WO2022199647A1 - 通信方法以及通信装置 - Google Patents

通信方法以及通信装置 Download PDF

Info

Publication number
WO2022199647A1
WO2022199647A1 PCT/CN2022/082653 CN2022082653W WO2022199647A1 WO 2022199647 A1 WO2022199647 A1 WO 2022199647A1 CN 2022082653 W CN2022082653 W CN 2022082653W WO 2022199647 A1 WO2022199647 A1 WO 2022199647A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
communication device
frequency domain
domain resource
baseline
Prior art date
Application number
PCT/CN2022/082653
Other languages
English (en)
French (fr)
Inventor
彭晓辉
罗嘉金
周保建
侯晓乐
颜敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023558330A priority Critical patent/JP2024512554A/ja
Priority to EP22774302.8A priority patent/EP4301028A1/en
Publication of WO2022199647A1 publication Critical patent/WO2022199647A1/zh
Priority to US18/471,304 priority patent/US20240023078A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • G01S13/825Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted with exchange of information between interrogator and responder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • G01S13/84Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted for distance determination by phase measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S13/48Indirect determination of position data using multiple beams at emission or reception
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S2013/466Indirect determination of position data by Trilateration, i.e. two antennas or two sensors determine separately the distance to a target, whereby with the knowledge of the baseline length, i.e. the distance between the antennas or sensors, the position data of the target is determined
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present application relates to communication technologies, and in particular, to a communication method and a communication device.
  • the wireless perception technology obtains the characteristics of the signal transmission space by analyzing the changes of the wireless signal in the process of propagation, so as to realize the perception of objects or people in the environment. For example, the perception of people, buildings, vehicles, etc. in the environment through wireless perception technology.
  • Radar is a classic wireless perception technology, which is widely used in military, agriculture, meteorology and other fields.
  • the basic principle of radar is: the transmitter transmits a specific waveform signal, which is received by the receiver through the wireless channel, and combines the transmitted signal and the received signal for signal processing, so as to extract the target of interest in the wireless channel.
  • the main function of the wireless communication system is to exchange information between transceivers. transmitted signal.
  • Embodiments of the present application provide a communication method and a communication device, which are used for the communication device to realize the perception of the surrounding environment while performing communication. Further, the communication resources are determined in combination with the sensing requirement parameters, which can meet the sensing requirements and improve the sensing performance.
  • a first aspect of the embodiments of the present application provides a communication method, the method comprising:
  • the first communication apparatus determines a first frequency domain resource, and the first frequency domain resource is determined from a frequency domain resource pool according to a perception requirement parameter. Then, the first communication apparatus sends the sensing signal on the first frequency domain resource.
  • the first frequency domain resource is selected from the frequency domain resource pool according to the sensing requirement parameter.
  • the first communication apparatus may send the sensing signal on the first frequency domain resource.
  • the first communication device can realize the perception of the surrounding environment by sending a perception signal while performing communication.
  • the first frequency domain resource is determined in combination with the sensing requirement parameter, which can meet the sensing requirement and improve the sensing performance.
  • the perceptual requirement parameter includes at least one of the following: unambiguous distance for ranging, and ranging resolution.
  • the content specifically included in the sensing requirement parameter is provided, which is used to represent the requirement for sensing ranging by using the sensing signal. That is, the perception requirement parameter is used to indicate a requirement for the first communication device or the second communication device to perform perception measurement through the perception signal.
  • the method further includes: the first communication device acquires the sensing demand parameter; the first communication device determines the first frequency domain resource, including: the first communication device determines from the frequency domain resource pool according to the sensing demand parameter The first frequency domain resource.
  • the first communication device may acquire the sensing demand parameter, and the first communication device determines the first frequency domain resource in combination with the sensing demand parameter, which can meet the sensing requirement and improve the sensing performance.
  • the perceptual requirement parameter includes a ranging unambiguous distance, the first frequency domain resource satisfies a minimum frequency baseline, and the minimum frequency baseline is determined by the ranging unambiguous distance; or,
  • the sensing requirement parameter includes ranging resolution, the first frequency domain resource satisfies the maximum frequency baseline, and the maximum frequency baseline is determined according to the ranging resolution; or,
  • the sensing requirement parameters include ranging unambiguous distance and ranging resolution, and the first frequency domain resource satisfies the minimum frequency baseline and the maximum frequency baseline.
  • the first frequency domain resource includes a frequency point combination, and the frequency point combination is a frequency point combination that satisfies a first condition;
  • the first condition includes: a frequency baseline constructed by the frequency points included in the frequency point combination Include the frequency baseline of the first length; the first length is k * the length of the minimum frequency baseline, k is a positive integer belonging to [1, K], K is the ratio of the length of the maximum frequency baseline to the length of the minimum frequency baseline, K greater than or equal to 1.
  • the first frequency domain resource includes a frequency point combination
  • the frequency point combination obtained by the above-mentioned implementation manner can realize that the frequency baseline constructed by the frequency point combination has complete coverage in frequency, that is, the frequency point combination
  • the combination satisfies the requirement of coverage integrity, which can realize the sensing and ranging of multiple sensing target points in the surrounding environment, and further improve the sensing performance.
  • the frequency point combination includes a sub-carrier combination
  • the sub-carrier combination is the sub-carrier combination that satisfies the minimum frequency baseline, the maximum frequency baseline and the first condition and includes the smallest number of sub-carriers.
  • the above-mentioned sub-carrier combination may be the sub-carrier combination with the smallest number of sub-carriers among the multiple sub-carrier combinations .
  • the subcarrier combination with the smallest number of subcarriers is selected, thereby effectively saving the overhead of subcarriers in the frequency domain. Avoid taking up too many communication resources and affecting communication performance.
  • the method further includes: the first communication apparatus sends first information to the second communication apparatus, where the first information is used to indicate a frequency domain location of the first frequency domain resource.
  • the first communication apparatus indicates the frequency domain location of the first frequency domain resource to the second communication apparatus.
  • the second communication apparatus can receive the sensing signal on the frequency domain resource of the first frequency domain resource, thereby realizing the sensing measurement of the surrounding environment.
  • the first information includes a frequency domain location of the first frequency domain resource; or, the first information includes a perceptual quality index, and the perceptual quality index is used to indicate the frequency domain location of the first frequency domain resource.
  • the first information indicates the frequency domain position of the first frequency domain resource.
  • the first information may directly indicate the frequency domain position of the first frequency domain resource, and the indication manner is simple.
  • the first information indirectly indicates the frequency domain position of the first frequency domain resource by means of an index, and this indication method requires fewer indication bits, which can save the overhead of indication bits.
  • the first information is carried in radio resource control (radio resource control, RRC) signaling or downlink control information (downlink control information, DCI) signaling.
  • RRC radio resource control
  • DCI downlink control information
  • the method further includes: the first communication device sends trigger signaling to the second communication device, where the trigger signaling is used to trigger the second communication device to enable the sensing function.
  • a trigger condition for enabling the sensing function of the second communication device is provided, which provides a basis for the embodiments of the solution.
  • the type of trigger signaling includes RRC signaling or DCI signaling.
  • the second communication apparatus may be triggered to enable the sensing function through RRC signaling or DCI signaling.
  • acquiring the sensing requirement parameter by the first communication apparatus includes: the first communication apparatus receiving the sensing requirement parameter from the third communication apparatus.
  • the perception requirement parameter may be delivered by the third communication device to the first communication device.
  • the third communication device may be understood as a control node, which controls the first communication device to send the sensing signal.
  • the frequency domain resource pool includes frequency domain resources used for transmitting the channel state information reference signal between the first communication device and the second communication device; or,
  • the frequency domain resource pool includes frequency domain resources used for transmitting communication data between the first communication device and the second communication device.
  • two possible communication resources included in the frequency domain resource pool are provided, which can be used to select the first frequency domain resource, so as to realize the perception of the surrounding environment while the communication device performs communication.
  • a second aspect of the embodiments of the present application provides a communication method, the method comprising:
  • the second communication apparatus determines the first frequency domain resource, and the first frequency domain resource is determined from the frequency domain resource pool according to the sensing requirement parameter. Then, the second communication apparatus receives the sensing signal from the first communication apparatus on the first frequency domain resource; the second communication apparatus performs sensing measurement on the sensing signal to obtain a sensing result.
  • the first frequency domain resource is selected from the frequency domain resource pool according to the sensing requirement parameter.
  • the second communication device receives the sensing signal from the first communication device on the first frequency domain resource. In this way, the second communication device can realize the perception of the surrounding environment by receiving the perception signal from the first communication device while performing communication. Further, the first frequency domain resource is determined in combination with the sensing requirement parameter, which can meet the sensing requirement and improve the sensing performance.
  • the perceptual requirement parameter includes at least one of the following: unambiguous distance for ranging, and ranging resolution.
  • the content specifically included in the sensing requirement parameter is provided, which is used to represent the requirement for sensing ranging by using the sensing signal. That is, the perception requirement parameter is used to indicate a requirement for the first communication device or the second communication device to perform perception measurement through the perception signal.
  • the method further includes: the second communication device receives first information from the first communication device, where the first information is used to indicate a frequency domain location of the first frequency domain resource.
  • the second communication apparatus receives the frequency domain position of the first frequency domain resource indicated by the first communication apparatus. In this way, the second communication apparatus can receive the sensing signal on the frequency domain resource of the first frequency domain resource, thereby realizing the sensing measurement of the surrounding environment.
  • the first information includes a frequency domain location of the first frequency domain resource; or, the first information includes a perceptual quality index, and the perceptual quality index is used to indicate the frequency domain location of the first frequency domain resource.
  • the first information indicates the frequency domain position of the first frequency domain resource.
  • the first information may directly indicate the frequency domain position of the first frequency domain resource, and the indication manner is simple.
  • the first information indirectly indicates the frequency domain position of the first frequency domain resource by means of an index, and this indication method requires fewer indication bits, which can save the overhead of indication bits.
  • the first information is carried in RRC signaling or DCI signaling.
  • the method further includes: the second communication device acquires the sensing demand parameter; the second communication device determines the first frequency domain resource, including: the second communication device determines from the frequency domain resource pool according to the sensing demand parameter The first frequency domain resource.
  • the second communication apparatus determines the first frequency domain resource.
  • the second communication device may acquire the sensing demand parameter, and the second communication device determines the first frequency domain resource in combination with the sensing demand parameter, which can meet the sensing requirement and improve the sensing performance.
  • the perceptual requirement parameter includes a ranging unambiguous distance
  • the first frequency domain resource satisfies a minimum frequency baseline
  • the minimum frequency baseline is determined according to the ranging unambiguous distance
  • the sensing requirement parameter includes ranging resolution, the first frequency domain resource satisfies the maximum frequency baseline, and the maximum frequency baseline is determined according to the ranging resolution; or,
  • the sensing requirement parameters include ranging unambiguous distance and ranging resolution, and the first frequency domain resource satisfies the minimum frequency baseline and the maximum frequency baseline.
  • the method further includes: the second communication device receives a trigger signaling from the first communication device, where the trigger signaling is used to trigger the second communication device to enable the sensing function.
  • a trigger condition for enabling the sensing function of the second communication device is provided, which provides a basis for the embodiments of the solution.
  • the type of trigger signaling includes RRC signaling or DCI signaling.
  • the second communication apparatus may be triggered to enable the sensing function through RRC signaling or DCI signaling.
  • the frequency domain resource pool includes frequency domain resources used for transmitting the channel state information reference signal between the first communication device and the second communication device; or,
  • the frequency domain resource pool includes frequency domain resources used for transmitting communication data between the first communication device and the second communication device.
  • two possible communication resources included in the frequency domain resource pool are provided, which can be used to select the first frequency domain resource, so as to realize the perception of the surrounding environment while the communication device performs communication.
  • a third aspect of an embodiment of the present application provides a first communication device, where the first communication device includes:
  • a processing module configured to determine a first frequency domain resource, where the first frequency domain resource is determined from a frequency domain resource pool according to a sensing requirement parameter
  • the transceiver module is used for sending the sensing signal on the first frequency domain resource.
  • the perceptual requirement parameter includes at least one of the following: unambiguous distance for ranging, and ranging resolution.
  • the transceiver module is also used for:
  • the processing module is specifically used for:
  • the first frequency domain resource is determined from the frequency domain resource pool according to the sensing requirement parameter.
  • the perceptual requirement parameter includes a ranging unambiguous distance, the first frequency domain resource satisfies a minimum frequency baseline, and the minimum frequency baseline is determined by the ranging unambiguous distance; or,
  • the sensing requirement parameter includes ranging resolution, the first frequency domain resource satisfies the maximum frequency baseline, and the maximum frequency baseline is determined according to the ranging resolution; or,
  • the sensing requirement parameters include ranging unambiguous distance and ranging resolution, and the first frequency domain resource satisfies the minimum frequency baseline and the maximum frequency baseline.
  • the first frequency domain resource includes a frequency point combination, and the frequency point combination is a frequency point combination that satisfies a first condition;
  • the first condition includes: a frequency baseline constructed by the frequency points included in the frequency point combination Include the frequency baseline of the first length; the first length is k * the length of the minimum frequency baseline, k is a positive integer belonging to [1, K], K is the ratio of the length of the maximum frequency baseline to the length of the minimum frequency baseline, K greater than or equal to 1.
  • the frequency point combination includes a sub-carrier combination
  • the sub-carrier combination is the sub-carrier combination that satisfies the minimum frequency baseline, the maximum frequency baseline and the first condition and includes the smallest number of sub-carriers.
  • the transceiver module is also used for:
  • the first information includes a frequency domain location of the first frequency domain resource; or, the first information includes a perceptual quality index, and the perceptual quality index is used to indicate the frequency domain location of the first frequency domain resource.
  • the first information is carried in RRC signaling or DCI signaling.
  • the transceiver module is also used for:
  • the type of trigger signaling includes RRC signaling or DCI signaling.
  • the transceiver module is specifically used for:
  • a perceived demand parameter is received from a third communication device.
  • the frequency domain resource pool includes frequency domain resources used for transmitting the channel state information reference signal between the first communication device and the second communication device; or,
  • the frequency domain resource pool includes frequency domain resources used for transmitting communication data between the first communication device and the second communication device.
  • a fourth aspect of an embodiment of the present application provides a second communication device, where the second communication device includes:
  • the processing module is configured to determine the first frequency domain resource, where the first frequency domain resource is determined from the frequency domain resource pool according to the sensing requirement parameter.
  • a transceiver module configured to receive a sensing signal from the first communication device on the first frequency domain resource
  • the processing module is also used to perform perceptual measurement on the perceptual signal to obtain a perceptual result.
  • the perceptual requirement parameter includes at least one of the following: unambiguous distance for ranging, and ranging resolution.
  • the transceiver module is also used for:
  • First information from the first communication device is received, where the first information is used to indicate a frequency domain location of the first frequency domain resource.
  • the first information includes a frequency domain location of the first frequency domain resource; or, the first information includes a perceptual quality index, and the perceptual quality index is used to indicate the frequency domain location of the first frequency domain resource.
  • the first information is carried in RRC signaling or DCI signaling.
  • the transceiver module is also used for:
  • the processing module is specifically used for:
  • the first frequency domain resource is determined from the frequency domain resource pool according to the sensing requirement parameter.
  • the perceptual requirement parameter includes a ranging unambiguous distance
  • the first frequency domain resource satisfies a minimum frequency baseline
  • the minimum frequency baseline is determined according to the ranging unambiguous distance
  • the sensing requirement parameter includes ranging resolution, the first frequency domain resource satisfies the maximum frequency baseline, and the maximum frequency baseline is determined according to the ranging resolution; or,
  • the sensing requirement parameters include ranging unambiguous distance and ranging resolution, and the first frequency domain resource satisfies the minimum frequency baseline and the maximum frequency baseline.
  • the transceiver module is also used for:
  • Trigger signaling from the first communication device is received, where the trigger signaling is used to trigger the second communication device to enable the sensing function.
  • the type of trigger signaling includes RRC signaling or DCI signaling.
  • the frequency domain resource pool includes frequency domain resources used for transmitting the channel state information reference signal between the first communication device and the second communication device; or,
  • the frequency domain resource pool includes frequency domain resources used for transmitting communication data between the first communication device and the second communication device.
  • a fifth aspect of an embodiment of the present application provides a first communication device, the first communication device includes: a processor and a memory; the memory stores a computer program or computer instructions, and the processor is further configured to call and run the memory in the memory The stored computer program or computer instructions cause the processor to implement any one of the implementations of the first aspect.
  • the first communication device further includes a transceiver, and the processor is configured to control the transceiver to send and receive signals.
  • a sixth aspect of an embodiment of the present application provides a second communication device, the second communication device includes: a processor and a memory; the memory stores a computer program or computer instructions, and the processor is further configured to call and run the memory in the memory The stored computer program or computer instructions cause the processor to implement any one of the implementations of the second aspect.
  • the second communication device further includes a transceiver, and the processor is configured to control the transceiver to send and receive signals.
  • a seventh aspect of the embodiments of the present application provides a computer program product including computer instructions, which is characterized in that, when it runs on a computer, the implementation of any one of the first aspect or the second aspect is executed.
  • An eighth aspect of the embodiments of the present application provides a computer-readable storage medium, including computer instructions, which, when the computer instructions are executed on a computer, cause any implementation manner of the first aspect or the second aspect to be executed.
  • a ninth aspect of an embodiment of the present application provides a chip device, including a processor, configured to be connected to a memory and call a program stored in the memory, so that the processor executes any one of the first aspect or the second aspect above Method to realize.
  • a tenth aspect of an embodiment of the present application provides a communication system, where the communication system includes the first communication apparatus according to the first aspect and the second communication apparatus according to the second aspect.
  • the embodiments of the present application have the following advantages:
  • the first communication device determines the first frequency domain resource, and the first frequency domain resource is determined from the frequency domain resource pool according to the perception demand parameter; then, the first communication device sends the first frequency domain resource perception signal.
  • the first frequency domain resource is selected from the frequency domain resource pool according to the sensing requirement parameter.
  • the first communication apparatus may send the sensing signal on the first frequency domain resource. In this way, the first communication device can realize the perception of the surrounding environment by sending a perception signal while performing communication. Further, the first frequency domain resource is determined in combination with the sensing requirement parameter, which can meet the sensing requirement and improve the sensing performance.
  • FIG. 1A is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 1B is a schematic diagram of another application scenario of an embodiment of the present application.
  • FIG. 1C is a schematic diagram of another application scenario of an embodiment of the present application.
  • 1D is a schematic diagram of another application scenario of an embodiment of the present application.
  • 1E is a schematic diagram of another application scenario of an embodiment of the present application.
  • FIG. 1F is a schematic diagram of another application scenario of an embodiment of the present application.
  • 2A is an interactive schematic diagram of a communication method according to an embodiment of the present application.
  • FIG. 2B is a schematic diagram of another application scenario of an embodiment of the present application.
  • FIG. 2C is another schematic diagram of interaction of the communication method according to the embodiment of the present application.
  • FIG. 2D is another schematic diagram of interaction of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 4 is another schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 5 is another schematic flowchart of a communication method according to an embodiment of the present application.
  • 6A is a schematic diagram of a frequency point combination according to an embodiment of the present application.
  • 6B is a schematic diagram of a frequency baseline and a frequency baseline redundancy obtained by constructing frequency points included in a frequency point combination according to an embodiment of the present application;
  • FIG. 7A is another schematic diagram of a frequency point combination according to an embodiment of the present application.
  • FIG. 7B is another schematic diagram of a frequency baseline and a frequency baseline redundancy obtained by constructing the frequency points included in the frequency point combination according to an embodiment of the present application;
  • FIG. 8 is a schematic structural diagram of a first communication apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a second communication apparatus according to an embodiment of the present application.
  • FIG. 10 is another schematic structural diagram of a first communication device according to an embodiment of the present application.
  • FIG. 11 is another schematic structural diagram of a second communication device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a communication system according to an embodiment of the present application.
  • Embodiments of the present application provide a communication method and a communication device, which are used for the communication device to realize the perception of the surrounding environment while performing communication.
  • references in this specification to "one embodiment” or “some embodiments” and the like mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • At least one means one or more, and “plurality” means two or more.
  • "At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one (a) of a, b, or c may represent: a, b, c, a-b, a-c, b-c, or a-b-c.
  • a, b, c can be single or multiple.
  • Frequency baseline the frequency of one frequency point minus the frequency of another frequency point.
  • Frequency baselines have direction and magnitude.
  • LTE Long Term Evolution
  • 5G fifth-generation
  • 6G mobile communication system mobile communication systems after 5G networks
  • D2D device to device
  • V2X vehicle to everything
  • the communication system includes a first communication device.
  • the first communication device sends a perception signal while performing communication, so as to realize the perception of the surrounding environment.
  • the first communication device is a communication device having both a sensing capability and a communication capability.
  • the first communication apparatus determines a first frequency domain resource, and sends a sensing signal on the first frequency domain resource.
  • the first frequency domain resource is determined from the frequency domain resource pool according to the perceptual requirement parameter.
  • the sensing signal is reflected to the first communication device through the sensing target in the surrounding environment, and the first communication device receives the sensing signal reflected by the sensing target.
  • the first communication device can perform sensing measurement on the sensing signal to obtain a sensing result. For example, the first communication device determines the distance between the sensing target and the first communication device, and the like.
  • the communication system further includes a second communication apparatus.
  • the first communication apparatus determines a first frequency domain resource, and sends a sensing signal on the first frequency domain resource.
  • the first frequency domain resource is determined from the frequency domain resource pool according to the perceptual requirement parameter.
  • the sensing signal is reflected by the sensing target in the surrounding environment, and the second communication device receives the sensing signal reflected by the sensing target. Then, the second communication device performs sensing measurement on the sensing signal to obtain a sensing result. For example, the first communication device determines the distance between the sensing target and the first communication device, and the like.
  • the communication system further includes a third communication apparatus.
  • the third communication device may notify the first communication device to send the sensing signal.
  • the third communication device may notify the second communication device to enable the sensing function.
  • the frequency domain resource pool may include frequency domain resources used for communication and frequency domain resources used for positioning, which is not specifically limited in this application.
  • the first frequency domain resource is a frequency domain resource selected from a frequency domain resource pool.
  • the first communication device and the second communication device may be radar equipment, vehicle-mounted equipment, network equipment, terminal equipment, and the like.
  • the third communication device is a network device.
  • a network device is a device deployed in a wireless access network to provide wireless communication functions for terminal devices.
  • the network device may be a base station, and the base station includes various forms of macro base station, micro base station, relay station, and access network point.
  • the base station may be a base station in a new radio interface (new radio, NR), a transmission reception point (transmission reception point, TRP) or a transmission point (transmission point, TP) or a next-generation Node B (next generation Node B, ngNB), can also be an evolved Node B (evolved Node B, eNB or eNodeB) in a long term evolution (long term evolution, LTE) system.
  • new radio new radio
  • TRP transmission reception point
  • TP transmission point
  • ngNB next-generation Node B
  • ngNB next-generation Node B
  • eNB evolved Node B
  • LTE long term evolution
  • a terminal device can be a device that provides voice or data connectivity to a user.
  • the terminal device is also called user equipment (UE), also called mobile station (mobile station), subscriber unit (subscriber unit), and station. (station), terminal equipment (terminal equipment, TE), etc.
  • the terminal device can be a cellular phone (0phone), a personal digital assistant (PDA), a wireless modem (modem), a handheld device (handheld), a laptop computer (laptop computer), a cordless phone (cordless phone), a wireless Local loop (wireless local loop, WLL) station, tablet computer (pad), vehicle equipment, wearable equipment, computing equipment, drones, etc.
  • devices that can access the communication system, communicate with the network side of the communication system, or communicate with other objects through the communication system can be terminal devices in the embodiments of the present application, for example, smart Terminal equipment and automobiles in transportation, household equipment in smart homes, power meter reading instruments in smart grids, voltage monitoring instruments, environmental monitoring instruments, video monitoring instruments in smart security networks, cash registers, etc.
  • FIG. 1A is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 1A is a specific example for a situation in which the first communication device in the communication system acts as both a sender of a sensing signal and a receiver of a sensing signal.
  • the first communication device is a network device 1 .
  • the network device 1 may select the first frequency domain resource from the frequency domain resources used for communication of the network device 1 . While the network device 1 is communicating, the network device 1 sends a sensing signal on the first frequency domain resource.
  • the perception signal is reflected to the network device 1 through the car in the surrounding environment. In this way, the network device 1 can perform sensing measurement on the sensing signal to obtain a sensing result. For example, the network device 1 can perform a perceptual measurement on the perception signal to obtain the distance between the network device 1 and the car, the speed of the car, and the like.
  • the first communication device is the sending end of the sensing signal and the second communication device is the receiving end of the sensing signal are described below with reference to FIGS. 1B to 1F .
  • the first communication device is a network device 1
  • the second communication device is a terminal device.
  • the terminal device accesses the network device 1 . Communication between the network device 1 and the terminal device is possible.
  • the network device 1 communicates with the terminal device, the network device 1 sends a sensing signal on the first frequency domain resource.
  • the first frequency domain resource may be determined from frequency domain resources used for transmitting downlink signals between the network device 1 and the terminal device.
  • the perception signal is reflected to the terminal device through the car in the surrounding environment.
  • the terminal device can sense the sensing signal and obtain the sensing result.
  • the terminal device can realize the perception of the car in the surrounding environment while communicating.
  • the first communication device is a terminal device
  • the second communication device is a network device 1 .
  • the terminal device is connected to the network device 1, and communication between the terminal device and the network device 1 is possible.
  • the terminal device 1 communicates with the network device 1, the terminal device sends a sensing signal on the first frequency domain resource.
  • the first frequency domain resource may be determined from frequency domain resources used for transmitting uplink signals between the terminal device and the network device 1 .
  • the perception signal is reflected to the network device 1 through the car in the surrounding environment.
  • the network device 1 can sense the sensing signal to obtain a sensing result.
  • the network device 1 can realize the perception of the automobile in the surrounding environment while communicating.
  • FIG. 1D is a schematic diagram of another application scenario of an embodiment of the present application.
  • the first communication device is network device 1
  • the second communication device is network device 2 . Communication between the network device 1 and the network device 2 is possible. While the network device 1 communicates with the network device 2, the network device 1 sends a sensing signal on the first frequency domain resource.
  • the first frequency domain resource may be determined from frequency domain resources used for communication between the network device 1 and the network device 2 .
  • the perception signal is reflected to the network device 2 through the car in the surrounding environment, and the network device 2 can perceive the perception signal to obtain a perception result. Therefore, the network device 2 can realize the perception of the car in the surrounding environment while communicating.
  • FIG. 1E is a schematic diagram of another application scenario of an embodiment of the present application.
  • the first communication device is terminal device 1
  • the second communication device is terminal device 2 . Communication between the terminal device 1 and the terminal device 2 is possible.
  • the terminal device 1 may send a sensing signal on the first frequency domain resource.
  • the first frequency domain resource may be determined from frequency domain resources used for communication between the terminal device 1 and the terminal device 2 .
  • the perception signal is reflected to the terminal device 2 through the car in the surrounding environment.
  • the terminal device 2 senses the sensing signal, and obtains a sensing result.
  • the above application scenario shown in FIG. 1E can be applied to a V2X system or a D2D system.
  • FIG. 1F is a schematic diagram of another application scenario of the embodiment of the present application.
  • the first communication device is network device 1
  • the second communication device is network device 2
  • the third communication device is network device 3 .
  • Communication between the network device 1 and the network device 2 is possible.
  • the network device 3 is used as a control node to notify the network device 1 and the network device 2 .
  • the network device 3 may trigger the network device 1 to send a sensing signal, and trigger the network device 2 to enable the sensing function.
  • the network device 1 may send the sensing signal on the first frequency domain resource.
  • the first frequency domain resource may be determined from frequency domain resources used for communication between the network device 1 and the network device 2 .
  • the perception signal is reflected to the network device 2 through the car in the surrounding environment, and the network device 2 can perceive the perception signal to obtain a perception result.
  • the network device 2 can realize the perception of the surrounding environment while communicating.
  • FIG. 2A is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application.
  • the communication method includes:
  • the first communication apparatus determines a first frequency domain resource.
  • the first frequency domain resource is determined from the frequency domain resource pool according to the perceptual requirement parameter.
  • the frequency domain resource pool includes available frequency domain resources configured for the first communication device.
  • the frequency domain resource pool includes frequency domain resources for communication and/or frequency domain resources for positioning.
  • the first frequency domain resource may be determined from frequency domain resources used for communication and/or frequency domain resources used for positioning.
  • the frequency domain resource pool includes frequency domain resources used for transmitting channel state information (channel state information, CSI) reference signals between the first communication device and the second communication device; A frequency domain resource for transmitting communication data between a communication device and a second communication device.
  • the first frequency domain resource of the present application may be the frequency domain resource determined in the frequency domain resource used for transmitting CSI and/or the frequency domain resource used for transmitting communication data of the first communication apparatus.
  • the first frequency domain resource includes a frequency point combination, or a frequency band combination.
  • the frequency point combination includes one or more frequency points.
  • Band combinations include one or more bands.
  • the frequency point combination includes frequency point 0, frequency point 2, frequency point 4 and frequency point 6.
  • the frequency of frequency point 0 is f 0
  • the frequency of frequency point 2 is f 2
  • the frequency of frequency point 4 is f 4
  • the frequency of frequency point 6 is f 6 .
  • the band combination includes the band between frequency f 0 to frequency f 6 .
  • the sensing requirement parameter is used for the first communication device or the second communication device to perform sensing measurement through the sensing signal.
  • the perceptual demand parameter may characterize the requirements for perceptual ranging via perceptual signals.
  • the perceptual requirement parameter includes at least one of the following: unambiguous distance for ranging, and ranging resolution.
  • the above-mentioned ranging unambiguous distance and ranging resolution represent the requirements for perceptual ranging through perceptual signals.
  • the ranging resolution refers to the minimum distance that distinguishes two identical target points in distance.
  • the two identical target points may refer to two target points with the same size, volume, material, and the like.
  • the terminal device sends the sensing signal on the first frequency domain resource.
  • the perception signal is reflected to the network device 1 through the target point 1 and the target point 2 respectively.
  • the sum of the distance from the terminal device to the target point 1 plus the distance from the target point 1 to the network device 1 is r1+r2.
  • the sum of the distance from the terminal device to the target point 2 plus the distance from the target point 2 to the network device 1 is r3+r4.
  • the ranging resolution is ⁇ r. If
  • the ranging resolution is proportional to the bandwidth of the sensing signal. The larger the bandwidth of the sensing signal, the higher the ranging resolution.
  • the distance measurement unambiguous distance represents the following requirement: the distance from any point in the sensing area to the first communication device is multiplied by Two is less than the unambiguous distance for ranging, and the distance from any point on the edge of the sensing area to the first communication device multiplied by two equals the unambiguous distance for ranging.
  • the sensing area is the circular area shown in FIG. 1A
  • the network device 1 is the center of the circle.
  • the ranging unambiguous distance is r max . Twice the distance from any point on the circle to the network device 1 is equal to the ranging unambiguous distance r max .
  • the car is located in the circular area, and the distance from the network device 1 to the car is R1.
  • the value obtained by multiplying the distance R1 from the network device 1 to the car by 2 is less than r max .
  • the distance from the target point to the network device 1 is R2
  • the value obtained by multiplying the distance R2 between the target point and the network device 1 by 2 is equal to r max .
  • the distance measurement unambiguous distance indicates the following requirements: from any point in the sensing area to The sum of the distance of the first communication device and the distance to the second communication device is less than the unambiguous distance of the ranging, and the sum of the distance to the first communication device and the distance to the second communication device at any point on the edge of the sensing area is equal to Ranging does not blur distances.
  • the sensing area is the ellipse area shown in FIG. 2B
  • the network device 1 and the terminal device are two foci of the ellipse.
  • the ranging unambiguous distance is r max
  • the sum of the distance from any point on the ellipse to the network device 1 and the distance to the terminal device is equal to the ranging unambiguous distance r max .
  • Target point 1 and target point 2 are located in the ellipse area, and target point 3 is located on the ellipse.
  • the terminal device sends the sensing signal on the first frequency domain resource.
  • the perception signal is reflected to the network device 1 through the target point 1 and the target point 2 respectively.
  • the sum of the distance from the terminal device to the target point 1 plus the distance from the target point 1 to the network device 1 is r1+r2, and r1+r2 is less than r max .
  • the sum of the distance from the terminal device to the target point 3 plus the distance from the target point 3 to the network device 1 is r5+r6, and r5+r6 is equal to r max .
  • the first frequency domain resource is described below with reference to the specific content included in the sensing requirement parameter.
  • the sensing requirement parameter includes a ranging unambiguous distance
  • the first frequency domain resource satisfies a minimum frequency baseline
  • the minimum frequency baseline is determined according to the ranging unambiguous distance
  • the first frequency domain resource includes frequency point combinations as an example for introduction.
  • the ranging unambiguous distance is r max , so the length of the minimum frequency baseline is c is the propagation speed of light under atmospheric standard conditions. If the frequency baseline constructed by the frequency points included in the frequency point combination includes a frequency baseline whose length is less than or equal to
  • the frequency point combination includes frequency point 0, frequency point 2, frequency point 4 and frequency point 6.
  • Frequency point combination The intermediate frequency points are arranged in ascending order of frequency.
  • the frequency of frequency point 0 is f 0
  • the frequency of frequency point 2 is f 2
  • the frequency of frequency point 4 is f 4
  • the frequency of frequency point 6 is f 6 .
  • the ranging unambiguous distance is r max , so the length of the minimum frequency baseline is In the frequency baseline composed of two different frequency points in the frequency point combination, the length of the frequency baseline composed of frequency point 0 and frequency point 2 is
  • the frequency baseline formed by the frequency points in the frequency point combination includes a frequency baseline whose length is less than or equal to
  • the frequency reuse rate of the frequency points can be considered when selecting the frequency points included in the frequency point combination, thereby improving the resource utilization rate and saving the frequency point resources.
  • the frequency point combination determined by device 1 includes frequency point 0 and frequency point 1.
  • the frequency of frequency point 0 is f 0
  • the frequency of frequency point 1 is f 1
  • the frequency of frequency point 1 is f 1
  • Device 2 can select frequency point 0 and frequency point 1, which can improve the frequency resource utilization of frequency point 0 and frequency point 1, thereby saving frequency point resources.
  • the frequency domain resource pool includes the 3.5 gigahertz (GHz) frequency band, expressed as ⁇ f(a)
  • f(a) 3.5*10 9 +a*15*10 3 , 0 ⁇ a ⁇ 1000 ⁇ , f(a)
  • the unit is Hertz (Hz).
  • the minimum frequency point is 3.5GHz
  • the maximum frequency point is 3.515GHz.
  • Other frequency points are selected from f(a) at intervals of 15KHz, and frequency point combination 1 is obtained. Then, select frequency points from frequency point combination 1 to obtain frequency point combination 2.
  • the frequency point combination 2 is specifically expressed as ⁇ f(m)
  • the unit of f(m) is Hertz (Hz).
  • the frequency point combination 2 is used as the first frequency domain resource.
  • the length of the frequency baseline composed of frequency point 3.5GHz and frequency point 3.503GHz is 3MHz, so it can be understood that this frequency point combination 2 satisfies the minimum frequency baseline.
  • the sensing requirement parameter includes a ranging resolution
  • the first frequency domain resource satisfies a maximum frequency baseline
  • the maximum frequency baseline is determined according to the ranging resolution
  • the first frequency domain resource includes frequency point combinations as an example for introduction.
  • the ranging resolution is ⁇ r, so the length of the maximum frequency baseline is c is the propagation speed of light under atmospheric standard conditions. If the frequency baseline constructed from the frequency points included in the frequency point combination includes a frequency baseline whose length is greater than or equal to
  • the frequency point combination includes frequency point 0, frequency point 2, frequency point 4 and frequency point 6.
  • Frequency point combination The intermediate frequency points are arranged in ascending order of frequency.
  • the frequency of frequency point 0 is f 0
  • the frequency of frequency point 2 is f 2
  • the frequency of frequency point 4 is f 4
  • the frequency of frequency point 6 is f 6 .
  • the ranging resolution is ⁇ r, so the length of the maximum frequency baseline is In the frequency baselines of two different frequency point combinations in the frequency point combination, the length of the frequency baseline composed of frequency point 0 and frequency point 6 is
  • the frequency baseline formed by the frequency points in the frequency point combination includes a frequency baseline whose length is greater than or equal to
  • the frequency reuse rate of the frequency points can be considered when selecting the frequency points included in the frequency point combination, thereby improving the utilization rate of the resources and saving the frequency point resources.
  • the frequency point combination determined by device 1 includes frequency point 0, frequency point 2, frequency point 4 and frequency point 7.
  • Frequency point combination The intermediate frequency points are arranged in ascending order of frequency.
  • is equal to the length of the maximum frequency baseline required by device 1 .
  • is greater than the length of the maximum frequency baseline required by device 2.
  • Device 1 determines that the frequency point combination meets the maximum frequency baseline required by Device 1 .
  • Device 2 can select frequency point 0, frequency point 2, frequency point 4 and frequency point 7. In this way, the frequency resource utilization rate of frequency point 0, frequency point 2, frequency point 4 and frequency point 7 can be improved, thereby saving frequency point resources.
  • the frequency domain resource pool includes the 3.5GHz frequency band, which is expressed as ⁇ f(i)
  • f(i) 3.5*10 9 +i*15*10 3 , 0 ⁇ i ⁇ 2000 ⁇ , and the unit of f(i) is Hz. Then, the minimum frequency point is 3.5GHz, and the maximum frequency point is 3.53GHz. Other frequency points are selected from f(i) at intervals of 15KHz, and frequency point combination 3 is obtained. Then, select frequency points from frequency point combination 3 to obtain frequency point combination 4.
  • Frequency point combination 4 is specifically expressed as ⁇ f(n)
  • the length of the frequency baseline composed of the frequency point 3.5GHz and the frequency point 3.53GHz is 30MHz, so the frequency point combination 4 satisfies the maximum frequency baseline.
  • Band combinations include one or more bands.
  • the ranging resolution is ⁇ r, so the length of the maximum frequency baseline is c is the propagation speed of light under atmospheric standard conditions. If the length of the frequency baseline formed by the frequency bands included in the frequency point combination includes a frequency baseline greater than or equal to
  • the band combination includes the bands with frequencies f 0 to f 3 , and the bands with frequencies f 6 to f 9 .
  • f 0 is greater than f 3
  • f 3 is greater than f 6
  • and f 6 is greater than f 9 .
  • the minimum frequency is f 0 and the maximum frequency is f 9
  • is greater than or equal to the frequency baseline of
  • the sensing requirement parameters include ranging unambiguous distance and ranging resolution, and the first frequency domain resource satisfies the minimum frequency baseline and the maximum frequency baseline.
  • the minimum frequency baseline is determined according to the distance measurement unambiguous distance.
  • the maximum frequency baseline is determined based on the ranging resolution.
  • the first frequency domain resource includes a frequency point combination as an example for introduction.
  • the ranging unambiguous distance is r max
  • the ranging resolution is ⁇ r.
  • the length of the minimum frequency baseline is The length of the maximum frequency baseline is The frequency baselines constructed from the frequency points included in the frequency combination should include a frequency baseline whose length is less than or equal to
  • the frequency point combination includes frequency point 0, frequency point 2, frequency point 4 and frequency point 6.
  • Frequency point combination The intermediate frequency points are arranged in ascending order of frequency.
  • the frequency of frequency point 0 is f 0
  • the frequency of frequency point 2 is f 2
  • the frequency of frequency point 4 is f 4
  • the frequency of frequency point 6 is f 6 .
  • the length of the frequency baseline composed of frequency point 0 and frequency point 2 is
  • the length of the frequency baseline formed by frequency point 0 and frequency point 6 is
  • the unambiguous distance of ranging r max 100m, then according to the formula It can be determined that the length of the minimum frequency baseline required is 3MHz.
  • the frequency domain resource pool includes the 3.5 gigahertz (GHz) frequency band, expressed as ⁇ f(i)
  • f(i) 3.5*10 9 +i*15*10 3 , 0 ⁇ i ⁇ 2000 ⁇ , f(i)
  • the unit is Hz.
  • the minimum frequency point is 3.5GHz, and the maximum frequency point is 3.53GHz.
  • Other frequency points are selected from f(i) at intervals of 15KHz, and frequency point combination 5 is obtained.
  • Frequency point combination 6 is specifically expressed as ⁇ f(n)
  • the length of the frequency baseline composed of the frequency point 3.5 GHz and the frequency point 3.503 GHz is 3 MHz, so the frequency point combination 6 satisfies the minimum frequency baseline.
  • the length of the frequency baseline formed by the frequency point 3.5GHz and the frequency point 3.53GHz is 30MHz, so the frequency point combination 6 satisfies the maximum frequency baseline. That is, the frequency point combination 6 satisfies both the minimum frequency baseline and the maximum frequency baseline.
  • the first frequency domain resource includes a frequency point combination
  • the frequency point combination is a frequency point combination that satisfies the first condition.
  • the first condition includes: a frequency baseline of the first length is included in the frequency baseline constructed by the frequency points included in the frequency point combination.
  • the first length is k*the length of the minimum frequency baseline, k is a positive integer belonging to [1, K], K is the ratio of the length of the maximum frequency baseline to the length of the minimum frequency baseline, and K is greater than 1.
  • the frequencies of the frequency points included in the frequency point combination are 0, 1, 4, and 6, respectively. It can be known that among the frequency baselines constructed by the frequency points included in the frequency point combination, the frequency baseline with the smallest length is 1, and the frequency baseline with the largest length is 6. The ratio of the length of the maximum frequency baseline to the length of the minimum frequency baseline is 6.
  • the frequency baselines that can be constructed through the frequency point combination include frequency baselines with frequencies of -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, and 6, respectively. , it can be understood that the frequency point combination meets the requirements of the frequency baseline coverage integrity.
  • the length of the maximum frequency baseline is
  • the length of the minimum frequency baseline is
  • K
  • d 1 represents the frequency baseline
  • ⁇ 1 is the time delay
  • y 1 is the measurement result corresponding to the frequency baseline d 1
  • f is the mapping relationship of y 1 obtained from the frequency baseline d 1 and the time delay ⁇ 1 .
  • the delay ⁇ 1 is unknown. That is, an equation corresponds to an unknown.
  • the time delay ⁇ 1 can be understood as the time delay after the sensing signal on the two frequency points constituting the frequency baseline d 1 reaches the target point 1 and is reflected again.
  • the time delay ⁇ 2 can be understood as the time delay after the sensing signal on the two frequency points constituting the frequency baseline d 2 arrives at the target point 2 and is then reflected.
  • the frequency point combination can also form another frequency baseline d 2
  • the first frequency domain resource includes a frequency band combination
  • the frequency band combination is a frequency band combination that satisfies the second condition.
  • the second condition includes: a frequency baseline of the second length is included in the frequency baseline constructed by the frequency bands included in the frequency band combination.
  • the second length is k*the minimum frequency baseline, k is a positive integer of [1, K], K is the length of the maximum frequency baseline, and K is greater than 1.
  • the band combination includes the bands with frequencies f 0 to f 3 , and the bands with frequencies f 6 to f 9 .
  • the frequency baseline constructed by selecting the frequency points from the frequency band combination can construct a frequency baseline of the second length, and it is considered that the frequency baseline constructed by selecting the frequency points in the frequency band combination has complete coverage in frequency.
  • the first frequency domain resource includes a frequency point combination.
  • Frequency point combination includes subcarrier combination.
  • the sub-carrier combination is the sub-carrier combination with the smallest number of sub-carriers among the sub-carrier combinations satisfying the minimum frequency baseline, the maximum frequency baseline and the first condition.
  • the above-mentioned subcarrier combination may be a subcarrier combination with the smallest number of subcarriers among the multiple subcarrier combinations.
  • the subcarrier combination with the smallest number of subcarriers is selected, thereby effectively saving the overhead of subcarriers in the frequency domain. Avoid taking up too many communication resources and affecting communication performance.
  • the first communication apparatus sends a sensing signal on the first frequency domain resource.
  • the first frequency domain resource includes frequency point 0, frequency point 2, frequency point 4, and frequency point 6.
  • the frequency of frequency point 0 is f 0
  • the frequency of frequency point 2 is f 2
  • the frequency of frequency point 4 is f 4
  • the frequency of frequency point 6 is f 6 .
  • the first communication device sends the sensing signal at the frequency points of f 0 , f 2 , f 4 and f 6 respectively.
  • the first frequency domain resource includes a frequency band between frequency f 0 to frequency f 6 .
  • the first communication device is a radar device, and the radar device transmits a frequency modulated continuous wave (FMCW) in a frequency band between the frequency f 0 and the frequency f 6 .
  • FMCW frequency modulated continuous wave
  • the second communication device before the second communication device performs the sensing measurement on the sensing signal, the second communication device enables the sensing function.
  • the second communication apparatus may periodically enable the sensing function, or enable the sensing function all the time, or the first communication apparatus or the third communication apparatus may trigger the second communication apparatus to enable the sensing function.
  • the embodiment shown in FIG. 2A further includes step 202a. Step 202a may be performed before step 202 .
  • the first communication apparatus sends a trigger instruction to the second communication apparatus.
  • the trigger instruction is used to trigger the second communication device to enable the sensing function.
  • the first communication apparatus may trigger the second communication apparatus to enable the sensing function through a trigger instruction, so that the second communication apparatus receives the sensing signal and performs sensing measurement on the sensing signal.
  • the manner in which the third communication device triggers the second communication device to enable the sensing function is similar to the foregoing step 202a, and details are not described herein again.
  • the embodiment shown in FIG. 2A further includes step 203 and step 204. Steps 203 and 204 may be performed after step 202 .
  • the first communication apparatus receives the reflected sensing signal on the first frequency domain resource.
  • the network device 1 transmits sensing signals at frequency points with frequencies f 0 , f 2 , f 4 and f 6 respectively.
  • the sensing signal is reflected to the network device 1 through the car in the surrounding environment (ie, the sensing target).
  • the network device 1 receives the sensing signal reflected by the sensing target at the frequency points of f 0 , f 2 , f 4 and f 6 respectively.
  • the first communication device is a radar device.
  • the radar equipment transmits a continuous frequency modulated signal in the frequency band between frequency f 0 and frequency f 6 .
  • the perception signal is reflected back to the radar device through the perception target in the surrounding environment.
  • the radar equipment receives the FM signal on a frequency band between frequency f 0 and frequency f 6 .
  • the first communication device performs sensing measurement on the sensing signal to obtain a sensing result.
  • the sensing result includes the distance between the first communication device and the sensing target, the movement quantity and position of the sensing target, and the like.
  • network device 1 transmits sensing signals on two sub-carriers with frequencies of 3.5 GHz and 3.501 GHz respectively, and the initial phases of the sensing signals on the two sub-carriers at baseline 1 are both 0.
  • the car is the perception target.
  • the phase changes caused by the sensing signal on the two sub-carriers with frequencies of 3.5GHz and 3.501GHz are 700 ⁇ and 700.2 ⁇ , respectively.
  • the speed of the movement of the car relative to the network device 1 can be determined by the change of the distance r between the network device 1 and the car with respect to time.
  • the position of the car can be obtained through the joint sensing and ranging of the car by multiple network devices. For example, each network device in multiple network devices can obtain the distance between each network device and the car, then the coordinates of the car in three-dimensional space, that is, the position of the car, can be obtained by combining the ranging results of the four network devices.
  • the embodiment shown in FIG. 2A further includes steps 205 to 207 . Steps 205 to 207 may be performed after step 202 .
  • the second communication apparatus determines the first frequency domain resource.
  • the second communication device can determine the first frequency domain resource by itself according to the perceived demand parameter; or, the second communication device receives the first information from the first communication device, and determines the first frequency domain resource according to the first information.
  • the specific step 205 is similar to the foregoing step 201, and for details, reference may be made to the relevant introduction of the foregoing step 201, which will not be repeated here.
  • the second communication apparatus receives the sensing signal on the first frequency domain resource.
  • the first frequency domain resource includes frequency point 0, frequency point 2, frequency point 4, and frequency point 6.
  • the frequency of frequency point 0 is f 0
  • the frequency of frequency point 2 is f 2
  • the frequency of frequency point 4 is f 4
  • the frequency of frequency point 6 is f 6 .
  • the second communication device receives the sensing signal at the frequency points of f 0 , f 2 , f 4 and f 6 respectively.
  • the second communication device performs sensing measurement on the sensing signal to obtain a sensing result.
  • the network device 1 transmits signals on three subcarriers with frequencies of 3.5GHz, 3.501GHz and 3.503GHz respectively, and the initial phases of the sensing signals of the three subcarriers at the network device 1 are all 0.
  • the car is the perception target.
  • the sum of the distance between the network device 1 and the car and the distance between the car and the network device 1 is R1+R2. Then the perception signal propagates through R2 and then reaches the car and then returns to the terminal device through R3.
  • c is the propagation speed of light under atmospheric standard conditions.
  • the network device 1 or the terminal device may determine the distance from the network device 1 to the car and then to the terminal device in combination with a specific application scenario. For example, in a car positioning scenario with high security requirements, the terminal device is car 2, then network device 1 or car 2 can take the distance from network device 1 to car and then to car 2 as 27m as the final measurement result. This prevents driving safety problems between car 1 and car 2 due to measurement deviations.
  • the distance between the network device 1 and the car, the distance between the car and the terminal device, and the position of the car can be obtained through joint ranging between multiple network devices and the terminal device.
  • the terminal device can obtain the distances from the terminal device to the car and from the car to a plurality of network devices respectively.
  • the joint terminal device can obtain the coordinates of the car in the three-dimensional space, that is, the position of the car, from the ranging results of the four network devices.
  • the speed of the car can be obtained by changing the position of the car with respect to time.
  • the first communication apparatus determines the first frequency domain resource, and the first frequency domain resource is determined from the frequency domain resource pool according to the sensing requirement parameter. Then, the first communication apparatus sends the sensing signal on the first frequency domain resource. It can be seen from this that, in the technical solution of the present application, the first frequency domain resource is selected from the frequency domain resource pool according to the sensing requirement parameter. The first communication apparatus may send the sensing signal on the first frequency domain resource. In this way, the first communication device can realize the perception of the surrounding environment by sending a perception signal while performing communication. Further, the first frequency domain resource is determined in combination with the sensing requirement parameter, which can meet the sensing requirement and improve the sensing performance.
  • the first implementation manner is described below with reference to the embodiment shown in FIG. 2C .
  • the above-mentioned step 201 specifically includes steps 201 a to 201 b.
  • Step 201a the first communication device acquires a perception requirement parameter.
  • the first communication apparatus acquires the perceived demand parameter. Two possible implementations are shown below.
  • the first communication apparatus determines a perceptual demand parameter according to the perceptual demand.
  • the sensing requirement includes a requirement for sensing ranging through sensing signals.
  • the network device 1 determines the unambiguous ranging distance and ranging resolution by itself according to the sensing requirement.
  • the first communication device receives the perceived demand parameter from the second communication device or the third communication device.
  • the first communication device is a network device 1
  • the second communication device is a terminal device.
  • the terminal device may send a sensing request and corresponding sensing requirement parameters to the network device 1, so that the terminal device can sense the surrounding environment through the sensing signal.
  • the network device 1 receives the sensing request and the sensing requirement parameter from the terminal device.
  • the sensing request is used to request the network device 1 to send a sensing signal.
  • the first communication device is network device 1
  • the second communication device is network device 2
  • the third communication device is network device 3 .
  • the network device 3 may send the sensing requirement parameter to the network device 1 and send the trigger instruction to the network device 2 .
  • the trigger instruction is used to trigger the network device 2 to enable the sensing function.
  • Step 201b the first communication device determines the first frequency domain resource according to the sensing requirement parameter.
  • step 201b please refer to the detailed introduction in the embodiments shown in FIG. 3 to FIG. 5, which will not be described in detail here.
  • Step 201c is performed after step 201b.
  • step 201c specifically includes: the first communication device sends the first information to the second communication device.
  • the second communication device receives the first information from the first communication device.
  • the first information is used to indicate the frequency domain location of the first frequency domain resource.
  • the first communication apparatus indicates the frequency domain location of the first frequency domain resource to the second communication apparatus through the first information.
  • the first information includes the frequency domain location of the first frequency domain resource.
  • the first information specifically includes specific location information of the first frequency domain resource.
  • the first frequency domain resource includes frequency point 1, frequency point 2, and frequency point 3.
  • the first information includes frequencies corresponding to frequency point 1, frequency point 2, and frequency point 3, respectively.
  • the first information includes a sensing quality index (sensing quality index, SQI).
  • the perceptual quality index is used to indicate the frequency domain position of the first frequency domain resource.
  • a table is preconfigured in the first communication device and the second communication device.
  • the table is used to indicate the mapping relationship between the perceptual quality index and the frequency domain resources.
  • the perceptual quality index has corresponding frequency domain resources.
  • f x refers to the frequency of frequency point x.
  • x is a positive integer belonging to [0, M], where M is a positive integer.
  • M is the total number of frequency points included in the frequency domain resource pool.
  • the first information is carried in RRC signaling or DCI signaling.
  • the second communication device after the second communication device receives the first information from the first communication device, the second communication device feeds back a first response message to the first communication device, so as to notify the first communication device of the second communication device.
  • the communication device successfully receives the first information.
  • the above-mentioned embodiment shown in FIG. 2C further includes step 201d.
  • Step 201d may be performed after step 201c.
  • Step 201d the second communication device sends a first response message to the first communication device.
  • the first communication device receives the first response message from the second communication device.
  • the first response message is used to notify the first communication device that the second communication device has successfully received the first information.
  • FIG. 2D is a schematic diagram of another embodiment of the communication method according to the embodiment of the present application. If the first communication device is used as the sending end of the sensing signal, the second communication device is used as the receiving end of the sensing signal. Referring to FIG. 2D , optionally, the foregoing step 201 specifically includes step 201d and step 201e.
  • Step 201d the second communication device sends the second information to the first communication device, and correspondingly, the first communication device receives the second information from the second communication device.
  • the second information is used to indicate the frequency domain location of the first frequency domain resource.
  • the second communication device determines the first frequency domain resource, and then notifies the first communication device of the frequency domain location of the first frequency domain resource through the second information.
  • the manner in which the second communication device determines the first frequency domain resource is similar to the process in which the first communication device determines the first frequency domain resource in the aforementioned step 201b.
  • the aforementioned step 201b in FIG. A related introduction of frequency domain resources will not be repeated here.
  • the indication manner of the second information is similar to the indication manner of the above-mentioned first information. For details, reference may be made to the relevant introduction of the indication manner of the above-mentioned first information, which will not be repeated here.
  • the second information is carried in RRC signaling or DCI signaling.
  • Step 201e The first communication apparatus determines the first frequency domain resource according to the second information.
  • the embodiment shown in FIG. 2D further includes step 201f.
  • Step 201f is performed after step 201e.
  • the first communication apparatus sends a second response message to the second communication apparatus.
  • the second communication device receives the second response message from the first communication device.
  • the second response message is used to notify the second communication device that the first communication device has successfully received the second information.
  • the first communication device determines the first frequency domain resource according to the sensing demand parameter in various manners, and two possible implementation manners are shown below.
  • the first communication apparatus determines the first frequency domain resource according to the sensing requirement parameter and the first mapping relationship.
  • the first mapping relationship includes the mapping relationship between the perceptual requirement parameter and the frequency domain resource.
  • the first mapping relationship may be represented by a table.
  • the first frequency domain resource includes a frequency point combination
  • the sensing requirement parameter includes a ranging unambiguous distance and a ranging resolution as an example for description.
  • the first communication device can determine the frequency point combination as ⁇ f(j)
  • the first communication device may choose to A set of frequency point combinations corresponding to the ranging unambiguous distance and ranging resolution in the sensing requirement parameters are used as the first frequency domain resource.
  • the first communication device can select the frequency corresponding to the unambiguous distance for ranging of 90 and the ranging resolution of 10 in Table 2.
  • the point combination is used as the first frequency domain resource.
  • the unambiguous distance of ranging is 90
  • the resolution of ranging is 10
  • the corresponding frequency point combination is ⁇ f(j)
  • the distance without blurring is 130
  • the resolution of ranging is 10
  • the corresponding frequency point combination is ⁇ f(j)
  • the unambiguous distance of ranging is 90
  • the resolution of ranging is 10
  • the corresponding frequency point combination is ⁇ f(j)
  • the unambiguous distance of ranging is 90, the ranging resolution is 5, and the corresponding frequency point combination is ⁇ f(j)
  • Table 2 may be pre-configured on the first communication device, or may be sent to the first communication device by other communication devices, or the first communication device may sense requirements through multiple groups according to the implementation mode 2 The parameters determine the frequency point combination corresponding to each set of perceptual requirement parameters, and then generate and save the table 2.
  • the first communication device determines the first frequency domain resource by looking up a table, so that the time it takes for the first communication device to determine the first frequency domain resource is short, and computing resources can be effectively saved.
  • Implementation Mode 2 The first communication apparatus determines the first frequency domain resource from the frequency domain resource pool according to the content included in the sensing requirement parameter.
  • the first communication apparatus determines the first frequency domain resource from the frequency domain resource pool according to the sensing requirement parameter.
  • the above step 201b specifically includes steps 3001 to 3002 .
  • the first communication device determines a minimum frequency baseline according to the distance measurement unambiguous distance.
  • the first communication device can determine the length of the minimum frequency baseline as
  • step 3001 The specific principles of step 3001 are combined below. It is assumed that the first communication apparatus uses two subcarriers to perform sensing ranging. The frequencies of the two subcarriers are f 1 and f 2 , respectively.
  • the first communication device transmits sensing signals on the two sub-carriers respectively, and the sensing signals pass through the target point and are reflected to the second communication device.
  • the second communication device receives the reflected sensing signal.
  • the time delay of the sensing signal through the entire path is ⁇ . It is assumed that the initial phases of the sensing signals of the two sub-carriers are both 0 at the first communication device. Then, after the time delay ⁇ , the phase changes on the two subcarriers are 2 ⁇ f 1 ⁇ and 2 ⁇ f 2 ⁇ respectively.
  • the first communication device may determine the minimum frequency baseline of the frequency bin combination in combination with the ranging and unambiguous distance.
  • the initial phases of the sensing signals of the two sub-carriers at the first communication device may not be 0.
  • the above is only an example, and does not belong to the limitation of the technical solution of the present application.
  • phase ambiguity occurs, resulting in ranging ambiguity.
  • the true value of ⁇ 21 is 2k ⁇ + ⁇ /3
  • the actual value measured is ⁇ /3.
  • the first communication apparatus determines a first frequency domain resource from a frequency domain resource pool according to the minimum frequency baseline.
  • the first frequency domain resource includes a frequency point combination as an example for description.
  • the first communication apparatus selects frequency points from the frequency points included in the frequency domain resource pool to obtain a frequency point combination.
  • This frequency point combination satisfies the minimum frequency baseline. That is to say, the frequency baseline constructed from the frequency points included in the frequency point combination includes a frequency baseline whose length is less than or equal to
  • the first communication apparatus may determine the first frequency domain resource in the following manner.
  • the first communication device determines from the frequency domain resource pool a plurality of frequency point combinations that satisfy the minimum frequency baseline through an exhaustive method; then, the first communication device selects one frequency point combination from the multiple frequency point combinations. point combination.
  • the first communication device determines a frequency point combination that satisfies the minimum frequency baseline by using a simulated annealing algorithm (or an ant colony algorithm) and the frequency points included in the frequency domain resource pool.
  • the frequency point combination includes frequency point 0, frequency point 2, frequency point 4 and frequency point 6.
  • Frequency point combination The intermediate frequency points are arranged in ascending order of frequency.
  • the frequency of frequency point 0 is f 0
  • the frequency of frequency point 2 is f 2
  • the frequency of frequency point 4 is f 4
  • the frequency of frequency point 6 is f 6 .
  • the ranging unambiguous distance is r max , so the length of the minimum frequency baseline is In the frequency baseline composed of two different frequency points in the frequency point combination, the length
  • the second communication apparatus may also determine the first frequency domain resource according to the embodiment shown in FIG. 3 above.
  • the first communication apparatus determines the method of the first frequency domain resource from the frequency domain resource pool according to the perceptual demand parameter.
  • the above-mentioned step 201b specifically includes steps 4001 to 4002 .
  • the first communication apparatus determines a maximum frequency baseline according to the ranging resolution.
  • the first communication device can determine that the length of the maximum frequency baseline is
  • step 4001 The specific principle of step 4001 is described below. It is assumed that the first communication apparatus uses two subcarriers to perform sensing ranging. The frequencies of the two subcarriers are f 1 and f 2 , respectively.
  • the first communication device transmits sensing signals on the two sub-carriers respectively, and the sensing signals pass through the target point and are reflected to the second communication device.
  • the second communication device receives the reflected sensing signal.
  • the time delay of the sensing signal through the entire path is ⁇ . It is assumed that the initial phases of the sensing signals of the two sub-carriers are both 0 at the first communication device. Then, after the time delay ⁇ , the phase changes on the two subcarriers are 2 ⁇ f 1 ⁇ and 2 ⁇ f 2 ⁇ respectively.
  • the first communication apparatus may determine the maximum frequency baseline of the frequency bin combination in combination with the ranging resolution.
  • the initial phases of the sensing signals of the two subcarriers at the first communication device may not be 0, and the above is only an example, and does not belong to the limitation of the technical solution of the present application.
  • the first communication apparatus determines a first frequency domain resource from a frequency domain resource pool according to the maximum frequency baseline.
  • the first frequency domain resource includes a frequency point combination as an example for introduction.
  • the first communication apparatus selects frequency points from the frequency points included in the frequency domain resource pool to obtain a frequency point combination.
  • the frequency point combination satisfies the maximum frequency baseline, that is, the frequency baseline constructed from the frequency points included in the frequency point combination includes a frequency baseline whose length is greater than or equal to
  • step 4002 is similar to the determination method in step 3002 in the embodiment shown in FIG. 3 .
  • step 3002 in the embodiment shown in FIG. 3 .
  • step 3002 in the embodiment shown in FIG. 3 , which will not be repeated here.
  • the frequency point combination includes frequency point 0, frequency point 2, frequency point 4 and frequency point 6.
  • Frequency point combination The intermediate frequency points are arranged in ascending order of frequency.
  • the frequency of frequency point 0 is f 0
  • the frequency of frequency point 2 is f 2
  • the frequency of frequency point 4 is f 4
  • the frequency of frequency point 6 is f 6 .
  • the ranging resolution is ⁇ r, so the length of the maximum frequency baseline is In the frequency baselines of two different frequency point combinations in the frequency point combination, the length of the frequency baseline composed of frequency point 0 and frequency point 6 is
  • the second communication apparatus may also determine the first frequency domain resource according to the embodiment shown in FIG. 4 .
  • step 201b specifically includes steps 5001 to 5003 .
  • the first communication apparatus determines a minimum frequency baseline according to the distance measurement unambiguous distance.
  • the first communication apparatus determines a maximum frequency baseline according to the ranging resolution.
  • Step 5001 is similar to step 3001 in the foregoing embodiment shown in FIG. 3 .
  • Step 5002 is similar to step 4001 in the aforementioned embodiment shown in FIG. 3 .
  • step 4001 please refer to the relevant introduction of the aforementioned step 4001 , which will not be repeated here.
  • step 5001 can be executed first, and then step 5002 can be executed; or, step 5002 can be executed first, and then step 5001 can be executed; Application is not limited.
  • the first communication apparatus determines a first frequency domain resource from the frequency domain resource pool according to the minimum frequency baseline and the maximum frequency baseline.
  • the first frequency domain resource includes a frequency point combination as an example for introduction.
  • the first communication apparatus selects frequency points from the frequency points included in the frequency domain resource pool to obtain a frequency point combination.
  • the frequency point combination satisfies the minimum frequency baseline and the maximum frequency baseline.
  • the related introduction that the frequency point combination satisfies the minimum frequency baseline and the maximum frequency baseline, please refer to the related introduction of the embodiments shown in FIG. 3 and FIG. 4 above. I won't go into details here.
  • the frequency point combination includes subcarrier combination.
  • the subcarrier combination is the subcarrier combination that satisfies the maximum baseline length, the minimum baseline length and the first condition, including the subcarrier combination with the smallest number of subcarriers.
  • the first communication device uses the maximum frequency baseline length, the minimum frequency baseline length and the first condition as constraints, and takes the minimum number of subcarriers as the optimization goal to search for the subcarrier combination in real time, so as to realize the determination of the subcarrier combination.
  • search algorithms for subcarrier combinations for example, exhaustive method, simulated annealing algorithm, and ant colony algorithm.
  • the second communication apparatus may also determine the first frequency domain resource according to the embodiment shown in FIG. 5 above.
  • the frequencies of the subcarriers included in the subcarrier combination are f 0 , f 1 , f 2 , f 3 , f 4 , f 5 , and f 6 , respectively.
  • the subcarriers included in the subcarrier combination are sorted in ascending order of frequency.
  • the frequency interval between adjacent subcarriers is the same, that is, the subcarriers included in the subcarrier combination are uniformly distributed in the frequency domain.
  • subcarriers that satisfy the above-mentioned minimum frequency baseline, maximum frequency baseline, and the first condition.
  • the subcarriers included in the subcarrier combination may be uniformly distributed or non-uniformly distributed in the frequency domain.
  • the frequencies of the subcarriers included in the subcarrier combination are f 0 , f 1 , f 2 , f 3 , f 4 , f 5 , and f 6 , respectively.
  • the subcarriers included in the subcarrier combination are sorted in ascending order of frequency.
  • the frequency interval between adjacent subcarriers is the same, and the subcarriers included in the subcarrier combination are uniformly distributed in the frequency domain.
  • f 0 , f 1 , f 2 , f 3 , f 4 , f 5 , f 6 are 0, 1, 2, 3, 4, 5, and 6, respectively.
  • the first communication apparatus performs sensing ranging by using the subcarriers included in the subcarrier combination.
  • of the minimum frequency baseline is 1, and the maximum frequency baseline
  • FIG. 6B shows the coverage situation of the frequency baseline constructed by the subcarrier combination and the redundancy situation of the frequency baseline.
  • can be constructed through this subcarrier combination, where k belongs to [-6,-5,-4,-3,-2,-1,0,1,2, 3,4,5,6]. So the frequency baseline coverage is complete. But some frequency baselines have large redundancy. For example, the redundancy number of frequency baseline 1 is 6, that is, there are 6 identical frequency baselines.
  • the frequency baseline 0 shown in FIG. 6B is only a frequency baseline constructed by combining the frequency points included in the frequency point combination.
  • the first communication apparatus sends the sensing signal once on each subcarrier in the subcarrier combination.
  • the first communication apparatus and/or the second communication apparatus may select a corresponding subcarrier combination according to the requirements on the signal-to-noise ratio in the perceptual measurement process.
  • the requirement of the signal-to-noise ratio is relatively large, there may be more redundant baselines in the frequency baseline constructed by the combination of sub-carriers selected by the first communication device and/or the second communication device, so as to improve the measurement signal-to-noise ratio.
  • the signal-to-noise ratio requirement is relatively large, there may be fewer redundant baselines in the frequency baseline constructed by the combination of sub-carriers selected by the first communication apparatus and/or the second communication apparatus, thereby reducing resource waste.
  • the frequencies of the subcarriers included in the subcarrier combination are f 0 , f 1 , f 4 , and f 6 , respectively.
  • the subcarriers included in the subcarrier combination are sorted in ascending order of frequency.
  • the subcarriers included in the subcarrier combination are non-uniformly distributed in the frequency domain.
  • f 0 , f 1 , f 4 , and f 6 are 0, 1, 4, and 6, respectively.
  • the first communication apparatus performs sensing ranging by using the subcarriers included in the subcarrier combination.
  • of the minimum frequency baseline is 1, and the maximum frequency baseline
  • FIG. 7B shows that the coverage of the frequency baseline and the redundancy of the frequency baseline can be determined through the subcarrier combination.
  • can be constructed through this subcarrier combination, where k belongs to [-6,-5,-4,-3,-2,-1,0,1,2, 3,4,5,6]. So the frequency baseline coverage is complete.
  • the non-uniformly distributed subcarrier combination can also obtain complete frequency baseline coverage, but reduces the number of redundant frequency baselines. Therefore, the non-uniformly distributed subcarrier combination scheme can effectively reduce the number of redundant frequency baselines, thereby reducing the number of subcarriers and reducing the subcarrier resource overhead for sensing.
  • the frequency baseline 0 shown in FIG. 7B is only a frequency baseline constructed by combining the frequency points included in the frequency point combination.
  • the first communication apparatus sends the sensing signal once on each subcarrier in the subcarrier combination.
  • the first communication apparatus may select a non-uniformly distributed subcarrier combination as the first frequency domain resource to reduce waste of subcarrier resources.
  • the first frequency domain resource includes a frequency point combination.
  • Frequency point combination includes subcarrier combination.
  • the sub-carrier combination is the sub-carrier combination with the smallest number of sub-carriers among the sub-carrier combinations satisfying the minimum frequency baseline, the maximum frequency baseline and the first condition. 7A and 7B, it can be known that the sub-carrier combination is a non-uniformly distributed sub-carrier combination, so that the sub-carrier combination is realized to satisfy the minimum frequency baseline, the maximum frequency baseline and the first condition.
  • the combination of sub-carriers includes has the least number of subcarriers.
  • FIG. 8 is a schematic structural diagram of a first communication apparatus according to an embodiment of the present application.
  • the first communication apparatus may be used to perform the steps performed by the first communication apparatus in the embodiments shown in FIG. 2A , FIG. 2C , FIG. 2D , FIG. 3 , FIG. 4 , and FIG. .
  • the first communication device includes a processing module 801 and a transceiver module 802 .
  • a processing module 801 configured to determine a first frequency domain resource, where the first frequency domain resource is determined from a frequency domain resource pool according to a perception requirement parameter;
  • the transceiver module 802 is configured to send a sensing signal on the first frequency domain resource.
  • the perceptual requirement parameter includes at least one of the following: unambiguous distance for ranging, and ranging resolution.
  • the transceiver module 802 is further configured to:
  • the processing module 801 is specifically used for:
  • the first frequency domain resource is determined from the frequency domain resource pool according to the sensing requirement parameter.
  • the perceptual requirement parameter includes a ranging unambiguous distance, the first frequency domain resource satisfies a minimum frequency baseline, and the minimum frequency baseline is determined by the ranging unambiguous distance; or,
  • the sensing requirement parameter includes ranging resolution, the first frequency domain resource satisfies the maximum frequency baseline, and the maximum frequency baseline is determined according to the ranging resolution; or,
  • the sensing requirement parameters include ranging unambiguous distance and ranging resolution, and the first frequency domain resource satisfies the minimum frequency baseline and the maximum frequency baseline.
  • the first frequency domain resource includes a frequency point combination, and the frequency point combination is a frequency point combination that satisfies a first condition;
  • the first condition includes: a frequency baseline constructed by the frequency points included in the frequency point combination Include the frequency baseline of the first length; the first length is k * the length of the minimum frequency baseline, k is a positive integer belonging to [1, K], K is the ratio of the length of the maximum frequency baseline to the length of the minimum frequency baseline, K greater than or equal to 1.
  • the frequency point combination includes a sub-carrier combination
  • the sub-carrier combination is the sub-carrier combination that satisfies the minimum frequency baseline, the maximum frequency baseline and the first condition and includes the smallest number of sub-carriers.
  • the transceiver module 802 is further configured to:
  • the first information includes a frequency domain location of the first frequency domain resource; or, the first information includes a perceptual quality index, and the perceptual quality index is used to indicate the frequency domain location of the first frequency domain resource.
  • the first information is carried in RRC signaling or DCI signaling.
  • the transceiver module 802 is further configured to:
  • the type of trigger signaling includes RRC signaling or DCI signaling.
  • the transceiver module 802 is specifically used for:
  • a perceived demand parameter is received from a third communication device.
  • the frequency domain resource pool includes frequency domain resources used for transmitting the channel state information reference signal between the first communication device and the second communication device; or,
  • the frequency domain resource pool includes frequency domain resources used for transmitting communication data between the first communication device and the second communication device.
  • the processing module 801 is configured to determine the first frequency domain resource, and the first frequency domain resource is determined from the frequency domain resource pool according to the sensing requirement parameter.
  • the transceiver module 802 is configured to send the sensing signal on the first frequency domain resource. It can be seen from this that the first frequency domain resource is selected from the frequency domain resource pool according to the sensing requirement parameter.
  • the transceiver module 802 can send the sensing signal on the first frequency domain resource. In this way, the first communication device can realize the perception of the surrounding environment by sending a perception signal while performing communication. Further, the first frequency domain resource is determined in combination with the sensing requirement parameter, which can meet the sensing requirement and improve the sensing performance.
  • FIG. 9 is a schematic structural diagram of a second communication apparatus according to an embodiment of the present application.
  • the second communication apparatus may be configured to perform the steps performed by the second communication apparatus in the embodiments shown in FIG. 2A , FIG. 2C and FIG. 2D , and reference may be made to the relevant descriptions in the foregoing method embodiments.
  • the second communication device includes a processing module 901 and a transceiver module 902 .
  • the processing module 901 is configured to determine a first frequency domain resource, where the first frequency domain resource is determined from a frequency domain resource pool according to a perception requirement parameter.
  • a transceiver module 902 configured to receive a sensing signal from a first communication device on a first frequency domain resource
  • the processing module 901 is further configured to perform sensing measurement on the sensing signal to obtain a sensing result.
  • the perceptual requirement parameter includes at least one of the following: unambiguous distance for ranging, and ranging resolution.
  • the transceiver module 902 is further configured to:
  • First information from the first communication device is received, where the first information is used to indicate a frequency domain location of the first frequency domain resource.
  • the first information includes a frequency domain location of the first frequency domain resource; or, the first information includes a perceptual quality index, and the perceptual quality index is used to indicate the frequency domain location of the first frequency domain resource.
  • the first information is carried in RRC signaling or DCI signaling.
  • the transceiver module 902 is further configured to:
  • the processing module 901 is specifically used for:
  • the first frequency domain resource is determined from the frequency domain resource pool according to the sensing requirement parameter.
  • the perceptual requirement parameter includes a ranging unambiguous distance
  • the first frequency domain resource satisfies a minimum frequency baseline
  • the minimum frequency baseline is determined according to the ranging unambiguous distance
  • the sensing requirement parameter includes ranging resolution, the first frequency domain resource satisfies the maximum frequency baseline, and the maximum frequency baseline is determined according to the ranging resolution; or,
  • the sensing requirement parameters include ranging unambiguous distance and ranging resolution, and the first frequency domain resource satisfies the minimum frequency baseline and the maximum frequency baseline.
  • the transceiver module 902 is further configured to:
  • Trigger signaling from the first communication device is received, where the trigger signaling is used to trigger the second communication device to enable the sensing function.
  • the type of trigger signaling includes RRC signaling or DCI signaling.
  • the frequency domain resource pool includes frequency domain resources used for transmitting the channel state information reference signal between the first communication device and the second communication device; or,
  • the frequency domain resource pool includes frequency domain resources used for transmitting communication data between the first communication device and the second communication device.
  • the processing module 901 is configured to determine the first frequency domain resource, and the first frequency domain resource is determined from the frequency domain resource pool according to the sensing requirement parameter.
  • the transceiver module 902 is configured to receive the sensing signal from the first communication device on the first frequency domain resource; the processing module 901 is further configured to perform sensing measurement on the sensing signal to obtain a sensing result. It can be seen from this that the first frequency domain resource is selected from the frequency domain resource pool according to the sensing requirement parameter.
  • the transceiver module 902 receives the sensing signal from the first communication device on the first frequency domain resource. In this way, the second communication device can realize the perception of the surrounding environment by receiving the perception signal from the first communication device while performing communication. Further, the first frequency domain resource is determined in combination with the sensing requirement parameter, which can meet the sensing requirement and improve the sensing performance.
  • the present application further provides a first communication device.
  • FIG. 10 is another schematic structural diagram of the first communication device in an embodiment of the present application.
  • the first communication device can be used to execute 3.
  • the first communication apparatus includes: a processor 1001 and a transceiver 1003 .
  • the communication apparatus further includes a memory 1002 .
  • the processor 1001, the memory 1002, and the transceiver 1003 are respectively connected through a bus, and the memory stores computer instructions.
  • the processor 1001 in this embodiment may perform the actions performed by the aforementioned processing module 801 shown in FIG. 8 , and the specific implementation of the processor 1001 will not be described again.
  • the transceiver 1003 in this embodiment may perform the actions performed by the transceiver module 802 in the foregoing embodiments, and the specific implementation of the transceiver 1003 will not be repeated.
  • the processor 1001 and the memory 1002 may be integrated together or deployed separately, which is not specifically limited in this application.
  • the memory 1002 shown in FIG. 10 may also be deployed outside the first communication apparatus shown in FIG. 10 .
  • the present application further provides a second communication device.
  • FIG. 11 is another schematic structural diagram of the second communication device in the embodiment of the present application.
  • the second communication device can be used to perform the operations shown in FIG. 2A , FIG.
  • FIG. 11 For the steps performed by the second communication apparatus in the embodiments of , reference may be made to the relevant descriptions in the foregoing method embodiments.
  • the second communication device includes: a processor 1101 and a transceiver 1103 .
  • the communication apparatus further includes a memory 1102 .
  • the processor 1101, the memory 1102 and the transceiver 1103 are respectively connected through a bus, and the memory stores computer instructions.
  • the processor 1101 in this embodiment may perform the actions performed by the aforementioned processing module 901 shown in FIG. 9 , and the specific implementation of the processor 1101 will not be described again.
  • the transceiver 1103 in this embodiment may perform the actions performed by the transceiver module 902 in the foregoing embodiments, and the specific implementation of the transceiver 1103 will not be described again.
  • the processor 1101 and the memory 1102 may be integrated together or deployed separately, which is not specifically limited in this application.
  • the memory 1102 shown in FIG. 11 may also be deployed outside the second communication apparatus shown in FIG. 11 .
  • FIG. 12 A possible structural schematic diagram in which the first communication device or the second communication device is a terminal device is shown below through FIG. 12 .
  • FIG. 12 shows a schematic structural diagram of a simplified terminal device.
  • the terminal device takes a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna and an optional input and output device.
  • the processor is mainly used to process communication protocols and communication data, control terminal equipment, execute software programs, and process data of software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 12 only one memory and processor are shown in FIG. 12 . In an actual end device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit with a transceiver function may be regarded as a transceiver unit of the terminal device, and the processor with a processing function may be regarded as a processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1210 and a processing unit 1220 .
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, or the like.
  • the processing unit may also be referred to as a processor, a processing single board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 1210 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 1210 may be regarded as a transmitting unit, that is, the transceiver unit 1210 includes a receiving unit and a transmitting unit.
  • the transceiver unit may also sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the transceiving unit 1210 is configured to perform the sending operation and the receiving operation of the first communication device in the above method embodiment
  • the processing unit 1220 is configured to perform the sending and receiving operation on the first communication device in the above method embodiment. other operations.
  • the processing unit 1202 is configured to perform steps 201 and 204 in FIG. 2A .
  • the transceiver unit 1210 is used to execute step 202, step 203, step 206 and step 202a in FIG. 2A.
  • the transceiving unit 1210 is configured to perform the sending operation and the receiving operation of the second communication device in the above method embodiments
  • the processing unit 1220 is configured to perform the sending and receiving operations on the second communication device in the above method embodiments other operations.
  • the processing unit 1202 is configured to perform steps 205 and 207 in FIG. 2A .
  • the transceiver unit 1210 is used to execute step 202, step 203, step 206 and step 202a in FIG. 2A.
  • the chip When the terminal device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface
  • the processing unit may be a processor or a microprocessor or an integrated circuit or a logic circuit integrated on the chip.
  • an embodiment of the present application further provides a communication system, where the communication system includes a first communication device as shown in FIG. 8 and a second communication device as shown in FIG. 9 .
  • the first communication apparatus shown in FIG. 8 is used for all or part of the steps performed by the first communication apparatus in the embodiments shown in FIG. 2A , FIG. 2C , FIG. 2D , FIG. 3 , FIG. 4 and FIG. 5 .
  • the second communication device shown in Fig. 9 is used for all or part of the steps performed by the second communication device in the embodiments shown in Figs. 2A, 2C and 2D.
  • Embodiments of the present application also provide a computer program product including computer instructions, which, when executed on a computer, make the embodiments shown in FIGS. 2A, 2C, 2D, 3, 4 and 5 described above.
  • the communication method is executed.
  • Embodiments of the present application further provide a computer-readable storage medium, including computer instructions, when the computer instructions are executed on a computer, the above-mentioned FIG. 2A , FIG. 2C , FIG. 2D , FIG. 3 , FIG. 4 , and FIG.
  • the communication method of the illustrated embodiment is performed.
  • An embodiment of the present application further provides a chip device, including a processor, which is connected to a memory and calls a program stored in the memory, so that the processor executes the above-mentioned FIG. 2A , FIG. 2C , FIG. 2D , FIG. 3 , and FIG. 4 and the communication method of the embodiment shown in FIG. 5 .
  • the processor mentioned in any of the above can be a general-purpose central processing unit, a microprocessor, an application-specific integrated circuit (ASIC), or one or more of the above-mentioned Fig. 2A, 2C, 2D, 3, 4 and 5 show the integrated circuit for executing the program of the communication method of the embodiment.
  • the memory mentioned in any one of the above can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), and the like.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geophysics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请实施例公开了一种通信方法和通信装置,用于通信装置在进行通信的同时实现对周边环境的感知。本申请实施例方法包括:第一通信装置确定第一频域资源,所述第一频域资源是根据感知需求参数从频域资源池中确定的;所述第一通信装置在所述第一频域资源上发送感知信号。

Description

通信方法以及通信装置
本申请要求于2021年3月25日提交中国国家知识产权局,申请号为202110321050.X,发明名称为“通信方法以及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种通信方法以及通信装置。
背景技术
无线感知技术通过分析无线信号在传播过程中的变化,获得信号传输空间的特性,以实现环境中的物体或人的感知。例如,通过无线感知技术对环境中的人、建筑物、车辆等的感知。
雷达是一种经典的无线感知技术,在军事、农业、气象等领域都有广泛的应用。雷达的基本原理是:发射机发射特定波形信号,经过无线信道被接收机所接收,结合发射信号和接收信号进行信号处理,从而提取无线信道中感兴趣的目标。而无线通信系统的主要功能是用于收发机之间的交互信息,其基本原理是:发射端发射特定波形信号,经过无线信道后被接收机所接收,并经过信号处理后解调出发射端发射的信号。
由此可知,从发射、传输和接收等过程来看,雷达感知过程和无线通信过程极为相似。因此,如何将无线通信和感知技术融合,以实现无线通信的同时对周围的环境进行感知,是当前亟待解决的问题。
发明内容
本申请实施例提供了一种通信方法和通信装置,用于通信装置在进行通信的同时实现对周边环境的感知。进一步的,结合感知需求参数确定通信资源,可以符合感知的要求,提高感知性能。
本申请实施例第一方面提供一种通信方法,方法包括:
第一通信装置确定第一频域资源,第一频域资源是根据感知需求参数从频域资源池中确定的。然后,第一通信装置在第一频域资源上发送感知信号。
本实施例中,第一频域资源是根据感知需求参数从频域资源池中选择的。第一通信装置可以在第一频域资源上发送感知信号。这样第一通信装置可以在进行通信的同时通过发送感知信号实现对周边环境的感知。进一步的,第一频域资源是结合感知需求参数确定的,这样可以符合感知的要求,提高感知性能。
一种可能的实现方式中,感知需求参数包括以下至少一种:测距不模糊距离、测距分辨率。
在该实现方式中,提供感知需求参数具体包括的内容,用于表征通过感知信号进行感知测距的要求。即感知需求参数用于指示第一通信装置或第二通信装置通过感知信号进行感知测量的要求。
另一种可能的实现方式中,方法还包括:第一通信装置获取感知需求参数;第一通信装置确定第一频域资源,包括:第一通信装置根据感知需求参数从频域资源池中确定第一频域资源。
在该可能的实现方式中,提供了第一通信装置确定第一频域资源的一种具体的实现方式。第一通信装置可以获取感知需求参数,第一通信装置结合感知需求参数确定第一频域资源,这样可以符合感知的要求,提高感知性能。
另一种可能的实现方式中,感知需求参数包括测距不模糊距离,第一频域资源满足最小频率基线,最小频率基线是所述测距不模糊距离确定的;或者,
感知需求参数包括测距分辨率,第一频域资源满足最大频率基线,最大频率基线是根据测距分辨率确定的;或者,
感知需求参数包括测距不模糊距离和测距分辨率,第一频域资源满足最小频率基线和最大频率基线。
在该可能的实现方式中,提供了感知需求参数具体包括的内容的多种可能的实现方式,以及基于这些实现方式下,第一频域资源应当满足的要求。
另一种可能的实现方式中,第一频域资源包括频点组合,频点组合为满足第一条件的频点组合;第一条件包括:通过频点组合包括的频点构造得到的频率基线中包括第一长度的频率基线;第一长度为k*最小频率基线的长度,k为属于[1,K]的正整数,K为最大频率基线的长度与最小频率基线的长度的比值,K大于或等于1。
在该可能的实现方式中,第一频域资源包括频点组合,通过上述实现方式得到的频点组合可以实现该频点组合构造得到的频率基线在频率上是覆盖完整的,也就是频点组合满足覆盖完整性的要求,这样能够实现对周边环境的多个感知目标点进行感知测距,进一步提升感知性能。
另一种可能的实现方式中,频点组合包括子载波组合,子载波组合为满足最小频率基线、最大频率基线和第一条件的子载波组合中包括的子载波数量最少的子载波组合。
在该可能的实现方式中,满足上述最小频率基线、最大频率基线和第一条件的子载波组合可以有多个,那么上述子载波组合可以是多个子载波组合中子载波数量最少的子载波组合。这样在满足最大频率基线和最小频率基线,保证频率基线覆盖完整的条件下,选择子载波数量最少的子载波组合,从而有效节省子载波在频域上的开销。避免占用过多的通信资源,影响通信性能。
另一种可能的实现方式中,该方法还包括:第一通信装置向第二通信装置发送第一信息,第一信息用于指示第一频域资源的频域位置。
在该可能的实现方式中,第一通信装置向第二通信装置指示第一频域资源的频域位置。这样第二通信装置可以在第一频域资源的频域资源上接收感知信号,从而实现对周边环境的感知测量。
另一种可能的实现方式中,第一信息包括第一频域资源的频域位置;或者,第一信息包括感知质量索引,感知质量索引用于指示第一频域资源的频域位置。
在该可能的实现方式中,提供了第一信息指示第一频域资源的频域位置的两种具体的 实现方式。具体的,第一信息可以直接指示第一频域资源的频域位置,指示方式简单。或者,第一信息通过索引的方式间接指示第一频域资源的频域位置,该指示方式所需要的指示比特较少,可以节省指示比特的开销。
另一种可能的实现方式中,第一信息承载于无线资源控制(radio resource control,RRC)信令或下行控制信息(downlink control information,DCI)信令。
在该可能的实现方式中,提供了承载第一信息的两种可能的信令,为方案的实施例提供基础。
另一种可能的实现方式中,方法还包括:第一通信装置向第二通信装置发送触发信令,触发信令用于触发第二通信装置开启感知功能。
在该可能的实现方式中,提供了第二通信装置开启感知功能的一种触发条件,为方案的实施例提供基础。
另一种可能的实现方式中,触发信令的类型包括RRC信令或DCI信令。
该实现方式中,可以通过RRC信令或DCI信令触发第二通信装置开启感知功能。
另一种可能的实现方式中,第一通信装置获取感知需求参数,包括:第一通信装置接收来自第三通信装置的感知需求参数。
该实现方式中,感知需求参数可以由第三通信装置下发给第一通信装置。第三通信装置可以理解为控制节点,控制第一通信装置发送感知信号。
另一种可能的实现方式中,频域资源池包括用于第一通信装置与第二通信装置之间传输信道状态信息参考信号的频域资源;或者,
频域资源池包括用于第一通信装置与第二通信装置之间传输通信数据的频域资源。
在该可能的实现方式中,提供了频域资源池包括的两种可能的通信资源,可以用于选择第一频域资源,从而实现在通信装置进行通信的同时实现对周边环境的感知。
本申请实施例第二方面提供一种通信方法,该方法包括:
第二通信装置确定第一频域资源,第一频域资源是根据感知需求参数从频域资源池中确定的。然后,第二通信装置在第一频域资源上接收来自第一通信装置的感知信号;第二通信装置对感知信号进行感知测量,得到感知结果。
本实施例中,第一频域资源是根据感知需求参数从频域资源池中选择的。第二通信装置在第一频域资源上接收来自第一通信装置的感知信号。这样第二通信装置可以在进行通信的同时通过接收来自第一通信装置的感知信号实现对周边环境的感知。进一步的,第一频域资源是结合感知需求参数确定的,这样可以符合感知的要求,提高感知性能。
一种可能的实现方式中,感知需求参数包括以下至少一种:测距不模糊距离、测距分辨率。
在该实现方式中,提供感知需求参数具体包括的内容,用于表征通过感知信号进行感知测距的要求。即感知需求参数用于指示第一通信装置或第二通信装置通过感知信号进行感知测量的要求。
另一种可能的实现方式中,方法还包括:第二通信装置接收来自第一通信装置的第一信息,第一信息用于指示第一频域资源的频域位置。
在该可能的实现方式中,第二通信装置接收来自第一通信装置指示的第一频域资源的频域位置。这样第二通信装置可以在第一频域资源的频域资源上接收感知信号,从而实现对周边环境的感知测量。
另一种可能的实现方式中,第一信息包括第一频域资源的频域位置;或者,第一信息包括感知质量索引,感知质量索引用于指示第一频域资源的频域位置。
在该可能的实现方式中,提供了第一信息指示第一频域资源的频域位置的两种具体的实现方式。具体的,第一信息可以直接指示第一频域资源的频域位置,指示方式简单。或者,第一信息通过索引的方式间接指示第一频域资源的频域位置,该指示方式所需要的指示比特较少,可以节省指示比特的开销。
另一种可能的实现方式中,第一信息承载于RRC信令或DCI信令。
在该可能的实现方式中,提供了承载第一信息的两种可能的信令,为方案的实施例提供基础。
另一种可能的实现方式中,方法还包括:第二通信装置获取感知需求参数;第二通信装置确定第一频域资源,包括:第二通信装置根据感知需求参数从频域资源池中确定第一频域资源。
在该可能的实现方式中,提供了第二通信装置确定第一频域资源的一种具体的实现方式。第二通信装置可以获取感知需求参数,第二通信装置结合感知需求参数确定第一频域资源,这样可以符合感知的要求,提高感知性能。
另一种可能的实现方式中,感知需求参数包括测距不模糊距离,第一频域资源满足最小频率基线,最小频率基线是根据测距不模糊距离确定的;或者,
感知需求参数包括测距分辨率,第一频域资源满足最大频率基线,最大频率基线是根据测距分辨率确定的;或者,
感知需求参数包括测距不模糊距离和测距分辨率,第一频域资源满足最小频率基线和最大频率基线。
在该可能的实现方式中,提供了感知需求参数具体包括的内容的多种可能的实现方式,以及基于这些实现方式下,第一频域资源应当满足的要求。
另一种可能的实现方式中,方法还包括:第二通信装置接收来自第一通信装置的触发信令,触发信令用于触发第二通信装置开启感知功能。
在该可能的实现方式中,提供了第二通信装置开启感知功能的一种触发条件,为方案的实施例提供基础。
另一种可能的实现方式中,触发信令的类型包括RRC信令或DCI信令。该实现方式中,可以通过RRC信令或DCI信令触发第二通信装置开启感知功能。
另一种可能的实现方式中,频域资源池包括用于第一通信装置与第二通信装置之间传输信道状态信息参考信号的频域资源;或者,
频域资源池包括用于第一通信装置与第二通信装置之间传输通信数据的频域资源。
在该可能的实现方式中,提供了频域资源池包括的两种可能的通信资源,可以用于选择第一频域资源,从而实现在通信装置进行通信的同时实现对周边环境的感知。
本申请实施例第三方面提供一种第一通信装置,第一通信装置包括:
处理模块,用于确定第一频域资源,第一频域资源是根据感知需求参数从频域资源池中确定的;
收发模块,用于在第一频域资源上发送感知信号。
一种可能的实现方式中,感知需求参数包括以下至少一种:测距不模糊距离、测距分辨率。
另一种可能的实现方式中,收发模块还用于:
获取感知需求参数;
处理模块具体用于:
根据感知需求参数从频域资源池中确定第一频域资源。
另一种可能的实现方式中,感知需求参数包括测距不模糊距离,第一频域资源满足最小频率基线,最小频率基线是所述测距不模糊距离确定的;或者,
感知需求参数包括测距分辨率,第一频域资源满足最大频率基线,最大频率基线是根据测距分辨率确定的;或者,
感知需求参数包括测距不模糊距离和测距分辨率,第一频域资源满足最小频率基线和最大频率基线。
另一种可能的实现方式中,第一频域资源包括频点组合,频点组合为满足第一条件的频点组合;第一条件包括:通过频点组合包括的频点构造得到的频率基线中包括第一长度的频率基线;第一长度为k*最小频率基线的长度,k为属于[1,K]的正整数,K为最大频率基线的长度与最小频率基线的长度的比值,K大于或等于1。
另一种可能的实现方式中,频点组合包括子载波组合,子载波组合为满足最小频率基线、最大频率基线和第一条件的子载波组合中包括的子载波数量最少的子载波组合。
另一种可能的实现方式中,收发模块还用于:
向第二通信装置发送第一信息,第一信息用于指示第一频域资源的频域位置。
另一种可能的实现方式中,第一信息包括第一频域资源的频域位置;或者,第一信息包括感知质量索引,感知质量索引用于指示第一频域资源的频域位置。
另一种可能的实现方式中,第一信息承载于RRC信令或DCI信令。
另一种可能的实现方式中,收发模块还用于:
向第二通信装置发送触发信令,触发信令用于触发第二通信装置开启感知功能。
另一种可能的实现方式中,触发信令的类型包括RRC信令或DCI信令。
另一种可能的实现方式中,收发模块具体用于:
接收来自第三通信装置的感知需求参数。
另一种可能的实现方式中,频域资源池包括用于第一通信装置与第二通信装置之间传输信道状态信息参考信号的频域资源;或者,
频域资源池包括用于第一通信装置与第二通信装置之间传输通信数据的频域资源。
本申请实施例第四方面提供一种第二通信装置,第二通信装置包括:
处理模块,用于确定第一频域资源,第一频域资源是根据感知需求参数从频域资源池 中确定的。
收发模块,用于在第一频域资源上接收来自第一通信装置的感知信号;
处理模块,还用于对感知信号进行感知测量,得到感知结果。
一种可能的实现方式中,感知需求参数包括以下至少一种:测距不模糊距离、测距分辨率。
另一种可能的实现方式中,收发模块还用于:
接收来自第一通信装置的第一信息,第一信息用于指示第一频域资源的频域位置。
另一种可能的实现方式中,第一信息包括第一频域资源的频域位置;或者,第一信息包括感知质量索引,感知质量索引用于指示第一频域资源的频域位置。
另一种可能的实现方式中,第一信息承载于RRC信令或DCI信令。
另一种可能的实现方式中,收发模块还用于:
获取感知需求参数;
处理模块具体用于:
根据感知需求参数从频域资源池中确定第一频域资源。
另一种可能的实现方式中,感知需求参数包括测距不模糊距离,第一频域资源满足最小频率基线,最小频率基线是根据测距不模糊距离确定的;或者,
感知需求参数包括测距分辨率,第一频域资源满足最大频率基线,最大频率基线是根据测距分辨率确定的;或者,
感知需求参数包括测距不模糊距离和测距分辨率,第一频域资源满足最小频率基线和最大频率基线。
另一种可能的实现方式中,收发模块还用于:
接收来自第一通信装置的触发信令,触发信令用于触发第二通信装置开启感知功能。
另一种可能的实现方式中,触发信令的类型包括RRC信令或DCI信令。
另一种可能的实现方式中,频域资源池包括用于第一通信装置与第二通信装置之间传输信道状态信息参考信号的频域资源;或者,
频域资源池包括用于第一通信装置与第二通信装置之间传输通信数据的频域资源。
本申请实施例第五方面提供一种第一通信装置,该第一通信装置包括:处理器和存储器;该存储器中存储有计算机程序或计算机指令,该处理器还用于调用并运行该存储器中存储的计算机程序或计算机指令,使得处理器实现如第一方面中的任意一种实现方式。
可选的,该第一通信装置还包括收发器,该处理器用于控制该收发器收发信号。
本申请实施例第六方面提供一种第二通信装置,该第二通信装置包括:处理器和存储器;该存储器中存储有计算机程序或计算机指令,该处理器还用于调用并运行该存储器中存储的计算机程序或计算机指令,使得处理器实现如第二方面中的任意一种实现方式。
可选的,该第二通信装置还包括收发器,该处理器用于控制该收发器收发信号。
本申请实施例第七方面提供一种包括计算机指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得第一方面或第二方面中任一种的实现方式被执行。
本申请实施例第八方面提供一种计算机可读存储介质,包括计算机指令,当该计算机 指令在计算机上运行时,使得第一方面或第二方面中的任一种实现方式被执行。
本申请实施例第九方面提供一种芯片装置,包括处理器,用于与存储器相连,调用该存储器中存储的程序,以使得该处理器执行上述第一方面或第二方面中的任一种实现方式。
本申请实施例第十方面提供一种通信系统,该通信系统包括如第一方面的第一通信装置和如第二方面的第二通信装置。
从以上技术方案可以看出,本申请实施例具有以下优点:
经由上述技术方案可知,第一通信装置确定第一频域资源,第一频域资源是根据感知需求参数从频域资源池中确定的;然后,第一通信装置在第一频域资源上发送感知信号。由此可知,本申请的技术方案中,第一频域资源是根据感知需求参数从频域资源池中选择的。第一通信装置可以在第一频域资源上发送感知信号。这样第一通信装置可以在进行通信的同时通过发送感知信号实现对周边环境的感知。进一步的,第一频域资源是结合感知需求参数确定的,这样可以符合感知的要求,提高感知性能。
附图说明
图1A为本申请实施例的一个应用场景示意图;
图1B为本申请实施例的另一个应用场景示意图;
图1C为本申请实施例的另一个应用场景示意图;
图1D为本申请实施例的另一个应用场景示意图;
图1E为本申请实施例的另一个应用场景示意图;
图1F为本申请实施例的另一个应用场景示意图;
图2A为本申请实施例通信方法的一个交互示意图;
图2B为本申请实施例的另一个应用场景示意图;
图2C为本申请实施例通信方法的另一个交互示意图;
图2D为本申请实施例通信方法的另一个交互示意图;
图3为本申请实施例通信方法的一个流程示意图;
图4为本申请实施例通信方法的另一个流程示意图;
图5为本申请实施例通信方法的另一个流程示意图;
图6A为本申请实施例频点组合的一个示意图;
图6B为本申请实施例通过频点组合包括的频点构造得到的频率基线和频率基线冗余量的一个示意图;
图7A为本申请实施例频点组合的另一个示意图;
图7B为本申请实施例通过频点组合包括的频点构造得到的频率基线和频率基线冗余量的另一个示意图;
图8为本申请实施例第一通信装置的一个结构示意图;
图9为本申请实施例第二通信装置的一个结构示意图;
图10为本申请实施例第一通信装置的另一个结构示意图;
图11为本申请实施例第二通信装置的另一个结构示意图;
图12为本申请实施例终端设备的一个结构示意图;
图13为本申请实施例通信系统的一个示意图。
具体实施方式
本申请实施例提供了一种通信方法以及通信装置,用于通信装置在进行通信的同时实现对周边环境的感知。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中,A,B可以是单数或者复数。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c。其中,a,b,c可以是单个,也可以是多个。
下面对本申请涉及的一些技术术语进行介绍。
1、频率基线:一个频点的频率减去另一个频点的频率。频率基线具有方向和大小。对于频率为f i和f j的两个频点来说,该两个频点可以组成一对频率基线,分别为频率基线b ij=f i-f j以及频率基线b ij=f j-f i
本申请的技术方案适用的通信系统包括但不限于长期演进(Long Term Evolution,LTE)系统,或者第五代通信(the fifth-generation,5G)移动通信系统,或者5G网络之后的移动通信系统(例如,6G移动通信系统),或者设备到设备(device to device,D2D)通信系统,或者车联网(vehicle to everything,V2X)通信系统。
本申请实施例中,通信系统包括第一通信装置。第一通信装置在进行通信的同时,发送感知信号,以实现对周边环境进行感知。
一种可能的实现方式中,第一通信装置为兼具感知能力和通信能力的通信装置。第一通信装置确定第一频域资源,并在第一频域资源上发送感知信号。第一频域资源是根据感知需求参数从频域资源池中确定的。感知信号经过周边环境的感知目标反射到第一通信装置,第一通信装置接收经过该感知目标反射的感知信号。这样第一通信装置可以对感知信号进行感知测量,得到感知结果。例如,第一通信装置确定该感知目标与该第一通信装置 之间的距离等。
另一种可能的实现方式中,通信系统还包括第二通信装置。第一通信装置确定第一频域资源,并在第一频域资源上发送感知信号。第一频域资源是根据感知需求参数从频域资源池中确定的。感知信号经过周边环境的感知目标反射回来,第二通信装置接收经过该感知目标反射的感知信号。然后,第二通信装置对感知信号进行感知测量,得到感知结果。例如,第一通信装置确定该感知目标与该第一通信装置之间的距离等。
在该实现方式中,可选的,该通信系统还包括第三通信装置。第三通信装置可以通知第一通信装置发送感知信号。第三通信装置可以通知第二通信装置开启感知功能。
上述两种可能的实现方式中,频域资源池可以包括用于通信的频域资源、用于定位的频域资源,具体本申请不做限定。第一频域资源是从频域资源池中选择的频域资源。
本申请实施例中,第一通信装置和第二通信装置可以为雷达设备、车载设备、网络设备、终端设备等。第三通信装置为网络设备。
网络设备是一种部署在无线接入网中为终端设备提供无线通信功能的装置。网络设备可以为基站,而基站包括各种形式的宏基站、微基站、中继站、接入网点。示例性的,本申请实施例中基站可以是新空口(new radio,NR)中的基站、发送接收点(transmission reception point,TRP)或传输点(transmission point,TP)或下一代节点B(next generation Node B,ngNB),也可以是长期演进(long term evolution,LTE)系统中的演进型节点B(evolved Node B,eNB或eNodeB)。
终端设备可以是一种向用户提供语音或者数据连通性的设备,终端设备也称为用户设备(user equipment,UE),也可以称为移动台(mobile station),用户单元(subscriber unit),站台(station),终端设备(terminal equipment,TE)等。终端设备可以为蜂窝电话(0phone),个人数字助理(personal digital assistant,PDA),无线调制解调器(modem),手持设备(handheld),膝上型电脑(laptop computer),无绳电话(cordless phone),无线本地环路(wireless local loop,WLL)台,平板电脑(pad)、车载设备、可穿戴设备、计算设备、无人机等。随着无线通信技术的发展,可以接入通信系统、可以与通信系统的网络侧进行通信,或者通过通信系统与其它物体进行通信的设备都可以是本申请实施例中的终端设备,譬如,智能交通中的终端设备和汽车、智能家居中的家用设备、智能电网中的电力抄表仪器、电压监测仪器、环境监测仪器、智能安全网络中的视频监控仪器、收款机等等。
下面示出本申请实施例适用的一些应用场景。需要说明的是,下述应用场景仅仅是一些示例,并不属于对本申请的技术方案的限定。对于其他应用场景本申请仍适用。
请参阅图1A,图1A为本申请实施例的一个应用场景示意图。图1A是针对通信系统中第一通信装置既作为感知信号的发送端又作为感知信号的接收端的情况的一种具体示例。
在图1A中,第一通信装置为网络设备1。网络设备1可以从网络设备1的用于通信的频域资源中选择第一频域资源。在网络设备1进行通信的同时,网络设备1在该第一频域资源上发送感知信号。感知信号经过周边环境的汽车反射到网络设备1。这样网络设备1可以对感知信号进行感知测量,得到感知结果。例如,网络设备1可以对感知信号进行感 知测量,得到网络设备1距离汽车的距离,汽车的速度等。
下面结合图1B至图1F介绍第一通信装置为感知信号的发送端,第二通信装置为感知信号的接收端的情况的一些具体示例。
请参阅图1B,图1B为本申请实施例的另一个应用场景示意图。第一通信装置为网络设备1,第二通信装置为终端设备。终端设备接入网络设备1。网络设备1与终端设备之间可以进行通信。在网络设备1与终端设备通信的同时,网络设备1在第一频域资源上发送感知信号。例如,第一频域资源可以是从用于网络设备1与终端设备之间传输下行信号的频域资源中确定的。然后,感知信号经过周边环境的汽车反射到终端设备。终端设备可以对感知信号进行感知,得到感知结果。从而实现终端设备在通信的同时实现对周边环境中的汽车的感知。
请参阅图1C,图1C为本申请实施例的另一个应用场景示意图。第一通信装置为终端设备,第二通信装置为网络设备1。终端设备接入网络设备1,终端设备与网络设备1之间可以进行通信。在终端设备1与网络设备1通信的同时,终端设备在第一频域资源上发送感知信号。例如,第一频域资源可以是从用于终端设备与网络设备1之间传输上行信号的频域资源中确定的。感知信号经过周边环境的汽车反射到网络设备1。网络设备1可以对感知信号进行感知,得到感知结果。从而实现网络设备1在通信的同时实现对周边环境的中的汽车的感知。
请参阅图1D,图1D为本申请实施例的另一个应用场景示意图。第一通信装置为网络设备1,第二通信装置为网络设备2。网络设备1与网络设备2之间可以进行通信。在网络设备1与网络设备2通信的同时,网络设备1在第一频域资源上发送感知信号。第一频域资源可以是从用于网络设备1与网络设备2之间进行通信的频域资源中确定的。感知信号经过周边环境的汽车反射到网络设备2,网络设备2可以对感知信号进行感知,得到感知结果。从而实现网络设备2在通信的同时实现对周边环境中的汽车的感知。
请参阅图1E,图1E为本申请实施例的另一个应用场景示意图。第一通信装置为终端设备1,第二通信装置为终端设备2。终端设备1与终端设备2之间可以进行通信。在终端设备1与终端设备2通信的同时,终端设备1可以在第一频域资源上发送感知信号。例如,第一频域资源可以从用于终端设备1与终端设备2之间进行通信的频域资源中确定的。感知信号经过周边环境的汽车反射到终端设备2。终端设备2对感知信号进行感知,得到感知结果。上述图1E所示的应用场景可以应用于V2X系统或D2D系统。
请参阅图1F,图1F为本申请实施例的另一个应用场景示意图。在图1F中,第一通信装置为网络设备1,第二通信装置为网络设备2,第三通信装置为网络设备3。网络设备1与网络设备2之间可以进行通信。网络设备3作为控制节点,用于通知网络设备1和网络设备2。例如,网络设备3可以触发网络设备1发送感知信号,以及触发网络设备2开启感知功能。网络设备1可以在第一频域资源上发送感知信号。第一频域资源可以是从用于网络设备1与网络设备2之间进行通信的频域资源中确定的。感知信号经过周边环境的汽车反射到网络设备2,网络设备2可以对感知信号进行感知,得到感知结果。从而实现网络设备2在通信的同时实现对周边环境的感知。
下面结合具体实施例介绍本申请的技术方案。
请参阅图2A,图2A为本申请实施例通信方法的另一个实施例示意图。在图2A中,通信方法包括:
201、第一通信装置确定第一频域资源。
第一频域资源是根据感知需求参数从频域资源池中确定的。本实施例中,频域资源池包括为第一通信装置配置的可用频域资源。例如,频域资源池包括用于通信的频域资源,和/或,用于定位的频域资源。第一频域资源可以是从用于通信的频域资源和/或用于定位的频域资源中确定的。
可选的,频域资源池包括用于第一通信装置与第二通信装置之间传输信道状态信息(channel state information,CSI)参考信号的频域资源;或者,频域资源池包括用于第一通信装置与第二通信装置之间传输通信数据的频域资源。也就是说本申请的第一频域资源可以是第一通信装置的用于传输CSI的频域资源和/或用于传输通信数据的频域资源中确定的频域资源。
可选的,第一频域资源包括频点组合,或者,频段组合。
其中,频点组合包括一个或多个频点。频段组合包括一个或多个频段。
例如,频点组合包括频点0、频点2、频点4和频点6。频点0的频率为f 0,频点2的频率为f 2,频点4的频率为f 4,频点6的频率为f 6
例如,频段组合包括频率f 0至频率f 6之间的频段。
本实施例中,感知需求参数用于第一通信装置或第二通信装置通过感知信号进行感知测量。例如,感知需求参数可以表征通过感知信号进行感知测距的要求。
可选的,感知需求参数包括以下至少一种:测距不模糊距离、测距分辨率。
具体的,上述测距不模糊距离和测距分辨率表征了通过感知信号进行感知测距的要求。
本实施例中,测距分辨率指在距离上将两个相同的目标点区分开的最小距离。
其中,两个相同的目标点可以是指大小、体积、材质等都相同的两个目标点。
测距分辨率越小,要求第一通信装置能够将两个相同的目标点区分开的最小距离越小。也就是测距分辨率越小,要求的感知精确度越高。
例如,如图2B所示,终端设备在第一频域资源上发送感知信号。感知信号分别经过目标点1和目标点2反射到网络设备1。终端设备到目标点1的距离加上目标点1到网络设备1的距离之和为r1+r2。终端设备到目标点2的距离加上目标点2到网络设备1的距离之和为r3+r4。测距分辨率为Δr,如果|(r3+r4)-(r1+r2)|大于或等于Δr,则网络设备1可以将目标点1和目标点2分辨出来。如果|(r3+r4)-(r1+r2)|小于Δr,则网络设备1可能无法将目标点1和目标点2分辨出来,网络设备1会认为只有一个目标点。
需要说明的是,测距分辨率与感知信号的带宽成正比。感知信号的带宽越大,测距分辨率越高。
本实施例中,可选的,针对第一通信装置作为感知信号的发送端和接收端的情况,测距不模糊距离表示以下要求:在感知区域内的任意一点到第一通信装置的距离乘以二小于该测距不模糊距离,在感知区域边沿上的任意一点到第一通信装置的距离乘以二等于测距 不模糊距离。
例如,如图1A所示,感知区域为图1A所示的圆形区域,网络设备1为圆的圆心。测距不模糊距离为r max。圆上的任意一点到达网络设备1的距离的两倍等于测距不模糊距离r max。汽车位于圆形区域内,网络设备1到达汽车的距离为R1。对于图1A中圆形区域内的汽车,网络设备1到汽车的距离R1乘以2得到的值小于r max。对于图1A中圆上的目标点,目标点到达网络设备1的距离为R2,且目标点与网络设备1的距离R2乘以2得到的值等于r max
本实施例中,可选的,针对第一通信装置作为感知信号的发送端,第二通信装置作为感知信号的接收端的情况,测距不模糊距离表示以下要求:在感知区域内的任意一点到第一通信装置的距离和到第二通信装置的距离之和小于该测距不模糊距离,在感知区域边沿上的任意一点到第一通信装置的距离和到第二通信装置的距离之和等于测距不模糊距离。
例如,如图2B所示,感知区域为图2B所示的椭圆区域,网络设备1和终端设备为椭圆的两个焦点。测距不模糊距离为r max,椭圆上的任意一点到达网络设备1的距离和到达终端设备的距离之和等于测距不模糊距离r max。目标点1和目标点2位于椭圆区域内,目标点3位于椭圆上。终端设备在第一频域资源上发送感知信号。感知信号分别经过目标点1和目标点2反射到网络设备1。对于位于椭圆区域内的目标点1,终端设备到目标点1的距离加上目标点1到网络设备1的距离之和为r1+r2,且r1+r2小于r max。对于位于椭圆上的目标点3,终端设备到目标点3的距离加上目标点3到网络设备1的距离之和为r5+r6,且r5+r6等于r max
下面结合感知需求参数包括的具体内容介绍第一频域资源。
第一种可能的实现方式中,感知需求参数包括测距不模糊距离,第一频域资源满足最小频率基线,最小频率基线是根据所述测距不模糊距离确定的。
首先,以第一频域资源包括频点组合为例进行介绍。测距不模糊距离为r max,因此最小频率基线的长度为
Figure PCTCN2022082653-appb-000001
c为大气标准条件下光的传播速度。频点组合包括的频点构造得到的频率基线包括长度小于或等于|b min|的频率基线,则可以认为该频点组合满足该最小频率基线。
例如,频点组合包括频点0、频点2、频点4和频点6。频点组合中频点按照频率从小到大排列。频点0的频率为f 0,频点2的频率为f 2,频点4的频率为f 4,频点6的频率为f 6
测距不模糊距离为r max,因此最小频率基线的长度为
Figure PCTCN2022082653-appb-000002
频点组合中不同的两个频点组成的频率基线中,频点0与频点2组成的频率基线的长度为|f 0-f 2|,|f 0-f 2|等于|b min|,那么可以理解的是该频点组合满足最小频率基线。
从单设备独立使用频点资源的角度来看,频点组合中的频点构成的频率基线包括长度 小于或等于|b min|的频率基线,这样该频点组合也可以满足上述最小频率基线的要求,只不过可能会带来频点资源的浪费。因此,频点组合中的频点构成的频率基线中只要长度最小的频率基线的长度为|b min|即可满足上述最小频率基线的要求,同时还能够避免频点资源的浪费。
从多设备共用频点资源的角度来看,选择频点组合包括的频点可以考虑频点的复用率,从而提高资源利用率,节省频点资源。
例如,当设备1确定的频点组合包括频点0和频点1。频点0的频率为f 0,频点1的频率为f 1,|f 0-f 1|等于设备1要求的最小频率基线的长度。|f 0-f 1|小于设备2要求的最小频率基线的长度,设备2可以选择频点0和频点1,这样可以提高频点0和频点1的频点资源利用率,从而节省频点资源。
例如,测距不模糊距离r max=100m,那么根据公式
Figure PCTCN2022082653-appb-000003
可以确定要求最小频率基线的长度为3兆赫兹(MHz)。频域资源池包括3.5千兆赫兹(GHz)频段,表示为{f(a)|f(a)=3.5*10 9+a*15*10 3,0≤a≤1000},f(a)的单位为赫兹(Hz)。那么,最小的频点为3.5GHz,最大的频点为3.515GHz。其他频点以15KHz为间隔从f(a)中选择频点,得到频点组合1。然后,再从频点组合1选择频点,得到频点组合2。频点组合2具体表示为{f(m)|f(m)=3.5*10 9+m*15*10 3,m=0,200,400,600,800,1000}。f(m)的单位为赫兹(Hz)。将频点组合2作为第一频域资源。频点组合2中不同的两个频点组成的频率基线中,频点3.5GHz与频点3.503GHz组成的频率基线长度为3MHz,因此可以理解为该频点组合2满足最小频率基线。
第二种可能的实现方式中,感知需求参数包括测距分辨率,第一频域资源满足最大频率基线,最大频率基线是根据测距分辨率确定的。
首先,以第一频域资源包括频点组合为例进行介绍。测距分辨率为Δr,因此可知最大频率基线的长度为
Figure PCTCN2022082653-appb-000004
c为大气标准条件下光的传播速度。频点组合包括的频点构造得到的频率基线包括长度大于或等于|b max|的频率基线,则可以认为该频点组合满足该最大频率基线。
例如,频点组合包括频点0、频点2、频点4和频点6。频点组合中频点按照频率从小到大排列。频点0的频率为f 0,频点2的频率为f 2,频点4的频率为f 4,频点6的频率为f 6
测距分辨率为Δr,因此最大频率基线的长度为
Figure PCTCN2022082653-appb-000005
频点组合中不同的两个频点组合的频率基线中,频点0与频点6组成的频率基线的长度为|f 0-f 6|,|f 0-f 6|等于|b max|,那么可以理解的是该频点组合满足最大频率基线。
从单设备独立使用频点资源的角度来看,频点组合中的频点构成的频率基线中包括长度大于或等于|b max|的频率基线,这样该频点组合也可以满足上述最大频率基线的要求,但是可能带来频点资源的浪费。因此,频点组合中的频点构成的频率基线中只要长度最大的频率基线的长度为|b max|即可满足上述最大频率基线的要求,同时还能够避免频点资源的浪费。
从多设备共用频点资源的角度来看,选择频点组合包括的频点可以考虑频点的复用率,从而提高资源的利用率,节省频点资源。例如,当设备1确定的频点组合包括频点0、频点2、频点4和频点7。频点组合中频点按照频率从小到大排列。|f 0-f 7|等于设备1要求的最大频率基线的长度。|f 0-f 7|大于设备2要求的最大频率基线的长度。设备1确定频点组合满足设备1要求的最大频率基线。设备2可以选择频点0、频点2、频点4和频点7。这样可以提高频点0、频点2、频点4和频点7的频点资源利用率,从而节省频点资源。
例如,测距分辨为Δr=10米(m),那么根据公式
Figure PCTCN2022082653-appb-000006
可以确定要求最大频率基线的长度为30MHz。频域资源池包括3.5GHz频段,表示为{f(i)|f(i)=3.5*10 9+i*15*10 3,0≤i≤2000},f(i)的单位为Hz。那么,最小的频点为3.5GHz,最大的频点为3.53GHz。其他频点以15KHz为间隔从f(i)中选择频点,得到频点组合3。然后,再从频点组合3选择频点,得到频点组合4。频点组合4具体表示为{f(n)|f(n)=3.5*10 9+n*15*10 3,n=0,200,400,600,800,1000,1200,1400,1600,1800,2000},f(n)的单位为Hz。频点组合4中不同的两个频点组成的频率基线中,频点3.5GHz与频点3.53GHz组成的频率基线长度为30MHz,因此该频点组合4满足最大频率基线。
下面以第一频域资源包括频段组合为例进行介绍。频段组合包括一个或多个频段。测距分辨率为Δr,因此可知最大频率基线的长度为
Figure PCTCN2022082653-appb-000007
c为大气标准条件下光的传播速度。频点组合包括的频段构成的频率基线的长度包括大于或等于|b max|的频率基线,则可以认为该频点组合满足该最大频率基线。
例如,频段组合包括频率为f 0至f 3的频段,频率为f 6至f 9的频段。其中,f 0大于f 3,f 3大于f 6,f 6大于f 9。最小的频率为f 0,最大的频率为f 9,那么频段组合中包括的频段构成的频率基线中长度最大的频率基线的长度为|f 0-f 9|。|f 0-f 9|大于或等于|b max|的频率基线,则可以认为该频段组合满足该最大频率基线。
第三种可能的实现方式中,感知需求参数包括测距不模糊距离和测距分辨率,第一频域资源满足最小频率基线和最大频率基线。
其中,最小频率基线是根据所述测距不模糊距离确定的。最大频率基线是根据测距分辨率确定的。
这里以第一频域资源包括频点组合为例进行介绍。测距不模糊距离为r max,测距分辨率为Δr。因此最小频率基线的长度为
Figure PCTCN2022082653-appb-000008
最大频率基线的长度为
Figure PCTCN2022082653-appb-000009
频率组合包括的频点构造得到的频率基线中应当包括长度小于或等于|b min|的频率基线以及长度大于或等于|b max|的频率基线,则可以认为该频点组合满足最大频率基线和最小频率基线。
例如,频点组合包括频点0、频点2、频点4和频点6。频点组合中频点按照频率从小到大排列。频点0的频率为f 0,频点2的频率为f 2,频点4的频率为f 4,频点6的频率为f 6
频点组合中不同的两个频点组合的频率基线中,频点0与频点2组成的频率基线的长度为|f 0-f 2|。频点0与频点6组成的频率基线的长度为|f 0-f 6|。如果|f 0-f 2|小于或等于 |b min|,那么可以理解的是该频点组合满足最小频率基线。如果|f 0-f 6|大于或等于|b max|,那么可以理解的是该频点组合满足最大频率基线。也就是该频点组合既满足该最小频率基线,也满足该最大频率基线。
例如,测距不模糊距离r max=100m,那么根据公式
Figure PCTCN2022082653-appb-000010
可以确定要求最小频率基线的长度为3MHz。测距分辨为Δr=10m,那么根据公式
Figure PCTCN2022082653-appb-000011
可以确定要求最大频率基线的长度为30MHz。频域资源池包括3.5千兆赫兹(GHz)频段,表示为{f(i)|f(i)=3.5*10 9+i*15*10 3,0≤i≤2000},f(i)的单位为Hz。那么,最小的频点为3.5GHz,最大的频点为3.53GHz。其他频点以15KHz为间隔从f(i)中选择频点,得到频点组合5。然后,再从频点组合5选择频点,得到频点组合6。频点组合6具体表示为{f(n)|f(n)=3.5*10 9+n*15*10 3,n=0,200,400,600,800,1000,1200,1400,1600,1800,2000},f(n)的单位为Hz。频点组合6中不同的两个频点组成的频率基线中,频点3.5GHz与频点3.503GHz组成的频率基线的长度为3MHz,因此该频点组合6满足最小频率基线。频点3.5GHz与频点3.53GHz组成的频率基线的长度为30MHz,因此该频点组合6满足最大频率基线。也就是该频点组合6既满足该最小频率基线,也满足该最大频率基线。
在第三种可能的实现方式中,可选的,第一频域资源包括频点组合,频点组合为满足第一条件的频点组合。
其中,第一条件包括:通过频点组合包括的频点构造得到的频率基线中包括第一长度的频率基线。第一长度为k*最小频率基线的长度,k为属于[1,K]的正整数,K为最大频率基线的长度与最小频率基线的长度的比值,K大于1。
例如,频点组合包括的频点的频率分别为0,1,4,6。可知,该频点组合包括的频点构造得到的频率基线中,长度最小的频率基线为1,长度最大的频率基线为6。最大频率基线的长度与最小频率基线的长度的比值为6。通过该频点组合可以构造得到的频点基线包括频率分别为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6的频率基线,可以理解的是该频点组合满足频率基线覆盖完整性的要求。
由上述介绍可知,最大频率基线的长度为|b max|,最小频率基线的长度为|b min|。可知,K=|b max|/|b min|。如果长度为k|b min|的频率基线都能够通过频点组合包括的频点构造得到,那么该频点组合包括的频点构造得到的频点基线在频率上是覆盖完整的,也就是保证了频点基线覆盖的完整性。这样可以实现对周边环境的多个目标点进行感知测距。
例如,当频点组合只能构成一个频率基线d 1时,获得如下关系y 1=f(d 11)。其中,d 1表示该频率基线,τ 1为时延,y 1为频率基线d 1对应的测量结果,f为从频率基线d 1和时延τ 1得到y 1的映射关系。其中,时延τ 1是未知的。即一个方程对应一个未知数。时延τ 1可以理解为构成频率基线d 1的两个频点上的感知信号到达目标点1再反射经过的时延。
但是,当同时存在时延τ 1和时延τ 2,那么获得如下关系y 1=f 1(d 112),时延τ 1和时延τ 2是未知的,此时一个方程对应两个未知数,方程无法求解。其中,时延τ 2可以理解为构成频率基线d 2的两个频点上的感知信号到达目标点2再反射经过的时延。但是,如果该频点组合还可以构成另外一个频率基线d 2,那么可以得到另外一个方程y 2=f 2(d 212),这样频率基线d 1和频率基线d 2分别对应两个方程,可以求解出两个未知数时延τ 1和时延τ 2。然后,结合时延τ 1和时延τ 2可以确定目标点1和目标点2的位置信息。因此,频点组合包 括的频点构造得到的频点基线在频率上覆盖完整的话,可以实现对周边环境的多个目标点的感知和测距。
在第三种可能的实现方式中,可选的,第一频域资源包括频段组合,频段组合为满足第二条件的频段组合。
其中,第二条件包括:通过频段组合包括的频段构造得到的频率基线中包括第二长度的频率基线。第二长度为k*最小频率基线,k为[1,K]的正整数,K为最大频率基线的长度,K大于1。
例如,频段组合包括频率为f 0至f 3的频段,以及频率为f 6至f 9的频段。通过从频段组合中选择频点构造得到的频率基线能够构造得到第二长度的频率基线,则认为通过频段组合中选择频点构造得到的频率基线在频率上是覆盖完整的。
本实施例中,可选的,第一频域资源包括频点组合。频点组合包括子载波组合。子载波组合为满足最小频率基线、最大频率基线和第一条件的子载波组合中子载波数量最少的子载波组合。
具体的,满足上述最小频率基线、最大频率基线和第一条件的子载波组合可以有多个,上述子载波组合可以是多个子载波组合中子载波数量最少的子载波组合。这样在满足最大频率基线和最小频率基线,保证频率基线覆盖完整的条件下,选择子载波数量最少的子载波组合,从而有效节省子载波在频域上的开销。避免占用过多的通信资源,影响通信性能。
关于上述步骤201中第一通信装置确定第一频域资源的具体实现方式请参阅后文图2C和图2D的相关介绍,这里不再赘述。
202、第一通信装置在第一频域资源上发送感知信号。
例如,第一频域资源包括频点0、频点2、频点4和频点6。频点0的频率为f 0,频点2的频率为f 2,频点4的频率为f 4,频点6的频率为f 6。那么第一通信装置分别在频率分别为f 0、f 2、f 4和f 6的频点上发送感知信号。
例如,第一频域资源包括频率f 0至频率f 6之间的频段。第一通信装置为雷达设备,雷达设备在频率f 0至频率f 6之间的频段上发送连续调频信号(frequency modulated continuous wave,FMCW)。
本申请实施例中,上述图2A所示的实施例中,第二通信装置对感知信号进行感知测量之前,第二通信装置开启感知功能。
可选的,第二通信装置可以周期性开启感知功能,或者一直开启感知功能,或者由第一通信装置或第三通信装置可以触发第二通信装置开启感知功能。可选的,上述图2A所示的实施例还包括步骤202a。步骤202a可以在步骤202之前执行。
202a、第一通信装置向第二通信装置发送触发指令。
触发指令用于触发第二通信装置开启感知功能。
具体的,第一通信装置在发送感知信号之前,第一通信装置可以通过触发指令触发第二通信装置开启感知功能,以便于第二通信装置接收感知信号并对感知信号进行感知测量。
可选的,触发指令RRC指令或DCI指令。
对于由第三通信装置触发第二通信装置开启感知功能的方式与上述步骤202a类似,具体此处不再赘述。
本实施例中,若第一通信装置作为感知信号的发送端和接收端,可选的,上述图2A所 示的实施例还包括步骤203和步骤204。步骤203和步骤204可以在步骤202之后执行。
203、第一通信装置在第一频域资源上接收反射的感知信号。
例如,如图1A所示,网络设备1分别在频率分别为f 0、f 2、f 4和f 6的频点上发送感知信号。感知信号经过周边环境中的汽车(即感知目标)反射到网络设备1。网络设备1在频率分别为f 0、f 2、f 4和f 6的频点上接收经过感知目标反射的感知信号。
例如,第一通信装置为雷达设备。雷达设备在频率f 0至频率f 6之间的频段上发送连续调频信号。感知信号经过周边环境的感知目标反射回到雷达设备。雷达设备在频率f 0至频率f 6之间的频段上接收连续调频信号。
204、第一通信装置对感知信号进行感知测量,得到感知结果。
本实施例中,可选的,感知结果包括第一通信装置与感知目标之间的距离、感知目标的运动数量、位置等。
例如,如图1A所示,网络设备1在频点分别为3.5GHz和3.501GHz的两个子载波上发射感知信号,在基线1处该两个子载波上的感知信号的初始相位都为0。汽车为感知目标。感知信号在频点分别为3.5GHz和3.501GHz的两个子载波上造成的相位变化分别为700π和700.2π。并且两个子载波的相位变化的差值Δφ 21=0.2π,那么网络设备1可以确定
Figure PCTCN2022082653-appb-000012
f 1=3.501GHz,f 2=3.5GHz。那么网络设备1与汽车的距离R1=cτ/2=15m,c为大气标准条件下光的传播速度。
汽车相对网络设备1运动的速率可以通过网络设备1与汽车的距离r相对时间的变化确定。汽车的位置可以通过多个网络设备联合对汽车进行感知测距获得。例如,多个网络设备中每个网络设备都能获得该每个网络设备与汽车的距离,那么联合四个网络设备的测距结果可以获得汽车在三维空间的坐标,即汽车的位置。
本实施例中,若第一通信装置作为感知信号的发送端,第二通信装置作为感知信号的接收端,可选的,上述图2A所示的实施例还包括步骤205至步骤207。步骤205至步骤207可以在步骤202之后执行。
205、第二通信装置确定第一频域资源。
上述步骤205中,第二通信装置可以根据感知需求参数自行确定第一频域资源;或者,第二通信装置接收来自第一通信装置的第一信息,并根据第一信息确定第一频域资源。具体步骤205与前述步骤201类似,具体可以参阅前述步骤201的相关介绍,这里不再赘述。
206、第二通信装置在第一频域资源上接收感知信号。
例如,第一频域资源包括频点0、频点2、频点4和频点6。频点0的频率为f 0,频点2的频率为f 2,频点4的频率为f 4,频点6的频率为f 6。那么第二通信装置分别在频率分别为f 0、f 2、f 4和f 6的频点上接收感知信号。
207、第二通信装置对感知信号进行感知测量,得到感知结果。
例如,如图1B所示,网络设备1在频率分别为3.5GHz、3.501GHz和3.503GHz的三个子载波上发射信号,在网络设备1处该三个子载波的感知信号的初始相位都为0。汽车为感知目标。网络设备1到汽车之间的距离与汽车到网络设备1之间的距离之和为R1+R2。 那么感知信号经过R2传播后到达汽车再返回经过R3传播到达终端设备。
其中,频率为3.5GHz的子载波称为子载波1,f 1=3.5GHz。频率为3.501GHz的子载波称为子载波2,f 2=3.5G01Hz。频率为3.503GHz的子载波称为子载波3,f 3=3.5G03Hz。
感知信号在子载波1、子载波2和子载波3上造成的相位变化分别为700.01π、700.19π和700.61π。并且子载波1和子载波2的相位变化的差值Δφ 21=0.18π。那么网络设备1可以确定
Figure PCTCN2022082653-appb-000013
那么计算得到网络设备1到汽车再到终端设备的距离R1+R2=cτ 1=27m。
感知信号在子载波2和子载波3的相位变化的差值Δφ 32=0.42π,那么网络设备1可以确定
Figure PCTCN2022082653-appb-000014
那么计算得到网络设备1到汽车再到终端设备的距离R1+R2=cτ 2=31.5m。
感知信号在子载波1和子载波3的相位变化的差值为Δφ 31=0.6π,那么网络设备1可以确定
Figure PCTCN2022082653-appb-000015
那么计算得到网络设备1到汽车再到终端设备的距离R1+R2=cτ 3=30m。其中,c为大气标准条件下光的传播速度。
由上述计算结果可知,通过不同子载波计算出来的结果不同,这主要是因为在实际测量过程中会存在噪声,导致测量存在偏差。因此,网络设备1可以将不同子载波测量的结果进行平均,得到最终结果,从而降低测量噪声的影响。那么网络设备1到达汽车之间的距离加上汽车到达终端设备之间的距离之和为(27m+31.5m+30m)/3=29.5m。
需要说明的是,网络设备1或终端设备可以结合具体应用场景确定网络设备1到汽车再到终端设备的距离。例如,在安全性要求较高的汽车定位场景下,终端设备为汽车2,那么网络设备1或汽车2可以以网络设备1到汽车再到汽车2的距离为27m作为最终测量得到的结果。这样可以防止由于测量偏差导致汽车1和汽车2之间的行驶安全问题。
网络设备1与汽车之间的距离、汽车与终端设备之间的距离、以及汽车的位置可以通过多个网络设备与该终端设备联合测距获得。例如,终端设备可以获得终端设备到汽车以及汽车分别到多个网络设备之间的距离。那么联合终端设备针对四个网络设备的测距结果可以获得汽车在三维空间的坐标,即汽车的位置。汽车的速度可以通过汽车的位置相对时间的变化来获得。
本申请实施例中,第一通信装置确定第一频域资源,第一频域资源是根据感知需求参数从频域资源池中确定的。然后,第一通信装置在第一频域资源上发送感知信号。由此可知,本申请的技术方案中,第一频域资源是根据感知需求参数从频域资源池中选择的。第一通信装置可以在第一频域资源上发送感知信号。这样第一通信装置可以在进行通信的同时通过发送感知信号实现对周边环境的感知。进一步的,第一频域资源是结合感知需求参数确定的,这样可以符合感知的要求,提高感知性能。
本申请实施例中,第一通信装置确定第一频域资源的方式有多种,下面示出两种可能的实现方式。具体结合图2C和图2D分别进行介绍。
下面结合图2C所示的实施例介绍第一种实现方式。
请参阅图2C,上述步骤201具体包括步骤201a至步骤201b。
步骤201a、第一通信装置获取感知需求参数。
具体的,第一通信装置获取感知需求参数的方式有多种。下面示出两种可能的实现方式。
实现方式1、第一通信装置根据感知需求确定感知需求参数。
一种可能的实现方式中,感知需求包括通过感知信号进行感知测距的要求。
例如,如图1B所示,网络设备1根据感知需求自行确定测距不模糊距离和测距分辨率等。
实现方式2、第一通信装置接收来自第二通信装置或第三通信装置的感知需求参数。
例如,如图1B所示,第一通信装置为网络设备1,第二通信装置为终端设备。终端设备可以向网络设备1发送感知请求以及相应的感知需求参数,以实现终端设备通过感知信号对周边环境进行感知。相应的,网络设备1接收来自终端设备的感知请求和感知需求参数。其中,感知请求用于请求网络设备1发送感知信号。
例如,如图1F所示,第一通信装置为网络设备1,第二通信装置为网络设备2,第三通信装置为网络设备3。网络设备3可以向网络设备1发送感知需求参数,向网络设备2发送触发指令。触发指令用于触发网络设备2开启感知功能。
步骤201b、第一通信装置根据感知需求参数确定第一频域资源。
步骤201b具体介绍请参阅后文图3至图5所示的实施例中的详细介绍,这里不再详细说明。
基于上述步骤201a至步骤201b的实现方式,可选的,上述图2C所示的实施例还包括步骤201c。步骤201c在步骤201b之后执行。
请参阅图2C,步骤201c具体为:第一通信装置向第二通信装置发送第一信息。相应的,第二通信装置接收来自第一通信装置的第一信息。
其中,第一信息用于指示第一频域资源的频域位置。
具体的,第一通信装置通过第一信息向第二通信装置指示第一频域资源的频域位置。
本实施例中,第一信息的指示方式有多种,下面示出两种可能的指示方式。
指示方式1、第一信息包括第一频域资源的频域位置。
在该指示方式中,第一信息具体包括第一频域资源的具体位置信息。例如,第一频域资源包括频点1、频点2和频点3。第一信息包括频点1、频点2和频点3分别对应的频率。
指示方式2、第一信息包括感知质量索引(sensing quality index,SQI)。
其中,感知质量索引用于指示第一频域资源的频域位置。
在该指示方式中,第一通信装置和第二通信装置中预先配置有表格。该表格用于指示感知质量索引与频域资源之间的映射关系。在该表格中,感知质量索引有对应的频域资源。
例如,如表1所示,下面以第一频域资源包括频点组合的方式为例进行介绍。
表1
感知质量索引 频点组合包括的频点分别对应的频率
0 f 0、f 2、f 4、f 6
1 f 0、f 1、f 3、f 4
2 f 0、f 2、f 4、f 6、f 12
3 f 0、f 1、f 4
其中,f x指频点x的频率。x为属于[0,M]之间的正整数,M为正整数。M的取值为频域资源池中包括的频点总数。
本实施例中,可选的,第一信息承载于RRC信令或DCI信令。
本实施例中,可选的,第二通信装置接收到来自第一通信装置的第一信息之后,第二通信装置向第一通信装置反馈第一响应消息,以通知第一通信装置该第二通信装置成功接收到第一信息。可选的,上述图2C所示的实施例还包括步骤201d,具体请参阅图2C所示。步骤201d可以在步骤201c之后执行。
步骤201d、第二通信装置向第一通信装置发送第一响应消息。相应的,第一通信装置接收来自第二通信装置的第一响应消息。
第一响应消息用于通知第一通信装置该第二通信装置成功接收到第一信息。
下面结合图2D介绍第二种实现方式。
图2D为本申请实施例通信方法的另一个实施例示意图。若第一通信装置作为感知信号的发送端,第二通信装置作为感知信号的接收端。请参阅图2D,可选的,上述步骤201具体包括步骤201d和步骤201e。
步骤201d、第二通信装置向第一通信装置发送第二信息,相应的,第一通信装置接收来自第二通信装置的第二信息。
第二信息用于指示第一频域资源的频域位置。
在该实现方式中,由第二通信装置确定第一频域资源,再通过第二信息通知第一通信装置该第一频域资源的频域位置。其中,第二通信装置确定第一频域资源的方式与前述步骤201b中第一通信装置确定第一频域资源的过程类似,具体可以参阅前述图2C中的步骤201b中第一通信装置确定第一频域资源的相关介绍,这里不再赘述。
第二信息的指示方式与上述第一信息的指示方式类似,具体可以参阅上述第一信息的指示方式的相关介绍,这里不再赘述。
本实施例中,可选的,第二信息承载于RRC信令或DCI信令。
步骤201e:第一通信装置根据第二信息确定第一频域资源。
可选的,第一通信装置在接收到第二信息之后,上述图2D所示的实施例还包括步骤201f。步骤201f在步骤201e之后执行。
201f:第一通信装置向第二通信装置发送第二响应消息。相应的,第二通信装置接收 来自第一通信装置的第二响应消息。
其中,第二响应消息用于通知第二通信装置该第一通信装置成功接收到第二信息。
本申请实施例中,上述步骤201b中第一通信装置根据感知需求参数确定第一频域资源的方式有多种,下面示出两种可能的实现方式。
实现方式1、第一通信装置根据感知需求参数和第一映射关系确定第一频域资源。
其中,第一映射关系包括感知需求参数和频域资源之间的映射关系。
可选的,第一映射关系可以通过表格表示。例如,如表2所示,表2中以第一频域资源包括频点组合、感知需求参数包括测距不模糊距离和测距分辨率为例进行说明。
表2
Figure PCTCN2022082653-appb-000016
例如,感知需求参数中,测距不模糊距离为90,测距分辨率为10,那么第一通信装置根据上述表2可知确定频点组合为{f(j)|f(j)=3.5*10 9+j*15*10 3,j=0,200,800,1400,1800}。
需要说明的是,当感知需求参数中的测距不模糊距离和测距分辨率不与表2中的任一组测距不模糊距离和测距分辨率匹配时,第一通信装置可以选择与感知需求参数中的测距不模糊距离和测距分辨率近似的一组测距不模糊距离和测距分辨率对应的频点组合作为第一频域资源。
例如,感知需求参数中,测距不模糊距离为89,测距分辨率为11,那么第一通信装置可以选择表2中的测距不模糊距离为90、测距分辨率为10对应的频点组合作为第一频域资源。
由上述表2可知,在测距分辨率要求相同的情况下,测距不模糊距离越大,频点组合包括的频点数量越多,以满足测距不模糊距离的要求。
例如,如表2所示,测距不模糊距离为90,测距分辨率为10,对应频点组合为{f(j)|f(j)=3.5*10 9+j*15*10 3,j=0,200,800,1400,1800}。而测距不模糊距离为130,测距分辨率为10,对应频点组合为{f(j)|f(j)=3.5*10 9+j*15*10 3,j=0,200,400,1200,2000,2600}。频点组合 {f(j)|f(j)=3.5*10 9+j*15*10 3,j=0,200,400,1200,2000,2600}包括的频点数量明显比频点组合{f(j)|f(j)=3.5*10 9+j*15*10 3,j=0,200,800,1400,1800}包括的频点数量多。
由上述表2可知,在感知需求参数中的测距不模糊距离的大小相同的情况下,测距分辨率越小,频点组合包括的频点数量越多,以满足测距分辨率的要求。
例如,如表2所示,测距不模糊距离为90,测距分辨率为10,对应频点组合为{f(j)|f(j)=3.5*10 9+j*15*10 3,j=0,200,800,1400,1800}。
测距不模糊距离为90,测距分辨率为5,对应频点组合为{f(j)|f(j)=3.5*10 9+j*15*10 3,j=0,100,200,600,1000,1400,1700,1800}。由此可知,频点组合{f(j)|f(j)=3.5*10 9+j*15*10 3,j=0,100,200,600,1000,1400,1700,1800}包括的频点数量多明显比频点组合{f(j)|f(j)=3.5*10 9+j*15*10 3,j=0,200,800,1400,1800}包括的频点数量多。
需要说明的是,上述表2可以是预先配置在第一通信装置上的,也可以是其他通信装置发送给第一通信装置,或者是第一通信装置按照实现方式2的方式通过多组感知需求参数确定每组感知需求参数对应的频点组合,再生成并保存该表2。
上述实现方式1中,第一通信装置通过查表的方式确定第一频域资源,这样第一通信装置确定第一频域资源所耗费的时间较短,并且可以有效节省计算资源。
实现方式2、第一通信装置根据感知需求参数包括的内容从频域资源池中确定第一频域资源。
一、下面结合图3介绍,感知需求参数包括测距不模糊距离的情况,第一通信装置根据感知需求参数从频域资源池中确定第一频域资源的方法。请参阅图3,上述步骤201b具体包括步骤3001至步骤3002。
3001、第一通信装置根据测距不模糊距离确定最小频率基线。
具体的,测距不模糊距离为r max,那么第一通信装置可以确定最小频率基线的长度为
Figure PCTCN2022082653-appb-000017
下面结合步骤3001的具体原理。假设第一通信装置采用两个子载波进行感知测距。该两个子载波的频率分别为f 1和f 2。第一通信装置采用在该两个子载波上分别发送感知信号,感知信号经过目标点并反射到第二通信装置。第二通信装置接收该反射的感知信号。感知信号在经过整条路径的时延为τ。假设在第一通信装置处该两个子载波的感知信号的初始相位都为0。那么经过时延τ之后,两个子载波上的相位变化分别为2πf 1τ和2πf 2τ。
两个子载波之间的相位变化的差值可以表示为Δφ 21=2π(f 2-f 1)τ。
第二通信装置可以测量该两个子载波的相位变化,并求得两个子载波之间的相位变化的差值Δφ 21。那么τ=Δφ 21/(2π(f 2-f 1)),则第一通信装置到目标点之间的距离与目标点到第二通信装置之间的距离之和r=cτ=c*Δφ 21/(2π(f 2-f 1))。其中,c为大气标准条件下光的传播速度。
由公式τ=Δφ 21/(2π(f 2-f 1)可知,频率基线越小,则意味着|f 2-f 1|越小,那么Δφ 21=2π(f 2-f 1)τ中,随着τ的变化越不容易超过2π(因为Δφ 21超过2π会出现相位模糊, 从而导致测距模糊)。因此,2π(f 2-f 1)τ≤2π,那么要求
Figure PCTCN2022082653-appb-000018
所以|f 2-f 1|越小,τ越大,不模糊距离越大。因此,上述步骤3001第一通信装置可以结合测距不模糊距离确定频点组合的最小频率基线。
需要说明的是,在第一通信装置处该两个子载波的感知信号的初始相位也可以不为0,上述仅仅是一种示例,并不属于对本申请的技术方案的限定。
Δφ 21超过2π会出现相位模糊,从而导致测距模糊。例如,假设Δφ 21的真实值为2kπ+π/3,测量得到的实际值为π/3。根据测量得到的实际值确定时延为1/(6(f 2-f 1)),而真实的时延为(k+1/6)/(f 2-f 1)。因此,子载波之间的相位变化差值Δφ 21的最大值为2π,而对应的时延为τ max=1/(f 2-f 1),对应的R max=cτ max=c(f 2-f 1)。此时,R max称为最大测距不模糊距离。也就是若第一通信装置与感知目标的距离和第二通信装置与感知目标的距离之和小于R max,则不会出现测距模糊。若第一通信装置与感知目标的距离和第二通信装置与感知目标的距离之和大于或等于R max,则会出现测距模糊。
3002、第一通信装置根据最小频率基线从频域资源池中确定第一频域资源。
这里以第一频域资源包括频点组合为例进行说明。具体的,第一通信装置从频域资源池包括的频点中选择频点,得到频点组合。该频点组合满足最小频率基线。也就是说频点组合包括的频点构造得到的频率基线包括长度小于或等于|b min|的频率基线,则可以认为该频点组合满足最小频率基线。
上述步骤3002中,可选的,第一通信装置可以通过以下方式确定第一频域资源。
一种可能的实现中,第一通信装置通过穷举法从频域资源池中确定多个满足满足最小频率基线的频点组合;然后,第一通信装置从多个频点组合中选择一个频点组合。
另一种可能的实现中,第一通信装置通过模拟退火算法(或蚁群算法)和频域资源池包括的频点确定满足最小频率基线的频点组合。
例如,频点组合包括频点0、频点2、频点4和频点6。频点组合中频点按照频率从小到大排列。频点0的频率为f 0,频点2的频率为f 2,频点4的频率为f 4,频点6的频率为f 6。测距不模糊距离为r max,因此最小频率基线的长度为
Figure PCTCN2022082653-appb-000019
频点组合中不同的两个频点组成的频率基线中,频点0与频点2组成的频率基线的长度|f 0-f 2|最小。如果|f 0-f 2|小于或等于|b min|,那么可以理解的是该频点组合满足最小频率基线。
需要说明的是,第二通信装置也可以按照上述图3所示的实施例确定第一频域资源。
二、下面结合图4介绍,感知需求参数包括测距分辨率的情况,第一通信装置根据感知需求参数从频域资源池中确定第一频域资源的方法。请参阅图4,上述步骤201b具体包括步骤4001至步骤4002。
4001、第一通信装置根据测距分辨率确定最大频率基线。
具体的,测距分辨率为Δr,那么第一通信装置可以确定最大频率基线的长度为
Figure PCTCN2022082653-appb-000020
下面介绍步骤4001的具体原理。假设第一通信装置采用两个子载波进行感知测距。该 两个子载波的频率分别为f 1和f 2。第一通信装置采用在该两个子载波上分别发送感知信号,感知信号经过目标点并反射到第二通信装置。第二通信装置接收该反射的感知信号。感知信号在经过整条路径的时延为τ。假设在第一通信装置处该两个子载波的感知信号的初始相位都为0。那么经过时延τ之后,两个子载波上的相位变化分别为2πf 1τ和2πf 2τ。
两个子载波之间的相位变化的差值可以表示为Δφ 21=2π(f 2-f 1)τ。
第二通信装置可以测量该两个子载波的相位变化,并求得两个子载波之间的相位变化的差值Δφ 21。那么τ=Δφ 21/(2π(f 2-f 1)),则第一通信装置到目标点之间的距离与目标点到第二通信装置之间的距离之和r=cτ=c*Δφ 21/(2π(f 2-f 1))。其中,c为大气标准条件下光的传播速度。
由公式τ=Δφ 21/(2π(f 2-f 1))可知,频率基线越大,则意味着|f 2-f 1|越大。对于同样的时延τ,相位变化的差值越大,即Δφ 21=2π(f 2-f 1)τ变化越大,频率基线越大对于时延τ的变化更敏感,更易于区分不同的时延。因此,上述步骤4001第一通信装置可以结合测距分辨率确定频点组合的最大频率基线。
需要说明的是,在第一通信装置处该两个子载波的感知信号的初始相位可以不为0,上述仅仅是一种示例,并不属于对本申请的技术方案的限定。
4002、第一通信装置根据最大频率基线从频域资源池中确定第一频域资源。
这里以第一频域资源包括频点组合为例进行介绍。具体的,第一通信装置从频域资源池包括的频点中选择频点,得到频点组合。该频点组合满足最大频率基线,也就是说频点组合包括的频点构造得到的频率基线中包括长度大于或等于|b max|的频率基线,则可以认为该频点组合满足最大频率基线。
步骤4002的具体确定方式与前述图3所示的实施例中的步骤3002中的确定方式类似,具体请参阅前述图3所示的实施例中的步骤3002的相关介绍,这里不再赘述。
例如,频点组合包括频点0、频点2、频点4和频点6。频点组合中频点按照频率从小到大排列。频点0的频率为f 0,频点2的频率为f 2,频点4的频率为f 4,频点6的频率为f 6。测距分辨率为Δr,因此最大频率基线的长度为
Figure PCTCN2022082653-appb-000021
频点组合中不同的两个频点组合的频率基线中,频点0与频点6组成的频率基线的长度为|f 0-f 6|,|f 0-f 6|大于或等于|b max|,那么可以理解的是该频点组合满足最大频率基线。
需要说明的是,第二通信装置也可以按照上述图4所示的实施例确定第一频域资源。
三、下面结合图5介绍,感知需求参数包括测距不模糊距离和测距分辨率的情况下,第一通信装置根据感知需求参数从频域资源池中确定第一频域资源的方法。请参阅图5,上述步骤201b具体包括步骤5001至步骤5003。
5001、第一通信装置根据测距不模糊距离确定最小频率基线。
5002、第一通信装置根据测距分辨率确定最大频率基线。
步骤5001与前述图3所示的实施例中步骤3001类似,具体请参阅前述步骤5001的相关介绍,这里不再赘述。步骤5002与前述图3所示的实施例中步骤4001类似,具体请参阅前述步骤4001的相关介绍,这里不再赘述。
步骤5001与步骤5002之间没有固定的执行顺序,可以先执行步骤5001,再执行步骤 5002;或者,先执行步骤5002,再执行步骤5001;或者,依据情况同时执行步骤5001和步骤5002,具体本申请不做限定。
5003、第一通信装置根据最小频率基线和最大频率基线从频域资源池中确定第一频域资源。
这里以第一频域资源包括频点组合为例进行介绍。具体的,第一通信装置从频域资源池包括的频点选择频点,得到频点组合。该频点组合满足最小频率基线和最大频率基线。关于该频点组合满足最小频率基线和最大频率基线的相关介绍请参阅上述图3和图4所示的实施例的相关介绍。这里不再赘述。
可选的,频点组合包括子载波组合。子载波组合为满足最大基线长度、最小基线长度和第一条件的子载波组合中包括子载波数量最少的子载波组合。
具体的,第一通信装置以最大频率基线长度、最小频率基线长度和第一条件为约束条件,以子载波数量最少为优化目标实时搜索子载波组合,实现该子载波组合的确定。其中,子载波组合的搜索算法有多种,例如,穷举法、模拟退火算法、蚁群算法。
需要说明的是,第二通信装置也可以按照上述图5所示的实施例确定第一频域资源。
下面介绍本申请实施例频率基线存在冗余的情况。
例如,如图6A所示,子载波组合包括的子载波的频率分别为f 0、f 1、f 2、f 3、f 4、f 5、f 6。子载波组合包括的子载波按照频率从小到大排序。相邻的子载波之间的频率间隔是相同的,也就是该子载波组合包括的子载波在频域上是均匀分布的。由f 1和f 2可以构成频率基线b 21=f 2-f 1,由f 2和f 3可以构成频率基线b 32=f 3-f 2。由于子载波是均匀分布的,因此,f 2-f 1=f 3-f 2,即频率基线b 21和频率基线b 32是相同的频率基线,那么称频率基线存在冗余。
从物理意义上来说,利用频率分别为f 1和f 2的子载波进行相位差测量,和利用频率分别为f 2和f 3的子载波进行相位差测量,得到的结果是相同的。对于存在冗余的频率基线,无法通过多个子载波的相位差获取周边环境的更多信息。因此频率基线冗余量越大,会浪费越多的子载波资源。
本申请实施例中,满足上述最小频率基线、最大频率基线和第一条件的子载波组合有多种。子载波组合包括的子载波在频域上可以均匀分布或非均匀分布。
下面通过图6A和图6B介绍子载波组合包括的子载波均匀分布的情况。
例如,如图6A所示,子载波组合包括的子载波的频率分别为f 0、f 1、f 2、f 3、f 4、f 5、f 6。子载波组合包括的子载波按照频率从小到大排序。相邻的子载波之间的频率间隔是相同的,子载波组合包括的子载波在频域上是均匀分布的。
例如,f 0、f 1、f 2、f 3、f 4、f 5、f 6分别为0,1,2,3,4,5,6。第一通信装置利用该子载波组合包括的子载波进行感知测距。通过该子载波组合包括的子载波构成的频率基线中最小频率基线的长度|b min|为1,最大频率基线|b max|为6。图6B示出了通过该子载波组合构造的频率基线的覆盖情况和频率基线的冗余情况。如图6B可知,通过该子载波组合可以构造得到长度为k|b min|频率基线,k属于[-6,–5,-4,-3,-2,-1,0,1,2,3,4,5,6]。因此频率基线覆盖是完整的。但是有些频率基线存在较大的冗余。例如,频率基线1的冗余数量为6,即存在6个相同的频率基线。
需要说明的是,上述图6B示出的频率基线0仅仅是通过频点组合包括的频点构造得到的频率基线。而在实际应用中,第一通信装置在子载波组合中的每个子载波上发送一次该感知信号。
感知信号的接收端从冗余的频率基线获取的信息是相同的,这样导致子载波资源浪费,且无法获取更多的信息。但是冗余基线之间测量噪声是相互独立的,对冗余基线进行冗余平均可以提高测量信噪比。因此,实际应用中,第一通信装置和/或第二通信装置可以根据感知测量过程中对信噪比的要求选择相应的子载波组合。当信噪比的要求较大时,第一通信装置和/或第二通信装置选择的子载波组合构造的频率基线中冗余基线可以较多,以提高测量信噪比。当信噪比的要求较大时,第一通信装置和/或第二通信装置选择的子载波组合构造的频率基线中冗余基线可以较少,从而减少资源浪费。
下面结合图7A和图7B介绍子载波组合包括的子载波非均匀分布的情况。例如,如图7A所示,子载波组合包括的子载波的频率分别为f 0、f 1、f 4、f 6。子载波组合包括的子载波按照频率从小到大排序。子载波组合包括的子载波在频域上是非均匀分布的。
例如,f 0、f 1、f 4、f 6分别为0,1,4,6。第一通信装置利用该子载波组合包括的子载波进行感知测距。通过该子载波组合包括的子载波构成的频率基线中最小频率基线的长度|b min|为1,最大频率基线|b max|为6。图7B示出了通过该子载波组合可以确定频率基线的覆盖情况和频率基线的冗余情况。如图7B可知,通过该子载波组合可以构造得到长度为k|b min|频率基线,k属于[-6,–5,-4,-3,-2,-1,0,1,2,3,4,5,6]。因此频率基线覆盖是完整的。
由图7B可知,只有频率基线0上存在冗余,其他频率基线上都不存在冗余。因此可知,非均匀分布的子载波组合同样可以获得完整的频率基线覆盖,但是减少了冗余频率基线的数量。因此,非均匀分布的子载波组合的方案可以有效减少冗余频率基线的数量,从而减少子载波数量,降低用于感知的子载波资源开销。
需要说明的是,上述图7B示出的频率基线0仅仅是通过频点组合包括的频点构造得到的频率基线。而在实际应用中,第一通信装置在子载波组合中的每个子载波上发送一次该感知信号。
因此,上述图3、图4和图5所示的实施例中,第一通信装置可以选择非均匀分布的子载波组合作为第一频域资源,以减少子载波资源的浪费。
上述图2A所示的实施例中步骤201中,第一频域资源包括频点组合。频点组合包括子载波组合。子载波组合为满足最小频率基线、最大频率基线和第一条件的子载波组合中子载波数量最少的子载波组合。那么由上述图7A和图7B的相关介绍可知,该子载波组合是非均匀分布的子载波组合,这样实现该子载波组合是满足最小频率基线、最大频率基线和第一条件的子载波组合并且包括的子载波数量最少。
下面对本申请实施例提供的第一通信装置进行描述。请参阅图8,图8为本申请实施例第一通信装置的一个结构示意图。该第一通信装置可以用于执行图2A、图2C、图2D、图3、图4和图5所示的实施例中第一通信装置执行的步骤,可以参考上述方法实施例中的相关描述。
第一通信装置包括处理模块801和收发模块802。
处理模块801,用于确定第一频域资源,第一频域资源是根据感知需求参数从频域资源池中确定的;
收发模块802,用于在第一频域资源上发送感知信号。
一种可能的实现方式中,感知需求参数包括以下至少一种:测距不模糊距离、测距分辨率。
另一种可能的实现方式中,收发模块802还用于:
获取感知需求参数;
处理模块801具体用于:
根据感知需求参数从频域资源池中确定第一频域资源。
另一种可能的实现方式中,感知需求参数包括测距不模糊距离,第一频域资源满足最小频率基线,最小频率基线是所述测距不模糊距离确定的;或者,
感知需求参数包括测距分辨率,第一频域资源满足最大频率基线,最大频率基线是根据测距分辨率确定的;或者,
感知需求参数包括测距不模糊距离和测距分辨率,第一频域资源满足最小频率基线和最大频率基线。
另一种可能的实现方式中,第一频域资源包括频点组合,频点组合为满足第一条件的频点组合;第一条件包括:通过频点组合包括的频点构造得到的频率基线中包括第一长度的频率基线;第一长度为k*最小频率基线的长度,k为属于[1,K]的正整数,K为最大频率基线的长度与最小频率基线的长度的比值,K大于或等于1。
另一种可能的实现方式中,频点组合包括子载波组合,子载波组合为满足最小频率基线、最大频率基线和第一条件的子载波组合中包括的子载波数量最少的子载波组合。
另一种可能的实现方式中,收发模块802还用于:
向第二通信装置发送第一信息,第一信息用于指示第一频域资源的频域位置。
另一种可能的实现方式中,第一信息包括第一频域资源的频域位置;或者,第一信息包括感知质量索引,感知质量索引用于指示第一频域资源的频域位置。
另一种可能的实现方式中,第一信息承载于RRC信令或DCI信令。
另一种可能的实现方式中,收发模块802还用于:
向第二通信装置发送触发信令,触发信令用于触发第二通信装置开启感知功能。
另一种可能的实现方式中,触发信令的类型包括RRC信令或DCI信令。
另一种可能的实现方式中,收发模块802具体用于:
接收来自第三通信装置的感知需求参数。
另一种可能的实现方式中,频域资源池包括用于第一通信装置与第二通信装置之间传输信道状态信息参考信号的频域资源;或者,
频域资源池包括用于第一通信装置与第二通信装置之间传输通信数据的频域资源。
本申请实施例中,处理模块801用于确定第一频域资源,第一频域资源是根据感知需求参数从频域资源池中确定的。收发模块802用于在第一频域资源上发送感知信号。由此可知,第一频域资源是根据感知需求参数从频域资源池中选择的。收发模块802可以在第一频域资 源上发送感知信号。这样第一通信装置可以在进行通信的同时通过发送感知信号实现对周边环境的感知。进一步的,第一频域资源是结合感知需求参数确定的,这样可以符合感知的要求,提高感知性能。
下面对本申请实施例提供的第二通信装置进行描述。请参阅图9,图9为本申请实施例第二通信装置的一个结构示意图。该第二通信装置可以用于执行图2A、图2C和图2D所示的实施例中第二通信装置执行的步骤,可以参考上述方法实施例中的相关描述。
第二通信装置包括处理模块901和收发模块902。
处理模块901,用于确定第一频域资源,第一频域资源是根据感知需求参数从频域资源池中确定的。
收发模块902,用于在第一频域资源上接收来自第一通信装置的感知信号;
处理模块901,还用于对感知信号进行感知测量,得到感知结果。
一种可能的实现方式中,感知需求参数包括以下至少一种:测距不模糊距离、测距分辨率。
另一种可能的实现方式中,收发模块902还用于:
接收来自第一通信装置的第一信息,第一信息用于指示第一频域资源的频域位置。
另一种可能的实现方式中,第一信息包括第一频域资源的频域位置;或者,第一信息包括感知质量索引,感知质量索引用于指示第一频域资源的频域位置。
另一种可能的实现方式中,第一信息承载于RRC信令或DCI信令。
另一种可能的实现方式中,收发模块902还用于:
获取感知需求参数;
处理模块901具体用于:
根据感知需求参数从频域资源池中确定第一频域资源。
另一种可能的实现方式中,感知需求参数包括测距不模糊距离,第一频域资源满足最小频率基线,最小频率基线是根据测距不模糊距离确定的;或者,
感知需求参数包括测距分辨率,第一频域资源满足最大频率基线,最大频率基线是根据测距分辨率确定的;或者,
感知需求参数包括测距不模糊距离和测距分辨率,第一频域资源满足最小频率基线和最大频率基线。
另一种可能的实现方式中,收发模块902还用于:
接收来自第一通信装置的触发信令,触发信令用于触发第二通信装置开启感知功能。
另一种可能的实现方式中,触发信令的类型包括RRC信令或DCI信令。
另一种可能的实现方式中,频域资源池包括用于第一通信装置与第二通信装置之间传输信道状态信息参考信号的频域资源;或者,
频域资源池包括用于第一通信装置与第二通信装置之间传输通信数据的频域资源。
本申请实施例中,处理模块901用于确定第一频域资源,第一频域资源是根据感知需求参数从频域资源池中确定的。收发模块902用于在第一频域资源上接收来自第一通信装置的感知信号;处理模块901还用于对感知信号进行感知测量,得到感知结果。由此可知,第一 频域资源是根据感知需求参数从频域资源池中选择的。收发模块902在第一频域资源上接收来自第一通信装置的感知信号。这样第二通信装置可以在进行通信的同时通过接收来自第一通信装置的感知信号实现对周边环境的感知。进一步的,第一频域资源是结合感知需求参数确定的,这样可以符合感知的要求,提高感知性能。
本申请还提供一种第一通信装置,请参阅图10,本申请实施例中第一通信装置的另一个结构示意图,该第一通信装置可以用于执行图2A、图2C、图2D、图3、图4和图5所示的实施例中第一通信装置执行的步骤,可以参考上述方法实施例中的相关描述。
该第一通信装置包括:处理器1001和收发器1003。可选的,该通信装置还包括存储器1002。
一种可能的实现方式中,该处理器1001、存储器1002和收发器1003分别通过总线相连,该存储器中存储有计算机指令。
本实施例的处理器1001可以执行前述图8所示的处理模块801执行的动作,该处理器1001的具体实现不再赘述。本实施例中的收发器1003可以执行前述实施例中的收发模块802执行的动作,收发器1003的具体实现不再赘述。
上述图10示出的第一通信装置中,处理器1001和存储器1002可以集成在一起,也可以分开部署,具体本申请不做限定。
需要说明的是,上述图10所示的存储器1002也可以部署在图10所示的第一通信装置之外。
本申请还提供一种第二通信装置,请参阅图11,本申请实施例中第二通信装置的另一个结构示意图,该第二通信装置可以用于执行图2A、图2C和图2D所示的实施例中第二通信装置执行的步骤,可以参考上述方法实施例中的相关描述。
该第二通信装置包括:处理器1101和收发器1103。可选的,可选的,该通信装置还包括存储器1102。
一种可能的实现方式中,该处理器1101、存储器1102和收发器1103分别通过总线相连,该存储器中存储有计算机指令。
本实施例的处理器1101可以执行前述图9所示的处理模块901执行的动作,该处理器1101的具体实现不再赘述。本实施例中的收发器1103可以执行前述实施例中的收发模块902执行的动作,收发器1103的具体实现不再赘述。
上述图11示出的第二通信装置中,处理器1101和存储器1102可以集成在一起,也可以分开部署,具体本申请不做限定。
需要说明的是,上述图11所示的存储器1102也可以部署在图11所示的第二通信装置之外。
下面通过图12示出第一通信装置或第二通信装置为终端设备的一种可能的结构示意图。
图12示出了一种简化的终端设备的结构示意图。为了便于理解和图示方式,图12中,终端设备以手机作为例子。如图12所示,终端设备包括处理器、存储器、射频电路、天线及可选的输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和 数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图12中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图12所示,终端设备包括收发单元1210和处理单元1220。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1210中用于实现接收功能的器件视为接收单元,将收发单元1210中用于实现发送功能的器件视为发送单元,即收发单元1210包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
一种可能的实现方式中,收发单元1210用于执行上述方法实施例中第一通信装置的发送操作和接收操作,处理单元1220用于执行上述方法实施例中第一通信装置上除了收发操作之外的其他操作。
例如,处理单元1202用于执行图2A中的步骤201和步骤204。该收发单元1210用于执行图2A中的步骤202、步骤203、步骤206和步骤202a。
另一种可能的实现方式中,收发单元1210用于执行上述方法实施例中第二通信装置的发送操作和接收操作,处理单元1220用于执行上述方法实施例中第二通信装置上除收发操作之外的其他操作。
例如,处理单元1202用于执行图2A中的步骤205和步骤207。该收发单元1210用于执行图2A中的步骤202、步骤203、步骤206和步骤202a。
当该终端设备为芯片时,该芯片包括收发单元和处理单元。其中,该收发单元可以是输入输出电路或通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路或者逻辑电路。
请参阅图13,本申请实施例还提供了一种通信系统,该通信系统包括如图8所示的第一通信装置和如图9所示的第二通信装置。其中,图8所示的第一通信装置用于图2A、图2C、图2D、图3、图4和图5所示的实施例中第一通信装置执行的全部或部分步骤。图9所示的第二通信装置用于图2A、图2C和图2D所示的实施例中第二通信装置执行的全部或 部分步骤。
本申请实施例还提供一种包括计算机指令的计算机程序产品,当其在计算机上运行时,使得如上述图2A、图2C、图2D、图3、图4和图5所示的实施例的通信方法被执行。
本申请实施例还提供了一种计算机可读存储介质,包括计算机指令,当该计算机指令在计算机上运行时,使得如上述图2A、图2C、图2D、图3、图4和图5所示的实施例的通信方法被执行。
本申请实施例还提供一种芯片装置,包括处理器,用于与存储器相连,调用该存储器中存储的程序,以使得该处理器执行上述图2A、图2C、图2D、图3、图4和图5所示的实施例的通信方法。
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述图2A、图2C、图2D、图3、图4和图5所示的实施例的通信方法的程序执行的集成电路。上述任一处提到的存储器可以为只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述 实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案范围。

Claims (49)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一通信装置确定第一频域资源,所述第一频域资源是根据感知需求参数从频域资源池中确定的;
    所述第一通信装置在所述第一频域资源上发送感知信号。
  2. 根据权利要求1所述的方法,其特征在于,所述感知需求参数包括以下至少一种:测距不模糊距离、测距分辨率。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    第一通信装置获取感知需求参数;
    所述第一通信装置确定第一频域资源,包括:
    所述第一通信装置根据所述感知需求参数从所述频域资源池中确定第一频域资源。
  4. 根据权利要求3所述的方法,其特征在于,所述第一通信装置获取感知需求参数,包括:
    所述第一通信装置接收来自第三通信装置的感知需求参数。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述感知需求参数包括测距不模糊距离,所述第一频域资源满足最小频率基线,所述最小频率基线是根据所述测距不模糊距离确定的;或者,
    所述感知需求参数包括测距分辨率,所述第一频域资源满足最大频率基线,所述最大频率基线是根据所述测距分辨率确定的;或者,
    所述感知需求参数包括所述测距不模糊距离和所述测距分辨率,所述第一频域资源满足所述最小频率基线和所述最大频率基线。
  6. 根据权利要求5所述的方法,其特征在于,所述第一频域资源包括频点组合,所述频点组合为满足第一条件的频点组合;
    所述第一条件包括:通过所述频点组合包括的频点构造得到的频率基线中包括第一长度的频率基线;
    所述第一长度为k*所述最小频率基线的长度,k为属于[1,K]的正整数,K为所述最大频率基线的长度与所述最小频率基线的长度的比值,K大于或等于1。
  7. 根据权利要求6所述的方法,其特征在于,所述频点组合包括子载波组合,所述子载波组合为满足所述最小频率基线、所述最大频率基线和所述第一条件的子载波组合中包括的子载波数量最少的子载波组合。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置向第二通信装置发送第一信息,所述第一信息用于指示所述第一频域资源的频域位置。
  9. 根据权利要求8所述的方法,其特征在于,
    所述第一信息包括所述第一频域资源的频域位置;或者,
    所述第一信息包括感知质量索引,所述感知质量索引用于指示所述第一频域资源的频域位置。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一信息承载于无线资源控制RRC信令或下行控制信息DCI信令。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置向所述第二通信装置发送触发信令,所述触发信令用于触发所述第二通信装置开启感知功能。
  12. 根据权利要求11所述的方法,其特征在于,所述触发信令的类型包括RRC信令或DCI信令。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,
    所述频域资源池包括用于所述第一通信装置与第二通信装置之间的传输信道状态信息参考信号的频域资源;或者,
    所述频域资源池包括用于所述第一通信装置与所述第二通信装置之间传输通道数据的频域资源。
  14. 一种通信方法,其特征在于,所述方法包括:
    第二通信装置确定第一频域资源,所述第一频域资源是根据感知需求参数从频域资源池中确定的;
    所述第二通信装置在所述第一频域资源上接收来自第一通信装置的感知信号;
    所述第二通信装置对所述感知信号进行感知测量,得到感知结果。
  15. 根据权利要求14所述的方法,其特征在于,所述感知需求参数包括以下至少一种:测距不模糊距离、测距分辨率。
  16. 根据权利要求14或15所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收来自所述第一通信装置的第一信息,所述第一信息用于指示所述第一频域资源的频域位置。
  17. 根据权利要求16所述的方法,其特征在于,所述第一信息包括所述第一频域资源的频域位置;或者,
    所述第一信息包括感知质量索引,所述感知质量索引用于指示所述第一频域资源的频域位置。
  18. 根据权利要求14或15所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置获取感知需求参数;
    所述第二通信装置确定第一频域资源,包括:
    所述第二通信装置根据所述感知需求参数从所述频域资源池中确定所述第一频域资源。
  19. 根据权利要求14至18中任一项所述的方法,其特征在于,所述感知需求参数包括测距不模糊距离,所述第一频域资源满足最小频率基线,所述最小频率基线是根据所述测距不模糊距离确定的;或者,
    所述感知需求参数包括测距分辨率,所述第一频域资源满足最大频率基线,所述最大频率基线是根据所述测距分辨率确定的;或者,
    所述感知需求参数包括所述测距不模糊距离和所述测距分辨率,所述第一频域资源满足所述最小频率基线和所述最大频率基线。
  20. 根据权利要求14至19中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收来自所述第一通信装置的触发信令,所述触发信令用于触发所述第二通信装置开启感知功能。
  21. 根据权利要求20所述的方法,其特征在于,所述触发信令的类型包括无线资源控制RRC信令或下行控制信息DCI信令。
  22. 根据权利要求14至21中任一项所述的方法,其特征在于,
    所述频域资源池包括用于所述第一通信装置与所述第二通信装置之间传输信道状态信息参考信号的频域资源;或者,
    所述频域资源池包括用于所述第一通信装置与所述第二通信装置之间传输通信数据的频域资源。
  23. 一种通信装置,其特征在于,所述第一通信装置:
    处理模块,用于确定第一频域资源,所述第一频域资源是根据感知需求参数从频域资源池中确定的;
    收发模块,用于在所述第一频域资源上发送感知信号。
  24. 根据权利要求23所述的通信装置,其特征在于,所述感知需求参数包括以下至少一种:测距不模糊距离、测距分辨率。
  25. 根据权利要求23或24所述的通信装置,其特征在于,所述收发模块还用于:
    获取感知需求参数;
    所述处理模块具体用于:
    根据所述感知需求参数从所述频域资源池中确定第一频域资源。
  26. 根据权利要求25所述的通信装置,其特征在于,所述收发模块具体用于:
    接收来自第三通信装置的感知需求参数。
  27. 根据权利要求23至26中任一项所述的通信装置,其特征在于,
    所述感知需求参数包括测距不模糊距离,所述第一频域资源满足最小频率基线,所述最小频率基线是根据所述测距不模糊距离确定的;或者,
    所述感知需求参数包括测距分辨率,所述第一频域资源满足最大频率基线,所述最大频率基线是根据所述测距分辨率确定的;或者,
    所述感知需求参数包括所述测距不模糊距离和所述测距分辨率,所述第一频域资源满足所述最小频率基线和所述最大频率基线。
  28. 根据权利要求27所述的通信装置,其特征在于,所述第一频域资源包括频点组合,所述频点组合为满足第一条件的频点组合;
    所述第一条件包括:通过所述频点组合包括的频点构造得到的频率基线中包括第一长度的频率基线;
    所述第一长度为k*所述最小频率基线的长度,k为属于[1,K]的正整数,K为所述最大频率基线的长度与所述最小频率基线的长度的比值,K大于或等于1。
  29. 根据权利要求28所述的通信装置,其特征在于,所述频点组合包括子载波组合,所述子载波组合为满足所述最小频率基线、所述最大频率基线和所述第一条件的子载波组 合中包括的子载波数量最少的子载波组合。
  30. 根据权利要求23至29中任一项所述的通信装置,其特征在于,所述收发模块还用于:
    向第二通信装置发送第一信息,所述第一信息用于指示所述第一频域资源的频域位置。
  31. 根据权利要求30所述的通信装置,其特征在于,
    所述第一信息包括所述第一频域资源的频域位置;或者,
    所述第一信息包括感知质量索引,所述感知质量索引用于指示所述第一频域资源的频域位置。
  32. 根据权利要求30或31所述的通信装置,其特征在于,所述第一信息承载于无线资源控制RRC信令或下行控制信息DCI信令。
  33. 根据权利要求23至31中任一项所述的通信装置,其特征在于,所述收发模块还用于:
    向所述第二通信装置发送触发信令,所述触发信令用于触发所述第二通信装置开启感知功能。
  34. 根据权利要求33所述的通信装置,其特征在于,所述触发信令的类型包括RRC信令或DCI信令。
  35. 根据权利要求23至34中任一项所述的通信装置,其特征在于,
    所述频域资源池包括用于所述第一通信装置与第二通信装置之间的传输信道状态信息参考信号的频域资源;或者,
    所述频域资源池包括用于所述第一通信装置与所述第二通信装置之间传输通道数据的频域资源。
  36. 一种通信装置,其特征在于,所述第二通信装置包括:
    处理模块,用于确定第一频域资源,所述第一频域资源是根据感知需求参数从频域资源池中确定的;
    收发模块,用于在所述第一频域资源上接收来自第一通信装置的感知信号;
    所述处理模块,还用于对所述感知信号进行感知测量,得到感知结果。
  37. 根据权利要求36所述的通信装置,其特征在于,所述感知需求参数包括以下至少一种:测距不模糊距离、测距分辨率。
  38. 根据权利要求36或37所述的通信装置,其特征在于,所述收发模块还用于:
    接收来自所述第一通信装置的第一信息,所述第一信息用于指示所述第一频域资源的频域位置。
  39. 根据权利要求38所述的通信装置,其特征在于,所述第一信息包括所述第一频域资源的频域位置;或者,
    所述第一信息包括感知质量索引,所述感知质量索引用于指示所述第一频域资源的频域位置。
  40. 根据权利要求36或37所述的通信装置,其特征在于,所述收发模块还用于:
    获取感知需求参数;
    所述处理模块还用于:
    根据所述感知需求参数从所述频域资源池中确定所述第一频域资源。
  41. 根据权利要求36至40中任一项所述的通信装置,其特征在于,所述感知需求参数包括测距不模糊距离,所述第一频域资源满足最小频率基线,所述最小频率基线是根据所述测距不模糊距离确定的;或者,
    所述感知需求参数包括测距分辨率,所述第一频域资源满足最大频率基线,所述最大频率基线是根据所述测距分辨率确定的;或者,
    所述感知需求参数包括所述测距不模糊距离和所述测距分辨率,所述第一频域资源满足所述最小频率基线和所述最大频率基线。
  42. 根据权利要求36至41中任一项所述的通信装置,其特征在于,所述收发模块还用于:
    接收来自所述第一通信装置的触发信令,所述触发信令用于触发所述第二通信装置开启感知功能。
  43. 根据权利要求42所述的通信装置,其特征在于,所述触发信令的类型包括无线资源控制RRC信令或下行控制信息DCI信令。
  44. 根据权利要求36至43中任一项所述的通信装置,其特征在于,
    所述频域资源池包括用于所述第一通信装置与所述第二通信装置之间传输信道状态信息参考信号的频域资源;或者,
    所述频域资源池包括用于所述第一通信装置与所述第二通信装置之间传输通信数据的频域资源。
  45. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器;
    所述存储器用于存储计算机程序;
    所述处理器用于调用并运行所述存储器中存储的所述计算机程序,使得所述通信装置执行如权利要求1至13中任一项所述的方法,或者,使得所述通信装置执行如权利要求14至22中任一项所述的方法。
  46. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在计算机上运行时,使得如权利要求1至13中任一项所述的方法被执行,或者,使得如权利要求14至22中任一项所述的方法被执行。
  47. 一种计算机程序产品,其特征在于,包括计算机指令,当所述计算机指令在计算机上运行时,使得如权利要求1至13中任一项所述的方法被执行,或者,使得如权利要求14至22中任一项所述的方法被执行。
  48. 一种通信系统,其特征在于,所述通信系统包括如权利要求23至35中任一项所述的通信装置和如权利要求36至44中任一项所述的通信装置。
  49. 一种通信装置,其特征在于,所述通信装置包括处理器和收发器;
    所述处理器用于执行如权利要求1至13中任一项所述的处理操作,所述收发器用于执行如权利要求1至13中任一项所述的收发操作;或者,
    所述处理器用于执行如权利要求14至22中任一项所述的处理操作,所述收发器用于 执行如权利要求14至22中任一项所述的收发操作。
PCT/CN2022/082653 2021-03-25 2022-03-24 通信方法以及通信装置 WO2022199647A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023558330A JP2024512554A (ja) 2021-03-25 2022-03-24 通信方法および通信装置
EP22774302.8A EP4301028A1 (en) 2021-03-25 2022-03-24 Communication method and communication device
US18/471,304 US20240023078A1 (en) 2021-03-25 2023-09-21 Communication method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110321050.X 2021-03-25
CN202110321050.XA CN115134845A (zh) 2021-03-25 2021-03-25 通信方法以及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/471,304 Continuation US20240023078A1 (en) 2021-03-25 2023-09-21 Communication method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2022199647A1 true WO2022199647A1 (zh) 2022-09-29

Family

ID=83374099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082653 WO2022199647A1 (zh) 2021-03-25 2022-03-24 通信方法以及通信装置

Country Status (6)

Country Link
US (1) US20240023078A1 (zh)
EP (1) EP4301028A1 (zh)
JP (1) JP2024512554A (zh)
CN (1) CN115134845A (zh)
TW (1) TW202239230A (zh)
WO (1) WO2022199647A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024092476A1 (zh) * 2022-10-31 2024-05-10 北京小米移动软件有限公司 信号感知方法、装置、核心网网元、电子设备和存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117917906A (zh) * 2022-10-21 2024-04-23 维沃移动通信有限公司 感知配置方法、感知方法、装置、网络侧设备及感知设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565497A (zh) * 2016-09-28 2019-04-02 华为技术有限公司 环境感知方法以及基站
US20200068531A1 (en) * 2016-09-30 2020-02-27 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for sensing
US20200260440A1 (en) * 2017-09-19 2020-08-13 Ntt Docomo, Inc. User device
CN112334787A (zh) * 2018-12-13 2021-02-05 松下电器(美国)知识产权公司 发送装置、控制系统、以及发送方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565497A (zh) * 2016-09-28 2019-04-02 华为技术有限公司 环境感知方法以及基站
US20200068531A1 (en) * 2016-09-30 2020-02-27 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for sensing
US20200260440A1 (en) * 2017-09-19 2020-08-13 Ntt Docomo, Inc. User device
CN112334787A (zh) * 2018-12-13 2021-02-05 松下电器(美国)知识产权公司 发送装置、控制系统、以及发送方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE ZTE MICROELECTRONICS: "Sensing based scheme for dynamic TDD in NR", 3GPP DRAFT; R1-1612157 - 7.1.6.2 SENSING-BASED DYNAMIC TDD IN NR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20161114 - 20161118, 13 November 2016 (2016-11-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051176109 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024092476A1 (zh) * 2022-10-31 2024-05-10 北京小米移动软件有限公司 信号感知方法、装置、核心网网元、电子设备和存储介质

Also Published As

Publication number Publication date
TW202239230A (zh) 2022-10-01
CN115134845A (zh) 2022-09-30
JP2024512554A (ja) 2024-03-19
US20240023078A1 (en) 2024-01-18
EP4301028A1 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
WO2021083368A1 (zh) 感知方法及装置
CN109150272B (zh) 通信方法、终端及网络设备
WO2022199647A1 (zh) 通信方法以及通信装置
WO2020220847A1 (zh) 测量上报的方法与装置
EP4213517A1 (en) Positioning reference signal prs association method and communication apparatus
WO2022063261A1 (zh) 一种上行参考信号的关联方法及通信装置
CN115462112A (zh) 使用射频进行环境感测
US20240155394A1 (en) Sensing method and apparatus, terminal, and network device
WO2023274029A1 (zh) 通信感知方法、装置及网络设备
CN112119656A (zh) 通信方法及装置
WO2022012360A1 (zh) 通信方法及其装置
WO2022141219A1 (zh) 一种定位方法及相关装置
WO2023088299A1 (zh) 感知信号传输处理方法、装置及相关设备
WO2023088298A1 (zh) 感知信号检测方法、感知信号检测处理方法及相关设备
WO2023001269A1 (zh) 感知方法、装置及网络设备
WO2022127854A1 (zh) 传输频率的确定方法、装置和通信设备
WO2022253238A1 (zh) 消息传输方法、信号发送方法、装置及通信设备
WO2024099152A1 (zh) 信息传输方法、装置及通信设备
WO2023226826A1 (zh) 感知方法、装置及通信设备
WO2022253236A1 (zh) 消息传输方法、信号发送方法、装置及通信设备
WO2023231870A1 (zh) 通信方法、装置、终端、网络侧设备及核心网设备
WO2024109637A1 (zh) 信息发送方法、信息接收方法、装置及相关设备
WO2023001270A1 (zh) 感知方法、装置及网络设备
WO2024099125A1 (zh) 测量信息反馈方法、接收方法及通信设备
WO2022166565A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774302

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023558330

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022774302

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022774302

Country of ref document: EP

Effective date: 20230925

NENP Non-entry into the national phase

Ref country code: DE