片を作製した。よって、実施例1~8の摺動層には、全て黒鉛粉末が含まれている。なお、図3A~図3Eは、実施例1の試験片における多孔質層の断面組織の反射電子像およびEPMAによるSn、Co、Mo、Siのマッピング画像を示している。
 また、実施例9の試験片を、以下の手順にて作製した。すなわち、第1粉末のみを、裏金母材SS400上に散布し、焼結温度870℃、焼結時間60分で焼結して多孔質層を形成した。次に、下表2に示す組成の樹脂組成物であって、さらに黒鉛粉末(下表2では記載を省略)を2vol%混合した樹脂組成物を多孔質層に含浸させたのち、樹脂組成物を焼成することで、多孔質層を被覆する摺動層を形成し、その後、圧延を施工することで、実施例9の試験片を作製した。
Figure JPOXMLDOC01-appb-T000002
 同様に、裏金母材SS400上にLBC3を焼結したのち圧延を施工することで、比較例1の試験片を作製した。
 また、裏金母材(炭素鋼)上に、粒度180μm以下、Cu:残部、Sn:10~11.5%、P:0.1%以下の青銅粉末を散布し、焼結温度870℃、焼結時間60分で焼結して(硬質粒子を含まない)多孔質層を形成したのち、以下の組成の樹脂組成物を多孔質層に含浸させ、当該樹脂組成物を焼成することで、多孔質層を被覆する摺動層を形成し、その後、圧延を施工することで、樹脂複合軸受である比較例2の試験片を作製した。
 比較例2の樹脂組成物の配合(体積比率%)は次のとおりである。
 PTFE樹脂:98%、黒鉛2%
 なお、実施例1~8および比較例1、2の試験片の寸法は、いずれも、40mm角×板厚1mm(ライニング厚み0.3mm、裏金厚み0.7mm)である。ここで、ライニング厚みとは、裏金表面から摺動層(実施例1~8および比較例2の場合は樹脂層、比較例1の場合はLBC3)表面までの厚み方向の長さをいう。
(評価試験)
 次に、実施例1~9および比較例1、2の試験片について、耐焼付性および耐摩耗性を比較するために、以下に説明する評価試験を行った。
 本評価では、図9に示すスラスト試験機を使用した。使用油は油圧作動油(銘柄 VG32)を用いた。ジンバル容器中への油量は250cc、相手側円筒リングは、外径Φ30、内径Φ24である。なお、本評価は、油中での評価試験であるが、円筒リングと軸受メタルの間には隙間が無く完全に接触した状態で摺接させため、実際には油膜が殆ど形成されない境界潤滑環境での評価に属する。
(1)耐焼付性評価
 軸受の負荷容量の限界を表す指標として、限界PV値が適用範囲の判定に利用される。軸受の限界PV値を求める方法として、本件発明者らは、μPVとT(潤滑油温度)の間には直線関係が得られることに着目した。潤滑油の劣化開始温度(80℃)に対するμPV値を求め、さらにそのとき得られた摩擦係数μ値からPV値を解析した。また、限界PV曲線の作図に際し、周速は0.2m/s、1m/s、3m/sの3水準で実施した。負荷は0.6MPa/30sのステップ荷重とし、摩擦係数が0.5または試験片背面温度が200℃に達した時点の荷重を、摩擦断面積254mm2で除した値を焼付面圧と定義した。相手材は硬くて靭性のあるS45C浸炭浸窒、表面粗度はRa0.17μmに研磨仕上げを施工した。
(2)耐摩耗性評価
 摩耗試験は面圧と周速一定の稼働条件のもと、面圧1MPa、5MP、10MPa、周速0.2m/s、3m/s(試験片がほぼサチュレートする条件と短時間で発熱する条件)の合計6水準の組み合わせで行った。連続稼働時間は1hrを基本としたが、試験片背面温度が200℃に達した時点でリミッター作動により試験機が停止するように設定した。相手材は上述の耐焼付性評価で説明したS45Cに浸炭浸窒処理を施した円筒リングを使用し、摺接面の表面粗度はRa0.17μm狙いに研磨仕上げした。
(結果と考察)
 図10は、実施例1および比較例1の試験片について、周速に対する熱抵抗の測定値を示しており、図11は、限界PV曲線を示している。熱抵抗は、接触面に発生する摩擦発熱量Qと潤滑油温度から得られる線形近似直線の勾配から、各周速別に求めた。摩擦発熱量Qは、荷重、速度、摩擦係数から下式(1)を用いて解析した。
  Q=μwV    ・・・(1)
 ここで、Qは接触面に発生する発熱量(N・m/s=J/s=W)、wは荷重(N)、Vは速度(m/s)、μは接触面の摩擦係数である。
 実施例1の試験片は、図3C~図3Eに示すように、多孔質層のなかにCo、MoおよびSiの組成で構成されるラーベス相を含む硬質粒子を含んでいる試験片である。前記の通り、実施例1の試験片の摺動層はPTFEと黒鉛粉末とからなり、摺動層中にMoS粉末や硬質粒子粉末を含んでいない。図11を参照し、実施例1の試験片は、比較例1の試験片と比べてPV値が全体的に高く、耐焼付性が向上していることが確認された。また、図10および図11を参照し、周速0.2m/sの低速域において、実施例1の試験片は、比較例1の試験片より熱抵抗が低減し、焼付面圧が1.35倍高い40MPa以上に達し、優れた耐焼付性能を発現することが確認された。
 図12は、実施例2~4の試験片についての限界PV曲線を示しており、図13は、実施例5~8の試験片についての限界PV曲線を示している。図14は、実施例8および比較例1、2の試験片についての限界PV曲線を示している。
 図11と図12とを比べると、摺動層中にMoS粉末が添加されている実施例2~4の試験片はいずれも、摺動層中にMoSが添加されていない実施例1の試験片と比べてPV値が全体的に高く、耐焼付性が向上しているが確認された。また、図12を参照し、周速に対する焼付面圧について、MoS粉末の影響を見ると、0.2m/sの低速域での焼付面圧は約50MPa程度、1m/sの中速域では約15MPa程度、3m/sの高速域では約10MPa程度であり、添加量を増やしても焼付性向上には寄与しない結果であった。
 また、図11と図13とを比べてみると、多孔質層中に硬質粒子が分散されており、摺動層中に硬質粒子粉末が添加されている実施例5~8の試験片はいずれも、摺動層中に硬質粒子粉末が添加されていない実施例1の試験片と比べてPV値が全体的に高く、耐焼付性が向上していることが確認された。図示は省略するが、多孔質層中に硬質粒子が分散されておらず、摺動層中に硬質粒子粉末が添加されている実施例9の試験片でも、同様に、良好な耐焼付性を示すことが確認された。また、図13を参照し、硬質粒子粉末の影響を見ると、0.2m/sの低速域では、硬質粒子粉末1質量%の実施例5が81.8MPa、硬質粒子粉末5質量%の実施例6が65.2MPa、硬質粒子粉末10質量%の実施例7が70.7MPaの焼付面圧であった。1m/sの中速域では、硬質粒子粉末1質量%の実施例5が20.1MPa、硬質粒子粉末5質量%の実施例6が19.9MPaに対し、硬質粒子粉末10質量%の実施例7が37.1MPaであり、焼付性向上が認められた。3m/sの高速域では、硬質粒子粉末1質量%の実施例5が7.8MPa、硬質粒子粉末5質量%の実施例6が8.3MPa、硬質粒子粉末10質量%の実施例7が11.6MPaであった。摺動層中に硬質粒子粉末が10質量%添加されている実施例7および15質量%添加されている実施例8の試験片は、PV値が全体的に他のもの(すなわち実施例1~6および比較例の試験片)より高く、焼付性向上の効果が認められた。硬質粒子粉末の添加量に応じて摺動層(樹脂層)が硬くなったことが起因したと考えられる。図14を参照し、硬質粒子粉末が15質量%添加されている実施例8の試験片は、比較例1、2の試験片と比べて、3m/sの高速域での焼付面圧が約2倍高い値を示すことが確認された。以上より、摺動層中への硬質粒子粉末の添加量は、10質量%以上が好ましいと推測される。
 図15は、実施例4、7、8、9および比較例の試験片について、面圧10MPaのときの摩耗量を示している。図15を参照し、面圧10MPaの高荷重域において、多孔質層中に硬質粒子が分散されており、摺動層中にMoS粉末が10質量%添加されている実施例4は0.01mm/km、多孔質層中に硬質粒子が分散されており、摺動層中に硬質粒子粉末が10質量%添加されている実施例7は0.003mm/km、15質量%添加されている実施例8は0.0054mm/km、多孔質層中に硬質粒子が分散されておらず、摺動層中に硬質粒子粉末が15質量%添加されている実施例9は0.0027mm/km、比較例1は0.048mm/km、比較例2は0.033mm/kmであった。特に摩耗低減に寄与したのは、摺動層中に硬質粒子粉末が10質量%添加されている実施例7および15質量%添加されている実施例8、9であった。樹脂化合物中に硬い硬質粒子粉末(ラーベス粒子)を添加することにより、摺動層(樹脂層)の耐摩耗性が上がり、稼働初期段階からの摩耗低減に貢献したものと推察される。
 以上、実施の形態および変形例を例示により説明したが、本技術の範囲はこれらに限定されるものではなく、請求項に記載された範囲内において目的に応じて変更・変形することが可能である。また、各実施の形態および変形例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。

Claims (8)

  1.  金属基材と、
     前記金属基材の一の面に形成される多孔質層と、
     前記多孔質層を被覆する摺動層を備え、
     前記摺動層は、樹脂組成物で形成され、
     前記多孔質層は、
     CuおよびSnを含むマトリックス相と、
     前記マトリックス相中に分散している硬質粒子であって、Co、MoおよびSiの組成で構成されるラーベス相を含む硬質粒子と、を有する
    ことを特徴とする摺動部材。
  2.  前記多孔質層は、
     前記マトリックス相中に分散している化合物相であって、Co、Fe、Ni、SiおよびCrを含む化合物相をさらに有する
    ことを特徴とする請求項1に記載の摺動部材。
  3.  前記多孔質層全体を100質量%とした時に前記硬質粒子の含有率は40質量%以下である
    ことを特徴とする請求項1または2に記載の摺動部材。
  4.  前記摺動層中には、Co、MoおよびSiの組成で構成されるラーベス相を含む硬質粒子粉末と、MoS粉末と、ラーベス相を含まない青銅粉末の少なくとも1つ以上が分散されている
    ことを特徴とする請求項1~3のいずれかに記載の摺動部材。
  5.  金属基材と、
     前記金属基材の一の面に形成される多孔質層と、
     前記多孔質層を被覆する摺動層を備え、
     前記摺動層は、樹脂組成物で形成され、
     前記摺動層中には、Co、MoおよびSiの組成で構成されるラーベス相を含む硬質粒子粉末が分散されている
    ことを特徴とする摺動部材。
  6.  前記多孔質層の厚みと前記摺動層の厚みの比率は、6:4~8:2である、
    ことを特徴とする請求項1~5のいずれかに記載の摺動部材。
  7.  前記多孔質層と前記摺動層とを合わせた全体を100質量%とした時に前記硬質粒子の含有率と前記硬質粒子粉末の含有率との合計は1~20質量%である、
    ことを特徴とする請求項1~6のいずれかに記載の摺動部材。
  8.  請求項1~7のいずれかに記載の摺動部材から構成される軸受であって、
     円筒状の内周面を有し、前記内周面が前記摺動層で構成されている
    ことを特徴とする軸受。

     
PCT/JP2022/042950 2021-12-28 2022-11-21 摺動部材および軸受 WO2023127350A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021214609A JP7125647B1 (ja) 2021-12-28 2021-12-28 摺動部材および軸受
JP2021-214609 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127350A1 true WO2023127350A1 (ja) 2023-07-06

Family

ID=83005022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042950 WO2023127350A1 (ja) 2021-12-28 2022-11-21 摺動部材および軸受

Country Status (2)

Country Link
JP (1) JP7125647B1 (ja)
WO (1) WO2023127350A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018071710A (ja) * 2016-10-31 2018-05-10 千住金属工業株式会社 摺動部材及び軸受
JP6940801B1 (ja) * 2020-12-25 2021-09-29 千住金属工業株式会社 摺動部材、軸受、摺動部材の製造方法、軸受の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018071710A (ja) * 2016-10-31 2018-05-10 千住金属工業株式会社 摺動部材及び軸受
JP6940801B1 (ja) * 2020-12-25 2021-09-29 千住金属工業株式会社 摺動部材、軸受、摺動部材の製造方法、軸受の製造方法

Also Published As

Publication number Publication date
JP7125647B1 (ja) 2022-08-25
JP2023098089A (ja) 2023-07-10

Similar Documents

Publication Publication Date Title
JP4675563B2 (ja) 軸受およびその製造方法
US6305847B1 (en) Sliding bearing
JP2006308099A (ja) 軸受部材
GB2131817A (en) Wear-resistant bearing materials
GB2359563A (en) Copper sliding alloy
JP2008007796A (ja) 耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金およびその合金からなる軸受材
US8703660B2 (en) Lead-free sintered lubricating material and sinter powder for manufacture of the same
WO2012147780A1 (ja) 摺動材料、軸受用合金及び軸受用複層金属材
JPS63111312A (ja) 複層軸受ならびのその製造方法
US5298336A (en) Multilayer composite sliding material having excellent seizure resistance property
WO2013094064A1 (ja) 摺動部材及び軸受
WO2022137810A1 (ja) 摺動部材、軸受、摺動部材の製造方法、軸受の製造方法
JP3571623B2 (ja) 摺動材料
JP6256569B1 (ja) 摺動部材及び軸受
JP2013144849A (ja) 耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金とその製造方法およびその合金からなる軸受材
JP3411353B2 (ja) 摺動材料
WO2023127350A1 (ja) 摺動部材および軸受
JP2019065323A (ja) 鉄系焼結軸受及び鉄系焼結含油軸受
JP2007239867A (ja) すべり軸受
JPH0488139A (ja) 摺動材料
JP2012509993A (ja) 軸受材料
KR102672968B1 (ko) 미끄럼 이동 부재, 베어링, 미끄럼 이동 부재의 제조 방법, 베어링의 제조 방법
JP7300604B1 (ja) 摺動部材及び軸受
JP7372585B1 (ja) 摺動部材および摺動部材を製造する方法
WO2022215637A1 (ja) 摺動部材および摺動体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915581

Country of ref document: EP

Kind code of ref document: A1