WO2023001269A1 - 感知方法、装置及网络设备 - Google Patents

感知方法、装置及网络设备 Download PDF

Info

Publication number
WO2023001269A1
WO2023001269A1 PCT/CN2022/107296 CN2022107296W WO2023001269A1 WO 2023001269 A1 WO2023001269 A1 WO 2023001269A1 CN 2022107296 W CN2022107296 W CN 2022107296W WO 2023001269 A1 WO2023001269 A1 WO 2023001269A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
network device
sensing signal
information
perception
Prior art date
Application number
PCT/CN2022/107296
Other languages
English (en)
French (fr)
Inventor
姜大洁
姚健
司晔
潘翔
秦飞
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP22845432.8A priority Critical patent/EP4376465A1/en
Publication of WO2023001269A1 publication Critical patent/WO2023001269A1/zh
Priority to US18/417,669 priority patent/US20240154708A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/328Reference signal received power [RSRP]; Reference signal received quality [RSRQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment

Definitions

  • the present application belongs to the communication field, and in particular relates to a sensing method, device and network equipment.
  • Perception capability that is, one or more devices with perception capability, which can perceive the orientation, distance, speed and other information of the target object through the transmission and reception of wireless signals, or detect, track, and detect the target object, event or environment. identification, imaging, etc.
  • the resolution of perception will be significantly improved compared with centimeter waves, so that 6G networks can provide more refined perception services.
  • the purposes of perception fall into two main categories.
  • the first type of purpose is perception to assist communication or enhance communication performance, for example, the base station provides more accurate beamforming alignment equipment by tracking the movement trajectory of the device; the other type of purpose is perception that is not directly related to communication , For example, base stations monitor weather conditions through wireless signals, mobile phones recognize user gestures through millimeter wave wireless perception, and so on.
  • Perception methods can be divided into the following types:
  • the device uses the reflected signal of its own transmitted signal, such as the echo, for sensing.
  • the transceiver is located at the same location, and different antennas can be used to sense the surrounding environment information of the device;
  • the transceivers are located at different locations, and the receiver uses the wireless signals transmitted by the transmitters for sensing.
  • base station A senses the distance between base station A and base station B by receiving wireless signals from base station B. environmental information.
  • Embodiments of the present application provide a sensing method, device, and network equipment, which can solve the problem that communication sensing cannot be realized in the related art because there is no related interaction process of wireless sensing.
  • a perception method including:
  • the first network device sends a sensing signal
  • the first network device detects the echo of the sensing signal based on the measurement amount of the sensing signal, and acquires a measurement value corresponding to the measurement amount.
  • a perception device which is applied to a first network device, including:
  • a first sending module configured to send a sensing signal
  • the first acquiring module is configured for the first network device to detect the echo of the sensing signal based on the measurement amount of the sensing signal, and acquire a measurement value corresponding to the measurement amount.
  • a perception method including:
  • the second network device sends at least one item of configuration information of the first sensing requirement and sensing signal to the first network device.
  • a perception device which is applied to a second network device, including:
  • the second sending module is configured to send at least one item of configuration information of the first sensing requirement and the sensing signal to the first network device.
  • a network device in a fifth aspect, includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, and the program or instruction is executed by the processor When executed, the steps of the method described in the first aspect or the third aspect are realized.
  • a network device is provided, the network device is a first network device, and includes a processor and a communication interface, wherein the communication interface is used to send a sensing signal; the processor is used by the first network device based on the The measurement quantity of the sensing signal detects the echo of the sensing signal, and acquires a measurement value corresponding to the measurement quantity.
  • a network device is a second network device, and includes a processor and a communication interface, wherein the communication interface is used to send the first sensing demand and the sensing signal to the first network device At least one item of configuration information.
  • a readable storage medium is provided, and programs or instructions are stored on the readable storage medium, and when the programs or instructions are executed by a processor, the steps of the method described in the first aspect are realized, or the steps of the method described in the first aspect are realized, or The steps of the method described in the third aspect.
  • a ninth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions, so as to implement the first aspect or the third aspect The steps of the method.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the program/program product is executed by at least one processor to implement the first aspect or the third aspect The steps of the method.
  • the received sensing signal is detected by using the measured amount of the sensing signal, and the measured value corresponding to the measured amount is obtained, thereby improving the network sensing process and ensuring smooth sensing of the network.
  • Figure 1 is a schematic diagram of active perception
  • Figure 2 is a schematic diagram of passive sensing
  • Figure 3 is a schematic diagram of the integrated classification of waveforms for perception and communication
  • FIG. 4 is one of the schematic flowcharts of the sensing method in the embodiment of the present application.
  • FIG. 5 is a schematic diagram of network elements involved in a specific application situation 1;
  • Fig. 6 is one of the module schematic diagrams of the sensing device of the embodiment of the present application.
  • FIG. 7 is a structural block diagram of a network device according to an embodiment of the present application.
  • FIG. 8 is the second schematic flow diagram of the sensing method in the embodiment of the present application.
  • FIG. 9 is the second schematic diagram of the modules of the sensing device according to the embodiment of the present application.
  • Fig. 10 is a structural block diagram of a communication device according to an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technologies can be used for the above-mentioned systems and radio technologies as well as other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • the sensing function or other sensing requirements in Table 1 can be realized by sending the sensing signal and receiving/detecting the sensing signal; wherein, the device sending the sensing signal and receiving/detecting the sensing signal can be the same device or different devices.
  • Both the communication system and the perception system are based on the theory of electromagnetic waves, and use the emission and reception of electromagnetic waves to complete the acquisition and transmission of information;
  • Both the communication system and the perception system have structures such as antennas, transmitters, receivers, and signal processors, and there is a large overlap in hardware resources;
  • the air interface design of the B5G system or 6G system will support wireless communication signals and wireless sensing signals at the same time, and realize the integrated design of communication and sensing functions through signal joint design and/or hardware sharing and other means of communication and perception integration. At the same time, it has perception capabilities or provides perception services.
  • the benefits of synesthesia integration include the following aspects:
  • the generalized synaesthesia integration includes the following types:
  • the same network provides communication services and perception services
  • the same terminal provides communication service and perception service
  • the same frequency spectrum provides communication services and perception services
  • the integrated synaesthesia service that is, the joint design of communication signals and perception signals, is completed in the same radio transmission.
  • this embodiment of the present application provides a sensing method, including:
  • Step 401 the first network device sends a sensing signal
  • Step 402 The first network device detects the echo of the sensing signal based on the measurement amount of the sensing signal, and acquires a measurement value corresponding to the measurement amount.
  • the embodiment of the present application is mainly aimed at the base station sending the sensing signal, and the base station receiving the sensing signal to detect the measured value
  • the first network device mentioned in the embodiment of the present application refers to the The base station on the network access side
  • the second network device mentioned in the embodiment of the present application can be a mobile and access management function (Access and Mobility Management Function, AMF) entity on the core network side
  • the second network device can also be a sensor
  • AMF Access and Mobility Management Function
  • the functional entity for example, may be called a sensing network functional entity or a sensing network element, and the sensing functional entity may be located on the core network side or the access network side; the second network device may also be other functional entities on the core network side.
  • the first network device may use at least one of the following methods to determine the measurement amount of the sensing signal, including the following one:
  • A11. Receive first indication information sent by the second network device, where the first indication information is used to indicate the measurement amount of the sensing signal that the first network device needs to measure;
  • the measurement quantity of the sensing signal is sent to the base station by the AMF or the sensing functional entity.
  • A12. Determine the measurement quantity of the sensing signal according to the first sensing requirement.
  • the measurement amount of the sensing signal is determined by the first network device itself according to the first sensing requirement; optionally, the first sensing requirement may be sent to the terminal by the second network device; or is generated by the second network device.
  • the first network device needs to determine configuration information of the sensing signal before sending the sensing signal.
  • the first network device determines configuration information of the sensing signal, including at least one of the following:
  • the first network device receives first configuration information of the sensing signal, where the first configuration information is sent by the second network device;
  • the first network device determines second configuration information of the sensing signal according to the first information
  • the first information includes at least one of the following:
  • the first sensing requirement is sent by the second network device to the first network device.
  • the configuration information of the sensing signal may only be informed by the AMF to the base station.
  • the first configuration information includes all configurations of the sensing signal;
  • the configuration information of the sensing signal may also be only the base station Self-determined, in this case, the second configuration information contains all configurations of the sensing signal;
  • the configuration information of the sensing signal can also be jointly determined by the base station and the AMF entity (or sensing function entity), that is to say , each device only determines part of the parameters or part of the configuration information in the configuration information of the sensing signal.
  • the configuration information of the sensing signal includes three configuration parameters A, B, and C.
  • the first configuration information contains the sensing signal The three configuration parameters A, B, and C of the sensing signal;
  • the second configuration information contains the three configuration parameters of A, B, and C of the sensing signal;
  • the first configuration information contains some parameters of the three configuration parameters A, B, and C of the sensing signal (for example, the first configuration information includes A), and the second The configuration information includes another part of the three configuration parameters A, B, and C of the sensing signal (for example, the first configuration information includes B and C).
  • the manner in which the second network device determines the first configuration information of the sensing signal may be as follows:
  • the third information includes at least one of the following:
  • Second recommendation information of the configuration information is determined by the first network device according to the first perception requirement and sent to the second network device.
  • the perceived objects include, but are not limited to: at least one of objects, equipment, people, animals, buildings, automobiles, environment, air quality, humidity, temperature, and a specific area (ie, a certain area).
  • the perceived quantity includes, but is not limited to: the position of the perceived object, the distance of the perceived object, the moving speed of the perceived object, the imaging of the perceived object, the movement track of the perceived object, the texture analysis of the perceived object and material analysis at least one.
  • the sensing index includes but is not limited to: at least one of sensing accuracy, sensing error, sensing range, sensing delay, detection probability, and false alarm probability;
  • the perception accuracy includes: distance resolution, imaging resolution, movement speed resolution or angle resolution
  • the perception error includes: distance error, imaging error or movement speed error.
  • the first sensing requirement may also be associated with configuration information of sensing signals or measurement quantities of sensing signals.
  • the first sensing requirement can be divided into several sensing categories, and each sensing category is associated with at least one item of configuration information of sensing signals and measurement quantities of sensing signals.
  • the association relationship can be stipulated in the agreement, or notified by signaling between different devices. If a certain device has a perception requirement, for example, the perception requirement requires another device (such as a terminal) to measure and feed back the measurement related to environment reconstruction amount, the perception demand is the perception index 1.
  • the terminal device obtains the sensing index 1 according to receiving signaling sent by other devices, and determines the configuration information of the sensing signal and/or the measurement amount of the sensing signal according to the sensing index 1 and Table 2.
  • any of the following is further included:
  • the second network device may determine the sensing result according to the measurement amount and the measurement value corresponding to the measurement amount, and send the sensing result to the terminal (corresponding to the case where the terminal initiates a sensing service) or the third Network equipment (corresponding to the case where other equipment except terminals initiate sensing services), specifically, the third network equipment may be other base stations, that is, base stations other than measuring sensing signals, other network elements in the core network, such as application Server (this case corresponds to the case where a third-party application initiates a perception service), network management system, etc.
  • the third network equipment may be other base stations, that is, base stations other than measuring sensing signals, other network elements in the core network, such as application Server (this case corresponds to the case where a third-party application initiates a perception service), network management system, etc.
  • the second network device may send the measurement amount and the measurement value corresponding to the measurement amount to the terminal or the third network device, and the terminal or the third network device performs conversion of the sensing result by itself.
  • the measured quantity and the measured value corresponding to the measured quantity are perception results.
  • the second network device may send the sensing result to the terminal or the third network device.
  • the base station may send the measured value and the measured value corresponding to the measured value to the sensing function entity, and the sensing function entity determines the sensing result according to the measured value , and send it to the application server, and the application server sends the sensing result to the third-party application; optionally, after the base station obtains the measurement value, it can determine the sensing result according to the measurement value and the measurement value corresponding to the measurement value and send the sensing result to To the sensing functional entity, the sensing functional entity sends the sensing result to the application server, and the application server sends the sensing result to the third-party application.
  • the base station may send the measured value and the measured value corresponding to the measured value to the AMF, and the AMF determines the sensing result according to the measured value; optionally, the base station After the measured value is obtained, the sensing result may be determined according to the measured amount and the measured value corresponding to the measured amount, and the sensing result may be sent to the AMF.
  • the base station may send the measurement amount and the measurement value corresponding to the measurement amount to the AMF, and the AMF determines the sensing result according to the measurement value, and passes the sensing result through Non-Access Stratum (Non-Access Stratum, NAS) signaling is sent to the terminal; optionally, after obtaining the measurement value, the base station can determine the sensing result according to the measurement value and the measurement value corresponding to the measurement value and send the sensing result To the AMF, the AMF sends the sensing result to the terminal through NAS signaling.
  • Non-Access Stratum Non-Access Stratum
  • the characteristic information may include the existence, distance, position, velocity, acceleration, material, shape, category, radar cross-sectional area RCS, polarization scattering characteristics, etc. of the target object;
  • the relevant information of the target event may include fall detection, intrusion detection, quantity statistics, indoor positioning, gesture recognition, lip recognition, gait recognition, facial expression recognition, breathing monitoring, heart rate monitoring, etc.;
  • the relevant information of the target environment may include humidity, brightness, temperature and humidity, atmospheric pressure, air quality, weather conditions, topography, building/vegetation distribution, population statistics, crowd density, vehicle density, and the like.
  • the perception results in this embodiment of the present application may also include at least one of the following:
  • F105 support immediate perception request
  • multiple perception functional entities may correspond to one AMF entity, or one perception functional entity may be connected to multiple AMF entities.
  • the second information includes: at least one of the perceived client type, the perceived quality of service (Quality of Service, QoS), the sensing capability of the terminal, and the sensing capability of the first network device;
  • QoS Quality of Service
  • the sensing capability of the terminal and the sensing capability of the first network device
  • the sensing method is associated with the entity receiving and sending the sensing signal.
  • the relationship between the entity corresponding to the sensing method and the sending and receiving signal includes at least one of the following:
  • the first network node sends a sensing signal, and the second network node receives the sensing signal;
  • This situation refers to that the base station A sends the sensing signal, and the base station B receives the sensing signal.
  • the first network node sends and receives a sensing signal
  • This situation refers to that the base station A sends the sensing signal, and the base station A receives the sensing signal.
  • the first network node sends a sensing signal, and a terminal device associated with the first network node receives the sensing signal;
  • This situation refers to that the base station A sends the sensing signal, and the terminal receives the sensing signal.
  • the first terminal device sends the sensing signal, and the second terminal device receives the sensing signal;
  • This situation refers to that terminal A sends a sensing signal, and terminal B receives the sensing signal;
  • the first terminal device sends and receives a sensing signal
  • This situation refers to that terminal A sends a sensing signal, and terminal A receives the sensing signal;
  • the first terminal device sends a sensing signal, and the first network node receives the sensing signal;
  • This situation refers to that the terminal A sends the sensing signal, and the base station A receives the sensing signal.
  • the sensing function entity can be located on the core network side or the base station side. If the sensing function entity is located on the base station side, all the processes of sensing services are completed in the radio access network (Radio Access Network, RAN) (for base station triggering Sensing business, or user equipment (User Equipment, UE) triggers the situation of sensing business); the sensing functional entity may be a separate functional entity/physical entity, or deployed in a general server of the core network as one of the core network functions, or Deployed on the base station side as one of the functions of the base station; the sensing function entity directly interacts with the application server (such as the operator's application server) for sensing requests and sensing results; or, the sensing function entity exchanges sensing requests and sensing results with the AMF, and the AMF can Directly or indirectly (via Gateway Mobile Location Center (GMLC) and Network Exposure Function (NEF)) interact with application servers (such as third-party application servers) for perception requests and perception results.
  • GMLC Gateway Mobile Location Center
  • Orthogonal Frequency Division Multiplex OFDM
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • OTFS Orthogonal Time Frequency Space
  • FMCW Frequency Modulated Continuous Wave
  • pulse signal etc.
  • H102 the subcarrier spacing of the sensing signal
  • the subcarrier spacing of OFDM system is 30KHz.
  • the guard interval refers to the time interval from the moment when the signal ends to the moment when the latest echo signal of the signal is received; this parameter is proportional to the maximum sensing distance; for example, it can be passed 2dmax/c Calculated, dmax is the maximum sensing distance (belonging to the sensing requirement). For example, for a spontaneously received sensing signal, dmax represents the maximum distance from the sensing signal receiving and receiving point to the signal transmitting point; in some cases, the OFDM signal cyclic prefix (Cyclic Prefix , CP) can play the role of the minimum guard interval.
  • CP Cyclic Prefix
  • this parameter is inversely proportional to the distance resolution, which can be obtained by c/(2 ⁇ delta_d), where delta_d is the distance resolution (belonging to perception requirements); c is the speed of light.
  • the burst duration is inversely proportional to the rate resolution (belonging to the perception requirement), which is the time span of the perception signal, mainly to calculate the Doppler frequency offset; this parameter can be calculated by c/(2 ⁇ delta_v ⁇ fc) Get; Among them, delta_v is the speed resolution; fc is the carrier frequency of the perceived signal.
  • time domain interval can be calculated by c/(2 ⁇ fc ⁇ v_range); among them, v_range is the maximum rate minus the minimum speed (belonging to the sensory demand); this parameter is the difference between two adjacent sensory signals time interval between.
  • the signal format may be: Sounding Reference Signal (Sounding Reference Signal, SRS), Demodulation Reference Signal (Demodulation Reference Signal, DMRS), Positioning Reference Signal (Positioning Reference Signal, PRS), etc., or other predefined signals, And related sequence format and other information.
  • SRS Sounding Reference Signal
  • DMRS Demodulation Reference Signal
  • PRS Positioning Reference Signal
  • the signal direction may be the direction of the sensing signal or beam information.
  • the time resource may be the time slot index where the sensing signal is located or the symbol index of the time slot; wherein, the time resource is divided into two types, one is a one-off time resource, for example, one symbol sends an omnidirectional first signal ;
  • the frequency resource includes a center frequency point of the sensing signal, a bandwidth, a resource block (Resource Block, RB) or a subcarrier, a reference point (Point A), a starting bandwidth position, and the like.
  • Resource Block Resource Block
  • RB resource block
  • Point A reference point
  • the sensing signal includes multiple resources, each resource is associated with a synchronization signal/physical broadcast channel signal block (or synchronization signal block) (Synchronization Signal and PBCH block, SSB) QCL, and the QCL includes Type A (Type A), Type B , Type C or Type D.
  • a synchronization signal/physical broadcast channel signal block or synchronization signal block
  • SSB Synchronization Signal and PBCH block
  • Type A Type A
  • Type B Type C
  • Type D Type D
  • the first type of measurement includes at least one of the following:
  • K116 the time delay of each path in the multipath channel
  • K120 the phase difference between the sensing signal received by the first antenna and the sensing signal received by the second antenna
  • K121 the delay difference between the sensing signal received by the first antenna and the sensing signal received by the second antenna
  • K122 the characteristic difference between the I-channel signal and the Q-channel signal
  • the characteristic difference may be a phase difference or other differences between the I-channel signal and the Q-channel signal.
  • the I-channel signal and the Q-channel signal are in-phase signals and quadrature signals respectively, I is in-phase, Q is quadrature, and the phase difference between the I-channel signal and the Q-channel signal 90 degrees.
  • the second type of measurement includes at least one of the following:
  • the feature information of the target object is information that can reflect the attribute or state of the target object, and can be at least one of the following: the existence of the target object, the distance of the target object, the position of the target object, and the speed of the target object , the acceleration of the target object, the material of the target object, the shape of the target object, the category of the target object, the radar cross section (Radar Cross Section, RCS) of the target object, the polarization scattering characteristics, etc.
  • RCS Radar Cross Section
  • the relevant information of the target event is the information related to the target event, that is, the information that can be detected/perceived when the target event occurs, which can be at least one of the following: fall detection, intrusion detection, quantity statistics, indoor positioning , Gesture recognition, lip recognition, gait recognition, expression recognition, breathing monitoring, heart rate monitoring, etc.
  • the relevant information of the target environment can be at least one of the following: humidity, brightness, temperature and humidity, atmospheric pressure, air quality, weather conditions, topography, building/vegetation distribution, population statistics, crowd density, vehicle density, etc. .
  • the measured quantities may also include at least one of the following:
  • the measurement amount is a measurement amount for each antenna or a measurement amount for each sensing resource.
  • the above measurement quantity is the measurement quantity of each antenna (port) at the transmitting end or the receiving end, or the above measurement quantity is the measurement quantity on each sensing resource, such as each resource block (Resource Block, RB), subcarrier or the measured volume of the RB group.
  • each sensing resource such as each resource block (Resource Block, RB), subcarrier or the measured volume of the RB group.
  • the core network or the sensing network functional entity/sensing network element determines which base station the associated base station is based on the target area, and determines the direction in which the base station sends the sensing signal .
  • Base station A sends and receives sensing signals spontaneously, and a third-party application initiates sensing services
  • Step S101 the application server receives a perception requirement from a third-party application
  • the perception requirement is to perceive a three-dimensional map of the target area (the accuracy/resolution of the map is 5m). Including the information of the target area, such as the latitude and longitude (range) of the area and other information.
  • Step S102 the application server (including an in-network server such as an IP Multimedia Subsystem (IP Multimedia Subsystem, IMS) or an out-of-network server) sends the sensing requirement to the core network (such as AMF) or the sensing network function entity/sensing network element of the core network (if it exists);
  • IP Multimedia Subsystem IP Multimedia Subsystem, IMS
  • IMS IP Multimedia Subsystem
  • out-of-network server sends the sensing requirement to the core network (such as AMF) or the sensing network function entity/sensing network element of the core network (if it exists);
  • the application server sends the perception requirement to the AMF, and the AMF forwards the requirement to the perception network functional entity/perception network element;
  • the sensing network functional entity/sensing network element of the core network performs target information interaction with the target UE or the serving base station of the target UE (target information includes processing sensing requests, interactive sensing capabilities, interactive sensing auxiliary data, and interactive sensing measurement measurement or sensing results) to obtain target sensing results or sensing measurements (uplink measurement or downlink measurement); it is also possible to obtain base station information that may require interaction information by interacting with other network elements/functions in the core network based on the target area .
  • AMF forwards the demand to the perception network function entity/perception network element, and multiple perception network function entities/perception network elements can correspond to one AMF, then there is a Selection question (selection is made by AMF):
  • the consideration factors for AMF to select the sensing network functional entity/perceiving network element include at least one of the following: requested QoS (such as sensing accuracy, response time, sensing QoS level), access type (3GPP access/non-3GPP access), target UE's Access Network (AN) type (i.e. 5G NR or eLTE) and serving AN node (i.e. gNodeB or NG-eNodeB), RAN configuration information, perceived network functional entity/aware network element capability, and perceived network functional entity /Perceive network element load, perceive network function entity/perceive network element location, indicate single event reporting or multiple event reporting, event reporting duration, network slicing information, etc.
  • requested QoS such as sensing accuracy, response time, sensing QoS level
  • access type 3GPP access/non-3GPP access
  • target UE's Access Network (AN) type i.e. 5G NR or eLTE
  • serving AN node i.e.
  • Step S103 the core network (or the sensing network functional entity/sensing network element) sends the configuration information of sensing requirements or sensing signals to base station A;
  • the configuration information of the sensing signal can also be associated with the sensing requirement, only the sensing requirement needs to be notified, and the receiving end determines the configuration information of the sensing signal according to the sensing requirement and the association relationship;
  • the step of determining the configuration information of the sensing signal according to the sensing requirement includes several ways;
  • Base station A reports its own sensing capabilities (capabilities related to sending sensing signals, such as the maximum bandwidth for sending sensing signals, the maximum transmission power of sensing signals, etc.) to the core network, and/or base station B reports its own sensing capabilities ( Capabilities related to receiving sensing signals, such as the maximum bandwidth of sensing signals that can be received, the measurement amount of supported sensing signals, etc.) are reported to the core network (AMF or sensing network functional entity/sensing network element); then the core network determines the The configuration information of the sensing signal;
  • AMF sensing network functional entity/sensing network element
  • the base station determines the configuration information of the sensing signal according to the sensing requirement
  • the core network determines the configuration information of a part of the sensing signals, and the base station determines the configuration information of another part of the sensing signals;
  • the core network recommends the configuration information of the sensing signal to the base station according to the sensing requirements, and the base station finally determines the configuration information of the sensing signal;
  • the base station recommends the configuration information of the sensing signal to the core network according to the sensing requirements, and the core network finally determines the configuration information of the sensing signal;
  • the core network or sensory network functional entity/sensory network element determines the associated base station as base station A according to the target area, and determines the direction in which base station A sends the sensing signal.
  • Step S104 the core network (or sensing network functional entity/sensing network element) senses signal-related measurements (such as angle of arrival (Angle of Arrive, AOA), angle of departure (Angle of Departure, AOD), delay, RSRP, radar spectrum information, etc.) to base station A (receiving base station); or,
  • signal-related measurements such as angle of arrival (Angle of Arrive, AOA), angle of departure (Angle of Departure, AOD), delay, RSRP, radar spectrum information, etc.
  • the measurement quantity is determined by the base station A according to the perception requirement, and no separate signaling indication is required (the mapping table from the perception requirement to the measurement quantity)
  • Step S105 base station A sends a sensing signal
  • base station A sends sensing signals in a beam sweeping (beam sweeping) manner.
  • Step S106 base station A receives the sensing signal.
  • the UE After receiving the sensing signal, the UE will obtain the measurement value of the corresponding measurement quantity, and one of the following processing methods can be selected for the measurement value:
  • Processing method 1 The conversion from the measured quantity to the perceived result is completed in the core network or application server
  • Step S107 the base station A sends the measured quantity to the core network (or the sensing network functional entity/sensing network element);
  • Step S108 the core network (or sensing network functional entity/perceiving network element) sends the measured quantity to the application server, and the application server determines the sensing result according to the measured quantity; or,
  • the core network determines the sensing result according to the measurement quantity, and sends the sensing result to the application server;
  • Step S109 the application server sends the sensing result to the third-party application.
  • Processing method 2 The conversion from the measurement quantity to the perception result is completed in the base station
  • Step S107 base station A determines the sensing result according to the measurement amount, and sends the measurement result to the core network (or sensing network functional entity/sensing network element);
  • Step S108 the core network (or the perception network functional entity/perception network element) sends the perception result to the application server;
  • Step S109 the application server sends the sensing result to the third-party application.
  • base station A such as antenna position, synchronization information (single frequency network (Single Frequency Network, SFN) start time), artificial intelligence (Artificial Intelligence, AI) related information, etc. also need to be sent to complete the above Converted nodes to assist in the conversion process.
  • synchronization information single frequency network (Single Frequency Network, SFN) start time
  • artificial intelligence Artificial Intelligence, AI
  • the charging function is completed in the core network or the application server.
  • sensing signals in the above process can be sent by multiple base stations, and the receiving sensing signals can also be received by multiple base stations; correspondingly, base station A in the above process can be TRP A.
  • Base station A spontaneously sends and receives sensing signals, and the core network (or network management system, or base station) initiates sensing services
  • the implementation process in this case is mainly as follows:
  • Step S201 the core network AMF sends the configuration information of sensing requirements or sensing signals to the sensing network functional entity/sensing network element; (for example, the demand of the network management);
  • the perception requirement is to perceive a three-dimensional map of the target area (the accuracy/resolution of the map is 5m). Including the information of the target area, such as the latitude and longitude (range) of the area;
  • the AMF receives the configuration information of sensing requirements or sensing signals sent by the network management system, and forwards it to the sensing network functional entity/sensing network element;
  • the AMF receives the configuration information of the sensing requirements or sensing signals sent by the base station, and forwards them to the sensing network functional entity/sensing network element (Note: The sensing demands of base station A or the configuration information of sensing signals may not be sent to the core network, but may be directly sent to base station B);
  • Step S202 the sensing network functional entity/sensing network element (features are the same as those described in Embodiment 1) sends the configuration information of sensing requirements or sensing signals to base station A (or, the AMF sends the configuration information of sensing requirements or sensing signals to base station A)
  • the configuration information of the sensing signal can also be associated with the sensing requirement, only the sensing requirement needs to be notified, and the receiving end determines the configuration information of the sensing signal according to the sensing requirement and the association relationship;
  • the main implementation manner of determining the configuration information of the sensing signal according to the sensing requirement (for example, determining the bandwidth of the sensing signal according to the sensing resolution requirement) refers to the above description, which will not be repeated here.
  • Step S203 the core network (or the sensing network functional entity/sensing network element) sends the measurement quantities related to the sensing signal (such as AOA, AOD, delay, RSRP, radar spectrum information, etc.) to the base station A (receiving base station); or,
  • the measurement quantity is determined by the base station A according to the sensing requirement, and no separate signaling indication (a mapping table from the sensing requirement to the measurement quantity) is required.
  • Step S204 base station A sends a sensing signal
  • base station A sends sensing signals in a beam sweeping manner.
  • Step S205 base station A receives the sensing signal.
  • the UE After receiving the sensing signal, the UE will obtain the measurement value of the corresponding measurement quantity, and one of the following processing methods can be selected for the measurement value:
  • Processing method 1 The conversion from the measured quantity to the perceived result is completed in the core network
  • Step S206 base station A sends the measured quantity to the core network (AMF or sensing network function entity/perceiving network element);
  • AMF sensing network function entity/perceiving network element
  • Step S207 the core network (AMF or sensory network function entity/sensory network element) converts the measured quantity into a sensory result;
  • the core network sends the sensing results to the network management system; or the core network sends the measurement data to the network management system, and the network management system converts the measurement data into sensing results;
  • the core network sends the sensing result to the base station.
  • Processing method 2 The conversion from the measurement quantity to the perception result is completed in the base station
  • Step S206 base station A determines the sensing result according to the measurement amount, and sends the measurement result to the core network (AMF or sensing network function entity/sensing network element);
  • AMF sensing network function entity/sensing network element
  • the core network sends the sensing results to the network management system
  • the core network sends the sensing result to the base station.
  • the entire sensing service may not pass through the core network.
  • the sensing signal in the above process can be sent by multiple base stations, and the receiving sensing signal can also be multiple base stations; correspondingly, base station A in the above process can be TRP A.
  • Base station A sends and receives sensing signals spontaneously, and UE initiates sensing services
  • the implementation process in this case is mainly as follows:
  • Step S301 the UE sends the configuration information of the perception requirement or the perception signal to the AMF through NAS signaling;
  • the perception requirement is a three-dimensional map of the perception target area (the accuracy/resolution of the map is 5m)
  • the target area may be a designated area , such as the surrounding area of a certain building, or the surrounding area of the target UE, and the sensing requirement may include information of the target area, such as information such as the longitude and latitude (range) of the area.
  • Step S302 the AMF sends configuration information of sensing requirements or sensing signals to the sensing network functional entity/sensing network element;
  • Step S303 the sensing network function entity/sensing network element (the characteristics of the sensing network function entity/sensing network element are the same as the description in the specific application situation 1) sends the configuration information of sensing requirements or sensing signals to base station A (or, AMF Send the configuration information of the sensing requirement or the sensing signal to the base station A);
  • the configuration information of the sensing signal can also be associated with the sensing requirement, and only the sensing requirement needs to be notified, and the receiving end determines the configuration information of the sensing signal according to the sensing requirement and the association relationship.
  • determining the configuration information of the sensing signal according to the sensing requirement mainly includes at least one of the following methods:
  • Base station A reports its sensing capabilities (capabilities related to sending sensing signals, such as the maximum bandwidth for sending sensing signals, the maximum transmission power of sensing signals, etc.) to the core network (AMF or sensing network functional entity/sensing network element), And/or, base station A reports its own sensing capabilities (capabilities related to receiving sensing signals, such as the maximum bandwidth of sensing signals that can be received, the measurement of supported sensing signals, etc.) to the core network; then the core network determines the The configuration information of the sensing signal;
  • the core network AMF or sensing network functional entity/sensing network element
  • the base station determines the configuration information of the sensing signal according to the sensing requirement
  • the core network determines the configuration information of a part of the sensing signals, and the base station determines the configuration information of another part of the sensing signals;
  • the core network recommends the configuration information of the sensing signal to the base station according to the sensing requirements, and the base station finally determines the configuration information of the sensing signal;
  • the base station recommends the configuration information of the sensing signal to the core network according to the sensing requirements, and the core network finally determines the configuration information of the sensing signal;
  • the UE recommends the configuration information of the sensing signal to the base station according to the sensing requirement, and the base station finally determines the configuration information of the sensing signal;
  • the UE recommends the configuration information of the sensing signal to the core network according to the sensing requirements, and the core network finally determines the configuration information of the sensing signal;
  • the UE determines the configuration information of the sensing signal according to the sensing requirement.
  • Step S304 the core network (or the sensing network functional entity/sensing network element) sends the measurement quantities related to the sensing signal (such as AOA, AOD, delay, RSRP, radar spectrum information, etc.) to the base station A (receiving base station); or,
  • the measurement quantity is determined by the base station A according to the sensing requirement, and no separate signaling indication (a mapping table from the sensing requirement to the measurement quantity) is required.
  • Step S305 base station A sends a sensing signal
  • base station A sends sensing signals in a beam sweeping manner.
  • Step S306 base station A receives the sensing signal.
  • the UE After receiving the sensing signal, the UE will obtain the measurement value of the corresponding measurement quantity, and one of the following processing methods can be selected for the measurement value:
  • Processing method 1 The conversion from the measured quantity to the perceived result is completed in the core network
  • Step S307 base station A sends the measured quantity to the core network (AMF or sensing network functional entity/perceiving network element);
  • AMF sensing network functional entity/perceiving network element
  • Step S308 the core network (AMF or sensing network function entity/sensing network element) determines the sensing result according to the measurement quantity;
  • Step S309 the core network (AMF or sensing network function entity/sensing network element) sends the sensing result to the UE (via NAS signaling).
  • AMF sensing network function entity/sensing network element
  • Processing method 2 The conversion from the measurement quantity to the sensing result is completed in the base station A
  • Step S307 base station A determines the sensing result according to the measurement amount, and sends the measurement result to the core network (AMF or sensing network function entity/sensing network element);
  • AMF sensing network function entity/sensing network element
  • Step S308 the core network (AMF or sensing network function entity/sensing network element) sends the sensing result to the UE (via NAS signaling).
  • AMF sensing network function entity/sensing network element
  • Processing method 3 The conversion from the measurement quantity to the perception result is performed in the UE
  • Step S307 base station A sends to core network (or perception network function entity/perception network element) according to measurement quantity;
  • Step S308 the core network (AMF or sensory network function entity/sensory network element) sends the measured quantity to the UE (via NAS signaling);
  • step S309 the UE determines a sensing result according to the measurement amount.
  • sensing signals in the above process can be sent by multiple base stations, and the receiving sensing signals can also be received by multiple base stations; correspondingly, base station A in the above process can be TRP A.
  • the embodiment of the present application provides the wireless sensing-related process based on the base station sending sensing signals, specifically including: the sensing process of the base station spontaneously sending and receiving sensing signals, the signaling interaction between different sensing nodes, etc., the new sensing
  • the function of the network functional entity/awareness network element improves the network communication process and ensures the smooth progress of the perception.
  • the sensing method provided in the embodiment of the present application may be executed by a sensing device, or a control module in the sensing device for executing the sensing method.
  • the sensing device provided in the embodiment of the present application is described by taking the sensing device executing the sensing method as an example.
  • the embodiment of the present application provides a sensing device 600, including:
  • the first acquiring module 602 is configured to detect the echo of the sensing signal based on the measurement quantity of the sensing signal, and acquire a measurement value corresponding to the measurement quantity.
  • the first acquiring module 602 detects the echo of the sensing signal based on the measurement quantity of the sensing signal, and before acquiring the measurement value corresponding to the measurement quantity, the following item is further included:
  • a first receiving module configured to receive first indication information sent by a second network device, where the first indication information is used to indicate the measurement amount of the sensing signal that the first network device needs to measure;
  • the first determining module is configured to determine the measurement quantity of the sensing signal according to the first sensing requirement.
  • the first sending module 601 before the first sending module 601 sends the sensing signal, it further includes:
  • the second determining module is configured to determine configuration information of the sensing signal.
  • the second determination module is configured to implement at least one of the following:
  • the first network device receives first configuration information of the sensing signal, where the first configuration information is sent by the second network device;
  • the first information includes at least one of the following:
  • First recommendation information of configuration information where the first recommendation information is determined by the second network device according to the first perception requirement.
  • the first sensing requirement is sent by the second network device to the first network device.
  • the first perceived need is associated with at least one of the following:
  • the first acquiring module 602 detects the echo of the sensing signal based on the measurement amount of the sensing signal, and acquires a measurement value corresponding to the measurement amount, it further includes:
  • a first execution module configured to send the measured quantity and the measured value corresponding to the measured quantity to a second network device
  • the second execution module is configured to determine a sensing result according to the measurement amount and a measurement value corresponding to the measurement amount, and send the sensing result to the second network device.
  • the perception results include at least one of the following:
  • the second network device includes: a mobility and access management function AMF entity or a perception function entity;
  • the perception function entity satisfies at least one of the following:
  • the second information includes: at least one of the perceived client type, the perceived quality of service (QoS), the sensing capability of the terminal, and the sensing capability of the first network device;
  • QoS perceived quality of service
  • the sensing means are associated with entities receiving and sending sensing signals.
  • the configuration information of the sensing signal includes at least one of the following parameters:
  • the subcarrier spacing of the sensing signal is the subcarrier spacing of the sensing signal
  • the sending signal power of the sensing signal
  • the measured quantities include at least one of the following:
  • the first type of measurement quantity includes at least one of the following:
  • the second type of measurement includes at least one of the following:
  • the measurement amount is a measurement amount for each antenna or a measurement amount for each sensing resource.
  • this device embodiment is a device corresponding to the above-mentioned method, and all the implementation modes in the above-mentioned method embodiment are applicable to this device embodiment, and can also achieve the same technical effect, so details are not repeated here.
  • the sensing device provided by the embodiment of the present application can realize each process realized by the method embodiment in FIG. 4 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application further provides a network device, the network device is a first network device, including a processor, a memory, a program or an instruction stored in the memory and operable on the processor, the program Or, when the instructions are executed by the processor, each process of the sensing method embodiment applied to the first network device side can be implemented, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a readable storage medium, on which a computer-readable storage medium stores a program or an instruction, and when the program or instruction is executed by a processor, each process of the embodiment of the sensing method applied to the first network device side is realized , and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the computer-readable storage medium is, for example, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • magnetic disk or an optical disk and the like.
  • the embodiment of the present application also provides a network device, the network device is a first network device, and includes a processor and a communication interface, and the communication interface is used to send a sensing signal; The echo of the sensing signal is detected, and the measurement value corresponding to the measurement quantity is obtained.
  • the network device embodiment corresponds to the network device method embodiment above, and each implementation process and implementation mode of the above method embodiment can be applied to the network device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application further provides a network device, where the network device is a first network device.
  • the network device 700 includes: an antenna 701 , a radio frequency device 702 , and a baseband device 703 .
  • the antenna 701 is connected to the radio frequency device 702 .
  • the radio frequency device 702 receives information through the antenna 701, and sends the received information to the baseband device 703 for processing.
  • the baseband device 703 processes the information to be sent and sends it to the radio frequency device 702
  • the radio frequency device 702 processes the received information and sends it out through the antenna 701 .
  • the foregoing frequency band processing apparatus may be located in the baseband apparatus 703 , and the method performed by the network device in the above embodiment may be implemented in the baseband apparatus 703 , and the baseband apparatus 703 includes a processor 704 and a memory 705 .
  • the baseband device 703, for example, may include at least one baseband board, and the baseband board is provided with a plurality of chips, as shown in FIG.
  • the baseband device 703 may also include a network interface 706, configured to exchange information with the radio frequency device 702, such as a Common Public Radio Interface (Common Public Radio Interface, CPRI).
  • a network interface 706, configured to exchange information with the radio frequency device 702, such as a Common Public Radio Interface (Common Public Radio Interface, CPRI).
  • CPRI Common Public Radio Interface
  • the network device in the embodiment of the present application also includes: instructions or programs stored in the memory 705 and operable on the processor 704, and the processor 704 calls the instructions or programs in the memory 705 to execute the modules shown in FIG. method, and achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • the embodiment of the present application also provides a sensing method, including:
  • Step 801 the second network device sends at least one item of configuration information of the first sensing requirement and sensing signal to the first network device.
  • the method also includes:
  • the second network device sends first indication information to the first network device
  • the first indication information is used to indicate the measurement amount of the sensing signal that the first network device needs to measure.
  • the configuration information of the sensing signal includes: first configuration information of the sensing signal;
  • the first configuration information of the sensing signal is determined by the following determination method:
  • the third information includes at least one of the following:
  • Perception capability information sent by the first network device
  • Second recommendation information of the configuration information is determined by the first network device according to the first perception requirement and sent to the second network device.
  • the manner of obtaining the first perceived demand includes the following one:
  • the first perception requirement is received from the side of the terminal, the first network device or the third network device.
  • the first perceived need is associated with at least one of the following:
  • the following item is further included:
  • the sensing result sent by the first network device is received, and the sensing result is acquired by the first network device according to the measurement amount of the sensing signal and the measurement value corresponding to the measurement amount.
  • At least one of the following is further included:
  • the method further includes:
  • the method further includes:
  • the perception results include at least one of the following:
  • the measured quantities include at least one of the following:
  • the first type of measurement quantity includes at least one of the following:
  • the second type of measurement includes at least one of the following:
  • the measurement amount is a measurement amount for each antenna or a measurement amount for each sensing resource.
  • the configuration information of the sensing signal includes at least one of the following parameters:
  • the subcarrier spacing of the sensing signal is the subcarrier spacing of the sensing signal
  • the sending signal power of the sensing signal
  • the second network device includes: a mobility and access management function AMF entity or a perception function entity;
  • the perception function entity satisfies at least one of the following:
  • the second information includes: at least one of the perceived client type, the perceived quality of service (QoS), the sensing capability of the terminal, and the sensing capability of the first network device;
  • QoS perceived quality of service
  • the sensing means are associated with entities receiving and sending sensing signals.
  • the embodiment of the present application also provides a sensing device 900, which is applied to the second network device, including:
  • the second sending module 901 is configured to send at least one item of configuration information of the first sensing requirement and sensing signal to the first network device.
  • the device also includes:
  • a third sending module configured to send first indication information to the first network device
  • the first indication information is used to indicate the measurement amount of the sensing signal that the first network device needs to measure.
  • the configuration information of the sensing signal includes: first configuration information of the sensing signal;
  • the first configuration information of the sensing signal is determined by the following determination method:
  • the third information includes at least one of the following:
  • Perception capability information sent by the first network device
  • Second recommendation information of the configuration information is determined by the first network device according to the first perception requirement and sent to the second network device.
  • the device also includes:
  • the first receiving module is configured to receive the first perception requirement from the terminal, the first network device or the third network device.
  • the first perceived need is associated with at least one of the following:
  • the second sending module 901 sends at least one of configuration information of the first sensing requirement and the sensing signal to the first network device, the following item is further included:
  • the second receiving module is configured to receive the measurement quantity of the sensing signal sent by the first network device and the measurement value corresponding to the measurement quantity;
  • the third receiving module is configured to receive the sensing result sent by the first network device, and the sensing result is obtained by the first network device according to the measurement amount of the sensing signal and the measurement value corresponding to the measurement amount.
  • the second receiving module receives the measurement amount of the sensing signal sent by the first network device and the measurement value corresponding to the measurement amount, at least one of the following is further included:
  • a second acquiring module configured to acquire a perception result according to the measured quantity and the measured value corresponding to the measured quantity
  • a fourth sending module configured to send the measurement amount and the measurement value corresponding to the measurement amount to a terminal or a third network device.
  • the second acquiring module acquires the perception result according to the measured quantity and the measured value corresponding to the measured quantity, it further includes:
  • a fifth sending module configured to send the sensing result to a terminal or a third network device.
  • the third receiving module after the third receiving module receives the sensing result sent by the first network device, it further includes:
  • a sixth sending module configured to send the sensing result to a terminal or a third network device.
  • the perception results include at least one of the following:
  • the measured quantities include at least one of the following:
  • the first type of measurement quantity includes at least one of the following:
  • the second type of measurement includes at least one of the following:
  • the measurement amount is a measurement amount for each antenna or a measurement amount for each sensing resource.
  • the configuration information of the sensing signal includes at least one of the following parameters:
  • the subcarrier spacing of the sensing signal is the subcarrier spacing of the sensing signal
  • the sending signal power of the sensing signal
  • the second network device includes: a mobility and access management function AMF entity or a perception function entity;
  • the perception function entity satisfies at least one of the following:
  • the second information includes: at least one of the perceived client type, the perceived quality of service (QoS), the sensing capability of the terminal, and the sensing capability of the first network device;
  • QoS perceived quality of service
  • the sensing means are associated with entities receiving and sending sensing signals.
  • the embodiment of the present application also provides a network device, the network device is a second network device, including a processor, a memory, a program or an instruction stored in the memory and operable on the processor, the program Or, when the instructions are executed by the processor, each process of the sensing method embodiment applied to the second network device side can be implemented, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a readable storage medium.
  • the computer-readable storage medium stores programs or instructions.
  • the storage medium may be volatile or nonvolatile.
  • the computer-readable storage medium is, for example, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • magnetic disk or an optical disk and the like.
  • the embodiment of the present application also provides a network device, the network device is a second network device, and includes a processor and a communication interface, and the communication interface is used to send the configuration information of the first sensing requirement and the sensing signal to the first network device at least one.
  • the network device embodiment corresponds to the network device method embodiment above, and each implementation process and implementation mode of the above method embodiment can be applied to the network device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network device, and the network device is a second network device.
  • the network device is a second network device.
  • the structure of the second network device refer to the structure of the network device in FIG. 7 , which will not be repeated here.
  • the processor invokes instructions or programs in the memory to execute the methods executed by the modules shown in FIG. 9 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • this embodiment of the present application further provides a communication device 1000, including a processor 1001, a memory 1002, and programs or instructions stored in the memory 1002 and operable on the processor 1001,
  • a communication device 1000 including a processor 1001, a memory 1002, and programs or instructions stored in the memory 1002 and operable on the processor 1001
  • the communication device 1000 is the first network device
  • the program or instruction is executed by the processor 1001
  • each process of the foregoing sensing method embodiment can be realized, and the same technical effect can be achieved.
  • the communication device 1000 is the second network device
  • the program or instruction is executed by the processor 1001
  • the various processes of the foregoing sensing method embodiments can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the terminal involved in this embodiment of the present application may be a device that provides voice and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal equipment may be different.
  • the terminal equipment may be called User Equipment (User Equipment, UE).
  • the wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via the radio access network (Radio Access Network, RAN), and the wireless terminal equipment can be a mobile terminal equipment, such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • a mobile terminal equipment such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), and user device (user device), which are not limited in this embodiment of the application.
  • the first network device involved in the embodiment of the present application may be a base station (Base Transceiver Station, BTS) in Global System of Mobile communication (GSM) or Code Division Multiple Access (CDMA), or It is a base station (NodeB, NB) in Wideband Code Division Multiple Access (WCDMA), or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, Or the base stations in the future 5G network, etc., are not limited here.
  • BTS Base Transceiver Station
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • NodeB, NB Wideband Code Division Multiple Access
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolution
  • relay station or access point Or the base stations in the future 5G network, etc., are not limited here.
  • One or more antennas can be used for multiple input multiple output (Multi Input Multi Output, MIMO) transmission between the first network device and the terminal, and the MIMO transmission can be single user MIMO (Single User MIMO, SU-MIMO) or multi-user MIMO (Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be two-dimensional MIMO (2D-MIMO), three-dimensional MIMO (3D-MIMO), full-dimensional MIMO (FD-MIMO) or massive MIMO (massive-MIMO), or It is diversity transmission or precoding transmission or beamforming transmission, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various aspects of the above sensing method embodiments process, and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • chips mentioned in the embodiments of the present application may also be called system-on-chip, system-on-chip, system-on-a-chip, or system-on-a-chip.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种感知方法、装置及网络设备,属于通信技术领域,本申请实施例的感知方法包括:第一网络设备发送感知信号;第一网络设备基于所述感知信号的测量量对所述感知信号的回波进行检测,获取所述测量量对应的测量值。

Description

感知方法、装置及网络设备
相关申请的交叉引用
本申请主张在2021年07月23日在中国提交的中国专利申请No.202110839586.0的优先权,其部内容通过引用包含于此。
技术领域
本申请属于通信领域,特别涉及一种感知方法、装置及网络设备。
背景技术
未来移动通信系统例如B5G系统或6G系统除了具备通信能力外,还将具备感知能力。感知能力,即具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。未来随着毫米波、太赫兹等具备高频段大带宽能力的小基站在6G网络的部署,感知的分辨率相比厘米波将明显提升,从而使得6G网络能够提供更精细的感知服务。
感知的目的主要分为两大类。第一类目的是感知用于辅助通信或者增强通信性能,例如,基站通过跟踪设备的移动轨迹以提供更精准的波束赋型对准设备;另一类目的是与通信没有直接关系的感知,例如基站通过无线信号对天气情况进行监测,手机通过毫米波无线感知识别用户的手势等等。
感知方式可以分为以下几种:
(1)主动感知:如图1所示,设备利用自身发射信号的反射信号例如回波进行感知,收发机位于同一位置,可采用不同天线,可以感知设备周围环境信息;
(2)被动感知:如图2所示,收发机位于不同位置,接收机利用发送机发射的无线信号进行感知,例如基站A通过接收来自基站B的无线信号感知基站A和基站B之间的环境信息。
(3)交互感知:感知者与目标对象之间通过信息交互,对电磁波发送的 主体、时间、频率、格式等进行约定,完成感知的过程。
相关技术中并没有无线感知的相关流程,造成通信流程不完整。
发明内容
本申请实施例提供一种感知方法、装置及网络设备,能够解决相关技术中并没有无线感知的相关交互流程,无法实现通信感知的问题。
第一方面,提供了一种感知方法,包括:
第一网络设备发送感知信号;
第一网络设备基于所述感知信号的测量量对所述感知信号的回波进行检测,获取所述测量量对应的测量值。
第二方面,提供了一种感知的装置,应用于第一网络设备,包括:
第一发送模块,用于发送感知信号;
第一获取模块,用于第一网络设备基于所述感知信号的测量量对所述感知信号的回波进行检测,获取所述测量量对应的测量值。
第三方面,提供了一种感知方法,包括:
第二网络设备向第一网络设备发送第一感知需求和感知信号的配置信息中的至少一项。
第四方面,提供了一种感知的装置,应用于第二网络设备,包括:
第二发送模块,用于向第一网络设备发送第一感知需求和感知信号的配置信息中的至少一项。
第五方面,提供了一种网络设备,该网络设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第三方面所述的方法的步骤。
第六方面,提供了一种网络设备,所述网络设备为第一网络设备,包括处理器及通信接口,其中,通信接口用于发送感知信号;所述处理器用于第一网络设备基于所述感知信号的测量量对所述感知信号的回波进行检测,获取所述测量量对应的测量值。
第七方面,提供了一种网络设备,所述网络设备为第二网络设备,包括处理器及通信接口,其中,所述通信接口用于向第一网络设备发送第一感知需求和感知信号的配置信息中的至少一项。
第八方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第九方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第三方面所述的方法的步骤。
第十方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面或第三方面所述的方法的步骤。
在本申请实施例中,通过利用感知信号的测量量对接收的感知信号进行检测,获取测量量对应的测量值,以此完善了网络感知流程,保证网络能够顺利的进行感知。
附图说明
图1是主动感知示意图;
图2是被动感知示意图;
图3是感知和通信的波形一体化分类的示意图;
图4是本申请实施例的感知方法的流程示意图之一;
图5是具体应用情况一所涉及的网络单元示意图;
图6是本申请实施例的感知装置的模块示意图之一;
图7是本申请实施例的网络设备的结构框图;
图8是本申请实施例的感知方法的流程示意图之二;
图9是本申请实施例的感知装置的模块示意图之二;
图10是本申请实施例的通信设备的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
下面先对本申请所涉及的相关技术进行描述如下:
无线感知的功能和应用用途如表1所示:
表1无线感知的功能和应用用途
Figure PCTCN2022107296-appb-000001
Figure PCTCN2022107296-appb-000002
通过发送感知信号和接收/检测感知信号可以实现表1中的感知功能或者其他感知需求;其中,发送感知信号和接收/检测感知信号的设备可以是同一个设备,也可以是不同的设备。
通感一体化设计从以下四个方面来看,存在可行性:
通信系统与感知系统均基于电磁波理论,利用电磁波的发射和接收来完成信息的获取和传递;
通信系统与感知系统均具备天线、发射机、接收机、信号处理器等结构,在硬件资源上有很大重叠;
随着技术的发展,两者在工作频段上也有越来越多的重合;
在信号调制与接收检测、波形设计等关键技术上存在相似性。
B5G系统或6G系统的空口设计,将同时支持无线通信信号和无线感知信号,通过信号联合设计和/或硬件共享等通信感知一体化手段,实现通信、感知功能一体化设计,在进行信息传递的同时,具备感知能力或者提供感知服务。
通感一体化带来的好处包括如下几个方面:
节约成本;
减小设备尺寸;
降低设备功耗;
提升频谱效率;
减小通感间的互干扰,提升系统性能。
目前通感一体化的范畴没有明确定义,广义的通感一体化包括如下几种:
同一网络提供通信服务和感知服务;
同一终端提供通信服务和感知服务;
同一频谱提供通信服务和感知服务;
同一次无线电发射中完成集成的通感一体化服务,即通信信号和感知信号的联合设计。
感知和通信的波形一体化分类的示意图如图3所示。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的感知方法、装置及网络设备进行详细地说明。
如图4所示,本申请实施例提供一种感知方法,包括:
步骤401,第一网络设备发送感知信号;
步骤402,第一网络设备基于所述感知信号的测量量对所述感知信号的回波进行检测,获取所述测量量对应的测量值。
需要说明的是,本申请实施例主要针对的是基站发送感知信号,基站接收感知信号进行检测得到测量值,也就是说,本申请实施例中所提到的第一网络设备指的是位于接入网侧的基站;本申请实施例中所提到的第二网络设备可以为核心网侧的移动和接入管理功能(Access and Mobility Management Function,AMF)实体;第二网络设备也可以为感知功能实体,例如,可以称为感知网络功能实体或感知网元,该感知功能实体可以位于核心网侧也可以位于接入网侧;第二网络设备还可以是核心网侧的其他功能实体。
需要说明的是,第一网络设备可以采用如下方式中至少一项确定感知信号的测量量,包括以下一项:
A11、接收第二网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一网络设备需要测量的所述感知信号的测量量;
也就是说,此种情况下,感知信号的测量量是AMF或者感知功能实体发 送给基站的。
A12、根据第一感知需求,确定感知信号的测量量。
也就是说,此种情况下,感知信号的测量量是第一网络设备自己根据第一感知需求自己确定的;可选地,第一感知需求可以是由第二网络设备发送给终端;也可以是由第二网络设备生成的。
还需要说明的是,为了能准确的进行感知信号的发送,第一网络设备在发送感知信号之前需要先确定所述感知信号的配置信息。
具体地,第一网络设备确定感知信号的配置信息,包括以下至少一项:
B11、第一网络设备接收感知信号的第一配置信息,所述第一配置信息是第二网络设备发送的;
B12、第一网络设备根据第一信息,确定所述感知信号的第二配置信息;
其中,所述第一信息包括以下至少一项:
B121、第一感知需求;
需要说明的是,所述第一感知需求由第二网络设备发送给第一网络设备。
B122、配置信息的第一推荐信息,所述第一推荐信息由第二网络设备根据第一感知需求确定。
这里需要说明的是,感知信号的配置信息可以仅仅是AMF告知基站的,在此种情况下,第一配置信息中包含的便是感知信号的所有配置;感知信号的配置信息也可以仅仅是基站自己确定的,在此种情况下,第二配置信息中包含的便是感知信号的所有配置;感知信号的配置信息还可以是基站以及AMF实体(或感知功能实体)共同确定的,也就是说,每个设备仅确定感知信号的配置信息中的部分参数或者部分配置信息。
例如,感知信号的配置信息中包括A、B、C三个配置参数,在感知信号的配置信息仅仅是AMF实体或感知功能实体告知基站的情况下,第一配置信息中包含的便是感知信号的A、B、C三个配置参数;在感知信号的配置信息仅仅是基站自己确定的情况下,第二配置信息中包含的便是感知信号的A、B、C三个配置参数;在感知信号的配置信息是基站和AMF共同确定的情况下, 第一配置信息中包含的是感知信号的A、B、C三个配置参数中的部分参数(例如第一配置信息包括A),第二配置信息中包含的是感知信号的A、B、C三个配置参数中的另一部分参数(例如第一配置信息包括B和C)。
进一步需要说明的是,第二网络设备确定感知信号的第一配置信息的方式可以采用如下方式:
根据第三信息,确定所述感知信号的第一配置信息;
其中,所述第三信息,包括以下至少一项:
B21、第一感知需求;
B22、第一网络设备发送的感知能力信息;
B23、配置信息的第二推荐信息,所述第二推荐信息由第一网络设备根据第一感知需求确定并发送给第二网络设备。
进一步需要说明的是,本申请实施例中所说的第一感知需求与以下至少一项相关联:
C11、感知对象;
可选地,所述感知对象包括但不限于:物体、设备、人、动物、建筑物、汽车、环境、空气质量、湿度、温度和特定区域(即某一区域)中的至少一项。
C12、感知量;
可选地,所述感知量包括但不限于:感知对象的位置、感知对象的距离、感知对象的移动速度、感知对象的成像、感知对象的运动轨迹、感知对象的质地分析和材质分析中的至少一项。
C13、感知指标;
可选地,所述感知指标包括但不限于:感知精度、感知误差、感知范围、感知时延、检测概率和虚警概率中的至少一项;
具体地,该感知精度包括:距离分辨率、成像分辨率、移动速度分辨率或者角度分辨率;该感知误差包括:距离误差、成像误差或者移动速度误差。
需要说明的是,感知对象与感知量结合,即为感知结果。
可选的,第一感知需求还可以关联到感知信号的配置信息或感知信号的测量量。
如表2所示,可将第一感知需求划分为几个感知分类,每一种感知分类关联到感知信号的配置信息、感知信号的测量量的至少一项。关联关系可以是协议约定的,或者是不同设备之间通过信令通知的,如果某一设备有感知需求,例如,该感知需求需要另一设备(例如终端)测量并反馈环境重构相关的测量量,则该感知需求即为感知索引1。可选地,终端设备根据接收其他设备发送的信令来获取感知索引1,并根据感知索引1和表2来确定感知信号的配置信息和/或感知信号的测量量。
表2感知分类与感知信号的配置信息及测量量的关系
Figure PCTCN2022107296-appb-000003
Figure PCTCN2022107296-appb-000004
可选地,本申请的另一实施例中,在第一网络设备获取测量量对应的测量值之后,还包括以下任一项:
D11、将所述测量量以及所述测量量对应的测量值发送给第二网络设备;
可选地,在此种情况下,第二网络设备可以根据测量量以及所述测量量对应的测量值确定感知结果,并将感知结果发送给终端(对应终端发起感知业务的情况)或第三网络设备(对应除终端外的其他设备发起感知业务的情况),具体地,该第三网络设备可以为其他基站,即除测量感知信号之外的基站,核心网中的其他网元,例如应用服务器(此种情况对应第三方应用发起感知业务的情况)、网管系统等。
可选地,在此种情况下,第二网络设备可以将测量量以及所述测量量对应的测量值发送给终端或第三网络设备,由终端或第三网络设备自行进行感知结果的转换。
D12、根据所述测量量以及所述测量量对应的测量值确定感知结果并将感知结果发送给第二网络设备;
可选的,所述测量量以及所述测量量对应的测量值即是感知结果。
需要说明的是,在此种情况下,第二网络设备在接收到感知结果之后,可以将感知结果发送给终端或第三网络设备。
下面从感知业务发起端的角度为例,对基站得到测量量之后需要执行的动作举例说明如下:
在第三方应用发起感知业务的情况下,可选地,基站在得到测量值后,可以将测量量以及所述测量量对应的测量值发送给感知功能实体,感知功能 实体根据测量值确定感知结果,并发送给应用服务器,由应用服务器发送感知结果给第三方应用;可选地,基站在得到测量值后,可以根据测量量以及所述测量量对应的测量值确定感知结果并将感知结果发送给感知功能实体,感知功能实体将感知结果发送给应用服务器,由应用服务器发送感知结果给第三方应用。
在AMF发起感知业务的情况下,可选地,基站在得到测量值后,可以将测量量以及所述测量量对应的测量值发送给AMF,AMF根据测量值确定感知结果;可选地,基站在得到测量值后,可以根据测量量以及所述测量量对应的测量值确定感知结果并将感知结果发送给AMF。
在终端发起感知业务的情况下,可选地,基站在得到测量值后,可以将测量量以及所述测量量对应的测量值发送给AMF,AMF根据测量值确定感知结果,并将感知结果通过非接入层面(Non-Access Stratum,NAS)信令发送给终端;可选地,基站在得到测量值后,可以根据测量量以及所述测量量对应的测量值确定感知结果并将感知结果发送给AMF,AMF将感知结果通过NAS信令发送给终端。
还需要说明的是,本申请实施例中所说的感知结果包括以下至少一项:
E11、目标物体的特征信息;
例如,该特征信息可以包括目标物体的存在、距离、位置、速度、加速度、材料、形状、类别、雷达散射截面积RCS,极化散射特性等;
E12、目标事件的相关信息;
例如,该目标事件的相关信息可以包括跌倒检测、入侵检测、数量统计、室内定位、手势识别、唇语识别、步态识别、表情识别、呼吸监测、心率监测等;
E13、目标环境的相关信息;
例如,该目标环境的相关信息可以包括湿度、亮度、温度湿度、大气压强、空气质量、天气情况、地形地貌、建筑/植被分布、人数统计、人群密度、车辆密度等。
可选地,本申请实施例的感知结果还可以包括以下至少一项:
E101、目标对象的位置;
E102、目标对象的距离;
E103、目标对象的速度;
E104、目标对象的检测结果;
E105、目标对象的跟踪结果;
E106、目标对象的识别结果;
E107、目标对象的成像结果;
E108、目标环境的湿度;
E109、目标环境的温度;
E110、目标环境的空气质量。
本申请实施例中所说的感知功能实体满足以下至少一项:
F101、管理感知所需资源的整体协调和调度;
F102、计算感知结果;
F103、估计感知精度;
F104、验证感知结果;
F105、支持立即感知请求;
F106、支持延迟感知请求;
F107、支持周期性或事件触发感知请求;
F108、支持取消周期或触发性的感知行为;
F109、对应至少一个AMF实体;
也就是说,多个感知功能实体可以对应到一个AMF实体,也可以是是一个感知功能实体对应连接到多个AMF实体。
F110、根据第二信息确定感知方式;
其中,所述第二信息包括:感知客户端的类型、感知服务质量(Quality of Service,QoS)、终端的感知能力、第一网络设备的感知能力的至少一项;
所述感知方式与接收和发送感知信号的实体相关联,具体地,所述感知 方式所对应的实体与收发信号的关系包括以下至少一项:
F1101、第一网络节点发送感知信号,第二网络节点接收感知信号;
此种情况指的是,基站A发送感知信号,基站B接收感知信号。
F1102、第一网络节点发送并接收感知信号;
此种情况指的是,基站A发送感知信号,基站A接收感知信号。
F1103、第一网络节点发送感知信号,第一网络节点关联的终端设备接收感知信号;
此种情况指的是,基站A发送感知信号,终端接收感知信号。
F1104、第一终端设备发送感知信号,第二终端设备接收感知信号;
此种情况指的是,终端A发送感知信号,终端B接收感知信号;
F1105、第一终端设备发送并接收感知信号;
此种情况指的是,终端A发送感知信号,终端A接收感知信号;
F1106、第一终端设备发送感知信号,第一网络节点接收感知信号;
此种情况指的是,终端A发送感知信号,基站A接收感知信号。
还需要说明的是,该感知功能实体可以位于核心网侧或基站侧,若感知功能实体位于基站侧,则感知业务的所有流程在无线接入网(Radio Access Network,RAN)完成(针对基站触发感知业务,或者用户设备(User Equipment,UE)触发感知业务的情况);该感知功能实体可以是单独的功能实体/物理实体,或者部署在核心网的通用服务器中作为核心网功能之一,或者部署在基站侧作为基站的功能之一;该感知功能实体直接与应用服务器(例如运营商的应用服务器)交互感知请求和感知结果;或者,感知功能实体与AMF交互感知请求和感知结果,AMF可以直接或间接(通过网关移动定位中心(Gateway Mobile Location Center,GMLC)和网络开放功能(Network Exposure Function,NEF))与应用服务器(例如第三方的应用服务器)交互感知请求和感知结果。
需要说明的是,本申请实施例中的感知信号的配置信息包括以下参数中的至少一项:
H101、所述感知信号的波形;
例如,正交频分复用(Orthogonal Frequency Division Multiplex,OFDM),单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA),正交时频空间(Orthogonal Time Frequency Space,OTFS),调频连续波(Frequency Modulated Continuous Wave,FMCW),脉冲信号等。
H102、所述感知信号的子载波间隔;
例如,OFDM系统的子载波间隔30KHz。
H103、所述感知信号的保护间隔;
需要说明的是,该保护间隔指的是从信号结束发送时刻到该信号的最迟回波信号被接收的时刻之间的时间间隔;该参数正比于最大感知距离;例如,可以通过2dmax/c计算得到,dmax是最大感知距离(属于感知需求),例如对于自发自收的感知信号,dmax代表感知信号收发点到信号发射点的最大距离;在某些情况下,OFDM信号循环前缀(Cyclic Prefix,CP)可以起到最小保护间隔的作用。
H104、所述感知信号的带宽;
需要说明的是,该参数反比于距离分辨率,可以通过c/(2×delta_d)得到,其中delta_d是距离分辨率(属于感知需求);c是光速。
H105、所述感知信号的突发(burst)持续时间;
需要说明的是,burst持续时间反比于速率分辨率(属于感知需求),其是感知信号的时间跨度,主要为了计算多普勒频偏;该参数可通过c/(2×delta_v×fc)计算得到;其中,delta_v是速度分辨率;fc是感知信号的载频。
H106、所述感知信号的时域间隔;
需要说明的是,该时域间隔可通过c/(2×fc×v_range)计算得到;其中,v_range是最大速率减去最小速度(属于感知需求);该参数是相邻的两个感知信号之间的时间间隔。
H107、所述感知信号的发送信号功率;
例如,从-20dBm到23dBm每隔2dBm取一个值。
H108、所述感知信号的信号格式;
例如,该信号格式可以为:探测参考信号(Sounding Reference Signal,SRS),解调参考信号(Demodulation Reference Signal,DMRS),定位参考信号(Positioning Reference Signal,PRS)等,或者其他预定义的信号,以及相关的序列格式等信息。
H109、所述感知信号的信号方向;
例如,该信号方向可以为感知信号的方向或者波束信息。
H110、所述感知信号的时间资源;
例如,该时间资源可以为感知信号所在的时隙索引或者时隙的符号索引;其中,时间资源分为两种,一种是一次性的时间资源,例如一个符号发送一个全向的第一信号;一种是非一次性的时间资源,例如多组周期性的时间资源或者不连续的时间资源(可包含开始时间和结束时间),每一组周期性的时间资源发送同一方向的感知信号,不同组的周期性时间资源上的波束方向不同。
H111、所述感知信号的频率资源;
可选地,该频率资源包括感知信号的中心频点,带宽,资源块(Resource Block,RB)或者子载波,参考点(Point A),起始带宽位置等。
H112、所述感知信号的准共址(Quasi co-location,QCL)关系;
例如,感知信号包括多个资源,每个资源与一个同步信号/物理广播信道信号块(或同步信号块)(Synchronization Signal and PBCH block,SSB)QCL,QCL包括类型A(Type A),Type B,Type C或者Type D。
需要说明的是,本申请实施例中的所述测量量包括以下至少一项:
K11、第一类测量量;
具体地,所述第一类测量量包括以下至少一项:
K111、信道矩阵H;
K112、接收的信号强度指示(RSSI);
K113、参考信号接收功率(Reference Signal Received Power,RSRP);
K114、信道状态信息(CSI);
K115、多径信道中每条径的功率;
K116、多径信道中每条径的时延;
K117、多径信道中每条径的角度信息;
K118、多普勒扩展;
K119、多普勒频移;
K120、第一天线接收的感知信号与第二天线接收的感知信号的相位差;
K121、第一天线接收的感知信号与第二天线接收的感知信号的时延差;
K122、I路信号和Q路信号之间的特征差别;
需要说明的是,该特征差别可以是I路信号和Q路信号之间的相位差或者其他差别。
这里需要说明的是,I路信号和Q路信号分别为同相信号和正交信号,I为同步(in-phase),Q为正交(quadrature),I路信号和Q路信号的相位相差90度。
K12、第二类测量量;
具体地,所述第二类测量量包括以下至少一项:
K121、目标物体的特征信息;
需要说明的是,目标物体的特征信息是能够反映目标物体的属性或所处状态的信息,可以为以下至少一项:目标物体的存在、目标物体的距离、目标物体的位置、目标物体的速度、目标物体的加速度、目标物体的材料、目标物体的形状、目标物体的类别、目标物体的雷达散射截面积(Radar Cross Section,RCS)、极化散射特性等。
K122、目标事件的相关信息;
需要说明的是,目标事件的相关信息是与目标事件有关的信息,即在目标事件发生时能够检测/感知到的信息,可以为以下至少一项:跌倒检测、入侵检测、数量统计、室内定位、手势识别、唇语识别、步态识别、表情识别、呼吸监测、心率监测等。
K123、目标环境的相关信息;
需要说明的是,目标环境的相关信息可以为以下至少一项:湿度、亮度、温度湿度、大气压强、空气质量、天气情况、地形地貌、建筑/植被分布、人数统计、人群密度、车辆密度等。
可选地,所述测量量还可以包括以下至少一项:
K21、反射点的位置、材料、形状和/或类别;
K22、雷达谱信息。
可选地,所述测量量为针对每个天线的测量量或者针对每个感知资源的测量量。
例如,上述测量量为发送端或接收端的每个天线(端口)的测量量,或者,上述测量量为每个感知资源上的测量量,如每个资源块(Resource Block,RB)、子载波或RB组的测量量。
需要说明的是,在核心网向基站发送感知相关信息的情况下,核心网或感知网络功能实体/感知网元根据目标区域确定关联的基站为哪一个基站,并确定该基站发送感知信号的方向。
下面对实际应用的具体应用情况进行举例说明如下。
具体应用情况一、基站A自发自收感知信号,第三方应用发起感知业务
此种情况所涉及的网络设备如图5所示,此种情况下的实现过程主要为:
步骤S101、应用服务器收到第三方应用的感知需求;
例如,感知需求是感知目标区域的三维地图(地图的精度/分辨率是5m),该目标区域可以是指定的区域,如某个建筑物周边,也可以是目标UE的周边区域,感知需求可以包括目标区域的信息,如区域经纬度(范围)等信息。
步骤S102、应用服务器(包括网内服务器如IP多媒体子系统(IP Multimedia Subsystem,IMS)或网外服务器)将感知需求发送给核心网(例如AMF)或核心网的感知网络功能实体/感知网元(如果存在);
或者,应用服务器将感知需求发送AMF,AMF将该需求转发给感知网络功能实体/感知网元;
这里需要说明的是,核心网的感知网络功能实体/感知网元与目标UE或 者目标UE的服务基站进行目标信息交互(目标信息包括处理感知请求,交互感知能力,交互感知辅助数据,交互感知测量量或感知结果)以获得目标感知结果或感知测量量(上行测量量或下行测量量);还可以基于目标区域,通过与核心网内其他网元/功能交互,获取可能需要交互信息的基站信息。
还需要说明的是,如果AMF将该需求转发给感知网络功能实体/感知网元,且多个感知网络功能实体/感知网元可以对应到一个AMF,则存在感知网络功能实体/感知网元的选择问题(由AMF进行选择):
AMF选择感知网络功能实体/感知网元的考虑因素包括以下至少之一:请求的QoS(如感知精度、响应时间、感知QoS等级)、接入类型(3GPP接入/非3GPP接入)、目标UE的接入网(Access Network,AN)类型(即5G NR或eLTE)以及服务AN节点(即gNodeB或NG-eNodeB)、RAN配置信息、感知网络功能实体/感知网元能力、感知网络功能实体/感知网元负载、感知网络功能实体/感知网元位置、单次事件上报还是多次事件上报的指示、事件上报持续时间、网络切片信息等。
步骤S103、核心网(或感知网络功能实体/感知网元)把感知需求或感知信号的配置信息发给基站A;
还需要说明的是,还可以将感知信号的配置信息与感知需求关联,只需要通知感知需求,接收端根据感知需求和关联关系确定感知信号的配置信息;
可选地,根据感知需求确定感知信号的配置信息(例如根据感知分辨率需求确定感知信号的带宽大小等)的步骤完成的主体包括几种方式;
Y11、基站A将自己的感知能力(发送感知信号相关的能力,例如发送感知信号的最大带宽,感知信号的最大发射功率等)上报给核心网,和/或,基站B将自己的感知能力(接收感知信号相关的能力,例如能接收的感知信号的最大带宽,支持的感知信号的测量量等)上报给核心网(AMF或感知网络功能实体/感知网元);然后核心网根据感知需求确定感知信号的配置信息;
Y12、基站根据感知需求确定感知信号的配置信息;
Y13、核心网确定一部分感知信号的配置信息,基站确定另一部分感知信号的配置信息;
Y14、核心网根据感知需求向基站推荐感知信号的配置信息,基站最终 决定感知信号的配置信息;
Y15、基站根据感知需求向核心网推荐感知信号的配置信息,核心网最终决定感知信号的配置信息;
这里需要说明的是,基站A的确定方法:核心网或感知网络功能实体/感知网元根据目标区域确定关联的基站为基站A,并确定基站A发送感知信号的方向。
步骤S104、核心网(或感知网络功能实体/感知网元)将感知信号相关的测量量(如到达角(Angle of Arrive,AOA),离开角(Angle of Departure,AOD),时延,RSRP,雷达谱信息等)发送给基站A(接收基站);或,
测量量由基站A根据感知需求确定,不需要单独信令指示(感知需求到测量量的映射表)
步骤S105、基站A发送感知信号;
需要说明的是,基站A以波束扫描(beam sweeping)的方式发送感知信号。
步骤S106、基站A接收感知信号。
在进行接收感知信号后,UE会得到对应的测量量的测量值,对于该测量值可以选择如下处理方式中的一种:
处理方式一、测量量到感知结果的转换在核心网或应用服务器完成
步骤S107、基站A把测量量发送给核心网(或感知网络功能实体/感知网元);
步骤S108、核心网(或感知网络功能实体/感知网元)将测量量发送给应用服务器,应用服务器根据测量量确定感知结果;或者,
核心网(或感知网络功能实体/感知网元)根据测量量确定感知结果,并把感知结果发送给应用服务器;
步骤S109、应用服务器将感知结果发送给第三方应用。
处理方式二、测量量到感知结果的转换在基站完成
步骤S107、基站A根据测量量确定感知结果,并把测量结果发送给核心网(或感知网络功能实体/感知网元);
步骤S108、核心网(或感知网络功能实体/感知网元)将感知结果发送给 应用服务器;
步骤S109、应用服务器将感知结果发送给第三方应用。
还需要说明的是,基站A的相关信息例如天线位置,同步信息(单频网络(Single Frequency Network,SFN)起始时间),人工智能(Artificial Intelligence,AI)相关信息等也需要发送给完成上述转换的节点,以辅助完成转换过程。
还需要说明的是,计费功能在核心网或应用服务器完成。
还需要说明的是,以上流程中的感知信号可以由多个基站发送,接收感知信号也可以是多个基站;对应的,上述流程中的基站A可以是TRP A。
具体应用情况二、基站A自发自收感知信号,核心网(或者网管系统,或者基站)发起感知业务
此种情况下的实现过程主要为:
步骤S201、核心网AMF把感知需求或感知信号的配置信息发给感知网络功能实体/感知网元;(例如网管的需求);
例如,感知需求是感知目标区域的三维地图(地图的精度/分辨率是5m),该目标区域可以是指定的区域,如某个建筑物周边,也可以是目标UE的周边区域,感知需求可以包括目标区域的信息,如区域经纬度(范围)等信息;
或者AMF接收网管系统发送的感知需求或感知信号的配置信息,并转发给感知网络功能实体/感知网元;
或者AMF接收基站发送的感知需求或感知信号的配置信息,并转发给感知网络功能实体/感知网元(注:基站A的感知需求或感知信号的配置信息,可以不发给核心网,可以直接发给基站B);
步骤S202、感知网络功能实体/感知网元(特征与实施例1中的描述相同)把感知需求或感知信号的配置信息发给基站A(或者,AMF把感知需求或感知信号的配置信息发给基站A)
还需要说明的是,还可以将感知信号的配置信息与感知需求关联,只需要通知感知需求,接收端根据感知需求和关联关系确定感知信号的配置信息;
可选地,根据感知需求确定感知信号的配置信息(例如根据感知分辨率需求确定感知信号的带宽大小等)的主要实现方式参见上述描述,在此不再 赘述。
步骤S203、核心网(或感知网络功能实体/感知网元)将感知信号相关的测量量(如AOA,AOD,时延,RSRP,雷达谱信息等)发送给基站A(接收基站);或,
测量量由基站A根据感知需求确定,不需要单独信令指示(感知需求到测量量的映射表)。
步骤S204、基站A发送感知信号;
需要说明的是,基站A以beam sweeping的方式发送感知信号。
步骤S205、基站A接收感知信号。
在进行接收感知信号后,UE会得到对应的测量量的测量值,对于该测量值可以选择如下处理方式中的一种:
处理方式一、测量量到感知结果的转换在核心网完成
步骤S206、基站A把测量量发送给核心网(AMF或感知网络功能实体/感知网元);
步骤S207、核心网(AMF或感知网络功能实体/感知网元)把测量量转换为感知结果;
如果核心网的感知需求来自网管系统,则核心网把感知结果发送给网管系统;或者核心网把测量量发给网管系统,网管系统把测量量转换为感知结果;
如果核心网的感知需求来自基站,则核心网把感知结果发送给基站。
处理方式二、测量量到感知结果的转换在基站完成
步骤S206、基站A根据测量量确定感知结果,并把测量结果发送给核心网(AMF或感知网络功能实体/感知网元);
如果核心网的感知需求来自网管系统,则核心网把感知结果发送给网管系统;
如果核心网的感知需求来自基站,则核心网把感知结果发送给基站。
这里需要说明的是,如果感知网络功能实体/感知网元部署在基站,一种可选的方案是:整个感知业务可以不经过核心网。
还需要说明的是,以上流程中的感知信号可以由多个基站发送,接收感 知信号也可以是多个基站;对应的,上述流程中的基站A可以是TRP A。
具体应用情况三、基站A自发自收感知信号,UE发起感知业务
此种情况下的实现过程主要为:
步骤S301、UE通过NAS信令发送感知需求或感知信号的配置信息给AMF;例如,感知需求是感知目标区域的三维地图(地图的精度/分辨率是5m),该目标区域可以是指定的区域,如某个建筑物周边,也可以是目标UE的周边区域,感知需求可以包括目标区域的信息,如区域经纬度(范围)等信息。
步骤S302、AMF把感知需求或感知信号的配置信息发给感知网络功能实体/感知网元;
步骤S303、感知网络功能实体/感知网元(该感知网络功能实体/感知网元的特征与具体应用情况一中的描述相同)把感知需求或感知信号的配置信息发给基站A(或者,AMF把感知需求或感知信号的配置信息发给基站A);
还需要说明的是,还可以将感知信号的配置信息与感知需求关联,只需要通知感知需求,接收端根据感知需求和关联关系确定感知信号的配置信息。
可选地,根据感知需求确定感知信号的配置信息(例如根据感知分辨率需求确定感知信号的带宽大小等)主要包括以下几种方式的至少一项:
Y21、基站A将自己的感知能力(发送感知信号相关的能力,例如发送感知信号的最大带宽,感知信号的最大发射功率等)上报给核心网(AMF或者感知网络功能实体/感知网元),和/或,基站A将自己的感知能力(接收感知信号相关的能力,例如能接收的感知信号的最大带宽,支持的感知信号的测量量等)上报给核心网;然后核心网根据感知需求确定感知信号的配置信息;
Y22、基站根据感知需求确定感知信号的配置信息;
Y23、核心网确定一部分感知信号的配置信息,基站确定另一部分感知信号的配置信息;
Y24、核心网根据感知需求向基站推荐感知信号的配置信息,基站最终决定感知信号的配置信息;
Y25、基站根据感知需求向核心网推荐感知信号的配置信息,核心网最终决定感知信号的配置信息;
Y26、UE根据感知需求向基站推荐感知信号的配置信息,基站最终决定感知信号的配置信息;
Y27、UE根据感知需求向核心网推荐感知信号的配置信息,核心网最终决定感知信号的配置信息;
Y28、UE根据感知需求确定感知信号的配置信息。
步骤S304、核心网(或感知网络功能实体/感知网元)将感知信号相关的测量量(如AOA,AOD,时延,RSRP,雷达谱信息等)发送给基站A(接收基站);或,
测量量由基站A根据感知需求确定,不需要单独信令指示(感知需求到测量量的映射表)。
步骤S305、基站A发送感知信号;
需要说明的是,基站A以beam sweeping的方式发送感知信号。
步骤S306、基站A接收感知信号。
在进行接收感知信号后,UE会得到对应的测量量的测量值,对于该测量值可以选择如下处理方式中的一种:
处理方式一、测量量到感知结果的转换在核心网完成
步骤S307、基站A把测量量发送给核心网(AMF或感知网络功能实体/感知网元);
步骤S308、核心网(AMF或感知网络功能实体/感知网元)根据测量量确定感知结果;
步骤S309、核心网(AMF或感知网络功能实体/感知网元)(通过NAS信令)把感知结果发送给UE。
处理方式二、测量量到感知结果的转换在基站A完成
步骤S307、基站A根据测量量确定感知结果,并把测量结果发送给核心网(AMF或感知网络功能实体/感知网元);
步骤S308、核心网(AMF或感知网络功能实体/感知网元)(通过NAS信令)把感知结果发送给UE。
处理方式三、测量量到感知结果的转换在UE
步骤S307、基站A根据测量量发送给核心网(或感知网络功能实体/感 知网元);
步骤S308、核心网(AMF或感知网络功能实体/感知网元)(通过NAS信令)把测量量发送给UE;
步骤S309、UE根据测量量确定感知结果。
还需要说明的是,以上流程中的感知信号可以由多个基站发送,接收感知信号也可以是多个基站;对应的,上述流程中的基站A可以是TRP A。
需要说明的是,本申请实施例给出了基于基站发送感知信号的无线感知相关的流程,具体包括:基站自发自收感知信号的感知流程,不同感知节点间的信令交互等,新增感知网络功能实体/感知网元的功能,以此完善了网络通信流程,保证了感知的顺利进行。
需要说明的是,本申请实施例提供的感知方法,执行主体可以为感知装置,或者,该感知装置中的用于执行感知方法的控制模块。本申请实施例中以感知装置执行感知方法为例,说明本申请实施例提供的感知装置。
如图6所示,本申请实施例提供一种感知装置600,包括:
第一发送模块601,用于发送感知信号;
第一获取模块602,用于基于所述感知信号的测量量对所述感知信号的回波进行检测,获取所述测量量对应的测量值。
可选地,所述第一获取模块602基于所述感知信号的测量量对所述感知信号的回波进行检测,获取所述测量量对应的测量值之前,还包括以下一项:
第一接收模块,用于接收第二网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一网络设备需要测量的所述感知信号的测量量;
第一确定模块,用于根据第一感知需求,确定感知信号的测量量。
可选地,在所述第一发送模块601发送感知信号之前,还包括:
第二确定模块,用于确定感知信号的配置信息。
可选地,所述第二确定模块,用于实现以下至少一项:
第一网络设备接收感知信号的第一配置信息,所述第一配置信息是第二网络设备发送的;
第一网络设备根据第一信息,确定所述感知信号的第二配置信息;
其中,所述第一信息包括以下至少一项:
第一感知需求;
配置信息的第一推荐信息,所述第一推荐信息由第二网络设备根据第一感知需求确定。
可选地,所述第一感知需求由第二网络设备发送给第一网络设备。
可选地,所述第一感知需求与以下至少一项相关联:
感知对象;
感知量;
感知指标。
可选地,在所述第一获取模块602基于所述感知信号的测量量对所述感知信号的回波进行检测,获取所述测量量对应的测量值之后,还包括:
第一执行模块,用于将所述测量量以及所述测量量对应的测量值发送给第二网络设备;
第二执行模块,根据所述测量量以及所述测量量对应的测量值确定感知结果并将感知结果发送给第二网络设备。
可选地,所述感知结果包括以下至少一项:
目标物体的特征信息;
目标事件的相关信息;
目标环境的相关信息。
可选地,所述第二网络设备包括:移动和接入管理功能AMF实体或感知功能实体;
其中,所述感知功能实体满足以下至少一项:
管理感知所需资源的整体协调和调度;
计算感知结果;
估计感知精度;
验证感知结果;
支持立即感知请求;
支持延迟感知请求;
支持周期性或事件触发感知请求;
支持取消周期或触发性的感知行为;
根据第二信息确定感知方式;
其中,所述第二信息包括:感知客户端的类型、感知服务质量QoS、终端的感知能力、第一网络设备的感知能力的至少一项;
所述感知方式与接收和发送感知信号的实体相关联。
可选地,所述感知信号的配置信息包括以下参数中的至少一项:
所述感知信号的波形;
所述感知信号的子载波间隔;
所述感知信号的保护间隔;
所述感知信号的带宽;
所述感知信号的突发burst持续时间;
所述感知信号的时域间隔;
所述感知信号的发送信号功率;
所述感知信号的信号格式;
所述感知信号的信号方向;
所述感知信号的时间资源;
所述感知信号的频率资源;
所述感知信号的准共址QCL关系。
可选地,所述测量量包括以下至少一项:
第一类测量量;
第二类测量量;
其中,所述第一类测量量包括以下至少一项:
信道矩阵H;
接收的信号强度指示RSSI;
参考信号接收功率RSRP;
信道状态信息CSI;
多径信道中每条径的功率;
多径信道中每条径的时延;
多径信道中每条径的角度信息;
多普勒扩展;
多普勒频移;
第一天线接收的感知信号与第二天线接收的感知信号的相位差;
第一天线接收的感知信号与第二天线接收的感知信号的时延差;
I路信号和Q路信号之间的特征差别;
所述第二类测量量包括以下至少一项:
目标物体的特征信息;
目标事件的相关信息;
目标环境的相关信息。
可选地,所述测量量为针对每个天线的测量量或者针对每个感知资源的测量量。
需要说明的是,该装置实施例是与上述方法对应的装置,上述方法实施例中的所有实现方式均适用于该装置实施例中,也能达到相同的技术效果,在此不再赘述。
本申请实施例提供的感知装置能够实现图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
优选的,本申请实施例还提供一种网络设备,所述网络设备为第一网络设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的程序或指令,该程序或指令被处理器执行时实现应用于第一网络设备侧的感知方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,计算机可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现应用于第一网络设备侧的感知方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不 再赘述。
其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例还提供一种网络设备,所述网络设备为第一网络设备,包括处理器和通信接口,通信接口用于发送感知信号;处理器用于基于所述感知信号的测量量对所述感知信号的回波进行检测,获取所述测量量对应的测量值。
该网络设备实施例是与上述网络设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络设备,所述网络设备为第一网络设备。如图7所示,该网络设备700包括:天线701、射频装置702、基带装置703。天线701与射频装置702连接。在上行方向上,射频装置702通过天线701接收信息,将接收的信息发送给基带装置703进行处理。在下行方向上,基带装置703对要发送的信息进行处理,并发送给射频装置702,射频装置702对收到的信息进行处理后经过天线701发送出去。
上述频带处理装置可以位于基带装置703中,以上实施例中网络设备执行的方法可以在基带装置703中实现,该基带装置703包括处理器704和存储器705。
基带装置703例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图7所示,其中一个芯片例如为处理器704,与存储器705连接,以调用存储器705中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置703还可以包括网络接口706,用于与射频装置702交互信息,该接口例如为通用公共无线接口(Common Public Radio Interface,CPRI)。
具体地,本申请实施例的网络设备还包括:存储在存储器705上并可在处理器704上运行的指令或程序,处理器704调用存储器705中的指令或程序执行图6所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
如图8所示,本申请实施例还提供一种感知方法,包括:
步骤801,第二网络设备向第一网络设备发送第一感知需求和感知信号的配置信息中的至少一项。
可选地,所述方法,还包括:
第二网络设备向第一网络设备发送第一指示信息;
其中,所述第一指示信息用于指示所述第一网络设备需要测量的所述感知信号的测量量。
可选地,所述感知信号的配置信息包括:感知信号的第一配置信息;
所述感知信号的第一配置信息通过以下确定方式确定:
根据第三信息,确定所述感知信号的第一配置信息;
其中,所述第三信息包括以下至少一项:
第一感知需求;
第一网络设备发送的感知能力信息;
配置信息的第二推荐信息,所述第二推荐信息由第一网络设备根据第一感知需求确定并发送给第二网络设备。
可选地,所述第一感知需求的获取方式,包括以下一项:
从终端、第一网络设备或第三网络设备侧接收第一感知需求。
可选地,所述第一感知需求与以下至少一项相关联:
感知对象;
感知量;
感知指标。
可选地,在所述第二网络设备向第一网络设备发送第一感知信息之后,还包括以下一项:
接收第一网络设备发送的感知信号的测量量以及所述测量量对应的测量值;
接收第一网络设备发送的感知结果,所述感知结果由第一网络设备根据感知信号的测量量以及所述测量量对应的测量值获取。
可选地,在所述接收第一网络设备发送的感知信号的测量量以及所述测 量量对应的测量值之后,还包括以下至少一项:
根据所述测量量以及所述测量量对应的测量值,获取感知结果;
将所述测量量以及所述测量量对应的测量值发送给终端或第三网络设备。
可选地,在所述根据所述测量量以及所述测量量对应的测量值,获取感知结果之后,还包括:
将所述感知结果发送给终端或第三网络设备。
可选地,在所述接收第一网络设备发送的感知结果之后,还包括:
将所述感知结果发送给终端或第三网络设备。
可选地,所述感知结果包括以下至少一项:
目标物体的特征信息;
目标事件的相关信息;
目标环境的相关信息。
可选地,所述测量量包括以下至少一项:
第一类测量量;
第二类测量量;
其中,所述第一类测量量包括以下至少一项:
信道矩阵H;
接收的信号强度指示RSSI;
参考信号接收功率RSRP;
信道状态信息CSI;
多径信道中每条径的功率;
多径信道中每条径的时延;
多径信道中每条径的角度信息;
多普勒扩展;
多普勒频移;
第一天线接收的感知信号与第二天线接收的感知信号的相位差;
第一天线接收的感知信号与第二天线接收的感知信号的时延差;
I路信号和Q路信号之间的特征差别;
所述第二类测量量包括以下至少一项:
目标物体的特征信息;
目标事件的相关信息;
目标环境的相关信息。
可选地,所述测量量为针对每个天线的测量量或者针对每个感知资源的测量量。
可选地,所述感知信号的配置信息包括以下参数中的至少一项:
所述感知信号的波形;
所述感知信号的子载波间隔;
所述感知信号的保护间隔;
所述感知信号的带宽;
所述感知信号的突发burst持续时间;
所述感知信号的时域间隔;
所述感知信号的发送信号功率;
所述感知信号的信号格式;
所述感知信号的信号方向;
所述感知信号的时间资源;
所述感知信号的频率资源;
所述感知信号的准共址QCL关系。
可选地,所述第二网络设备包括:移动和接入管理功能AMF实体或感知功能实体;
其中,所述感知功能实体满足以下至少一项:
管理感知所需资源的整体协调和调度;
计算感知结果;
估计感知精度;
验证感知结果;
支持立即感知请求;
支持延迟感知请求;
支持周期性或事件触发感知请求;
支持取消周期或触发性的感知行为;
对应至少一个AMF实体;
根据第二信息确定感知方式;
其中,所述第二信息包括:感知客户端的类型、感知服务质量QoS、终端的感知能力、第一网络设备的感知能力的至少一项;
所述感知方式与接收和发送感知信号的实体相关联。
需要说明的是,上述实施例中所有关于第二网络设备的描述均适用于该感知方法的实施例中,也能达到相同的技术效果,在此不再赘述。
如图9所示,本申请实施例还提供一种感知装置900,应用于第二网络设备,包括:
第二发送模块901,用于向第一网络设备发送第一感知需求和感知信号的配置信息中的至少一项。
可选地,所述装置,还包括:
第三发送模块,用于向第一网络设备发送第一指示信息;
其中,所述第一指示信息用于指示所述第一网络设备需要测量的所述感知信号的测量量。
可选地,所述感知信号的配置信息包括:感知信号的第一配置信息;
所述感知信号的第一配置信息通过以下确定方式确定:
根据第三信息,确定所述感知信号的第一配置信息;
其中,所述第三信息包括以下至少一项:
第一感知需求;
第一网络设备发送的感知能力信息;
配置信息的第二推荐信息,所述第二推荐信息由第一网络设备根据第一感知需求确定并发送给第二网络设备。
可选地,所述装置,还包括:
第一接收模块,用于从终端、第一网络设备或第三网络设备侧接收第一感知需求。
可选地,所述第一感知需求与以下至少一项相关联:
感知对象;
感知量;
感知指标。
可选地,在所述第二发送模块901向第一网络设备发送第一感知需求和感知信号的配置信息中的至少一项之后,还包括以下一项:
第二接收模块,用于接收第一网络设备发送的感知信号的测量量以及所述测量量对应的测量值;
第三接收模块,用于接收第一网络设备发送的感知结果,所述感知结果由第一网络设备根据感知信号的测量量以及所述测量量对应的测量值获取。
可选地,在所述第二接收模块接收第一网络设备发送的感知信号的测量量以及所述测量量对应的测量值之后,还包括以下至少一项:
第二获取模块,用于根据所述测量量以及所述测量量对应的测量值,获取感知结果;
第四发送模块,用于将所述测量量以及所述测量量对应的测量值发送给终端或第三网络设备。
可选地,在所述第二获取模块根据所述测量量以及所述测量量对应的测量值,获取感知结果之后,还包括:
第五发送模块,用于将所述感知结果发送给终端或第三网络设备。
可选地,在所述第三接收模块接收第一网络设备发送的感知结果之后,还包括:
第六发送模块,用于将所述感知结果发送给终端或第三网络设备。
可选地,所述感知结果包括以下至少一项:
目标物体的特征信息;
目标事件的相关信息;
目标环境的相关信息。
可选地,所述测量量包括以下至少一项:
第一类测量量;
第二类测量量;
其中,所述第一类测量量包括以下至少一项:
信道矩阵H;
接收的信号强度指示RSSI;
参考信号接收功率RSRP;
信道状态信息CSI;
多径信道中每条径的功率;
多径信道中每条径的时延;
多径信道中每条径的角度信息;
多普勒扩展;
多普勒频移;
第一天线接收的感知信号与第二天线接收的感知信号的相位差;
第一天线接收的感知信号与第二天线接收的感知信号的时延差;
I路信号和Q路信号之间的特征差别;
所述第二类测量量包括以下至少一项:
目标物体的特征信息;
目标事件的相关信息;
目标环境的相关信息。
可选地,所述测量量为针对每个天线的测量量或者针对每个感知资源的测量量。
可选地,所述感知信号的配置信息包括以下参数中的至少一项:
所述感知信号的波形;
所述感知信号的子载波间隔;
所述感知信号的保护间隔;
所述感知信号的带宽;
所述感知信号的突发burst持续时间;
所述感知信号的时域间隔;
所述感知信号的发送信号功率;
所述感知信号的信号格式;
所述感知信号的信号方向;
所述感知信号的时间资源;
所述感知信号的频率资源;
所述感知信号的准共址QCL关系。
可选地,所述第二网络设备包括:移动和接入管理功能AMF实体或感知功能实体;
其中,所述感知功能实体满足以下至少一项:
管理感知所需资源的整体协调和调度;
计算感知结果;
估计感知精度;
验证感知结果;
支持立即感知请求;
支持延迟感知请求;
支持周期性或事件触发感知请求;
支持取消周期或触发性的感知行为;
对应至少一个AMF实体;
根据第二信息确定感知方式;
其中,所述第二信息包括:感知客户端的类型、感知服务质量QoS、终端的感知能力、第一网络设备的感知能力的至少一项;
所述感知方式与接收和发送感知信号的实体相关联。
优选的,本申请实施例还提供一种网络设备,所述网络设备为第二网络 设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的程序或指令,该程序或指令被处理器执行时实现应用于第二网络设备侧的感知方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,计算机可读存储介质上存储有程序或指令,该存储介质可以是易失的,也可以是非易失的,该程序或指令被处理器执行时实现应用于第二网络设备侧的感知方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例还提供一种网络设备,所述网络设备为第二网络设备,包括处理器和通信接口,通信接口用于向第一网络设备发送第一感知需求和感知信号的配置信息中的至少一项。
该网络设备实施例是与上述网络设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络设备,该网络设备为第二网络设备,具体地,第二网络设备的结构可参见图7的网络设备的结构,在此不再赘述。
具体地,处理器调用存储器中的指令或程序执行图9所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
可选的,如图10所示,本申请实施例还提供一种通信设备1000,包括处理器1001,存储器1002,存储在存储器1002上并可在所述处理器1001上运行的程序或指令,例如,该通信设备1000为第一网络设备时,该程序或指令被处理器1001执行时实现上述感知方法实施例的各个过程,且能达到相同的技术效果。该通信设备1000为第二网络设备时,该程序或指令被处理器1001执行时实现上述感知方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例涉及的终端,可以是指向用户提供语音和/或数据连通性的 设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的第一网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
第一网络设备与终端之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是二维MIMO(2D-MIMO)、三维MIMO(3D-MIMO)、全维度MIMO(FD-MIMO)或大规模MIMO(massive-MIMO),也可以是分集传输或预编码传输或波束赋形传输等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所 述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述感知方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (23)

  1. 一种感知方法,包括:
    第一网络设备发送感知信号;
    第一网络设备基于所述感知信号的测量量对所述感知信号的回波进行检测,获取所述测量量对应的测量值。
  2. 根据权利要求1所述的方法,其中,在所述第一网络设备基于所述感知信号的测量量对所述感知信号的回波进行检测,获取所述测量量对应的测量值之前,所述方法还包括以下一项:
    第一网络设备接收第二网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一网络设备需要测量的所述感知信号的测量量;
    第一网络设备根据第一感知需求,确定感知信号的测量量。
  3. 根据权利要求1所述的方法,其中,在所述第一网络设备发送感知信号之前,所述方法还包括:
    第一网络设备确定感知信号的配置信息。
  4. 根据权利要求3所述的方法,其中,所述第一网络设备确定感知信号的配置信息,包括以下至少一项:
    第一网络设备接收感知信号的第一配置信息,所述第一配置信息是第二网络设备发送的;
    第一网络设备根据第一信息,确定所述感知信号的第二配置信息;
    其中,所述第一信息包括以下至少一项:
    第一感知需求;
    配置信息的第一推荐信息,所述第一推荐信息由第二网络设备根据第一感知需求确定。
  5. 根据权利要求3或4所述的方法,其中,所述感知信号的配置信息包括以下参数中的至少一项:
    所述感知信号的波形;
    所述感知信号的子载波间隔;
    所述感知信号的保护间隔;
    所述感知信号的带宽;
    所述感知信号的突发burst持续时间;
    所述感知信号的时域间隔;
    所述感知信号的发送信号功率;
    所述感知信号的信号格式;
    所述感知信号的信号方向;
    所述感知信号的时间资源;
    所述感知信号的频率资源;
    所述感知信号的准共址QCL关系。
  6. 根据权利要求2或4所述的方法,其中,所述第一感知需求由第二网络设备发送给第一网络设备。
  7. 根据权利要求2或4所述的方法,其中,所述第一感知需求与以下至少一项相关联:
    感知对象;
    感知量;
    感知指标。
  8. 根据权利要求1所述的方法,其中,在所述第一网络侧设备获取所述测量量对应的测量值之后,所述方法还包括以下任一项:
    第一网络侧设备将所述测量量以及所述测量量对应的测量值发送给第二网络设备;
    第一网络侧设备根据所述测量量以及所述测量量对应的测量值确定感知结果并将感知结果发送给第二网络设备。
  9. 根据权利要求8所述的方法,其中,所述感知结果包括以下至少一项:
    目标物体的特征信息;
    目标事件的相关信息;
    目标环境的相关信息。
  10. 根据权利要求2、4或8所述的方法,其中,所述第二网络设备包括:移动和接入管理功能AMF实体或感知功能实体;
    其中,所述感知功能实体满足以下至少一项:
    管理感知所需资源的整体协调和调度;
    计算感知结果;
    估计感知精度;
    验证感知结果;
    支持立即感知请求;
    支持延迟感知请求;
    支持周期性或事件触发感知请求;
    支持取消周期或触发性的感知行为;
    根据第二信息确定感知方式;
    其中,所述第二信息包括:感知客户端的类型、感知服务质量QoS、终端的感知能力、第一网络设备的感知能力的至少一项;
    所述感知方式与接收和发送感知信号的实体相关联。
  11. 根据权利要求1所述的方法,其中,所述测量量包括以下至少一项:
    第一类测量量;
    第二类测量量;
    其中,所述第一类测量量包括以下至少一项:
    信道矩阵H;
    接收的信号强度指示RSSI;
    参考信号接收功率RSRP;
    信道状态信息CSI;
    多径信道中每条径的功率;
    多径信道中每条径的时延;
    多径信道中每条径的角度信息;
    多普勒扩展;
    多普勒频移;
    第一天线接收的感知信号与第二天线接收的感知信号的相位差;
    第一天线接收的感知信号与第二天线接收的感知信号的时延差;
    I路信号和Q路信号之间的特征差别;
    所述第二类测量量包括以下至少一项:
    目标物体的特征信息;
    目标事件的相关信息;
    目标环境的相关信息。
  12. 一种感知方法,包括:
    第二网络设备向第一网络设备发送第一感知需求和感知信号的配置信息中的至少一项。
  13. 根据权利要求12所述的方法,还包括:
    第二网络设备向第一网络设备发送第一指示信息;
    其中,所述第一指示信息用于指示所述第一网络设备需要测量的所述感知信号的测量量。
  14. 根据权利要求12所述的方法,其中,所述感知信号的配置信息包括:感知信号的第一配置信息;
    所述感知信号的第一配置信息通过以下确定方式确定:
    根据第三信息,确定所述感知信号的第一配置信息;
    其中,所述第三信息包括以下至少一项:
    第一感知需求;
    第一网络设备发送的感知能力信息;
    配置信息的第二推荐信息,所述第二推荐信息由第一网络设备根据第一感知需求确定并发送给第二网络设备。
  15. 根据权利要求12或14所述的方法,还包括:
    第二网络设备从终端、第一网络设备或第三网络设备侧接收第一感知需求。
  16. 根据权利要求12所述的方法,其中,在所述第二网络设备向第一网络设备发送第一感知信息之后,所述方法还包括以下一项:
    第二网络设备接收第一网络设备发送的感知信号的测量量以及所述测量量对应的测量值;
    第二网络设备接收第一网络设备发送的感知结果,所述感知结果由第一网络设备根据感知信号的测量量以及所述测量量对应的测量值获取。
  17. 根据权利要求16所述的方法,其中,在所述第二网络设备接收第一网络设备发送的感知信号的测量量以及所述测量量对应的测量值之后,所述方法还包括以下至少一项:
    第二网络设备根据所述测量量以及所述测量量对应的测量值,获取感知结果;
    第二网络设备将所述测量量以及所述测量量对应的测量值发送给终端或第三网络设备。
  18. 根据权利要求17所述的方法,其中,在所述第二网络设备根据所述测量量以及所述测量量对应的测量值,获取感知结果之后,所述方法还包括:
    第二网络设备将所述感知结果发送给终端或第三网络设备。
  19. 根据权利要求16所述的方法,其中,在所述第二网络设备接收第一网络设备发送的感知结果之后,所述方法还包括:
    第二网络设备将所述感知结果发送给终端或第三网络设备。
  20. 一种感知装置,应用于第一网络设备,所述装置包括:
    第一发送模块,用于发送感知信号;
    第一获取模块,用于基于所述感知信号的测量量对所述感知信号的回波进行检测,获取所述测量量对应的测量值。
  21. 一种感知装置,应用于第二网络设备,所述装置包括:
    第二发送模块,用于向第一网络设备发送第一感知需求和感知信号的配置信息中的至少一项。
  22. 一种网络设备,包括处理器,存储器及存储在所述存储器上并可在 所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至19中任一项所述的感知方法的步骤。
  23. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至19中任一项所述的感知方法的步骤。
PCT/CN2022/107296 2021-07-23 2022-07-22 感知方法、装置及网络设备 WO2023001269A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22845432.8A EP4376465A1 (en) 2021-07-23 2022-07-22 Sensing method and apparatus, and network device
US18/417,669 US20240154708A1 (en) 2021-07-23 2024-01-19 Sensing method, apparatus, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110839586.0A CN115696369A (zh) 2021-07-23 2021-07-23 感知方法、装置及网络设备
CN202110839586.0 2021-07-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/417,669 Continuation US20240154708A1 (en) 2021-07-23 2024-01-19 Sensing method, apparatus, and network device

Publications (1)

Publication Number Publication Date
WO2023001269A1 true WO2023001269A1 (zh) 2023-01-26

Family

ID=84978965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107296 WO2023001269A1 (zh) 2021-07-23 2022-07-22 感知方法、装置及网络设备

Country Status (4)

Country Link
US (1) US20240154708A1 (zh)
EP (1) EP4376465A1 (zh)
CN (1) CN115696369A (zh)
WO (1) WO2023001269A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116828520A (zh) * 2022-03-21 2023-09-29 华为技术有限公司 自发自收感知方法及相关产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879782A (zh) * 2012-09-25 2013-01-16 北京理工大学 基于分数阶傅里叶变换的压缩感知sar成像方法
WO2020244770A1 (en) * 2019-06-06 2020-12-10 NEC Laboratories Europe GmbH 5g cellular network-based warning method and system for motorcycle-related threats
CN112738758A (zh) * 2021-04-02 2021-04-30 成都极米科技股份有限公司 感知业务管理方法、装置、系统及可读存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879782A (zh) * 2012-09-25 2013-01-16 北京理工大学 基于分数阶傅里叶变换的压缩感知sar成像方法
WO2020244770A1 (en) * 2019-06-06 2020-12-10 NEC Laboratories Europe GmbH 5g cellular network-based warning method and system for motorcycle-related threats
CN112738758A (zh) * 2021-04-02 2021-04-30 成都极米科技股份有限公司 感知业务管理方法、装置、系统及可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU GUANGYI; HUANG YUHONG; LI NA; DONG JING; JIN JING; WANG QIXING; LI NAN: "Vision, requirements and network architecture of 6G mobile network beyond 2030", CHINA COMMUNICATIONS, CHINA INSTITUTE OF COMMUNICATIONS, PISCATAWAY, NJ, USA, vol. 17, no. 9, 1 September 2020 (2020-09-01), Piscataway, NJ, USA , pages 92 - 104, XP011811376, ISSN: 1673-5447, DOI: 10.23919/JCC.2020.09.008 *

Also Published As

Publication number Publication date
EP4376465A1 (en) 2024-05-29
CN115696369A (zh) 2023-02-03
US20240154708A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
US10959205B2 (en) Methods of positioning in a system comprising measuring nodes with multiple receiving points
WO2023001243A1 (zh) 感知方法、装置、终端及网络设备
WO2023030228A1 (zh) 检测方法、装置及设备
TW202222091A (zh) 取決於頻率和狀態的用戶裝備波束模式
WO2021118756A1 (en) User equipment aided nr-light user equipment positioning with round trip time procedures
WO2023274029A1 (zh) 通信感知方法、装置及网络设备
US20240154708A1 (en) Sensing method, apparatus, and network device
WO2023001270A1 (zh) 感知方法、装置及网络设备
WO2023045840A1 (zh) 感知定位方法、装置及通信设备
WO2023045841A1 (zh) 通信感知方法、装置及通信设备
WO2023001184A1 (zh) 感知信号测量方法、装置、网络设备及终端
US20230421993A1 (en) Crowd sensing using radio frequency sensing from multiple wireless nodes
WO2023231870A1 (zh) 通信方法、装置、终端、网络侧设备及核心网设备
WO2024099152A1 (zh) 信息传输方法、装置及通信设备
CN117676675A (zh) 数据传输方法、装置及节点
CN117544993A (zh) 信号确定方法、装置及通信设备
CN117544992A (zh) 信号确定方法、装置及通信设备
CN116917764A (zh) 通信系统雷达信令
WO2023172807A1 (en) Selecting secure sequences for radio frequency communication and positioning applications
CN116939592A (zh) 感知信号的处理方法、装置及通信设备
CN118102367A (zh) 测量方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845432

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022845432

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022845432

Country of ref document: EP

Effective date: 20240223