WO2022208914A1 - 三相信号発生装置および三相信号発生方法 - Google Patents

三相信号発生装置および三相信号発生方法 Download PDF

Info

Publication number
WO2022208914A1
WO2022208914A1 PCT/JP2021/022353 JP2021022353W WO2022208914A1 WO 2022208914 A1 WO2022208914 A1 WO 2022208914A1 JP 2021022353 W JP2021022353 W JP 2021022353W WO 2022208914 A1 WO2022208914 A1 WO 2022208914A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
instantaneous value
phase
synthesized
value
Prior art date
Application number
PCT/JP2021/022353
Other languages
English (en)
French (fr)
Inventor
淳 藤田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2023510176A priority Critical patent/JP7435904B2/ja
Priority to CN202180096439.7A priority patent/CN117063388A/zh
Publication of WO2022208914A1 publication Critical patent/WO2022208914A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed

Definitions

  • the present invention relates to a three-phase signal generator and a three-phase signal generation method.
  • Patent Literature 1 discloses a method of estimating the rotational position of a motor based on three-phase signals generated using three inexpensive and small magnetic sensors.
  • One aspect of the three-phase signal generator of the present invention includes: a first magnetic sensor that faces a rotating magnet and outputs a first signal indicating magnetic field strength; A second magnetic sensor that outputs a second signal having a phase delay of 120 degrees in electrical angle, and a signal processing unit that processes the first signal and the second signal.
  • the signal processing unit performs first processing for obtaining an instantaneous value of the first signal and an instantaneous value of the second signal by digitally converting the first signal and the second signal; By subtracting the instantaneous value of the second signal from the instantaneous value of a second process of calculating; a third process of calculating the argument of the synthesized signal based on the instantaneous value of the synthesized signal and the norm of the synthesized signal prepared in advance; the argument of the synthesized signal; A fourth step of calculating an instantaneous value of a third fundamental wave signal having an orthogonal relationship with the combined signal based on a norm of the combined signal and a phase difference between the combined signal and the first fundamental wave signal prepared in advance. process and perform.
  • One aspect of the three-phase signal generation method of the present invention includes: a first magnetic sensor facing a rotating magnet and outputting a first signal indicating magnetic field strength; and a second magnetic sensor outputting a second signal having an angular phase lag of 120°, the three-phase signal generation method using a second magnetic sensor, wherein the first signal and the second signal are digitally converted, a first step of obtaining an instantaneous value of one signal and an instantaneous value of the second signal; and subtracting the instantaneous value of the second signal from the instantaneous value of the first signal to obtain a second step of calculating an instantaneous value of a synthetic signal of a first fundamental signal and a second fundamental signal included in the second signal; and an instantaneous value of the synthetic signal and a norm of the synthetic signal prepared in advance.
  • a three-phase signal generator and a three-phase signal generation method capable of generating three-phase signals using two magnetic sensors. Therefore, compared with the conventional technology using three magnetic sensors, the generation of three-phase signals can be realized with a cheaper and smaller device configuration.
  • FIG. 1 is a block diagram schematically showing the configuration of a three-phase signal generator according to this embodiment.
  • FIG. 2 is a flowchart showing signal generation processing executed by the processing unit of the three-phase signal generator according to this embodiment.
  • FIG. 3 is a diagram representing the first signal Hu' and the second signal Hv' by rotating vectors on the complex plane.
  • FIG. 4 shows the waveform data of the first signal Hu' obtained during one rotation of the vector of the first signal Hu' on the complex plane, and the waveform data of the second signal Hv' obtained during one rotation of the vector of the second signal Hv' on the complex plane. It is a figure which shows an example with the waveform data of 2nd signal Hv' obtained.
  • FIG. 4 shows the waveform data of the first signal Hu' obtained during one rotation of the vector of the first signal Hu' on the complex plane, and the waveform data of the second signal Hv' obtained during one rotation of the vector of the second signal Hv' on the complex plane. It is a figure which shows an example with the wave
  • FIG. 5 is a diagram showing a combined signal Huv of the first fundamental wave signal Hu and the second fundamental wave signal Hv as a rotating vector on the complex plane.
  • FIG. 6 is a diagram showing an example of waveform data of the combined signal Huv obtained while the vectors of the first signal Hu' and the second signal Hv' make one rotation on the complex plane.
  • FIG. 7 is an explanatory diagram of a method for calculating the phase difference ⁇ 1 between the first signal Hu' and the second signal Hv' in the learning process.
  • FIG. 8 is an explanatory diagram of a method for calculating the phase difference ⁇ 2 between the combined signal Huv and the first signal Hu' in the learning process.
  • FIG. 9 is an explanatory diagram showing that the phase difference between the composite signal Huv and the first fundamental wave signal Hu is equal to the phase difference ⁇ 2 between the composite signal Huv and the first signal Hu'.
  • FIG. 10 is an explanatory diagram regarding the deflection angle ⁇ t+ ⁇ 2 of the composite signal Huv.
  • FIG. 11 is a diagram showing the third fundamental wave signal Hw, which is orthogonal to the composite signal Huv, represented by a rotating vector on the complex plane.
  • FIG. 12 is a diagram showing an example of waveform data of the third fundamental wave signal Hw obtained while the vector of the combined signal Huv rotates once on the complex plane.
  • FIG. 13 is a diagram showing an example of waveform data of the first fundamental wave signal Hu, waveform data of the second fundamental wave signal Hv, and waveform data of the third fundamental wave signal Hw.
  • FIG. 1 is a block diagram schematically showing the configuration of a three-phase signal generator 1 according to one embodiment of the present invention.
  • the three-phase signal generator 1 is a device that generates a three-phase fundamental wave signal that indicates magnetic field strength that changes according to the rotational position (rotational angle) of the motor 100 .
  • the three-phase fundamental wave signal means three fundamental wave signals having a phase difference of 120 degrees in electrical angle.
  • the motor 100 is, for example, an inner rotor type three-phase brushless DC motor.
  • Motor 100 has a rotor shaft 110 and a sensor magnet 120 .
  • the rotor shaft 110 is a rotating shaft attached to the rotor of the motor 100 .
  • the rotational position of motor 100 means the rotational position of rotor shaft 110 .
  • the sensor magnet 120 is a disc-shaped magnet that is attached to the rotor shaft 110 and rotates in synchronization with the rotor shaft 110 .
  • the sensor magnet 120 has P magnetic pole pairs (P is an integer equal to or greater than 2).
  • P is an integer equal to or greater than 2.
  • the sensor magnet 120 has four magnetic pole pairs.
  • a magnetic pole pair means a pair of an N pole and an S pole. That is, in this embodiment, the sensor magnet 120 has four pairs of N poles and S poles, for a total of eight magnetic poles.
  • the three-phase signal generator 1 includes a first magnetic sensor 10, a second magnetic sensor 20, and a signal processing section 30. Although not shown in FIG. 1, a circuit board is attached to the motor 100, and the first magnetic sensor 10, the second magnetic sensor 20, and the signal processing section 30 are arranged on the circuit board.
  • the sensor magnet 120 is arranged at a position that does not interfere with the circuit board. The sensor magnet 120 may be located inside the housing of the motor 100 or outside the housing.
  • the first magnetic sensor 10 and the second magnetic sensor 20 are arranged on the circuit board so as to face the sensor magnet 120 .
  • the first magnetic sensor 10 and the second magnetic sensor 20 are arranged on the circuit board at intervals of 30° along the rotation direction CW of the sensor magnet 120 .
  • the first magnetic sensor 10 and the second magnetic sensor 20 are analog output type magnetic sensors including magnetoresistive elements such as Hall elements or linear Hall ICs.
  • the first magnetic sensor 10 and the second magnetic sensor 20 each output an analog signal indicating magnetic field strength that changes according to the rotational position of the rotor shaft 110 , that is, the rotational position of the sensor magnet 120 .
  • One cycle of the electrical angle of the analog signals output from the first magnetic sensor 10 and the second magnetic sensor 20 corresponds to 1/P of one cycle of the mechanical angle.
  • one cycle of the electrical angle of each analog signal corresponds to 1/4 of one cycle of the mechanical angle, that is, 90° in mechanical angle.
  • the analog signal output from the second magnetic sensor 20 has a phase lag of 120 degrees in electrical angle with respect to the analog signal output from the first magnetic sensor 10 .
  • the analog signal output from the first magnetic sensor 10 will be referred to as the first signal Hu'
  • the analog signal output from the second magnetic sensor 20 will be referred to as the second signal Hv'.
  • the first magnetic sensor 10 faces a sensor magnet 120 that is a rotating magnet, and outputs a first signal Hu' indicating magnetic field strength to the signal processing section 30 .
  • the second magnetic sensor 20 faces the sensor magnet 120 and outputs to the signal processing section 30 a second signal Hv' having a phase delay of 120 electrical degrees with respect to the first signal Hu'.
  • the signal processing unit 30 is a signal processing circuit that processes the first signal Hu' output from the first magnetic sensor 10 and the second signal Hv' output from the second magnetic sensor 20.
  • the signal processing unit 30 generates a three-phase fundamental wave signal that indicates the magnetic field strength that changes according to the rotational position of the sensor magnet 120 based on the first signal Hu' and the second signal Hv'.
  • the signal processing section 30 includes a processing section 31 and a storage section 32 .
  • the processing unit 31 is, for example, a microprocessor such as an MCU (Microcontroller Unit).
  • a first signal Hu′ output from the first magnetic sensor 10 and a second signal Hv′ output from the second magnetic sensor 20 are input to the processing unit 31 .
  • the processing unit 31 is communicably connected to the storage unit 32 via a communication bus (not shown). Although details will be described later, the processing unit 31 executes signal generation processing according to a program stored in advance in the storage unit 32 .
  • the signal generation process is a process of generating a three-phase fundamental wave signal based on the first signal Hu' and the second signal Hv'.
  • the storage unit 32 is used as a non-volatile memory for storing programs and various setting data necessary for the processing unit 31 to execute various processes, and as a temporary storage destination for data when the processing unit 31 executes various processes. and volatile memory.
  • the nonvolatile memory is, for example, EEPROM (Electrically Erasable Programmable Read-Only Memory) or flash memory.
  • Volatile memory is, for example, RAM (Random Access Memory).
  • the processing unit 31 When the sensor magnet 120 rotates together with the rotor shaft 110, the first signal Hu' indicating the magnetic field strength that changes according to the rotational position of the sensor magnet 120 is output from the first magnetic sensor 10, and the electric current is generated in response to the first signal Hu'.
  • a second signal Hv′ is output from the second magnetic sensor 20 with a phase delay of 120° in angle.
  • the processing unit 31 incorporates an A/D converter, and the processing unit 31 digitally converts the first signal Hu' and the second signal Hv' at a predetermined sampling frequency by the A/D converter.
  • the processing unit 31 executes the signal generation processing shown in the flowchart of FIG. 2 each time the execution timing of digital conversion, that is, the sampling timing arrives.
  • step S1 when the sampling timing arrives, the processing unit 31 digitally converts the first signal Hu' and the second signal Hv' output to the processing unit 31 as the sensor magnet 120 rotates as described above. By converting, the instantaneous value of the first signal Hu' and the instantaneous value of the second signal Hv' are obtained as digital values (step S1).
  • step S1 corresponds to the first step, and the process executed in step S1 corresponds to the first process.
  • FIG. 3 is a diagram representing the first signal Hu' and the second signal Hv' by rotating vectors on the complex plane.
  • the horizontal axis is the real number axis and the vertical axis is the imaginary number axis.
  • the first signal Hu' and the second signal Hv' rotate at an angular velocity ⁇ in the direction of the arrow on the complex plane.
  • the first signal Hu' includes the first fundamental wave signal Hu, which is a fundamental wave signal, and the in-phase signal N.
  • the first signal Hu' is represented by a combined vector of the first fundamental wave signal Hu and the in-phase signal N.
  • the first signal Hu' is represented by the following equation (1).
  • the second signal Hv' includes the second fundamental wave signal Hv, which is a fundamental wave signal, and the in-phase signal N.
  • the second signal Hv' is represented by a composite vector of the second fundamental wave signal Hv and the in-phase signal N. That is, the second signal Hv' is represented by the following equation (2).
  • In-phase signal N is a noise signal including a DC signal, a third harmonic signal, and the like.
  • the instantaneous value of the first signal Hu' obtained in step S1 corresponds to the real part (the part projected onto the real axis) of the first signal Hu' represented by the vector in FIG.
  • the instantaneous value of the second signal Hv' obtained in step S1 corresponds to the real part of the second signal Hv' represented by the vector in FIG.
  • the instantaneous value of the first signal Hu' is represented by the following equation (3).
  • is the norm of the first signal Hu'
  • k is an integer of 1 or more.
  • FIG. 4 shows time-series data (waveform data of the first signal Hu') of instantaneous values of the first signal Hu' obtained during one rotation of the vector of the first signal Hu' on the complex plane
  • 10 is a diagram showing an example of time-series data (waveform data of the second signal Hv') of instantaneous values of the second signal Hv' obtained while the vector of the second signal Hv' rotates once in FIG.
  • the horizontal axis indicates time
  • the vertical axis indicates digital values.
  • the waveforms of the first signal Hu' and the second signal Hv' which include the in-phase signal N, do not become perfectly sinusoidal waveforms, but become distorted waveforms.
  • the processing unit 31 subtracts the instantaneous value of the second signal Hv' from the instantaneous value of the first signal Hu' to obtain the first fundamental wave signal Hu included in the first signal Hu' and the second fundamental wave signal Hu'.
  • the instantaneous value of the combined signal Huv with the second fundamental wave signal Hv included in the signal Hv' is calculated (step S2). This step S2 corresponds to the second step, and the process executed in step S2 corresponds to the second process.
  • FIG. 5 is a diagram showing a combined signal Huv of the first fundamental wave signal Hu and the second fundamental wave signal Hv as a rotating vector on the complex plane.
  • FIG. 6 shows an example of time-series data (waveform data of the combined signal Huv) of instantaneous values of the combined signal Huv obtained during one rotation of the vectors of the first signal Hu' and the second signal Hv' on the complex plane.
  • FIG. 4 is a diagram showing; As shown in FIG. 6, the waveform of the composite signal Huv is a perfect sinusoidal waveform.
  • step S2 the processing unit 31 calculates the instantaneous value of the first signal Hu' and the instantaneous value of the second signal Hv' based on amplitude correction values prepared in advance before calculating the instantaneous value of the combined signal Huv. correct at least one of
  • the amplitude correction value is a correction value that makes the amplitude value of the first signal Hu' equal to the amplitude value of the second signal Hv'.
  • the amplitude correction value is one of learning values obtained by a learning process performed in advance, and is stored in the non-volatile memory of the storage unit 32 in advance.
  • step S2 the processing unit 31 reads the amplitude correction value from the nonvolatile memory of the storage unit 32, and based on the read amplitude correction value, the amplitude value of the first signal Hu' and the amplitude of the second signal Hv' At least one of the instantaneous value of the first signal Hu' and the instantaneous value of the second signal Hv' is corrected so that the values are equal to each other.
  • the processing unit 31 calculates the argument of the synthesized signal Huv based on the instantaneous value of the synthesized signal Huv and the prepared norm of the synthesized signal Huv (step S3).
  • This step S3 corresponds to the third step, and the process executed in step S3 corresponds to the third process.
  • the norm of the composite signal Huv is one of the learning values obtained by the learning process performed in advance, and is stored in the non-volatile memory of the storage unit 32 in advance, like the amplitude correction value described above.
  • the phase difference between the combined signal Huv and the first fundamental wave signal Hu is also stored in advance in the non-volatile memory of the storage unit 32 as a learned value.
  • the learning process performed in advance will be described below.
  • the learning process is performed while the sensor magnet 120 rotates together with the rotor shaft 110 .
  • the processing unit 31 waits at least until the time corresponding to one period of the electrical angle of the first signal Hu' and the second signal Hv' elapses, that is, at least until the sensor magnet 120 rotates by 90 degrees in mechanical angle.
  • the above steps S1 and S2 are repeated at a predetermined sampling frequency. In other words, the processing unit 31 repeats the above steps S1 and S2 at a predetermined sampling frequency until the vectors of the first signal Hu' and the second signal Hv' rotate at least once on the complex plane.
  • the processing unit 31 sequentially acquires the instantaneous value of the first signal Hu′, the instantaneous value of the second signal Hv′, and the instantaneous value of the synthesized signal Huv, and obtains the maximum value of each past instantaneous value and the current value. Compare each instantaneous value with the time (current sampling timing), and if each instantaneous value at the current time is greater than the maximum value of the past instantaneous values, the maximum value of the past instantaneous values will be Perform processing to update to the value.
  • the processing unit 31 sequentially acquires the instantaneous value of the first signal Hu', the instantaneous value of the second signal Hv', and the instantaneous value of the composite signal Huv, and calculates the minimum value of the past instantaneous values and the current time. If each instantaneous value of the current time is smaller than the minimum value of the past instantaneous values, update the minimum value of the past instantaneous values to the instantaneous value of the current time. .
  • the processing unit 31 acquires the maximum and minimum values of each signal by performing the sequential updating process as described above. Then, the processing unit 31 substitutes the maximum value Max(Hu') and the minimum value Min(Hu') of the first signal Hu' into the following equation (5) to obtain the amplitude value of the first signal Hu' Calculate the norm
  • the processing unit 31 calculates the norm
  • the processing unit 31 calculates an amplitude correction value that makes the norm
  • the processing unit 31 corrects at least one of all instantaneous values included in the waveform data of the first signal Hu' and all instantaneous values included in the waveform data of the second signal Hv' with the amplitude correction value. As a result, the waveform data of the first signal Hu' and the waveform data of the second signal Hv' having the same amplitude value (norm) are obtained.
  • the processing unit 31 calculates the first signal Hu' based on the amplitude-corrected waveform data of the first signal Hu' and the waveform data of the second signal Hv'.
  • a phase difference ⁇ 1 ( ⁇ typ.-120°) between Hu' and the second signal Hv' is calculated.
  • the processing unit 31 determines the time between the maximum value Max (Hu') of the first signal Hu' and the maximum value Max (Hv') of the second signal Hv'.
  • the phase difference ⁇ 1 is calculated by counting with a reference encoder or the like and substituting the count result Nmax into the following equation (8).
  • the processing unit 31 counts the time between the minimum value Min(Hu') of the first signal Hu' and the minimum value Min(Hv') of the second signal Hv' using a reference encoder or the like, and the count result Nmin may be substituted into the following equation (9) to calculate the phase difference ⁇ 1.
  • Ncpr is the resolution of the reference encoder.
  • the reference encoder is attached to the rotating shaft in advance.
  • the processing unit 31 calculates the phase difference ⁇ 2 ( ⁇ typ. +30°). Specifically, the processing unit 31 substitutes the phase difference ⁇ 1 between the first signal Hu′ and the second signal Hv′ into the following equation (10) to obtain the phase difference between the combined signal Huv and the first signal Hu′. A phase difference ⁇ 2 is calculated.
  • the processing unit 31 obtains the phase difference ⁇ 2 between the combined signal Huv and the first signal Hu' as the phase difference between the combined signal Huv and the first fundamental wave signal Hu.
  • of the synthesized signal Huv, and the phase difference ⁇ 2 between the synthesized signal Huv and the first fundamental wave signal Hu are obtained as learned values.
  • the processing unit 31 stores these learning values in the nonvolatile memory of the storage unit 32 .
  • step S3 of FIG. 2 the processing unit 31 performs synthesis based on the instantaneous value of the synthesized signal Huv calculated in step S2 and the norm
  • step S3 the processing unit 31 calculates the argument ⁇ t+ ⁇ 2 of the synthesized signal Huv based on the following equation (12). That is, the processing unit 31 reads out the norm
  • the processing unit 31 obtains the argument ⁇ included in the range of ⁇ 180° or more and less than 180° by expanding the calculated argument ⁇ t+ ⁇ 2.
  • the sine value of the argument ⁇ can take both positive and negative values within the range of ⁇ 1 or more and 1 or less.
  • step S4 the processing unit 31 determines the angle ⁇ of the combined signal Huv, the norm
  • This step S4 corresponds to the fourth step, and the process executed in step S4 corresponds to the fourth process.
  • FIG. 11 is a diagram showing the third fundamental wave signal Hw, which is in an orthogonal relationship with the composite signal Huv, represented by a rotating vector on the complex plane.
  • ) of the second fundamental wave signal Hv become equal.
  • of the third fundamental wave signal Hw is 1 ⁇ 2 sin ( ⁇ 2). Therefore, the instantaneous value of the third fundamental wave signal Hw, which is orthogonal to the combined signal Huv, is represented by the following equation (13).
  • step S4 the processing unit 31 reads out the norm
  • FIG. 12 is a diagram showing an example of time-series data (waveform data of the third fundamental wave signal Hw) of instantaneous values of the third fundamental wave signal Hw obtained while the vector of the combined signal Huv rotates once on the complex plane. is.
  • the waveform of the third fundamental signal Hw is a complete sinusoidal waveform like the waveforms of the combined signal Huv, the first fundamental signal Hu and the second fundamental signal Hv.
  • step S5 the processing unit 31 calculates the first signal Hu' and the An instantaneous value of the in-phase signal N included in the second signal Hv' is calculated (step S5).
  • step S5 corresponds to the fifth step
  • the process executed in step S5 corresponds to the fifth process.
  • the processing unit 31 calculates the instantaneous value of the in-phase signal N based on the following equations (14) and (15).
  • step S5 the processing unit 31 first substitutes the instantaneous value of the first signal Hu' and the instantaneous value of the second signal Hv' into the above equation (14) to obtain the instantaneous value of the third signal Hw'. calculate.
  • the third signal Hw' has a phase delay of 240 degrees in electrical angle with respect to the first signal Hu' and a phase delay of 120 degrees in electrical angle with respect to the second signal Hv'. be.
  • the third signal Hw' is represented by a vector rotating on the complex plane
  • the processing unit 31 substitutes the instantaneous value of the third signal Hw' calculated by the equation (14) and the instantaneous value of the third fundamental wave signal Hw calculated by the step S4 into the equation (15). to calculate the instantaneous value of the in-phase signal N.
  • FIG. 12 shows an example of the waveform of the third signal Hw' and the waveform of the in-phase signal N. As shown in FIG.
  • the processing unit 31 calculates the instantaneous value of the first fundamental wave signal Hu by subtracting the instantaneous value of the in-phase signal N from the instantaneous value of the first signal Hu' (step S6).
  • This step S6 corresponds to the sixth step, and the process executed in step S6 corresponds to the sixth process.
  • the instantaneous value of the first fundamental wave signal Hu can be calculated by subtracting the instantaneous value of the in-phase signal N from the instantaneous value of the first signal Hu'. be.
  • the processing unit 31 calculates the instantaneous value of the second fundamental signal Hv by subtracting the instantaneous value of the in-phase signal N from the instantaneous value of the second signal Hv' (step S7).
  • This step S7 corresponds to the seventh step
  • the process executed in step S7 corresponds to the seventh process.
  • the signal generation processing including the processing from step S1 to step S7 as described above is executed by the processing unit 31 each time the sampling timing arrives.
  • time-series data of the instantaneous value of the first fundamental wave signal Hu waveform data of the first fundamental wave signal Hu
  • time-series data of the instantaneous value of the second fundamental wave signal Hv waveform data of the second fundamental wave signal Hv
  • time-series data of instantaneous values of the third fundamental wave signal Hw waveform data of the third fundamental wave signal Hw.
  • the waveforms of the first fundamental signal Hu, the second fundamental signal Hv, and the third fundamental signal Hw are complete sinusoidal waveforms.
  • the first fundamental wave signal Hu, the second fundamental wave signal Hv, and the third fundamental wave signal Hw have a phase difference of 120 degrees in electrical angle.
  • the three-phase signal generator 1 of the present embodiment uses two magnetic sensors, the first magnetic sensor 10 and the second magnetic sensor 20, to detect the magnetic field intensity that changes according to the rotational position of the motor 100. It is possible to generate a three-phase fundamental wave signal shown in FIG. Therefore, compared with the conventional technology using three magnetic sensors, the generation of three-phase signals can be realized with a cheaper and smaller device configuration.
  • the three-phase signal generator of this embodiment has a first magnetic sensor that faces a rotating magnet and outputs a first signal indicating magnetic field strength, and a phase lag of 120 degrees in electrical angle with respect to the first signal.
  • a second magnetic sensor that outputs a second signal and a signal processing unit that processes the first signal and the second signal are provided.
  • the signal processing unit performs a first process of obtaining an instantaneous value of the first signal and an instantaneous value of the second signal, and subtracts the instantaneous value of the second signal from the instantaneous value of the first signal to obtain the first signal.
  • a second process for calculating an instantaneous value of a synthesized signal of a first fundamental signal included in the second signal and a second fundamental signal included in the second signal, and an instantaneous value of the synthesized signal and a prepared norm of the synthesized signal a third process for calculating the argument of the synthesized signal based on the argument, the argument of the synthesized signal, the norm of the synthesized signal, and the phase difference between the prepared synthesized signal and the first fundamental wave signal; and a fourth process of calculating an instantaneous value of a third fundamental wave signal that is in quadrature with the signal.
  • a third-phase signal (third fundamental wave signal) that does not include an in-phase signal can be generated from two-phase signals (first signal and second signal) obtained by two magnetic sensors. Therefore, compared with the conventional technology using three magnetic sensors, the generation of three-phase signals can be realized with a cheaper and smaller device configuration.
  • the signal processing unit of the present embodiment calculates the argument ⁇ t+ ⁇ 2 of the composite signal based on the equation (12), and expands the calculated argument ⁇ t+ ⁇ 2 so that it is -180° or more and 180°. Get the angle of argument ⁇ within the range of less than °.
  • the argument ⁇ t+ ⁇ 2 of the combined signal can be calculated from the instantaneous value and the norm of the combined signal using a simple formula with a small processing load. Note that when calculating the argument ⁇ t+ ⁇ 2 of the synthesized signal based on Equation (12), the argument ⁇ t+ ⁇ 2 of the synthesized signal may be calculated by interpolation processing using table values.
  • the sine value of the argument ⁇ is ⁇ 1 or more and 1 or less. can take both positive and negative values within the range of , the waveform of the third fundamental signal generated by the fourth processing can be a perfect sinusoidal waveform.
  • the signal processing unit of the present embodiment calculates the instantaneous value of the first signal and At least one of the instantaneous value of the second signal is corrected, and in the fourth process, the signal processing unit converts the norm
  • the moment of the third fundamental wave signal that is orthogonal to the combined signal can be obtained from the norm and argument of the combined signal and the phase difference between the combined signal and the first fundamental wave signal using a simple formula with a small processing load. value can be calculated.
  • the signal processing unit of the present embodiment includes fifth processing for calculating an instantaneous value of the in-phase signal based on the instantaneous value of the first signal, the instantaneous value of the second signal, and the instantaneous value of the third fundamental wave signal; A sixth process of calculating an instantaneous value of the first fundamental wave signal by subtracting the instantaneous value of the in-phase signal from the instantaneous value of the first signal, and subtracting the instantaneous value of the in-phase signal from the instantaneous value of the second signal. and a seventh process of calculating the instantaneous value of the second fundamental wave signal.
  • the first fundamental wave signal having a sinusoidal waveform can be extracted from the first signal
  • the second fundamental wave signal having a sinusoidal waveform and a phase delay of 120 degrees in electrical angle with respect to the first fundamental wave signal can be extracted from the second signal.
  • a fundamental signal can be extracted.
  • the signal processing unit of this embodiment calculates the instantaneous value of the in-phase signal based on Equations (14) and (15).
  • the in-phase signal can be extracted from the first signal and the second signal using a simple formula with a small processing load.
  • the present invention is not limited to the above-described embodiments, and each configuration described in this specification can be appropriately combined within a mutually consistent range.
  • the combination of the motor and the three-phase signal generator was exemplified, but the present invention is not limited to this form, and the combination of the sensor magnet attached to the rotating shaft and the three-phase signal generator is also possible. could be.
  • the first magnetic sensor and the second magnetic sensor are arranged facing the disk-shaped sensor magnet in the axial direction of the rotating shaft.
  • the present invention is limited to this embodiment. not.
  • the magnetic flux flows in the radial direction of the ring-shaped magnet.
  • the sensor magnet 120 attached to the rotor shaft 110 of the motor 100 is used as the rotating magnet. good too.
  • the rotor magnet is also a magnet that rotates in synchronization with the rotor shaft 110 .
  • the sensor magnet 120 has four magnetic pole pairs, but the number of pole pairs of the sensor magnet 120 is not limited to four. Similarly, when a rotor magnet is used as the rotating magnet, the number of pole pairs of the rotor magnet is not limited to four.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

本発明の三相信号発生装置の一つの態様は、第1信号を出力する第1磁気センサと、第1信号に対して電気角で120°の位相遅れを有する第2信号を出力する第2磁気センサと、信号処理部と、を備える。信号処理部は、第1信号の瞬時値と第2信号の瞬時値とを取得する第1処理と、第1信号に含まれる第1基本波信号と第2信号に含まれる第2基本波信号との合成信号の瞬時値を算出する第2処理と、合成信号の偏角を算出する第3処理と、合成信号と直交関係にある第3基本波信号の瞬時値を算出する第4処理と、を実行する。

Description

三相信号発生装置および三相信号発生方法
 本発明は、三相信号発生装置および三相信号発生方法に関する。
 従来、回転位置を正確に制御可能なモータとして、光学エンコーダ、レゾルバ等の絶対角位置センサを備える構成が知られる。しかし、絶対角位置センサは、大型、高コストである。そこで、特許文献1には、安価且つ小型の3つの磁気センサを用いて生成される三相信号に基づいてモータの回転位置を推定する方法が開示される。
特許第6233532号公報
 上記特許文献1に記載の位置推定方法によると、3つの磁気センサを用いて回転位置の推定に必要な三相信号を生成するが、三相信号の生成をより安価且つ小型な装置構成で実現できる技術が要望されている。
 本発明の三相信号発生装置における一つの態様は、回転する磁石に対向し、磁界強度を示す第1信号を出力する第1磁気センサと、前記磁石に対向し、前記第1信号に対して電気角で120°の位相遅れを有する第2信号を出力する第2磁気センサと、前記第1信号及び前記第2信号を処理する信号処理部と、を備える。前記信号処理部は、前記第1信号及び前記第2信号をデジタル変換することより、前記第1信号の瞬時値と前記第2信号の瞬時値とを取得する第1処理と、前記第1信号の瞬時値から前記第2信号の瞬時値を減算することにより、前記第1信号に含まれる第1基本波信号と前記第2信号に含まれる第2基本波信号との合成信号の瞬時値を算出する第2処理と、前記合成信号の瞬時値と予め用意された前記合成信号のノルムとに基づいて前記合成信号の偏角を算出する第3処理と、前記合成信号の偏角と、前記合成信号のノルムと、予め用意された前記合成信号と前記第1基本波信号との位相差とに基づいて、前記合成信号と直交関係にある第3基本波信号の瞬時値を算出する第4処理と、を実行する。
 本発明の三相信号発生方法における一つの態様は、回転する磁石に対向し、磁界強度を示す第1信号を出力する第1磁気センサと、前記磁石に対向し、第1信号に対して電気角で120°の位相遅れを有する第2信号を出力する第2磁気センサと、を用いる三相信号発生方法であって、前記第1信号及び前記第2信号をデジタル変換することより、前記第1信号の瞬時値と前記第2信号の瞬時値とを取得する第1ステップと、前記第1信号の瞬時値から前記第2信号の瞬時値を減算することにより、前記第1信号に含まれる第1基本波信号と前記第2信号に含まれる第2基本波信号との合成信号の瞬時値を算出する第2ステップと、前記合成信号の瞬時値と予め用意された前記合成信号のノルムとに基づいて前記合成信号の偏角を算出する第3ステップと、前記合成信号の偏角と、前記合成信号のノルムと、予め用意された前記合成信号と前記第1基本波信号との位相差とに基づいて、前記合成信号と直交関係にある第3基本波信号の瞬時値を算出する第4ステップと、を含む。
 本発明の上記態様によれば、2つの磁気センサを使って三相信号を生成可能な三相信号発生装置および三相信号発生方法が提供される。従って、3つの磁気センサを使用する従来技術と比較して、三相信号の生成をより安価且つ小型な装置構成で実現できる。
図1は、本実施形態における三相信号発生装置の構成を模式的に示すブロック図である。 図2は、本実施形態における三相信号発生装置の処理部が実行する信号生成処理を示すフローチャートである。 図3は、第1信号Hu’及び第2信号Hv’を複素平面上において回転するベクトルで表した図である。 図4は、複素平面上において第1信号Hu’のベクトルが1回転する間に得られる第1信号Hu’の波形データと、複素平面上において第2信号Hv’のベクトルが1回転する間に得られる第2信号Hv’の波形データとの一例を示す図である。 図5は、第1基本波信号Huと第2基本波信号Hvとの合成信号Huvを複素平面上において回転するベクトルで表した図である。 図6は、複素平面上において第1信号Hu’及び第2信号Hv’のベクトルが1回転する間に得られる合成信号Huvの波形データの一例を示す図である。 図7は、学習処理において第1信号Hu’と第2信号Hv’との位相差φ1を算出する方法に関する説明図である。 図8は、学習処理において合成信号Huvと第1信号Hu’との位相差φ2を算出する方法に関する説明図である。 図9は、合成信号Huvと第1基本波信号Huとの位相差は、合成信号Huvと第1信号Hu’との位相差φ2と等しいことを示す説明図である。 図10は、合成信号Huvの偏角ωt+φ2に関する説明図である。 図11は、合成信号Huvと直交関係にある第3基本波信号Hwを複素平面上において回転するベクトルで表した図である。 図12は、複素平面上において合成信号Huvのベクトルが1回転する間に得られる第3基本波信号Hwの波形データの一例を示す図である。 図13は、第1基本波信号Huの波形データと、第2基本波信号Hvの波形データと、第3基本波信号Hwの波形データとの一例を示す図である。
 以下、本発明の一実施形態について図面を参照しながら詳細に説明する。
 図1は、本発明の一実施形態における三相信号発生装置1の構成を模式的に示すブロック図である。図1に示すように、三相信号発生装置1は、モータ100の回転位置(回転角)に応じて変化する磁界強度を示す三相の基本波信号を発生する装置である。本実施形態において三相の基本波信号とは、互いに電気角で120°の位相差を有する3つの基本波信号を意味する。
 本実施形態においてモータ100は、例えばインナーロータ型の三相ブラシレスDCモータである。モータ100は、ロータシャフト110と、センサマグネット120と、を有する。ロータシャフト110は、モータ100のロータに取り付けられる回転軸である。モータ100の回転位置とは、ロータシャフト110の回転位置を意味する。
 センサマグネット120は、ロータシャフト110に取り付けられ、ロータシャフト110に同期して回転する円板状の磁石である。センサマグネット120は、P個(Pは2以上の整数)の磁極対を有する。本実施形態では、一例として、センサマグネット120は、4つの磁極対を有する。なお、磁極対とは、N極とS極とのペアを意味する。すなわち、本実施形態においてセンサマグネット120は、N極とS極とのペアを4つ有し、計8つの磁極を有する。
 三相信号発生装置1は、第1磁気センサ10と、第2磁気センサ20と、信号処理部30と、を備える。図1では図示を省略するが、モータ100には回路基板が装着されており、第1磁気センサ10、第2磁気センサ20及び信号処理部30は、回路基板上に配置される。センサマグネット120は、回路基板と干渉しない位置に配置される。センサマグネット120は、モータ100のハウジングの内部に配置されてもよいし、或いはハウジングの外部に配置されてもよい。
 第1磁気センサ10及び第2磁気センサ20は、回路基板上において、センサマグネット120に対向する状態で配置される。本実施形態において、第1磁気センサ10及び第2磁気センサ20は、回路基板上において、センサマグネット120の回転方向CWに沿って30°間隔で配置される。例えば、第1磁気センサ10及び第2磁気センサ20は、それぞれ、例えばホール素子、或いはリニアホールICなど、磁気抵抗素子を含めたアナログ出力タイプの磁気センサである。第1磁気センサ10及び第2磁気センサ20は、それぞれ、ロータシャフト110の回転位置、すなわちセンサマグネット120の回転位置に応じて変化する磁界強度を示すアナログ信号を出力する。
 第1磁気センサ10及び第2磁気センサ20から出力されるアナログ信号の電気角1周期は、機械角1周期の1/Pに相当する。本実施形態では、センサマグネット120の極対数Pが「4」なので、各アナログ信号の電気角1周期は、機械角1周期の1/4、すなわち機械角で90°に相当する。また、第2磁気センサ20から出力されるアナログ信号は、第1磁気センサ10から出力されるアナログ信号に対して電気角で120°の位相遅れを有する。
 以下では、第1磁気センサ10から出力されるアナログ信号を第1信号Hu’と呼称し、第2磁気センサ20から出力されるアナログ信号を第2信号Hv’と呼称する。第1磁気センサ10は、回転する磁石であるセンサマグネット120に対向し、磁界強度を示す第1信号Hu’を信号処理部30に出力する。第2磁気センサ20は、センサマグネット120に対向し、第1信号Hu’に対して電気角で120°の位相遅れを有する第2信号Hv’を信号処理部30に出力する。
 信号処理部30は、第1磁気センサ10から出力される第1信号Hu’と、第2磁気センサ20から出力される第2信号Hv’とを処理する信号処理回路である。信号処理部30は、第1信号Hu’及び第2信号Hv’に基づいて、センサマグネット120の回転位置に応じて変化する磁界強度を示す三相の基本波信号を生成する。信号処理部30は、処理部31と、記憶部32と、を備える。
 処理部31は、例えばMCU(Microcontroller Unit)などのマイクロプロセッサである。第1磁気センサ10から出力される第1信号Hu’と、第2磁気センサ20から出力される第2信号Hv’とは、処理部31に入力される。処理部31は、不図示の通信バスを介して記憶部32と通信可能に接続される。詳細は後述するが、処理部31は、記憶部32に予め記憶されるプログラムに従って信号生成処理を実行する。信号生成処理とは、第1信号Hu’及び第2信号Hv’に基づいて、三相の基本波信号を生成する処理である。
 記憶部32は、処理部31に各種処理を実行させるのに必要なプログラムおよび各種設定データなどを記憶する不揮発性メモリと、処理部31が各種処理を実行する際にデータの一時保存先として使用される揮発性メモリとを含む。不揮発性メモリは、例えばEEPROM(Electrically Erasable Programmable Read-Only Memory)又はフラッシュメモリなどである。揮発性メモリは、例えばRAM(Random Access Memory)などである。
 次に、処理部31が実行する信号生成処理について説明する。
 ロータシャフト110とともにセンサマグネット120が回転すると、センサマグネット120の回転位置に応じて変化する磁界強度を示す第1信号Hu’が第1磁気センサ10から出力され、第1信号Hu’に対して電気角で120°の位相遅れを有する第2信号Hv’が第2磁気センサ20から出力される。
 処理部31にはA/D変換器が内蔵されており、処理部31は、A/D変換器によって第1信号Hu’及び第2信号Hv’を所定のサンプリング周波数でデジタル変換する。処理部31は、デジタル変換の実行タイミング、すなわちサンプリングタイミングが到来するたびに、図2のフローチャートで示される信号生成処理を実行する。
 図2に示すように、サンプリングタイミングが到来すると、処理部31は、上記のようにセンサマグネット120の回転に伴って処理部31に出力される第1信号Hu’及び第2信号Hv’をデジタル変換することにより、第1信号Hu’の瞬時値と、第2信号Hv’の瞬時値とをデジタル値として取得する(ステップS1)。このステップS1は第1ステップに相当し、ステップS1で実行される処理は第1処理に相当する。
 図3は、第1信号Hu’及び第2信号Hv’を複素平面上において回転するベクトルで表した図である。図3において、横軸は実数軸であり、縦軸は虚数軸である。第1信号Hu’及び第2信号Hv’は、複素平面上において矢印の方向に角速度ωで回転する。図3に示すように、第1信号Hu’は、基本波信号である第1基本波信号Huと、同相信号Nとを含む。第1信号Hu’は、第1基本波信号Huと同相信号Nとの合成ベクトルで表される。すなわち、第1信号Hu’は、下式(1)で表される。第2信号Hv’は、基本波信号である第2基本波信号Hvと、同相信号Nとを含む。第2信号Hv’は、第2基本波信号Hvと同相信号Nとの合成ベクトルで表される。すなわち、第2信号Hv’は、下式(2)で表される。同相信号Nは、直流信号および第3次高調波信号などを含むノイズ信号である。
Figure JPOXMLDOC01-appb-M000007
 ステップS1で取得される第1信号Hu’の瞬時値は、図3においてベクトルで表される第1信号Hu’の実数部(実数軸に投影される部分)に相当する。同様に、ステップS1で取得される第2信号Hv’の瞬時値は、図3においてベクトルで表される第2信号Hv’の実数部に相当する。例えば、第1信号Hu’の瞬時値は、下式(3)で表される。下式(3)において、||Hu’||は第1信号Hu’のノルムであり、kは1以上の整数である。
Figure JPOXMLDOC01-appb-M000008
 図4は、複素平面上において第1信号Hu’のベクトルが1回転する間に得られる第1信号Hu’の瞬時値の時系列データ(第1信号Hu’の波形データ)と、複素平面上において第2信号Hv’のベクトルが1回転する間に得られる第2信号Hv’の瞬時値の時系列データ(第2信号Hv’の波形データ)との一例を示す図である。図4において、横軸は時間を示し、縦軸はデジタル値を示す。図4に示すように、同相信号Nを含む第1信号Hu’及び第2信号Hv’の波形は完全な正弦波形にならず、歪みを有する波形となる。
 図2に戻り、処理部31は、第1信号Hu’の瞬時値から第2信号Hv’の瞬時値を減算することにより、第1信号Hu’に含まれる第1基本波信号Huと第2信号Hv’に含まれる第2基本波信号Hvとの合成信号Huvの瞬時値を算出する(ステップS2)。このステップS2は第2ステップに相当し、ステップS2で実行される処理は第2処理に相当する。
 下式(4)に示すように、第1信号Hu’の瞬時値から第2信号Hv’の瞬時値を減算することにより、両信号に含まれる同相信号Nが相殺され、第1基本波信号Huと第2基本波信号Hvとの合成信号Huvの瞬時値が得られることがわかる。図5は、第1基本波信号Huと第2基本波信号Hvとの合成信号Huvを複素平面上において回転するベクトルで表した図である。図6は、複素平面上において第1信号Hu’及び第2信号Hv’のベクトルが1回転する間に得られる合成信号Huvの瞬時値の時系列データ(合成信号Huvの波形データ)の一例を示す図である。図6に示すように、合成信号Huvの波形は、完全な正弦波形となる。
Figure JPOXMLDOC01-appb-M000009
 なお、ステップS2において、処理部31は、合成信号Huvの瞬時値を算出する前に、予め用意された振幅補正値に基づいて、第1信号Hu’の瞬時値と第2信号Hv’の瞬時値との少なくとも一方を補正する。振幅補正値とは、第1信号Hu’の振幅値と第2信号Hv’の振幅値とが等しくなる補正値である。振幅補正値は、事前に行われる学習処理によって得られる学習値の一つであり、予め記憶部32の不揮発性メモリに記憶されている。すなわち、ステップS2において、処理部31は、記憶部32の不揮発性メモリから振幅補正値を読み出し、読み出した振幅補正値に基づいて、第1信号Hu’の振幅値と第2信号Hv’の振幅値とが等しくなるように第1信号Hu’の瞬時値と第2信号Hv’の瞬時値との少なくとも一方を補正する。
 図2に戻り、処理部31は、合成信号Huvの瞬時値と予め用意された合成信号Huvのノルムとに基づいて、合成信号Huvの偏角を算出する(ステップS3)。このステップS3は第3ステップに相当し、ステップS3で実行される処理は第3処理に相当する。
 合成信号Huvのノルムは、上記の振幅補正値と同様に、事前に行われる学習処理によって得られる学習値の一つであり、予め記憶部32の不揮発性メモリに記憶されている。振幅補正値および合成信号Huvのノルムの他、合成信号Huvと第1基本波信号Huとの位相差も学習値として予め記憶部32の不揮発性メモリに記憶されている。以下では、事前に行われる学習処理について説明する。
 学習処理は、ロータシャフト110とともにセンサマグネット120が回転する状態で行われる。学習処理において、処理部31は、少なくとも第1信号Hu’及び第2信号Hv’の電気角1周期に相当する時間が経過するまで、つまり、少なくともセンサマグネット120が機械角で90°回転するまで、上記のステップS1及びステップS2の処理を所定のサンプリング周波数で繰り返す。言い換えれば、処理部31は、複素平面上において第1信号Hu’及び第2信号Hv’のベクトルが少なくとも1回転するまで、上記のステップS1及びステップS2の処理を所定のサンプリング周波数で繰り返す。
 これにより、処理部31は、第1信号Hu’の瞬時値と、第2信号Hv’の瞬時値と、合成信号Huvの瞬時値とを逐次取得し、過去の各瞬時値の最大値と現時刻(現在のサンプリングタイミング)の各瞬時値とを比較し、現時刻の各瞬時値が過去の各瞬時値の最大値より大きい場合に、過去の各瞬時値の最大値を現時刻の各瞬時値に更新する処理を行う。また、処理部31は、第1信号Hu’の瞬時値と、第2信号Hv’の瞬時値と、合成信号Huvの瞬時値とを逐次取得し、過去の各瞬時値の最小値と現時刻の各瞬時値とを比較し、現時刻の各瞬時値が過去の各瞬時値の最小値より小さい場合に、過去の各瞬時値の最小値を現時刻の各瞬時値に更新する処理を行う。
 処理部31は、上記のような逐次更新処理を行うことにより各信号の最大値及び最小値を取得する。そして、処理部31は、第1信号Hu’の最大値Max(Hu’)及び最小値Min(Hu’)を下式(5)に代入することにより、第1信号Hu’の振幅値であるノルム||Hu’||を算出する。処理部31は、第2信号Hv’の最大値Max(Hv’)及び最小値Min(Hv’)を下式(6)に代入することにより、第2信号Hv’の振幅値であるノルム||Hv’||を算出する。処理部31は、合成信号Huvの最大値Max(Huv)及び最小値Min(Huv)を下式(7)に代入することにより、合成信号Huvの振幅値であるノルム||Huv||を算出する。
Figure JPOXMLDOC01-appb-M000010
 処理部31は、第1信号Hu’のノルム||Hu’||と、第2信号Hv’のノルム||Hv’||とが等しくなる振幅補正値を算出する。処理部31は、第1信号Hu’の波形データに含まれる全ての瞬時値と、第2信号Hv’の波形データに含まれる全ての瞬時値との少なくとも一方を、振幅補正値によって補正する。これにより、振幅値(ノルム)が等しい第1信号Hu’の波形データと第2信号Hv’の波形データとが得られる。
 図7に示すように、処理部31は、振幅補正後の第1信号Hu’の波形データと第2信号Hv’の波形データとに基づいて、第1信号Hu’を基準として、第1信号Hu’と第2信号Hv’との位相差φ1(≒typ.-120°)を算出する。具体的には、図7に示すように、処理部31は、第1信号Hu’の最大値Max(Hu’)と第2信号Hv’の最大値Max(Hv’)との間の時間を基準エンコーダなどでカウントし、カウント結果Nmaxを下式(8)に代入することで位相差φ1を算出する。または、処理部31は、第1信号Hu’の最小値Min(Hu’)と第2信号Hv’の最小値Min(Hv’)との間の時間を基準エンコーダなどでカウントし、カウント結果Nminを下式(9)に代入することで位相差φ1を算出してもよい。式(8)及び式(9)において、Ncprは、基準エンコーダの分解能である。なお、学習処理において、基準エンコーダは回転軸に予め取り付けられる。
Figure JPOXMLDOC01-appb-M000011
 図8に示すように、処理部31は、第1信号Hu’と第2信号Hv’との位相差φ1に基づいて、合成信号Huvと第1信号Hu’との位相差φ2(≒typ.+30°)を算出する。具体的には、処理部31は、第1信号Hu’と第2信号Hv’との位相差φ1を下式(10)に代入することにより、合成信号Huvと第1信号Hu’との位相差φ2を算出する。
Figure JPOXMLDOC01-appb-M000012
 図9に示すように、合成信号Huvと第1信号Hu’との位相差φ2は、合成信号Huvと第1基本波信号Huとの位相差と等しい。従って、処理部31は、合成信号Huvと第1信号Hu’との位相差φ2を、合成信号Huvと第1基本波信号Huとの位相差として取得する。上記のような学習処理によって、振幅補正値と、合成信号Huvのノルム||Huv||と、合成信号Huvと第1基本波信号Huとの位相差φ2とが学習値として得られる。処理部31は、これらの学習値を記憶部32の不揮発性メモリに格納する。
 以上が学習処理の説明であり、以下では図2に戻って信号生成処理の説明を続ける。図2のステップS3において、処理部31は、ステップS2で算出された合成信号Huvの瞬時値と、学習処理によって事前に得られた合成信号Huvのノルム||Huv||とに基づいて、合成信号Huvの偏角を算出する。図10に示すように、合成信号Huvの偏角をωt+φ2とすると、合成信号Huvの瞬時値は下式(11)で表される。
Figure JPOXMLDOC01-appb-M000013
 そこで、処理部31は、ステップS3において、下式(12)に基づいて合成信号Huvの偏角ωt+φ2を算出する。すなわち、処理部31は、記憶部32の不揮発性メモリから合成信号Huvのノルム||Huv||を読み出し、読み出した合成信号Huvのノルム||Huv||と、ステップS2で算出された合成信号Huvの瞬時値とを下式(12)に代入することにより、合成信号Huvの偏角ωt+φ2を算出する。
 ただし、式(12)によって得られる合成信号Huvの偏角ωt+φ2は、0°以上且つ180°以下の値に制限される。そのため、偏角ωt+φ2のサイン値は、0以上且つ1以下の正極性の値に制限される。そこで、本実施形態において処理部31は、算出された偏角ωt+φ2を拡張処理することにより、-180°以上且つ180°未満の範囲に含まれる偏角θを取得する。これにより、偏角θのサイン値は、-1以上且つ1以下の範囲内で正極性及び負極性の両方の値を取り得る。
Figure JPOXMLDOC01-appb-M000014
 そして、処理部31は、合成信号Huvの偏角θと、合成信号Huvのノルム||Huv||と、予め用意された合成信号Huvと第1基本波信号Huとの位相差φ2とに基づいて、合成信号Huvと直交関係にある第3基本波信号Hwの瞬時値を算出する(ステップS4)。このステップS4は第4ステップに相当し、ステップS4で実行される処理は第4処理に相当する。
 図11は、合成信号Huvと直交関係にある第3基本波信号Hwを複素平面上において回転するベクトルで表した図である。振幅補正により、第1信号Hu’の振幅値(||Hu’||)と第2信号Hv’の振幅値(||Hv’||)とが等しいという条件が成立する場合、第1基本波信号Huの振幅値(||Hu||)と第2基本波信号Hvの振幅値(||Hv||)とが等しくなる。この場合、合成信号Huvのノルム||Huv||と、第3基本波信号Hwのノルム||Hw||との比は、1/2sin(φ2)となる。従って、合成信号Huvと直交関係にある第3基本波信号Hwの瞬時値は、下式(13)で表される。
 ステップS4において、処理部31は、記憶部32の不揮発性メモリから合成信号Huvのノルム||Huv||と位相差φ2とを読み出し、これら合成信号Huvのノルム||Huv||及び位相差φ2と、ステップS3で取得した偏角θとを下式(13)に代入することにより、第3基本波信号Hwの瞬時値を算出する。図12は、複素平面上において合成信号Huvのベクトルが1回転する間に得られる第3基本波信号Hwの瞬時値の時系列データ(第3基本波信号Hwの波形データ)の一例を示す図である。図12に示すように、第3基本波信号Hwの波形は、合成信号Huv、第1基本波信号Hu及び第2基本波信号Hvの波形と同様に、完全な正弦波形となる。
Figure JPOXMLDOC01-appb-M000015
 図2に戻り、処理部31は、第1信号Hu’の瞬時値と、第2信号Hv’の瞬時値と、第3基本波信号Hwの瞬時値とに基づいて、第1信号Hu’及び第2信号Hv’に含まれる同相信号Nの瞬時値を算出する(ステップS5)。このステップS5は第5ステップに相当し、ステップS5で実行される処理は第5処理に相当する。具体的には、ステップS5において、処理部31は、下式(14)及び下式(15)に基づいて同相信号Nの瞬時値を算出する。
Figure JPOXMLDOC01-appb-M000016
 ステップS5において、処理部31は、まず、第1信号Hu’の瞬時値と第2信号Hv’の瞬時値とを上式(14)に代入することにより、第3信号Hw’の瞬時値を算出する。第3信号Hw’は、第1信号Hu’及び第2信号Hv’とともに三相平衡式(Hu’+Hv’+Hw’=0)を満たす信号である。言い換えれば、第3信号Hw’は、第1信号Hu’に対して電気角で240°の位相遅れを有し、第2信号Hv’に対して電気角で120°の位相遅れを有する信号である。
 図11に示すように、第3信号Hw’を複素平面上において回転するベクトルで表したとき、第3信号Hw’は、第3基本波信号Hwのベクトルと、同相信号Nの負の2倍のベクトルとを合成したベクトル(Hw’=Hw-2N)で表される。従って、同相信号Nは、上式(15)で表すことができる。ステップS5において、処理部31は、式(14)により算出した第3信号Hw’の瞬時値と、ステップS4で算出した第3基本波信号Hwの瞬時値とを式(15)に代入することにより、同相信号Nの瞬時値を算出する。図12に、第3信号Hw’の波形及び同相信号Nの波形の一例を示す。
 図2に戻り、処理部31は、第1信号Hu’の瞬時値から同相信号Nの瞬時値を減算することにより、第1基本波信号Huの瞬時値を算出する(ステップS6)。このステップS6は第6ステップに相当し、ステップS6で実行される処理は第6処理に相当する。上式(1)を参照すれば、第1信号Hu’の瞬時値から同相信号Nの瞬時値を減算することにより、第1基本波信号Huの瞬時値を算出できることは容易に理解できるであろう。
 最後に、処理部31は、第2信号Hv’の瞬時値から同相信号Nの瞬時値を減算することにより、第2基本波信号Hvの瞬時値を算出する(ステップS7)。このステップS7は第7ステップに相当し、ステップS7で実行される処理は第7処理に相当する。上式(2)を参照すれば、第2信号Hv’の瞬時値から同相信号Nの瞬時値を減算することにより、第2基本波信号Hvの瞬時値を算出できることは容易に理解できるであろう。
 上記のようなステップS1からステップS7までの処理を含む信号生成処理が、サンプリングタイミングが到来するたびに処理部31によって実行される。その結果、図13に示すように、第1基本波信号Huの瞬時値の時系列データ(第1基本波信号Huの波形データ)と、第2基本波信号Hvの瞬時値の時系列データ(第2基本波信号Hvの波形データ)と、第3基本波信号Hwの瞬時値の時系列データ(第3基本波信号Hwの波形データ)とが得られる。図13に示すように、第1基本波信号Hu、第2基本波信号Hv及び第3基本波信号Hwの波形は、完全な正弦波形となる。また、第1基本波信号Hu、第2基本波信号Hv及び第3基本波信号Hwは、互いに電気角で120°の位相差を有する。
 以上のように、本実施形態の三相信号発生装置1は、第1磁気センサ10及び第2磁気センサ20の2つの磁気センサを用いて、モータ100の回転位置に応じて変化する磁界強度を示す三相の基本波信号を発生することができる。従って、3つの磁気センサを使用する従来技術と比較して、三相信号の生成をより安価且つ小型な装置構成で実現できる。
 本実施形態の三相信号発生装置は、回転する磁石に対向し、磁界強度を示す第1信号を出力する第1磁気センサと、第1信号に対して電気角で120°の位相遅れを有する第2信号を出力する第2磁気センサと、第1信号及び第2信号を処理する信号処理部と、を備える。信号処理部は、第1信号の瞬時値と第2信号の瞬時値とを取得する第1処理と、第1信号の瞬時値から第2信号の瞬時値を減算することにより、第1信号に含まれる第1基本波信号と第2信号に含まれる第2基本波信号との合成信号の瞬時値を算出する第2処理と、合成信号の瞬時値と予め用意された合成信号のノルムとに基づいて合成信号の偏角を算出する第3処理と、合成信号の偏角と、合成信号のノルムと、予め用意された合成信号と第1基本波信号との位相差とに基づいて、合成信号と直交関係にある第3基本波信号の瞬時値を算出する第4処理と、を実行する。
 これにより、2つの磁気センサによって得られる二相の信号(第1信号及び第2信号)から、同相信号を含まない三相目の信号(第3基本波信号)を生成することができる。従って、3つの磁気センサを使用する従来技術と比較して、三相信号の生成をより安価且つ小型な装置構成で実現できる。
 本実施形態の信号処理部は、第3処理において、式(12)に基づいて合成信号の偏角ωt+φ2を算出し、算出された偏角ωt+φ2を拡張処理することにより、-180°以上且つ180°未満の範囲に含まれる偏角θを取得する。
 これにより、処理負荷の小さい簡易な数式によって、合成信号の瞬時値及びノルムから合成信号の偏角ωt+φ2を算出できる。なお、式(12)に基づいて合成信号の偏角ωt+φ2を算出する際に、テーブル値を用いた補間処理によって合成信号の偏角ωt+φ2を算出してもよい。また、算出された偏角ωt+φ2を拡張処理して、-180°以上且つ180°未満の範囲に含まれる偏角θを取得することにより、偏角θのサイン値は、-1以上且つ1以下の範囲内で正極性及び負極性の両方の値を取ることができるため、第4処理によって生成される第3基本波信号の波形を完全な正弦波形にすることができる。
 本実施形態の信号処理部は、第2処理において、予め用意された、第1信号の振幅値と第2信号の振幅値とが等しくなる振幅補正値に基づいて、第1信号の瞬時値と第2信号の瞬時値との少なくとも一方を補正し、信号処理部は、第4処理において、合成信号のノルム||Huv||と、位相差φ2と、偏角θとを式(13)に代入することにより、第3基本波信号の瞬時値を算出する。
 これにより、処理負荷の小さい簡易な数式によって、合成信号のノルム及び偏角と、合成信号と第1基本波信号との位相差とから、合成信号と直交関係にある第3基本波信号の瞬時値を算出できる。
 本実施形態の信号処理部は、第1信号の瞬時値と第2信号の瞬時値と第3基本波信号の瞬時値とに基づいて同相信号の瞬時値を算出する第5処理と、第1信号の瞬時値から同相信号の瞬時値を減算することにより、第1基本波信号の瞬時値を算出する第6処理と、第2信号の瞬時値から同相信号の瞬時値を減算することにより、第2基本波信号の瞬時値を算出する第7処理と、をさらに実行する。
 これにより、第1信号から正弦波形を有する第1基本波信号を抽出でき、第2信号から正弦波形を有し且つ第1基本波信号に対して電気角で120°の位相遅れを有する第2基本波信号を抽出することができる。
 本実施形態の信号処理部は、第5処理において、式(14)及び式(15)に基づいて同相信号の瞬時値を算出する。
 これにより、処理負荷の小さい簡易な数式によって、第1信号及び第2信号から同相信号を抽出できる。
(変形例)
 本発明は上記実施形態に限定されず、本明細書において説明した各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。
 例えば、上記実施形態では、モータと三相信号発生装置との組み合わせを例示したが、本発明はこの形態に限定されず、回転軸に取り付けられたセンサマグネットと三相信号発生装置との組み合わせもあり得る。
 上記実施形態では、回転軸の軸方向において、第1磁気センサ及び第2磁気センサが、円板状のセンサマグネットに対向する状態で配置される形態を例示したが、本発明はこの形態に限定されない。例えば、円板状のセンサマグネットの代わりにリング状磁石を用いる場合、リング状磁石の半径方向に磁束が流入するため、リング状磁石の半径方向において、第1磁気センサ及び第2磁気センサが、リング状磁石と対向する状態で配置されてもよい。
 例えば、上記実施形態では、回転する磁石として、モータ100のロータシャフト110に取り付けられるセンサマグネット120を使用する場合を例示したが、モータ100のロータに取り付けられるロータマグネットを、回転する磁石として用いてもよい。ロータマグネットもロータシャフト110に同期して回転する磁石である。
 上記実施形態では、センサマグネット120が4つの磁極対を有する場合を例示したが、センサマグネット120の極対数は4つに限定されない。回転する磁石としてロータマグネットを用いる場合も同様に、ロータマグネットの極対数は4つに限定されない。
 1…三相信号発生装置、10…第1磁気センサ、20…第2磁気センサ、30…信号処理部、31…処理部、32…記憶部、100…モータ、110…ロータシャフト、120…センサマグネット(磁石)

Claims (10)

  1.  回転する磁石に対向し、磁界強度を示す第1信号を出力する第1磁気センサと、
     前記磁石に対向し、前記第1信号に対して電気角で120°の位相遅れを有する第2信号を出力する第2磁気センサと、
     前記第1信号及び前記第2信号を処理する信号処理部と、
     を備え、
     前記信号処理部は、
     前記第1信号及び前記第2信号をデジタル変換することより、前記第1信号の瞬時値と前記第2信号の瞬時値とを取得する第1処理と、
     前記第1信号の瞬時値から前記第2信号の瞬時値を減算することにより、前記第1信号に含まれる第1基本波信号と前記第2信号に含まれる第2基本波信号との合成信号の瞬時値を算出する第2処理と、
     前記合成信号の瞬時値と予め用意された前記合成信号のノルムとに基づいて前記合成信号の偏角を算出する第3処理と、
     前記合成信号の偏角と、前記合成信号のノルムと、予め用意された前記合成信号と前記第1基本波信号との位相差とに基づいて、前記合成信号と直交関係にある第3基本波信号の瞬時値を算出する第4処理と、
     を実行する、三相信号発生装置。
  2.  前記合成信号の偏角をωt+φ2とし、前記合成信号の瞬時値をHuvとし、前記合成信号のノルムを||Huv||とする場合に、
     前記信号処理部は、前記第3処理において、下式(12)に基づいて前記合成信号の偏角ωt+φ2を算出し、算出された偏角ωt+φ2を拡張処理することにより、-180°以上且つ180°未満の範囲に含まれる偏角θを取得する、請求項1に記載の三相信号発生装置。
    Figure JPOXMLDOC01-appb-M000001
  3.  前記合成信号と前記第1基本波信号との位相差をφ2とし、前記第3基本波信号の瞬時値をHwとする場合に、
     前記信号処理部は、前記第2処理において、予め用意された、前記第1信号の振幅値と前記第2信号の振幅値とが等しくなる振幅補正値に基づいて、前記第1信号の瞬時値と前記第2信号の瞬時値との少なくとも一方を補正し、
     前記信号処理部は、前記第4処理において、前記合成信号のノルム||Huv||と、前記位相差φ2と、前記偏角θとを下式(13)に代入することにより、前記第3基本波信号の瞬時値を算出する、請求項2に記載の三相信号発生装置。
    Figure JPOXMLDOC01-appb-M000002
  4.  前記信号処理部は、
     前記第1信号の瞬時値と、前記第2信号の瞬時値と、前記第3基本波信号の瞬時値とに基づいて、前記第1信号及び前記第2信号に含まれる同相信号の瞬時値を算出する第5処理と、
     前記第1信号の瞬時値から前記同相信号の瞬時値を減算することにより、前記第1基本波信号の瞬時値を算出する第6処理と、
     前記第2信号の瞬時値から前記同相信号の瞬時値を減算することにより、前記第2基本波信号の瞬時値を算出する第7処理と、
     をさらに実行する、請求項1から請求項3のいずれか一項に記載の三相信号発生装置。
  5.  前記第1信号の瞬時値をHu’とし、前記第2信号の瞬時値をHv’とし、前記第3基本波信号の瞬時値をHwとし、前記同相信号の瞬時値をNとする場合に、
     前記信号処理部は、前記第5処理において、下式(14)及び下式(15)に基づいて前記同相信号の瞬時値を算出する、請求項4に記載の三相信号発生装置。
    Figure JPOXMLDOC01-appb-M000003
  6.  回転する磁石に対向し、磁界強度を示す第1信号を出力する第1磁気センサと、
     前記磁石に対向し、前記第1信号に対して電気角で120°の位相遅れを有する第2信号を出力する第2磁気センサと、を用いる三相信号発生方法であって、
     前記第1信号及び前記第2信号をデジタル変換することより、前記第1信号の瞬時値と前記第2信号の瞬時値とを取得する第1ステップと、
     前記第1信号の瞬時値から前記第2信号の瞬時値を減算することにより、前記第1信号に含まれる第1基本波信号と前記第2信号に含まれる第2基本波信号との合成信号の瞬時値を算出する第2ステップと、
     前記合成信号の瞬時値と予め用意された前記合成信号のノルムとに基づいて前記合成信号の偏角を算出する第3ステップと、
     前記合成信号の偏角と、前記合成信号のノルムと、予め用意された前記合成信号と前記第1基本波信号との位相差とに基づいて、前記合成信号と直交関係にある第3基本波信号の瞬時値を算出する第4ステップと、
     を含む、三相信号発生方法。
  7.  前記合成信号の偏角をωt+φ2とし、前記合成信号の瞬時値をHuvとし、前記合成信号のノルムを||Huv||とする場合に、
     前記第3ステップにおいて、下式(12)に基づいて前記合成信号の偏角ωt+φ2を算出し、算出された偏角ωt+φ2を拡張処理することにより、-180°以上且つ180°未満の範囲に含まれる偏角θを取得する、請求項6に記載の三相信号発生方法。
    Figure JPOXMLDOC01-appb-M000004
  8.  前記合成信号と前記第1基本波信号との位相差をφ2とし、前記第3基本波信号の瞬時値をHwとする場合に、
     前記第2ステップにおいて、予め用意された、前記第1信号の振幅値と前記第2信号の振幅値とが等しくなる振幅補正値に基づいて、前記第1信号の瞬時値と前記第2信号の瞬時値との少なくとも一方を補正し、
     前記第4ステップにおいて、前記合成信号のノルム||Huv||と、前記位相差φ2と、前記偏角θとを下式(13)に代入することにより、前記第3基本波信号の瞬時値を算出する、請求項7に記載の三相信号発生方法。
    Figure JPOXMLDOC01-appb-M000005
  9.  前記第1信号の瞬時値と、前記第2信号の瞬時値と、前記第3基本波信号の瞬時値とに基づいて、前記第1信号及び前記第2信号に含まれる同相信号の瞬時値を算出する第5ステップと、
     前記第1信号の瞬時値から前記同相信号の瞬時値を減算することにより、前記第1基本波信号の瞬時値を算出する第6ステップと、
     前記第2信号の瞬時値から前記同相信号の瞬時値を減算することにより、前記第2基本波信号の瞬時値を算出する第7ステップと、
     をさらに含む、請求項6から請求項8のいずれか一項に記載の三相信号発生方法。
  10.  前記第1信号の瞬時値をHu’とし、前記第2信号の瞬時値をHv’とし、前記第3基本波信号の瞬時値をHwとし、前記同相信号の瞬時値をNとする場合に、前記第5ステップにおいて、下式(14)及び下式(15)に基づいて前記同相信号の瞬時値を算出する、請求項9に記載の三相信号発生方法。
    Figure JPOXMLDOC01-appb-M000006
PCT/JP2021/022353 2021-03-30 2021-06-11 三相信号発生装置および三相信号発生方法 WO2022208914A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023510176A JP7435904B2 (ja) 2021-03-30 2021-06-11 三相信号発生装置および三相信号発生方法
CN202180096439.7A CN117063388A (zh) 2021-03-30 2021-06-11 三相信号发生装置及三相信号发生方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-056375 2021-03-30
JP2021056375 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022208914A1 true WO2022208914A1 (ja) 2022-10-06

Family

ID=83457518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022353 WO2022208914A1 (ja) 2021-03-30 2021-06-11 三相信号発生装置および三相信号発生方法

Country Status (3)

Country Link
JP (1) JP7435904B2 (ja)
CN (1) CN117063388A (ja)
WO (1) WO2022208914A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197289A (ja) * 1989-01-24 1990-08-03 Toshiba Corp ブラシレスdcモータの制御方法及びブラシレスdcモータ
JP2001061289A (ja) * 1999-06-14 2001-03-06 Teac Corp モータの速度制御信号形成装置
JP2008289345A (ja) * 2007-04-05 2008-11-27 Wako Giken:Kk リニアモータの原点設定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197289A (ja) * 1989-01-24 1990-08-03 Toshiba Corp ブラシレスdcモータの制御方法及びブラシレスdcモータ
JP2001061289A (ja) * 1999-06-14 2001-03-06 Teac Corp モータの速度制御信号形成装置
JP2008289345A (ja) * 2007-04-05 2008-11-27 Wako Giken:Kk リニアモータの原点設定方法

Also Published As

Publication number Publication date
JP7435904B2 (ja) 2024-02-21
CN117063388A (zh) 2023-11-14
JPWO2022208914A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
JP6163874B2 (ja) 回転角度検出装置、画像処理装置及び回転角度検出方法
JP6005781B2 (ja) レゾルバ装置
JP6344151B2 (ja) 位置推定装置、モータ駆動制御装置、位置推定方法及びプログラム
JP2005283165A (ja) バリアブルリラクタンスレゾルバとそれを用いた回転角度センサ
CN108702118A (zh) 方法、角度确定装置和控制装置
WO2022208914A1 (ja) 三相信号発生装置および三相信号発生方法
JP4862496B2 (ja) レゾルバデジタルコンバータ、回転角度位置検出装置および回転機械制御装置
JP6112832B2 (ja) 角度補正装置及び回転角センサ
JP6384199B2 (ja) 位置推定装置、モータ駆動制御装置、位置推定方法及びプログラム
WO2022208913A1 (ja) 位置検出装置および位置検出方法
WO2023053596A1 (ja) 三相信号生成装置および三相信号生成方法
JP2014211353A (ja) 回転角度検出装置、画像処理装置及び回転角度検出方法
WO2023053598A1 (ja) 三相信号生成装置および三相信号生成方法
WO2023167328A1 (ja) 信号生成装置および信号生成方法
JP2012189350A (ja) エンコーダ装置及びエンコーダ装置のための補正方法
WO2023167329A1 (ja) 信号生成装置および信号生成方法
WO2022254863A1 (ja) 角度検出方法および角度検出装置
JP4862485B2 (ja) レゾルバデジタルコンバータ、回転角度位置検出装置および回転機械制御装置
WO2024142429A1 (ja) 信号生成装置および信号生成方法
JP2021006769A (ja) 回転角度検出装置
JP7186846B1 (ja) 角度検出装置及び交流回転機の制御システム
US20240263935A1 (en) Angle detection method and angle detection device
WO2024004448A1 (ja) 信号生成装置および信号生成方法
US20240136893A1 (en) Position detection device, position detection method, automated guided vehicle, and sewing device
JP5767917B2 (ja) エンコーダ装置及びエンコーダ装置のための補正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935074

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023510176

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180096439.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935074

Country of ref document: EP

Kind code of ref document: A1