WO2022202061A1 - 車両併合システム - Google Patents

車両併合システム Download PDF

Info

Publication number
WO2022202061A1
WO2022202061A1 PCT/JP2022/007258 JP2022007258W WO2022202061A1 WO 2022202061 A1 WO2022202061 A1 WO 2022202061A1 JP 2022007258 W JP2022007258 W JP 2022007258W WO 2022202061 A1 WO2022202061 A1 WO 2022202061A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
merging
coupler
merged
distance
Prior art date
Application number
PCT/JP2022/007258
Other languages
English (en)
French (fr)
Inventor
瑳佳 北井
努 吉田
祐磨 臺
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022202061A1 publication Critical patent/WO2022202061A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D37/00Other furniture or furnishings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains

Definitions

  • the present invention relates to a vehicle merging system.
  • Patent Document 1 when a merging vehicle receives a merging preparation completion signal output from a merging vehicle via a wireless transmission device when performing merging work, a millimeter-wave wireless transmission device and a merging support device calculate It is described that a speed pattern is calculated based on the remaining travel distance, and the merging is performed by traveling according to the speed pattern. In addition, by transmitting the video captured by the camera installed in the merging vehicle to the monitor installed in the driver's seat of the merging vehicle, the driver of the merging vehicle can confirm the cover condition of the coupler of the vehicle and confirm safety. describes how to do it.
  • Patent Document 1 assumes that not only the merging vehicle but also the merging vehicle is equipped with a wireless transmission device. For this reason, no consideration has been given to dealing with merged vehicles that do not have a radio transmission device. Also, when a person visually confirms the direction of the coupler from the image on the monitor, it is difficult to judge a slight bend in the coupler. Nevertheless, if the merging operation is performed, there is a risk of causing the vehicle to break down.
  • SUMMARY OF THE INVENTION It is an object of the present invention to provide a vehicle merging system capable of safely merging trains that do not have inter-vehicle communication functions without human supervision and operation.
  • One of the representative vehicle merging systems of the present invention is a vehicle merging system that includes a speed calculating device, a distance measuring device, a coupler shape detecting device, a merging possibility determining device, and a merging management device.
  • the speed calculating device calculates the running speed of the merged vehicle
  • the distance measuring device calculates distance information between the merged vehicle and the merged vehicle
  • the coupler shape detection device measures the merged vehicle and the merged vehicle.
  • the state of the coupler of the vehicle to be merged is detected, and the merging possibility determination device determines whether or not the vehicle to be merged and the vehicle to be merged are in a state in which they can be merged based on the detection result of the coupler shape detection device.
  • the merging management device calculates a travel plan from the distance information and the travel speed when the merging possibility determining device determines that the merging is possible.
  • FIG. 4 is a diagram showing an example of detection of the orientation of the coupler in the coupler shape detection device 122; A diagram showing an example of distance detection between couplers in the distance measuring device 123
  • FIGS. 1 to 9 a vehicle that performs connection control for connecting a merging vehicle 101 running as separate trains and a merging vehicle 102 running behind it by a coupler.
  • a first embodiment of a merging system is described.
  • a one-car train set will be described as an example for both the merged car 101 and the merged car 102, but the present invention can also be applied to a train train composed of two or more cars. This also applies to other embodiments.
  • an embodiment will be described in which the merging vehicle 102 advances and is connected to the merging vehicle, but the present invention is not limited to the case where the merging vehicle 102 moves forward. It can also be applied to the case where the merging vehicle 102 is positioned behind the merging vehicle 102 and connected to the merging vehicle 101 by retreating. This also applies to other embodiments.
  • FIG. 1 shows the configuration of the vehicle combination system of this embodiment.
  • the merging vehicle 101 has a coupler 111 on its back.
  • the merging vehicle 102 is equipped with a coupler 121, a coupler shape detecting device 122, and a distance measuring device 123 on the front, and furthermore, a merging possibility determining device 124 for performing the merging, a merging management device 125, and a running control device. 126 and a speed sensor 127 .
  • the coupler 111 and the coupler 121 are devices that couple vehicles by bringing their parts into contact with each other. Henceforth, the surface which couplers contact each other is called a connection surface.
  • the coupler shape detection device 122 is installed at a position where the shapes of the coupler 111 and the coupler 121 can be measured, and outputs the measurement result of each coupler shape to the mergeability determination device 124 .
  • the coupler shape detection device 122 can be a camera, a distance image sensor, an optical ranging sensor (LiDAR: Light Detection and Ranging, hereinafter referred to as lidar) capable of acquiring two-dimensional or three-dimensional point group information, or the like. Image information in the case of a camera, point cloud information in the case of a lidar, and either image information and point cloud information in the case of a range image sensor are output to the merging possibility determination device 124 .
  • LiDAR Light Detection and Ranging
  • any number of devices may be installed as long as the couplings of both the merging vehicle 101 and the merging vehicle 102 can be measured.
  • separate sensors may be combined, such as installing a camera as a sensor for measuring one coupler and installing a lidar as a sensor for measuring the other coupler.
  • a camera as a sensor for measuring one coupler
  • a lidar as a sensor for measuring the other coupler.
  • the distance measuring device 123 calculates the distance from the connecting surface of the coupler 121 of the merging vehicle 102 to the connecting surface of the coupler 111 of the merging vehicle 101 and outputs it to the merging management device 125 as distance information. Details of the distance calculation method will be described later.
  • the distance measuring device 123 may be of any type as long as it can measure a distance without contact, such as a distance measuring sensor such as a laser radar, an ultrasonic sensor, an infrared sensor, a stereo camera, or a lidar. Further, if distance information can be obtained by the connector shape detection device 122 , the connector shape detection device 122 may be used as the distance measurement device 123 .
  • the coupler shape detection device can be used as a distance measuring device.
  • a distance measuring device can be used as Hereinafter, a case where a laser radar is used as the distance measuring device 123 will be described as an example.
  • the merging possibility determination device 124 receives the coupler shape information from the coupler shape detecting device 122, determines whether or not the vehicle 101 to be merged and the vehicle 102 to be merged can be merged by a merging possibility determination process, and determines that the merging is possible. If so, the value of the merging possibility determination flag is set to 1; Details of the merging possibility determination process will be described later.
  • the merging management device 125 receives the merging possibility determination flag from the merging possibility determining device 124, the current speed of the merging vehicle 102 from the speed sensor 127, the distance information from the distance measuring device 123, and the merging possibility determination flag. Triggered by the value being 1, a travel plan is calculated and output to the travel control device 126 .
  • the travel plan is a plan for controlling the speed of the vehicle in accordance with the distance to the coupling surface of the coupler 111 of the merged vehicle 101. For example, a configuration in which a target speed is specified for each travel position, a driving operation ( (acceleration, deceleration, coasting, etc.) may be specified.
  • the travel control device 126 receives a travel plan from the merge management device 125, inputs the current speed from the speed sensor 127, and controls the travel speed of the merge vehicle 102 so as to follow the travel plan.
  • the travel control device 126 may adopt any control method as long as it can control the travel of the merge vehicle 102 so as to follow the travel plan.
  • the vehicle may be controlled by calculating the braking/driving force so as to achieve the target position and speed, or the notch may be proportionally controlled so as to follow the target speed.
  • the speed sensor 127 calculates the speed of the merged vehicle and outputs it to the merged management device 125 and the travel control device 126 .
  • Any type of speed sensor can be used as long as it can calculate the speed of the merging vehicle.
  • it may be configured to calculate the speed from the wheel diameter and the wheel rotation speed, or to calculate the speed by integrating the acceleration detected by the acceleration sensor, or to time-differentiate the position information obtained from the GNSS (Global Navigation Satellite System). It may be configured to be calculated by GNSS (Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • FIG. 2 shows the processing flow of the merging management device 125 .
  • Step 1010 At step 1010, it is determined whether or not the merging start condition is satisfied. Details of the merging start condition will be described later.
  • step 1020> The step 1020 outputs a merge control start signal to the merge possibility determination device 124 and proceeds to step 1030 .
  • step 1030> receives a mergeability determination flag from the mergeability determination device 124 and determines whether or not the value of the flag is 1. If Yes, the process proceeds to a step 1040 .
  • ⁇ Step 1040> acquires the distance information between the couplers from the distance measuring device 123 , executes a distance information normality determination process, and proceeds to a step 1050 .
  • the details of the distance information normality determination process will be described later.
  • a step 1050> decides whether or not the value of the distance information normal flag is 1. If Yes, the process proceeds to a step 1060 , and if No, the process proceeds to a step 1051 .
  • ⁇ Step 1051> A step 1051 carries out an abnormality process and terminates the process. Details of the error processing will be described later.
  • ⁇ Step 1060> At step 1060, it is determined whether or not the value of the travel plan creation completion flag is 1.
  • step 1070 carries out a travel plan creation process and proceeds to a step 1080 . Details of the travel plan creation process and the created travel plan will be described later.
  • step 1080 At step 1080, it is determined whether or not the value of the travel plan creation completion flag is 1. If Yes, the process proceeds to step 1090, and if No, the process proceeds to step 1051.
  • step 1090> A step 1090 outputs the created travel plan and the distance information input from the distance measuring device 123 to the travel control device 126, and proceeds to step 1100.
  • Step 1100 A step 1100 confirms whether or not the merging completion condition is satisfied, and if Yes, the process is terminated, and if No, the process returns to the step 1040 . When the process returns to step 1040, the processes from step 1040 to step 1100 are repeated until the merging completion condition is satisfied in step 1100. FIG. Details of the merge completion conditions will be described later.
  • Merge start condition An example of the merging start condition will be described with reference to FIG. As a merging start condition, for example, as shown in FIG. The details of how to determine the merge control start position will be described later.
  • the merge control start position is stored in advance in the merge vehicle 102, and the current position of the merge vehicle 102 reaches the stored merge control start position.
  • There are various means such as a method of detecting such a situation, a method of installing a transmission device that transmits a signal instructing the start of merging control in advance on the running road, and a method of detecting that the merging control device 125 has received the signal. included.
  • the method of acquiring the current position of the merging vehicle 102 includes various means such as a method of calculating from the wheel diameter and wheel rotation speed, and a method of acquiring from GNSS (Global Navigation Satellite System). .
  • GNSS Global Navigation Satellite System
  • the merge control start position is determined from the position of the coupler 111 of the vehicle to be merged 101 using the distance threshold and speed threshold determined so that the coupler shape detection device 122 can reliably detect the coupler of each vehicle.
  • the distance threshold is shorter than the maximum detectable distance of the coupler shape detection device 122 and is a distance with a margin sufficient to detect the coupler 111 of the merged vehicle 101 .
  • the margin is based on the environmental conditions for merging (with or without a roof, whether the road is straight or curved, etc.) and the performance of the coupler shape detection device 122 to be mounted (detection distance, detection accuracy, resolution, measurement cycle). It is determined so that the coupling 111 of the merged vehicle 101 can be reliably measured.
  • the speed threshold is set at a speed lower than the intersection of the brake pattern of the normal maximum brake set (drawn) with the maximum speed as the starting point and the distance threshold so that the speed is 0 at the coupler position of the merged vehicle 101. and the coupler shape detection device 122 can measure the coupler 111 of the to-be-merged vehicle 101 and the coupler 121 of the merging vehicle 102 multiple times while the merging vehicle 102 travels the distance of the distance threshold. It is the set speed.
  • the method of determining the merge control start position may be a method that triggers detection of the coupler of the merging vehicle 101 by the coupler shape detection device 122, or a method that uses distance Various means are included, such as a method that triggers when the measuring device 123 approaches the merged vehicle 101 within a certain distance. Furthermore, a method may be used in which the driver presses a switch at an arbitrary timing as a trigger. In this case, if the coupler shape detection device 122 can measure the coupler 111 of the merged vehicle 101, the control is started as it is. It is possible to think of a method to ensure safety by
  • a merging completion condition for example, there is a method of triggering that the inter-coupler distance acquired by the distance measuring device 123 has become equal to or less than a predetermined value.
  • a method of triggering that the inter-coupler distance acquired by the distance measuring device 123 has become equal to or less than a predetermined value for example, in a vehicle in which an electric circuit and an air pipe are also connected when the vehicle is connected, it is possible to receive an electric signal from the merged vehicle 101 via the coupler 121 and detect a pressure change in the air pipe. may be used as a trigger.
  • Step 2010 inputs distance information from the distance measuring device 123 and proceeds to a step 2020 .
  • a step 2020 confirms whether or not the distance information normal flag is 0. If Yes, the process proceeds to a step 2030, and if No, the process ends.
  • Step 2030> Step 2030 performs standby processing and proceeds to step 2040 . Details of the standby process will be described later.
  • a step 2040 inputs distance information from the distance measuring device 123 and proceeds to a step 2050 .
  • step 2050 distance normality determination is performed, and if Yes, the process proceeds to step 2060, and if No, the process proceeds to step 2061.
  • the details of the distance normality determination will be described later.
  • a step 2060 sets the distance information normal flag to 1 and terminates the process.
  • a step 2061 sets the distance information normal flag to 0, and terminates the process.
  • the current speed V1 is input from the speed sensor 127 , and the transition to the next step is waited for the standby time tS seconds calculated by the following formula from the current speed V1 and the error threshold dL .
  • t S d L /V 1
  • the error threshold is an arbitrary value larger than d, where d is the measurement error assumed based on the specifications of the sensor.
  • the normal distance determination is calculated from the movement distance calculated from the difference between the distance received at step 2010 and the distance received at step 2030, the current speed obtained from the speed sensor 127, and the processing time from step 2010 to step 2030. It is determined whether or not the moving distance is smaller than the error threshold dL .
  • the initial value of the distance information normal flag is 0.
  • FIG. 5A a coasting run curve (hereinafter referred to as a coasting run curve) is created such that the speed becomes V M [km/h] at the connecting surface position 0 [m] of the coupler 111 of the merged vehicle 101 .
  • Velocity VM is set with reference to the speed at the time of manual merging so that the impact at the time of collision is as small as possible. Subsequently, a run curve for constant speed running at a speed V C [km/h] (hereinafter referred to as a constant speed run curve) is created. The speed VC is set to the lowest speed at which the merging vehicle 102 can stably run at a constant speed. Finally, a run curve (hereinafter referred to as a deceleration run curve) for decelerating from the current speed V1 to a speed of 0 [km/h] at a predetermined deceleration is created.
  • a deceleration run curve for decelerating from the current speed V1 to a speed of 0 [km/h] at a predetermined deceleration is created.
  • the deceleration run curve is adopted until the intersection of the deceleration run curve and the constant speed run curve
  • the constant speed run curve is adopted until the intersection of the constant speed run curve and the coasting run curve
  • the coasting run curve is adopted thereafter to create a planned run curve to be finally output.
  • the deceleration run curve and the coasting run curve A deceleration run curve is adopted up to the intersection of , and a coasting run curve is adopted thereafter to create a planned run curve to be finally output.
  • the preparation of the travel plan is stopped.
  • the value of the travel plan creation completion flag is set to 1 when the creation of the travel plan is completed, and the value of the travel plan creation completion flag is set to 0 when the creation of the travel plan is cancelled.
  • the initial value of the travel plan preparation completion flag is zero. From the above, it is possible to create a travel plan that does not include a stop motion until merging.
  • FIG. 6 shows an example of the travel plan created as described above.
  • the merging management device 125 notifies the operation management system or the like that merging is impossible if there is no driver or driver in driverless driving or the like, using a notification means (not shown). do. The details of the notification means will be described later. Furthermore, the merging management device 125 creates a travel plan from the current position to a safe stop and transmits it to the travel control device 126 .
  • Notification means include a method of displaying on the screen of the cab, a method of lighting a specific indicator light, voice guidance, etc. If there is no driver or driverless driving, the operation management system etc. will not be connected. Any method may be used as long as it can recognize the possible state.
  • abnormal processing Even if the merging management device 125 determines that the coupler is ready for merging by the merging possibility determination processing in the merging possibility determination device 124, if there is any other abnormality, the driver or , when there is no driver due to driverless driving or the like, the operation management system or the like is notified that automatic merging is impossible. Specifically, when the distance information is abnormal or when the preparation of the travel plan cannot be completed, it is notified that the automatic merging is impossible. The notification means is the same as in the unmergeable process. Also, the merging management device 125 creates a travel plan from the current position to a safe stop and transmits it to the travel control device 126 .
  • Step 3010 determines whether or not a merge control start signal has been received from the merge management device 125 . If yes, go to step 3020 . If No, the process ends.
  • a step 3020> A step 3020 inputs the shape information of the coupler 111 and the coupler 121 from the coupler shape detector 122 , and proceeds to step 3030 .
  • a step 3030 performs a merging possibility determination process, and proceeds to a step 3040 . Details of the merging possibility determination process will be described later.
  • a step 3040 sends a merge possibility determination flag to the merge management device 125, and terminates the process.
  • Determination 3 The coupler 111 of the vehicle to be merged 101 and the coupler 121 of the merged vehicle 102 are oriented so that they can be merged.
  • the merging possibility determination device 124 sets the value of the merging possibility determination flag to 1 only when it is determined that merging is possible in all of the above three determinations, and sets the value of the merging possibility determination flag to 0 in other cases. The details of each determination process will be described below.
  • the merging possibility determination device 124 preliminarily stores images of all couplers that can be merged by the coupler 121 of the merging vehicle 102 as standard images. This standard image is preferably an image captured by camera 1 .
  • the image of the coupler 111 of the vehicle to be merged 101 acquired from the coupler shape detection device 122 with the standard image it is determined whether the coupler 111 of the vehicle to be merged 101 is a device that can be merged.
  • a known image processing means for example, a feature point extraction method such as SIFT (Scale-Invariant Feature Transform) or SURF (Speed Up Robust Features) is used to extract the feature amount of the coupler portion in each image, A method of comparing whether they match using matching methods such as SSD (Sum of Squared Differences) and NCC (Normalized Cross Correlation), and a known deep learning method CNN (Convolutional Neural Network) etc.
  • Various methods can be applied, such as a method of learning and judging images of couplers that can be merged.
  • Determination 2 uses the deep learning method used in determination 1 and known region division techniques, such as the region expansion method and the watershed method, to extract the vehicle to be merged from the image acquired from the coupler shape detection device 122. 101 and the area of the coupler 111 of 101 of the merged vehicle are extracted respectively. If the coupler 111 is not detected although the vehicle to be merged 101 is detected, it is determined that the coupler cover of the vehicle to be merged is closed, and the coupler 111 of the vehicle to be merged 101 is not detected. If so, it is determined that the coupler cover is open.
  • the y-coordinate is the forward direction of the car body
  • the x-coordinate is the sleeper direction
  • the reference coordinate system is a coordinate system whose origin is the lens position of the camera 1 installed facing the forward direction.
  • the amount of displacement ⁇ 2 from the standard image ⁇ 2 ′ is calculated from the rotation matrix of the image calculated when the matching method is used in judgment 1 and the characteristic information (focal length, number of pixels, etc.) of the camera being used. calculate.
  • a value obtained by adding this displacement amount ⁇ 2 to ⁇ 2 ′ of the standard image is calculated as the current orientation ⁇ 2 of the coupler 111 .
  • it can be similarly calculated by a method using a known background difference.
  • a method of calculating the orientation ⁇ 1 of the coupler 121 of the merge car 102 will be described. In the camera 2 of FIG.
  • an image obtained when ⁇ 1 of the coupler 121 of the merging vehicle 102 is 90° is stored in advance in the merging possibility determination device 124 as a right-angle image. Then, the displacement amount ⁇ 1 is calculated for the current image of the coupler 121 captured by the camera 2 by using the same method as the calculation of ⁇ 2 described above. Then, a value obtained by adding this displacement amount to 90 ° is calculated as ⁇ 1.
  • the allowable angular error is the angular error pre-defined by the coupler that can be merged.
  • the calculation means for the above ⁇ 1 and ⁇ 2 uses the lens position of the camera 1 as the reference coordinate system, and the case where the camera 2 is moved in parallel with respect to the camera 1 in the x direction is explained as an example.
  • the reference coordinate system may be set at any position as long as the installation position and angle of each camera can be calculated.
  • determination 1, determination 2, and determination 3 have been described as an example when the coupler shape detection device 122 is a camera.
  • the shape information of the car body and couplers that can be merged can be stored in advance as point group information, and a similar determination can be made by using a known point group matching method such as ICP (Iterative Closest Point).
  • the distance measuring device 123 calculates the distance L1 from the connecting surface of the coupler 121 of the merging vehicle 102 to the connecting surface of the coupler 111 of the merging vehicle 101 .
  • the reference coordinate system in FIG. 9 is similar to that described in FIG.
  • the distance L0 is the distance measured by the laser radar from the measurement origin of the laser radar to the connecting surface of the coupler 111 of the vehicle 101 to be merged.
  • the distance L2 is the distance from the measurement origin of the laser radar to the connecting surface of the coupler 121 of the merging car 102 when the orientation ⁇ 1 of the coupler 121 of the merging car 102 is 90°. It can be calculated in advance from the installation position of each device. If the value of either or both of ⁇ 1 and ⁇ 2 calculated in the merging possibility determination process is not 90°, the distance at which the two connecting surfaces actually start contacting and L 1 calculated by the above formula is An error occurs. However, since the width (length in the x direction) of the connecting surface of the coupler mounted on the train is generally about several tens of centimeters, the value of both or either of ⁇ 1 and ⁇ 2 is 90°.
  • the error is considered to be several centimeters to ten and several centimeters. Since an error of this degree has a very small effect on the speed change during coasting immediately before merging, it can be ignored in this embodiment. However, if the width of the connecting surface is large and the value of this error is also large, the error is geometrically corrected from the information on the installation position of the distance measuring device 123 and the ⁇ 1 and ⁇ 2 calculated in the merging possibility determination process. It will be done. In the above operation example, a laser radar is used as the distance measuring device 123, but the distance L0 can be similarly calculated by obtaining the distance L0 in a non-contact manner even when other sensors are used.
  • the travel control device 126 inputs the distance information between the couplers and the travel plan from the combined management device 125 and inputs the current speed from the speed sensor 127 .
  • the travel control device 126 refers to the travel plan based on the input distance information between the couplers, and calculates the corresponding target speed and driving operation information. If the calculated driving operation is deceleration or constant speed, the current speed and target speed are compared, the braking/driving force that can follow the target speed is calculated, and the command value for the braking/driving force is sent to the drive device (not shown). do.
  • the driving operation is coasting, a coasting command is transmitted to the driving device to coast the vehicle.
  • the travel control device 126 uses the current speed input from the speed sensor 127 to maintain control accuracy. If it is equal to or higher than VC in 5A or FIG. 5B, it is adopted as the current speed of the vehicle as it is, and if it is less than VC , the speed VC calculated by the following formula may be adopted as the current speed of the vehicle.
  • VC ⁇ L / ⁇ T
  • ⁇ L is the moving distance calculated from the difference between the distance information of one cycle before and the current distance information
  • ⁇ T is the processing time (time of one cycle) therebetween. If a sensor capable of accurately obtaining the speed over the entire speed range is used as the speed sensor 127, the speed obtained from the speed sensor 127 may be used as the current speed.
  • the merging vehicle 102 recognizes the positional relationship between the vehicles and automatically stops until the merging is completed, even if the merging vehicle 101 does not have communication means with the merging vehicle 102. It is possible to merge without In addition, it has a function to determine whether the coupler can be merged by detecting the shape of the coupler, and an abnormality detection function when measuring the distance between the couplers. It has a function of controlling to stop the merging vehicle 102 in front of the merging vehicle 101 at the time of detection. From the above, it is possible to realize a system capable of merging vehicles safely and in a short time.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • the vehicle combination system of the present disclosure can be applied to transportation robots in factories, cargo container transportation vehicles in airports, and other moving bodies that may be connected and run in addition to railway vehicles. be.
  • Other aspects conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
  • the merging management device, the coupler shape detection device, and the merging possibility determination device that the merging car has are not necessarily installed in the merging car, but are provided outside the merging car in a state that can be connected to the merging car.
  • These devices may be installed on the ground, may be installed on robots or the like near the merging vehicle and the merging vehicle, or may be provided on the cloud.
  • each of the above configurations, functions, processing units, processing means, and the like may be realized by hardware, for example, by designing a part or all of them using an integrated circuit.
  • may be realized by software by a processor interpreting and executing a program for realizing each function.
  • Information such as programs, tables, and files that implement each function can be stored in recording devices such as memories, hard disks, SSDs (Solid State Drives), or recording media such as IC cards, SD cards, and DVDs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Traffic Control Systems (AREA)

Abstract

本発明は、車両間の通信手段を持たない車両同士であっても、併合車側に搭載した装置のみで安全に自動で併合する機能を実現することを目的とする。このため、本発明では、被併合車と併合車とが各々の連結手段を介して連結する車両併合システムにおいて、前記併合車は、走行制御装置と、速度算出装置と、前記被併合車との距離を測定する距離測定装置と、連結器形状を検知する連結器形状検知装置と、併合可能判定装置と、距離情報と現在の走行速度から併合時の目標速度に到達するための走行計画を算出する併合管理装置を備え、前記併合管理装置は、前記併合可能判定手段において、前記併合車及び前記被併合車が併合可能な状態であると判定した場合には、前記走行制御装置に走行計画を送信し、前記走行制御装置は受信した走行計画に追従するように前記併合車の走行を制御する。

Description

車両併合システム
 本発明は車両併合システムに関する。
 列車の併合作業は、無信号状態で列車同士を低速で接近し結合させる必要があるため、慎重な操作が要求され運転士の負荷が高い。そこで、人に代わり安全を担保し、自動で併合する装置が求められている。
 特許文献1には、併合作業を行う際に、被併合車両から出力される併合準備完了信号を無線伝送装置を介して併合車両が受信した場合に、ミリ波無線伝送装置及び併合支援装置で算出される残走行距離によって速度パターンを算出し、その速度パターンに従い走行することで併合を行う旨が記載されている。
 また、被併合車両に設置したカメラにより撮影した映像を、併合車両の運転席に設置されたモニタに送信することで、併合車両の運転士が自車の連結器のカバー状態を確認し安全確認を行う方法が記載されている。
特開2011-254666号公報
 特許文献1に記載されている発明では、併合車両だけでなく、被併合車両にも無線伝送装置が備えられていることが前提となっている。このため、無線伝送装置を有しない被併合車両への対応については検討されていない。また、モニタ上の画像から人間が連結器の向きを目視で確認する場合、連結器のわずかな曲がりを判断することは難しく、連結器の向きが実際には併合不可な向きに曲がっているにも関わらず、併合動作を実施した場合には、車両を故障させるおそれがある。
 本発明の目的は、車両間の通信機能を持たない列車同士であっても、人間の監視・操作無しで安全に併合することができる車両併合システムを提供することにある。
 本発明の代表的な車両併合システムの一つは、速度算出装置、距離測定装置、連結器形状検知装置、併合可能判定装置及び併合管理装置を備える車両併合システムである。そして、前記速度算出装置は、併合車の走行速度を算出し、前記距離測定装置は、前記併合車と被併合車との距離情報を算出し、前記連結器形状検知装置は、併合車及び前記被併合車の連結器の状態を検知し、前記併合可能判定装置は、前記連結器形状検知装置の検知結果に基づいて前記併合車及び前記被併合車が併合可能な状態か否かを判定し、前記併合管理装置は、前記併合可能判定装置が併合可能な状態であると判定した場合には、前記距離情報と前記走行速度から走行計画を算出する。
 本発明によれば、車両間の通信機能を持たない列車同士であっても、人間の監視・操作無しで安全に併合することができる車両併合システムを提供することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
車両併合システムのブロック構成を示す図 併合管理装置125の処理フローの一例を示す図 併合開始条件の一例を示す図 距離情報正常判定処理の処理フローの一例を示す図 併合管理装置125における走行計画作成処理の一例を示す図 併合管理装置125における走行計画の一例を示す図 併合可能判定装置124の処理フローの一例を示す図 連結器形状検知装置122における連結器の向きの検知の一例を示す図 距離測定装置123における連結器間距離検知の一例を示す図
 本実施例では、以下、図1~図9を参照して、別々の編成として走行する被併合車101と、その後方を走行する併合車102が連結器によって連結するための連結制御を行う車両併合システムの第1の実施の形態を説明する。
 また、本実施例では、被併合車101、併合車102とも1両編成を例に説明するが、それぞれ2両以上の車両から構成される編成車両にも適用可能である。このことは他の実施例でも同様である。
 さらに、本実施例では併合車102が前進することで被併合車と連結する実施例を説明するが、本発明は併合車102が前進する場合に限定されるものではなく、被併合車101が併合車102の後方に位置し、併合車102が後退することで被併合車101に連結する場合にも適用することができる。このことは他の実施例でも同様である。
(ブロック構成)
 本実施例の車両併合システムの構成を図1に示す。被併合車101は背面に連結器111を備える。また併合車102は前面に連結器121と、連結器形状検知装置122と、距離測定装置123とを備え、さらに連結を行うための併合可能判定装置124と、併合管理装置125と、走行制御装置126と、速度センサ127とを備える。
 連結器111と連結器121は、それぞれの一部を接触させることで車両同士を連結させる装置である。以降、連結器同士が接触する面を連結面と呼称する。
 連結器形状検知装置122は、連結器111と連結器121の形状を計測可能な位置に設置され、各連結器形状の計測結果を併合可能判定装置124へ出力する。連結器形状検知装置122はカメラ、距離画像センサ、2次元または3次元の点群情報を取得可能な光学式測距センサ(LiDAR:Light Detection and Ranging。以下、ライダーと呼ぶ)などが考えられる。カメラの場合は画像情報を、ライダーの場合は点群情報を、距離画像センサの場合は画像情報と点群情報または、どちらか一方を併合可能判定装置124へ出力する。
 なお、搭載する装置の個数は被併合車101、併合車102双方の連結器を計測可能であればいくつでもよい。また、一方の連結器を計測するセンサとしてカメラを設置し、もう一方の連結器を計測するセンサとしてライダーを設置するなど、別々のセンサを組み合わせてもよい。以降は、連結器形状検知装置122としてカメラを2個の搭載した場合を例に説明する。
 距離測定装置123は、併合車102の連結器121の連結面から、被併合車101の連結器111の連結面までの距離を算出し、距離情報として併合管理装置125へ出力する。距離算出方法の詳細については後述する。距離測定装置123としては、レーザレーダや超音波センサ、赤外線センサ等の測距センサやステレオカメラ、ライダー等、距離を非接触で計測できる装置であれば種類は問わない。
 また、連結器形状検知装置122で距離情報を取得できる場合は、連結器形状検知装置122を距離測定装置123として使用してもよい。例えば、TOFなどの距離画像センサを用いる場合や、予め連結器のサイズを記憶しておき、カメラで捉えた連結器の画像から測距を行う場合には、連結器形状検知装置を距離測定装置として使用することができる。
 以降では距離測定装置123としてレーザレーダを用いる場合を例に説明する。
 併合可能判定装置124は、連結器形状検知装置122から連結器形状情報を入力し、併合可能判定処理により被併合車101と併合車102が併合可能か否かを判定し、併合可能と判定した場合は併合可能判定フラグの値を1に設定し、併合不可と判定した場合は併合可能判定フラグの値を0に設定して、併合可能判定フラグを併合管理装置125に出力する。併合可能判定処理の詳細は後述する。
 併合管理装置125は、併合可能判定装置124から併合可能判定フラグを入力し、速度センサ127から併合車102の現在速度を入力し、距離測定装置123から距離情報を入力し、併合可能判定フラグの値が1であることをトリガとして走行計画を算出し、走行制御装置126へ出力する。走行計画は、被併合車101の連結器111の連結面までの距離に応じて車両の速度を制御するための計画であり、例えば、走行位置ごとに目標速度を指定した構成や、運転操作(加速・減速・惰行など)を指定した構成などでもよい。
 走行制御装置126は、併合管理装置125から走行計画を入力し、速度センサ127から現在速度を入力し、走行計画に追従するように併合車102の走行速度を制御する。走行制御装置126は、走行計画に追従するよう併合車102の走行を制御できる形態であればどのような制御形式を採用してもよい。例えば、目標の位置・速度となるよう、制駆動力を算出し、車両を制御する構成でもよいし、目標の速度に追従するようにノッチを比例制御する構成でもよい。
 速度センサ127は、併合車の速度を算出し、併合管理装置125と走行制御装置126へ出力する。速度センサは併合車の速度を算出できる形態であれば種類は問わない。例えば、車輪径と車輪回転数から速度を算出する構成でもよいし、加速度センサで検知した加速度を積分し速度を算出する構成や、GNSS(Global Navigation Satellite System)から取得した位置情報を時間微分することで算出する構成でもよい。
(併合管理装置125の動作)
 併合管理装置125の処理フローを図2に示す。
<ステップ1010>
 ステップ1010は、併合開始条件が成立しているか否かを判定し、Yesの場合はステップ1020へ、Noの場合は処理を終了する。併合開始条件の詳細は後述する。
<ステップ1020>
 ステップ1020は、併合制御開始信号を併合可能判定装置124へ出力し、ステップ1030へ進む。
<ステップ1030>
 ステップ1030は、併合可能判定装置124から併合可能判定フラグを受信し、フラグの値が1であるか否かを判定する、Yes場合はステップ1040へ、Noの場合はステップ1031へ進む。
<ステップ1031>
 ステップ1031は、併合不可能処理を実施し、処理を終了する。併合不可能処理の詳細は後述する。
<ステップ1040>
 ステップ1040は、距離測定装置123から連結器間の距離情報を取得して、距離情報正常判定処理を実施し、ステップ1050へ進む。距離情報正常判定処理の詳細は後述する。
<ステップ1050>
 ステップ1050は、距離情報正常フラグの値が1であるか否かを判定し、Yesであればステップ1060へ進み、Noであればステップ1051へ進む。
<ステップ1051>
 ステップ1051は、異常処理を実施して処理を終了する。異常処理の詳細は後述する。
<ステップ1060>
 ステップ1060は、走行計画作成完了フラグの値が1であるか否かを判定し、Yesであればステップ1070へ進み、Noであればステップ1090に進む。
<ステップ1070>
 ステップ1070は、走行計画作成処理を実施し、ステップ1080へ進む。走行計画作成処理及び作成される走行計画の詳細は後述する。
<ステップ1080>
 ステップ1080は、走行計画作成完了フラグの値が1であるか否かを判定し、Yesであればステップ1090へ進み、Noであればステップ1051へ進む。
<ステップ1090>
 ステップ1090は、作成した走行計画と距離測定装置123から入力した距離情報を走行制御装置126に出力し、ステップ1100へ進む。
<ステップ1100>
 ステップ1100は、併合完了条件が成立したか否かを確認し、Yesの場合は処理を終了し、Noの場合はステップ1040へ戻る。ステップ1040へ戻った場合、以降ステップ1100で併合完了条件が成立するまで、ステップ1040からステップ1100までの処理を繰り返す。併合完了条件の詳細は後述する。
(併合開始条件)
 併合開始条件の一例を図3を用いて説明する。
 併合開始条件としては、例えば、図3に示すように、被併合車101の連結器位置をもとに設定した併合制御開始位置に、併合車102が到達したことをトリガとする方法である。併合制御開始位置の決定方法の詳細は後述する。
 併合車102が併合制御開始位置に到達したことを検知する方法としては、あらかじめ併合車102に併合制御開始位置を記憶させておき、併合車102の現在位置が記憶した併合制御開始位置に到達したことを検知する手法や、走行路上にあらかじめ併合制御開始を指示する信号を送信する伝送装置を設置しておき、その信号を併合管理装置125が受信したことを検知する手法など、様々な手段が含まれる。また、併合車102の現在位置の取得方法としては、車輪径と車輪回転数から算出する方法や、GNSS(Global Navigation Satellite System/全球測位衛星システム)から取得する方法など、様々な手段が含まれる。
 以下では、併合制御開始位置の決定方法の詳細について説明する。併合制御開始位置は、連結器形状検知装置122が、確実に各車両の連結器を検知可能となるように定めた距離閾値と速度閾値を用いて、被併合車101の連結器111の位置から距離閾値を引いた位置までに、現在速度から、速度閾値まで安全に減速できる減速開始位置を設定する。
 距離閾値は、連結器形状検知装置122の最大検知距離よりも短く、被併合車101の連結器111を十分検知可能となるようマージンを設けた距離である。マージンは、併合を行う環境の条件(屋根の有無、走行路が直線か曲線か等)や、搭載する連結器形状検知装置122の性能(検知距離、検知精度、分解能、計測周期)を踏まえ、確実に被併合車101の連結器111が計測可能となるように決定する。
 また、速度閾値は、被併合車101の連結器位置で速度0となるように、最高速度を始点として設定した(描画した)常用最大ブレーキのブレーキパタンと距離閾値との交点よりも低い速度であって、かつ、距離閾値の距離を併合車102が走行する間に連結器形状検知装置122が被併合車101の連結器111と併合車102の連結器121をそれぞれ複数回計測可能となるよう設定した速度である。
 なお、併合制御開始位置の決定方法には、図3に示す方法以外にも、連結器形状検知装置122で被併合車101の連結器を検知可能になったことをトリガとする手法や、距離測定装置123で被併合車101に一定の距離に近づいたことをトリガとする手法など、様々な手段が含まれる。
 さらに、運転士による任意のタイミングでのスイッチ押下をトリガとする方法でもよい。この場合は、連結器形状検知装置122で被併合車101の連結器111が計測可能である場合はそのまま制御を開始し、そうでない場合は図3に示す距離閾値までに、速度閾値まで減速することで安全性を確保するといった手法が考えられる。
(併合完了条件)
 併合完了条件としては、例えば、距離測定装置123で取得される連結器間距離が一定値以下になったことをトリガとする方法がある。またその他にも、車両連結時に電気回路や空気管の連結も併せて行われる車両では、連結器121経由で被併合車101からの電気信号を受信したり、空気管の圧力変化を検知することをトリガとする方法でもよい。
(距離情報正常判定処理)
 距離情報正常判定処理の詳細を、図4の処理フローを用いて説明する。
<ステップ2010>
 ステップ2010は、距離測定装置123から距離情報を入力し、ステップ2020へ進む。
<ステップ2020>
 ステップ2020は、距離情報正常フラグが0であるか否かを確認し、Yesの場合は
ステップ2030へ進み、Noの場合は処理を終了する。
<ステップ2030>
 ステップ2030は、待機処理を実施し、ステップ2040へ進む。待機処理の詳細は後述する。
<ステップ2040>
 ステップ2040は、距離測定装置123から距離情報を入力し、ステップ2050へ進む。
<ステップ2050>
 ステップ2050は、距離正常判定を実施し、Yesの場合はステップ2060へ進み、Noの場合はステップ2061へ進む。距離正常判定の詳細は後述する。
<ステップ2060>
 ステップ2060は、距離情報正常フラグを1にして、処理を終了する。
<ステップ2061>
 ステップ2061は、距離情報正常フラグを0にして、処理を終了する。
 次に、待機処理の詳細を説明する。待機処理は、速度センサ127から現在速度Vを入力し、現在速度Vと誤差閾値dから以下の式で算出した待機時間t秒だけ次のステップへの移行を待機する。
=d/V
 ここで誤差閾値とはセンサの仕様上想定される測定誤差をdとしたとき、dよりも大きい任意の値とする。
 次に、距離正常判定の詳細を説明する。距離正常判定は、ステップ2010で受信した距離と、ステップ2030で受信した距離の差分から算出した移動距離と、速度センサ127から取得した現在速度及びステップ2010とステップ2030までの処理時間から算出された移動距離が誤差閾値dより小さい値であるか否かを判定する。また、距離情報正常フラグの初期値は0である。
(走行計画作成処理と走行計画)
 走行計画作成処理および走行計画の詳細を、図5~図7を用いて説明する。走行計画は、惰行量を最小とすることで、乗客量や路面状況による惰行時の減速度の差の影響の削減と、併合にかかる時間の短縮を実現するように作成する。
 具体的な作成例を図5Aに示す。まず、被併合車101の連結器111の連結面位置0[m]において速度がV[km/h]となるような惰行で走行するランカーブ(以下、惰行ランカーブ)を作成する。速度Vは、手動で併合した際の併合時の速度を参考に、衝突時の衝撃が可能な限り小さくなるように設定する。続いて、速度V[km/h]で定速走行するランカーブ(以下、定速ランカーブと呼称)を作成する。速度Vは併合車102が安定して定速走行可能な最も低い速度に設定する。最後に、現在速度Vから所定の減速度で速度0[km/h]になるまで減速するランカーブ(以下、減速ランカーブと呼称)を作成する。
 そして、減速ランカーブと定速ランカーブの交点までは減速ランカーブを、定速ランカーブと惰行ランカーブの交点までは定速ランカーブを、以降は惰行ランカーブを採用して、最終的に出力する計画ランカーブを作成する。ただし、図5Bで示すように減速ランカーブと定速ランカーブの交点の連結器間距離Lが、定速ランカーブと惰行ランカーブの交点の連結器間距離Lより小さい場合は、減速ランカーブと惰行ランカーブの交点までは減速ランカーブを、それ以降は惰行ランカーブを採用して、最終的に出力する計画ランカーブを作成する。
 この時、減速ランカーブと惰行ランカーブの交点が存在しない場合は、走行計画の作成を中止する。走行計画の作成が完了した場合は走行計画作成完了フラグの値を1に設定し、走行計画の作成を中止した場合は走行計画作成完了フラグの値を0に設定する。走行計画作成完了フラグの値の初期値は0である。
 上記より、併合まで停止動作を含まない走行計画を作成できる。上記により作成した走行計画の一例を図6に示す。
(併合不可能処理)
 次に、併合不可能処理の詳細を説明する。併合不可能処理では、併合管理装置125は運転士または、ドライバレス運転等で運転士が存在しない場合は運行管理システム等に併合が不可であることを、図示していない報知手段を用いて報知する。報知手段の詳細については後述する。さらに、併合管理装置125は現在位置から安全に停止するまでの走行計画を作成し、走行制御装置126に送信する。
 報知手段には運転台の画面に表示する方法や、特定の表示灯を点灯させる方法、音声案内など、運転士またはドライバレス運転等で運転士が存在しない場合は運行管理システム等が連結が不可能な状態であることを認識できる方法であればよい。
(異常処理)
 次に、異常処理の詳細を説明する。異常処理では、併合管理装置125は併合可能判定装置124における併合可能判定処理により連結器が併合可能な状態であると判定した場合であっても、その他の異常がある場合には、運転士または、ドライバレス運転等で運転士が存在しない場合は運行管理システム等に、自動併合が不可能であることを報知する。
 具体的には、距離情報が異常であるか、走行計画の作成が完了できない状態である場合に、自動併合が不可能であることを報知する。報知手段は併合不可能処理の場合と同様である。また、併合管理装置125は現在位置から安全に停止するまでの走行計画を作成し、走行制御装置126に送信する。
(併合可能判定装置124の動作)
 併合可能判定装置124における処理の詳細を、図7の処理フローを用いて説明する。
<ステップ3010>
 ステップ3010は、併合管理装置125から併合制御開始信号を受信したか否かを判定する。Yesの場合はステップ3020へ進む。Noの場合は処理を終了する。
<ステップ3020>
 ステップ3020は、連結器形状検知装置122から連結器111と連結器121の形状情報を入力し、ステップ3030へ進む。
<ステップ3030>
 ステップ3030は、併合可能判定処理を実施し、ステップ3040へ進む。併合可能判定処理の詳細は後述する。
<ステップ3040>
 ステップ3040は、併合管理装置125に併合可能判定フラグを送信し、処理を終了する。
(併合可能判定処理)
 併合可能判定処理の詳細を図8を用いて説明する。併合可能判定処理では、被併合車101の連結器111と、併合車102の連結器121が併合可能な連結器同士であること、及び、双方の連結器が併合可能な状態であることを判定するため、以下3つの判定を実施する。
<判定1>
  判定1:被併合車101の連結器111と併合車102の連結器121が併合可能な種類同士であること。
<判定2>
  判定2:被併合車101の連結器111と併合車102の連結器121のそれぞれの連結器カバーが開いていること。
<判定3>
  判定3:被併合車101の連結器111と併合車102の連結器121が併合可能な向きであること。
 併合可能判定装置124は上記3つの判定すべてにおいて併合可能と判定された場合にのみ併合可能判定フラグの値を1に設定し、それ以外の場合は併合可能判定フラグの値を0に設定する。以下では各判定処理の詳細について説明する。
(判定1の処理)
 まず、判定1の処理の詳細について説明する。まず、併合可能判定装置124は、併合車102の連結器121が併合可能なすべての連結器の画像を標準画像としてあらかじめ記憶しておく。この標準画像は、カメラ1によって撮影した画像であることが望ましい。次に、連結器形状検知装置122から取得された被併合車101の連結器111の画像と、標準画像を照合することで、被併合車101の連結器111が併合可能な機器であるか否かを判定する。
 照合・判定手法としては、公知の画像処理手段、例えばSIFT(Scale-Invariant Feature Transform)やSURF(Speed Up Robust Features)といった特徴点抽出手法によって各画像中の連結器部分の特徴量を抽出し、SSD(Sum of Squared Differences)、NCC(Normalized Cross Correlation)等のマッチング手法を用いてそれらが一致するかを比較する手法や、公知の深層学習手法であるCNN(Convolutional Neural Network)等を用いてあらかじめ併合可能な連結器の画像を学習しておいて判定する手法など、様々な手法が適用できる。
(判定2の処理)
 次に、判定2の処理の詳細について説明する。判定2は、上記判定1で用いられる深層学習手法や、公知の領域分割技術、例えば領域拡張法や、Watershed法などを用いて、連結器形状検知装置122から取得された画像内から被併合車101と、被併合車の101の連結器111の領域をそれぞれ抽出する。そして、被併合車101は検知しているが、連結器111が検知できない場合には、被併合車の連結器カバーは閉じていると判定し、被併合車101の連結器111が検知できている場合は連結器カバーは開いていると判定する。
(判定3の処理)
 判定3の処理の詳細について図8を用いて説明する。図8では、車体の進行方向正面方向をy座標、枕木方向をx座標とし、進行方向正面に向けて設置されたカメラ1のレンズ位置を原点とした座標系を基準座標系として説明する。
 まず、被併合車101の連結器111の向きθの算出方法について説明する。併合可能判定装置124は、判定1に用いた連結器111の標準画像を撮影した際の連結器111の向きをθ’とし、これを記憶しておく。判定1でマッチング手法を用いた際に算出された、画像の回転行列と、使用しているカメラの特性情報(焦点距離、画素数等)から、標準画像θ’からの変位量Δθを算出する。この変位量Δθを標準画像のθ’に加えた値を、現在の連結器111の向きθとして算出する。また、公知の背景差分を用いた手法などでも同様に算出可能である。
 次に、併合車102の連結器121の向きθの算出方法について説明する。図8のカメラ2において、併合車102において連結器121のθが90°であった時の画像を直角画像として併合可能判定装置124にあらかじめ記憶しておく。そして、上記θの算出と同様の手法を用いることにより、カメラ2による現在の連結器121の画像について変位量Δθを算出する。そして、この変位量を90°に加えた値をθとして算出する。
 これらにより求まったθ、θが、それぞれ90°から許容の角度誤差以内であった場合に併合可能であると判定する。どちらか一方でも許容値を超えた場合は併合不可能であると判定する。許容の角度誤差は連結器によってあらかじめ既定された併合可能な角度誤差である。上記θ、θの算出手段はカメラ1のレンズ位置を基準座標系とし、かつカメラ2がカメラ1に対してx方向に平行移動した位置に設置した場合を例に説明しているが、各カメラの設置位置・角度が算出可能な位置であれば基準座標系を任意の位置に設定してよい。
 上記判定1、判定2および判定3の3つの判定手法は、連結器形状検知装置122がカメラであった場合を例に説明したが、例えば、2次元や3次元のライダーであった場合は、あらかじめ車体や併合可能な連結器の形状情報を点群情報として保有し、公知のICP(Iterative Closest Point)等の点群マッチング手法を用いることで、同様に判定することができる。
(距離測定装置123の動作)
 距離測定装置123の動作の一例を図9を用いて説明する。距離測定装置123では併合車102の連結器121の連結面から、被併合車101の連結器111の連結面までの距離Lを算出する。図9の基準座標系は、図8で説明したものと同様である。距離Lは以下の式で算出される。
 L=L-L
 ここで、距離Lはレーザレーダにより計測されたレーザレーダの計測原点から被併合車101の連結器111の連結面までの距離である。距離Lは、併合車102の連結器121の向きθが90°であった際の、レーザレーダの計測原点から併合車102の連結器121の連結面までの距離であり、距離L2は各機器の設置位置からあらかじめ算出することができる。上記併合可能判定処理で算出したθ、θの双方またはいずれか一方の値が90°でない場合は、実際に双方の連結面が接触開始する距離と上記の式で算出するLには誤差が発生する。しかし、一般的に列車に搭載される連結器の連結面の幅(x方向の長さ)は数十cm程度であることから、θ、θの双方またはいずれか一方の値が90°でない場合の誤差は数cmから十数cmであると考えられる。そしてこの程度の誤差であれば併合直前の惰行時の速度変化に与える影響は微小であるため本実施例では無視できることとなる。ただし、連結面の幅が大きく、この誤差の値も大きくなる場合は、上記併合可能判定処理で算出したθ、θと距離測定装置123の設置位置の情報から幾何学的に誤差を補正することとなる。
 上記動作例は距離測定装置123にレーザレーダを用いた場合について説明したが、その他のセンサを用いる場合でも、距離Lを非接触で取得することで、同様に算出可能である。
(走行制御装置126の動作)
 次に、走行制御装置126の動作の詳細を説明する。走行制御装置126は、併合管理装置125から連結器間距離情報と走行計画とを入力し、速度センサ127から現在速度を入力する。走行制御装置126は、入力した連結器間の距離情報をもとに走行計画を参照し、対応する目標速度・運転操作の情報を算出する。算出した運転操作が減速または定速の場合は、現在速度と目標速度を比較し、目標速度に追従できる制駆動力を算出し、制駆動力の指令値を駆動装置(図示せず)に送信する。運転操作が惰行の場合は、駆動装置に惰行指令を送信し車両を惰行させる。
 また、走行制御装置126は、速度センサ127として速度発電機のような低速域において速度精度が低いセンサを使用する場合には、制御精度を保つために、速度センサ127から入力した現在速度が図5Aまたは図5BのV以上であればそのまま車両の現在速度として採用し、V未満の時は、以下の式で算出した速度Vを車両の現在速度として採用することとしてもよい。
  V=ΔL÷ΔT
 ここで、ΔLは1周期前の距離情報と、現在の距離情報の差分から算出した移動距離であり、ΔTはその間の処理時間(1周期の時間)である。
 速度センサ127として、全速度域で精度よく速度を取得可能なセンサを使用する場合は、常に速度センサ127から取得される速度を現在速度として採用することとしてもよい。
(作用効果)
 上述した実施例1により、併合車102は、被併合車101が併合車102との通信手段を有しない場合であっても、車両間の位置関係を認識し、自動かつ併合完了まで停止することなく併合することが可能となる。また、連結器の形状を検知することで連結器が併合可能な状態であるか判定する機能や、連結器間距離の測定時の異常検知機能を備えており、かつ併合不可能な場合や異常検知時は被併合車101の手前で併合車102を停止するように制御する機能を有している。上記より、安全かつ短時間で車両を併合可能なシステムを実現することができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 例えば、本開示の車両併合システムは、鉄道車両以外にも、工場内の運搬ロボット、空港内の貨物コンテナ輸送車やその他連結して走行する可能性がある移動体全般に適用することが可能である。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 例えば、併合車が備える併合管理装置、連結器形状検知装置、併合可能判定装置は、必ずしも併合車に搭載されている必要はなく、併合車と接続可能な状態で併合車の車外に備えられていてもよい。これらの装置は地上に設置されていてもよいし、併合車と被併合車の近辺のロボット等に設置されていてもよいし、クラウド上に備えられていてもよい。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
101…被併合車、102…併合車、111…被併合車の連結器、121…併合車の連結器、122…連結器形状検知装置、123…距離測定装置、124…併合可能判定装置、125…併合管理装置、126…走行制御装置、127…速度センサ

Claims (7)

  1.  速度算出装置、距離測定装置、連結器形状検知装置、併合可能判定装置及び併合管理装置を備える車両併合システムにおいて、
     前記速度算出装置は、併合車の走行速度を算出し、
     前記距離測定装置は、前記併合車と被併合車との距離情報を算出し、
     前記連結器形状検知装置は、併合車及び前記被併合車の連結器の状態を検知し、
     前記併合可能判定装置は、前記連結器形状検知装置の検知結果に基づいて前記併合車及び前記被併合車が併合可能な状態か否かを判定し、
     前記併合管理装置は、前記併合可能判定装置が併合可能な状態であると判定した場合には、前記距離情報と前記走行速度から走行計画を算出する
    ことを特徴とする車両併合システム。
  2.  請求項1に記載の車両併合システムであって、
     車両併合システムは走行制御装置を有し、
     前記走行制御装置は、前記併合管理装置が算出した走行計画及び前記併合車と前記被併合車との距離及び前記併合車の前記走行速度に基づいて前記併合車の走行を制御
    することを特徴とする車両併合システム。
  3.  請求項1に記載の車両併合システムであって、
     前記連結器形状検知装置は、画像情報または二次元ないし三次元の点群情報のうち少なくとも一つを取得可能であることを特徴とする、車両併合システム。
  4.  請求項1に記載の車両併合システムであって、
     前記併合可能判定装置は、前記連結器形状検知装置の測定結果に基づき、前記被併合車と前記併合車の双方の連結器における連結器カバーの開閉状態を検知し、前記被併合車及び前記併合車の連結器が露出している場合に、前記併合車及び前記被併合車が併合可能な状態であると判定することを特徴とする、車両併合システム。
  5.  請求項1に記載の車両併合システムであって、
     前記併合可能判定装置は、前記連結器形状検知装置の測定結果に基づき、前記被併合車及び前記併合車の双方の連結器における連結器の向きを検知し、双方の連結器の向きが併合可能な状態である場合に、前記併合車及び前記被併合車が併合可能な状態であると判定することを特徴とする、車両併合システム。
  6.  請求項1に記載の車両併合システムであって、
     前記併合可能判定装置は、前記併合車の連結器が併合可能な連結器をあらかじめ記憶し、前記連結器形状検知装置の測定結果と記憶されている連結器とを比較し、前記被併合車の連結器が併合可能な連結器である場合に、前記併合車及び前記被併合車が併合可能な状態であると判定することを特徴とする、車両併合システム。
  7.  請求項1に記載の車両併合システムであって、
     前記連結器形状検知装置は、前記距離測定装置を兼ねる
    ことを特徴とする、車両併合システム。
PCT/JP2022/007258 2021-03-23 2022-02-22 車両併合システム WO2022202061A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021049123A JP7454522B2 (ja) 2021-03-23 2021-03-23 車両併合システム
JP2021-049123 2021-03-23

Publications (1)

Publication Number Publication Date
WO2022202061A1 true WO2022202061A1 (ja) 2022-09-29

Family

ID=83397005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007258 WO2022202061A1 (ja) 2021-03-23 2022-02-22 車両併合システム

Country Status (2)

Country Link
JP (1) JP7454522B2 (ja)
WO (1) WO2022202061A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0872718A (ja) * 1994-09-05 1996-03-19 Nippon Tetsudo Kensetsu Kodan 列車自動連結・解放制御方法及びそれに用いる制御装置
JP2011194968A (ja) * 2010-03-18 2011-10-06 Kawasaki Heavy Ind Ltd 鉄道車両用連結器アダプタの保持構造
JP2011254666A (ja) * 2010-06-03 2011-12-15 Mitsubishi Electric Corp 併合支援システムおよび併合支援方法
WO2015132944A1 (ja) * 2014-03-07 2015-09-11 株式会社日立製作所 車両併合制御システムおよび車両併合制御方法、および車両制御システム用故障検知装置
JP2019059375A (ja) * 2017-09-27 2019-04-18 日本信号株式会社 鉄道車両用連結装置
JP2020072636A (ja) * 2018-11-01 2020-05-07 株式会社日立製作所 列車連結支援システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0872718A (ja) * 1994-09-05 1996-03-19 Nippon Tetsudo Kensetsu Kodan 列車自動連結・解放制御方法及びそれに用いる制御装置
JP2011194968A (ja) * 2010-03-18 2011-10-06 Kawasaki Heavy Ind Ltd 鉄道車両用連結器アダプタの保持構造
JP2011254666A (ja) * 2010-06-03 2011-12-15 Mitsubishi Electric Corp 併合支援システムおよび併合支援方法
WO2015132944A1 (ja) * 2014-03-07 2015-09-11 株式会社日立製作所 車両併合制御システムおよび車両併合制御方法、および車両制御システム用故障検知装置
JP2019059375A (ja) * 2017-09-27 2019-04-18 日本信号株式会社 鉄道車両用連結装置
JP2020072636A (ja) * 2018-11-01 2020-05-07 株式会社日立製作所 列車連結支援システム

Also Published As

Publication number Publication date
JP2022147743A (ja) 2022-10-06
JP7454522B2 (ja) 2024-03-22

Similar Documents

Publication Publication Date Title
US9499171B2 (en) Driving support apparatus for vehicle
US11875685B2 (en) Convoy travel system
US20120101704A1 (en) Method for operating at least one sensor of a vehicle and vehicle having at least one sensor
CN103569111A (zh) 用于机动车的安全装置
US11755022B2 (en) Vehicle control device
JP2009294934A (ja) 自律移動装置及び自律移動装置の制御方法
CN109624973B (zh) 车辆控制装置、车辆控制方法及存储介质
US11565668B2 (en) Control of a vehicle driver assistance system
CN216374520U (zh) 用于车辆的驾驶员辅助系统和车辆
US10040449B2 (en) Method for avoiding a rear-end collision between a first vehicle and a second vehicle and control unit
WO2020255530A1 (ja) 列車制御システム
WO2018069038A1 (en) Control of a vehicle emergency braking system
US20200159234A1 (en) Vehicle control device, vehicle control method, and storage medium
US20220204027A1 (en) Vehicle control device, vehicle control method, and storage medium
JP2022103827A (ja) 車両制御装置、車両制御方法、およびプログラム
CN111674392B (zh) 自动驾驶汽车的行驶控制方法
Jumaa et al. Advanced driver assistance system (ADAS): A review of systems and technologies
WO2022202061A1 (ja) 車両併合システム
JP7132740B2 (ja) 物体検知システム
US20230303099A1 (en) Vehicle control device, vehicle control method, and storage medium
JP7181754B2 (ja) 軌道走行車両の障害物検知システムおよび障害物検知方法
JPWO2020123143A5 (ja)
US20220315058A1 (en) Vehicle control device, vehicle control method, and storage medium
KR20210076291A (ko) 차량 및 그 제어방법
US20200307592A1 (en) Vehicle control device, vehicle control method, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774861

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774861

Country of ref document: EP

Kind code of ref document: A1