WO2022202488A1 - 風車及び風力発電装置 - Google Patents

風車及び風力発電装置 Download PDF

Info

Publication number
WO2022202488A1
WO2022202488A1 PCT/JP2022/011605 JP2022011605W WO2022202488A1 WO 2022202488 A1 WO2022202488 A1 WO 2022202488A1 JP 2022011605 W JP2022011605 W JP 2022011605W WO 2022202488 A1 WO2022202488 A1 WO 2022202488A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind turbine
blade
axial direction
central axis
shaft
Prior art date
Application number
PCT/JP2022/011605
Other languages
English (en)
French (fr)
Inventor
健 伊藤
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2022202488A1 publication Critical patent/WO2022202488A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/02Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having a plurality of rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors

Definitions

  • the present invention relates to wind turbines and wind turbine generators.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2011-169292 (Patent Document 1) describes a vertical wind turbine for wind power generation.
  • the vertical wind turbine described in Patent Document 1 has a rotor, blades (wings), and horizontal support arms (support members).
  • the rotating body is rotatable around the central axis.
  • the blade has a main portion extending along the direction of the central axis of the rotating body (axial direction).
  • the support member connects the main portion of the blade and the rotor by extending along a direction (radial direction) perpendicular to the axial direction and passing through the central axis of the rotor.
  • the support is generally fish-shaped in cross-section perpendicular to the radial direction.
  • Patent Document 2 Japanese Patent No. 5527783 (Patent Document 2) describes a rotor for wind power generation.
  • the rotor described in Patent Literature 1 has a rotating shaft, blades (wings), and supports (supporting members).
  • the rotary shaft is rotatable around the central axis.
  • the blade extends along the central axis direction (axial direction) of the rotating shaft.
  • the support member connects the blade and the rotating shaft by extending along a direction (radial direction) perpendicular to the axial direction and passing through the central axis of the rotating shaft.
  • the support is streamlined in cross-section perpendicular to the radial direction.
  • JP 2011-169292 A Japanese Patent No. 5527783
  • the cross-sectional shape of the support material perpendicular to the radial direction is substantially fish-shaped or streamlined, thereby reducing the air resistance of the support material itself. thus improving the rotational energy conversion efficiency.
  • attention is not paid to the turbulence of the airflow at the connecting portion between the supporting member and the blade. Therefore, the wind turbine described in Patent Document 1 and the rotor described in Patent Document 2 have room for improvement in rotational energy conversion efficiency.
  • the present invention has been made in view of the problems of the prior art as described above. More specifically, the present invention provides a wind turbine and a wind turbine generator capable of improving rotational energy conversion efficiency.
  • a wind turbine includes a shaft, blades, and support members.
  • the windmill is rotatable around the central axis of the shaft.
  • the wing has a wing body extending along an axial direction, which is the direction of the central axis.
  • the blade body In a cross-sectional view perpendicular to the axial direction, the blade body includes a front edge that is the front end in the rotation direction of the wind turbine and a rear edge that is the rear end in the rotation direction.
  • the support member connects the shaft and the blade body by extending along a radial direction perpendicular to the axial direction and passing through the central axis.
  • the support has a first portion adjacent to the wing body and a second portion adjacent to the first portion from a side opposite the wing body.
  • the support has a trailing end, which is the trailing end in the direction of rotation. In the chord direction, which is the direction of the chord line connecting the leading edge and the trailing edge, the position of the trailing edge approaches the position of the trailing edge as it approaches the blade main body.
  • the support member includes a first member connecting the shaft and the blade main body by extending in a radial direction, and an end of the first member on the blade main body side. and a pair of plate-like second members sandwiching the portion in the axial direction.
  • the length of the first portion in the radial direction may be equal to or less than the chord length, which is the distance between the leading edge and the trailing edge in the chord direction.
  • the thickness of the first portion in the axial direction may be smaller than the thickness of the second portion in the axial direction.
  • a wind turbine includes a shaft, blades, and support members.
  • the windmill is rotatable around the central axis of the shaft.
  • the wing has a wing body extending along an axial direction, which is the direction of the central axis.
  • the support member connects the shaft and the blade body by extending along a radial direction perpendicular to the axial direction and passing through the central axis.
  • the support has a first portion adjacent to the wing body and a second portion adjacent to the first portion from a side opposite the wing body. The thickness of the first portion in the axial direction is less than the thickness of the second portion in the axial direction.
  • the blade body in a cross-sectional view perpendicular to the axial direction, has a front edge, which is the front end in the rotation direction of the wind turbine, and a rear end in the rotation direction. and a trailing edge.
  • the length of the first portion in the radial direction is equal to or less than the chord length, which is the distance between the leading edge and the trailing edge in the chord direction, which is the direction of the chord line connecting the leading edge and the trailing edge. good too.
  • a wind turbine generator according to the present invention includes the wind turbine according to the first aspect or the second aspect of the invention, and a generator that generates power by rotating the wind turbine around its central axis.
  • the rotational energy conversion efficiency can be improved.
  • FIG. 1 is a front view of a wind turbine generator 100;
  • FIG. FIG. 2 is a cross-sectional view along II-II in FIG. 1; 2 is a cross-sectional view of the wind turbine generator 200.
  • FIG. FIG. 3 is a cross-sectional view of a wind turbine generator 100 according to a modified example; 1 is a perspective view of a wind turbine generator 300.
  • FIG. 3 is a cross-sectional view of the wind turbine generator 300.
  • FIG. 4 is a cross-sectional view of the wind turbine generator 400.
  • FIG. 4 is an enlarged side view of the wind turbine generator 400.
  • FIG. 1 is a perspective view of a wind turbine generator 500.
  • FIG. 5 is a cross-sectional view of the wind turbine generator 500.
  • Wind power generator 100 A wind power generator (hereinafter referred to as “wind power generator 100") according to the first embodiment will be described.
  • FIG. 1 is a front view of the wind turbine generator 100.
  • the wind turbine generator 100 has a windmill 10 and a generator 20 .
  • the generator 20 generates power as the wind turbine 10 rotates around a central axis A, which will be described later.
  • the windmill 10 is a vertical axis windmill (vertical windmill).
  • the wind turbine 10 has a shaft 11 , blades 12 and supports 13 .
  • the central axis of the shaft 11 be central axis A.
  • the direction of the central axis A be the axial direction.
  • a direction orthogonal to the axial direction and passing through the central axis A is defined as a radial direction.
  • the windmill 10 is rotatable around a central axis A.
  • the shaft 11 extends axially.
  • the shaft 11 is rotatable around the central axis A.
  • the blade 12 has a blade body portion 12a, a blade tip inclined portion 12b, and a blade tip inclined portion 12c.
  • the wing body portion 12a extends along the axial direction.
  • FIG. 2 is a cross-sectional view along II-II in FIG. As shown in FIG. 2, the wing main body 12a has a lift shape, for example, in a cross-sectional view perpendicular to the axial direction.
  • the blade main body 12a has a leading edge 12aa and a trailing edge 12ab.
  • the leading edge 12aa is the end of the blade body 12a on the forward side in the direction of rotation of the wind turbine 10 (indicated by the arrow in FIG. 2).
  • the trailing edge 12ab is the end of the blade main body 12a on the rear side in the rotation direction of the wind turbine 10 .
  • a potential line connecting the leading edge 12aa and the trailing edge 12ab is defined as a chord line 12ac.
  • the direction of the chord line 12ac is defined as the chord direction.
  • the blade tip inclined portion 12b is connected to one axial end (upper end) of the blade body portion 12a.
  • the blade tip inclined portion 12b extends upward from the upper end of the blade body portion 12a while being inclined radially inward.
  • the blade tip inclined portion 12c is connected to the other axial end (lower end) of the blade body portion 12a.
  • the blade tip inclined portion 12c extends downward from the lower end of the blade body portion 12a while being inclined radially inward.
  • the support member 13 extends along the radial direction.
  • the shaft 11 and the wing 12 (wing body portion 12a) are connected by the support member 13 extending along the radial direction.
  • the support member 13 has a front end 13a and a rear end 13b in plan view (when viewed along the axial direction).
  • the front end 13 a is the end of the support member 13 on the front side in the rotation direction of the wind turbine 10 .
  • the rear end 13b is the end of the support member 13 on the rear side in the rotation direction of the wind turbine 10 .
  • the support member 13 has a first portion 13c and a second portion 13d.
  • the first portion 13c is the portion of the support 13 adjacent to the wing body 12a
  • the second portion 13d is the portion of the support 13 adjacent to the first portion 13c from the opposite side of the wing body 12a. be.
  • the position of the trailing edge 13b of the first portion 13c approaches the position of the trailing edge 12ab as it approaches the blade main body 12a.
  • the straight line indicating the position of the rear end 13b of the first portion 13c forms an obtuse angle with respect to the straight line indicating the position of the rear end 13b of the second portion 13d.
  • the width of the first portion 13c in the chord direction increases as it approaches the blade body 12a.
  • the straight line indicating the position of the front end 13a of the first portion 13c and the straight line indicating the position of the front end 13a of the second portion 13d are, for example, on the same straight line.
  • the position of the rear end 13b of the first portion 13c at the end on the side of the blade main body 12a preferably coincides with the position of the rear edge 12ab.
  • it is preferable that the position of the rear end 13b of the first portion 13c does not protrude from the position of the rear edge 12ab in the chord direction.
  • the length of the first portion 13c in the radial direction is preferably equal to or less than the length of the chord line 12ac (that is, the chord length).
  • the width of the second portion 13d in the chord direction is smaller than the width of the first portion 13c in the chord direction. However, at the boundary between the first portion 13c and the second portion 13d, the width of the second portion 13d in the chord direction is equal to the width of the first portion 13c in the chord direction.
  • wind power generator 200 The effects of the wind power generator 100 will be described below in comparison with a wind power generator according to a comparative example (hereinafter referred to as "wind power generator 200").
  • the configuration of the wind turbine generator 200 is the same as that of the wind turbine generator 100 except for the details of the support member 13 .
  • FIG. 3 is a cross-sectional view of the wind turbine generator 200.
  • FIG. FIG. 3 shows a cross section at a position corresponding to II-II in FIG.
  • the support member 13 is not divided into the first portion 13c and the second portion 13d. That is, in the support member 13, the straight line indicating the position of the front end 13a is composed of one straight line, and the straight line indicating the position of the rear end 13b is composed of one straight line. From another point of view, in the wind turbine generator 200, the width of the support member 13 in the chord direction is constant over the radial direction.
  • the position of the trailing end 13b of the first portion 13c approaches the position of the trailing edge 12ab as it approaches the blade body 12a in the chord direction. It also exists in the area indicated by the dotted line in 3.
  • the position where the turbulent airflow occurs moves further rearward in the rotational direction, and the turbulent airflow is less likely to interfere with the blade surface.
  • separation of the airflow flowing on the blade surface is less likely to be induced, resulting in improved rotational energy conversion efficiency.
  • the rear end 13b side of the first portion 13c protrudes toward the trailing edge 12ab.
  • the centrifugal force applied to the material 13 increases.
  • the length in the radial direction of the first portion 13c is equal to or less than the chord length of the blade main body portion 12a, it is possible to improve the rotational energy conversion efficiency while suppressing the weight increase.
  • FIG. 4 is a cross-sectional view of a wind turbine generator 100 according to a modification.
  • FIG. 4 shows a cross section at a position corresponding to II-II in FIG.
  • the rear end 13b of the first portion 13c may be curved.
  • wind turbine generator 300 A wind turbine generator (hereinafter referred to as "wind turbine generator 300") according to the second embodiment will be described.
  • points different from the wind turbine generator 100 will be mainly described, and redundant description will not be repeated.
  • the wind turbine generator 300 has a windmill 10 and a generator 20 .
  • the wind turbine 10 has a shaft 11 , blades 12 and supports 13 .
  • the support member 13 has a first portion 13c and a second portion 13d. Regarding these points, the configuration of the wind turbine generator 300 is common to the configuration of the wind turbine generator 100 .
  • FIG. 5 is a perspective view of the wind turbine generator 300.
  • FIG. FIG. 6 is a cross-sectional view of the wind turbine generator 300. As shown in FIG. FIG. 6 shows a cross section at a position corresponding to II-II in FIG.
  • the support member 13 is composed of a first member 14 and a pair of second members 15. As shown in FIG. In this respect, the configuration of the wind turbine generator 300 differs from the configuration of the wind turbine generator 100 .
  • the first member 14 extends along the radial direction. As a result, the shaft 11 and the blade 12 (the blade main body portion 12a) are connected by the first member 14. As shown in FIG.
  • the pair of second members 15 sandwich the end of the first member 14 on the side of the blade body 12a in the axial direction.
  • the second member 15 is a plate-like member.
  • the end portion of the first member 14 that is sandwiched between the pair of second members 15 and the pair of second members 15 constitutes a first portion 13c, and the first member that is not sandwiched between the pair of second members 15 A portion 14 constitutes a second portion 13d.
  • the wind turbine generator 300 Since the wind turbine generator 300 has the first portion 13c, separation of the airflow flowing on the blade surface is less likely to be induced similarly to the wind turbine generator 100, and as a result, the rotational energy conversion efficiency can be improved.
  • the first member 14 and the pair of second members 15 are separate members, but the same effect can be obtained by using one member with the same structure.
  • the second member 15 is shown as a pair of separate members in FIG. 6, the same structure may be provided by bending one member.
  • Wind power generator 400 A wind power generator (hereinafter referred to as "wind power generator 400") according to the third embodiment will be described.
  • points different from the wind turbine generator 100 will be mainly described, and redundant description will not be repeated.
  • the wind turbine generator 400 has a windmill 10 and a generator 20 .
  • the wind turbine 10 has a shaft 11 , blades 12 and supports 13 .
  • the support member 13 has a first portion 13c and a second portion 13d. Regarding these points, the configuration of the wind turbine generator 400 is common to the configuration of the wind turbine generator 100 .
  • FIG. 7 is a cross-sectional view of the wind turbine generator 400.
  • FIG. FIG. 7 shows a cross section at a position corresponding to II-II in FIG.
  • FIG. 8 is an enlarged side view of the wind turbine generator 400.
  • FIG. 1 in the wind turbine generator 400, the rear end 13b of the first portion 13c does not protrude toward the rear edge 12ab. That is, in the wind turbine generator 400, the width in the chord direction of the first portion 13c is constant in the radial direction. Further, in the wind turbine generator 400, the thickness in the axial direction of the first portion 13c is smaller than the thickness in the axial direction of the second portion 13d. Regarding these points, the configuration of the wind turbine generator 400 is different from the configuration of the wind turbine generator 100 .
  • the width of the first portion 13c in the chord direction is preferably smaller than the width of the second portion 13d in the chord direction.
  • the length of the first portion 13c in the radial direction is equal to or less than the chord length of the blade body portion 12a.
  • the portion of the support member 13 having a large projected area when viewed from the side is located away from the blade main body 12a. Disturbances are less likely to interfere with the blade body portion 12a.
  • the portion (first portion 13c) of the support member 13 having a small projected area when viewed from the side is adjacent to the blade body portion 12a, the peripheral speed of the support member 13 increases.
  • the rotational resistance of the support member 13 can be reduced at the portion 13d, and the turbulence of the airflow generated can be reduced compared to the second portion 13d. Therefore, according to the wind turbine generator 400, the rotational energy conversion efficiency is improved.
  • the cross-sectional area of the first portion 13c is small. It is possible to improve the rotational energy conversion efficiency while suppressing the decrease.
  • wind power generator 500 A wind power generator (hereinafter referred to as "wind power generator 500") according to the fourth embodiment will be described.
  • wind power generator 500 points different from the wind turbine generator 100 will be mainly described, and redundant description will not be repeated.
  • the wind turbine generator 500 has a windmill 10 and a generator 20 .
  • the wind turbine 10 has a shaft 11 , blades 12 and supports 13 .
  • the support member 13 has a first portion 13c and a second portion 13d. Regarding these points, the configuration of the wind turbine generator 500 is common to the configuration of the wind turbine generator 100 .
  • FIG. 9 is a perspective view of the wind turbine generator 500.
  • FIG. FIG. 10 is a cross-sectional view of the wind turbine generator 500. As shown in FIG. FIG. 10 shows a cross section at a position corresponding to II-II in FIG. As shown in FIGS. 9 and 10, the axial thickness of the first portion 13c is smaller than the axial thickness of the second portion 13d. In this regard, the configuration of the wind turbine generator 500 differs from the configuration of the wind turbine generator 100 .
  • the configuration of the wind turbine generator 500 is a combination of the configuration of the wind turbine generator 100 and the configuration of the wind turbine generator 400 . Therefore, according to the wind power generator 500, compared with the wind power generator 100 or the wind power generator 400, the rotational energy conversion efficiency can be further improved.
  • the above embodiments are particularly advantageously applied to vertical axis wind turbines and wind power generators having vertical axis wind turbines.
  • Wind turbine 11 Shaft, 12 Blade, 12a Blade main body, 12aa Leading edge, 12ab Trailing edge, 12ac Blade chord line, 12b, 12c Blade tip slope, 13 Support material, 13a Front end, 13b Rear end, 13c First part , 13d second part, 14 first member, 15 second member, 20 generator, 100, 200, 300, 400, 500 wind turbine generator, A central axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

風車(10)は、軸(11)と、翼(12)と、支持材(13)とを備えている。風車は、軸の中心軸(A)回りに回転可能である。翼は、中心軸の方向である軸方向に沿って延在している翼本体部(12a)を有する。翼本体部は、軸方向に直交している断面視において、風車の回転方向の前方側の端である前縁(12aa)と、回転方向の後方側の端である後縁(12ab)とを含む。支持材は、軸方向に直交し、かつ中心軸を通る径方向に沿って延在することにより軸と翼本体部とを接続している。支持材は、翼本体部に隣接している第1部分(13c)と、翼本体部とは反対側から第1部分に隣接している第2部分(13d)とを有する。支持材は、回転方向の後方側の端である後端(13b)を有する。前縁と後縁とを結んだ翼弦線の方向である翼弦方向において、後端の位置は、翼本体部に近づくにつれて、後縁の位置に近づく。

Description

風車及び風力発電装置
 本発明は、風車及び風力発電装置に関する。
 特開2011-169292号公報(特許文献1)には、風力発電用の縦型風車が記載されている。特許文献1に記載の縦型風車は、回転体と、ブレード(翼)と、水平支持腕(支持材)とを有している。回転体は、中心軸回りに回転可能になっている。翼は、回転体の中心軸の方向(軸方向)に沿って延在している主部を有している。支持材は、軸方向に直交し、かつ回転体の中心軸を通る方向(径方向)に沿って延在することにより、ブレードの主部と回転体とを接続している。支持材は、径方向に直交している断面において、略魚形である。
 特許第5527783号公報(特許文献2)には、風力発電用のロータが記載されている。特許文献1に記載のロータは、回転軸と、ブレード(翼)と、支持台(支持材)とを有している。回転軸は、中心軸回りに回転可能になっている。翼は、回転軸の中心軸の方向(軸方向)に沿って延在している。支持材は、軸方向に直交し、かつ回転軸の中心軸を通る方向(径方向)に沿って延在することにより、ブレードと回転軸とを接続している。支持材は、径方向に直交している断面において、流線形である。
特開2011-169292号公報 特許第5527783号公報
 特許文献1に記載の風車及び特許文献2に記載のロータでは、径方向に直交している支持材の断面形状が略魚形又は流線形とされることにより、支持材自体の空気抵抗を低減して回転エネルギー変換効率が改善されている。しかしながら、特許文献1に記載の風車及び特許文献2に記載のロータでは、支持材と翼との接続部における気流の乱れには着眼されていない。そのため、特許文献1に記載の風車及び特許文献2に記載のロータは、回転エネルギー変換効率に改善の余地がある。
 本発明は、上記のような従来技術の問題点に鑑みてなされたものである。より具体的には、回転エネルギー変換効率を改善可能な風車及び風力発電装置を提供する。
 本発明の第1の態様に係る風車は、軸と、翼と、支持材とを備えている。風車は、軸の中心軸回りに回転可能である。翼は、中心軸の方向である軸方向に沿って延在している翼本体部を有する。翼本体部は、軸方向に直交している断面視において、風車の回転方向の前方側の端である前縁と、回転方向の後方側の端である後縁とを含む。支持材は、軸方向に直交し、かつ中心軸を通る径方向に沿って延在することにより、軸と翼本体部とを接続している。支持材は、翼本体部に隣接している第1部分と、翼本体部とは反対側から第1部分に隣接している第2部分とを有する。支持材は、回転方向の後方側の端である後端を有する。前縁と後縁とを結んだ翼弦線の方向である翼弦方向において、後端の位置は、翼本体部に近づくにつれて、後縁の位置に近づく。
 本発明の第1の態様に係る風車では、支持材が、径方向に延在することにより軸と翼本体部とを接続している第1部材と、第1部材の翼本体部側の端部を軸方向において挟み込んでいる一対の板状の第2部材とを有していてもよい。
 本発明の第1の態様に係る風車では、径方向における第1部分の長さが、翼弦方向における前縁と後縁との間の距離である翼弦長以下であってもよい。
 本発明の第1の態様に係る風車では、軸方向における第1部分の厚さが、軸方向における第2部分の厚さよりも小さくてもよい。
 本発明の第2の態様に係る風車は、軸と、翼と、支持材とを備えている。風車は、軸の中心軸回りに回転可能である。翼は、中心軸の方向である軸方向に沿って延在している翼本体部を有する。支持材は、軸方向に直交し、かつ中心軸を通る径方向に沿って延在することにより、軸と翼本体部とを接続している。支持材は、翼本体部に隣接している第1部分と、翼本体部とは反対側から第1部分に隣接している第2部分とを有している。軸方向における第1部分の厚さは、軸方向における第2部分の厚さよりも小さい。
 本発明の第2の態様に係る風車では、翼本体部が、軸方向に直交している断面視において、風車の回転方向の前方側の端である前縁と回転方向の後方側の端である後縁とを含んでいてもよい。径方向における第1部分の長さが、前縁と後縁とを結んだ翼弦線の方向である翼弦方向における前縁と後縁との間の距離である翼弦長以下であってもよい。
 本発明に係る風力発電装置は、本発明の第1の態様又は第2の態様に係る風車と、風車の中心軸回りの回転により発電を行う発電機とを備えている。
 本発明の第1の態様に係る風車、本発明の第2の態様に係る風車及び本発明に係る風力発電装置によると、回転エネルギー変換効率を改善することができる。
風力発電装置100の正面図である。 図1のII-IIにおける断面図である。 風力発電装置200の断面図である。 変形例に係る風力発電装置100の断面図である。 風力発電装置300の斜視図である。 風力発電装置300の断面図である。 風力発電装置400の断面図である。 風力発電装置400の拡大側面図である。 風力発電装置500の斜視図である。 風力発電装置500の断面図である。
 本発明の実施形態の詳細を、図面を参照しながら説明する。以下の図面では、同一又は相当する部分に同一の参照符号を付し、重複する説明は繰り返さない。
 (第1実施形態)
 第1実施形態に係る風力発電装置(以下においては「風力発電装置100」とする)を説明する。
 <風力発電装置100の構成>
 以下に、風力発電装置100の構成を説明する。
 図1は、風力発電装置100の正面図である。図1に示されるように、風力発電装置100は、風車10と、発電機20とを有している。発電機20は、風車10が後述する中心軸A回りに回転することにより、発電を行う。
 風車10は、垂直軸風車(縦型風車)である。風車10は、軸11と、翼12と、支持材13とを有している。軸11の中心軸を、中心軸Aとする。中心軸Aの方向を、軸方向とする。軸方向に直交し、かつ中心軸Aを通る方向を、径方向とする。風車10は、中心軸A回りに回転可能である。
 軸11は、軸方向に延在している。軸11は、中心軸A回りに回転可能である。翼12は、翼本体部12aと、翼端傾斜部12bと、翼端傾斜部12cとを有している。翼本体部12aは、軸方向に沿って延在している。図2は、図1のII-IIにおける断面図である。図2に示されるように、翼本体部12aは、例えば、軸方向に直交している断面視において、揚力形である。
 軸方向に直交している断面視において、翼本体部12aは、前縁12aaと、後縁12abとを有している。前縁12aaは、風車10の回転方向(図2中に矢印で示されている)の前方側にある翼本体部12aの端である。後縁12abは、風車10の回転方向の後方側にある翼本体部12aの端である。前縁12aaと後縁12abとを結んだ可能線を、翼弦線12acとする。翼弦線12acの方向を、翼弦方向とする。
 図1に示されるように、翼端傾斜部12bは、翼本体部12aの軸方向における一方端(上端)に接続されている。翼端傾斜部12bは、径方向内側に向かって傾斜しながら、翼本体部12aの上端から上方に延在している。翼端傾斜部12cは、翼本体部12aの軸方向における他方端(下端)に接続されている。翼端傾斜部12cは、径方向内側に傾斜しながら、翼本体部12aの下端から下方に延在している。
 支持材13は、径方向に沿って延在している。支持材13が径方向に沿って延在していることにより、軸11と翼12(翼本体部12a)とが接続されている。図2に示されるように、支持材13は、平面視において(軸方向に沿って見た際に)、前端13aと、後端13bとを有している。前端13aは、風車10の回転方向の前方側にある支持材13の端である。後端13bは、風車10の回転方向の後方側にある支持材13の端である。
 支持材13は、第1部分13cと、第2部分13dとを有している。第1部分13cは翼本体部12aに隣接している支持材13の部分であり、第2部分13dは翼本体部12aと反対側から第1部分13cに隣接している支持材13の部分である。
 翼弦方向において、第1部分13cの後端13bの位置は、翼本体部12aに近づくにしたがって、後縁12abの位置に近づいている。このことを別の観点から言えば、第1部分13cの後端13bの位置を示す直線は、第2部分13dの後端13bの位置を示す直線に対して鈍角をなしている。このことをさらに別の観点から言えば、第1部分13cの翼弦方向における幅は、翼本体部12aに近づくにしたがって大きくなっている。
 なお、第1部分13cの前端13aの位置を示す直線は、第2部分13dの前端13aの位置を示す直線は、例えば、同一直線上にある。翼本体部12a側の端における第1部分13cの後端13bの位置は、後縁12abの位置に一致していることが好ましい。また、第1部分13cの後端13bの位置は、翼弦方向において、後縁12abの位置から張り出していないことが好ましい。
 径方向における第1部分13cの長さは、好ましくは、翼弦線12acの長さ(すなわち、翼弦長)以下である。翼弦方向における第2部分13dの幅は、翼弦方向における第1部分13cの幅よりも小さい。但し、第1部分13cと第2部分13dとの境界では、翼弦方向における第2部分13dの幅が、翼弦方向における第1部分13cの幅と等しくなっている。
 <風力発電装置100の効果>
 以下に、風力発電装置100の効果を比較例に係る風力発電装置(以下においては「風力発電装置200」とする)と対比しながら説明する。風力発電装置200の構成は、支持材13の詳細を除いて、風力発電装置100の構成と同一である。
 図3は、風力発電装置200の断面図である。図3には、図1中のII-IIに対応する位置の断面が示されている。図3に示されているように、風力発電装置200では、支持材13が、第1部分13cと第2部分13dとに区分されていない。すなわち、支持材13では、前端13aの位置を示す直線が1つの直線により構成されており、後端13bの位置を示す直線が1つの直線により構成されている。このことを別の観点から言えば、風力発電装置200では、翼弦方向における支持材13の幅が、径方向にわたって一定になっている。
 本発明者らが見出した知見によると、風力発電装置200では、支持材13と翼本体部12aとの接続部よりも回転方向の後方側の位置(図3中の点線で示される領域)に、気流の乱れが発生することがある。この気流の乱れは、翼面(すなわち、翼本体部12aの表面)と干渉して翼面を流れる気流の剥離を誘発する。
 他方で、風力発電装置100では、翼弦方向において、翼本体部12aに近づくにしたがって第1部分13cの後端13bの位置が後縁12abの位置に近づいているため、支持材13が、図3中の点線で示される領域にも存在していることになる。その結果、風力発電装置100では、気流の乱れが発生する位置が、回転方向のさらに後方側に移動し、気流の乱れが翼面と干渉しにくくなる。このように、風力発電装置100によると、翼面を流れる気流の剥離が誘発されにくくなる結果、回転エネルギー変換効率が改善される。
 風力発電装置100では、第1部分13cの後端13b側が後縁12abに向かって張り出しているため、風力発電装置200と比較して、支持材13の重量が増加し、風車10の回転時に支持材13に加わる遠心力が大きくなる。第1部分13cの径方向における長さが翼本体部12aの翼弦長以下である場合には、上記の重量増加を抑制しつつ回転エネルギー変換効率を改善することができる。
 <変形例>
 図4は、変形例に係る風力発電装置100の断面図である。図4には、図1中のII-IIに対応する位置の断面が示されている。図4に示されるように、第1部分13cの後端13bは、曲線状であってもよい。
 (第2実施形態)
 第2実施形態に係る風力発電装置(以下においては「風力発電装置300」とする)を説明する。ここでは、風力発電装置100と異なる点を主に説明し、重複する説明は繰り返さない。
 風力発電装置300は、風車10と、発電機20とを有している。風車10は、軸11と、翼12と、支持材13とを有している。支持材13は、第1部分13cと、第2部分13dとを有している。これらの点に関して、風力発電装置300の構成は、風力発電装置100の構成と共通している。
 図5は、風力発電装置300の斜視図である。図6は、風力発電装置300の断面図である。図6には、図1中のII-IIに対応する位置の断面が示されている。図5及び図6に示されるように、支持材13は、第1部材14と、一対の第2部材15とにより構成されている。この点に関して、風力発電装置300の構成は、風力発電装置100の構成と異なっている。
 第1部材14は、径方向に沿って延在している。これにより、軸11と翼12(翼本体部12a)とは、第1部材14により接続されている。一対の第2部材15は、第1部材14の翼本体部12a側の端部を、軸方向において挟み込んでいる。第2部材15は、板状の部材である。一対の第2部材15及び一対の第2部材15に挟み込まれている第1部材14の端部は第1部分13cを構成しており、一対の第2部材15に挟み込まれていない第1部材14の部分は第2部分13dを構成している。
 風力発電装置300は、第1部分13cを有しているため、風力発電装置100と同様に、翼面を流れる気流の剥離が誘発されにくくなる結果、回転エネルギー変換効率を改善することができる。なお、上記の例では、第1部材14と一対の第2部材15とが別部材であったが、1つの部材により同一の構造とすることによっても同一の効果が得られる。また、図6では、第2部材15が一対の別部材として示されているが、1つの部材を折り曲げることにより同一の構造としてもよい。
 (第3実施形態)
 第3実施形態に係る風力発電装置(以下においては「風力発電装置400」とする)を説明する。ここでは、風力発電装置100と異なる点を主に説明し、重複する説明は繰り返さない。
 <風力発電装置400の構成>
 以下に、風力発電装置400の構成を説明する。
 風力発電装置400は、風車10と、発電機20とを有している。風車10は、軸11と、翼12と、支持材13とを有している。支持材13は、第1部分13cと、第2部分13dとを有している。これらの点に関して、風力発電装置400の構成は、風力発電装置100の構成と共通している。
 図7は、風力発電装置400の断面図である。図7には、図1中のII-IIに対応する位置の断面が示されている。図8は、風力発電装置400の拡大側面図である。図7及び図8に示されるように、風力発電装置400では、第1部分13cの後端13bが後縁12ab側に向かって張り出していない。すなわち、風力発電装置400では、第1部分13cの翼弦方向における幅が、径方向にわたって一定になっている。また、風力発電装置400では、第1部分13cの軸方向における厚さが、第2部分13dの軸方向における厚さよりも小さくなっている。これらの点に関して、風力発電装置400の構成は、風力発電装置100の構成と異なっている。
 風力発電装置400では、好ましくは、翼弦方向における第1部分13cの幅が翼弦方向における第2部分13dの幅よりも小さい。また、風力発電装置400では、好ましくは、径方向における第1部分13cの長さが、翼本体部12aの翼弦長以下である。
 <風力発電装置400の効果>
 以下に、風力発電装置400の効果を説明する。
 側方から見た際の支持材13の投影面積(支持材13の軸方向における厚さ)が大きくなるにしたがって、支持材13から発生する気流の乱れが大きくなる。風力発電装置400では、側方から見た際の投影面積が大きい支持材13の部分(第2部分13d)が翼本体部12aから離れた位置にあるため、支持材13が発生させた気流の乱れが翼本体部12aに干渉しにくくなる。
 また、風力発電装置400では、側方から見た際の投影面積が小さい支持材13の部分(第1部分13c)が翼本体部12aに隣接しているため、周速が大きくなる支持材13の部分での支持材13の回転抵抗を減らすことができ、第2部分13dと比較して発生する気流の乱れを小さくすることができる。そのため、風力発電装置400によると、回転エネルギー変換効率が改善される。
 風力発電装置400では、第1部分13cの断面積が小さくなっているが、第1部分13cの径方向における長さを翼本体部12aの翼弦長以下にすることにより、支持材13の剛性低下を抑制しつつ、回転エネルギー変換効率を改善することができる。
 (第4実施形態)
 第4実施形態に係る風力発電装置(以下においては「風力発電装置500」とする)を説明する。ここでは、風力発電装置100と異なる点を主に説明し、重複する説明は繰り返さない。
 風力発電装置500は、風車10と、発電機20とを有している。風車10は、軸11と、翼12と、支持材13とを有している。支持材13は、第1部分13cと、第2部分13dとを有している。これらの点に関して、風力発電装置500の構成は、風力発電装置100の構成と共通している。
 図9は、風力発電装置500の斜視図である。図10は、風力発電装置500の断面図である。図10には、図1中のII-IIに対応する位置の断面が示されている。図9及び図10に示されるように、第1部分13cの軸方向における厚さは、第2部分13dの軸方向における厚さよりも小さくなっている。この点に関して、風力発電装置500の構成は、風力発電装置100の構成と異なっている。
 風力発電装置500の構成は、風力発電装置100の構成と風力発電装置400の構成とを組み合わせた構成になっている。そのため、風力発電装置500によると、風力発電装置100又は風力発電装置400と比較して、回転エネルギー変換効率をさらに改善することができる。
 以上のように本発明の実施形態について説明を行ったが、上述の実施形態を様々に変形することも可能である。また、本発明の範囲は、上述の実施形態に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更を含むことが意図される。
 上記の実施形態は、垂直軸風車及び垂直軸風車を有する風力発電装置に特に有利に適用される。
 10 風車、11 軸、12 翼、12a 翼本体部、12aa 前縁、12ab 後縁、12ac 翼弦線、12b,12c 翼端傾斜部、13 支持材、13a 前端、13b 後端、13c 第1部分、13d 第2部分、14 第1部材、15 第2部材、20 発電機、100,200,300,400,500 風力発電装置、A 中心軸。

Claims (7)

  1.  風車であって、
     軸と、翼と、支持材とを備え、
     前記風車は、前記軸の中心軸回りに回転可能であり、
     前記翼は、前記中心軸の方向である軸方向に沿って延在している翼本体部を有し、
     前記翼本体部は、前記軸方向に直交している断面視において、前記風車の回転方向の前方側の端である前縁と、前記回転方向の後方側の端である後縁とを含み、
     前記支持材は、前記軸方向に直交し、かつ前記中心軸を通る径方向に沿って延在することにより、前記軸と前記翼本体部とを接続しており、
     前記支持材は、前記翼本体部に隣接している第1部分と、前記翼本体部とは反対側から前記第1部分に隣接している第2部分とを有し、
     前記支持材は、前記回転方向の後方側の端である後端を有し、
     前記前縁と前記後縁とを結んだ翼弦線の方向である翼弦方向において、前記後端の位置は、前記翼本体部に近づくにつれて、前記翼本体部の前記後縁の位置に近づく、風車。
  2.  前記支持材は、前記径方向に延在することにより前記軸と前記翼本体部とを接続している第1部材と、前記第1部材の前記翼本体部側の端部を前記軸方向において挟み込んでいる一対の板状の第2部材とを有する、請求項1に記載の風車。
  3.  前記径方向における前記第1部分の長さは、前記翼弦方向における前記前縁と前記後縁との間の距離である翼弦長以下である、請求項1又は請求項2に記載の風車。
  4.  前記軸方向における前記第1部分の厚さは、前記軸方向における前記第2部分の厚さよりも小さい、請求項1~請求項3のいずれか1項に記載の風車。
  5.  風車であって、
     軸と、翼と、支持材とを備え、
     前記風車は、前記軸の中心軸回りに回転可能であり、
     前記翼は、前記中心軸の方向である軸方向に沿って延在している翼本体部を有し、
     前記支持材は、前記軸方向に直交し、かつ前記中心軸を通る径方向に沿って延在することにより、前記軸と前記翼本体部とを接続しており、
     前記支持材は、前記翼本体部に隣接している第1部分と、前記翼本体部とは反対側から前記第1部分に隣接している第2部分とを有し、
     前記軸方向における前記第1部分の厚さは、前記軸方向における前記第2部分の厚さよりも小さい、風車。
  6.  前記翼本体部は、前記軸方向に直交している断面視において、前記風車の回転方向の前方側の端である前縁と、前記回転方向の後方側の端である後縁とを含み、
     前記径方向における前記第1部分の長さは、前記前縁と前記後縁とを結んだ翼弦線の方向である翼弦方向における前記前縁と前記後縁との間の距離である翼弦長以下である、請求項5に記載の風車。
  7.  請求項1~請求項6のいずれか1項に記載の前記風車と、
     前記風車の前記中心軸回りの回転により発電を行う発電機とを備える、風力発電装置。
PCT/JP2022/011605 2021-03-22 2022-03-15 風車及び風力発電装置 WO2022202488A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-047220 2021-03-22
JP2021047220A JP2022146320A (ja) 2021-03-22 2021-03-22 風車及び風力発電装置

Publications (1)

Publication Number Publication Date
WO2022202488A1 true WO2022202488A1 (ja) 2022-09-29

Family

ID=83397223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011605 WO2022202488A1 (ja) 2021-03-22 2022-03-15 風車及び風力発電装置

Country Status (2)

Country Link
JP (1) JP2022146320A (ja)
WO (1) WO2022202488A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201950A (ja) * 2001-12-27 2003-07-18 Fjc:Kk 自然力を利用した回動車
JP2005016479A (ja) * 2003-06-27 2005-01-20 Fjc:Kk 回転車の羽根並びに回転車
JP2005061328A (ja) * 2003-08-13 2005-03-10 Fjc:Kk 風車の羽根並びに縦軸風車
JP3176902U (ja) * 2012-02-23 2012-07-12 芳彦 秋岡 風力発電装置のブレードおよびこれを用いた風力発電装置
JP2016156325A (ja) * 2015-02-25 2016-09-01 株式会社Lixil 垂直軸型風車
JP2017066878A (ja) * 2015-09-28 2017-04-06 株式会社Lixil 風力発電用の翼部材
WO2018168705A1 (ja) * 2017-03-13 2018-09-20 Ntn株式会社 垂直軸風車および風力発電装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201950A (ja) * 2001-12-27 2003-07-18 Fjc:Kk 自然力を利用した回動車
JP2005016479A (ja) * 2003-06-27 2005-01-20 Fjc:Kk 回転車の羽根並びに回転車
JP2005061328A (ja) * 2003-08-13 2005-03-10 Fjc:Kk 風車の羽根並びに縦軸風車
JP3176902U (ja) * 2012-02-23 2012-07-12 芳彦 秋岡 風力発電装置のブレードおよびこれを用いた風力発電装置
JP2016156325A (ja) * 2015-02-25 2016-09-01 株式会社Lixil 垂直軸型風車
JP2017066878A (ja) * 2015-09-28 2017-04-06 株式会社Lixil 風力発電用の翼部材
WO2018168705A1 (ja) * 2017-03-13 2018-09-20 Ntn株式会社 垂直軸風車および風力発電装置

Also Published As

Publication number Publication date
JP2022146320A (ja) 2022-10-05

Similar Documents

Publication Publication Date Title
JP3451085B1 (ja) 風力発電用の風車
JP4174473B2 (ja) 改良されたタービン
US9945357B2 (en) Flexible flap arrangement for a wind turbine rotor blade
CN102099571A (zh) 立轴式大流士风车
JP2015031227A (ja) 風車
JP3935804B2 (ja) 翼及びこれを備える風力発電装置
JP2012052443A (ja) プロペラファン
JP4184847B2 (ja) 風車装置及びそれを用いた風力発電装置
JP2016079905A (ja) 後縁側パネル
JP2004084590A (ja) ウイングレット付き風車
WO2022202488A1 (ja) 風車及び風力発電装置
WO2009093337A1 (ja) 垂直軸型風車
WO2012053424A1 (ja) 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法
JP2017166324A (ja) タービン用t形先端翼
WO2022202358A1 (ja) 風車及び風力発電装置
JP7469126B2 (ja) 風車翼アセンブリ及び風車
KR101073096B1 (ko) 수직축형 다리우스 풍차
JP2004308550A (ja) 風力タービン発電装置
JP2004183640A (ja) フラップを具備する風車ブレード
JP2023115519A (ja) 風車及び風力発電装置
JP6904766B2 (ja) 垂直軸風車および風力発電装置
WO2018135093A1 (ja) ロータ
WO2022054800A1 (ja) 垂直軸風車および垂直軸風力発電装置
JP4796196B1 (ja) 風力発電装置および風力発電装置の羽根
JP4389285B2 (ja) ジェットファン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775278

Country of ref document: EP

Kind code of ref document: A1