JP2015031227A - 風車 - Google Patents

風車 Download PDF

Info

Publication number
JP2015031227A
JP2015031227A JP2013162628A JP2013162628A JP2015031227A JP 2015031227 A JP2015031227 A JP 2015031227A JP 2013162628 A JP2013162628 A JP 2013162628A JP 2013162628 A JP2013162628 A JP 2013162628A JP 2015031227 A JP2015031227 A JP 2015031227A
Authority
JP
Japan
Prior art keywords
blade
flexible portion
wing
wind turbine
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013162628A
Other languages
English (en)
Inventor
山内 雅和
Masakazu Yamauchi
雅和 山内
黒田 賢一
Kenichi Kuroda
賢一 黒田
道久 蔦原
Michihisa Tsutahara
道久 蔦原
智也 中嶋
Tomoya Nakajima
智也 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2013162628A priority Critical patent/JP2015031227A/ja
Publication of JP2015031227A publication Critical patent/JP2015031227A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

【課題】低風速域における始動性に優れ、かつ高風速域において高い効率が得られる風車を提供する。【解決手段】垂直軸風車1は、地面に対して垂直に設けられた支軸2と、支軸2に沿って設けられ、風力を受けて支軸2の周りを回転する回転翼3と、回転翼3の回転軌跡の外側に、回転翼3に沿って隣接かつ固定して設けられた固定翼5とを具える。回転翼3は、翼本体31と、可撓性を有し、翼本体31の回転方向後縁に固着されている可撓部32とからなる。【選択図】図1

Description

本発明は、風車に関する。
従来から、風力発電等に用いられる風車においては、回転翼を支持する支軸が水平に配設された水平軸風車と、支軸が地面に対して垂直に配設された垂直軸風車とが知られている。水平軸風車は、風向きの変化に応じて風車の方向を転換制御する必要があるため、構造が複雑であり、導入に際して相応のコストを要する。一方、垂直軸風車は、風向きの変化に応じて風車の方向を転換制御する必要がないため、簡素な構成とすることができ、幅広い用途で普及が期待されている。
垂直軸風車は、例えば、ジャイロミル型と称される揚力型風車と、例えば、サポニウス型、ロビンソン型と称される抗力型風車とに分類される。揚力型風車は、主として回転翼に生ずる揚力から回転力を得る風車であり、抗力型風車は、主として回転翼に生ずる抗力から回転力を得る風車である。
揚力型風車は、低風速域における起動トルクを確保することが困難であり、2〜4m/sの低風速では起動できなかった。これは、低風速時に翼に発生する揚力が不足するためである。揚力型風車は、垂直軸風車の中では比較的良好なエネルギー変換効率(以下、単に効率と記すこともある。)を有しているが、水平軸風車と比較すると効率が低く、実用化に向けてさらなる改良が望まれている。
一方、抗力型風車は、低風速域において良好な起動性を有するものの、高風速域において損失が大きく、十分な効率を得ることができないという欠点を有する。
下記特許文献1では、揚力型風車の一例として、回転翼の回転軌跡の外側に設けられた集風翼と、集風翼の上下方向の外側に設けられた拡散防止部によって効率を高めた垂直軸風車が開示されている。
下記特許文献2では、回転翼の後縁に可撓性を有する後縁ヒレが設けられることにより、騒音を低減した風車が開示されている。
特開2010−196600号公報
特開2011−64084号公報
しかしながら、揚力型風車に上記特許文献1に示された拡散防止面を適用しても、依然として低風速域における起動トルクが不十分で、始動性を高めるのは困難であった。さらに、上記特許文献1に示された集風翼は、風向きが変化するとその集風機能を十分に発揮できないという問題がある。かかる揚力型風車に上記特許文献2に示された騒音を低減するための後縁ヒレに関する技術を組み合わせても、事情は変わらない。
本発明は、以上のような実状に鑑み案出されたもので、低風速域における始動性に優れ、かつ高風速域において高い効率が得られる風車を提供することを主たる目的としている。
本発明は、支軸と、前記支軸に沿って設けられ、風力を受けて前記支軸の周りを回転する回転翼と、前記回転翼の回転軌跡の外側に、該回転翼に沿って隣接かつ固定して設けられた固定翼とを具えた風車であって、前記回転翼は、翼本体と、可撓性を有し、前記翼本体の回転方向後縁に固着されている可撓部とを有することを特徴とする。
本発明に係る前記風車において、前記翼本体は、水平面に沿った断面において、その厚さの中心線に対して対称な翼型であることが望ましい。
本発明に係る前記風車において、水平面に沿った断面において、前記可撓部は、厚さが一定の平板であることが望ましい。
本発明に係る前記風車において、水平面に沿った断面において、前記可撓部の翼弦長は、前記翼本体の翼弦長の50%〜100%であることが望ましい。
本発明に係る前記風車において、水平面に沿った断面において、前記可撓部の厚さは、前記翼本体の厚さの1%〜50%であることが望ましい。
本発明に係る前記風車において、前記可撓部が、ゴムを含んでいることが望ましい。
本発明に係る前記風車において、前記ゴムの複素弾性率は、0.02〜0.07GPaであることが望ましい。
本発明に係る前記風車において、前記ゴムの厚さは、0.5〜3.0mmであることが望ましい。
本発明に係る前記風車において、前記可撓部が、樹脂を含んでいることが望ましい。
本発明に係る前記風車において、前記樹脂の複素弾性率は、1.5〜4.5GPaであることが望ましい。
本発明に係る前記風車において、前記樹脂の厚さは、0.1〜0.7mmであることが望ましい。
本発明に係る前記風車において、水平面に沿った断面において、前記固定翼は、前記支軸の半径方向の外縁と内縁とを有し、前記外縁から前記内縁に向かって回転翼の回転方向の前方に向くように、傾斜していることが望ましい。
本発明に係る前記風車において、前記回転翼の枚数と前記固定翼の枚数が異なることが望ましい。
本発明に係る前記風車において、水平面に沿った断面において、前記固定翼の翼弦長が、前記回転翼の翼弦長の70%〜200%であることが望ましい。
本発明に係る前記風車において、前記回転翼のソリディティーが0.1〜0.3であることが望ましい。
本発明の風車によれば、固定翼と回転翼との間で生ずる翼翼干渉によって、回転翼の発生する揚力が増加し、風車の揚力型風車としての機能、すなわち高風速域における効率が高められる。低風速域にあっては、翼本体の回転方向後縁が風上側に位置したとき、可撓部が風力及び遠心力を受けて撓むことにより、抗力型風車としての機能が高められる。一方、翼本体の回転方向後縁が風下側に位置したとき、可撓部の撓み変形は減少し、可撓部の空気抵抗も減少する。さらには、回転翼が低速で回転している際に、翼本体の回転方向に垂直な方向から風を受けたとき、可撓部が風力を受けて撓むことにより、可撓部の表面の圧力差による力が翼前縁方向に傾き、回転翼に推力が生ずる。これにより、本発明の風車は、低風速域における優れた始動性と高風速域における高い効率とを両立しうる。
本発明の風車の一実施形態を示す斜視図である。 図1の風車の断面図である。 回転翼の構成を示す平面図である。 図2の回転翼と固定翼との翼翼干渉を示す断面図である。 風向きと回転翼の可撓部との関係を示す平面図である。 風向きと回転翼の可撓部との関係を示す別の平面図である。 風向きと回転翼の可撓部との関係を示すさらに別の平面図である。 風向きと回転翼の可撓部との関係を示すさらに別の平面図である。 図1の風車の変形例を示す斜視図である。 本発明の比較例1における周速比とエネルギー変換効率との関係を示すグラフである。 本発明の比較例2における周速比とエネルギー変換効率との関係を示すグラフである。 本発明の実施例1における周速比とエネルギー変換効率との関係を示すグラフである。 本発明の実施例2における周速比とエネルギー変換効率との関係を示すグラフである。
以下、本発明の実施の一形態が図面に基づき説明される。
図1は、本発明の風車の一実施形態である垂直軸風車1の構成を示す斜視図であり、図2は、その水平面に沿った断面図である。図2においては、垂直軸風車1の右側の風上から風Wが吹いている状態が示される。垂直軸風車1は、地面に対して垂直に設けられた支軸2と、風力を受けて回転する回転翼3と、回転翼3と支軸2とを連結するアーム4と、回転翼3の回転軌跡の外側に固定されている固定翼5と、支軸2を回転自在に支持する軸受部6と、固定翼5と軸受部6とを連結するアーム7とを具えている。
本実施形態の垂直軸風車1は、支軸2を水平又は斜めに傾けて設置することも可能である。例えば、水力発電に上記構成を適用する場合、海流の方向に応じて支軸2を水平等に設置してもよい。
支軸2は、アーム4を介して、回転翼3を支持すると共に、回転翼3と一体に矢印R方向に回転する。支軸2の回転力は、垂直軸風車1の出力として、発電装置(図示せず)等に伝達される。本実施形態においては、支軸2が回転翼3と共に回転するように構成されているが、例えば、固定された支軸の周りを円筒状の回転体が回転する形態であってもよい。この場合、回転体は、アーム4を介して回転翼3と一体に回転し、その回転力は発電装置等に伝達される。
回転翼3は、上下に配設された一対のアーム4によって、支軸2に沿って支軸2と平行に設けられている。回転翼3は、風力を受けて揚力及び抗力を発生し、支軸2の周りを回転する。本実施形態においては、3枚の回転翼3がそれぞれ等間隔に設けられている。それぞれの回転翼3は、支軸2の径方向から視て矩形状に形成されている。回転翼3は、支軸2の径方向又は回転翼3の回転方向に、弓形に湾曲して形成されていてもよい。すなわち回転翼3は、そりが支軸2の径方向の外側又は内側に膨らんだ形状であってもよく、そりが回転方向の前方側又は後方側に膨らんだ形状であってもよい。
回転翼3は、翼本体31と、可撓部32とを有している。翼本体31は、アーム4と連結されている。翼本体31は、水平面に沿った断面において、その厚さの中心線CLに対して対称な翼型に形成されている。本実施形態においては、例えば、NACA(National Advisory Committee for Aeronautics)0015に準拠する形状が、翼型に採用されている。NACA0015は、翼弦長の15%の厚さを有する翼型である。このような厚さを有し中心線CLに対して対称な翼型の翼本体31は、高風速域における空気抵抗の減少に寄与し、垂直軸風車1の効率が高められる。
翼本体31は、非対称な翼型を有していてもよい。例えば、中心線CLに対して、上下で厚みの分布が異なるものや、中心線CLが円弧等の曲線を描くものであってもよい。このような非対称な翼型の翼本体31は、回転翼3が発生する揚力の増大に寄与する。
翼本体31には、例えば、アルミニウム等の軽量金属や、繊維等によって強化された強化樹脂等の実質的に剛体とみなされる材料が用いられるが、ウレタン樹脂等のある程度の変形を許容する材料が用いられていてもよい。
可撓部32は、翼本体31の回転方向後縁に固着されている。可撓部32には、例えば、板状のゴムやフイルム状の樹脂等の可撓性を有する弾性体が用いられている。可撓部32は、風力の他、回転翼3に生ずる遠心力を受けて、撓み変形する。
アーム4は、回転翼3と共に支軸2の周りを回転しながら、回転翼3が発生した揚力を支軸2に伝達する。
固定翼5は、回転翼3に沿って回転翼3と平行にかつ隣接して設けられている。固定翼5には、例えば、金属や樹脂等の材料が用いられている。図2に示す水平面に沿った断面において、固定翼5は、支軸2の半径方向の外縁5aと内縁5bとを有する。固定翼5の内縁5bは、回転翼3の回転軌跡に隣接するように配置されている。固定翼5は、アーム7を介して軸受部6と連結されている。固定翼5は、垂直軸風車1の架台又は地面等に直接固定されていてもよい。本実施形態においては、4枚の固定翼5がそれぞれ等間隔に設けられている。固定翼5は、水平面に沿った断面において、厚みが一定の平板によって構成されているが、翼型に形成されていてもよい。
軸受部6は、地面に対して垂直な起立姿勢で固定されている。軸受部6によって、支軸2が地面に対して垂直かつ回転自在に支持される。さらには、軸受部6によって、アーム7を介して固定翼5が支持される。
図3は、回転翼3の平面図を示している。翼本体31の後端部には、可撓部32が挿入されるスリット31sが形成されている。スリット31sは、中心線CLに対して対称に形成されている。可撓部32の前縁部32aは、翼本体31のスリット31sに挿入され、翼本体31の後端部に固着されている。
図4は、固定翼5の近傍を通過した直後の回転翼3を示している。(a)においては、図2における右上に位置する固定翼5Aが示され、(b)においては、図2における右下に位置する固定翼5Bが示される。一方の翼が他方の翼の近傍を通過する直後に、各翼の相互干渉により各翼に発生する揚力が増す翼翼干渉と称される現象が知られている。本発明にあっては、回転翼3が固定翼5の近傍を通過し翼翼干渉の直後に翼周りの循環が増加することにより、回転翼3の揚力が増すことを利用して、風車の効率が高められる。
図4において、回転翼3には、回転翼3の速度uと風Wの速度とが合成された、回転翼3を基準とした空気の相対的な流れVが生ずる。この回転翼3を基準とした空気の相対的な流れVは、回転翼3に揚力Lを生じさせる。ここで、揚力Lは、空気の相対的な流れVに垂直な方向に発生する。一方、回転翼3と固定翼5の周りの空気には、矢印C1、C2にて示す循環が生じている。この循環とは、翼の後に残った渦と反対方向に、翼周りに回転する空気の流れである。回転翼3が固定翼5の近傍を通過した直後、回転翼3と固定翼5との相互作用により、回転翼3の循環C1が増幅され、回転翼3に発生する揚力Lが増加する。回転翼3が発生する揚力Lは、アーム4を介して支軸2に伝達され、回転翼3の回転方向(速度uの方向、すなわち、回転翼3の回転円の接線方向)の成分が支軸2の回転力を増加させ、垂直軸風車1の効率を高める。このような循環の増幅により揚力が増加する作用は、翼翼干渉と称される。翼翼干渉については、例えば、学術論文:蔦原道久,木村雄吉,「Weis−Foghメカニズムの2次元モデルにおける流れ」,流れの可視化,6−22,301−306(1986)等において、説明されている。
図1に示されるように、固定翼5は、矩形状に形成されている。固定翼5のスパンは、翼翼干渉を回転翼3のスパン全域にわたって有効に発生させるために、回転翼3のスパンと同等以上であることが望ましい。
回転翼3と固定翼5とは、共振を防止するため、互いに異なる枚数であるのが望ましい。図1及び2に示されるように、本実施形態においては、3枚の回転翼3と4枚の固定翼5とが適用されている。固定翼5の枚数は、4〜16枚が好ましい。固定翼5の枚数が4枚未満である場合、回転翼3の回転軌跡の全域にわたって、回転翼3と固定翼5との翼翼干渉を発生させることが困難となる。一方、固定翼5の枚数が16枚を超える場合、回転翼3に十分な風があたらなくなり、回転翼3の発生する揚力が低下するおそれがある。
図2に示す水平面に沿った断面において、固定翼5の翼弦長cd2は、回転翼3の翼弦長cd1の70%〜200%であるのが望ましい。固定翼5の翼弦長cd2が回転翼3の翼弦長cd1の70%未満である場合、回転翼3と固定翼5との間で翼翼干渉が発生しづらくなり、固定翼5が単なる角柱状の障害物となり、回転翼3の揚力を十分に高めることができないおそれがある。一方、固定翼5の翼弦長cd2が回転翼3の翼弦長cd1の200%を超える場合、固定翼5が、特定の方向からの風の流れを阻害する風防板として働くため、全方位からの風に対して同様な回転力を得ることが困難となり、垂直軸風車の長所が阻害されるおそれがある。
図2に示すように、本実施形態においては、全ての固定翼5は、その外縁5aから内縁5bに向かって回転翼3の回転方向Rの前方に向くように、傾斜している。このため、回転翼3と固定翼5との間で翼翼干渉が生じ易くなり、回転翼3に発生する揚力Lが増加する。支軸2の半径方向に対する固定翼5の内縁5bにおける傾斜角θ(図2参照)は、 0度〜45度であるのが望ましい。支軸2の半径方向に対する固定翼5の内縁5bにおける傾斜角θが 0度未満である場合、回転翼3に流入する風が回転翼3の回転方向Rとは逆方向となり、回転翼3の回転を妨げる。支軸2の半径方向に対する固定翼5の内縁5bにおける傾斜角θが45度を超える場合、風が風車内に流入又は風車内から流出する際に、固定翼5が大きな障害となる。
図5は、翼本体31の前縁31aの側から風Wが吹く場合、すなわち、翼本体31の前縁31aが風上側に向く(翼本体31の後縁31bが風下側に位置する)場合における可撓部32の状態を示している。回転翼3の回転に伴い、可撓部32は、支軸2の径方向外側に遠心力を受ける。ところが、回転翼3の周囲を流れる空気によって、可撓部32は矯正され、略直線状の形状をとる。このような可撓部32は、高風速域における空気抵抗の減少に寄与し、垂直軸風車1の効率が高められる。
図6は、翼本体31の後縁31bの側から風Wが吹く場合、すなわち、翼本体31の後縁31bが風上側に位置する場合における可撓部32の状態を示している。回転翼3の回転に伴い、可撓部32は、支軸2の径方向外側に遠心力を受ける。かかる遠心力によって湾曲された可撓部32に後方から風Wが吹くと、抗力により可撓部32の変形は助長され、さらに抗力が増加する。このような可撓部32は、支軸2の回転力を増加させ、垂直軸風車1の効率を高める。なお、回転翼3が停止している場合、可撓部32に遠心力は作用しないが、かかる場合であっても、風Wが可撓部32の斜め後方から吹いた場合は、上記と同様に可撓部32が変形し、抗力が増加する。
可撓部32の撓みの程度は、可撓部32の翼弦長、弾性率、厚さ等に依存する。例えば、可撓部32の翼弦長が短すぎる場合、弾性率が高すぎる場合又は厚さが大きすぎる場合にあっては、図6において一点鎖線にて示すように、可撓部32の撓みが不足し、抗力が低下する。一方、可撓部32の翼弦長が長すぎる場合、弾性率が低すぎる場合又は厚さが小さすぎる場合にあっては、図6において破線にて示すように、可撓部32は過度に撓み、抗力が低下する。
図7は、アーム4と平行に翼本体31の外側から支軸2に向かって風Wが吹く場合、すなわち、翼本体31の外側が風上側に位置する場合における可撓部32の状態を示している。この状態にあっては、可撓部32は、風Wを受けて内方に撓み、可撓部32の表面に生じた圧力差による力Fは、撓んだ可撓部32により翼前縁方向に傾く。すなわち、可撓部32の外側の圧力が、内側の圧力よりも高くなり、可撓部32は、翼前縁方向に力Fを受ける。この力Fの回転方向Rの成分は、推力Thとして作用し、回転翼3の回転を推進する。
図8は、アーム4と平行に支軸2から翼本体31の内側に向かって風Wが吹く場合、すなわち、翼本体31の内側が風上側に位置する場合における可撓部32の状態を示している。上記と同様に、可撓部32は、風Wを受けて外方に撓み、可撓部32の表面に生じた圧力差による力Fは、撓んだ可撓部32により翼前縁方向に傾く。すなわち、可撓部32の内側の圧力が、外側の圧力よりも高くなり、可撓部32は、翼前縁方向に力Fを受ける。この力Fの回転方向Rの成分は、推力Thとして作用し、回転翼3の回転を推進する。
本実施形態においては、可撓部32が適度に撓むように、可撓部32は、ゴム、樹脂又は金属等の弾性体を含む材料によって構成されている。可撓部32が、ゴム又は樹脂を含む材料によって構成されている場合は、上記弾性率として複素弾性率が適用される。そして、以下に示すとおり、可撓部32の翼弦長、弾性率、厚さ等の仕様が設定されている。可撓部32の撓みは、風力によって異なるので、可撓部32の各仕様は、垂直軸風車1を設置する場所の風況に応じて設定される。
図3に示されるように、可撓部32のうち、翼本体31の後縁31bから突出された部分の長さを可撓部32の翼弦長cd4とすると、可撓部32の翼弦長cd4は、翼本体31の翼弦長cd3の50%〜100%であるのが望ましい。可撓部32の翼弦長cd4が翼本体31の翼弦長cd3の50%未満である場合、可撓部32の撓みが不足し、抗力が低下する。一方、可撓部32の翼弦長cd4が翼本体31の翼弦長cd3の100%を超える場合、可撓部32は過度に撓み、抗力が低下する。ここで、翼本体31の翼弦長cd3と可撓部32の翼弦長cd4との和cd3+cd4は、回転翼3の翼弦長cd1(図2参照)と等しい。
図3において、可撓部32の厚さtn2は、翼本体31の厚さtn1の1%〜50%であることが望ましい。可撓部32の厚さtn2が、翼本体31の厚さtn1の1%未満である場合、可撓部32は過度に撓み、抗力が低下する。一方、可撓部32の厚さtn2が、翼本体31の厚さtn1の50%を超える場合、可撓部32の撓みが不足し、抗力が低下する。
可撓部32がゴムからなる場合、その複素弾性率は、0.02〜0.07GPaであることが望ましい。ゴムの複素弾性率が、0.02GPa未満である場合、可撓部32は過度に撓み、抗力が低下する。一方、ゴムの複素弾性率が、0.07GPaを超える場合、可撓部32の撓みが不足し、抗力が低下する。さらには、ゴムの厚さは、0.5〜3.0mmであることが望ましい。ゴムの厚さが、0.5mm未満である場合、可撓部32は過度に撓み、抗力が低下する。一方、ゴムの厚さが、3.0mmを超える場合、可撓部32の撓みが不足し、抗力が低下する。
なお、本明細書において前記複素弾性率は、JIS−K6394の規定に準じ、下記の条件で(株)岩本製作所製の粘弾性スペクトロメータを用いて測定された値である。
初期歪:10%
振幅:±1%
周波数:10Hz
変形モード:引張
測定温度:20°C
可撓部32が樹脂からなる場合、その複素弾性率は、1.5〜4.5GPaであることが望ましい。樹脂の複素弾性率が、1.5GPa未満である場合、可撓部32は過度に撓み、抗力が低下する。一方、樹脂の複素弾性率が、4.5GPaを超える場合、可撓部32の撓みが不足し、抗力が低下する。さらには、樹脂の厚さは、0.1〜0.7mmであることが望ましい。樹脂の厚さが、0.1mm未満である場合、可撓部32は過度に撓み、抗力が低下する。一方、樹脂の厚さが、0.7mmを超える場合、可撓部32の撓みが不足し、抗力が低下する。
図3に示す断面において、可撓部32は、厚さが一定の平板であるのが望ましい。このような可撓部32は、製造が容易で、垂直軸風車1の製造コストを低減しうる。。このような可撓部32は、前縁から後縁にかけて厚さが漸減する可撓部と比較すると、後縁の質量が大きいため、後縁に発生する遠心力が大きくなる。これにより、翼本体31の後縁31bの側から風Wが吹く場合、図6において、実線にて示されるように、可撓部32が適度に撓みやすくなり、抗力が増大する。
回転翼3のソリディティーは、0.1〜0.3であることが望ましい。ソリディティとは、回転翼の翼面積/受風面積で定義される風車諸元であり、本実施形態のような垂直軸風車1にあっては、回転翼3の翼弦長cd1×回転翼3の枚数/回転翼3の回転円の周長で表される。回転翼3のソリディティーが、0.1未満である場合、高速回転に適する回転翼3が得られるものの、回転力が低下し、これに伴い垂直軸風車1の出力が十分に高められないおそれがある。一方、回転翼3のソリディティーが、0.3を超える場合、低風速域で大きな回転力が得られる反面、支軸2、回転翼3及びアーム4等によって構成される回転体の支軸2周りの慣性モーメントが増大し、回転翼3の停止状態からの始動性が悪化するおそれがある。
図9には、垂直軸風車1の変形例である垂直軸風車10が示される。垂直軸風車10においては、回転翼3の可撓部33及び固定翼53の形態が変形されている。すなわち、可撓部33は、支軸2の軸方向において、部分的に形成されている。さらには、可撓部33が遠心力及び風力を受けて支軸2の半径方向の外側に撓んだとき、可撓部33の後縁との当接を回避しうるように、固定翼53の内縁53bには退避部53cが設けられている。退避部53cは、可撓部33の位置、大きさ、形状に対応して形成されている。かかる可撓部33及び固定翼53によって、両者の当接に伴う音の発生が防止され、垂直軸風車10の動作音が低減される。
以上のような構成を有する本実施形態の垂直軸風車1によれば、固定翼5と回転翼3との間で生ずる翼翼干渉によって、回転翼3の発生する揚力が増加し、垂直軸風車1の揚力型風車としての機能、すなわち高風速域における効率が高められる。低風速域にあっては、翼本体31の後縁31bが風上側に位置したとき、可撓部32が風力及び遠心力を受けて撓むことにより、抗力型風車としての機能が高められる。一方、翼本体31の後縁31bが風下側に位置したとき、可撓部32の撓み変形は減少し、可撓部32の空気抵抗も減少する。さらには、回転翼3が低速で回転している際に、翼本体31の回転方向に垂直な方向から風Wを受けたとき、可撓部32が風力を受けて撓むことにより、可撓部32の表面の圧力差による力が翼前縁方向に傾き、回転翼3に推力が生ずる。これにより、本発明の垂直軸風車1は、低風速域における優れた始動性と高風速域における高い効率とを両立しうる。
以上、本発明の垂直軸風車1等が詳細に説明されたが、本発明は上記の具体的な実施形態に限定されることなく種々の態様に変更して実施される。
図1の基本構造をなす垂直軸風車が、表1の仕様に基づき試作され、ゲッチンゲン型の風洞に持ち込まれて、風の運動エネルギーから風車の回転エネルギーへのエネルギー変換効率Cpがテストされた。比較例2及び実施例1、2においては、厚さ0.35mmの平板状のPET(Polyethylene terephthalate)樹脂からなる可撓部が回転翼の後縁に設けられている。垂直軸風車の支軸には発電機が連結されており、この発電機をモーターとして機能させることにより、支軸の回転がアシストされ、周速比が高められる。
Figure 2015031227
テスト方法は、以下の通りである。
<エネルギー変換効率>
各垂直軸風車について、回転翼の周速比を変更しながらエネルギー変換効率Cpが測定された。ここで、周速比及びエネルギー変換効率Cpは、以下の数式で定義される。
周速比=回転翼の翼端の速度/風速
=2πrR/V
Cp =風車の回転エネルギー/風の運動エネルギー
=2πRT/(1/2)ρSV
ただし、符号は次の通りである。
R:風車の回転速度
T:風車の軸トルク
ρ:空気の密度
S:風車の投影面積 (回転直径×翼スパン)
V:風速
r:風車の回転半径
結果は、図10乃至図13に示されるように、周速比を横軸に、エネルギー変換効率Cpを縦軸にとったグラフ上にプロットされた。各図において、エネルギー変換効率Cpが負値をとる周速比の領域では、発電機がモーターとして機能し、支軸の回転をアシストしている。
図10は、比較例1に係る垂直軸風車のテスト結果である。この比較例1においては、回転翼の可撓部及び固定翼が省略されている。そのため、抗力型風車としての機能が不十分であり、低周速比域(周速比が0.3〜0.6の領域)においてエネルギー変換効率Cpのピークが存在しない。
図11は、比較例2に係る垂直軸風車のテスト結果である。この比較例2においては、回転翼に可撓部が装着されている。そのため、回転翼に装着された可撓部によって抗力型風車としての機能が発揮され、低周速比域におけるエネルギー変換効率Cpのピークが存在する。図7、図8で示される可撓部の撓みによる推力も、抗力と同様にエネルギー変換効率Cpの向上に寄与している。しかしながら、固定翼が省略されているので、揚力型風車としての機能が不十分であり、高周速比域(周速比が1.0〜1.2の領域)におけるエネルギー変換効率Cpのピークは期待されるほどには得られない。
図12は、実施例1に係る垂直軸風車のテスト結果である。この実施例1においては、回転翼に可撓部が装着されているのに加えて、回転翼の外側に固定翼が設けられている。これにより、低周速比域のみならず高周速比域においても十分なエネルギー変換効率Cpのピークが存在する。これは、回転翼と固定翼との間に発生する翼翼干渉によって回転翼の揚力が増大し、すなわち揚力型風車としての機能が増大したためであると考えられる。
図13は、実施例2に係る垂直軸風車のテスト結果である。この実施例2においては、上記実施例1の構成に加えて、回転翼の傾斜角θが45度に設定されている。これにより、実施例1と比較すると、低周速比域から高周速比域の略全域にわたって、回転翼の揚力が増大しエネルギー変換効率Cpが高められている。これは、回転翼に適切な傾斜角θが付与されたことにより、回転翼と固定翼との間に発生する翼翼干渉効果が増強され、揚力型風車としての機能がより一層高められたためであると考えられる。
実施例2においては、周速比が1.3未満の領域で、特に高いエネルギー変換効率Cpが得られている。この周速比が1.3未満の領域は、水平軸プロペラ風車において高いエネルギー変換効率Cpが得られる領域と比較すると低い。このため、実施例2に係る垂直軸風車によれば、小さいサイズの風車を低回転で運用しても、十分な軸トルクと高いエネルギー変換効率Cpが得られることとなり、風車の製造コストが低減されると共に、設置の自由度が高められる。
表1及び図10乃至13から明らかなように、実施例の垂直軸風車は、比較例に比べて、低周速比域から高周速比域の略全域にわたって、エネルギー変換効率が有意に向上していることが確認できた。
1 垂直軸風車
2 支軸
3 回転翼
5 固定翼
31 翼本体
32 可撓部

Claims (15)

  1. 支軸と、前記支軸に沿って設けられ、風力を受けて前記支軸の周りを回転する回転翼と、前記回転翼の回転軌跡の外側に、該回転翼に沿って隣接かつ固定して設けられた固定翼とを具えた風車であって、
    前記回転翼は、翼本体と、可撓性を有し、前記翼本体の回転方向後縁に固着されている可撓部とを有することを特徴とする風車。
  2. 前記翼本体は、水平面に沿った断面において、その厚さの中心線に対して対称な翼型である請求項1記載の風車。
  3. 水平面に沿った断面において、前記可撓部は、厚さが一定の平板である請求項1又は2に記載の風車。
  4. 水平面に沿った断面において、前記可撓部の翼弦長は、前記翼本体の翼弦長の50%〜100%である請求項1乃至3のいずれかに記載の風車。
  5. 水平面に沿った断面において、前記可撓部の厚さは、前記翼本体の厚さの1%〜50%である請求項1乃至4のいずれかに記載の風車。
  6. 前記可撓部が、ゴムを含んでいる請求項1乃至5のいずれかに記載の風車。
  7. 前記ゴムの複素弾性率は、0.02〜0.07GPaである請求項6記載の風車。
  8. 前記ゴムの厚さは、0.5〜3.0mmである請求項6又は7に記載の風車。
  9. 前記可撓部が、樹脂を含んでいる請求項1乃至5のいずれかに記載の風車。
  10. 前記樹脂の複素弾性率は、1.5〜4.5GPaである請求項9記載の風車。
  11. 前記樹脂の厚さは、0.1〜0.7mmである請求項9又は10に記載の風車。
  12. 水平面に沿った断面において、前記固定翼は、前記支軸の半径方向の外縁と内縁とを有し、前記外縁から前記内縁に向かって回転翼の回転方向の前方に向くように、傾斜している請求項1乃至11のいずれかに記載の風車。
  13. 前記回転翼の枚数と前記固定翼の枚数が異なる請求項1乃至12のいずれかに記載の風車。
  14. 水平面に沿った断面において、前記固定翼の翼弦長が、前記回転翼の翼弦長の70%〜200%である請求項1乃至13のいずれかに記載の風車。
  15. 前記回転翼のソリディティーが0.1〜0.3である請求項1乃至14のいずれかに記載の風車。
JP2013162628A 2013-08-05 2013-08-05 風車 Pending JP2015031227A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013162628A JP2015031227A (ja) 2013-08-05 2013-08-05 風車

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013162628A JP2015031227A (ja) 2013-08-05 2013-08-05 風車

Publications (1)

Publication Number Publication Date
JP2015031227A true JP2015031227A (ja) 2015-02-16

Family

ID=52516755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013162628A Pending JP2015031227A (ja) 2013-08-05 2013-08-05 風車

Country Status (1)

Country Link
JP (1) JP2015031227A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105003381A (zh) * 2015-05-29 2015-10-28 邓允河 一种水下垂直轴稳定型发电机
CN105041553A (zh) * 2015-05-29 2015-11-11 邓允河 一种悬浮式水下垂直轴发电机
CN105041552A (zh) * 2015-05-29 2015-11-11 邓允河 一种垂直轴水力发电机
CN105041561A (zh) * 2015-05-29 2015-11-11 邓允河 一种水下垂直轴发电机
CN105179139A (zh) * 2015-05-29 2015-12-23 邓允河 一种垂直轴水力发电机
CN107993541A (zh) * 2018-01-25 2018-05-04 王宝堃 一种物理实验用的垂直轴风力发电机模型
CN109356787A (zh) * 2018-12-19 2019-02-19 四川大学 低风速自启动垂直轴升阻复合型风力发电机风轮结构
CN109826749A (zh) * 2019-02-21 2019-05-31 清华大学 一种辅翼变桨且可自启动的大型达里厄风机
CN111379661A (zh) * 2018-12-29 2020-07-07 中材科技风电叶片股份有限公司 风电叶片、风机及风电叶片制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153870A (en) * 1979-05-18 1980-12-01 Tomiji Takayama Vane body for vertical-shaft windmill
JP2003206849A (ja) * 2001-11-08 2003-07-25 Tokai Univ 直線翼型風水車
JP2006022798A (ja) * 2004-07-08 2006-01-26 Yukio Hirata 整流式風車
US20100003130A1 (en) * 2005-07-28 2010-01-07 Georges Gual Windmill device
JP2012215148A (ja) * 2011-04-01 2012-11-08 Isuzu Motors Ltd 揚力型垂直軸風車
US20130108458A1 (en) * 2011-10-30 2013-05-02 Leonid Goldstein Vertical axis wind turbine with soft airfoil sails

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153870A (en) * 1979-05-18 1980-12-01 Tomiji Takayama Vane body for vertical-shaft windmill
JP2003206849A (ja) * 2001-11-08 2003-07-25 Tokai Univ 直線翼型風水車
JP2006022798A (ja) * 2004-07-08 2006-01-26 Yukio Hirata 整流式風車
US20100003130A1 (en) * 2005-07-28 2010-01-07 Georges Gual Windmill device
JP2012215148A (ja) * 2011-04-01 2012-11-08 Isuzu Motors Ltd 揚力型垂直軸風車
US20130108458A1 (en) * 2011-10-30 2013-05-02 Leonid Goldstein Vertical axis wind turbine with soft airfoil sails

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105041553B (zh) * 2015-05-29 2017-07-21 广州雅图新能源科技有限公司 一种悬浮式水下垂直轴发电机
CN105041552B (zh) * 2015-05-29 2017-11-07 广州雅图新能源科技有限公司 一种垂直轴水力发电机
CN105041552A (zh) * 2015-05-29 2015-11-11 邓允河 一种垂直轴水力发电机
CN105041561A (zh) * 2015-05-29 2015-11-11 邓允河 一种水下垂直轴发电机
CN105179139A (zh) * 2015-05-29 2015-12-23 邓允河 一种垂直轴水力发电机
CN105041561B (zh) * 2015-05-29 2017-07-21 广州雅图新能源科技有限公司 一种水下垂直轴发电机
CN105041553A (zh) * 2015-05-29 2015-11-11 邓允河 一种悬浮式水下垂直轴发电机
CN105003381B (zh) * 2015-05-29 2017-07-21 广州雅图新能源科技有限公司 一种水下垂直轴稳定型发电机
CN105003381A (zh) * 2015-05-29 2015-10-28 邓允河 一种水下垂直轴稳定型发电机
CN105179139B (zh) * 2015-05-29 2017-11-07 广州雅图新能源科技有限公司 一种垂直轴水力发电机
CN107993541A (zh) * 2018-01-25 2018-05-04 王宝堃 一种物理实验用的垂直轴风力发电机模型
CN109356787A (zh) * 2018-12-19 2019-02-19 四川大学 低风速自启动垂直轴升阻复合型风力发电机风轮结构
CN109356787B (zh) * 2018-12-19 2020-03-31 四川大学 低风速自启动垂直轴升阻复合型风力发电机风轮结构
CN111379661A (zh) * 2018-12-29 2020-07-07 中材科技风电叶片股份有限公司 风电叶片、风机及风电叶片制造方法
CN109826749A (zh) * 2019-02-21 2019-05-31 清华大学 一种辅翼变桨且可自启动的大型达里厄风机

Similar Documents

Publication Publication Date Title
JP2015031227A (ja) 風車
JP4174473B2 (ja) 改良されたタービン
EP2141355A2 (en) Wind turbine blades with multiple curvatures
JP2014070638A (ja) 風力タービンのロータのブレード
JP6101240B2 (ja) 後縁側パネル
JP2012092662A (ja) 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法
WO2009093337A1 (ja) 垂直軸型風車
JP6800030B2 (ja) 翼及びそれを用いた風車
JP2012092660A (ja) 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法
TWI697616B (zh) 橫軸轉子
JP7469126B2 (ja) 風車翼アセンブリ及び風車
JP6904766B2 (ja) 垂直軸風車および風力発電装置
KR20110083476A (ko) 항력과 양력을 동시에 이용하는 수직축 풍력터빈
WO2022202488A1 (ja) 風車及び風力発電装置
JP7497260B2 (ja) 垂直軸風車および垂直軸風力発電装置
JP2019019706A (ja) 風車
WO2022202358A1 (ja) 風車及び風力発電装置
JP2007239631A (ja) 風車
JP2007016661A (ja) 貫流型風車
JP5805913B1 (ja) 風車翼及びそれを備えた風力発電装置
JP2023115519A (ja) 風車及び風力発電装置
JP7220018B2 (ja) 垂直軸風車および風力発電装置
JP2004183531A (ja) 縦軸風車の受風羽根
JP2022105833A (ja) 垂直軸型風車
JP2022518550A (ja) 風力タービン用のロータブレード

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151019

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20151029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180828