WO2022202144A1 - 複合基板 - Google Patents

複合基板 Download PDF

Info

Publication number
WO2022202144A1
WO2022202144A1 PCT/JP2022/008564 JP2022008564W WO2022202144A1 WO 2022202144 A1 WO2022202144 A1 WO 2022202144A1 JP 2022008564 W JP2022008564 W JP 2022008564W WO 2022202144 A1 WO2022202144 A1 WO 2022202144A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
ceramic plate
parts
less
composite substrate
Prior art date
Application number
PCT/JP2022/008564
Other languages
English (en)
French (fr)
Inventor
良太 青野
隆之 竹藤
穣 牛島
淳一 田中
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=83395549&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022202144(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to CN202280020393.5A priority Critical patent/CN116964022A/zh
Priority to JP2022533204A priority patent/JP7330382B2/ja
Priority to EP22774941.3A priority patent/EP4310065A1/en
Publication of WO2022202144A1 publication Critical patent/WO2022202144A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/122Metallic interlayers based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/74Forming laminates or joined articles comprising at least two different interlayers separated by a substrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate

Definitions

  • the present disclosure relates to composite substrates.
  • a circuit board that has a ceramic plate with good heat conduction. Thermal stress is generated in such a circuit board due to heating and cooling processes when joining a ceramic plate and a metal plate via a brazing material and heat cycles during use. This thermal stress may cause cracks in the ceramic substrate or detachment of the metal plate.
  • Patent Document 1 describes a ceramic circuit board in which heat cycle characteristics are improved by bringing the coefficient of thermal expansion of the brazing material close to that of the ceramic substrate.
  • Circuit boards are required to have sufficiently high reliability depending on the intended use.
  • ceramic plates and metal plates are bonded with sufficient bonding strength, while maintaining their properties even after undergoing heat cycles under harsh operating conditions. It is desirable to be able to relax thermal stresses as much as possible. In order to exhibit sufficient bonding strength, it is conceivable to strengthen the bonding with the ceramic plate by bonding at a high temperature. The hardness of the vicinity becomes high, and it tends to become difficult to relax the thermal stress generated during the heat cycle. It is useful if there is a composite substrate that can achieve both bonding strength and heat cycle characteristics.
  • An object of the present disclosure is to provide a composite substrate with excellent bonding strength and heat cycle characteristics between a ceramic plate and a metal substrate.
  • One aspect of the present disclosure has a ceramic plate and a metal substrate bonded onto the ceramic plate via a brazing material layer containing silver and an active metal, and from the ceramic plate to the metal substrate,
  • the X is 70 to 110 HV, and the above for X
  • a composite substrate having a Y ratio of 0.92 or less.
  • the composite substrate has a Vickers hardness such that the X is within a predetermined range, so that the bonding is sufficiently fixed in a range of 20 ⁇ m or less from the ceramic plate toward the metal substrate, and the ceramic plate and the metal substrate It can exhibit excellent bonding strength between materials. Further, when the ratio of Y to X (the value of Y/X) is within the above range, the Vickers hardness is excellent in the vicinity of the interface between the ceramic plate and the brazing filler metal layer, and the brazing filler metal component is a metal-based material. It means that a large increase in the Vickers hardness in the metal base material is suppressed by diffusing widely into the material, and the thermal stress caused by the heat cycle can be alleviated. Therefore, in the above composite substrate, the separation of the metal substrate from the ceramic plate due to the heat cycle is sufficiently suppressed. That is, the composite substrate can be excellent in bonding strength and heat cycle characteristics between the ceramic plate and the metal substrate.
  • the ratio of Y to X may be 0.50 or more.
  • the bonding strength between the ceramic plate and the metal substrate can be further improved, and both bonding strength and heat cycle characteristics can be achieved at a higher level. can.
  • the active metal may contain at least one selected from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, and tantalum.
  • the ceramic plate may contain silicon nitride.
  • the thickness of the brazing material layer may be 20 ⁇ m or less.
  • FIG. 1 is a schematic diagram showing an example of a composite substrate.
  • FIG. 2 is an enlarged cross-sectional view of the vicinity of the bonding surface of the composite substrate.
  • each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. .
  • One embodiment of the composite substrate has a ceramic plate and a metal substrate bonded onto the ceramic plate via a brazing material layer containing an active metal. The bonding may be performed by an active metal method.
  • a composite substrate may have one or more metal substrates.
  • FIG. 1 is a schematic cross-sectional view showing an example of a composite substrate, showing a cross section of the composite substrate orthogonal to a joint surface described later.
  • a composite substrate 100 includes a ceramic plate 10 , a circuit board 40 and a heat sink 50 .
  • the circuit board 40 is bonded to the surface 10A of the ceramics plate 10 at the bonding surface 40a, and has a structure in which the metal substrate 30 is bonded to the ceramics plate 10 via the brazing material layer 20.
  • the heat sink 50 is joined to the back surface 10B of the ceramic plate 10 at the joining surface 50a, and has a structure in which the metal base 32 is joined to the ceramic plate 10 via the brazing material layer 22.
  • two circuit boards 40 are bonded to the front surface 10A of the ceramic plate 10, and a radiator plate 50 is bonded to the back surface 10B of the ceramic plate 10. can be changed as appropriate.
  • the circuit board 40 may have the function of transmitting electrical signals, while the heat sink 50 may have the function of transmitting heat. Note that the heat sink 50 may further have a function of transmitting electrical signals.
  • the circuit board 40 and the heat sink 50 may be made of the same material or may be made of different materials. From the viewpoint of improving conductivity and heat dissipation, the metal substrates 30 and 32 may contain copper as a main component, for example. In this case, the circuit board 40 and the heat sink 50 may be composed of a brazing material layer and a copper plate.
  • X is the Vickers hardness at a position of 20 ⁇ m from the ceramic plate 10 toward the metal base 30, and the Vickers hardness at a position of 70 ⁇ m from the ceramic plate 10 toward the metal base 30.
  • Y X is 70 to 110 HV.
  • the above X may be, for example, 72-97 HV, or 73-95 HV. When X is within the above range, the bonding strength between the ceramic plate 10 and the metal substrate 30 can be further improved.
  • the ratio of Y to X (value of Y/X) is 0.92 or less.
  • the upper limit of the above ratio may be, for example, 0.90 or less, or 0.88 or less.
  • the lower limit of the above ratio may be, for example, 0.50 or more, 0.52 or more, or 0.53 or more.
  • the active metal can be appropriately diffused into the metal substrate at the interface between the brazing material layer and the metal substrate, and the bonding strength can be further improved.
  • the ratio can be adjusted within the ranges mentioned above, and can be, for example, 0.50 to 0.92, or 0.53 to 0.90.
  • Vickers hardness means a value measured according to the method described in JIS Z 2244:2009 "Vickers hardness test - test method”. Description will be made with reference to FIG.
  • FIG. 2 is an enlarged cross-sectional view of the vicinity of the bonding surface of the composite substrate, showing a cross section orthogonal to the bonding surface between the ceramic plate and the metal substrate. Using the joint surface between the ceramic plate 10 and the metal base material 30 as a reference position, the position is determined by measuring from the reference position in the direction perpendicular to the joint surface and in the direction of the brazing material layer 20 and the metal base material 30. do. In FIG.
  • the Vickers hardness is measured at a point separated by a distance A (eg, 20 ⁇ m) and a point separated by a distance B (eg, 70 ⁇ m).
  • FIG. 2 shows an enlarged view of the joint surface 40a on the front surface 10A of the ceramic plate 10
  • the joint surface 50a on the back surface 10B of the ceramic plate 10 is similarly measured.
  • the Vickers hardness is measured at the joint surface (in the case of the composite substrate 100 in FIG. 1, the surface of the ceramic plate 10 10A and the joint surface 50a on the back surface 10B of the ceramic plate 10), the above Y/X values are measured at arbitrary 10 points, and the arithmetic average value is adopted. do.
  • the ceramic plate 10 may be made of either silicon nitride or aluminum nitride, preferably containing silicon nitride.
  • the ceramic plate may be, for example, an aluminum nitride sintered body or a silicon nitride sintered body.
  • the brazing material layers 20 and 22 are layers obtained by heat-treating a brazing material.
  • the brazing material contains silver as a main component and active metals as subcomponents.
  • the silver content may be, for example, 85% by mass or more, 87% by mass or more, or 90% by mass or more based on the total amount of the brazing material layer.
  • the silver content may be, for example, 98% by mass or less, or 99% by mass or less, based on the total amount of the brazing material layer.
  • the active metal may contain, for example, at least one selected from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, and tantalum, and may contain silver as a main component.
  • the brazing material layers 20 and 22 may contain, for example, carbon in addition to the active metal.
  • the brazing material layer 20 may also contain metals such as copper (Cu), tin (Sn), and indium (In) for the purpose of lowering the melting point.
  • the active metal content in the brazing filler metal may be adjusted based on the silver content being 100 parts by mass.
  • the content of copper in the brazing material layers 20 and 22 is, for example, 17 parts by mass or less, 15 parts by mass or less, 14 parts by mass or less, 13 parts by mass or less, or 12 parts by mass with respect to 100 parts by mass of silver. It can be less than part.
  • the content of copper in the brazing material layers 20 and 22 is, for example, 2 parts by mass or more, 4 parts by mass or more, 6 parts by mass or more, 8 parts by mass or more, or 10 parts by mass with respect to the silver content of 100 parts by mass. or more.
  • the content of copper in the brazing material layers 20 and 22 may be adjusted within the range described above, and may be, for example, 2 to 17 parts by mass with respect to 100 parts by mass of silver.
  • the content of tin in the brazing material layers 20 and 22 is, for example, 6.0 parts by mass or less, 5.5 parts by mass or less, 5.0 parts by mass or less, or 3.0 parts by mass or less per 100 parts by mass of silver. It may be 0 parts by mass or less, or 1.0 parts by mass or less.
  • the content of tin in the brazing material layers 20 and 22 is, for example, 0.5 parts by mass or more, 0.8 parts by mass or more, or 0.9 parts by mass or more with respect to 100 parts by mass of silver. you can
  • the content of tin in the brazing material layers 20 and 22 may be adjusted within the above range, and may be, for example, 0.5 to 6.0 parts by mass with respect to 100 parts by mass of silver content.
  • the upper limit of the content of titanium in the brazing material layers 20 and 22 is, for example, 7.0 parts by mass or less, 6.0 parts by mass or less, or 5.0 parts by mass or less with respect to 100 parts by mass of silver content. , or 4.0 parts by mass or less.
  • the lower limit of the content of titanium in the brazing material layers 20 and 22 is, for example, 0.6 parts by mass or more, 0.8 parts by mass or more, or 1.0 parts by mass with respect to 100 parts by mass of silver content. or more.
  • the content of titanium in the brazing material layers 20 and 22 may be adjusted within the above range, and may be, for example, 1.0 to 5.0 parts by mass with respect to 100 parts by mass of silver.
  • the brazing material layers 20 and 22 may contain components other than metals such as silver and active metals within a range that does not impair the effects of the present invention. Impurities are also included in other components.
  • the content of other components is, for example, less than 15.0% by mass, 14.0% by mass or less, 12.0% by mass or less, 10.0% by mass or less, or 5.0% by mass, based on the total amount of the brazing material layer. % by mass or less, 3.0% by mass or less, 1.0% by mass or less, or 0.5% by mass or less.
  • the upper limit of the thickness of the brazing material layers 20 and 22 may be, for example, 20 ⁇ m or less, 18 ⁇ m or less, or 15 ⁇ m or less. When the upper limit of the thickness is within the above range, the heat cycle characteristics can be made more sufficient, and even after use in a high heat dissipation environment, the brazing material layers 20 and 22 are not damaged by thermal stress. It is possible to more sufficiently suppress the occurrence of peeling and the like.
  • the lower limit of the thickness of the brazing material layers 20 and 22 may be, for example, 3 ⁇ m or more, 5 ⁇ m or more, or 8 ⁇ m or more.
  • the thickness of the brazing material layer may be adjusted within the above range, and may be, for example, 3-20 ⁇ m.
  • the thickness of the brazing filler metal layer in this specification means a value measured in an electron microscope image of a cross section perpendicular to the joint surface between the ceramic plate and the metal substrate in the composite substrate.
  • the thickness of the brazing filler metal layer is the joint surface (in the case of the composite substrate 100 in FIG.
  • the ceramic plate 10 The maximum value of the thickness of the brazing filler metal layer is measured for each of the two joint surfaces 40a on the front surface 10A of the ceramic plate 10 and the joint surface 50a on the back surface 10B of the ceramic plate 10, and the arithmetic average value is adopted. .
  • the composite substrate 100 has excellent bonding strength between the ceramic plate 10 and the metal substrates 30 and 32.
  • the bonding strength between the ceramic plate 10 and the metal substrates 30, 32 can be, for example, 80 N/cm or more, 100 N/cm or more, 120 N/cm or more, or 140 N/cm or more.
  • Bonding strength means the value obtained by dividing the maximum peeling load (unit: N) when part of the metal substrate is peeled off at 90° (vertical direction) by the width of the metal substrate (unit: cm). . Specifically, the measurement is carried out by the method described in Examples below.
  • the composite substrate 100 can exhibit excellent heat cycle characteristics.
  • the heat cycle characteristics are measured according to the method described in JIS C 60068-2-14:2011 "Environmental test method-Electrical/electronics-Part 2-14: Temperature change test method (test symbol: N)". It can be evaluated by performing a change test.
  • the composite substrate 100 described above can be manufactured, for example, by the following method.
  • One embodiment of the method for manufacturing a composite substrate includes a step of forming a slurry containing an inorganic compound powder, a sintering aid, a binder resin, and a solvent to obtain a green sheet (green sheet preparation step), and heating the green sheet.
  • a step of obtaining a ceramic plate by treatment (ceramic plate preparation step); a step of laminating a metal substrate onto the ceramic plate via a brazing filler metal containing silver and an active metal to obtain a laminate (lamination step); and a step of heat-treating the laminate to obtain a composite substrate (heat-treating step).
  • a slurry containing the components that will be the raw materials for the ceramic plate is prepared and formed into a sheet to prepare the green sheet.
  • the slurry molding method may be, for example, a doctor blade method, an extrusion molding method, or the like.
  • Examples of inorganic compounds include silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), silicon carbide, and aluminum oxide.
  • Examples of sintering aids include metal oxides, fluorides, chlorides, nitrates, and sulfates of rare earth elements, and metal oxides, fluorides, chlorides, nitrates, and sulfates of alkaline earth metals. be done. These may be used alone or in combination of two or more.
  • the sintering aid may include oxides of alkaline earth metals, such as magnesium oxide.
  • binder resins examples include methyl cellulose, ethyl cellulose, polyvinyl alcohol, polyvinyl butyral, and (meth)acrylic resins.
  • binder resins include methyl cellulose, ethyl cellulose, polyvinyl alcohol, polyvinyl butyral, and (meth)acrylic resins.
  • solvents include organic solvents such as ethanol and toluene. The viscosity of the slurry can be easily adjusted by using the binder resin and solvent.
  • the slurry may contain other components in addition to the inorganic compound powder, sintering aid, binder resin, and solvent.
  • Other components include, for example, plasticizers and dispersants.
  • plasticizers include purified glycerin, glycerin trioleate, diethylene glycol, phthalic acid plasticizers such as di-n-butyl phthalate, and dibasic acid plasticizers such as di-2-ethylhexyl sebacate.
  • Dispersants include, for example, poly(meth)acrylates and (meth)acrylic acid-maleate copolymers.
  • the ceramic plate preparation process is a process of heat-treating the green sheet obtained by molding to obtain a ceramic plate.
  • the heat treatment of the green sheet is performed by a plurality of heat treatments, and includes, for example, a degreasing step in which heat treatment is performed at a heating temperature of 800 ° C. or less, and a sintering step in which heat treatment is performed at a higher temperature than the heating temperature in the degreasing step.
  • You may In the degreasing process the green sheet is degreased mainly by burning the binder resin or the like. Then, in the sintering step, the raw material containing the inorganic compound and the sintering aid is sintered to obtain a ceramic plate.
  • the heating temperature in the degreasing step may be, for example, 750-800°C, 760-790°C, or 780-790°C. By setting the upper limit of the heating temperature within the above range, the organic matter such as the binder resin is sufficiently removed before the inorganic compound is sintered, and the system is made more homogeneous. can be tied.
  • the heating time in the degreasing step may be, for example, 0.5 to 20 hours.
  • the heating temperature in the sintering process is higher than the heating temperature in the degreasing process.
  • the heating temperature in the sintering step may be, for example, 1600-1950°C, 1700-1950°C, or 1800-1900°C.
  • the heating time in the sintering step may be, for example, 5 to 15 hours.
  • the sintering step may be performed under a non-oxidizing gas atmosphere such as nitrogen, argon, ammonia and hydrogen.
  • the method for manufacturing a composite substrate according to the present embodiment has been described as a method including the step of preparing a ceramic plate, but instead of the green sheet preparation step and the ceramic plate preparation step, a ceramic plate prepared in advance (for example, a commercially available ceramic plate) may be used.
  • a ceramic plate and a metal substrate are laminated using a brazing material containing an active metal to obtain a laminate.
  • a brazing material is applied to the surface of a ceramic plate to form a coating film, and a metal substrate is attached to the coating film.
  • the metal base material is attached to both the front and back surfaces of the ceramic plate by the same operation.
  • the shape of the metal substrate may be, for example, a flat plate shape.
  • a circuit may be formed in advance on the metal substrate.
  • a coating film containing brazing material can be provided by applying it to the surface of the ceramic plate by, for example, a roll coater method, screen printing method, transfer method, or the like.
  • the brazing material contains silver (Ag) as a main component and an active metal as a secondary component.
  • active metals include titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), and tantalum (Ta).
  • the brazing material may contain metals such as copper (Cu), tin (Sn), and indium (In) for the purpose of lowering the melting point.
  • the active metal content in the brazing filler metal may be adjusted based on the silver content being 100 parts by mass.
  • the content of copper in the brazing material is, for example, 17 parts by mass or less, 15 parts by mass or less, 14 parts by mass or less, 13 parts by mass or less, or 12 parts by mass or less per 100 parts by mass of silver. you can The content of copper in the brazing material is, for example, 2 parts by mass or more, 4 parts by mass or more, 6 parts by mass or more, 8 parts by mass or more, or 10 parts by mass or more with respect to 100 parts by mass of silver content. you can The content of copper in the brazing material may be adjusted within the above range, and may be, for example, 2 to 16 parts by mass with respect to 100 parts by mass of silver content.
  • the melting point of the brazing filler metal can be lowered, and the influence of the heat treatment on the constituent members near the joint surface can be reduced, so that the reliability of the resulting composite substrate can be further improved. can be done.
  • the content of tin in the brazing material is, for example, 6.0 parts by mass or less, 5.5 parts by mass or less, 5.0 parts by mass or less, or 3.0 parts by mass or less per 100 parts by mass of silver content. , or 1.0 parts by mass or less.
  • the content of tin in the brazing material may be, for example, 0.5 parts by mass or more per 100 parts by mass of silver.
  • the content of tin in the brazing material may be adjusted within the above range, and may be, for example, 0.5 to 6.0 parts by mass with respect to 100 parts by mass of silver content.
  • the upper limit of the content of titanium in the brazing material is, for example, 7.0 parts by mass or less, 6.0 parts by mass or less, 5.0 parts by mass or less, or 4.0 parts by mass or less per 100 parts by mass of silver content. It may be 0 parts by mass or less.
  • the lower limit of the content of titanium in the brazing material is, for example, 0.6 parts by mass or more, 0.8 parts by mass or more, or 1.0 parts by mass or more with respect to 100 parts by mass of silver content. good.
  • the content of titanium in the brazing material may be adjusted within the above range, and may be, for example, 1.0 to 5.0 parts by mass with respect to 100 parts by mass of silver content.
  • the viscosity of the brazing filler metal at 25°C may be, for example, 5 to 40 Pa seconds.
  • the viscosity of the brazing filler metal is within the above range, it is possible to form a more uniform coating film on the ceramic plate, and the melt viscosity during heat treatment for joining becomes appropriate, so that the ceramic plate and the metal substrate are bonded together. Since the brazing material can be spread sufficiently between the substrates, the bonding strength can be further improved, and the reliability of the composite substrate can be enhanced.
  • the brazing material may contain, for example, an organic solvent and a binder in addition to metals such as silver and active metals.
  • the content of the organic solvent in the brazing material may be, for example, 5-25% by mass.
  • the binder content in the brazing material may be, for example, 2 to 15% by mass.
  • the laminate is heated in a heating furnace to sufficiently bond the ceramic plate and the metal substrate to obtain a composite substrate.
  • the heat treatment is performed by dividing the temperature pattern into a plurality of times.
  • the heat treatment step includes, for example, a first heat treatment step of heat-treating the laminate at a temperature of less than 600 ° C., and a second heat treatment of heat-treating the laminate at a temperature higher than the heating temperature in the first heat treatment step. You may have a step.
  • the upper limit of the heating temperature in the first heat treatment step may be, for example, less than 600°C, 590°C or less, 585°C or less, 500°C or less, 450°C or less, or 410°C or less.
  • bondability can be further improved.
  • the lower limit of the heating temperature in the first heat treatment step may be, for example, 350° C. or higher, 360° C. or higher, 380° C. or higher, or 400° C. or higher.
  • the heating temperature in the first heat treatment step may be adjusted within the above range, and may be, for example, 350°C or higher and lower than 600°C, or 400 to 410°C.
  • the upper limit of the heating temperature in the second heat treatment step may be, for example, less than 850°C, 845°C or less, or 840°C or less. By setting the upper limit of the heating temperature within the above range, it is possible to further suppress the diffusion of the components in the brazing filler metal into the metal substrate.
  • the lower limit of the heating temperature in the first heat treatment step may be, for example, 770° C. or higher, 780° C. or higher, 790° C. or higher, or 800° C. or higher. By setting the lower limit of the heating temperature within the above range, it is possible to further suppress defective joining due to unmelted brazing material.
  • the heating temperature in the second heat treatment step may be adjusted within the above range, and may be, for example, 770°C or higher and lower than 850°C, or 800 to 840°C.
  • the heating time in the second heat treatment step is relatively short. By shortening the heating time, it is possible to suppress excessive diffusion of the components in the brazing filler metal between the ceramic plate, the brazing filler metal, and the metal substrate which are in a heated state, and the active metal is separated from the ceramic plate and the metal substrate. can be sufficiently contributed to the bonding with
  • the heating time in the second heat treatment step may be, for example, 90 minutes or less, 80 minutes or less, or 70 minutes or less.
  • the heating time in the second heat treatment step may be, for example, 5 minutes or longer, 10 minutes or longer, or 15 minutes or longer.
  • the heating time in the second heat treatment step may be adjusted within the above range, and may be, for example, 5 to 90 minutes.
  • the heating time in this specification means the time for maintaining the temperature after the temperature in the heating furnace reaches a predetermined temperature.
  • the atmosphere in the furnace may be an inert gas such as nitrogen.
  • the pressure inside the furnace may be, for example, a reduced pressure lower than the atmospheric pressure, or may be a vacuum.
  • the first heat treatment step and the second heat treatment step may be performed while pressing the laminate in the stacking direction.
  • the heating furnace may be of a continuous type that continuously manufactures a plurality of bonded bodies, or may be of a batch type that manufactures one or a plurality of bonded bodies.
  • a circuit may be formed by removing part of the metal base material in the composite substrate. This step may be performed, for example, by etching or the like. Specifically, first, a photosensitive resist is printed on the surface of the composite substrate. Then, using an exposure device, a resist pattern having a predetermined shape is formed. The resist may be negative or positive. Uncured resist is removed, for example, by washing.
  • the part of the metal substrate that is not covered with the resist pattern is removed by etching.
  • the above operation can expose part of the front surface and/or the back surface of the ceramic plate. After that, by removing the resist pattern, a composite substrate having a circuit can be obtained.
  • Table 1 shows the compositions of the brazing filler metals a to c used in the following examples and comparative examples.
  • the numbers in Table 1 indicate parts by mass of each component.
  • Example 1 [Production of composite substrate] A ceramic plate made of silicon nitride with a thickness of 0.32 mm, a first copper plate with a thickness of 0.3 mm, and a second copper plate with a thickness of 0.25 mm were prepared. Brazing material a was applied to predetermined locations on both sides of the ceramic plate.
  • the first copper plate, the ceramic plate, and the second copper plate are laminated in this order via the brazing material a, and heat-treated in a heating furnace at 400°C for 120 minutes in a vacuum (first heat treatment After that, the temperature was raised to 800° C., and heat treatment (second heat treatment step) was performed at that temperature for 60 minutes.
  • first heat treatment After that, the temperature was raised to 800° C., and heat treatment (second heat treatment step) was performed at that temperature for 60 minutes.
  • first and second copper plates were joined to the ceramic plate.
  • etching is performed using an aqueous solution of copper chloride and then a mixture of hydrogen peroxide and ammonium fluoride. Removed missing parts. After that, the resist pattern was removed with an alkali stripper.
  • Example 2 A composite substrate was produced in the same manner as in Example 1, except that the heating temperature in the second heat treatment step was changed to 840°C.
  • Example 3 A composite substrate was produced in the same manner as in Example 1, except that the brazing material b was used as the brazing material and the heating temperature in the second heat treatment step was changed to 800°C.
  • Example 4 A composite substrate was produced in the same manner as in Example 1, except that brazing material c was used as the brazing material and the heating temperature in the second heat treatment step was changed to 800°C.
  • Example 5 A composite substrate was produced in the same manner as in Example 1, except that the heating temperature in the second heat treatment step was changed to 800° C. and the heating time was changed to 5 minutes.
  • Example 6 A composite substrate was produced in the same manner as in Example 1, except that the heating temperature in the second heat treatment step was changed to 800° C. and the heating time was changed to 90 minutes.
  • Example 2 A composite substrate was produced in the same manner as in Example 1, except that the heating temperature in the second heat treatment step was changed to 750°C.
  • Example 3 A composite substrate was produced in the same manner as in Example 1, except that the heating temperature in the second heat treatment step was changed to 800° C. and the heating time was changed to 180 minutes.
  • peeling Strength> For the composite substrates obtained in Examples and Comparative Examples, the peel strength was measured to evaluate the bonding strength. Specifically, the edge of a 5 mm wide pattern, which is part of the copper circuit pattern bonded to the composite substrate, was peeled off with pliers. The composite substrate was fixed to the table of a tensile tester, and the edge of the pattern was attached to the chuck of the pull tester. At this time, the surface of the ceramic plate was set so that the angle between the peeled copper circuit pattern and the surface of the ceramic plate was 90° (vertical direction).
  • the peel strength is 100 N/cm or more.
  • the copper plate and the brazing filler metal layer were peeled off using copper chloride solution and ammonium fluoride/hydrogen peroxide etching, and cracks on the surface of the ceramic plate were binarized (threshold value 140) using image analysis software GIMP2.
  • the crack ratio was determined by calculating the crack area/circuit pattern area. The results are shown in Tables 2 and 3.
  • C The crack rate is 5% or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本開示の一側面は、セラミックス板と、銀及び活性金属を含有するろう材層を介して上記セラミックス板上に接合された金属基材とを有し、上記セラミックス板から上記金属基材に向かって20μmの位置におけるビッカース硬さをXとし、上記セラミックス板から上記金属基材に向かって70μmの位置におけるビッカース硬さをYとしたときに、上記Xが70~110HVであり、上記Xに対する上記Yの比が0.92以下である、複合基板を提供する。

Description

複合基板
 本開示は、複合基板に関する。
 ロボット及びモーター等の産業機器の高性能化に伴い、パワーモジュールに搭載される半導体素子から発生する熱も増加の一途を辿っている。この熱を効率よく放散させるため、良好な熱伝導を有するセラミックス板を備える回路基板が用いられている。このような回路基板には、セラミックス板と金属板とをろう材を介して接合する際の加熱及び冷却工程、並びに使用時のヒートサイクルによって熱応力が発生する。この熱応力によって、セラミックス基板にクラックが発生したり、金属板がはく離したりする場合がある。
 これに対して、特許文献1には、ろう材の熱膨張率をセラミックス基板に近づけることによってヒートサイクル特性を向上させたセラミックス回路基板が記載されている。
特開2014-118310号公報
 回路基板は、用いられる用途に応じて、信頼性に十分に優れることが求められる。例えば、電車の駆動部及び電気自動車等のパワーモジュールの分野では、セラミックス板と金属板とが十分な接合強度を持って接合しつつ、過酷な使用条件下でのヒートサイクルを経ても特性を維持できるように、熱応力を緩和できることが望ましい。十分な接合強度を発揮せるためには、高温で接合することで、セラミック板との接合を強固にすることが考えられるが、本発明者らの検討によれば、高温で接合するとろう材層近傍の硬度が高くなり、ヒートサイクル時に発生する熱応力の緩和が困難となる傾向にある。接合強度とヒートサイクル特性とを両立できる複合基板があれば有用である。
 本開示は、セラミックス板と金属基材との接合強度及びヒートサイクル特性に優れる複合基板を提供することを目的とする。
 本開示の一側面は、セラミックス板と、銀及び活性金属を含有するろう材層を介して上記セラミックス板上に接合された金属基材とを有し、上記セラミックス板から上記金属基材に向かって20μmの位置におけるビッカース硬さをXとし、上記セラミックス板から上記金属基材に向かって70μmの位置におけるビッカース硬さをYとしたときに、上記Xが70~110HVであり、上記Xに対する上記Yの比が0.92以下である、複合基板を提供する。
 上記複合基板は、上記Xが所定の範囲内となるビッカース硬さを有することで、上記セラミックス板から上記金属基材に向かって20μm以下の範囲において十分に接合を固定化し、セラミックス板と金属基材との間で優れた接合強度を発揮し得る。また上記Xに対する上記Yの比(Y/Xの値)が上記範囲内であることは、セラミックス板とろう材層との界面近傍でビッカース硬さに優れることに加え、ろう材成分が金属基材へ広く拡散することによって金属基材におけるビッカース硬さが大きく上昇することが抑制されていることを意味し、ヒートサイクルによって生じる熱応力を緩和することができる。したがって、上記複合基板は、ヒートサイクルによって金属基材がセラミックス板からはく離等することも十分に抑制されている。すなわち、上記複合基板は、セラミックス板と金属基材との間の接合強度及びヒートサイクル特性とに優れたものとなり得る。
 上記複合基板は、上記Xに対する上記Yの比が0.50以上であってよい。上記Xに対する上記Yの比が上記範囲内であることによって、セラミックス板と金属基材との接合強度をより向上させることができ、接合強度とヒートサイクル特性とをより高水準で両立することができる。
 上記活性金属が、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、及びタンタルからなる群より選択される少なくとも一種を含有してもよい。ろう材層が上記活性金属を含むことによって、セラミックス板と金属基材との接着性をより向上させることができる。
 上記セラミックス板が窒化ケイ素を含有してもよい。
 上記ろう材層の厚みは20μm以下であってよい。
 本開示によれば、セラミックス板と金属基材との接合強度及びヒートサイクル特性に優れる複合基板を提供できる。
図1は、複合基板の一例を示す模式図である。 図2は、複合基板における接合面近傍の拡大断面図である。
 以下、場合によって図面を参照して、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用い、場合によって重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、各要素の寸法比率は図示の比率に限られるものではない。
 本明細書において例示する材料は特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中の各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 複合基板の一実施形態は、セラミックス板と、活性金属を含有するろう材層を介して上記セラミックス板上に接合された金属基材とを有す。上記接合は、活性金属法によって接合されたものであってよい。複合基板は、一又は複数の金属基材を有してもよい。
 図1は、複合基板の一例を示す模式断面図であり、複合基板を後述する接合面に直交する断面を示している。複合基板100は、セラミックス板10と、回路板40と、放熱板50とを備える。回路板40は、接合面40aにおいてセラミックス板10の表面10Aと接合しており、金属基材30がろう材層20を介してセラミックス板10に接合する構成を有する。放熱板50は接合面50aにおいてセラミックス板10の裏面10Bと接合しており、金属基材32がろう材層22を介してセラミックス板10に接合する構成を有する。図1においては、セラミックス板10の表面10Aには2つの回路板40が接合され、セラミックス板10の裏面10Bには放熱板50が接合されているが、回路板40及び放熱板50の個数等は場合によって適宜変更することができる。
 回路板40は電気信号を伝達する機能を有するのに対して、放熱板50は熱を伝達する機能を有するものであってよい。なお、放熱板50は、電気信号を伝達する機能を更に有していてもよい。
 回路板40と放熱板50とは、同じ材質で構成されていてもよく、異なる材質で構成されていてもよい。導電性及び放熱性を向上させる観点から、金属基材30,32は、例えば、主成分として銅を含有してよい。この場合、回路板40及び放熱板50は、ろう材層と、銅板とで構成されてもよい。
 上記複合基板100において、上記セラミックス板10から上記金属基材30に向かって20μmの位置におけるビッカース硬さをXとし、上記セラミックス板10から上記金属基材30に向かって70μmの位置におけるビッカース硬さをYとしたときに、上記Xが70~110HVである。上記Xは、例えば、72~97HV、又は73~95HVであってよい。上記Xが上記範囲内であることで、セラミックス板10と金属基材30との接合強度をより向上させることができる。
 上記Xに対する上記Yの比(Y/Xの値)は、0.92以下である。上記比の上限値は、例えば、0.90以下、又は0.88以下であってよい。上記比の上限値が上記範囲内であることで、複合基板100のヒートサイクル特性をより向上させることができる。上記比の下限値は、例えば、0.50以上、0.52以上、又は0.53以上であってよい。上記比の下限値が上記範囲内であることによって、ろう材層及び金属基材の界面において活性金属を金属基材中に適度に拡散させ、接合強度をより向上させることができる。上記比は上述の範囲内で調整でき、例えば、0.50~0.92、又は0.53~0.90であってよい。
 本明細書においてビッカース硬さは、JIS Z 2244:2009「ビッカース硬さ試験-試験方法」に記載の方法に準拠して、測定される値を意味する。図2を参照して、説明する。図2は、複合基板における接合面近傍の拡大断面図であり、セラミックス板と金属基材との接合面に直交する断面で示している。上記セラミックス板10と金属基材30との接合面を基準位置として、当該基準位置から接合面に垂直な方向、且つろう材層20及び金属基材30の方向に向かって計測し、位置を決定する。図2中、距離A(例えば、20μm)だけ離れた点、及び距離B(例えば、70μm)だけ離れた点において、ビッカース硬さを測定する。図2では、セラミックス板10の表面10Aにおける接合面40aの拡大図を示し説明したが、セラミックス板10の裏面10Bにおける接合面50aにおいても同様に測定を行う。ビッカース硬さは、ろう材を介してセラミックス板と金属基材とが接合している部分を含む複合基板100の切断面において、接合面(図1の複合基板100の場合、セラミックス板10の表面10Aにおける2つの接合面40a、及びセラミックス板10の裏面10Bにおける接合面50aの合計3か所)のそれぞれについて、任意の10点において上記Y/Xの値を測定し、その算術平均値を採用する。
 セラミックス板10は、窒化ケイ素又は窒化アルミニウムのいずれかで構成されてよく、好ましくは窒化ケイ素を含む。セラミックス板は、例えば、窒化アルミニウム焼結体又は窒化ケイ素焼結体であってよい。
 ろう材層20,22は、ろう材を加熱処理して得られる層である。ろう材は、主成分として銀を含み、副成分として活性金属を含有する。銀の含有量は、ろう材層の全量を基準として、例えば、85質量%以上、87質量%以上、又は90質量%以上であってよい。銀の含有量は、ろう材層の全量を基準として、例えば、98質量%以下、又は99質量%以下であってよい。活性金属は、例えば、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、及びタンタルからなる群より選択される少なくとも一種を含有してよく、銀を主成分として含有するものであってよい。ろう材層20,22は、活性金属の他、例えば、炭素等を含有してもよい。また、ろう材層20は、融点降下を目的に、銅(Cu)、スズ(Sn)、及びインジウム(In)等の金属を含んでもよい。ろう材中の活性金属の含有量は、銀の含有量を100質量部として調整してよい。
 ろう材層20,22が銅を含む場合、接合面付近の構成部材への熱処理による影響を低減することができることから、得られる複合基板の信頼性をより向上することができる。ろう材層20,22中の銅の含有量は、銀の含有量100質量部に対して、例えば、17質量部以下、15質量部以下、14質量部以下、13質量部以下、又は12質量部以下であってよい。ろう材層20,22中の銅の含有量は、銀の含有量100質量部に対して、例えば、2質量部以上、4質量部以上、6質量部以上、8質量部以上、10質量部以上であってよい。ろう材層20,22中の銅の含有量は上述の範囲内で調整してよく、銀の含有量100質量部に対して、例えば、2~17質量部であってよい。
 ろう材層20,22がスズを含む場合、接合面付近の構成部材への熱処理による影響を低減することができることから、得られる複合基板の信頼性をより向上することができる。ろう材層20,22中のスズの含有量は、銀の含有量100質量部に対して、例えば、6.0質量部以下、5.5質量部以下、5.0質量部以下、3.0質量部以下、又は1.0質量部以下であってよい。ろう材層20,22中のスズの含有量は、銀の含有量100質量部に対して、例えば、0.5質量部以上、0.8質量部以上、又は0.9質量部以上であってよい。ろう材層20,22中のスズの含有量は上述の範囲内で調整してよく、銀の含有量100質量部に対して、例えば、0.5~6.0質量部であってよい。
 ろう材層20,22がチタンを含む場合、セラミックス板と金属基材との接合強度をより向上させることができる。ろう材層20,22中のチタンの含有量の上限値は、銀の含有量100質量部に対して、例えば、7.0質量部以下、6.0質量部以下、5.0質量部以下、又は4.0質量部以下であってよい。ろう材層20,22中のチタンの含有量の下限値は、銀の含有量100質量部に対して、例えば、0.6質量部以上、0.8質量部以上、又は1.0質量部以上であってよい。ろう材層20,22中のチタンの含有量は上述の範囲内で調整してよく、銀の含有量100質量部に対して、例えば、1.0~5.0質量部であってよい。
 ろう材層20,22は、本発明の効果を損なわない範囲で、銀及び活性金属等の金属以外のその他の成分を含んでよい。その他の成分には不純物も含む。その他の成分の含有量は、ろう材層の全量を基準として、例えば、15.0質量%未満、14.0質量%以下、12.0質量%以下、10.0質量%以下、5.0質量%以下、3.0質量%以下、1.0質量%以下、又は0.5質量%以下であってよい。
 ろう材層20,22の厚みの上限値は、例えば、20μm以下、18μm以下、又は15μm以下であってよい。厚みの上限値が上記範囲内であることで、ヒートサイクル特性をより十分なものとすることができ、高放熱環境下での使用後であっても、熱応力によるろう材層20,22のはく離等の発生をより十分に抑制することができる。ろう材層20,22の厚みの下限値は、例えば、3μm以上、5μm以上、又は8μm以上であってよい。厚みの下限値が上記範囲内であることによって、セラミックス板10と金属基材30,32との接合強度をより十分なものとすることができ、はく離等の発生を抑制できる。ろう材層の厚みは上述の範囲内で調整してよく、例えば、3~20μmであってよい。本明細書におけるろう材層の厚みは、複合基板におけるセラミクス板と金属基材との接合面に直交する断面の電子顕微鏡画像において測定する値を意味する。ろう材層の厚みは、ろう材を介してセラミックス板と金属基材とが接合している部分を含む複合基板100の切断面において、接合面(図1の複合基板100の場合、セラミックス板10の表面10Aにおける2つの接合面40a、及びセラミックス板10の裏面10Bにおける接合面50aの合計3か所)のそれぞれについて、ろう材層の厚みの最大値を測定し、その算術平均値を採用する。
 複合基板100は、セラミックス板10と金属基材30,32との間の接合強度に優れる。セラミックス板10と金属基材30,32との間の接合強度は、例えば、80N/cm以上、100N/cm以上、120N/cm以上、又は140N/cm以上とすることができる。接合強度は、金属基材の一部を90°(鉛直方向)に引きはがした際の最大引きはがし荷重(単位:N)を金属基材幅(単位:cm)で除した値を意味する。具体的には、後述する実施例に記載の方法によって測定を行う。
 複合基板100は優れたヒートサイクル特性を発揮し得る。ヒートサイクル特性は、JIS C 60068-2-14:2011「環境試験方法-電気・電子-第2―14部:温度変化試験方法(試験記号:N)」に記載の方法に準拠して、温度変化試験を行うことによって評価できる。
 上述の複合基板100は、例えば、以下のような方法によって製造することができる。複合基板の製造方法の一実施形態は、無機化合物の粉末、焼結助剤、バインダ樹脂、及び溶媒を含むスラリーを成形してグリーンシートを得る工程(グリーンシート調製工程)と、グリーンシートを加熱処理してセラミックス板を得る工程(セラミックス板調製工程)と、銀及び活性金属を含有するろう材を介してセラミックス板上に金属基材を張り合わせて積層体を得る工程(積層工程)と、上記積層体を加熱処理して、複合基板を得る工程(熱処理工程)と、を有する。
 グリーンシート調製工程では、セラミックス板の原料となる成分を含むスラリーを調製し、シート状に成形してグリーンシートを調製する。スラリーの成形方法は、例えば、ドクターブレード法、及び押出成形法等であってよい。
 無機化合物としては、例えば、窒化ケイ素(Si)、窒化アルミニウム(AlN)、炭化ケイ素、及び酸化アルミニウム等が挙げられる。焼結助剤としては、希土類元素の金属酸化物、フッ化物、塩化物、硝酸塩、及び硫酸塩、又はアルカリ土類金属の金属酸化物、フッ化物、塩化物、硝酸塩、及び硫酸塩等が挙げられる。これらは一種のみ用いてもよいし、二種以上を併用してもよい。焼結助剤としては、アルカリ土類金属の酸化物を含んでよく、例えば、酸化マグネシウム等であってよい。焼結助剤を用いることによって、無機化合物の焼結を促進させることができる。
 バインダ樹脂としては、例えば、メチルセルロース、エチルセルロース、ポリビニルアルコール、ポリビニルブチラール、及び(メタ)アクリル系樹脂等が挙げられる。バインダ樹脂を用いることによって、スラリーをシート状などの種々の形状に成形することを容易にできる。溶媒としては、例えば、エタノール及びトルエン等の有機溶媒が挙げられる。バインダ樹脂及び溶媒を用いることでスラリーの粘度を容易に調整することができる。
 スラリーは、無機化合物の粉末、焼結助剤、バインダ樹脂、及び溶媒に加えて、その他の成分を含んでもよい。その他の成分としては、例えば、可塑剤及び分散剤等が挙げられる。可塑剤としては、例えば、精製グリセリン、グリセリントリオレート、ジエチレングリコール、ジ-n-ブチルフタレート等のフタル酸系可塑剤、及びセバシン酸ジ-2-エチルヘキシル等の二塩基酸系可塑剤等が挙げられる。分散剤としては、例えば、ポリ(メタ)アクリル酸塩、及び(メタ)アクリル酸-マレイン酸塩コポリマーが挙げられる。
 セラミックス板調製工程は、成形して得られたグリーンシートを加熱処理してセラミックス板を得る工程である。グリーンシートの加熱処理は、複数の加熱処理で行い、例えば、800℃以下の加熱温度で加熱処理を行う脱脂工程と、脱脂工程における加熱温度よりも高温で加熱処理を行う焼結工程とを有してもよい。脱脂工程では、主に、バインダ樹脂等を燃焼させ、グリーンシートの脱脂を行う。そして、焼結工程において、無機化合物及び焼結助剤を含む原料を焼結させ、セラミックス板を得る。
 脱脂工程における加熱温度は、例えば、750~800℃、760~790℃、又は780~790℃であってよい。加熱温度の上限値を上記範囲内とすることで、無機化合物の焼結の前にバインダ樹脂等の有機物を十分に除去し、より均質な系としたうえで、続く第二の加熱処理における焼結を行うことができる。脱脂工程における加熱時間は、例えば、0.5~20時間であってよい。
 焼結工程における加熱温度は、脱脂工程における加熱温度よりも高温で行う。焼結工程における加熱温度は、例えば、1600~1950℃、1700~1950℃、又は1800~1900℃であってよい。焼結工程における加熱時間は、例えば、5~15時間であってよい。焼結工程は、例えば、窒素、アルゴン、アンモニア及び水素等の非酸化性ガス雰囲気下で行ってよい。
 本実施形態に係る複合基板の製造方法は、セラミックス板を調製する工程を含む方法で説明したが、グリーンシート調製工程及びセラミックス板調製工程に代えて、あらかじめ調製されたセラミックス板(例えば、市販のセラミックス板)を用いてもよい。
 積層工程では、セラミックス板及び金属基材を、活性金属を含有するろう材を用いて積層し、積層体を得る。例えば、ろう材をセラミックス板の表面に塗布し塗膜を形成し、上記塗膜上に金属基材を貼り合わせる。セラミックス板の両面に金属基材を張り付ける場合には、セラミックス板の表面及び裏面の両面において、同様の操作によって金属基材を張り合わせる。金属基材の形状は、例えば、平板形状であってよい。金属基材はあらかじめ回路が形成されていてもよい。
 ろう材を含む塗膜は、例えば、ロールコーター法、スクリーン印刷法、及び転写法等によって、セラミックス板の表面に塗布して設けることができる。ろう材は、主成分として銀(Ag)を含み、副成分として活性金属を含む。活性金属は、例えば、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、及びタンタル(Ta)等が挙げられる。ろう材は、融点降下を目的に、銅(Cu)、スズ(Sn)、及びインジウム(In)等の金属を含んでもよい。ろう材中の活性金属の含有量は、銀の含有量を100質量部として調整してよい。
 ろう材が銅を含む場合、接合面付近の構成部材への熱処理による影響を低減することができることから、得られる複合基板の信頼性をより向上することができる。ろう材中の銅の含有量は、銀の含有量100質量部に対して、例えば、17質量部以下、15質量部以下、14質量部以下、13質量部以下、又は12質量部以下であってよい。ろう材中の銅の含有量は、銀の含有量100質量部に対して、例えば、2質量部以上、4質量部以上、6質量部以上、8質量部以上、又は10質量部以上であってよい。ろう材中の銅の含有量は上述の範囲内で調整してよく、銀の含有量100質量部に対して、例えば、2~16質量部であってよい。
 ろう材がスズを含む場合、ろう材の融点を低下させることができ、接合面付近の構成部材への熱処理による影響を低減することができることから、得られる複合基板の信頼性をより向上することができる。ろう材中のスズの含有量は、銀の含有量100質量部に対して、例えば、6.0質量部以下、5.5質量部以下、5.0質量部以下、3.0質量部以下、又は1.0質量部以下であってよい。ろう材中のスズの含有量は、銀の含有量を100質量部に対して、例えば、0.5質量部以上であってよい。ろう材中のスズの含有量は上述の範囲内で調整してよく、銀の含有量100質量部に対して、例えば、0.5~6.0質量部であってよい。
 ろう材がチタンを含む場合、セラミックス板と金属基材との接合強度をより向上させることができる。ろう材中のチタンの含有量の上限値は、銀の含有量100質量部に対して、例えば、7.0質量部以下、6.0質量部以下、5.0質量部以下、又は4.0質量部以下であってよい。ろう材中のチタンの含有量の下限値は、銀の含有量100質量部に対して、例えば、0.6質量部以上、0.8質量部以上、又は1.0質量部以上であってよい。ろう材中のチタンの含有量は上述の範囲内で調整してよく、銀の含有量100質量部に対して、例えば、1.0~5.0質量部であってよい。
 ろう材の25℃における粘度は、例えば、5~40Pa秒であってよい。ろう材の上記粘度が上記範囲内であると、セラミックス板上により一層均一に塗膜を形成することでき、接合のための加熱処理時の溶融粘度も適度なものとなりセラミックス板と金属基材との間に十分ろう材をいきわたらせることができるため、接合強度をより向上させ、複合基板の信頼性を高めることができる。
 ろう材は、銀及び活性金属等の金属に加えて、例えば、有機溶媒及びバインダ等を含有してよい。ろう材における有機溶媒の含有量は、例えば、5~25質量%であってよい。ろう材におけるバインダの含有量は、例えば、2~15質量%であってよい。
 熱処理工程では、上記積層体を加熱炉で加熱してセラミックス板と金属基材とを十分に接合させて複合基板を得る。セラミックス板と金属基材とを十分な接合強度を持って接合させ、且つヒートサイクル特性にも優れたものとするために、温度パターンを複数回に分けて加熱処理を行う。熱処理工程は、例えば、600℃未満の温度で積層体を加熱処理する第一の加熱処理工程と、第一の加熱処理工程における加熱温度よりも高温で積層体を加熱処理する第二の加熱処理工程とを有してもよい。
 第一の加熱処理工程における加熱温度の上限値は、例えば、600℃未満、590℃以下、585℃以下、500℃以下、450℃以下、又は410℃以下であってよい。加熱温度の上限値を上記範囲内とすることで、接合性をより向上させることができる。加熱温度の上限値を上記範囲内とすることでまた、ろう材がバインダ成分を含む場合、ろう材が溶融する前にバインダ成分を分解させ、接合性の低下を十分に抑制できる。第一の加熱処理工程における加熱温度の下限値は、例えば、350℃以上、360℃以上、380℃以上、又は400℃以上であってよい。加熱温度の下限値を上記範囲内とすることで、ろう材がバインダ成分を含む場合、ろう材に含まれるバインダ成分の分解不足を抑制し、接合性をより向上させることができる。第一の加熱処理工程における加熱温度は上述の範囲内で調整してよく、例えば、350℃以上600℃未満、又は400~410℃であってよい。
 第二の加熱処理工程における加熱温度の上限値は、例えば、850℃未満、845℃以下、又は840℃以下であってよい。加熱温度の上限値を上記範囲内とすることで、ろう材中の成分の金属基材への拡散をより抑制することができる。第一の加熱処理工程における加熱温度の下限値は、例えば、770℃以上、780℃以上、790℃以上、又は800℃以上であってよい。加熱温度の下限値を上記範囲内とすることで、ろう材の未溶融による接合不良をより抑制することができる。第二の加熱処理工程における加熱温度は上述の範囲内で調整してよく、例えば、770℃以上850℃未満、又は800~840℃であってよい。
 第二の加熱処理工程における加熱時間は、比較的短時間で行う。加熱時間を短くすることによって、加熱状態にあるセラミックス板、ろう材、及び金属基材の間でろう材中の成分の過度な拡散を抑制することができ、活性金属をセラミックス板と金属基材との接合に十分寄与させることができる。第二の加熱処理工程における加熱時間は、例えば、90分間以下、80分間以下、又は70分間以下であってよい。第二の加熱処理工程における加熱時間は、例えば、5分間以上、10分間以上、又は15分間以上であってよい。第二の加熱処理工程における加熱時間は上述の範囲内で調整してよく、例えば、5~90分間であってよい。本明細書における加熱時間は、加熱炉内の温度が所定温度に到達してから、その温度に維持する時間を意味する。
 第一の加熱処理工程及び第二の加熱処理工程は、炉内の雰囲気を窒素等の不活性ガスとしてよい。また炉内の圧力は、例えば、大気圧未満の減圧下としてもよく、真空下としてもよい。
 第一の加熱処理工程及び第二の加熱処理工程では、積層体を積層方向に押圧しながら行ってもよい。加熱炉は、複数の接合体を連続的に製造する連続式のものであってもよいし、一つ又は複数の接合体をバッチ式で製造するものであってもよい。
 複合基板における金属基材の一部を除去して回路を形成してもよい。この工程は、例えば、エッチング等によって行ってよい。具体的には、まず、複合基板の表面に感光性を有するレジストを印刷する。そして、露光装置を用いて、所定形状を有するレジストパターンを形成する。レジストはネガ型であってもよいしポジ型であってもよい。未硬化のレジストは、例えば洗浄によって除去する。
 レジストパターンを形成した後、エッチングによって、金属基板のうちレジストパターンに覆われていない部分を除去する。金属基材がセラミックス板と同じ形状、同じサイズであった場合、上述の操作によって、当該部分にはセラミックス板の表面及び/又は裏面の一部を露出させることができる。その後、レジストパターンを除去することによって、回路を有する複合基板とすることができる。
 以上、幾つかの実施形態について説明したが、共通する構成については互いの説明を適用することができる。また本開示は、上記実施形態に何ら限定されるものではない。
 実施例及び比較例を参照して本開示の内容をより詳細に説明するが、本開示は下記の実施例に限定されるものではない。
 以下の実施例及び比較例において用いたろう材a~cについて、その組成を表1に示す。なお、表1中の数字は、各成分の質量部を示している。
Figure JPOXMLDOC01-appb-T000001
(実施例1)
[複合基板の作製]
 厚さ0.32mmの窒化ケイ素製のセラミックス板、厚さ0.3mmの第一銅板、及び厚さ0.25mmの第二銅板を準備した。セラミックス板の両面の所定箇所にろう材aを塗布した。
 ろう材aを介して、第一銅板、セラミックス板、及び第二銅板をこの順に貼り合わせ、加熱炉内にて、真空中、400℃の条件下で120分間、加熱処理(第一の加熱処理工程)し、その後、800℃まで昇温して、当該温度で60分間、加熱処理(第二の加熱処理工程)した。このようにしてセラミックス板に第一及び第二銅板を接合させた。
 露光装置を用いて第一銅板の上に所定形状を有するレジストパターンを形成した後、塩化銅水溶液、次いで過酸化水素とフッ化アンモニウムの混合液を用いてエッチングを行い、レジストパターンに覆われていない部分を除去した。その後、アルカリはく離液でレジストパターンを除去した。
 レジストパターンを除去した後、Ni-Pめっき液(リン濃度:8~12質量%)を用いて無電解メッキ処理を行い、セラミックス板上にめっき膜を有する回路板を形成した。このようにして複合基板を作製した。
(実施例2)
 第二の加熱処理工程における加熱温度を840℃に変更したこと以外は、実施例1と同様にして、複合基板を作製した。
(実施例3)
 ろう材としてろう材bを用い、第二の加熱処理工程における加熱温度を800℃に変更したこと以外は、実施例1と同様にして、複合基板を作製した。
(実施例4)
 ろう材としてろう材cを用い、第二の加熱処理工程における加熱温度を800℃に変更したこと以外は、実施例1と同様にして、複合基板を作製した。
(実施例5)
 第二の加熱処理工程における加熱温度を800℃に、加熱時間を5分間に変更したこと以外は、実施例1と同様にして、複合基板を作製した。
(実施例6)
 第二の加熱処理工程における加熱温度を800℃に、加熱時間を90分間に変更したこと以外は、実施例1と同様にして、複合基板を作製した。
(比較例1)
 第二の加熱処理工程における加熱温度を860℃に変更したこと以外は、実施例1と同様にして、複合基板を作製した。
(比較例2)
 第二の加熱処理工程における加熱温度を750℃に変更したこと以外は、実施例1と同様にして、複合基板を作製した。
(比較例3)
 第二の加熱処理工程における加熱温度を800℃に、加熱時間を180分間に変更したこと以外は、実施例1と同様にして、複合基板を作製した。
<複合基板の評価>
 実施例1~6及び比較例1~3で作製した複合基板のそれぞれについて、所定位置におけるビッカース硬さを測定し、ビッカース硬さX、Y及びY/Xの値を決定した。具体的には、複合基板を切断後、樹脂に包埋し、断面を研磨して測定用試料を作製した。この測定用試料における金属板の表面へダイヤモンドの圧子を押し込み、その試験力を解除した後、表面に残ったくぼみの対角線長さを測長し、測定対象のビッカース硬さを算出した。結果を表2及び表3に示す。
<複合基板の接合強度の評価:引きはがし強度>
 実施例及び比較例で得られた複合基板について、引きはがし強度を測定し、接合強度を評価した。具体的には、複合基板に接合された銅回路パターンの一部である幅5mmのパターンの端をペンチで引き剥がした。この複合基板を引張試験機の台に固定し、上記パターンの端をプル試験機のチャックに取り付けた。この時、セラミックス板の表面と引き剥がされた上記銅回路パターンの角度が90°(鉛直方向)になるように設置した。その後、引張試験機を作動させ、チャックを介して引き剥がされた上記パターンを上方に引っ張って移動させ、その時の最大引き剥がし荷重を測定した。その最大引き剥がし荷重を幅(0.5cm)で除して引きはがし強度を算出した。試験後、はく離面を目視で観察し、以下の基準で接合強度を評価した。結果を表2及び表3に示す。
A:引きはがし強度が100N/cm以上である。
B:引きはがし強度が80N/cm以上100N/cm未満である。
C:引きはがし強度が40N/cm以上80N/cm未満である。
D:引きはがし強度が40N/cm未満である。
<複合基板のヒートサイクル特性の評価>
 実施例及び比較例で得られた複合基板について、JIS C 60068-2-14:2011「環境試験方法-電気・電子-第2―14部:温度変化試験方法(試験記号:N)」に記載の方法に準拠して、ヒートサイクル特性を評価した。具体的には、-40℃で15分間維持し、その後150℃で15分間維持することを1サイクルとして、2000回のヒートサイクル試験を行った。試験後、塩化銅液、及びフッ化アンモニウム/過酸化水素エッチングを用いて、銅板及びろう材層をはく離し、セラミックス板表面のクラックを画像解析ソフトGIMP2にて二値化(閾値140)し、上記クラックの面積を算出した後、クラック面積/回路パターンの面積の値を算出してクラック率を決定した。結果を表2及び表3に示す。
A:クラック率が1%未満である。
B:クラック率が1%以上5%未満である。
C:クラック率が5%以上である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本開示によれば、セラミックス基板と金属基材との接合強度及びヒートサイクル特性に優れる複合基板を提供できる。
 10…セラミックス板、10A…表面、10B…裏面、20,22…ろう材層、30,32…金属基材、40…回路板、40a,50a…接合面、50…放熱板、100…複合基板。

Claims (5)

  1.  セラミックス板と、銀及び活性金属を含有するろう材層を介して前記セラミックス板上に接合された金属基材とを有し、
     前記セラミックス板から前記金属基材に向かって20μmの位置におけるビッカース硬さをXとし、前記セラミックス板から前記金属基材に向かって70μmの位置におけるビッカース硬さをYとしたときに、前記Xが70~110HVであり、前記Xに対する前記Yの比が0.92以下である、複合基板。
  2.  前記Xに対する前記Yの比が0.50以上である、請求項1に記載の複合基板。
  3.  前記活性金属が、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、及びタンタルからなる群より選択れる少なくとも一種を含有する、請求項1又は2に記載の複合基板。
  4.  前記セラミックス板が窒化ケイ素を含有する、請求項1~3のいずれか一項に記載の複合基板。
  5.  前記ろう材層の厚みが20μm以下である、請求項1~4のいずれか一項に記載の複合基板。
PCT/JP2022/008564 2021-03-24 2022-03-01 複合基板 WO2022202144A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280020393.5A CN116964022A (zh) 2021-03-24 2022-03-01 复合基板
JP2022533204A JP7330382B2 (ja) 2021-03-24 2022-03-01 複合基板
EP22774941.3A EP4310065A1 (en) 2021-03-24 2022-03-01 Composite substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-049936 2021-03-24
JP2021049936 2021-03-24

Publications (1)

Publication Number Publication Date
WO2022202144A1 true WO2022202144A1 (ja) 2022-09-29

Family

ID=83395549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008564 WO2022202144A1 (ja) 2021-03-24 2022-03-01 複合基板

Country Status (4)

Country Link
EP (1) EP4310065A1 (ja)
JP (1) JP7330382B2 (ja)
CN (1) CN116964022A (ja)
WO (1) WO2022202144A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162325A (ja) * 1995-12-07 1997-06-20 Denki Kagaku Kogyo Kk 窒化珪素回路基板及びその製造方法
JP2000327443A (ja) * 1999-05-21 2000-11-28 Ngk Spark Plug Co Ltd 金属−セラミック接合体及びそれを用いたタペット
JP2006128286A (ja) * 2004-10-27 2006-05-18 Kyocera Corp 金属セラミック複合体とその接合方法およびこれを用いた放熱基板
JP2011199315A (ja) * 2011-06-17 2011-10-06 Dowa Holdings Co Ltd 金属−セラミックス接合基板
JP2014118310A (ja) 2012-12-14 2014-06-30 Denki Kagaku Kogyo Kk セラミックス回路基板
WO2018221493A1 (ja) * 2017-05-30 2018-12-06 デンカ株式会社 セラミックス回路基板及びそれを用いたモジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162325A (ja) * 1995-12-07 1997-06-20 Denki Kagaku Kogyo Kk 窒化珪素回路基板及びその製造方法
JP2000327443A (ja) * 1999-05-21 2000-11-28 Ngk Spark Plug Co Ltd 金属−セラミック接合体及びそれを用いたタペット
JP2006128286A (ja) * 2004-10-27 2006-05-18 Kyocera Corp 金属セラミック複合体とその接合方法およびこれを用いた放熱基板
JP2011199315A (ja) * 2011-06-17 2011-10-06 Dowa Holdings Co Ltd 金属−セラミックス接合基板
JP2014118310A (ja) 2012-12-14 2014-06-30 Denki Kagaku Kogyo Kk セラミックス回路基板
WO2018221493A1 (ja) * 2017-05-30 2018-12-06 デンカ株式会社 セラミックス回路基板及びそれを用いたモジュール

Also Published As

Publication number Publication date
CN116964022A (zh) 2023-10-27
EP4310065A1 (en) 2024-01-24
JPWO2022202144A1 (ja) 2022-09-29
JP7330382B2 (ja) 2023-08-21

Similar Documents

Publication Publication Date Title
EP3632879B1 (en) Ceramic circuit board and method of production
WO1991016805A1 (en) Ceramic circuit board
JP4978221B2 (ja) 回路基板の製造装置及び製造方法、その製造方法に用いられるクッションシート
JP2014118310A (ja) セラミックス回路基板
JP7212700B2 (ja) セラミックス-銅複合体、セラミックス回路基板、パワーモジュール及びセラミックス-銅複合体の製造方法
WO2022202144A1 (ja) 複合基板
WO2021200866A1 (ja) 回路基板、接合体、及びこれらの製造方法
WO2022202146A1 (ja) 複合基板
JP2017065935A (ja) セラミックス回路基板
JP3933287B2 (ja) ヒートシンク付き回路基板
JP3454331B2 (ja) 回路基板及びその製造方法
JP7441234B2 (ja) 回路基板及びこれを備えるモジュール
JP3182354B2 (ja) 回路基板及びその評価方法
EP2933831A1 (en) Method for producing substrate for power modules
WO2022131273A1 (ja) セラミックススクライブ基板、セラミックス基板、セラミックススクライブ基板の製造方法、セラミックス基板の製造方法、セラミックス回路基板の製造方法、及び、半導体素子の製造方法
WO2023100917A1 (ja) 接合用金属ペースト、および、接合体の製造方法、絶縁回路基板の製造方法
JP3729637B2 (ja) 電子部品
JP3460167B2 (ja) 金属回路を有する窒化アルミニウム回路基板の製造方法
WO2023188670A1 (ja) 回路基板及びその製造方法
JP3529085B2 (ja) ヒートシンク付き回路基板
JP2018030738A (ja) セラミックス基板とアルミニウム含浸炭化珪素多孔質体との接合体の製造方法
JP2007182339A (ja) 窒化アルミニウム基板の再生方法及びこれを用いた回路基板
JP3853290B2 (ja) 接合体の製造方法
JP2023040786A (ja) セラミック複合基板
JP2004200338A (ja) セラミック多層積層体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022533204

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774941

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280020393.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022774941

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022774941

Country of ref document: EP

Effective date: 20231018