WO2022202762A1 - 抗菌抗ウイルス剤、コーティング組成物、樹脂組成物、コーティング層及び成形体 - Google Patents

抗菌抗ウイルス剤、コーティング組成物、樹脂組成物、コーティング層及び成形体 Download PDF

Info

Publication number
WO2022202762A1
WO2022202762A1 PCT/JP2022/013002 JP2022013002W WO2022202762A1 WO 2022202762 A1 WO2022202762 A1 WO 2022202762A1 JP 2022013002 W JP2022013002 W JP 2022013002W WO 2022202762 A1 WO2022202762 A1 WO 2022202762A1
Authority
WO
WIPO (PCT)
Prior art keywords
molybdenum trioxide
antibacterial
particles
antiviral agent
trioxide particles
Prior art date
Application number
PCT/JP2022/013002
Other languages
English (en)
French (fr)
Inventor
榕輝 高
孝典 渡辺
幸介 藤田
俊介 河中
厚 中村
直人 矢木
建軍 袁
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2023509172A priority Critical patent/JPWO2022202762A1/ja
Priority to CN202280023637.5A priority patent/CN117042613A/zh
Publication of WO2022202762A1 publication Critical patent/WO2022202762A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to an antibacterial and antiviral agent, a coating composition, a resin composition, a coating layer and a molded article.
  • This application claims priority based on Japanese Patent Application No. 2021-050496 filed in Japan on March 24, 2021, the content of which is incorporated herein.
  • Conventional antibacterial/antiviral agents include photocatalyst-based ( TiO2 , etc.) and metal-based (Ag, etc.).
  • TiO2 photocatalyst-based
  • Au metal-based
  • Ag and silver compounds have problems such as stability and activity against non-enveloped viruses.
  • Patent Document 1 discloses an antiviral agent containing MoO 3 as an active ingredient. According to this antiviral agent, regardless of the presence or absence of a viral envelope, it exhibits high antiviral activity and is solid-state. It is believed to exert antiviral activity.
  • Patent Document 2 discloses a composite material having an antibacterial effect using a molybdenum compound.
  • JP 2019-182846 A Japanese Patent No. 5437809
  • the present invention was made to solve the above problems, and provides an antibacterial and antiviral agent that has antibacterial activity and/or antiviral activity and has a reduced effect on the appearance of the object to which it is applied. intended to
  • the present invention has the following aspects.
  • the molybdenum trioxide particles contain aggregates of primary particles containing a crystal structure;
  • the peak intensity of the molybdenum trioxide particles attributed to the (011) plane of the ⁇ crystal of MoO3 is 0.1 or more, any one of the above (1) to (5)
  • the peak intensity of the molybdenum trioxide particles attributed to the (011) plane of the ⁇ crystal of MoO 3 , the ratio ( ⁇ (011)/ ⁇ (021)) to the peak intensity attributed to the (021) plane of the ⁇ crystal of MoO 3 is 10.0 or less.
  • (11) A resin composition containing the antibacterial and antiviral agent according to any one of (1) to (7) above and a resin.
  • (12) A molded article obtained by molding the resin composition according to (11) above.
  • an antibacterial and antiviral agent that has antibacterial activity and/or antiviral activity and has a reduced effect on the appearance of the object to which it is applied.
  • An antibacterial antiviral agent of an embodiment contains molybdenum trioxide particles, the molybdenum trioxide particles have a specific surface area of 10 m 2 /g or more as measured by the BET method, and have antibacterial activity and/or antiviral activity. .
  • antibacterial and/or antiviral may be referred to as "antibacterial and antiviral.”
  • an antibacterial agent containing molybdenum trioxide particles, the molybdenum trioxide particles having a specific surface area of 10 m 2 /g or more as measured by the BET method, and having antibacterial activity.
  • an antiviral agent containing molybdenum trioxide particles, the molybdenum trioxide particles having a specific surface area of 10 m 2 /g or more as measured by the BET method, and having antiviral activity.
  • the molybdenum trioxide particles having a specific surface area of 10 m 2 /g or more as measured by the BET method are used as an antibacterial and antiviral agent.
  • use of the molybdenum trioxide particles having a specific surface area of 10 m 2 /g or more as measured by the BET method as an antibacterial agent is provided.
  • use of the molybdenum trioxide particles having a specific surface area of 10 m 2 /g or more as measured by the BET method as an antiviral agent is provided.
  • the antibacterial antiviral agent of the embodiment contains molybdenum trioxide particles as an active ingredient. It is believed that molybdenum trioxide particles provide an acidic state due to a small amount of adsorbed water present on the particle surface, and exhibit excellent antibacterial and antiviral effects.
  • Antibacterial activity means having the effect of suppressing the growth of bacteria.
  • Antiviral activity means having the effect of reducing the number of infectious viruses.
  • An activity value such as an infectivity titer may be used as an indicator of the proliferation and number.
  • the antibacterial activity and antiviral activity of the antibacterial antiviral agent of the embodiment can be evaluated, for example, by preparing a composition containing molybdenum trioxide particles as an active ingredient of the antibacterial antiviral agent, and using the coating layer of the composition as a test sample, can be confirmed.
  • Antiviral activity can be confirmed by known antiviral tests, for example, according to ISO21702, JIS L1922, or JIS R 1756 antiviral tests.
  • the antibacterial activity can be confirmed by a known antibacterial test, for example, according to JIS Z 2801, JIS L1902, or JIS R 1706 antibacterial tests.
  • compositions, coating layer, and molded article containing molybdenum trioxide particles as the active ingredient of the antibacterial and antiviral agent will be described later.
  • target bacteria examples include bacteria in general, such as Escherichia coli and Staphylococcus aureus.
  • target viruses include viruses in general, including various DNA viruses, RNA viruses, and bacteriophages, which are viruses that infect bacteria.
  • the antibacterial and antiviral agents of the embodiments exhibit more effective antibacterial and antiviral activity against bacteria or viruses in general whose growth is inhibited or whose numbers decrease under acidic conditions.
  • the molybdenum trioxide particles contained in the antibacterial antiviral agent of the embodiment have a specific surface area of 10 m 2 /g or more as measured by the BET method.
  • Conventional molybdenum trioxide particles having a specific surface area of less than 10 m 2 /g measured by the BET method can be used when applied to any surface, or when mixed with a medium, resin, etc. to form a composition. Appearance is likely to be affected, for example, the object or composition may appear whitish, the original color of the object to which it is applied may be impaired, or the transparency may be impaired.
  • the application target includes not only the target to which the composition is applied, but also components other than the molybdenum trioxide particles contained in the composition itself (for example, medium, resin, etc.).
  • the antibacterial and antiviral agent exhibits antibacterial activity and/or antiviral activity and is applicable to molybdenum trioxide particles having a specific surface area of 10 m 2 /g or more as measured by the BET method. It is compatible with the reduction of the influence on the appearance of
  • the surface area of the active substance is considered important.
  • the antibacterial and antiviral agents of the embodiments are considered to exhibit excellent antibacterial activity and/or antiviral activity because the molybdenum trioxide particles have a large specific surface area.
  • the molybdenum trioxide particles are considered to have a shape and size with a large specific surface area, it is presumed that the dispersibility in the composition is enhanced and the influence on the appearance is reduced.
  • the molybdenum trioxide particles contained in the antibacterial antiviral agent of the embodiment have a specific surface area measured by the BET method of 10 m 2 /g or more, preferably 20 m 2 /g or more, and 30 m 2 /g or more. It is more preferable to have When the specific surface area is equal to or higher than the lower limit, it is possible to improve the degree of compatibility between exhibiting antibacterial activity and/or antiviral activity and reducing the influence on the original appearance of the application target.
  • the specific surface area of the molybdenum trioxide particles measured by the BET method may be 300 m 2 /g or less, or may be 200 m 2 /g or less, because the production of the molybdenum trioxide particles is facilitated.
  • An example of the numerical range of the specific surface area of molybdenum trioxide particles measured by the BET method may be 10 m 2 /g or more and 300 m 2 /g or less, or 20 m 2 /g or more and 200 m 2 /g or less. 30 m 2 /g or more and 150 m 2 /g or less.
  • the specific surface area can be measured by the BET (Brunauer-Emmerit-Teller) method (adsorption gas: nitrogen) in accordance with JIS Z 8830.
  • the molybdenum trioxide particles have a large surface area, and from the viewpoint of exhibiting good antibacterial and antiviral activity, the molybdenum trioxide particles should have a median diameter D50 of 2000 nm or less as determined by a dynamic light scattering method. is preferred, 500 nm or less is more preferred, and 200 nm or less is even more preferred.
  • the median diameter D50 of the molybdenum trioxide particles determined by the dynamic light scattering method is preferably 10 nm or more, more preferably 20 nm or more, and even more preferably 40 nm or more.
  • the median diameter D50 determined by the dynamic light scattering method is preferably 10 nm or more and 2000 nm or less, more preferably 20 nm or more and 500 nm or less, and even more preferably 40 nm or more and 200 nm or less.
  • the median diameter D50 of the molybdenum trioxide particles is calculated from a volume-based cumulative particle size distribution measured using, for example, a dynamic light scattering particle size distribution analyzer.
  • the average particle size of the primary particles of the molybdenum trioxide particles of the embodiment is preferably 2000 nm or less, and 1000 nm or less, from the viewpoint that the surface area is large and the antibacterial and antiviral activity is well exhibited. is preferred, 500 nm or less is more preferred, and 200 nm or less is particularly preferred.
  • the average particle size of the primary particles of the molybdenum trioxide particles of the present embodiment may be 10 nm or more, 20 nm or more, or 40 nm or more.
  • An example of the numerical range of the average particle size of the primary particles of the molybdenum trioxide particles of the embodiment may be 10 nm or more and 2000 nm or less, 20 nm or more and 1000 nm or less, or 40 nm or more and 500 nm or less. It may be 40 nm or more and 200 nm or less, or 20 nm or more and 150 nm or less.
  • the average particle size of the primary particles of the molybdenum trioxide particles means that the molybdenum trioxide particles are photographed with a transmission electron microscope (TEM) or a scanning electron microscope (SEM) and aggregated on a two-dimensional image.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • the major axis the longest Feret diameter observed
  • the minor axis the short Feret diameter perpendicular to the longest Feret diameter
  • the average value is defined as the primary particle diameter, the mean value of the primary particle diameters of 50 randomly selected primary particles.
  • the shape of the primary particles of the molybdenum trioxide particles of the embodiment in a two-dimensional image taken with a transmission electron microscope (TEM) can be visually observed or photographed to be particulate, spherical, plate-like (sheet-like), It may be needle-shaped, string-shaped, or ribbon-shaped, and may include combinations of these shapes.
  • the shape of the primary particles of the molybdenum trioxide powder may be ribbon-like or sheet-like having a nano-order thickness.
  • the content ratio of MoO3 as measured by X-ray fluorescence (XRF) with respect to the total mass of the molybdenum trioxide particles of the present embodiment is preferably 99.5 mass% or more with respect to the total detected peak intensity, and more It is preferably 99.65% by mass or more, more preferably 99.77% by mass or more, and particularly preferably 99.89% by mass or more.
  • the molybdenum trioxide particles of the present embodiment contain an aggregate of primary particles containing a molybdenum trioxide crystal structure, and the crystal structure preferably contains ⁇ crystals having an average crystallite size of 50 nm or less, and preferably 45 nm or less. It is more preferable to contain ⁇ -crystals of 40 nm or less, and it is particularly preferable to contain ⁇ -crystals of 35 nm or less.
  • the molybdenum trioxide particles of the present embodiment contain an aggregate of primary particles containing a molybdenum trioxide crystal structure, and the crystal structure preferably contains ⁇ -crystals having an average crystallite size of 5 nm or more, and preferably 10 nm or more.
  • the average crystallite size of ⁇ -crystals contained in the crystal structure of molybdenum trioxide is preferably 5 nm or more and 50 nm or less, more preferably 5 nm or more and 45 nm or less, still more preferably 10 nm or more and 40 nm or less, Especially preferably, it is 10 nm or more and 35 nm or less.
  • the average crystallite size of the crystals is within the above preferred range, the antibacterial and antiviral activity tends to be better.
  • the molybdenum trioxide particles have a large surface area and contain aggregates of primary particles containing a crystal structure of molybdenum trioxide from the viewpoint of exhibiting good antibacterial and antiviral activity, and the crystal structure is an average crystal It is preferable that the particle size contains ⁇ -crystals of 50 nm or less, and that the median diameter D50 of the primary particles determined by the dynamic light scattering method is 2000 nm or less.
  • the crystal structure of molybdenum trioxide may further include ⁇ crystals with an average crystallite size of 50 nm or less.
  • the crystal structure of molybdenum trioxide contains ⁇ crystals and ⁇ crystals, the antibacterial and antiviral activity tends to be better.
  • the molybdenum trioxide particles of the present embodiment contain an aggregate of primary particles containing a molybdenum trioxide crystal structure, and the crystal structure preferably contains ⁇ crystals having an average crystallite size of 50 nm or less, and preferably 45 nm or less. ⁇ -crystals of 40 nm or less is more preferable, and ⁇ -crystals of 30 nm or less are particularly preferable.
  • the molybdenum trioxide particles of the present embodiment contain aggregates of primary particles containing a crystal structure of molybdenum trioxide, and the crystal structure preferably contains ⁇ crystals having an average crystallite size of 5 nm or more, and preferably 10 nm or more.
  • the average crystallite size of the ⁇ crystals included in the crystal structure of molybdenum trioxide is preferably 5 nm or more and 50 nm or less, more preferably 5 nm or more and 45 nm or less, still more preferably 10 nm or more and 40 nm or less, Especially preferably, it is 10 nm or more and 30 nm or less.
  • the average crystallite size of the ⁇ crystals is within the above preferred range, the antibacterial and antiviral activity tends to be better.
  • the ⁇ crystal structure of molybdenum trioxide is due to the presence of the peak of the (021) plane of the ⁇ crystal of MoO3 (2 ⁇ : around 27.32°_No.166363 (Inorganic Crystal Structure Database, ICSD)) , can be verified.
  • the ⁇ crystal structure is attributed to the (011) plane of the ⁇ crystal of MoO 3 in a profile obtained from powder X-ray diffraction (XRD) using Cu—K ⁇ rays as an X-ray source, (2 ⁇ : 23. It can also be confirmed by the presence of a peak near 01°, No. 86426 (inorganic crystal structure database, ICSD)).
  • the ⁇ crystal structure of molybdenum trioxide can also be confirmed by the presence of peaks at wavenumbers 773, 848 cm ⁇ 1 and 905 cm ⁇ 1 in the Raman spectrum obtained from Raman spectroscopy.
  • the ⁇ crystal structure of molybdenum trioxide can be confirmed by the presence of peaks at wavenumbers of 663, 816 cm ⁇ 1 and 991 cm ⁇ 1 .
  • the molybdenum trioxide particles of the present embodiment have a peak intensity attributed to the (011) plane of the ⁇ crystal of MoO 3 in a profile obtained from powder X-ray diffraction (XRD) using Cu—K ⁇ rays as an X-ray source.
  • the ratio ( ⁇ (011)/ ⁇ (021)) to the peak intensity attributed to the (021) plane of the ⁇ crystal of MoO 3 is preferably 0.1 or more, more preferably 0.2 or more. , is more preferably 0.4 or more.
  • the ratio ( ⁇ (011)/ ⁇ (021)) is preferably 10.0 or less.
  • the peak intensity attributed to the (011) plane of the ⁇ crystal of MoO 3 and the peak intensity attributed to the (021) plane of the ⁇ crystal of MoO 3 read the maximum intensity of the peak, respectively, and the ratio ( ⁇ (011 )/ ⁇ (021)).
  • the ratio ( ⁇ (011)/ ⁇ (021)) is preferably 0.1 to 10.0, more preferably 0.2 to 10.0. It is preferably from 0.4 to 10.0, and particularly preferably from 0.4 to 10.0. It is considered that the larger the ratio ( ⁇ (011)/ ⁇ (021)), the better the antibacterial and antiviral activity.
  • the molybdenum trioxide particles of the present embodiment have an intensity I of the peak due to Mo—O in the radial distribution function obtained from the extended X-ray absorption fine structure (EXAFS) spectrum of the K absorption edge of molybdenum.
  • the ratio (I/II) to the resulting peak intensity II is preferably greater than 1.1.
  • the ratio (I/II) is considered to be an indication that ⁇ crystals of MoO 3 are obtained in the molybdenum trioxide particles, and the larger the ratio (I/II), the better the antibacterial and antiviral activity. it is conceivable that.
  • the ratio (I/II) is preferably 0.1 or more, more preferably 0.5 or more, and particularly preferably 1.0 or more. .
  • the content of ⁇ crystals in the molybdenum trioxide particles of the embodiment is not particularly limited, but may be 80% or less, 50% or less, or 70% or less. From another aspect, the content of ⁇ crystals in the molybdenum trioxide powder of the present embodiment may be 20% or more and 100% or less, may be 50% or more and 100% or less, or may be 70% or more and 100% or less. % or less, 80% or more and 100% or less, or 100%.
  • the content of ⁇ -crystals of MoO 3 can be determined from the obtained profile data by the RIR (Reference Intensity Ratio) method.
  • MoO 3 ⁇ - crystal content (%) ( IA /KA)/(( IA / KA )+( IB / KB )) ⁇ 100 (2)
  • RIR values values listed in the ICSD database can be used, and integrated powder X-ray analysis software (manufactured by Rigaku, PDXL Version 2) can be used for analysis.
  • Each of the specific surface area, average particle size, MoO3 content, ⁇ (011)/ ⁇ (021), ratio (I/II), and ⁇ crystal content of the molybdenum trioxide particles of the present embodiment Values can be determined for aggregates of primary particles of molybdenum trioxide particles.
  • the molybdenum trioxide particles are preferably produced by ⁇ Method for producing molybdenum trioxide particles> described below.
  • the method for producing molybdenum trioxide particles of the present embodiment is the method for producing molybdenum trioxide particles of the previous embodiment, wherein a molybdenum oxide precursor compound is vaporized to form molybdenum trioxide vapor, and the molybdenum trioxide vapor is Including cooling steam. According to the method for producing molybdenum trioxide particles of the embodiment, it is possible to produce the molybdenum trioxide particles contained in the antibacterial antiviral agent of the embodiment.
  • a raw material mixture containing a molybdenum oxide precursor compound and a metal compound other than the molybdenum oxide precursor compound is fired to vaporize the molybdenum oxide precursor compound, Including forming molybdenum trioxide vapor, the ratio of the metal compound to 100% by mass of the raw material mixture is preferably 70% by mass or less in terms of oxide.
  • the method for producing molybdenum trioxide particles of the present embodiment can be suitably carried out using the production apparatus 1 shown in FIG.
  • FIG. 2 is a schematic diagram of an example of an apparatus used for producing molybdenum trioxide particles of this embodiment.
  • a production apparatus 1 includes a firing furnace 2 for firing a molybdenum oxide precursor compound or the raw material mixture to vaporize the molybdenum oxide precursor compound, and a firing furnace 2 connected to the molybdenum trioxide vaporized by the firing. It has a cross-shaped cooling pipe 3 for pulverizing steam and a collector 4 as a collecting means for collecting the molybdenum trioxide particles pulverized in the cooling pipe 3 . At this time, the firing furnace 2 and the cooling pipe 3 are connected through an exhaust port 5 .
  • the cooling pipe 3 is provided with an opening adjusting damper 6 for an outside air intake (not shown) at the left end, and an observation window 7 at the upper end.
  • the collection machine 4 is connected with an exhaust device 8 as a first air blowing means. When the exhaust device 8 exhausts the air, the collector 4 and the cooling pipe 3 are sucked, and outside air is blown to the cooling pipe 3 from the opening adjustment damper 6 of the cooling pipe 3 . That is, the cooling pipe 3 is passively blown with air by the exhaust device 8 having a suction function.
  • the manufacturing apparatus 1 may have an external cooling device 9, which makes it possible to arbitrarily control the cooling conditions of the molybdenum trioxide vapor generated from the kiln 2.
  • the molybdenum oxide precursor compound is not particularly limited as long as it is a precursor compound for forming molybdenum trioxide particles according to the present invention.
  • molybdenum oxide precursor compounds may be used alone or in combination of two or more.
  • the form of the molybdenum oxide precursor compound is not particularly limited.
  • it may be in the form of powder such as molybdenum trioxide, or may be in the form of liquid such as aqueous solution of ammonium molybdate.
  • it is in the form of powder, which is easy to handle and energy efficient.
  • molybdenum oxide precursor compound it is preferable to use commercially available ⁇ -crystalline molybdenum trioxide. Further, when ammonium molybdate is used as the molybdenum oxide precursor compound, it is converted to thermodynamically stable molybdenum trioxide by firing, so the molybdenum oxide precursor compound to be vaporized is the molybdenum trioxide. .
  • molybdenum trioxide is preferably contained from the viewpoint of easy control of the purity of molybdenum trioxide particles to be obtained, the average particle size of primary particles, and the crystal structure.
  • Molybdenum trioxide vapor can also be formed by firing a raw material mixture containing a molybdenum oxide precursor compound and a metal compound other than the molybdenum oxide precursor compound.
  • Metal compounds other than the molybdenum oxide precursor compound are not particularly limited, but are aluminum compounds, silicon compounds, titanium compounds, magnesium compounds, sodium compounds, potassium compounds, zirconium compounds, yttrium compounds, zinc compounds, copper compounds, and iron compounds. etc. Among these, aluminum compounds, silicon compounds, titanium compounds, and magnesium compounds are preferably used.
  • a molybdenum oxide precursor compound and a metal compound other than the molybdenum oxide precursor compound may sometimes form an intermediate. It can be vaporized in the form
  • metal compound other than the molybdenum oxide precursor compound among these, it is preferable to use an aluminum compound in order to prevent damage to the firing furnace.
  • a metal compound other than the compound may not be used.
  • Aluminum compounds include aluminum chloride, aluminum sulfate, basic aluminum acetate, aluminum hydroxide, boehmite, pseudoboehmite, transitional aluminum oxides ( ⁇ -aluminum oxide, ⁇ -aluminum oxide, ⁇ -aluminum oxide, etc.), Examples include ⁇ -aluminum oxide and mixed oxide aluminum having two or more crystal phases.
  • the content of the molybdenum oxide precursor compound with respect to 100% by mass of the raw material mixture is 5% by mass to 5% by mass. It is preferably 100% by mass, may be 10% by mass to 100% by mass, and may be 20% by mass to 100% by mass.
  • the firing temperature varies depending on the molybdenum oxide precursor compound, the metal compound, and the desired molybdenum trioxide particles used, it is usually preferable to set the temperature at which the intermediates can be decomposed.
  • the temperature is preferably 500° C. to 1500° C. , 600°C to 1550°C, more preferably 700°C to 1600°C.
  • the firing time is also not particularly limited, and can be, for example, 1 minute or more, 1 minute to 30 hours, 10 minutes to 25 hours, or 100 minutes to 20 hours. can be done.
  • the rate of temperature increase varies depending on the properties of the molybdenum oxide precursor compound used, the metal compound, and the desired molybdenum trioxide particles. is preferred, 1 to 50°C/min is more preferred, and 2 to 10°C/min is even more preferred.
  • the internal pressure in the firing furnace is not particularly limited, and may be a positive pressure or a reduced pressure. It is preferably done in A specific degree of reduced pressure is preferably -5000 to -10 Pa, more preferably -2000 to -20 Pa, and even more preferably -1000 to -50 Pa.
  • a specific degree of reduced pressure is preferably -5000 to -10 Pa, more preferably -2000 to -20 Pa, and even more preferably -1000 to -50 Pa.
  • the degree of pressure reduction is -5000 Pa or more, the high airtightness and mechanical strength of the firing furnace are not required excessively, and the manufacturing cost can be reduced, which is preferable.
  • the degree of pressure reduction is -10 Pa or less, clogging of the molybdenum oxide precursor compound at the discharge port of the firing furnace can be prevented, which is preferable.
  • the temperature of the gas to be blown is preferably 5 to 500°C, more preferably 10 to 100°C.
  • the blowing speed of the gas is preferably 1 to 500 L/min, more preferably 10 to 200 L/min, with respect to the effective volume of the firing furnace of 100 L.
  • the temperature of the vaporized molybdenum trioxide vapor varies depending on the type of molybdenum oxide precursor compound used, it is preferably 200 to 2000°C, more preferably 400 to 1500°C. If the vaporized molybdenum trioxide vapor has a temperature of 2000° C. or less, it tends to be easily pulverized by blowing outside air (0 to 100° C.) in a cooling pipe.
  • the discharge rate of molybdenum trioxide vapor discharged from the firing furnace depends on the amount of the molybdenum oxide precursor compound used, the amount of the metal compound, the temperature of the firing furnace, the blowing of gas into the firing furnace, and the diameter of the firing furnace exhaust port. can be controlled by
  • the discharge rate of molybdenum trioxide vapor from the kiln to the cooling pipes is preferably 0.001 to 100 g/min, more preferably 0.1 to 50 g/min, although it depends on the cooling capacity of the cooling pipes. more preferred.
  • the content of molybdenum trioxide vapor contained in the gas discharged from the firing furnace is preferably 0.01 to 1000 mg/L, more preferably 1 to 500 mg/L.
  • the molybdenum trioxide vapor is then cooled and pulverized. Cooling of the molybdenum trioxide vapor is performed by lowering the temperature of the cooling pipe.
  • the cooling means includes cooling by blowing gas into the cooling pipe, cooling by a cooling mechanism provided in the cooling pipe, and cooling by an external cooling device, as described above.
  • the cooling temperature (the temperature of the cooling pipe) is not particularly limited, but is preferably -100 to 600°C, more preferably -50 to 400°C.
  • the cooling rate of the molybdenum trioxide vapor is not particularly limited, it is preferably 100 to 100000°C/s, more preferably 1000 to 50000°C/s. There is a tendency that molybdenum trioxide particles having a smaller particle size and a larger specific surface area can be obtained as the cooling rate of the molybdenum trioxide vapor increases.
  • the temperature of the blown gas is preferably -100 to 300°C, more preferably -50 to 100°C.
  • the blowing speed of the gas is preferably 0.1 to 20 m 3 /min, more preferably 1 to 10 m 3 /min.
  • a gas blowing speed of 0.1 m 3 /min or more is preferable because a high cooling speed can be achieved and clogging of the cooling pipes can be prevented.
  • the gas blowing speed is 20 m 3 /min or less, the expensive first blowing means (exhaust fan, etc.) becomes unnecessary, which is preferable because the manufacturing cost can be reduced.
  • the particles obtained by cooling the molybdenum trioxide vapor are transported to and collected by the collector.
  • the particles obtained by cooling the molybdenum trioxide vapor may be fired again at a temperature of 100 to 320°C.
  • the molybdenum trioxide particles obtained by the method for producing molybdenum trioxide particles of the present embodiment may be fired again at a temperature of 100 to 320°C.
  • the firing temperature for the second firing may be 120 to 280.degree. C. or 140 to 240.degree.
  • the firing time for the second firing can be, for example, 1 min to 4 hours, 10 min to 5 hours, or 100 min to 6 hours.
  • the molybdenum trioxide crystal size grows and the ⁇ crystal structure in the molybdenum trioxide particles disappears.
  • molybdenum trioxide particles of the embodiment In general, to obtain particles with a large specific surface area, it is possible to reduce the size of the particles, but processing to reduce the size of the particles takes time and costs.
  • the method for producing molybdenum trioxide particles of the embodiment it is possible to efficiently produce molybdenum trioxide particles having a large specific surface area, as exemplified in the antibacterial antiviral agent of the embodiment.
  • the molybdenum trioxide particles produced by the method for producing molybdenum trioxide particles of the embodiment have antibacterial activity and/or antiviral activity, and can reduce the effect on the appearance of the application target.
  • Molybdenum trioxide particles according to embodiments can be blended with optional ingredients to provide a composition. Since the composition of the embodiment contains the molybdenum trioxide particles in the above antibacterial and antiviral agent, it has antibacterial and antiviral activity and can reduce the effect on the appearance of the object to which it is applied.
  • composition of the present invention a coating composition containing the antimicrobial antiviral agent of the embodiment, a binder, and a dispersion medium is exemplified.
  • one embodiment of the composition of the present invention is a coating composition containing molybdenum trioxide particles, a binder, and a dispersion medium.
  • a coating composition containing the antibacterial antiviral agent of the embodiment and an active energy ray-curable resin is exemplified.
  • a coating composition containing molybdenum trioxide particles and an active energy ray-curable resin is exemplified as an embodiment of the composition of the present invention.
  • a resin composition containing the antibacterial antiviral agent of the embodiment and a resin is exemplified.
  • a resin composition containing molybdenum trioxide particles and a resin is exemplified as an embodiment of the composition of the present invention.
  • molybdenum trioxide particles examples include those exemplified for the antibacterial and antiviral agents of the above embodiments.
  • the coating composition of one embodiment of the invention comprises a binder. Since the binder forms a film and exerts adhesion to the object to which it is applied, it effectively immobilizes the antibacterial and antiviral agent according to the embodiment, making it practical as a film or a composite material having a film on the surface. be able to.
  • Both an organic binder and an inorganic binder can be used as the binder.
  • inorganic binders include silica-based materials such as colloidal silica, alkali silicates, alkoxysilanes and hydrolysates thereof, and oxides, hydroxides and peroxides of metals selected from Ti, Al and Zr. An oxide or an organic compound can be mentioned.
  • Organic binders include, for example, polymer binders.
  • Both natural resins and synthetic resins can be used for the polymer binder.
  • synthetic resins include acrylic resins, phenolic resins, polyurethane resins, acrylonitrile/styrene copolymer resins, acrylonitrile/butadiene/styrene copolymer (ABS) resins, polyester resins, epoxy resins, and silicone resins.
  • the content of the binder may be determined as appropriate, but it is usually about 10 to 99% by mass based on the total solid mass of the coating composition.
  • the coating composition of one embodiment of the invention comprises a dispersion medium.
  • the dispersion medium may be either an aqueous medium or an oily medium, and may be appropriately selected from the viewpoint of compatibility and mixability with the binder used.
  • the solid content concentration relative to the total mass of the coating composition is usually about 30 to 80% by mass, and can be appropriately set depending on the viscosity suitable for the coating method, the desired thickness of the coating layer, and the like.
  • dispersion media examples include water, 1-butanol, isobutanol, 1-pentanol, 2-methyl-2-pentanol, 3-methyl-3-pentanol, methyl ethyl ketone, methanol, ethanol, n-propyl alcohol, Monofunctional alcohols such as isopropyl alcohol, various diols, polyhydric alcohols such as glycerin, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1 ,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, propylene glycol, 1,2-butanediol, 3-methyl-1,3-butanediol, 1,2-pentane Diols, diols such as 2-
  • the coating composition of the embodiment can also be provided as a solventless coating composition.
  • the coating composition of the embodiment can contain an active energy ray-curable resin.
  • resins that can be cured by irradiation with active energy rays include acrylic acrylates that have functional groups that are reactive to active energy rays, such as (meth)acryloyl groups in the side chains, and active energy rays such as styryl groups in the side chains.
  • a solvent-free coating composition When preparing a solvent-free coating composition, it may contain polymers, oligomers, and monomers having reactivity due to irradiation with active energy rays such as (meth)acryloyl groups, and further hydroxyacetophenone and aminoacetophenone.
  • active energy rays such as (meth)acryloyl groups
  • benzoin, benzoin ether, benzyl ketal, benzophenone, thioxanthone, phosphine oxide, glyoxyester, oxyacetate and the like can be used as photopolymerization initiators.
  • An oligomer may be a polymer having a repeating number of monomers of about 2 to 20, and is also called a prepolymer.
  • the oligomer preferably has 2 to 6 reactive double bonds at its terminals, and exists in a wide range of states from low-viscosity liquid to semi-solid.
  • Representative oligomers include urethane acrylates, epoxy acrylates, polyester acrylates, and the like.
  • the coating composition may contain optional components other than those described above within a range that does not impair the object of the present invention.
  • Optional components include coloring pigments, extender pigments, delustering agents, preservatives, antifoaming agents, dispersing agents, leveling agents, thickeners and the like.
  • a coating layer of the composition can be exemplified as an example of the composition of the embodiment.
  • the coating layers of embodiments can be formed using the compositions of the above embodiments. More specifically, the coating layer of the embodiment can be formed by forming a coating film of the composition of the above embodiment and curing the coating film.
  • a coating layer can be obtained by coating the composition of the embodiment onto a substrate such as a plastic material, paper, a molded product, a film substrate, or a packaging material by a general coating method. Specific coating methods include gravure roll coating (gravure coater), flexo roll coating (flexo coater), reverse roll coating, wire bar coating, lip coating, air knife coating, curtain flow coating, spray coating, and dip coating. A coating method or the like can be adopted.
  • a coating layer may also be provided on the surface of the substrate by impregnating the substrate with the composition.
  • the content of molybdenum trioxide particles may be 1 g/m 2 or less, or 0.01 g/m 2 or more and 1 g/m 2 or more. It may be 2 or less.
  • the thickness of the coating layer may be appropriately adjusted depending on the application, the material of the base material, etc., and can be exemplified in the range of 0.1 ⁇ m to 100 ⁇ m.
  • the resin composition of the embodiment can contain molybdenum trioxide particles and a resin.
  • a thermoplastic resin or a thermosetting resin is preferable as the resin.
  • Resins are not particularly limited, but polycarbonate resins, polyamide resins, PET resins, PBT resins, AS resins, PS resins, PMMA resins, ABS resins, acrylic resins, urethane resins, acrylic urethane resins, polyester resins, epoxy resins, and the like. mentioned.
  • the resin composition of the embodiment can optionally contain optional components such as an antioxidant, a weathering agent, a flame retardant, an antistatic agent, and a lubricant.
  • the resin composition of the embodiment can be obtained by uniformly mixing the molybdenum trioxide particles, the resin, and the optional components exemplified above, and the method is not limited. A method of preparing a high-concentration so-called masterbatch and then diluting it with various resins or the like for homogenization may also be used.
  • a molded article obtained by molding the resin composition of the embodiment is exemplified.
  • the manufacturing method or shape of the molded product There are no particular restrictions on the manufacturing method or shape of the molded product, and injection molded products, transfer molded products, compression molded products, cast molded products, laminated molded products, melt spun fibers, etc., can be used depending on the resin type and application. can be selected as appropriate.
  • the coating layer and molded body of the embodiment are used as materials having antibacterial and antiviral activity, such as mobile phone exteriors and touch panel exteriors; furniture or fixtures such as handrails, doorknobs, and washbasins; push buttons such as elevator buttons; It can be used in a wide range of applications, such as interior decoration of interiors, buses, houses, etc.; packaging materials, etc., especially as surface materials formed on their surfaces.
  • the solution is similarly prepared, and a particle diameter in the range of 0.015 to 500 ⁇ m is measured using a laser diffraction particle size distribution analyzer (SALD-7000 manufactured by Shimadzu Corporation). The distribution was measured and the median diameter D50 was calculated.
  • SALD-7000 laser diffraction particle size distribution analyzer
  • molybdenum trioxide particles constituting the molybdenum trioxide powder are dispersed in ethanol, and are observed under a transmission electron microscope (TEM, JEM1400 manufactured by JEOL).
  • the ⁇ crystal structure of molybdenum trioxide is attributed to the (011) plane of the ⁇ crystal of MoO 3 in the powder X-ray diffraction (XRD) profile measured under these conditions. Confirmed by the presence of a peak at 86426 (Inorganic Crystal Structure Database, ICSD).
  • the content of ⁇ -crystals of MoO 3 in the mixture of ⁇ -crystals and ⁇ -crystals of MoO 3 was determined from the obtained profile data by the RIR (Reference Intensity Ratio) method.
  • Nano-sized molybdenum trioxide was produced using a RHK simulator (manufactured by Noritake Co., Ltd.) as a firing furnace and a VF-5N dust collector (manufactured by Amano Co., Ltd.) as a dust collector.
  • a RHK simulator manufactured by Noritake Co., Ltd.
  • VF-5N dust collector manufactured by Amano Co., Ltd.
  • 1.5 kg of aluminum hydroxide manufactured by Nippon Light Metal Co., Ltd.
  • 1 kg of molybdenum trioxide manufactured by Nippon Muki Co., Ltd.
  • outside air (blowing speed: 150 L/min, outside air temperature: 25° C.) was introduced from the side and bottom surfaces of the firing furnace. After the molybdenum trioxide evaporated in the furnace, it was cooled near the dust collector and deposited as particles.
  • the molybdenum trioxide particles of Example 1 obtained above were subjected to crystal structure analysis by X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • the results of the X-ray diffraction patterns are shown in FIG. 1 together with standard patterns for ⁇ crystals ( ⁇ -MoO 3 ) and ⁇ crystals ( ⁇ -MoO 3 ) of molybdenum trioxide.
  • ⁇ crystals ⁇ -MoO 3
  • ⁇ -MoO 3 ⁇ crystals of molybdenum trioxide.
  • a peak attributed to ⁇ crystals of MoO 3 and a peak attributed to ⁇ crystals of MoO 3 were observed, and no other peaks were observed.
  • the specific surface area (SA) of the molybdenum trioxide particles of Example 1 measured by the BET method was 97.7 m 2 /g.
  • Comparative Example 1 Commercially available molybdenum trioxide particles (manufactured by Nippon Inorganic Chemical Co., Ltd., lot number: 00501-C) were used as molybdenum trioxide particles of Comparative Example 1.
  • the molybdenum trioxide particles of Comparative Example 1 had a molybdenum trioxide (MoO 3 ) content (purity) of 99.9% by mass as measured by X-ray fluorescence (XRF).
  • the molybdenum trioxide particles of Comparative Example 1 were subjected to crystal structure analysis by XRD. Results are shown in FIG. A peak attributed to ⁇ -crystals of MoO 3 was observed, and no other peaks were observed. The peak intensity ratio ( ⁇ (011)/ ⁇ (021)) between the (011) plane of the ⁇ crystal of MoO3 and the (021) plane of the ⁇ crystal of MoO3 was zero.
  • the specific surface area (SA) of the molybdenum trioxide particles of Comparative Example 1 measured by the BET method was 0.9 m 2 /g.
  • Example 1-1 Preparation of aqueous dispersion>> [Example 1-1]
  • the molybdenum trioxide particles of Example 1 obtained above and water were mixed to obtain an aqueous dispersion of molybdenum trioxide particles.
  • the content of molybdenum trioxide particles is 25% by mass with respect to the total mass of the aqueous dispersion.
  • TK Homodisper was used to prepare a monomer emulsion. Then, 38.5 parts by mass of water was added to a flask equipped with a stirrer, a nitrogen inlet tube and a reflux condenser, and the temperature was raised to 50 ° C. while stirring and mixing under a nitrogen gas atmosphere. 0.2 parts by mass of sodium metabisulfite (hereinafter abbreviated as SBS) were added into the flask and dissolved. After that, the monomer emulsion prepared above, 4.0 parts by mass of APS aqueous solution (5% by mass), and 4.0 parts by mass of SBS aqueous solution (5% by mass) were dropped into the flask over 3 hours.
  • SBS sodium metabisulfite
  • Example 1-2 40 parts by mass of the molybdenum trioxide aqueous dispersion (solid content: 25% by mass) of Example 1-1 obtained above and an aqueous resin emulsion (resin content: 52% by mass) of acrylic resin (A-1) of Synthesis Example 1 ) were mixed with 11.5 parts by mass to prepare a coating composition.
  • the coating composition is applied to a 250 ⁇ m PET film using an applicator so that the content of molybdenum trioxide particles in the coating layer is 1 g / m 2 and dried to form a coating layer of the coating composition. It was used as a test sample. Transparency evaluation was performed on the obtained test samples. For transparency evaluation, the total light transmittance was measured with a haze meter manufactured by Nippon Denshoku Industries in accordance with JIS K7361. A total light transmittance (Tt) of 80% or more was evaluated as "A", and a total light transmittance of less than 80% was evaluated as "B".
  • Tt total light transmittance
  • the coating composition was applied to a glass plate using an applicator so that the content of molybdenum trioxide particles in the coating layer was 1 g/m 2 to form a coating layer of the coating composition, which was used as a test sample. . Antiviral evaluation was performed on the surface of the coating layer of the obtained test sample.
  • Antiviral evaluation was performed in accordance with JIS R 1756, targeting bacteriophage Q ⁇ . Light irradiation was carried out using a white fluorescent lamp at an illuminance of 1000 lx under a filter of Type B (N169: cuts wavelengths of 380 nm or less) specified in JIS R 1750. In JIS R 1756, a 1/500 concentration normal bouillon medium (1/500 NB) is used to prepare an inoculum phage solution, but 1/60 NB was used here.
  • the antiviral activity value (R) was expressed as a logarithmic value of the rate of decrease from the infectivity value at 0 hours immediately after inoculation (formula 1).
  • Antiviral activity value: R log (N0) - log (N) (Formula 1)
  • the light irradiation effect ( ⁇ R) was indicated by the difference in the antiviral activity value under light irradiation and in the dark (Formula 2).
  • Light irradiation effect: ⁇ R RL- RD (Formula 2)
  • RL Antiviral activity value under light irradiation RD: Antiviral activity value under dark conditions
  • the coating composition was applied to a glass plate using an applicator so that the content of molybdenum trioxide particles in the coating layer was 1 g/m 3 to form a coating layer of the coating composition, which was used as a test sample. .
  • Antibacterial evaluation was performed on the surface of the coating layer of the obtained test sample.
  • the antibacterial evaluation was performed using Sanai Biochecker FC (manufactured by Sanai Oil Co., Ltd.). Well water that had been allowed to stand at room temperature for one week in advance was dripped onto the medium surface of the San Biochecker, brought into contact with the coating layer of the glass plate or the glass plate having the coating layer of the test sample, and fixed with masking tape. This sample was cultured at 30° C. for 1 week, and B was given when colonies were formed in any medium, and A was given when colonies were not formed in any medium.
  • Table 3 shows the above evaluation results.
  • Both the molybdenum trioxide particles of Example 1 and the molybdenum trioxide particles of Comparative Example 1 had excellent antiviral activity and antibacterial activity, indicating that they can be used as antibacterial and antiviral agents.
  • the test sample to which the coating composition containing the molybdenum trioxide particles of Example 1 was applied had better transparency than the test sample to which the coating composition containing the molybdenum trioxide particles of Comparative Example 1 was applied. rice field.
  • the molybdenum trioxide particles of Example 1 have a larger BET specific surface area than the molybdenum trioxide particles of Comparative Example 1. From this, it is speculated that the molybdenum trioxide particles of Example 1 can exhibit antiviral activity and/or antibacterial activity in a smaller amount. That is, the molybdenum trioxide particles of Example 1 are antibacterial agents capable of exhibiting excellent antiviral activity and/or antibacterial activity while maintaining transparency with a smaller content than the molybdenum trioxide particles of Comparative Example 1. It was suggested to be an antiviral agent.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明は、三酸化モリブデン粒子を含み、前記三酸化モリブデン粒子の、BET法で測定される比表面積が10m2/g以上であり、抗菌活性及び/又は抗ウイルス活性を有する抗菌抗ウイルス剤に関する。

Description

抗菌抗ウイルス剤、コーティング組成物、樹脂組成物、コーティング層及び成形体
 本発明は、抗菌抗ウイルス剤、コーティング組成物、樹脂組成物、コーティング層及び成形体に関する。
 本願は、2021年3月24日に、日本に出願された特願2021-050496号に基づき優先権を主張し、その内容をここに援用する。
 新型コロナウイルス感染症の拡大により、衛生に対する人々の意識が急速に高まっており、生活用品においても、細菌の増殖を防ぐ「抗菌」や、ウイルスの感染価を減少させる「抗ウイルス」へのニーズが世界的に拡大している。特に、携帯電話外装、タッチパネル、手すり、ドアノブ、洗面台、エレベーターボタンなどの各種プッシュボタン、公共交通機関の内装等の表面は、一日の中で複数回の利用が想定されるため、抗菌・抗ウイルスへの対応が強く求められている。
 従来の抗菌・抗ウイルス剤に、光触媒系(TiO等)と金属系(Ag等)がある。しかし、光触媒は光がなければ効果が発揮されないため、光が当たらない場所では継続的な効果が期待できない。Agや銀化合物は、安定性やエンベロープを持たないウイルスへの活性などに課題があった。
 一方で、抗菌・抗ウイルス剤として、モリブデン化合物が着目されている。特許文献1には、MoOを有効成分として含有する抗ウイルス剤が示され、この抗ウイルス剤によれば、ウイルスのエンベロープの有無によらず高い抗ウイルス活性を発揮し、かつ、固体状態のままで抗ウイルス活性を発揮するとされる。特許文献2には、モリブデン化合物を利用した、抗菌効果を有する複合材料が示されている。
特開2019-182846号公報 特許第5437809号公報
 しかし、従来の抗菌・抗ウイルス剤を、任意の表面に塗布する場合や、媒体や樹脂等と混合して組成物とした場合、塗布対象や樹脂の本来の透明性や色合い等が損なわれるなど、適用対象の外観の印象を低下させる場合がある。
 本発明は、上記のような問題点を解消するためになされたものであり、抗菌活性及び/又は抗ウイルス活性を有し、適用対象の外観への影響が低減された抗菌抗ウイルス剤を提供することを目的とする。
 本発明は以下の態様を有する。
(1) 三酸化モリブデン粒子を含み、
 前記三酸化モリブデン粒子の、BET法で測定される比表面積が10m/g以上であり、抗菌活性及び/又は抗ウイルス活性を有する抗菌抗ウイルス剤。
(2) 前記三酸化モリブデン粒子の、動的光散乱法により求められるメディアン径D50が2000nm以下である、前記(1)に記載の抗菌抗ウイルス剤。
(3) 前記三酸化モリブデン粒子の総質量に対する、蛍光X線(XRF)で測定されるMoOの含有割合が99.5質量%以上である、前記(1)又は(2)に記載の抗菌抗ウイルス剤。
(4) 前記三酸化モリブデン粒子が、結晶構造を含む一次粒子の集合体を含有し、
 前記結晶構造は、平均結晶子サイズが50nm以下のα結晶を含む、前記(1)~(3)のいずれか一つに記載の抗菌抗ウイルス剤。
(5) 前記結晶構造は、更に、平均結晶子サイズが50nm以下のβ結晶を含む、前記(4)に記載の抗菌抗ウイルス剤。
(6) X線源としてCu-Kα線を用いた粉末X線回折(XRD)から得られるプロファイルにおいて、前記三酸化モリブデン粒子の、MoOのβ結晶の(011)面に帰属するピーク強度の、MoOのα結晶の(021)面に帰属するピーク強度に対する比(β(011)/α(021))が0.1以上である、前記(1)~(5)のいずれか一つに記載の抗菌抗ウイルス剤。
(7) X線源としてCu-Kα線を用いた粉末X線回折(XRD)から得られるスペクトルにおいて、前記三酸化モリブデン粒子の、MoOのβ結晶の(011)面に帰属するピーク強度の、MoOのα結晶の(021)面に帰属するピーク強度に対する比(β(011)/α(021))が10.0以下である、前記(6)に記載の抗菌抗ウイルス剤。
(8) 前記(1)~(7)のいずれか一つに記載の抗菌抗ウイルス剤と、バインダーと、分散媒と、を含有するコーティング組成物。
(9) 前記(1)~(7)のいずれか一つに記載の抗菌抗ウイルス剤と、活性エネルギー線硬化型樹脂と、を含有するコーティング組成物。
(10) 前記(8)又は(9)に記載のコーティング組成物のコーティング層。
(11) 前記(1)~(7)のいずれか一つに記載の抗菌抗ウイルス剤と、樹脂と、を含有する樹脂組成物。
(12) 前記(11)に記載の樹脂組成物を成形してなる成形体。
 本発明によれば、抗菌活性及び/又は抗ウイルス活性を有し、適用対象の外観への影響が低減された抗菌抗ウイルス剤を提供できる。
実施例1及び比較例1の三酸化モリブデン粒子のX線回折(XRD)パターンの結果を、三酸化モリブデンのα結晶の標準パターン(α-MoO)及びβ結晶の標準パターン(β-MoO)と共に示したものである。 本発明の一実施形態に係る三酸化モリブデン粒子の製造に用いられる装置の一例の概略図である。
 以下、本発明の抗菌抗ウイルス剤、コーティング組成物、樹脂組成物、コーティング層及び成形体の実施形態を説明する。
≪抗菌抗ウイルス剤≫
 実施形態の抗菌抗ウイルス剤は、三酸化モリブデン粒子を含み、前記三酸化モリブデン粒子の、BET法で測定される比表面積が10m/g以上であり、抗菌活性及び/又は抗ウイルス活性を有する。以下、抗菌及び/又は抗ウイルスの意味として「抗菌抗ウイルス」ということがある。
 一実施形態として、三酸化モリブデン粒子を含み、前記三酸化モリブデン粒子の、BET法で測定される比表面積が10m/g以上であり、抗菌活性を有する抗菌剤を提供する。
 一実施形態として、三酸化モリブデン粒子を含み、前記三酸化モリブデン粒子の、BET法で測定される比表面積が10m/g以上であり、抗ウイルス活性を有する抗ウイルス剤を提供する。
 また、一実施形態として、BET法で測定される比表面積が10m/g以上である前記三酸化モリブデン粒子の、抗菌抗ウイルス剤としての使用を提供する。
 一実施形態として、BET法で測定される比表面積が10m/g以上である前記三酸化モリブデン粒子の、抗菌剤としての使用を提供する。
 一実施形態として、BET法で測定される比表面積が10m/g以上である前記三酸化モリブデン粒子の、抗ウイルス剤としての使用を提供する。
 実施形態の抗菌抗ウイルス剤は、三酸化モリブデン粒子を有効成分として含む。三酸化モリブデン粒子は、粒子表面に存在する僅かな吸着水によって、酸性状態を与え、優れた抗菌抗ウイルス効果が発揮されると考えられている。
 上記の酸性状態に関し、下記の反応式で示される三酸化モリブデンと水との反応によるHの産生を例示できる。
Figure JPOXMLDOC01-appb-C000001
 抗菌活性とは、細菌の増殖を抑制する効果を有すること意味する。抗ウイルス活性とは、感染性を持つウイルスの数を減少させる効果を有することを意味する。上記の増殖及び数の指標として、感染価等の活性値を用いてもよい。
 実施形態の抗菌抗ウイルス剤の抗菌活性及び抗ウイルス活性は、例えば、抗菌抗ウイルス剤の有効成分として三酸化モリブデン粒子を含有する組成物を調整し、該組成物のコーティング層を試験試料として、確認することができる。
 抗ウイルス活性は、公知の抗ウイルス性試験により確認でき、例えば、ISO21702、JIS L1922、又はJIS R 1756の抗ウイルス性試験に準拠して確認できる。
 抗菌活性は、公知の抗菌性試験により確認でき、例えば、JIS Z 2801、JIS L1902、又はJIS R 1706の抗菌性試験に準拠して確認できる。
 抗菌抗ウイルス剤の有効成分として三酸化モリブデン粒子を含有する組成物、コーティング層、及び成形体の実施形態については後述する。
 対象となる菌としては、大腸菌や、黄色ブドウ球菌などの細菌全般を例示できる。
 対象となるウイルスとしては、ウイルス全般を例示でき、各種DNAウイルス、RNAウイルスの他に、細菌に感染するウイルスであるバクテリオファージを包含する。
 実施形態の抗菌抗ウイルス剤は、酸性条件下で増殖抑制される又は数が減少する菌又はウイルス全般に対して、より効果的な抗菌抗ウイルス活性を発揮する。
(三酸化モリブデン粒子)
 実施形態の抗菌抗ウイルス剤が含む三酸化モリブデン粒子は、BET法で測定される比表面積が10m/g以上である。
 従来の、BET法で測定される比表面積が10m/g未満の三酸化モリブデン粒子は、任意の表面に塗布した場合や、媒体や樹脂等と混合して組成物とした場合などで、塗布対象や組成物が白っぽく見え、適用対象の本来の色合いが損なわれたり、透明性が損なわれたりするなど、外観への影響が発生しやすい。適用対象とは、組成物の塗布対象の他、組成物自体に含有される三酸化モリブデン粒子以外の成分(例えば、媒体、樹脂等)が挙げられる。
 一方の実施形態の抗菌抗ウイルス剤は、三酸化モリブデン粒子の、BET法で測定される比表面積が10m/g以上であることにより、抗菌活性及び/又は抗ウイルス活性の発揮と、適用対象の外観への影響の低減とが両立される。
 菌やウイルスを効果的に低減させるためには、活性物質の表面積が重要と考えられる。実施形態の抗菌抗ウイルス剤は、三酸化モリブデン粒子の、前記比表面積の値が大きいことで、優れた抗菌活性及び/又は抗ウイルス活性が発揮されると考えられる。また、三酸化モリブデン粒子が前記比表面積の大きな形状及びサイズを有すると考えられることから、組成物中での分散性が高まり、外観への影響が低減されると推察される。
 実施形態の抗菌抗ウイルス剤が含む三酸化モリブデン粒子の、BET法で測定される比表面積は、10m/g以上であり、20m/g以上であることが好ましく、30m/g以上であることがより好ましい。上記比表面積が上記下限値以上であることにより、抗菌活性及び/又は抗ウイルス活性の発揮と、適用対象の本来の外観への影響の低減との両立の程度を向上可能である。
 三酸化モリブデン粒子のBET法で測定される上記比表面積は、三酸化モリブデン粒子の製造が容易になることから、300m/g以下であってもよく、200m/g以下であってもよく、100m/g以下であってもよい。
 三酸化モリブデン粒子のBET法で測定される上記比表面積の数値範囲の一例としては、10m/g以上300m/g以下であってもよく、20m/g以上200m/g以下であってもよく、30m/g以上150m/g以下であってもよい。
 なお、この比表面積は、JIS Z 8830に準拠し、BET(Brunauer-Emmerit-Teller)法(吸着ガス:窒素)で測定することができる。
 前記三酸化モリブデン粒子は、表面積が大きく、抗菌抗ウイルス活性が良好に発揮されるとの観点から、動的光散乱法により求められる前記三酸化モリブデン粒子のメディアン径D50が2000nm以下であることが好ましく、500nm以下であることがより好ましく、200nm以下であることがさらに好ましい。
 動的光散乱法により求められる前記三酸化モリブデン粒子のメディアン径D50は、10nm以上あることが好ましく、20nm以上であることがより好ましく、40nm以上であることがさらに好ましい。
 動的光散乱法により求められる前記メディアン径D50は、10nm以上2000nm以下が好ましく、20nm以上500nm以下がより好ましく、40nm以上200nm以下が更に好ましい。メディアン径D50が上記の好ましい範囲内であると、抗菌活性及び/又は抗ウイルス活性の発揮と、適用対象の外観への影響の低減の両立がより良好となりやすい。
 三酸化モリブデン粒子のメディアン径D50は、例えば動的光散乱式粒子径分布測定装置を用いて測定された体積基準の累積粒度分布から算出される。
 別の側面として、実施形態の三酸化モリブデン粒子の一次粒子の平均粒径は、表面積が大きく、抗菌抗ウイルス活性が良好に発揮されるとの観点から、2000nm以下であることが好ましく、1000nm以下が好ましく、500nm以下がより好ましく、200nm以下が特に好ましい。本実施形態の三酸化モリブデン粒子の一次粒子の平均粒径は10nm以上であってもよく、20nm以上であってもよく、40nm以上であってもよい。
 実施形態の三酸化モリブデン粒子の一次粒子の平均粒径の数値範囲の一例としては、10nm以上2000nm以下であってもよく、20nm以上1000nm以下であってもよく、40nm以上500nm以下であってもよく、40nm以上200nm以下であってもよく、20nm以上150nm以下であってもよい。
 本実施形態において、三酸化モリブデン粒子の一次粒子の平均粒径とは、三酸化モリブデン粒子を、透過型電子顕微鏡(TEM)もしくは走査型電子顕微鏡(SEM)で撮影し、二次元画像上の凝集体を構成する最小単位の粒子(すなわち、一次粒子)について、その長径(観察される最も長い部分のフェレ径)と短径(その最も長い部分のフェレ径に対して、垂直な向きの短いフェレ径)を計測し、その平均値を一次粒子径としたとき、ランダムに選ばれた50個の一次粒子の一次粒子径の平均値を云う。
 透過型電子顕微鏡(TEM)で撮影したときの二次元画像における、実施形態の三酸化モリブデン粒子の一次粒子の形状は、目視観察又は画像写真で、粒子状、球状、板状(シート状)、針状、紐形状、又はリボン状であってもよく、これらの形状が組み合わさって含まれていてもよい。本実施形態において、三酸化モリブデン粉体の一次粒子の形状は、ナノオーダーの厚みを有するリボン状またはシート状であってもよい。前記三酸化モリブデン粒子50個の一次粒子の形状が、平均で、長さ(縦)×幅(横)=10~500nm×10~500nmの範囲の大きさを有することが好ましく、10~200nm×10~200nmの範囲の大きさを有することがより好ましく、10~100nm×10~100nmの範囲の大きさを有することが特に好ましい。
 本実施形態の三酸化モリブデン粒子の総質量に対する、蛍光X線(XRF)で測定されるMoOの含有割合は、全検出ピーク強度に対して、好ましくは99.5質量%以上であり、より好ましくは99.65質量%以上であり、さらに好ましくは99.77質量%以上であり、特に好ましくは99.89質量%以上である。
 本実施形態の三酸化モリブデン粒子は、三酸化モリブデンの結晶構造を含む一次粒子の集合体を含有し、前記結晶構造は、平均結晶子サイズが50nm以下のα結晶を含むことが好ましく、45nm以下のα結晶を含むことがより好ましく、40nm以下のα結晶を含むことがさらに好ましく、35nm以下のα結晶を含むことが特に好ましい。
 本実施形態の三酸化モリブデン粒子は、三酸化モリブデンの結晶構造を含む一次粒子の集合体を含有し、前記結晶構造は、平均結晶子サイズが5nm以上のα結晶を含むことが好ましく、10nm以上のα結晶を含むことがより好ましい。
 本実施形態において、三酸化モリブデンの結晶構造が含むα結晶の平均結晶子サイズは好ましくは5nm以上50nm以下であり、より好ましくは5nm以上45nm以下であり、更に好ましくは10nm以上40nm以下であり、特に好ましくは10nm以上35nm以下である。
 結晶の平均結晶子サイズが上記の好ましい範囲内であると、抗菌抗ウイルス活性がより良好となりやすい。
 前記三酸化モリブデン粒子は、表面積が大きく、抗菌抗ウイルス活性が良好に発揮されるとの観点から、三酸化モリブデンの結晶構造を含む一次粒子の集合体を含有し、前記結晶構造は、平均結晶子サイズが50nm以下のα結晶を含み、動的光散乱法により求められる前記一次粒子のメディアン径D50が2000nm以下であることが好ましい。
 本実施形態において、三酸化モリブデンの結晶構造は、更に、平均結晶子サイズが50nm以下のβ結晶を含んでもよい。三酸化モリブデンの結晶構造がα結晶とβ結晶とを含むと、抗菌抗ウイルス活性がより良好となりやすい。
 本実施形態の三酸化モリブデン粒子は、三酸化モリブデンの結晶構造を含む一次粒子の集合体を含有し、前記結晶構造は、平均結晶子サイズが50nm以下のβ結晶を含むことが好ましく、45nm以下のβ結晶を含むことがより好ましく、40nm以下のβ結晶を含むことがさらに好ましく、30nm以下のβ結晶を含むことが特に好ましい。
 本実施形態の三酸化モリブデン粒子は、三酸化モリブデンの結晶構造を含む一次粒子の集合体を含有し、前記結晶構造は、平均結晶子サイズが5nm以上のβ結晶を含むことが好ましく、10nm以上のβ結晶を含むことがより好ましい。
 本実施形態において、三酸化モリブデンの結晶構造が含むβ結晶の平均結晶子サイズは好ましくは5nm以上50nm以下であり、より好ましくは5nm以上45nm以下であり、更に好ましくは10nm以上40nm以下であり、特に好ましくは10nm以上30nm以下である。
 β結晶の平均結晶子サイズが上記の好ましい範囲内であると、抗菌抗ウイルス活性がより良好となりやすい。
 本実施形態において、三酸化モリブデンのα結晶構造は、MoOのα結晶の(021)面(2θ:27.32°付近_No.166363(無機結晶構造データベース、ICSD))のピークの存在によって、確認することができる。また、β結晶構造は、X線源としてCu-Kα線を用いた粉末X線回折(XRD)から得られるプロファイルにおいて、MoOのβ結晶の(011)面に帰属する、(2θ:23.01°付近、No.86426(無機結晶構造データベース、ICSD))のピークの存在によっても、確認することができる。
 三酸化モリブデンのβ結晶構造は、ラマン分光測定から得られるラマンスペクトルにおいて、波数773、848cm-1及び905cm-1でのピークの存在によっても、確認することができる。三酸化モリブデンのα結晶構造は、波数663、816cm-1及び991cm-1でのピークの存在によって、確認することができる。
 本実施形態の三酸化モリブデン粒子は、X線源としてCu-Kα線を用いた粉末X線回折(XRD)から得られるプロファイルにおいて、MoOのβ結晶の(011)面に帰属するピーク強度の、MoOのα結晶の(021)面に帰属するピーク強度に対する比(β(011)/α(021))が0.1以上であることが好ましく、0.2以上であることがより好ましく、0.4以上であることがさらに好ましい。
 本実施形態の三酸化モリブデン粒子において、前記比(β(011)/α(021))は、10.0以下であることが好ましい。
 MoOのβ結晶の(011)面に帰属するピーク強度、及び、MoOのα結晶の(021)面に帰属するピーク強度は、それぞれ、ピークの最大強度を読み取り、前記比(β(011)/α(021))を求める。
 本実施形態の三酸化モリブデン粒子において、前記比(β(011)/α(021))は、0.1~10.0であることが好ましく、0.2~10.0であることがより好ましく、0.4~10.0であることが特に好ましい。前記比(β(011)/α(021))が大きいほど、抗菌抗ウイルス活性に優れると考えられる。
 本実施形態の三酸化モリブデン粒子は、モリブデンのK吸収端の広域X線吸収微細構造(EXAFS)スペクトルから得られる動径分布関数において、Mo-Oに起因するピークの強度IとMo-Moに起因するピーク強度IIとの比(I/II)が、1.1より大きいことが好ましい。
 Mo-Oに起因するピークの強度I、及び、Mo-Moに起因するピーク強度IIは、それぞれ、ピークの最大強度を読み取り、前記比(I/II)を求める。前記比(I/II)は、三酸化モリブデン粒子において、MoOのβ結晶が得られていることの目安になると考えられ、前記比(I/II)が大きいほど、抗菌抗ウイルス活性に優れると考えられる。
 本実施形態の三酸化モリブデン粒子において、前記比(I/II)は、0.1以上であることが好ましく、0.5以上であることがより好ましく、1.0以上であることが特に好ましい。
 実施形態の三酸化モリブデン粒子のα結晶の含有率は特に制限されるものではないが、80%以下であってもよく、50%以下であってもよく、70%以下であってもよい。
 別の側面から、本実施形態の三酸化モリブデン粉体のα結晶の含有率は、20%以上100%以下であってもよく、50%以上100%以下であってもよく、70%以上100%以下であってもよく、80%以上100%以下であってもよく、100%であってもよい。
 MoOのα結晶とβ結晶の混合物において、MoOのα結晶の含有率は、得られたプロファイルデータから、RIR(参照強度比)法により求めることができる。MoOのα結晶のRIR値KおよびMoOのα結晶の(021)面(2θ:27.32°付近_No.166363(無機結晶構造データベース、ICSD))の積分強度I、並びに、MoOのβ結晶のRIR値KおよびMoOのβ結晶の(011)面に帰属する、(2θ:23.01°付近、No.86426(無機結晶構造データベース、ICSD))の積分強度Iを用いて、次の式(2)からMoOのα結晶の含有率(%)を求めることができる。
 MoOのα結晶の含有率(%)=(I/K)/((I/K)+(I/K))×100・・・(2)
 ここで、RIR値は、ICSDデータベースに記載されている値をそれぞれ用いることができ、解析には、統合粉末X線解析ソフトウェア(Rigaku社製、PDXL Version 2)を用いることができる。
 本実施形態の三酸化モリブデン粒子に係る上記の比表面積、平均粒径、MoOの含有割合、β(011)/α(021)、比(I/II)、及びα結晶の含有率の各値は、三酸化モリブデン粒子の一次粒子の集合体に対して求めることができる。
 比表面積の大きな三酸化モリブデン粒子を効率的に製造可能との観点から、三酸化モリブデン粒子は、後述の<三酸化モリブデン粒子の製造方法>により製造されることが好ましい。
<三酸化モリブデン粒子の製造方法>
 本実施形態の三酸化モリブデン粒子の製造方法は、前記実施形態の三酸化モリブデン粒子の製造方法であって、酸化モリブデン前駆体化合物を気化させて、三酸化モリブデン蒸気を形成し、前記三酸化モリブデン蒸気を冷却することを含む。実施形態の三酸化モリブデン粒子の製造方法によれば、実施形態の抗菌抗ウイルス剤が含有する三酸化モリブデン粒子を製造可能である。
 本実施形態の三酸化モリブデン粒子の製造方法は、酸化モリブデン前駆体化合物、及び、前記酸化モリブデン前駆体化合物以外の金属化合物を含む原料混合物を焼成し、前記酸化モリブデン前駆体化合物を気化させて、三酸化モリブデン蒸気を形成することを含み、前記原料混合物100質量%に対する、前記金属化合物の割合が、酸化物換算で70質量%以下であることが好ましい。
 本実施形態の三酸化モリブデン粒子の製造方法は、図2に示す製造装置1を用いて好適に実施することができる。
 図2は、本実施形態の三酸化モリブデン粒子の製造に用いられる装置の一例の概略図である。製造装置1は、酸化モリブデン前駆体化合物、又は、前記原料混合物を焼成し、前記酸化モリブデン前駆体化合物を気化させる焼成炉2と、前記焼成炉2に接続され、前記焼成により気化した三酸化モリブデン蒸気を粉体化する十字(クロス)型の冷却配管3と、前記冷却配管3で粉体化した三酸化モリブデン粒子を回収する回収手段である回収機4と、を有する。この際、前記焼成炉2および冷却配管3は、排気口5を介して接続されている。また、前記冷却配管3は、左端部には外気吸気口(図示せず)に開度調整ダンパー6が、上端部には観察窓7がそれぞれ配置されている。回収機4には、第1の送風手段である排風装置8が接続されている。当該排風装置8が排風することにより、回収機4および冷却配管3が吸引され、冷却配管3が有する開度調整ダンパー6から外気が冷却配管3に送風される。すなわち、排風装置8が吸引機能を奏することによって、受動的に冷却配管3に送風が生じる。なお、製造装置1は、外部冷却装置9を有していてもよく、これによって焼成炉2から生じる三酸化モリブデン蒸気の冷却条件を任意に制御することが可能となる。
 酸化モリブデン前駆体化合物としては、本発明に係る三酸化モリブデン粒子を形成するための前駆体化合物であれば特に制限されない。
 前記酸化モリブデン前駆体化合物としては、焼成することで三酸化モリブデン蒸気を形成するものであれば特に制限されないが、金属モリブデン、三酸化モリブデン、二酸化モリブデン、硫化モリブデン、モリブデン酸アンモニウム、リンモリブデン酸(HPMo1240)、ケイモリブデン酸(HSiMo1240)、モリブデン酸アルミニウム、モリブデン酸ケイ素、モリブデン酸マグネシウム(MgMo3n+1(n=1~3))、モリブデン酸ナトリウム(NaMo3n+1(n=1~3))、モリブデン酸チタニウム、モリブデン酸鉄、モリブデン酸カリウム(KMo3n+1(n=1~3))、モリブデン酸亜鉛、モリブデン酸ホウ素、モリブデン酸リチウム(LiMo3n+1(n=1~3))、モリブデン酸コバルト、モリブデン酸ニッケル、モリブデン酸マンガン、モリブデン酸クロム、モリブデン酸セシウム、モリブデン酸バリウム、モリブデン酸ストロンチウム、モリブデン酸イットリウム、モリブデン酸ジルコニウム、モリブデン酸銅等が挙げられる。これらの酸化モリブデン前駆体化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。酸化モリブデン前駆体化合物の形態は、特に限定されず、例えば、三酸化モリブデンなどの粉体状であっても良く、モリブデン酸アンモニウム水溶液のような液体であっても良い。好ましくは、ハンドリング性かつエネルギー効率の良い粉体状である。
 酸化モリブデン前駆体化合物として、市販のα結晶の三酸化モリブデンを用いることが好ましい。また、酸化モリブデン前駆体化合物として、モリブデン酸アンモニウムを用いる場合には、焼成により熱力学的に安定な三酸化モリブデンに変換されることから、気化する酸化モリブデン前駆体化合物は前記三酸化モリブデンとなる。
 これらの酸化モリブデン前駆体化合物のうち、得られる三酸化モリブデン粒子の純度、一次粒子の平均粒径、結晶構造を制御しやすい観点から、三酸化モリブデンを含むことが好ましい。
 酸化モリブデン前駆体化合物、及び、前記酸化モリブデン前駆体化合物以外の金属化合物を含む原料混合物を焼成することでも、三酸化モリブデン蒸気を形成することができる。
 前記酸化モリブデン前駆体化合物以外の金属化合物としては、特に制限されないが、アルミニウム化合物、ケイ素化合物、チタン化合物、マグネシウム化合物、ナトリウム化合物、カリウム化合物、ジルコニウム化合物、イットリウム化合物、亜鉛化合物、銅化合物、鉄化合物等が挙げられる。これらのうち、アルミニウム化合物、ケイ素化合物、チタン化合物、マグネシウム化合物を用いることが好ましい。
 酸化モリブデン前駆体化合物と前記酸化モリブデン前駆体化合物以外の金属化合物とが中間体を生成する場合があるが、この場合でも焼成により中間体が分解して、三酸化モリブデンを熱力学的に安定な形態で気化させることができる。
 前記酸化モリブデン前駆体化合物以外の金属化合物としては、これらのうち、アルミニウム化合物を用いることが、焼成炉の傷つき防止のために好ましく、三酸化モリブデン粒子の純度を向上させるために前記酸化モリブデン前駆体化合物以外の金属化合物を用いないことでもよい。
 アルミニウム化合物としては、塩化アルミニウム、硫酸アルミニウム、塩基性酢酸アルミニウム、水酸化アルミニウム、ベーマイト、擬ベーマイト、遷移酸化物アルミニウム(γ-酸化物アルミニウム、δ-酸化物アルミニウム、θ-酸化物アルミニウムなど)、α-酸化物アルミニウム、2種以上の結晶相を有する混合酸化物アルミニウム等が挙げられる。
 酸化モリブデン前駆体化合物、及び、前記酸化モリブデン前駆体化合物以外の金属化合物を含む原料混合物を焼成するに際して、前記原料混合物100質量%に対する、前記酸化モリブデン前駆体化合物の含有割合は、5質量%~100質量%であることが好ましく、10質量%~100質量%であってもよく、20質量%~100質量%であってもよい。
 焼成温度としては、使用する酸化モリブデン前駆体化合物、金属化合物、および所望とする三酸化モリブデン粒子等によっても異なるが、通常、中間体が分解できる温度とすることが好ましい。例えば、酸化モリブデン前駆体化合物としてモリブデン化合物を、金属化合物としてアルミニウム化合物を用いる場合には、中間体として、モリブデン酸アルミニウムが形成されうることから、焼成温度は500℃~1500℃であることが好ましく、600℃~1550℃であることがより好ましく、700℃~1600℃であることがさらに好ましい。
 焼成時間についても特に制限はなく、例えば、1分以上とすることができ、1分~30時間とすることができ、10分~25時間とすることができ、100分~20時間とすることができる。
 昇温速度は、使用する酸化モリブデン前駆体化合物、前記金属化合物、および所望とする三酸化モリブデン粒子の特性等によっても異なるが、製造効率の観点から、0.1~100℃/分であることが好ましく、1~50℃/分であることがより好ましく、2~10℃/分であることがさらに好ましい。
 焼成炉内の内部圧力は、特に制限されず、陽圧であっても減圧であってもよいが、酸化モリブデン前駆体化合物を好適に焼成炉から冷却配管に排出する観点から、焼成は減圧下で行われることが好ましい。具体的な減圧度としては、-5000~-10Paであることが好ましく、-2000~-20Paであることがより好ましく、-1000~-50Paであることがさらに好ましい。減圧度が-5000Pa以上であると、焼成炉の高気密性や機械的強度が過度に要求されず、製造コストが低減できることから好ましい。一方、減圧度が-10Pa以下であると、焼成炉の排出口での酸化モリブデン前駆体化合物の詰まりを防止できることから好ましい。
 なお、焼成中に焼成炉に気体を送風する場合、送風する気体の温度は、5~500℃であることが好ましく、10~100℃であることがより好ましい。
 また、気体の送風速度は、焼成炉の有効容積が100Lに対して、1~500L/minであることが好ましく、10~200L/minであることがより好ましい。
 気化した三酸化モリブデン蒸気の温度は、使用する酸化モリブデン前駆体化合物の種類によっても異なるが、200~2000℃であることが好ましく、400~1500℃であることがより好ましい。なお、気化した三酸化モリブデン蒸気の温度が2000℃以下であると、通常、冷却配管において、外気(0~100℃)の送風により容易に粉体化することができる傾向がある。
 焼成炉から排出される三酸化モリブデン蒸気の排出速度は、使用する前記酸化モリブデン前駆体化合物量、前記金属化合物量、焼成炉の温度、焼成炉内への気体の送風、焼成炉排気口の口径により制御することができる。冷却配管の冷却能力によっても異なるが、焼成炉から冷却配管への三酸化モリブデン蒸気の排出速度は、0.001~100g/minであることが好ましく、0.1~50g/minであることがより好ましい。
 また、焼成炉から排出される気体中に含まれる三酸化モリブデン蒸気の含有量は、0.01~1000mg/Lであることが好ましく、1~500mg/Lであることがより好ましい。
 次に、前記三酸化モリブデン蒸気を冷却して粉体化する。
 三酸化モリブデン蒸気の冷却は、冷却配管を低温にすることにより行われる。この際、冷却手段としては、上述のように冷却配管中への気体の送風による冷却、冷却配管が有する冷却機構による冷却、外部冷却装置による冷却等が挙げられる。
 冷却温度(冷却配管の温度)は、特に制限されないが、-100~600℃であることが好ましく、-50~400℃であることがより好ましい。
 三酸化モリブデン蒸気の冷却速度は、特に制限されないが、100~100000℃/sであることが好ましく、1000~50000℃/sであることがより好ましい。なお、三酸化モリブデン蒸気の冷却速度が早くなるほど、粒径の小さく、比表面積の大きい三酸化モリブデン粒子が得られる傾向がある。
 冷却手段が、冷却配管中への気体の送風による冷却である場合、送風する気体の温度は-100~300℃であることが好ましく、-50~100℃であることがより好ましい。
 また、気体の送風速度は、0.1~20m/minであることが好ましく、1~10m/minであることがより好ましい。気体の送風速度が0.1m/min以上であると、高い冷却速度を実現することができ、冷却配管の詰まりを防止できることから好ましい。一方、気体の送風速度が20m/min以下であると、高価な第1の送風手段(排風機等)が不要となり、製造コストを低くすることができることから好ましい。
 三酸化モリブデン蒸気を冷却して得られた粒子は、回収機に輸送されて回収される。
 本実施形態の三酸化モリブデン粒子の製造方法は、前記三酸化モリブデン蒸気を冷却して得られた粒子を、再度、100~320℃の温度で焼成してもよい。
 すなわち、本実施形態の三酸化モリブデン粒子の製造方法で得られた三酸化モリブデン粒子を、再度、100~320℃の温度で焼成してもよい。再度の焼成の焼成温度は、120~280℃であってもよく、140~240℃であってもよい。再度の焼成の焼成時間は、例えば、1min~4hとすることができ、10min~5hとすることができ、100min~6hとすることができる。ただし、350℃以上の温度で再度焼成することにより、三酸化モリブデンの結晶サイズが成長し、三酸化モリブデン粒子中のβ結晶構造は消失する。
 一般的に、比表面積の大きな粒子を得るためには、粒子のサイズを小さくすることが挙げられるが、小粒化への処理には時間とコストがかかる。
 一方、実施形態の三酸化モリブデン粒子の製造方法によれば、上記実施形態の抗菌抗ウイルス剤において例示した、比表面積の大きな三酸化モリブデン粒子を、効率的に製造可能である。
 実施形態の三酸化モリブデン粒子の製造方法によって製造される三酸化モリブデン粒子は、抗菌活性及び/又は抗ウイルス活性を有し、適用対象の外観への影響を低減可能である。
≪組成物≫
 実施形態に係る三酸化モリブデン粒子は、任意の成分とともに配合して、組成物として提供できる。実施形態の組成物は、上記の抗菌抗ウイルス剤における三酸化モリブデン粒子を含有しているので、抗菌抗ウイルス活性を有し、適用対象の外観への影響を低減可能である。
 本発明の組成物の一実施形態として、実施形態の抗菌抗ウイルス剤と、バインダーと、分散媒と、を含有するコーティング組成物を例示する。
 別の側面として、本発明の組成物の一実施形態として、三酸化モリブデン粒子と、バインダーと、分散媒と、を含有するコーティング組成物を例示する。
 本発明の組成物の一実施形態として、実施形態の抗菌抗ウイルス剤と、活性エネルギー線硬化型樹脂と、を含有するコーティング組成物を例示する。
 別の側面として、本発明の組成物の一実施形態として、三酸化モリブデン粒子と、活性エネルギー線硬化型樹脂と、を含有するコーティング組成物を例示する。
 本発明の組成物の一実施形態として、実施形態の抗菌抗ウイルス剤と、樹脂と、を含有する樹脂組成物を例示する。
 別の側面として、本発明の組成物の一実施形態として、三酸化モリブデン粒子と、樹脂と、を含有する樹脂組成物を例示する。
 以下、上記の組成物が含むことのできる各種成分について説明する。
(三酸化モリブデン粒子)
 上記の組成物が含む三酸化モリブデン粒子としては、上記実施形態の抗菌抗ウイルス剤で例示したものが挙げられる。
(バインダー)
 本発明の一実施形態のコーティング組成物はバインダーを含む。バインダーは、被膜を形成し、適用対象に対して密着力を発揮するため、実施形態に係る抗菌抗ウイルス剤を効果的に固定化し、被膜ないし表面に被膜を有する複合材として、実用可能とすることができる。バインダーは、有機系バインダー及び無機系バインダーのいずれも用いることができる。無機系バインダーには、例えば、コロイダルシリカ、アルカリシリケート、アルコキシシラン及びその加水分解物のようなシリカ系材料や、Ti、Al、及びZrより選択される金属の、酸化物、水酸化物、過酸化物、もしくは有機化合物が挙げられる。有機系バインダーには、例えば、高分子バインダー等が挙げられる。
 高分子バインダーには、天然樹脂及び合成樹脂のいずれも使用することができる。合成樹脂には、例えば、アクリル樹脂、フェノール樹脂、ポリウレタン樹脂、アクリロニトリル/スチレン共重合樹脂、アクリロニトリル/ブタジエン/スチレン共重合(ABS)樹脂、ポリエステル樹脂、エポキシ樹脂、シリコーン樹脂等を用いることもできる。
 バインダーの含有量は適宜決定されてよいが、コーティング組成物の固形分総質量に対して10~99質量%程度含有されていることが通常である。
(分散媒)
 本発明の一実施形態のコーティング組成物は分散媒を含む。分散媒としては、水性媒体、油性媒体のいずれでもよく、用いるバインダーとの相溶性・混合性の観点から適宜選択すればよい。コーティング組成物の総質量に対する固形分濃度は、通常30~80質量%程度であり、コーティング方法によって適した粘度、目的とするコーティング層の厚さなどによって、適宜設定できる。
 分散媒としては、例えば、水、1-ブタノール、イソブタノール、1-ペンタノール、2-メチル-2-ペンタノール、3-メチル-3-ペンタノール、メチルエチルケトン、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール等の単官能アルコール、各種ジオール、グリセリン等の多価アルコール、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール、プロピレングリコール、1,2ブタンジオール、3-メチル-1,3ブタンジオール、1、2ペンタンジオール、2-メチル-1,3プロパンジオール、1,2ヘキサンジオール、ジプロピレングリコール、ジエチレングリコール等のジオール、ビスフェノールA、ビスフェノールAの炭素数2又は3のアルキレンオキサイド(平均付加モル数1以上16以下)付加物である芳香族ジオール、水素添加ビスフェノールA等の脂環式ジオールポリオキシプロピレン-2,2-ビス(4-ヒドロキシフェニル)プロパン、ポリオキシエチレン-2,2-ビス(4-ヒドロキシフェニル)プロパン、シクロヘキサンジオール、エチレングリコールモノメチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノイソブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノイソブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、エチルカルビトール、γ-ブチロラクトン等が挙げられる。これらは1種で使用してもよく複数種混合して使用してもよく限定はない。
 実施形態のコーティング組成物は、無溶剤型のコーティング組成物としても提供できる。実施形態のコーティング組成物は、活性エネルギー線硬化型樹脂を含有することができる。
 活性エネルギー線の照射により硬化する性質を有する樹脂としては、例えば、側鎖に(メタ)アクリロイル基などの活性エネルギー線による反応性を有する官能基を有するアクリルアクリレート、側鎖にスチリル基などの活性エネルギー線による反応性を有する官能基を有するスチリルアクリレートなどのポリマーや、1分子中に2個以上の重合性二重結合を有する多官能(メタ)アクリレート、1分子中に1個の重合性二重結合を有する単官能(メタ)アクリレートなどが挙げられ、これらは1種または2種以上を用いることができる。
 無溶剤型のコーティング組成物として調整する際には、(メタ)アクリロイル基などの活性エネルギー線の照射による反応性を有するポリマーや、オリゴマー、モノマーを含有することができ、さらにヒドロキシアセトフェノン、アミノアセトフェノン、ベンゾイン、ベンゾインエーテル、ベンジルケタール、ベンゾフェノン、チオキサンソン、フォスフィンオキサイド、グリオキシエステル、オキシ酢酸エステルなどの光重合開始剤を用いることができる。
 オリゴマーはモノマーの繰り返し数が2~20程度の重合体であってよく、プレポリマーとも呼ばれる。前記オリゴマーは反応性の二重結合を末端に2~6個持っていることが好ましく、低粘度液状から半固体状まで幅広い状態で存在する。代表的なオリゴマーとしてはウレタンアクリレート、エポキシアクリレート、ポリエステルアクリレートなどが挙げられる。
 前記コーティング組成物には、本発明の目的を阻害しない範囲内において、上記以外に任意成分を含有してもよい。任意成分としては、着色顔料、体質顔料、艶消し材、防腐剤、消泡剤、分散剤、レベリング剤、増粘剤等が挙げられる。
 実施形態の組成物の一例として、前記組成物のコーティング層を例示できる。実施形態のコーティング層は、上記の実施形態の組成物を用いて形成できる。より具体的には、上記の実施形態の組成物の塗膜を形成し、その塗膜を硬化させることで実施形態のコーティング層を形成できる。
 実施形態の組成物を、一般的なコーティング方法によりプラスチック材料、紙、成形品、フィルム基材、包装材等の基材等にコーティングすることにより、コーティング層を得ることが可能である。具体的な塗工方法としては、グラビアロールコーティング(グラビアコーター)、フレキソロールコーティング(フレキソコーター)、リバースロールコーティング、ワイヤーバーコーティング、リップコーティング、エアナイフコーティング、カーテンフローコーティング、スプレーコーティング、浸漬コーティング、はけ塗り法等が採用できる。また、基材を組成物に含浸させることにより、基材の表面上にコーティング層を設けてもよい。
 コーティング層は、抗菌抗ウイルス活性および外観への影響低減効果を向上させる観点から、三酸化モリブデン粒子の含有量が1g/m以下であってもよく、0.01g/m以上1g/m以下であってもよい。
 コーティング層の厚さは、用途や基材の材質等により適宜調整すればよく、例えば0.1μm~100μmの範囲を例示できる。
 実施形態の樹脂組成物は、三酸化モリブデン粒子と、樹脂と、を含有することができる。樹脂としては、熱可塑性樹脂あるいは熱硬化性樹脂が好ましい。
 樹脂としては、特に制限されないが、ポリカーボネート樹脂、ポリアミド樹脂、PET樹脂、PBT樹脂、AS樹脂、PS樹脂、PMMA樹脂、ABS樹脂、アクリル樹脂、ウレタン樹脂、アクリルウレタン樹脂、ポリエステル樹脂、エポキシ樹脂などが挙げられる。
 実施形態の樹脂組成物は、上記に例示した三酸化モリブデン粒子と樹脂の他に、所望により、酸化防止剤、耐候剤、難燃剤、帯電防止剤、滑剤等の任意成分を含むことができる。
 実施形態の樹脂組成物は、上記に例示した三酸化モリブデン粒子と樹脂と、任意成分とを均一に混合すればよく、その方法としては制限されない。高濃度のいわゆるマスターバッチを調製してから、これを各種樹脂等で希釈する方法で均一化する方法であってもよい。
 実施形態の樹脂組成物は、所望の成形体に成形することによって、抗菌抗ウイルス活性を有する成形体とすることが出来る。実施形態の組成物の一例として、実施形態の樹脂組成物を成形してなる成形体を例示する。成形体の製造方法や形状についても特に限定されるものではなく、射出成型品、トランスファー成型品、圧縮成型品、注型成型品、積層成型品、溶融紡糸繊維など、樹脂種や用途等に応じて適宜選択することが出来る。
 実施形態のコーティング層及び成形体は、抗菌抗ウイルス活性を有する材として、携帯電話外装、タッチパネル等の機器外装;手すり、ドアノブ、洗面台等の家具類又は什器;エレベーターボタン等のプッシュボタン、電車内、バス内、住居内等の、室内内装;包装材等、特にそれらの表面に形成される表面材としての、幅広い用途に利用可能である。
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
<評価>
 三酸化モリブデン粒子の集合体である三酸化モリブデン粉体を試料として、以下の評価を行った。
[三酸化モリブデン粉体の粒径の測定方法]
 エタノール10ccに三酸化モリブデン粉末0.1gを添加し、氷浴中で4時間超音波処理を施した後、さらにエタノールで、動的光散乱式粒子径分布測定装置(MicrotracBEL製Nanotrac WaveII)の測定可能範囲の濃度に適宜調整し、測定サンプルを得た。この測定サンプルを用い、動的光散乱式粒子径分布測定装置(MicrotracBEL製Nanotrac WaveII)により、粒径0.0001~10μmの範囲の粒子径分布を測定し、メディアン径D50を算出した。ただし、メディアン径D50が10μmを超えるものについては、同様に溶液を調整し、レーザ回折式粒度分布測定装置(島津製作所製 SALD-7000)により、粒径0.015~500μmの範囲の粒子径分布を測定し、メディアン径D50を算出した。
 また、三酸化モリブデン粉体を構成する三酸化モリブデン粒子を、エタノールに分散させ、透過型電子顕微鏡(TEM、JEOL社製JEM1400)二次元画像上の単独粒子、または凝集体を構成する最小単位の形状を確認して、その長径(観察される最も長い部分のフェレ径)及び短径(その最も長い部分のフェレ径に対して、垂直な向きの短いフェレ径)を計測し、その平均値を一次粒子径として取得した。同様の操作をランダムに選ばれた50個の一次粒子に対して行い、その一次粒子の一次粒子径の平均値から、一次粒子の平均粒子径を算出した。特に、1ミクロンを超える粒子については走査型電子顕微鏡(SEM)でも撮影して、平均一次粒子径を参考値として取得した。
[三酸化モリブデンの純度測定:XRF分析]
 蛍光X線分析装置PrimusIV(株式会社リガク製)を用い、回収した三酸化モリブデン粉体の試料約70mgをろ紙にとり、PPフィルムをかぶせて組成分析を行った。XRF分析結果により求められるモリブデン量を、三酸化モリブデン粉体100質量%に対する三酸化モリブデン換算(質量%)により求めた。
[結晶構造解析:XRD法]
 回収した三酸化モリブデン粉体試料を0.5mm深さの測定試料用ホルダーにのせ、一定荷重で平らになるように充填し、それを広角X線回折(XRD)装置(株式会社リガク製 UltimaIV)にセットし、Cu/Kα線、40kV/40mA、スキャンスピード2度/分、走査範囲10°≦2θ≦70°で測定を行った。
 三酸化モリブデンのβ結晶構造は、この条件で測定された粉末X線回折(XRD)のプロファイルにおいて、MoOのβ結晶の(011)面に帰属する、2θ:23.01°付近、No.86426(無機結晶構造データベース、ICSD)のピークの存在によって確認した。
 また、三酸化モリブデンのα結晶構造は、MoOのα結晶の(021)面(2θ:27.32°付近_No.166363(無機結晶構造データベース、ICSD))のピークの存在によって確認した。
[三酸化モリブデン粉体の結晶子サイズの測定方法]
 リガク社製XRDプロファイル解析ソフト(PDXL Version 2)を適用し、標準物質としてLaB6(NIST SRM660c LaB6 Standard Powder)にてXRD装置定数を確定し、Scherrer法(Scherrer定数K=0.94を使用)を用いて結晶子サイズを評価した。
 MoOのα結晶とβ結晶の混合物において、MoOのα結晶の含有率は、得られたプロファイルデータから、RIR(参照強度比)法により求めた。MoOのα結晶のRIR値KおよびMoOのα結晶の(021)面(2θ:27.32°付近_No.166363(無機結晶構造データベース、ICSD))の積分強度I、並びに、MoOのβ結晶のRIR値KおよびMoOのβ結晶の(011)面に帰属する、(2θ:23.01°付近、No.86426(無機結晶構造データベース、ICSD))の積分強度Iを用いて、次の式(2)からMoOのα結晶の含有率(%)を求めた。
 MoOのα結晶の含有率(%)=(I/K)/((I/K)+(I/K))×100・・・(2)
 ここで、RIR値は、ICSDデータベースに記載されている値をそれぞれ用いることができ、解析には、統合粉末X線解析ソフトウェア(Rigaku社製、PDXL Version 2)を用いた。
[比表面積測定:BET法]
 回収した三酸化モリブデン粉体の試料について、比表面積計(マイクロトラックベル製、BELSORP-mini)にて測定した。BET法による窒素ガスの吸着量から測定された試料1g当たりの表面積を、比表面積(m/g)として算出した。
<三酸化モリブデン粒子の製造>
[実施例1]
 焼成炉としてRHKシミュレーター(株式会社ノリタケカンパニーリミテド製)を、集塵機としてはVF-5N集塵機(アマノ株式会社製)を用いてナノサイズの三酸化モリブデンの製造を行った。
 水酸化アルミニウム(日本軽金属株式会社製)1.5kgと、三酸化モリブデン(日本無機株式会社製)1kgと、を混合し、次いでサヤに仕込み、温度1100℃で10時間焼成した。焼成中、焼成炉の側面および下面から外気(送風速度:150L/min、外気温度:25℃)を導入した。三酸化モリブデンは炉内で蒸発後、集塵機付近で冷却され粒子として析出するため、集塵機により三酸化モリブデンを回収した。
 焼成後、サヤから1.0kgの青色の粉末である酸化アルミニウムと、集塵機で回収した三酸化モリブデン0.8kgを取り出した。回収した粒子は、動的光散乱法により求められるメディアン径D50が87.8nmであり、TEMにより観察された粒子形状はリボンまたは粒子状であった。蛍光X線(XRF)測定にて、三酸化モリブデン(MoO)の含有割合(純度)は99.9質量%である三酸化モリブデン粒子であることが確認できた。
 上記で得られた実施例1の三酸化モリブデン粒子に対し、X線回折法(XRD)による結晶構造解析を行った。X線回折パターンの結果を、三酸化モリブデンのα結晶の標準パターン(α-MoO)及びβ結晶の標準パターン(β-MoO)と共に、図1に示す。MoOのα結晶に帰属されるピークと、MoOのβ結晶に帰属されるピークが観察され、その他のピークは観察されなかった。
 実施例1の三酸化モリブデン粒子のMoOのβ結晶の(011)面とMoOのα結晶の(021)面のピーク強度比を求めたところ、β(011)/α(021)は4であった。さらに、リガク社製XRDプロファイル解析ソフトPDXL Version 2を適用し、標準物質としてLaB6(NIST SRM660c LaB6 Standard Powder)にてXRD装置定数を確定し、Scherrer法を用いて結晶子サイズを評価したところ、三酸化モリブデン(1)は、平均結晶子サイズが15.2nmのα結晶と、平均結晶子サイズが16.8nmのβ結晶とを含む結晶構造を有することが確認された。
 実施例1の三酸化モリブデン粒子の、BET法で測定される比表面積(SA)は、97.7m/gであった。
[比較例1]
 市販の三酸化モリブデン粒子(日本無機化学社製、Lot番号は00501-C)を比較例1の三酸化モリブデン粒子とした。比較例1の三酸化モリブデン粒子は、蛍光X線(XRF)にて測定された三酸化モリブデン(MoO)の含有割合(純度)は、99.9質量%であった。
 比較例1の三酸化モリブデン粒子に対し、XRDによる結晶構造解析を行った。結果を、図1に示す。MoOのα結晶に帰属するピークが観察され、その他のピークは観察されなかった。MoOのβ結晶の(011)面とMoOのα結晶の(021)面のピーク強度比(β(011)/α(021))は0であった。
 比較例1の三酸化モリブデン粒子の、BET法で測定される比表面積(SA)は、0.9m/gであった。
 上記の解析結果のまとめを表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
≪水分散体の調製≫
[実施例1-1]
 上記で得られた実施例1の三酸化モリブデン粒子と、水とを混合し、三酸化モリブデン粒子の水分散体を得た。水分散体の総質量に対する、三酸化モリブデン粒子の含有割合は25質量%である。
[比較例1-1]
 実施例1の三酸化モリブデン粒子の代わりに、比較例1の三酸化モリブデン粒子を用いて、三酸化モリブデン粒子の水分散体を得た。水分散体の総質量に対する、三酸化モリブデン粒子の含有割合は25質量%である。
≪アクリル樹脂の合成≫
[合成例1]
 エチルアクリレート44.9質量部、n-ブチルアクリレート29.9質量部、スチレン19.9質量部、メタクリル酸3.1質量部、N-メチロールアクリルアミド2.0質量部、アッシドホスホオキシエチルメタクリレート0.2質量部、水36.5質量部、及び非イオン性乳化剤(第一工業製薬製「ノイゲンEA-207D」)41.2質量部を混合した後、ホモジナイザー(特殊機化工業株式会社製「TKホモディスパー」)を用いて乳化して単量体乳化物を調製した。
 次いで、撹拌機、窒素導入管及び還流冷却器を取り付けたフラスコに、水38.5質量部を入れ窒素ガス雰囲気下で撹拌混合しながら50℃に昇温した後、過硫酸アンモニウム(以下、APSと略記する)0.2質量部及びメタ重亜硫酸ナトリウム(以下、SBSと略記する)0.2質量部をフラスコ内に添加して溶解した。その後、上記で調製した単量体乳化物、APS水溶液(5質量%)4.0質量部、及びSBS水溶液(5質量%)4.0質量部を3時間かけてフラスコ内に滴下した。なお、この滴下中のフラスコ内の温度は50~60℃にコントロールした。滴下終了後、60℃でさらに1時間反応してアクリル系共重合体(A-1)を得た。その後、室温まで冷却した後、アンモニア水(25質量%)0.6質量部を加えて中和し、樹脂分が52質量%となるように水を加えて均一に混合して、アクリル樹脂(A-1)の水性樹脂エマルジョンを得た。
≪コーティング組成物の調製≫
[実施例1-2]
 上記で得られた実施例1-1の三酸化モリブデン水分散体(固形分25質量%)40質量部と、合成例1のアクリル樹脂(A-1)の水性樹脂エマルジョン(樹脂分52質量%)11.5質量部とを混合し、コーティング組成物を調整した。
[比較例1-2]
 実施例1の三酸化モリブデン粒子の代わりに、比較例1の三酸化モリブデン粒子を用いてコーティング組成物を調整した。
≪コーティング層の製造及び評価≫
<透明性評価>
 コーティング層における三酸化モリブデン粒子の含有量が1g/mとなるよう、アプリケーターを用いて250μmのPETフィルムにコーティング組成物を塗布、乾燥して、コーティング組成物のコーティング層を形成し、これを試験試料とした。得られた試験試料に対し、透明性評価を行った。透明性評価は、JIS K7361に沿って、日本電色工業製ヘイズメーターにて全光線透過率を測定した。全光線透過率(Tt)が80%以上を「A」、80%未満を「B」と判定した。
<抗ウイルス性評価>
 コーティング層における三酸化モリブデン粒子の含有量が1g/mとなるよう、アプリケーターを用いてガラス板にコーティング組成物を塗布して、コーティング組成物のコーティング層を形成し、これを試験試料とした。得られた試験試料のコーティング層の表面に対し、抗ウイルス性評価を行った。
 抗ウイルス性評価は、JIS R 1756に沿って行い、バクテリオファージQβを対象に行った。光照射は、白色蛍光灯を用いて、JIS R 1750に規定されるTypeB(N169:380nm以下の波長をカット)のフィルター下、1000 lxの照度で行った。JIS R 1756では、1/500濃度普通ブイヨン培地(1/500 NB)を使って接種ファージ液を調製するが、ここでは、1/60NBを使って調製した。
 抗ウイルス活性値(R)は、接種直後の0時間での感染価からの低下率を対数値で示した(式1)。
抗ウイルス活性値:R=log(N0)- log(N)  (式1)
 N0: 接種直後の感染価
 N: 2, 4時間後の光照射下ならびに暗所下での感染価
 光照射効果(ΔR)は、光照射下と暗所下での抗ウイルス活性値の差で示した(式2)。光照射効果:ΔR= RL- RD  (式2)
 RL: 光照射下での抗ウイルス活性値
 RD: 暗所下での抗ウイルス活性値
<抗菌性評価>
 コーティング層における三酸化モリブデン粒子の含有量が1g/mとなるよう、アプリケーターを用いてガラス板にコーティング組成物を塗布して、コーティング組成物のコーティング層を形成し、これを試験試料とした。得られた試験試料のコーティング層の表面に対し、抗菌性評価を行った。
 抗菌性評価はサンアイバイオチェッカーFC(三愛石油株式会社製)を用いて行った。予め室温で1週間放置した井戸水をサンバイオチェッカーの培地面に滴下し、ガラス板ないし、試験試料のコーティング層を有するガラス板のコーティング層と接触させマスキングテープで固定した。この試料を30℃で1週間培養し、いずれかの培地にコロニーが形成されたものをB、いずれの培地にもコロニーが形成されなかったものをAとした。
 上記の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例1の三酸化モリブデン粒子、及び比較例1の三酸化モリブデン粒子は、両者ともに優れた抗ウイルス活性及び抗菌活性を有し、抗菌抗ウイルス剤として使用可能であることが示された。
 一方、実施例1の三酸化モリブデン粒子を含有するコーティング組成物を適用した試験試料は、比較例1の三酸化モリブデン粒子を含有するコーティング組成物を適用した試験試料よりも、透明性に優れていた。
 実施例1の三酸化モリブデン粒子のほうが、比較例1の三酸化モリブデン粒子に比べ、BET比表面積の値が大きい。このことから、実施例1の三酸化モリブデン粒子のほうが、より少量にて、抗ウイルス活性及び/又は抗菌活性を発揮可能であることが推察される。即ち、実施例1の三酸化モリブデン粒子は、比較例1の三酸化モリブデン粒子に比べ、より少ない含有量で透明性を維持しつつ、優れた抗ウイルス活性及び/又は抗菌活性を発揮可能な抗菌抗ウイルス剤であることが示唆された。
 各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。
 1・・・製造装置、2・・・焼成炉、3・・・冷却配管、4・・・回収機、5・・・排気口、6・・・開度調整ダンパー、7・・・観察窓、8・・・排風装置、9・・・外部冷却装置

Claims (12)

  1.  三酸化モリブデン粒子を含み、
     前記三酸化モリブデン粒子の、BET法で測定される比表面積が10m/g以上であり、抗菌活性及び/又は抗ウイルス活性を有する抗菌抗ウイルス剤。
  2.  前記三酸化モリブデン粒子の、動的光散乱法により求められるメディアン径D50が2000nm以下である、請求項1に記載の抗菌抗ウイルス剤。
  3.  前記三酸化モリブデン粒子の総質量に対する、蛍光X線(XRF)で測定されるMoOの含有割合が99.5質量%以上である、請求項1又は2に記載の抗菌抗ウイルス剤。
  4.  前記三酸化モリブデン粒子が、結晶構造を含む一次粒子の集合体を含有し、
     前記結晶構造は、平均結晶子サイズが50nm以下のα結晶を含む、請求項1~3のいずれか一項に記載の抗菌抗ウイルス剤。
  5.  前記結晶構造は、更に、平均結晶子サイズが50nm以下のβ結晶を含む、請求項4に記載の抗菌抗ウイルス剤。
  6.  X線源としてCu-Kα線を用いた粉末X線回折(XRD)から得られるプロファイルにおいて、前記三酸化モリブデン粒子の、MoOのβ結晶の(011)面に帰属するピーク強度の、MoOのα結晶の(021)面に帰属するピーク強度に対する比(β(011)/α(021))が0.1以上である、請求項1~5のいずれか一項に記載の抗菌抗ウイルス剤。
  7.  X線源としてCu-Kα線を用いた粉末X線回折(XRD)から得られるスペクトルにおいて、前記三酸化モリブデン粒子の、MoOのβ結晶の(011)面に帰属するピーク強度の、MoOのα結晶の(021)面に帰属するピーク強度に対する比(β(011)/α(021))が10.0以下である、請求項6に記載の抗菌抗ウイルス剤。
  8.  請求項1~7のいずれか一項に記載の抗菌抗ウイルス剤と、バインダーと、分散媒と、を含有するコーティング組成物。
  9.  請求項1~7のいずれか一項に記載の抗菌抗ウイルス剤と、活性エネルギー線硬化型樹脂と、を含有するコーティング組成物。
  10.  請求項8又は9に記載のコーティング組成物のコーティング層。
  11.  請求項1~7のいずれか一項に記載の抗菌抗ウイルス剤と、樹脂と、を含有する樹脂組成物。
  12.  請求項11に記載の樹脂組成物を成形してなる成形体。
PCT/JP2022/013002 2021-03-24 2022-03-22 抗菌抗ウイルス剤、コーティング組成物、樹脂組成物、コーティング層及び成形体 WO2022202762A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023509172A JPWO2022202762A1 (ja) 2021-03-24 2022-03-22
CN202280023637.5A CN117042613A (zh) 2021-03-24 2022-03-22 抗菌抗病毒剂、涂覆组合物、树脂组合物、涂覆层和成型体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-050496 2021-03-24
JP2021050496 2021-03-24

Publications (1)

Publication Number Publication Date
WO2022202762A1 true WO2022202762A1 (ja) 2022-09-29

Family

ID=83397381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013002 WO2022202762A1 (ja) 2021-03-24 2022-03-22 抗菌抗ウイルス剤、コーティング組成物、樹脂組成物、コーティング層及び成形体

Country Status (3)

Country Link
JP (1) JPWO2022202762A1 (ja)
CN (1) CN117042613A (ja)
WO (1) WO2022202762A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019182846A (ja) * 2018-03-30 2019-10-24 地方独立行政法人神奈川県立産業技術総合研究所 抗ウイルス剤
JP2020533172A (ja) * 2017-09-15 2020-11-19 ヘコソル ゲーエムベーハー 抗菌コーティング

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020533172A (ja) * 2017-09-15 2020-11-19 ヘコソル ゲーエムベーハー 抗菌コーティング
JP2019182846A (ja) * 2018-03-30 2019-10-24 地方独立行政法人神奈川県立産業技術総合研究所 抗ウイルス剤

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CORDT ZOLLFRANK; KAI GUTBROD; PETER WECHSLER; JOSEF PETER GUGGENBICHLER;: "Antimicrobial activity of transition metal acid MoOprevents microbial growth on material surfaces", MATERIALS SCIENCE AND ENGINEERING C, ELSEVIER SCIENCE S.A., CH, vol. 32, no. 1, 22 September 2011 (2011-09-22), CH , pages 47 - 54, XP028112650, ISSN: 0928-4931, DOI: 10.1016/j.msec.2011.09.010 *
MESTL G., HERZOG B., SCHLOEGL R., KNOEZINGER H.: "Mechanically Activated MoO3. 1. Particle Size, Crystallinity, and Morphology", LANGMUIR, AMERICAN CHEMICAL SOCIETY, US, vol. 11, no. 8, 1 August 1995 (1995-08-01), US , pages 3027 - 3034, XP009539897, ISSN: 0743-7463, DOI: 10.1021/la00008a030 *
SHAFAEI S., DöRRSTEIN J., GUGGENBICHLER J.P., ZOLLFRANK C.: "Cellulose acetate-based composites with antimicrobial properties from embedded molybdenum trioxide particles", LETTERS IN APPLIED MICROBIOLOGY, WILEY-BLACKWELL PUBLISHING LTD., GB, vol. 64, no. 1, 1 January 2017 (2017-01-01), GB , pages 43 - 50, XP055802778, ISSN: 0266-8254, DOI: 10.1111/lam.12670 *
SUNADA, KAYANO; HATAYAMA, YASUYOSHI; NAGAI, TAKESHI; ISHIGURO, HITOSHI: "Testing pertaining to anti-virus activity of metal oxide under visible light", KISTEC ANNUAL RESEARCH REPORT, KANAGAWA INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY (KISTEC), JP, vol. 2019, 31 July 2019 (2019-07-31), JP, pages 153 - 155, XP009540171 *

Also Published As

Publication number Publication date
CN117042613A (zh) 2023-11-10
JPWO2022202762A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
JP6040021B2 (ja) 抗菌抗ウイルス性組成物及びその製造方法
JP5646855B2 (ja) シリコーン樹脂組成物
JP5050470B2 (ja) 日射遮蔽分散体、日射遮蔽体、および、それらの製造方法
JP2010209337A (ja) 均一分散性光触媒コーティング液及びその製造方法並びにこれを用いて得られる光触媒活性複合材
JP2008274047A (ja) 熱線遮蔽塩化ビニルフィルム製造用組成物およびその製造方法、並びに、熱線遮蔽塩化ビニルフィルム
TW200404045A (en) Titanium dioxide pigment and method for producing the same, and resin composition using the same
US6479141B1 (en) Photocatalytic coating composition and product having photocatalytic thin film
JP2011065000A (ja) プラズマディスプレイパネル用近赤外線吸収フィルターとその製造方法およびプラズマディスプレイパネル
JPWO2017221833A1 (ja) 組成物、及び化合物
JP2020152831A (ja) 抗菌坑カビ用塗料、抗菌坑カビ用部材
TW201620966A (zh) 含有鈦酸鹽奈米粒子之可溶液處理的hri(高折射率)光學膜
WO2022202762A1 (ja) 抗菌抗ウイルス剤、コーティング組成物、樹脂組成物、コーティング層及び成形体
KR20210102253A (ko) 유기 무기 하이브리드 적외선 흡수 입자 제조 방법, 유기 무기 하이브리드 적외선 흡수 입자
JPWO2004089829A1 (ja) 複合化酸化インジウム粒子およびその製造方法ならびに導電性塗料、導電性塗膜および導電性シート
JP2011063484A (ja) 近赤外線遮蔽材料微粒子とその製造方法および近赤外線遮蔽材料微粒子分散体と近赤外線遮蔽体
JP6413969B2 (ja) 日射遮蔽体形成用分散液および当該分散液を用いた日射遮蔽体
JP5327848B2 (ja) 紫外線遮蔽用分散体および紫外線遮蔽用コーティング組成物
KR20090040066A (ko) 스코리아를 함유하는 광활성 조성물 및 이의 제조방법
JP4415953B2 (ja) 選択透過膜用塗布液、選択透過膜および選択透過多層膜
JP6949304B2 (ja) 熱線吸収成分含有マスターバッチおよびその製造方法、熱線吸収透明樹脂成形体、並びに熱線吸収透明積層体
WO2011059105A1 (ja) 遮熱剤組成物
JP2024039723A (ja) 抗菌抗ウイルス剤、コーティング組成物、樹脂組成物、コーティング層及び成形体
JP2015017012A (ja) 油性分散液並びに薄膜及びその製造方法
WO2022138568A1 (ja) 熱線遮蔽樹脂シート材
JP6743226B1 (ja) 近赤外線吸収性材料、近赤外線吸収性層及び近赤外線吸収性部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775546

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509172

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280023637.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775546

Country of ref document: EP

Kind code of ref document: A1