WO2022202618A1 - 六方晶窒化ホウ素粉末、及び樹脂組成物 - Google Patents

六方晶窒化ホウ素粉末、及び樹脂組成物 Download PDF

Info

Publication number
WO2022202618A1
WO2022202618A1 PCT/JP2022/012331 JP2022012331W WO2022202618A1 WO 2022202618 A1 WO2022202618 A1 WO 2022202618A1 JP 2022012331 W JP2022012331 W JP 2022012331W WO 2022202618 A1 WO2022202618 A1 WO 2022202618A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
hexagonal boron
nitride powder
less
powder
Prior art date
Application number
PCT/JP2022/012331
Other languages
English (en)
French (fr)
Inventor
豪 竹田
重臣 緒方
玲偉 田中
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to KR1020237029819A priority Critical patent/KR20230135679A/ko
Priority to CN202280019117.7A priority patent/CN116963994A/zh
Priority to JP2023501448A priority patent/JP7302115B2/ja
Publication of WO2022202618A1 publication Critical patent/WO2022202618A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron

Definitions

  • the present disclosure relates to hexagonal boron nitride powders and resin compositions.
  • heat dissipation members having high thermal conductivity are used together with such electronic components.
  • boron nitride particles are widely used as fillers in heat dissipating members because of their high thermal conductivity and high insulating properties.
  • Patent Document 1 when used as a filler for an insulating heat dissipating material such as a resin, hexagonal boron nitride powder that can increase the thermal conductivity and withstand voltage (dielectric breakdown voltage) of the resin, etc. A manufacturing method has been proposed.
  • the heat dissipating member is also required to have characteristics capable of coping with the above-described tendency. Specifically, a heat radiating member having a small dielectric loss tangent is desirable.
  • the dielectric loss tangent of the heat dissipation member As a method of reducing the dielectric loss tangent of the heat dissipation member, for example, it is possible to use a resin with a small dielectric loss tangent.
  • liquid crystalline polymers and fluororesins known as low dielectric loss tangent resins have low dielectric loss tangents, they lack workability, thermal properties, mechanical properties, and the like for the intended use. Therefore, fillers are generally used from the viewpoint of improving thermal characteristics. However, depending on the blending of the filler, the low dielectric loss tangent characteristic of the resin may not be sufficiently exhibited.
  • An object of the present disclosure is to provide a hexagonal boron nitride powder and a resin composition capable of producing a heat dissipation member with a low dielectric loss tangent.
  • One aspect of the present disclosure includes primary particles of hexagonal boron nitride, having a specific surface area of 2.5 m 2 /g or less, a graphitization index of 2.0 or less, and a purity of 99% by mass or more.
  • a hexagonal boron nitride powder is provided.
  • the hexagonal boron nitride powder has a small specific surface area, suppresses adsorption of water and impurities that cause an increase in dielectric loss tangent, and further has a graphitization index and purity within a predetermined range. Generation of a component that increases the dielectric loss tangent from boron itself is suppressed. As a result, it is suitable as a filling material for producing a heat radiating member with a low dielectric loss tangent.
  • the circularity of the primary particles may be 0.8 or more.
  • the hexagonal boron nitride powder may have a water content per unit mass of less than 300 ppm when heated to 500°C.
  • the hexagonal boron nitride powder may have a water content per unit mass of less than 250 ppm when heated to 200°C.
  • the hexagonal boron nitride powder may have a water content per unit mass of less than 100 ppm when heated to 201 to 500°C.
  • the average particle size of the primary particles may be 7.0 ⁇ m or more.
  • One aspect of the present disclosure provides a resin composition containing a resin and the hexagonal boron nitride powder described above.
  • the resin composition contains the hexagonal boron nitride powder described above, it can have a low dielectric loss tangent.
  • each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. .
  • hexagonal boron nitride powder comprises primary particles of hexagonal boron nitride, has a specific surface area of 2.5 m 2 /g or less, a graphitization index of 2.0 or less, and a purity of 99% by mass. That's it.
  • the hexagonal boron nitride powder may be an aggregate of primary particles of hexagonal boron nitride.
  • the upper limit of the specific surface area of the hexagonal boron nitride powder is 2.5 m 2 /g or less, for example, 2.2 m 2 /g or less, 2.0 m 2 /g or less, 1.8 m 2 /g or less, or It may be 1.6 m 2 /g or less.
  • the upper limit of the specific surface area is within the above range, the adsorption of moisture and the like can be suppressed, and the dielectric loss tangent can be further reduced.
  • the lower limit of the specific surface area of the hexagonal boron nitride powder is, for example, 0.5 m 2 /g or more, 0.8 m 2 /g or more, 1.0 m 2 /g or more, 1.2 m 2 /g or more, or 1. It may be 4 m 2 /g or more.
  • the hexagonal boron nitride powder can have a lower dielectric loss tangent.
  • the specific surface area of the hexagonal boron nitride powder can be adjusted within the above range, and can be, for example, 0.5-2.5 m 2 /g, or 1.0-2.2 m 2 /g.
  • the specific surface area as used herein means a value measured using a specific surface area measuring device in accordance with the description of JIS Z 8830:2013 "Method for measuring specific surface area of powder (solid) by gas adsorption", nitrogen It is a value calculated by applying the BET one-point method using gas. More specifically, it is measured by the method described in the Examples of this specification.
  • Hexagonal boron nitride preferably has high crystallinity.
  • a graphitization index (G.I.) is used as an index of crystallinity. That is, the boron nitride powder containing hexagonal boron nitride with a low graphitization index has fewer impurities and can suppress an increase in dielectric loss tangent.
  • the upper limit of the graphitization index of the hexagonal boron nitride powder is 2.0 or less, and may be, for example, 1.9 or less, 1.5 or less, or 1.3 or less.
  • the lower limit of the graphitization index of the hexagonal boron nitride powder is not particularly limited, but may be, for example, 0.8 or more, or 1.0 or more.
  • the graphitization index of the hexagonal boron nitride powder can be adjusted within the range described above, and can be, for example, 1.0 to 2.0.
  • the graphitization index herein is an index also known as an index value indicating the degree of crystallinity of graphite (for example, J. Thomas, et. al, J. Am. Chem. Soc. 84, 4619 (1962) etc.).
  • the graphitization index is calculated based on the spectrum of primary particles of hexagonal boron nitride measured by powder X-ray diffraction. First, in the X-ray diffraction spectrum, the integrated intensity of each diffraction peak corresponding to the (100) plane, (101) plane and (102) plane of the hexagonal boron nitride primary particles (that is, each diffraction peak) and its baseline and S100, S101, and S102, respectively. Using the calculated area value, the value of [(S100+S101)/S102] is calculated to determine the graphitization index. More specifically, it is determined by the method described in the Examples of this specification.
  • the purity of the hexagonal boron nitride powder may be higher, for example, 99.5% by mass or more, or 99.8% by mass or more.
  • the purity of boron nitride powder herein means a value calculated by titration. More specifically, titration is performed and determined by the method described in the Examples of the present specification.
  • the primary particles of hexagonal boron nitride improve the fillability in a resin or the like when preparing a heat dissipating member or the like, and from the viewpoint of isotropic properties such as thermal conductivity and dielectric constant of the heat dissipating member, preferably: It may be spherical or nearly spherical.
  • the circularity of the primary particles may be, for example, 0.80 or greater, 0.85 or greater, 0.88 or greater, or 0.90 or greater.
  • the lower limit of the average particle size of the primary particles may be, for example, 7.0 ⁇ m or more, 7.5 ⁇ m or more, 8.0 ⁇ m or more, 8.5 ⁇ m or more, or 9.0 ⁇ m or more. .
  • the upper limit of the average particle size of the primary particles may be, for example, 40 ⁇ m or less, 30 ⁇ m or less, 20 ⁇ m or less, 15 ⁇ m or less, or 10 ⁇ m or less.
  • the moldability of the resin composition can be improved.
  • the average particle size of primary particles in the hexagonal boron nitride powder may be adjusted within the range described above, and may be, for example, 7.0 to 40 ⁇ m, or 7.5 to 15 ⁇ m.
  • the average particle size of the primary particles may be selected according to the thickness of the sheet.
  • the average particle size in this specification is a value obtained by measuring a sample of hexagonal boron nitride powder that has been subjected to homogenizer treatment, and is the average particle size that does not contain agglomerated particles.
  • the average particle size in this specification is also the particle size at which the cumulative value of the cumulative particle size distribution is 50% (median size, d50).
  • the average particle size in this specification is measured using a laser diffraction scattering method particle size distribution analyzer in accordance with ISO 13320:2009. Specifically, it is measured by the method described in the Examples of this specification.
  • a laser diffraction scattering particle size distribution analyzer for example, "LS-13 320" (apparatus name) manufactured by Beckman Coulter can be used.
  • Hexagonal boron nitride powder can adsorb moisture on its surface. When a periodic electric field is applied to the hexagonal boron nitride powder that adsorbs moisture, it can promote the consumption of a part of the electrical energy as thermal energy, so the dielectric loss tangent tends to increase. .
  • the hexagonal boron nitride powder may preferably have a low water content from the viewpoint of further reducing the dielectric loss tangent.
  • the hexagonal boron nitride powder may have a water content per unit mass when heated to 500° C., for example, less than 300 ppm, 280 ppm or less, 260 ppm or less, 240 ppm or less, or 220 ppm or less.
  • the moisture on the surface of the hexagonal boron nitride powder can be desorbed by heating to 200°C.
  • the hexagonal boron nitride powder may have a water content per unit mass of less than 250 ppm, less than 200 ppm, 180 ppm or less, 160 ppm or less, or 150 ppm or less when heated to 200°C.
  • hydroxyl groups When hydroxyl groups (OH groups) are present on the surface of the hexagonal boron nitride powder, they can partially desorb as moisture at high temperatures exceeding 200°C, for example. In other words, moisture may be generated afterward during use at high temperatures. Therefore, it is preferable that the hexagonal boron nitride powder also suppresses moisture generation at high temperatures.
  • the hexagonal boron nitride powder may have a water content per unit mass of less than 100 ppm, less than 90 ppm, less than 80 ppm, or less than 70 ppm when heated to 201 to 500° C., for example. When the amount of water per unit mass when heated to 201 to 500 ° C. is within the above range, the hexagonal boron nitride powder has a relatively low water adsorption performance, and water adsorption during storage is further suppressed. can be done.
  • the water content in this specification means a value measured based on the Karl Fischer method in accordance with the description of JIS K 0068:2001 "Method for measuring water content of chemical products". Specifically, first, a predetermined amount of the measurement sample is taken on a pre-fired alumina board, which is placed in a furnace whose temperature is adjusted to 25 ° C., and nitrogen gas is used as a carrier gas to measure the temperature ( The moisture content can be determined by measuring the moisture generated when heated to 200° C. or 500° C. by coulometric titration, and converting the obtained results into per unit mass (1 g). As the measuring device, for example, "trace moisture measuring device CA-06" (product name) manufactured by Mitsubishi Chemical can be used.
  • titrant solution for example, "Aquamicron AX” (trade name) manufactured by Mitsubishi Chemical can be used as the catholyte, and "Aquamicron CXU” (trade name) manufactured by Mitsubishi Chemical can be used as the anolyte.
  • the hexagonal boron nitride powder as described above has a low dielectric loss tangent.
  • the dielectric loss tangent of the hexagonal boron nitride powder can be, for example, less than 0.0020, 0.0015 or less, 0.0012 or less, or 0.0010 or less.
  • the dielectric loss tangent in this specification means a value at 1 GHz measured in accordance with the method described in JIS C 2138:2007 "Electrical insulating materials - Relative permittivity and dielectric loss tangent measurement method". Specifically, hexagonal boron nitride powder is prepared in a holder to form a measurement cell. As a measurement device for the cavity resonator perturbation method, for example, Keysight's "Vector Network Analyzer E5063A" (product name) can be used.
  • the hexagonal boron nitride powder described above can be produced, for example, by the following method.
  • One embodiment of the method for producing hexagonal boron nitride powder is a production method applying a so-called carbon reduction method, in which a mixed powder containing a boron-containing compound containing boric acid and a carbon-containing compound is subjected to a pressurized nitrogen atmosphere. to obtain a fired product containing boron nitride (hereinafter also referred to as a low-temperature firing step); hBN), and obtaining a powder containing agglomerated particles formed by agglomeration of some of the primary particles (hereinafter also referred to as a sintering step).
  • a so-called carbon reduction method in which a mixed powder containing a boron-containing compound containing boric acid and a carbon-containing compound is subjected to a pressurized nitrogen atmosphere. to obtain a fired product containing boron nitride (herein
  • a boron-containing compound is a compound having boron as a constituent element.
  • a raw material with high purity and relatively low cost can be used.
  • Examples of such boron-containing compounds include boric acid as well as boron oxide.
  • the boron-containing compound includes boric acid, which is dehydrated by heating to form boron oxide, which forms a liquid phase during the heat treatment of the raw material powder and can also serve as an aid for promoting grain growth.
  • a carbon-containing compound is a compound that has a carbon atom as a constituent element.
  • the carbon-containing compound a raw material with high purity and relatively low cost can be used. Examples of such carbon-containing compounds include carbon black and acetylene black.
  • the boron-containing compound may be blended in an excess amount relative to the carbon-containing compound.
  • the mixed powder may contain other compounds in addition to the carbon-containing compound and the boron-containing compound.
  • Other compounds include, for example, boron nitride as a nucleating agent.
  • boron nitride as a nucleating agent in the mixed powder, the average particle size of the synthesized hexagonal boron nitride powder can be more easily controlled.
  • the mixed powder preferably contains a nucleating agent.
  • the mixed powder contains a nucleating agent, it becomes easier to prepare a hexagonal boron nitride powder with a small specific surface area (for example, a hexagonal boron nitride powder with a specific surface area of 2.5 m 2 /g or less).
  • the low-temperature firing process is performed under pressure.
  • the pressure in the low temperature firing step is, for example, 0.25 MPa or more and less than 5.0 MPa, 0.25 to 3.0 MPa, 0.25 to 2.0 MPa, 0.25 to 1.0 MPa, 0.25 MPa or more and less than 1.0 MPa. , 0.30-2.0 MPa, or 0.50-2.0 MPa.
  • volatilization of raw materials such as boron-containing compounds can be further suppressed, and the formation of boron carbide, which is a by-product, can be suppressed.
  • the upper limit of the pressure in the low-temperature firing step within the above range, the growth of the primary particles of boron nitride can be further promoted.
  • the heating temperature in the low temperature firing step may be, for example, 1650°C or higher and lower than 1800°C, 1650 to 1750°C, or 1650 to 1700°C.
  • the reaction can be promoted and the yield of boron nitride obtained can be improved.
  • the upper limit of the heating temperature in the low-temperature firing step within the above range, the generation of by-products can be sufficiently suppressed.
  • the heating time in the low temperature firing step may be, for example, 1 to 10 hours, 1 to 5 hours, or 2 to 4 hours.
  • the reaction system can be made more homogeneous, and thus the boron nitride to be formed can be made more homogeneous.
  • the term "heating time” refers to the time (holding time) during which the ambient temperature of the object to be heated reaches a predetermined temperature and is maintained at that temperature.
  • the fired product obtained in the low-temperature firing step is heat-treated at a temperature higher than the low-temperature firing step to generate primary particles of hexagonal boron nitride (hBN), and the primary particles are aggregated. It is a step of obtaining a powder containing agglomerated particles.
  • hBN hexagonal boron nitride
  • the heating temperature in the firing process is higher than that in the low-temperature firing process and is less than 2050°C.
  • the heating temperature in the firing step may be 2000° C. or lower.
  • the heating time in the firing step may be, for example, 3-15 hours, 5-10 hours, or 6-9 hours.
  • the pressure of the firing step is, for example, 0.25 MPa or more and less than 5.0 MPa, 0.25 to 3.0 MPa, 0.25 to 2.0 MPa, 0.25 to 1.0 MPa, 0.25 MPa or more to less than 1.0 MPa, It may be 0.30-2.0 MPa, or 0.50-2.0 MPa.
  • a hexagonal boron nitride powder can be obtained through the above steps.
  • a pulverization step may be performed after the low-temperature firing step or the firing step.
  • a general pulverizer or pulverizer can be used.
  • the hexagonal boron nitride powder according to the present disclosure has a low dielectric loss tangent, it can be used for applications where high-frequency voltage is applied.
  • the hexagonal boron nitride powder according to the present disclosure is suitable, for example, as a filler for resin compositions used in electronic components that constitute high-frequency circuits.
  • One embodiment of the resin composition contains a resin and the hexagonal boron nitride powder described above.
  • the lower limit of the content of the hexagonal boron nitride powder may be, for example, 30% by volume or more, 40% by volume or more, or 50% by volume or more based on the total volume of the resin composition.
  • the upper limit of the content of the hexagonal boron nitride powder may be, for example, 85% by volume or less, 80% by volume or less, or 70% by volume or less based on the total volume of the resin composition.
  • the upper limit of the content of the hexagonal boron nitride powder is within the above range, it is possible to further suppress the generation of voids inside during molding of the resin composition, and to prevent deterioration of insulation and mechanical strength. can be suppressed.
  • Resins include, for example, liquid crystal polymers, fluororesins, silicone resins, silicone rubbers, acrylic resins, polyolefins (polyethylene, etc.), epoxy resins, phenolic resins, melamine resins, urea resins, unsaturated polyesters, polyimides, polyamideimides, and polyetherimides.
  • polybutylene terephthalate polyethylene terephthalate, polyphenylene ether, polyphenylene sulfide, wholly aromatic polyester, polysulfone, polyethersulfone, polycarbonate, maleimide modified resin, ABS (acrylonitrile-butadiene-styrene) resin, AAS (acrylonitrile-acrylic rubber/styrene) resins, and AES (acrylonitrile-ethylene-propylene-diene rubber-styrene) resins.
  • ABS acrylonitrile-butadiene-styrene
  • AAS acrylonitrile-acrylic rubber/styrene
  • AES acrylonitrile-ethylene-propylene-diene rubber-styrene
  • the resin content may be, for example, 15% by volume or more, 20% by volume or more, or 30% by volume or more based on the total volume of the resin composition.
  • the resin content may be, for example, 70% by volume or less, 60% by volume or less, or 50% by volume or less based on the total volume of the resin composition.
  • the resin composition may further contain a curing agent that cures the resin.
  • the curing agent may be appropriately selected according to the type of resin.
  • curing agents include, for example, phenol novolak compounds, acid anhydrides, amino compounds, imidazole compounds, and the like.
  • the content of the curing agent may be, for example, 0.5 parts by mass or more or 1.0 parts by mass or more, and may be 15 parts by mass or less or 10 parts by mass or less with respect to 100 parts by mass of the resin.
  • Example 1 [Preparation of hexagonal boron nitride powder] 100 parts by mass of boric acid (manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 22 parts by mass of acetylene black (manufactured by Denka Co., Ltd., grade name: Li400) are mixed using a Henschel mixer to obtain a mixed powder (raw material powder). Obtained. The obtained mixed powder was placed in a drier at 250° C. and held for 3 hours to dehydrate boric acid. The mixed powder after dehydration was placed in a mold with a diameter of 100 ⁇ of a press molding machine, and molded under the conditions of heating temperature: 200°C and press pressure: 30 MPa. The raw material powder pellets thus obtained were subjected to subsequent heat treatment.
  • boric acid manufactured by Kojundo Chemical Laboratory Co., Ltd.
  • acetylene black manufactured by Denka Co., Ltd., grade name: Li400
  • the pellets were placed in a carbon atmosphere furnace, heated to 1750° C. at a rate of 5° C./min in a nitrogen atmosphere pressurized to 0.85 MPa, and held at 1750° C. for 3 hours.
  • the pellets were heat-treated to obtain a first heat-treated product (first step).
  • the temperature in the carbon atmosphere furnace is further increased to 1800°C at a temperature increase rate of 2°C/min, and the first heat-treated product is heat-treated by holding at 1800°C for 3 hours, followed by the second heat-treatment. obtained (second step).
  • the temperature inside the carbon atmosphere furnace was further increased to 2050° C. at a rate of temperature increase of 2° C./min, and held at 2050° C.
  • the specific surface area of the hexagonal boron nitride powder is based on the description of JIS Z 8830:2013 "Method for measuring the specific surface area of powder (solid) by gas adsorption", and was calculated by applying the BET single point method using nitrogen gas. .
  • a specific surface area measuring device a specific surface area measuring device manufactured by Yuasa Ionics Co., Ltd. (device name: Kantersorb) was used. The measurement was performed after the boron nitride powder was dried and degassed at 300° C. for 15 minutes.
  • the graphitization index of the boron nitride powder was calculated from the measurement results by the powder X-ray diffraction method.
  • the integrated intensity of each diffraction peak corresponding to the (100) plane, (101) plane and (102) plane of the hexagonal boron nitride primary particles (that is, each diffraction peak) and its base The area values (in arbitrary units) surrounded by the lines were calculated and designated as S100, S101, and S102, respectively.
  • the graphitization index was determined based on the following formula (1).
  • GI (S100+S101)/S102 (1)
  • Hexagonal boron nitride powder was alkali-decomposed with sodium hydroxide, ammonia was distilled from the decomposed solution by steam distillation, and collected in an aqueous boric acid solution. This collected liquid was subjected to titration with a normal sulfuric acid solution. The content of nitrogen atoms (N) in the boron nitride powder was calculated from the titration results. Based on the obtained nitrogen atom content, the content of hexagonal boron nitride (hBN) in the boron nitride powder was determined based on the formula (2), and the purity of the hexagonal boron nitride powder was calculated.
  • N nitrogen atoms
  • hBN hexagonal boron nitride
  • the formula weight of hexagonal boron nitride was 24.818 g/mol, and the atomic weight of nitrogen atoms was 14.006 g/mol.
  • Hexagonal boron nitride (hBN) content [mass%] in the sample nitrogen atom (N) content [mass%] x 1.772 (2)
  • the average particle size of the primary particles in the hexagonal boron nitride powder is determined according to ISO 13320:2009 using a laser diffraction scattering method particle size distribution analyzer (manufactured by Beckman Coulter, trade name "LS-13 320”). It was measured.
  • an ultrasonic homogenizer manufactured by Nippon Seiki Seisakusho, trade name "US-300E”
  • AMPLITUDE amplitude
  • a dispersion liquid of hexagonal boron nitride powder was prepared, and this was used as a measurement target.
  • water was used as a solvent for dispersing the hexagonal boron nitride powder, and hexametaphosphoric acid was used as a dispersant.
  • a numerical value of 1.33 was used as the refractive index of water, and a numerical value of 1.80 was used as the refractive index of the boron nitride powder.
  • the dielectric loss tangent was measured when the obtained hexagonal boron nitride powder was used as a filler. Specifically, using a cavity resonator method measurement device (measurement system perturbation method cavity resonator type DPS18 manufactured by Keycom), the dielectric of hexagonal boron nitride powder at 1 GHz was measured at a temperature of 25 ° C. Asked for tangent. Table 1 shows the results.
  • Example 2 A hexagonal boron nitride powder was prepared in the same manner as in Example 1, except that the raw material acetylene black was changed to acetylene black (manufactured by Denka Co., Ltd., grade name: FX35).
  • Example 3 Hexagonal boron nitride powder was prepared in the same manner as in Example 1, except that 2% by mass of boron nitride powder (Denka boron nitride powder, grade name: SGP) was added to the raw material. did.
  • boron nitride powder Denka boron nitride powder, grade name: SGP
  • Example 4 A hexagonal boron nitride powder was prepared in the same manner as in Example 1, except that the firing temperature in the third step was changed to 2070°C.
  • Example 5 A hexagonal boron nitride powder was prepared in the same manner as in Example 1, except that the firing temperature in the third step was changed to 1970°C.
  • Example 6 Hexagonal boron nitride in the same manner as in Example 1, except that the amount of acetylene black (manufactured by Denka Co., Ltd., grade name: Li400) was changed to 20 parts by mass, and the vacuum drying temperature was changed to 300 ° C. A powder was prepared.
  • acetylene black manufactured by Denka Co., Ltd., grade name: Li400
  • Example 7 A hexagonal boron nitride powder was prepared in the same manner as in Example 1, except that the amount of acetylene black (manufactured by Denka Co., Ltd., grade name: Li400) was changed to 27 parts by mass.
  • acetylene black manufactured by Denka Co., Ltd., grade name: Li400
  • Example 8 Hexagonal boron nitride powder was prepared in the same manner as in Example 1, except that 1% by mass of boron nitride powder (Denka boron nitride powder, grade name: MGP) was added to the raw material. prepared.
  • boron nitride powder Denka boron nitride powder, grade name: MGP
  • the water content when heated up to 500° C. was measured in the same manner as in Example 1.
  • the hexagonal boron nitride powders obtained in Examples 1 to 8 were evaluated as fillers in the same manner as in Example 1. Table 1 shows the results.
  • Comparative example 1 100 parts by mass of boric acid powder (purity of 99.8% by mass or more, manufactured by Kanto Chemical Co., Ltd.), 9 parts by mass of melamine powder (purity of 99.0% by mass or more, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), sodium carbonate as an auxiliary agent 13 parts by mass (purity of 99.5% by mass or more) was added and mixed for 10 minutes using an alumina mortar to obtain a mixed powder.
  • the mixed powder after drying was placed in a container made of hexagonal boron nitride and placed in an electric furnace. The temperature was raised from room temperature to 1000° C. at a rate of 10° C./min while nitrogen gas was circulated in the electric furnace. After holding at 1000° C. for 2 hours, the heating was stopped and the mixture was allowed to cool naturally. The electric furnace was opened when the temperature became 100° C. or lower. Thus, a calcined product containing low-crystalline hexagonal boron nitride was obtained.
  • Comparative Example 3 Comparative Example 1 except that the amount of boric acid was changed to 150 parts by mass, 5 parts by mass of calcium carbonate (purity of 99.5% by mass or more) was added to the raw material, and the firing temperature was changed to 1900 ° C. A hexagonal boron nitride powder was prepared in the same manner.
  • Comparative Example 4 A hexagonal boron nitride powder was prepared in the same manner as in Comparative Example 1, except that the firing conditions in the third step were changed to 1750° C. for 20 hours and the vacuum drying treatment was not performed.
  • the water content when heated up to 500° C. was measured in the same manner as in Example 1.
  • the hexagonal boron nitride powders obtained in Comparative Examples 1 to 4 were evaluated as fillers in the same manner as in Example 1. Table 2 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本開示の一側面は、六方晶窒化ホウ素の一次粒子を含み、比表面積が2.5m/g以下であり、黒鉛化指数が2.0以下であり、純度が99質量%以上である、六方晶窒化ホウ素粉末を提供する。

Description

六方晶窒化ホウ素粉末、及び樹脂組成物
 本開示は、六方晶窒化ホウ素粉末、及び樹脂組成物に関する。
 トランジスタ、サイリスタ、及びCPU等の電子部品においては、使用時に発生する熱を効率良く放熱することが重要な問題となっている。そのため、このような電子部品と共に、高い熱伝導性を有する放熱部材が用いられる。一方、窒化ホウ素粒子は、高熱伝導性及び高絶縁性を有しているため、放熱部材における充填材として幅広く利用されている。
 例えば、特許文献1では、樹脂等の絶縁性放熱材の充填材として用いた場合に、上記樹脂等の熱伝導率及び耐電圧(絶縁破壊電圧)を高めることができる六方晶窒化ホウ素粉末及びその製造方法が提案されている。
特開2019-116401号公報
 近年、電子部品を搭載したデバイスでは信号の高速伝送化や大容量化が進んでいる。このため、放熱部材にも上述の傾向に対応できる特性が求められている。具体的には誘電正接の小さい放熱部材が望ましい。
 放熱部材の誘電正接を低下させる方法としては、例えば、使用する樹脂として誘電正接の小さな樹脂を用いることが考えられる。しかし、低誘電正接の樹脂として知られる液晶性ポリマーやフッ素樹脂等は、低誘電正接であるものの、加工性、熱的特性、及び機械特性等が当該用途においては不足している。そこで熱的特性の向上の観点から、一般には充填材が使用されている。しかし、充填材の配合によっては樹脂の低誘電正接の特性が十分に発揮されない場合が生じ得る。
 本開示は、低誘電正接の放熱部材を製造可能な六方晶窒化ホウ素粉末、及び樹脂組成物を提供することを目的とする。
 本開示の一側面は、六方晶窒化ホウ素の一次粒子を含み、比表面積が2.5m/g以下であり、黒鉛化指数が2.0以下であり、純度が99質量%以上である、六方晶窒化ホウ素粉末を提供する。
 上記六方晶窒化ホウ素粉末は、比表面積が小さく、誘電正接の上昇を招くような水や不純物の吸着が抑制されており、更に、黒鉛化指数及び純度が所定範囲となることによって、六方晶窒化ホウ素自体から誘電正接を上昇させるような成分の発生が抑制されている。これによって、低誘電正接の放熱部材を製造する充填材として好適である。
 上記一次粒子の円形度が0.8以上であってよい。
 上記六方晶窒化ホウ素粉末は、500℃に加熱した際の単位質量当たりの水分量が300ppm未満であってよい。
 上記六方晶窒化ホウ素粉末は、200℃に加熱した際の単位質量当たりの水分量が250ppm未満であってよい。
 上記六方晶窒化ホウ素粉末は、201~500℃まで加熱した際の単位質量当たりの水分量が100ppm未満であってよい。
 上記六方晶窒化ホウ素粉末において、一次粒子の平均粒子径が7.0μm以上であってよい。
 本開示の一側面は、樹脂と、上述の六方晶窒化ホウ素粉末と、を含有する樹脂組成物を提供する。
 上記樹脂組成物は、上述の六方晶窒化ホウ素粉末を含有することから、低誘電正接となり得る。
 本開示によれば、低誘電正接の放熱部材を製造可能な六方晶窒化ホウ素粉末、及び樹脂組成物を提供できる。
 以下、本開示の実施形態について説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。
 本明細書において例示する材料は特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中の各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 六方晶窒化ホウ素粉末の一実施形態は、六方晶窒化ホウ素の一次粒子を含み、比表面積が2.5m/g以下であり、黒鉛化指数が2.0以下であり、純度が99質量%以上である。六方晶窒化ホウ素粉末は、六方晶窒化ホウ素の一次粒子の集合物であってよい。
 六方晶窒化ホウ素粉末の比表面積の上限値は2.5m/g以下であるが、例えば、2.2m/g以下、2.0m/g以下、1.8m/g以下、又は1.6m/g以下であってよい。比表面積の上限値が上記範囲内であると、水分等の吸着を抑制し、誘電正接をより低下させ得る。六方晶窒化ホウ素粉末の比表面積の下限値は、例えば、0.5m/g以上、0.8m/g以上、1.0m/g以上、1.2m/g以上、又は1.4m/g以上であってよい。比表面積の下限値が上記範囲内であると、六方晶窒化ホウ素粉末をより低誘電正接化することができる。六方晶窒化ホウ素粉末の比表面積は上述の範囲内で調整でき、例えば、0.5~2.5m/g、又は1.0~2.2m/gであってよい。
 本明細書における比表面積は、JIS Z 8830:2013「ガス吸着による粉体(固体)の比表面積測定方法」の記載に準拠し、比表面積測定装置を用いて測定される値を意味し、窒素ガスを使用したBET一点法を適用して算出される値である。より具体的には、本明細書の実施例に記載の方法で測定する。
 六方晶窒化ホウ素は好ましくは結晶性が高いものである。本実施形態の窒化ホウ素粉末においては、上述の結晶性の指標として黒鉛化指数(Graphitization Index(G.I.)ということもある)を用いる。すなわち、黒鉛化指数の低い六方晶窒化ホウ素を含む窒化ホウ素粉末は、不純物がより低減されており誘電正接の上昇が抑制され得る。六方晶窒化ホウ素粉末の黒鉛化指数の上限値は2.0以下であるが、例えば、1.9以下、1.5以下、又は1.3以下であってよい。六方晶窒化ホウ素粉末の黒鉛化指数の上限値が上記範囲内であることによって、誘電正接をより低下させ得る。六方晶窒化ホウ素粉末の黒鉛化指数の下限値は、特に制限されるものではないが、例えば、0.8以上、又は1.0以上であってよい。六方晶窒化ホウ素粉末の黒鉛化指数の下限値が上記範囲内であることによって、低誘電正接と高放熱性とをより高い水準で両立し得る。六方晶窒化ホウ素粉末の黒鉛化指数は上述の範囲内で調整でき、例えば、1.0~2.0であってよい。
 本明細書における黒鉛化指数は、黒鉛の結晶性の程度を示す指標値としても知られている指標である(例えば、J.Thomas,et.al,J.Am.Chem.Soc.84,4619(1962)等)。黒鉛化指数は、六方晶窒化ホウ素の一次粒子を粉末X線回折法で測定したスペクトルに基づき算出する。まず、X線回折スペクトルにおいて、六方晶窒化ホウ素の一次粒子の(100)面、(101)面及び(102)面に対応する各回折ピークの積分強度(すなわち、各回折ピーク)とそのベースラインとで囲まれる面積値(単位は任意)を算出し、それぞれS100、S101、及びS102とする。算出された面積値を用いて、[(S100+S101)/S102]の値を算出し、黒鉛化指数を決定する。より具体的には、本明細書の実施例に記載の方法によって決定する。
 六方晶窒化ホウ素粉末の純度はより高いものであってよく、例えば、99.5質量%以上、又は99.8質量%以上であってよい。本明細書における窒化ホウ素粉末の純度は、滴定によって算出される値を意味する。より具体的には、本明細書の実施例に記載の方法で滴定を行い、決定する。
 六方晶窒化ホウ素の一次粒子は、放熱部材等を調製する際の樹脂等への充填性を向上させ、放熱部材の熱伝導性及び誘電率といった特性を等方的にする観点から、好ましくは、球状又は球状に近い形状であってよい。一次粒子の円形度は、例えば、0.80以上、0.85以上、0.88以上、又は0.90以上であってよい。
 本明細書における一次粒子の円形度とは以下の方法によって測定される平均円形度を意味する。具体的には、走査型電子顕微鏡(SEM)を用いて撮影した窒化ホウ素粒子の像(倍率:10,000倍、画像解像度:1280×1024ピクセル)について、画像解析ソフトを用いた画像解析によって、窒化ホウ素粒子の投影面積(S)及び周囲長(L)を算出する。そして、得られた投影面積(S)及び周囲長(L)を用いて、以下の式:円形度=4πS/Lに従って円形度を求める。任意に選ばれた100個の窒化ホウ素粒子について求めた円形度の平均値を平均円形度と定義する。画像解析ソフトとしては、例えば、マウンテック社製の「MacView」(商品名)等を使用できる。
 上記六方晶窒化ホウ素粉末において、一次粒子の平均粒子径の下限値は、例えば、7.0μm以上、7.5μm以上、8.0μm以上、8.5μm以上、又は9.0μm以上であってよい。平均粒子径の下限値が上記範囲内であると、充填性や放熱性の観点で好適に使用できる。上記一次粒子の平均粒子径の上限値は、例えば、40μm以下、30μm以下、20μm以下、15μm以下、又は10μm以下であってよい。平均粒子径の上限値が上記範囲内であると、樹脂組成物の成形性を良好にすることができる。六方晶窒化ホウ素粉末における一次粒子の平均粒子径は上述の範囲内で調整してよく、例えば、7.0~40μm、又は7.5~15μmであってよい。例えば、樹脂中に六方晶窒化ホウ素粉末を分散させシート状に成形して用いる場合には、シートの厚みに合わせて上記一次粒子の平均粒子径を選択してよい。
 本明細書における平均粒子径は、六方晶窒化ホウ素粉末に対するホモジナイザー処理を行ったサンプルを対象として測定して得られる値であり、凝集粒子を含まない平均粒子径である。本明細書における平均粒子径はまた、累積粒度分布の累積値が50%となる粒子径(メジアン径、d50)である。本明細書における平均粒子径は、ISO 13320:2009の記載に準拠し、レーザー回折散乱法粒度分布測定装置を用いて測定する。具体的には、本明細書の実施例に記載の方法で測定する。レーザー回折散乱法粒度分布測定装置としては、例えば、ベックマンコールター社製の「LS-13 320」(装置名)等を使用できる。
 六方晶窒化ホウ素粉末はその表面に水分を吸着し得る。水分を吸着した六方晶窒化ホウ素粉末に対して周期的な電場を印加した際に、電気エネルギーの一部が熱エネルギーとして消費されることを促進し得ることから、誘電正接が上昇する傾向にある。六方晶窒化ホウ素粉末は誘電正接をより低下させる観点から、好ましくは水分量が低いものであってよい。六方晶窒化ホウ素粉末は、500℃に加熱した際の単位質量当たりの水分量が、例えば、300ppm未満、280ppm以下、260ppm以下、240ppm以下、又は220ppm以下であってよい。
 六方晶窒化ホウ素粉末の表面における水分は200℃まで加熱することによって脱離し得る。六方晶窒化ホウ素粉末は、200℃に加熱した際の単位質量当たりの水分量が、例えば、250ppm未満、200ppm未満、180ppm以下、160ppm以下、又は150ppm以下であってよい。
 六方晶窒化ホウ素粉末の表面に水酸基(OH基)が存在する場合、例えば、200℃を超える高温時に一部水分として脱離し得る。すなわち、高温使用時において水分が事後的に発生し得る。したがって、六方晶窒化ホウ素粉末としては、高温時の水分発生も抑制されていることが好ましい。六方晶窒化ホウ素粉末は、201~500℃まで加熱した際の単位質量当たりの水分量が、例えば、100ppm未満、90ppm以下、80ppm以下、又は70ppm以下であってよい。201~500℃まで加熱した際の単位質量当たりの水分量が上記範囲内である場合、六方晶窒化ホウ素粉末は水分の吸着性能が比較的低く抑制され、保管時の水分吸着をより抑制することができる。
 本明細書における水分量とは、JIS K 0068:2001「化学製品の水分測定方法」の記載に準拠してカールフィッシャー法に基づいて測定される値を意味する。具体的には、まず、空焼きされたアルミナボードに上記測定サンプルを所定量だけ採取し、これを25℃に恒温調整された炉内に静置し、キャリアガスとして窒素ガスを用い測定温度(200℃又は500℃)まで加熱した際に発生する水分を電量滴定法によって測定し、得られた結果を単位質量(1g)あたりに換算することによって、水分量を決定することができる。測定装置としては、例えば、三菱化学製の「微量水分測定装置CA-06」(製品名)等を使用できる。滴定溶液としては、例えば、陰極液として三菱化学製の「アクアミクロンAX」(商品名)等を用い、陽極液として三菱化学製の「アクアミクロンCXU」(商品名)等を用いることができる。
 上述のような六方晶窒化ホウ素粉末は誘電正接が低く抑制されている。六方晶窒化ホウ素粉末の誘電正接は、例えば、0.0020未満、0.0015以下、0.0012以下、又は0.0010以下とすることができる。
 本明細書における誘電正接は、JIS C 2138:2007「電気絶縁材料-比誘電率及び誘電正接の測定方法」に記載の方法に準拠して測定される1GHzにおける値を意味する。具体的には、ホルダーに六方晶窒化ホウ素粉末で粉末を調整し、測定セルとする。空洞共振器法摂動法の測定装置としては、例えば、キーサイト社製の「ベクトルネットワークアナライザE5063A」(製品名)等を用いることができる。
 上述の六方晶窒化ホウ素粉末は、例えば、以下のような方法で製造することができる。六方晶窒化ホウ素粉末の製造方法の一実施形態は、いわゆる炭素還元法を応用した製造方法であり、ホウ酸を含むホウ素含有化合物と、炭素含有化合物とを含む混合粉末を、窒素加圧雰囲気下で焼成して、窒化ホウ素を含む焼成物を得る工程(以下、低温焼成工程ともいう)と、上記工程よりも高く、2050℃未満の温度で上記焼成物を加熱処理し、六方晶窒化ホウ素(hBN)の一次粒子を生成し、上記一次粒子の一部が凝集して構成される凝集粒子を含む粉末を得る工程(以下、焼成工程ともいう)と、を有する。
 ホウ素含有化合物は構成元素としてホウ素を有する化合物である。ホウ素含有化合物としては、純度が高く比較的安価な原料を用いることができる。このようなホウ素含有化合物としては、ホウ酸の他、例えば、酸化ホウ素などが挙げられる。ホウ素含有化合物はホウ酸を含むが、ホウ酸は加熱によって脱水し酸化ホウ素となり、原料粉末の加熱処理中に液相を形成すると共に粒成長を促す助剤としても働くことができる。
 炭素含有化合物は構成元素として炭素原子を有する化合物である。炭素含有化合物としては、純度が高く比較的安価な原料を用いることができる。このような炭素含有化合物としては、例えば、カーボンブラック及びアセチレンブラック等が挙げられる。
 混合粉末において、ホウ素含有化合物を炭素含有化合物に対して過剰量となるように配合してよい。混合粉末は、炭素含有化合物及びホウ素含有化合物に加えて、その他の化合物を含有してもよい。その他の化合物としては、例えば、核剤としての窒化ホウ素等が挙げられる。混合粉末が核剤としての窒化ホウ素を含有することで、合成される六方晶窒化ホウ素粉末の平均粒径をより容易に制御することができる。混合粉末は、好ましくは核剤を含む。混合粉末が核剤を含む場合、比表面積の小さな六方晶窒化ホウ素粉末(例えば、比表面積が2.5m/g以下である六方晶窒化ホウ素粉末)の調製がより容易となる。
 低温焼成工程は加圧下で行われる。低温焼成工程における圧力は、例えば、0.25MPa以上5.0MPa未満、0.25~3.0MPa、0.25~2.0MPa、0.25~1.0MPa、0.25MPa以上1.0MPa未満、0.30~2.0MPa、又は0.50~2.0MPaであってよい。低温焼成工程における圧力を高くすることで、ホウ素含有化合物等の原料の揮発をより抑制し、副生成物である炭化ホウ素の生成を抑制することができる。また低温焼成工程における圧力を高くすることで、窒化ホウ素粉末の比表面積の増加を抑制することができる。低温焼成工程の圧力の上限値を上記範囲内とすることで、窒化ホウ素の一次粒子の成長をより促進することができる。
 低温焼成工程における加熱温度は、例えば、1650℃以上1800℃未満、1650~1750℃、又は1650~1700℃であってよい。低温焼成工程における加熱温度の下限値を上記範囲内とすることで、反応を促進させ、得られる窒化ホウ素の収量を向上させることができる。低温焼成工程における加熱温度の上限値を上記範囲内とすることで、副生成物の生成を十分に抑制することができる。
 低温焼成工程における加熱時間は、例えば、1~10時間、1~5時間、又は2~4時間であってよい。窒化ホウ素を合成する反応の序盤である工程において、比較的低温で所定時間の間、維持することで、反応系をより均質化することができ、ひいては形成される窒化ホウ素をより均質化できる。なお、本明細書において加熱時間とは、加熱対象物の周囲環境の温度が所定の温度に到達してから当該温度で維持する時間(保持時間)を意味する。
 焼成工程は、低温焼成工程で得られた焼成物を、低温焼成工程よりも高い温度で加熱処理して六方晶窒化ホウ素(hBN)の一次粒子を生成し、上記一次粒子が凝集して構成される凝集粒子を含む粉末を得る工程である。
 焼成工程における加熱温度は、低温焼成工程よりも高く、2050℃未満の温度である。焼成工程における加熱温度を蒸気範囲内とすることで黒鉛化指数をより高め、結晶性に優れる六方晶窒化ホウ素を得ることができる。焼成工程の加熱温度は、2000℃以下であってよい。焼成工程における加熱時間は、例えば、3~15時間、5~10時間、又は6~9時間であってよい。
 焼成工程の圧力は、例えば、0.25MPa以上5.0MPa未満、0.25~3.0MPa、0.25~2.0MPa、0.25~1.0MPa、0.25MPa以上1.0MPa未満、0.30~2.0MPa、又は0.50~2.0MPaであってよい。焼成工程における圧力を高くすることで、得られる原料粉末の純度をより向上させることができる。焼成工程における圧力の上限値を上記範囲内とすることで、原料粉末の調製コストをより低減することができ、工業的に優位である。
 以上の工程によって、六方晶窒化ホウ素粉末を得ることができる。低温焼成工程又は焼成工程の後に、粉砕工程を行ってもよい。粉砕工程においては、一般的な粉砕機又は解砕機を用いることができる。
 本開示に係る六方晶窒化ホウ素粉末は低誘電正接であることから、高周波電圧が印加されるような用途にも使用可能である。本開示に係る六方晶窒化ホウ素粉末は、例えば、高周波回路を構成する電子部品に使用される樹脂組成物への充填材として好適である。樹脂組成物の一実施形態は、樹脂と、上述の六方晶窒化ホウ素粉末とを含有する。
 六方晶窒化ホウ素粉末の含有量の下限値は、樹脂組成物の全体積を基準として、例えば、30体積%以上、40体積%以上、50体積%以上であってよい。六方晶窒化ホウ素粉末の含有量の下限値が上記範囲内であることで、樹脂組成物の熱伝導率を向上させ、優れた放熱性能が得られ得る。六方晶窒化ホウ素粉末の含有量の上限値は、樹脂組成物の全体積を基準として、例えば、85体積%以下、80体積%以下、又は70体積%以下であってよい。六方晶窒化ホウ素粉末の含有量の上限値が上記範囲内であることで、樹脂組成物の成形時に内部に空隙が発生することをより抑制することができ、また絶縁性及び機械強度の低下を抑制することができる。
 樹脂は、例えば、液晶ポリマー、フッ素樹脂、シリコーン樹脂、シリコーンゴム、アクリル樹脂、ポリオレフィン(ポリエチレン等)、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンエーテル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、及びAES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂等が挙げられる。
 樹脂の含有量は、樹脂組成物の全体積を基準として、例えば、15体積%以上、20体積%以上、又は30体積%以上であってよい。樹脂の含有量は、樹脂組成物の全体積を基準として、例えば、70体積%以下、60体積%以下、又は50体積%以下であってよい。
 樹脂組成物は、樹脂を硬化させる硬化剤を更に含有していてよい。硬化剤は、樹脂の種類によって適宜選択してよい。例えば、樹脂がエポキシ樹脂である場合、硬化剤としては、例えば、フェノールノボラック化合物、酸無水物、アミノ化合物、及びイミダゾール化合物等が挙げられる。硬化剤の含有量は、樹脂100質量部に対して、例えば、0.5質量部以上又は1.0質量部以上であってよく、15質量部以下又は10質量部以下であってよい。
 以上、幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。また、上述した実施形態についての説明内容は、互いに適用することができる。
 以下、本開示について、実施例及び比較例を用いてより詳細に説明する。なお、本開示は以下の実施例に限定されるものではない。
(実施例1)
[六方晶窒化ホウ素粉末の調製]
 ホウ酸(株式会社高純度化学研究所製)100質量部と、アセチレンブラック(デンカ株式会社製、グレード名:Li400)22質量部とをヘンシェルミキサーを用いて混合して混合粉末(原料粉末)を得た。得られた混合粉末を250℃の乾燥機に入れ、3時間保持することでホウ酸の脱水を行った。脱水後の混合粉末をプレス成型機の直径100Φの型に入れ、加熱温度:200℃及びプレス圧:30MPaの条件にて成型を行った。このようにして得られた原料粉末のペレットを以降の加熱処理に供した。
 まず、上記ペレットをカーボン雰囲気炉内に静置し、0.85MPaに加圧された窒素雰囲気において昇温速度:5℃/分で1750℃まで昇温し、1750℃にて3時間保持して上記ペレットの加熱処理を行い、第一の加熱処理物を得た(第一工程)。次に、カーボン雰囲気炉内を昇温速度:2℃/分で1800℃まで更に昇温し、1800℃にて3時間保持して第一の加熱処理物を加熱処理し、第二の加熱処理物を得た(第二工程)。その後、カーボン雰囲気炉内を昇温速度:2℃/分で2050℃まで更に昇温し、2050℃にて7時間保持して第二の加熱処理物を高温で焼成した(第三工程)。焼成後の緩く凝集した窒化ホウ素をヘンシェルミキサーで解砕し、真空乾燥機を用いて解砕後の粉末を250℃で5時間乾燥した後、目開き:63μmの篩を通し、篩を通過した粉末を得た。このようにして、六方晶窒化ホウ素粉末を調製した。
<六方晶窒化ホウ素粉末の物性測定>
 得られた六方晶窒化ホウ素粉末に対して、後述する方法に沿って、比表面積、黒鉛化指数、純度、一次粒子の円形度及び平均粒子径、並びに、25~200℃まで加熱した際の水分量及び201~500℃まで加熱した際の水分量を測定した。結果を表1に示す。
[比表面積]
 六方晶窒化ホウ素粉末の比表面積は、JIS Z 8830:2013「ガス吸着による粉体(固体)の比表面積測定方法」の記載に準拠し、窒素ガスを使用したBET一点法を適用して算出した。比表面積測定装置としては、ユアサアイオニクス株式会社製の比表面積測定装置(装置名:カンターソーブ)を用いた。なお、測定は、窒化ホウ素粉末を、300℃で、15分間かけて、乾燥脱気した後に行った。
[黒鉛化指数]
 窒化ホウ素粉末の黒鉛化指数は粉末X線回折法による測定結果から算出した。得られたX線回折スペクトルにおいて、六方晶窒化ホウ素の一次粒子の(100)面、(101)面及び(102)面に対応する各回折ピークの積分強度(すなわち、各回折ピーク)とそのベースラインとで囲まれる面積値(単位は任意)を算出し、それぞれS100、S101、及びS102とした。こうして算出された面積値を用いて、以下の式(1)に基づき、黒鉛化指数を決定した。
 GI=(S100+S101)/S102・・・(1)
[純度]
 六方晶窒化ホウ素粉末を水酸化ナトリウムでアルカリ分解させ、水蒸気蒸留法によって分解液からアンモニアを蒸留して、ホウ酸水溶液に捕集した。この捕集液を対象として、硫酸規定液で滴定行った。滴定の結果から窒化ホウ素粉末中の窒素原子(N)の含有量を算出した。得られた窒素原子の含有量から、式(2)に基づいて、窒化ホウ素粉末中の六方晶窒化ホウ素(hBN)の含有量を決定し、六方晶窒化ホウ素粉末の純度を算出した。なお、六方晶窒化ホウ素の式量は24.818g/mol、窒素原子の原子量は14.006g/molを用いた。
 試料中の六方晶窒化ホウ素(hBN)の含有量[質量%]=窒素原子(N)の含有量[質量%]×1.772・・・(2)
[一次粒子の円形度]
 六方晶窒化ホウ素粉末について、走査型電子顕微鏡(SEM)を用いて一次粒子の像(倍率:10,000倍、画像解像度:1280×1024ピクセル)を撮影した。次に、画像解析ソフト(マウンテック社製、商品名「MacView」)を用いた画像解析によって、得られた像から、窒化ホウ素粒子の投影面積(S)及び周囲長(L)を算出した。そして、得られた投影面積(S)及び周囲長(L)を用いて、以下の式:円形度=4πS/Lに従って円形度を求めた。一次粒子の全体が確認でき、板状の平面(ab軸結晶平面)が確認できる粒子から任意に選ばれた100個の窒化ホウ素粒子について求め、円形度の平均値を算出し、これを平均円形度として採用した。
[一次粒子の平均粒子径]
 六方晶窒化ホウ素粉末における一次粒子の平均粒子径は、ISO 13320:2009の記載に準拠し、レーザー回折散乱法粒度分布測定装置(ベックマンコールター社製、商品名「LS-13 320」)を用いて測定した。なお、六方晶窒化ホウ素粉末は測定に際して、超音波ホモジナイザー(日本精機製作所製、商品名「US-300E」)を用い、AMPLITUDE(振幅)80%にて超音波分散を1分30秒間で1回行うことで、六方晶窒化ホウ素粉末の分散液を調製し、これを測定対象とした。粒度分布の測定に際し、六方晶窒化ホウ素粉末を分散させる溶媒には水を用い、分散剤にはヘキサメタリン酸を用いた。この際、水の屈折率として1.33の数値を用い、窒化ホウ素粉末の屈折率として1.80の数値を用いた。
[水分量]
 六方晶窒化ホウ素粉末の25~200℃まで加熱した際の水分量及び201~500℃まで加熱した際の水分量をカールフィッシャー法に基づいて測定した。まず、空焼きされたアルミナボードに上記測定サンプルを所定量だけ採取し、これを25℃に恒温調整された炉内に静置し、25℃から測定温度(200℃又は500℃)まで加熱した際に発生する水分を電量滴定法によって測定し、得られた結果を単位質量(1g)あたりに換算することによって、水分量(単位:ppm)を決定した。
<六方晶窒化ホウ素粉末の充填材としての評価>
 得られた六方晶窒化ホウ素粉末を充填材として用いた際の誘電正接を測定した。具体的には、空洞共振器法の測定装置(キーコム製測定システム 摂動法 空洞共振器タイプ DPS18)を用いて、温度25℃の条件で測定を行うことによって、六方晶窒化ホウ素粉末の1GHzにおける誘電正接を求めた。結果を表1に示す。
(実施例2)
 原料であるアセチレンブラックをアセチレンブラック(デンカ株式会社製、グレード名:FX35)に変更したこと以外は、実施例1と同様にして、六方晶窒化ホウ素粉末を調製した。
(実施例3)
 原料に、窒化ホウ素粉末(デンカ株式会社製、デンカボロンナイトライド粉末、グレード名:SGP)を2質量%外割添加したこと以外は、実施例1と同様にして、六方晶窒化ホウ素粉末を調製した。
(実施例4)
 第3工程の焼成温度を2070℃に変更したこと以外は、実施例1と同様にして、六方晶窒化ホウ素粉末を調製した。
(実施例5)
 第3工程の焼成温度を1970℃に変更したこと以外は、実施例1と同様にして、六方晶窒化ホウ素粉末を調製した。
(実施例6)
 アセチレンブラック(デンカ株式会社製、グレード名:Li400)の配合量を20質量部に変更し、真空乾燥の温度を300℃に変更したこと以外は、実施例1と同様にして、六方晶窒化ホウ素粉末を調製した。
(実施例7)
 アセチレンブラック(デンカ株式会社製、グレード名:Li400)の配合量を27質量部に変更したこと以外は、実施例1と同様にして、六方晶窒化ホウ素粉末を調製した。
(実施例8)
 原料に、窒化ホウ素粉末(デンカ株式会社製、デンカボロンナイトライド粉末、グレード名:MGP)を1質量%外割添加したしたこと以外は、実施例1と同様にして、六方晶窒化ホウ素粉末を調製した。
 実施例1~8で得られた六方晶窒化ホウ素粉末について、比表面積、黒鉛化指数、純度、一次粒子の円形度及び平均粒子径、並びに、25~200℃まで加熱した際の水分量及び201~500℃まで加熱した際の水分量を、実施例1と同様に測定した。実施例1~8で得られた六方晶窒化ホウ素粉末について、実施例1と同様に充填材としての評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(比較例1)
 ホウ酸粉末(純度99.8質量%以上、関東化学株式会社製)100質量部、メラミン粉末(純度99.0質量%以上、富士フイルム和光純薬社製)9質量部、助剤として炭酸ナトリウム(純度99.5質量%以上)13質量部を添加し、アルミナ製乳鉢を用い10分間混合して、混合粉末を得た。乾燥後の混合粉末を、六方晶窒化ホウ素製の容器に入れ、電気炉内に配置した。電気炉内に窒素ガスを流通させながら、10℃/分の昇温速度で室温から1000℃に昇温した。1000℃で2時間保持した後、加熱を止めて自然冷却した。温度が100℃以下になった時点で電気炉を開放した。このようにして、低結晶性の六方晶窒化ホウ素を含む仮焼物を得た。
 上記仮焼物100gを、上述の電気炉内に配置した。電気炉内に窒素ガスを流通させながら、10℃/分の昇温速度で室温から1800℃に昇温した。1800℃の焼成温度で4時間保持した後、加熱を止めて自然冷却した。温度が100℃以下になった時点で電気炉を開放した。得られた焼成物を回収し、アルミナ製乳鉢で10分間粉砕して、六方晶窒化ホウ素を含む粗粉を得た。
 次に、上記粗粉中に含まれる不純物を除くため、希硝酸(硝酸濃度:5質量%)500gに、上記粗粉30gを投入し、室温で60分間攪拌した。攪拌後、吸引ろ過によって固液分離し、ろ液が中性になるまで、水を入れ替えて、最終的に洗浄液の電気伝導度が1mS/m以下になるまで洗浄した。洗浄後、乾燥機を用いて120℃で3時間乾燥させることによって乾燥粉末を得た。当該乾燥粉末を比較例1の六方晶窒化ホウ素粉末とした。
(比較例2)
 原料であるアセチレンブラックをアセチレンブラック(デンカ株式会社製、グレード名:FX35)に変更し、配合量を24質量部に変更したこと、プレス成形機の成形圧を5MPaにしたこと、及び真空乾燥処理をしなかった以外は、実施例1と同様にして、六方晶窒化ホウ素粉末を調製した。
(比較例3)
 ホウ酸量の配合量を150質量部に変更し、原料に炭酸カルシウム(純度99.5質量%以上)5質量部を添加したこと、及び焼成温度1900℃に変更したこと以外は、比較例1と同様にして、六方晶窒化ホウ素粉末を調製した。
(比較例4)
 第3工程の焼成条件を1750℃、20時間に変更したこと、及び真空乾燥処理をしなかったこと以外は、比較例1と同様にして、六方晶窒化ホウ素粉末を調製した。
 比較例1~4で得られた六方晶窒化ホウ素粉末について、比表面積、黒鉛化指数、純度、一次粒子の円形度及び平均粒子径、並びに、25~200℃まで加熱した際の水分量及び201~500℃まで加熱した際の水分量を、実施例1と同様に測定した。比較例1~4で得られた六方晶窒化ホウ素粉末について、実施例1と同様に充填材としての評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 本開示によれば、低誘電正接の放熱部材を製造するために有用な六方晶窒化ホウ素粉末を提供できる。

 

Claims (7)

  1.  六方晶窒化ホウ素の一次粒子を含み、
     比表面積が2.5m/g以下であり、黒鉛化指数が2.0以下であり、純度が99質量%以上である、六方晶窒化ホウ素粉末。
  2.  前記一次粒子の円形度が0.8以上である、請求項1に記載の六方晶窒化ホウ素粉末。
  3.  500℃に加熱した際の単位質量当たりの水分量が300ppm未満である、請求項1又は2に記載の六方晶窒化ホウ素粉末。
  4.  200℃に加熱した際の単位質量当たりの水分量が250ppm未満である、請求項1~3のいずれか一項に記載の六方晶窒化ホウ素粉末。
  5.  201~500℃まで加熱した際の単位質量当たりの水分量が100ppm未満である、請求項1~4のいずれか一項に記載の六方晶窒化ホウ素粉末。
  6.  一次粒子の平均粒子径が7.0μm以上である、請求項1~5のいずれか一項に記載の六方晶窒化ホウ素粉末。
  7.  樹脂と、請求項1~6のいずれか一項に記載の六方晶窒化ホウ素粉末と、を含有する樹脂組成物。

     
PCT/JP2022/012331 2021-03-24 2022-03-17 六方晶窒化ホウ素粉末、及び樹脂組成物 WO2022202618A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237029819A KR20230135679A (ko) 2021-03-24 2022-03-17 육방정 질화 붕소 분말, 및 수지 조성물
CN202280019117.7A CN116963994A (zh) 2021-03-24 2022-03-17 六方晶氮化硼粉末、及树脂组合物
JP2023501448A JP7302115B2 (ja) 2021-03-24 2022-03-17 六方晶窒化ホウ素粉末、及び樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021049932 2021-03-24
JP2021-049932 2021-03-24

Publications (1)

Publication Number Publication Date
WO2022202618A1 true WO2022202618A1 (ja) 2022-09-29

Family

ID=83395815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012331 WO2022202618A1 (ja) 2021-03-24 2022-03-17 六方晶窒化ホウ素粉末、及び樹脂組成物

Country Status (4)

Country Link
JP (1) JP7302115B2 (ja)
KR (1) KR20230135679A (ja)
CN (1) CN116963994A (ja)
WO (1) WO2022202618A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017034003A1 (ja) * 2015-08-26 2017-03-02 デンカ株式会社 熱伝導性樹脂組成物
JP2018165241A (ja) * 2017-03-28 2018-10-25 デンカ株式会社 六方晶窒化ホウ素粉末、その製造方法、及び化粧料
JP2019521064A (ja) * 2016-05-27 2019-07-25 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 窒化ホウ素凝集体を製造するためのプロセス
JP2020164192A (ja) * 2019-03-29 2020-10-08 デンカ株式会社 窒化ホウ素粉末の梱包体、化粧料及びその製造方法
WO2021100617A1 (ja) * 2019-11-19 2021-05-27 デンカ株式会社 六方晶窒化ホウ素粉末

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3521173B2 (ja) * 1997-07-11 2004-04-19 電気化学工業株式会社 六方晶窒化ほう素粉末の製造方法
JP7069485B2 (ja) 2017-12-27 2022-05-18 昭和電工株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びにそれを用いた組成物及び放熱材
JP7165070B2 (ja) 2018-04-02 2022-11-02 株式会社トクヤマ 六方晶窒化ホウ素粉末およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017034003A1 (ja) * 2015-08-26 2017-03-02 デンカ株式会社 熱伝導性樹脂組成物
JP2019521064A (ja) * 2016-05-27 2019-07-25 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 窒化ホウ素凝集体を製造するためのプロセス
JP2018165241A (ja) * 2017-03-28 2018-10-25 デンカ株式会社 六方晶窒化ホウ素粉末、その製造方法、及び化粧料
JP2020164192A (ja) * 2019-03-29 2020-10-08 デンカ株式会社 窒化ホウ素粉末の梱包体、化粧料及びその製造方法
WO2021100617A1 (ja) * 2019-11-19 2021-05-27 デンカ株式会社 六方晶窒化ホウ素粉末

Also Published As

Publication number Publication date
JPWO2022202618A1 (ja) 2022-09-29
CN116963994A (zh) 2023-10-27
JP7302115B2 (ja) 2023-07-03
KR20230135679A (ko) 2023-09-25

Similar Documents

Publication Publication Date Title
WO2020004600A1 (ja) 塊状窒化ホウ素粒子、窒化ホウ素粉末、窒化ホウ素粉末の製造方法、樹脂組成物、及び放熱部材
KR102619752B1 (ko) 질화붕소 분말, 그 제조 방법 및 그것을 사용한 방열 부재
KR102560615B1 (ko) 열전도성 수지 조성물
KR101398682B1 (ko) 육방 격자 질화붕소 분말 및 그 제조방법
WO2018066277A1 (ja) 窒化ホウ素塊状粒子、その製造方法及びそれを用いた熱伝導樹脂組成物
JP5081488B2 (ja) 六方晶窒化ホウ素粉末
TW201927689A (zh) 六方晶氮化硼粉末及其製造方法以及使用其之組成物及散熱材
TW201831399A (zh) 六方晶氮化硼粉末及其製造方法
US20230142330A1 (en) Boron nitride sintered body, composite body, method for producing said boron nitride sintered body, method for producing said composite body, and heat dissipation member
JP7302115B2 (ja) 六方晶窒化ホウ素粉末、及び樹脂組成物
JP7140939B2 (ja) 窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法
JP7165287B2 (ja) 窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法
JP2022148304A (ja) 六方晶窒化ホウ素粉末、及び樹脂組成物
JP2022178471A (ja) 窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法、並びに、樹脂組成物
JP7458523B2 (ja) 窒化ホウ素粉末
JP2023147855A (ja) 窒化ホウ素粉末
JP7343734B1 (ja) 粉末、粉末の製造方法、及び放熱シート
WO2023204140A1 (ja) 窒化ホウ素粉末、及び、その製造方法、並びに、放熱シート
WO2024071431A1 (ja) 球状アルミナ粒子、その製造方法、および、それを含有する樹脂複合組成物
WO2023190528A1 (ja) 窒化ホウ素粉末、樹脂組成物及び窒化ホウ素粉末の製造方法
WO2021200877A1 (ja) 塊状窒化ホウ素粒子及びその製造方法
TW202302448A (zh) 六方晶氮化硼凝集粒子及六方晶氮化硼粉末、樹脂組成物、樹脂片
JP2023108717A (ja) 窒化ホウ素粉末、樹脂組成物、樹脂組成物の硬化物及び窒化ホウ素粉末の製造方法
KR20200118689A (ko) 리튬 치환된 질화알루미늄 분말 및 이를 제조하기 위한 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023501448

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237029819

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237029819

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280019117.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775406

Country of ref document: EP

Kind code of ref document: A1