WO2023001243A1 - 感知方法、装置、终端及网络设备 - Google Patents

感知方法、装置、终端及网络设备 Download PDF

Info

Publication number
WO2023001243A1
WO2023001243A1 PCT/CN2022/107078 CN2022107078W WO2023001243A1 WO 2023001243 A1 WO2023001243 A1 WO 2023001243A1 CN 2022107078 W CN2022107078 W CN 2022107078W WO 2023001243 A1 WO2023001243 A1 WO 2023001243A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
network device
terminal
sensing signal
information
Prior art date
Application number
PCT/CN2022/107078
Other languages
English (en)
French (fr)
Inventor
姜大洁
姚健
袁雁南
吴晓波
孙鹏
李健之
秦飞
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP22845406.2A priority Critical patent/EP4376470A1/en
Publication of WO2023001243A1 publication Critical patent/WO2023001243A1/zh
Priority to US18/411,846 priority patent/US20240155394A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present application belongs to the communication field, and in particular relates to a sensing method, device, terminal and network equipment.
  • Future mobile communication systems such as the new fifth-generation communication technology (Beyond 5th Generation, B5G) system or sixth-generation mobile communication (6th Generation, 6G) system will not only have communication capabilities, but also have perception capabilities.
  • Perception capability that is, one or more devices with perception capability, which can perceive the orientation, distance, speed and other information of the target object through the transmission and reception of wireless signals, or detect, track, and detect the target object, event or environment. identification, imaging, etc.
  • the resolution of perception will be significantly improved compared with centimeter waves, so that 6G networks can provide more refined perception services.
  • the purposes of perception fall into two main categories.
  • the first type of purpose is perception to assist communication or enhance communication performance, for example, the base station provides more accurate beamforming alignment equipment by tracking the movement trajectory of the device; the other type of purpose is perception that is not directly related to communication , For example, base stations monitor weather conditions through wireless signals, mobile phones recognize user gestures through millimeter wave wireless perception, and so on.
  • Perception methods can be divided into the following types:
  • the device uses the reflected signal of its own transmitted signal, such as the echo, for sensing.
  • the transceiver is located at the same location, and different antennas can be used to sense the surrounding environment information of the device, as shown in Figure 1;
  • the transceivers are located at different locations, and the receiver uses the wireless signals transmitted by the transmitters to sense.
  • base station A perceives the environmental information between base station A and base station B by receiving wireless signals from base station B, as shown in Figure 2 shown.
  • Embodiments of the present application provide a sensing method, device, terminal, and network device, which can solve the problem that communication sensing cannot be realized without wireless sensing-related interaction processes.
  • a perception method including:
  • the terminal determines the measurement quantity of the sensing signal
  • the terminal detects the sensing signal, and acquires a measurement value corresponding to the measurement quantity
  • the sensing signal is sent by the first network device, and the first network device is a base station.
  • a sensing device which is applied to a terminal, including:
  • a first determining module configured to determine the measurement quantity of the sensing signal
  • a first acquisition module configured to detect the sensing signal, and acquire a measurement value corresponding to the measurement quantity
  • the sensing signal is sent by the first network device, and the first network device is a base station.
  • a perception method including:
  • the first network device sends a sensing signal to the terminal, so that the terminal detects the sensing signal, and obtains a measurement value corresponding to the measurement amount of the sensing signal;
  • the first network device is a base station.
  • a sensing device which is applied to a first network device, including:
  • a first sending module configured to send a sensing signal to a terminal, so that the terminal detects the sensing signal, and obtains a measurement value corresponding to a measurement quantity of the sensing signal
  • the first network device is a base station.
  • a perception method including:
  • the second network device sends the first sensing information to the terminal or the first network device
  • the first sensing information includes: at least one of a first sensing requirement, configuration information of sensing signals, and sensing signal index information to be measured by the terminal;
  • the first network device is a base station.
  • a sensing device which is applied to a second network device, including:
  • a second sending module configured to send the first sensing information to the terminal or the first network device
  • the first sensing information includes: at least one of a first sensing requirement, configuration information of sensing signals, and sensing signal index information to be measured by the terminal;
  • the first network device is a base station.
  • a terminal in a seventh aspect, includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, when the program or instruction is executed by the processor. The steps of the method described in the first aspect are realized.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to determine a measurement quantity of a sensing signal, detect the sensing signal, and obtain a measurement value corresponding to the measurement quantity;
  • the sensing signal is sent by the first network device.
  • a network device in a ninth aspect, includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, and the program or instruction is executed by the processor When executed, the steps of the method described in the third aspect or the fifth aspect are realized.
  • a network device is provided, the network device is a first network device, and includes a processor and a communication interface, wherein the communication interface is used to send a sensing signal to a terminal, so that the terminal is aware of the The signal is detected to obtain a measurement value corresponding to the measurement quantity of the sensing signal.
  • a network device is provided, the network device is a second network device, and includes a processor and a communication interface, where the communication interface is used to send the first sensing information to a terminal or the first network device;
  • the first sensing information includes: at least one of a first sensing requirement, configuration information of sensing signals, and sensing signal index information to be measured by the terminal.
  • a readable storage medium where programs or instructions are stored on the readable storage medium, and when the programs or instructions are executed by a processor, the implementation as described in the first aspect, the third aspect, or the fifth aspect is realized. steps of the method described above.
  • a chip in a thirteenth aspect, there is provided a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the first aspect and the third Aspect or the step of the method described in the fifth aspect.
  • a computer program product is provided, the computer program product is stored in a storage medium, and the program product is executed by at least one processor to implement the program described in the first aspect, the third aspect, or the fifth aspect steps of the method described above.
  • the received sensing signal is detected by using the measured amount of the sensing signal, and the measured value corresponding to the measured amount is obtained, thereby improving the network sensing process and ensuring smooth sensing of the network.
  • Figure 1 is a schematic diagram of active perception
  • Figure 2 is a schematic diagram of active perception
  • Figure 3 is a schematic diagram of the integrated classification of waveforms for perception and communication
  • FIG. 4 is one of the schematic flowcharts of the sensing method in the embodiment of the present application.
  • FIG. 5 is a schematic diagram of network elements involved in a specific application situation 1;
  • Fig. 6 is one of the module schematic diagrams of the sensing device of the embodiment of the present application.
  • FIG. 7 is a structural block diagram of a terminal according to an embodiment of the present application.
  • FIG. 8 is the second schematic flow diagram of the sensing method in the embodiment of the present application.
  • FIG. 9 is the second schematic diagram of the modules of the sensing device according to the embodiment of the present application.
  • FIG. 10 is a structural block diagram of a network device according to an embodiment of the present application.
  • FIG. 11 is the third schematic flow diagram of the sensing method in the embodiment of the present application.
  • Fig. 12 is the third block diagram of the sensing device according to the embodiment of the present application.
  • Fig. 13 is a structural block diagram of a communication device according to an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • the sensing function or other sensing requirements in Table 1 can be realized by sending the sensing signal and receiving/detecting the sensing signal; wherein, the device sending the sensing signal and receiving/detecting the sensing signal can be the same device or different devices.
  • Both the communication system and the perception system are based on the theory of electromagnetic waves, and use the emission and reception of electromagnetic waves to complete the acquisition and transmission of information;
  • Both the communication system and the perception system have structures such as antennas, transmitters, receivers, and signal processors, and there is a large overlap in hardware resources;
  • the air interface design of the B5G system or 6G system will support wireless communication signals and wireless sensing signals at the same time, and realize the integrated design of communication and sensing functions through signal joint design and/or hardware sharing and other means of communication and perception integration. At the same time, it has perception capabilities or provides perception services.
  • the benefits of synesthesia integration include the following aspects:
  • the generalized synaesthesia integration includes the following types:
  • the same network provides communication services and perception services
  • the same terminal provides communication service and perception service
  • the same frequency spectrum provides communication services and perception services
  • Integrated synaesthesia services in the same radio transmission that is, the joint design of communication signals and perception signals.
  • this embodiment of the present application provides a sensing method, including:
  • Step 401 the terminal determines the measurement quantity of the sensing signal
  • the sensing signal mentioned in the embodiment of the present application refers to the sensing signal that the terminal needs to measure, for example, it may be one or several sensing signals.
  • Step 402 the terminal detects the sensing signal, and obtains a measurement value corresponding to the measurement quantity
  • the sensing signal is sent by the first network device.
  • the embodiment of the present application is mainly aimed at the base station sending the sensing signal, and the terminal receives the sensing signal to detect and obtain the measured value
  • the first network device mentioned in the embodiment of the present application refers to the The base station on the network access side
  • the second network device mentioned in the embodiment of the present application can be a mobile and access management function (Access and Mobility Management Function, AMF) entity on the core network side
  • the second network device can also be a sensor
  • a functional entity for example, a sensing network functional entity or a sensing network element, the sensing functional entity may be located on the core network side or on the access network side
  • the second network device may also be other functional entities on the core network side.
  • the terminal may determine the measurement quantity of the sensing signal in at least one of the following manners:
  • A11 Receive first indication information sent by the first network device or the second network device, where the first indication information is used to indicate the measurement amount of the sensing signal that the terminal needs to measure;
  • the measurement quantity of the sensing signal may be sent to the terminal by the base station, or may be sent to the terminal by the AMF or the sensing function entity.
  • A12. Determine the measurement amount of the sensing signal that the terminal needs to measure according to the first sensing requirement
  • the measurement amount of the sensing signal is determined by the terminal itself according to the first sensing requirement; optionally, the first sensing requirement may be sent to the terminal by the first network device or the second network device; or Can be generated by the terminal.
  • the terminal in order to accurately receive the sensing signal, the terminal needs to determine the configuration information of the sensing signal before receiving the sensing signal.
  • the embodiment of the present application provides two ways of sending the sensing signal, and how the terminal determines the configuration information of the sensing signal in these two ways will be described in detail as follows.
  • the base station needs to send the sensing signal according to the configuration information of the sensing signal
  • the implementation manner for the terminal to determine the configuration information of the sensing signal includes at least one of the following:
  • the terminal receives first configuration information of the sensing signal, where the first configuration information is sent by the first network device;
  • the terminal receives second configuration information of the sensing signal, where the second configuration information is sent by the second network device;
  • the terminal determines third configuration information of the sensing signal according to the first sensing requirement.
  • the configuration information of the sensing signal may only be informed by the base station to the terminal.
  • the first configuration information includes all configurations of the sensing signal; the configuration information of the sensing signal may also be only the AMF The entity or the sensing function entity notifies the terminal.
  • the second configuration information contains all the configurations of the sensing signal; the configuration information of the sensing signal can also be determined by the terminal itself.
  • the third configuration information contains all the configurations of the sensing signal; the configuration information of the sensing signal can be determined by at least two of the base station, the terminal, and the AMF entity (or sensing function entity), that is, each device Only some parameters or some configuration information in the configuration information of the sensing signal are determined.
  • the configuration information of the sensing signal includes three configuration parameters A, B, and C.
  • the first configuration information includes A, B, and C of the sensing signal. C three configuration parameters; in the case that the configuration information of the sensing signal is only informed by the AMF entity or the sensing function entity, the second configuration information contains the three configuration parameters A, B, and C of the sensing signal;
  • the third configuration information contains the three configuration parameters A, B, and C of the sensing signal;
  • the first configuration information contains some parameters of the three configuration parameters A, B, and C of the sensing signal (for example, the first configuration information includes A), and the second configuration information includes A, B, and C of the sensing signal.
  • Another part of parameters among the three configuration parameters of C for example, the first configuration information includes B and C); and so on, and the
  • the process before the terminal detects the sensing signal is described as follows.
  • Case 1 The terminal receives the first sensing requirement sent by the sensing functional entity, and the terminal determines the configuration information of the sensing signal according to the first sensing requirement; the base station determines the configuration information of the sensing signal; the terminal receives the first indication information sent by the sensing functional entity, The first indication information is used to indicate the measurement amount of the sensing signal that the terminal needs to measure, the base station sends the sensing signal according to the configuration information of the sensing signal, and the terminal receives the sensing signal according to the configuration information of the sensing signal.
  • the way for the base station to determine the configuration information of the sensing signal includes the following items:
  • the first network device receives the second configuration information of the sensing signal sent by the second network device;
  • the first network device determines the first configuration information of the sensing signal according to the third information
  • the third information includes at least one of the following:
  • the first recommendation information of the configuration information, the first recommendation information is determined by the second network device according to the first perception requirement;
  • Case 2 The terminal receives the first sensing requirement sent by the base station, and the terminal determines the configuration information of the sensing signal according to the first sensing requirement; the base station receives the configuration information of the sensing signal sent by the sensing functional entity; the terminal receives the first indication information sent by the base station The first indication information is used to indicate the measurement amount of the sensing signal that the terminal needs to measure, the base station sends the sensing signal according to the configuration information of the sensing signal, and the terminal receives the sensing signal according to the configuration information of the sensing signal.
  • the manner in which the perception function entity determines the configuration information of the perception signal includes:
  • the fifth information includes at least one of the following:
  • the perception capability information may be the capability related to the measurement quantity supported by the first network device, such as which measurement quantities the terminal supports to acquire; for another example, the perception capability information may be the format of the perception signal that the first network device can send Information, for example, the maximum bandwidth of the sensing signal that the first network device can send is 100 MHz.
  • the perception capability information may be reported by the first network device to the second network device.
  • the perception capability information may be the capability related to the measurement quantities supported by the terminal, such as which types of measurement quantities the terminal supports to obtain; for another example, the perception capability may be the format information of the perception signal that the terminal can detect, such as the The maximum bandwidth of the sensing signal is 100MHz.
  • the sensing capability may be reported by the terminal to the second network device.
  • the third recommendation information of the configuration information, the third recommendation information is determined by the first network device according to the first perception requirement and sent to the second network device;
  • the fourth recommendation information of the configuration information, the fourth recommendation information is determined by the terminal according to the first perception requirement and sent to the second network device;
  • Method 2 The base station broadcasts the sensing signal, and the terminal only receives the sensing signal that needs to be measured
  • the implementation manner of determining the configuration information of the sensing signal by the terminal includes:
  • the terminal acquires the configuration information of the sensing signal sent by the first network device through broadcast signaling.
  • the configuration information of the sensing signal is also broadcast before broadcasting the sensing signal; in this case, the terminal must know which sensing signals it needs to measure , the sensing signal can be accurately received according to the configuration information of the sensing signal. Therefore, in another embodiment of the present application, before the terminal acquires the configuration information of the sensing signal sent by the first network device through broadcast signaling, the include:
  • the terminal determines the sensing signal to be measured according to the first information
  • the first information includes at least one of the following:
  • the first sensing requirement is associated with the sensing signal to be measured by the terminal, that is to say, the first sensing requirement corresponds to the sensing signal to be measured by the terminal, and the terminal can use the first sensing The requirement is to directly determine the sensory signal to be measured.
  • the sensing signal here refers to the common sensing signal.
  • the sensing signal index information is used to indicate which one or several common sensing signals are specific. For example, when the sensing signal index information is 1, the terminal needs to measure the number or Common sense signal with index 1.
  • the process before the terminal detects the sensing signal is described as follows.
  • Case 1 The terminal receives the first sensing requirement sent by the sensing functional entity, the terminal determines the sensing signal to be measured according to the first sensing need, and the terminal receives the configuration information of the sensing signal to be measured broadcasted by the base station; the base station determines the sensing signal to be measured according to the first sensing requirement.
  • Sensing requirements determining the configuration information of the sensing signal; the terminal receives the first indication information sent by the sensing function entity, the first indication information is used to indicate the measurement amount of the sensing signal that the terminal needs to measure, and the base station according to the sensing signal
  • the configuration information sends the sensing signal, and the terminal receives the sensing signal according to the sensing signal to be measured and the configuration information of the sensing signal.
  • Case 2 The terminal receives the first sensing requirement sent by the sensing functional entity and the sensing signal index information to be measured by the terminal, determines the sensing signal to be measured, and the terminal receives the configuration information of the sensing signal to be measured broadcast by the base station; the base station according to the first A sensing requirement, determining the configuration information of the sensing signal; the terminal receives the first indication information sent by the base station, the first indication information is used to indicate the measurement amount of the sensing signal that the terminal needs to measure, and the base station according to the configuration of the sensing signal information to send the sensing signal, and the terminal receives the sensing signal according to the sensing signal to be measured and the configuration information of the sensing signal.
  • both the base station and the core network need to determine the terminal capable of receiving the information before sending information to the terminal. Specifically, the base station and the core network determine the terminal receiving the information through one of the following information (that is, participating in the sensing terminal):
  • This information refers to whether the terminal can access the associated base station.
  • the perception capability may be the capability related to the measurement quantities supported by the terminal, such as which types of measurement quantities the terminal supports to obtain; for another example, the perception capability may be the format information of the perception signal that the terminal can detect, such as the perception signal that the terminal can detect The maximum bandwidth of the signal is 100MHz.
  • the sensing capability may be reported by the terminal to the first network device or to the second network device.
  • the other prior information includes: terminal location information;
  • the base station can further screen the UE.
  • RSSI Received Signal Strength Indicator
  • RSRP Reference Signal Received Power
  • mobility mobility and other measurement quantities
  • the perceived objects include, but are not limited to: at least one of objects, equipment, people, animals, buildings, automobiles, environment, air quality, humidity, temperature, and a specific area (ie, a certain area).
  • the perceived quantity includes, but is not limited to: the position of the perceived object, the distance of the perceived object, the moving speed of the perceived object, the imaging of the perceived object, the movement track of the perceived object, the texture analysis of the perceived object and material analysis at least one.
  • the sensing index includes but is not limited to: at least one of sensing accuracy, sensing error, sensing range, sensing delay, detection probability, and false alarm probability;
  • the perception precision includes: distance resolution, imaging resolution, movement speed resolution or angle resolution
  • the perception error includes: distance error, imaging error or movement speed error.
  • the first perception requirement is related to the combination of perception object and perception quantity at the same time, which can generate the following perception requirements:
  • the characteristic information of the target object the existence, distance, position, speed, acceleration, material, shape, category, radar cross section (Radar Cross Section, RCS) of the target object, polarization scattering characteristics, etc.
  • Information about target events fall detection, intrusion detection, quantity statistics, indoor positioning, gesture recognition, lip recognition, gait recognition, expression recognition, breathing monitoring, heart rate monitoring, etc.
  • Relevant information of the target environment humidity, brightness, temperature and humidity, atmospheric pressure, air quality, weather conditions, topography, building/vegetation distribution, population statistics, crowd density, vehicle density, etc.
  • the first sensing requirement may also be associated with configuration information of sensing signals or measurement quantities of sensing signals.
  • the first sensing requirement can be divided into several sensing categories, and each sensing category is associated with at least one item of configuration information of sensing signals and measurement quantities of sensing signals.
  • the association relationship can be stipulated in the agreement, or notified by signaling between different devices. If a certain device has a perception requirement, for example, the perception requirement requires another device (such as a terminal) to measure and feed back the measurement related to environment reconstruction amount, the perception demand is the perception index 1.
  • the terminal device obtains the sensing index 1 according to receiving signaling sent by other devices, and determines the configuration information of the sensing signal and/or the measurement amount of the sensing signal according to the sensing index 1 and Table 2.
  • any of the following items is further included:
  • the terminal sends the measured amount and the measured value corresponding to the measured amount to the first network device or the second network device;
  • the first network device may send the measurement amount and the measurement value corresponding to the measurement amount to the second network device
  • the second network device converts the sensing result, and sends the sensing result to the terminal (corresponding to the case where the terminal initiates the sensing service) or the third network device (corresponding to the case where other devices except the terminal initiate the sensing service), specifically,
  • the third network device may be other base stations, that is, base stations other than measuring sensing signals, other network elements in the core network, such as application servers (this case corresponds to the case where a third-party application initiates sensing services), a network management system, and the like.
  • the first network device may also convert the measurement amount and the measurement value corresponding to the measurement amount into a perception result, and convert The sensing result is sent to the second network device; the second network device directly sends the sensing result to the terminal or the third network device.
  • the second network device converts the sensing result and sends the sensing result to the terminal or the third network device.
  • the terminal when the terminal is the initiator of the sensing service, the terminal may also receive the sensing result from the second network device side.
  • the terminal determines a sensing result according to the measurement amount and a measurement value corresponding to the measurement amount;
  • the terminal may send the sensing result to the first network device.
  • the measured quantity and the measured value corresponding to the measured quantity are perception results.
  • the terminal When the terminal sends the sensing result to the first network device, the first network device sends the sensing result to the second network device, and the second network device sends the sensing result to the third network device.
  • the terminal may send the measured value and the measured value corresponding to the measured value to the base station, and the base station then sends the measured value and the measured value corresponding to The measured value is sent to the sensing function entity, and the sensing function entity determines the sensing result according to the measured value, and sends it to the application server, and the application server sends the sensing result to the third-party application; optionally, after the terminal obtains the measured value, it can send the measured The measurement value and the measurement value corresponding to the measurement value are sent to the base station, the base station determines the sensing result according to the measurement value and sends it to the sensing function entity, the sensing function entity sends the sensing result to the application server, and the application server sends the sensing result to the third-party application ;
  • the terminal may determine the sensing result according to the measurement amount and the measurement value corresponding to the measurement amount and send the
  • the terminal may send the measured value and the measured value corresponding to the measured value to the base station, and the base station then sends the measured value and the measured value corresponding to the measured value The value is sent to the AMF, and the AMF determines the sensing result according to the measured value; optionally, after the terminal obtains the measured value, it can send the measured value and the measured value corresponding to the measured value to the base station, and the base station determines the sensing result according to the measured value and sends to the AMF; optionally, after obtaining the measured value, the terminal may determine the sensing result according to the measured value and the measured value corresponding to the measured value and send the sensing result to the base station, and the base station forwards the sensing result to the AMF.
  • the terminal initiates the sensing service, optionally, after the terminal obtains the measured value, it can send the measured value and the measured value corresponding to the measured value to the base station, and the base station then sends the measured value and the measured value corresponding to the measured value
  • the value is sent to the AMF, and the AMF determines the sensing result according to the measured value, and then sends the sensing result to the terminal through Non-Access Stratum (NAS) signaling; optionally, after the terminal obtains the measured value, it can send the measured
  • the amount and the measurement value corresponding to the measurement amount are sent to the base station, the base station determines the sensing result according to the measurement value and sends it to the AMF, the AMF determines the sensing result according to the measurement value, and then sends the sensing result to the terminal through NAS signaling; optionally, After obtaining the measured value, the terminal may determine a sensing result according to the measured amount and the measured value corresponding to the measured amount.
  • NAS Non-Access Stratum
  • the feature information can be the existence, distance, position, speed, acceleration, material, shape, category, radar cross-sectional area RCS of the target object, polarization scattering characteristics, etc.;
  • the relevant information of the target time can be fall detection, intrusion detection, quantity statistics, indoor positioning, gesture recognition, lip recognition, gait recognition, facial expression recognition, breathing monitoring, heart rate monitoring, etc.;
  • the relevant information of the target environment may be humidity, brightness, temperature and humidity, atmospheric pressure, air quality, weather conditions, topography, building/vegetation distribution, population statistics, crowd density, vehicle density, etc.
  • the perception result may also include at least one of the following:
  • F105 support immediate perception request
  • multiple perception functional entities may correspond to one AMF entity, or one perception functional entity may be connected to multiple AMF entities.
  • the second information includes: at least one of the perceived client type, the perceived quality of service (Quality of Service, QoS), the sensing capability of the terminal, and the sensing capability of the first network device;
  • QoS Quality of Service
  • the sensing capability of the terminal and the sensing capability of the first network device
  • the sensing mode is associated with the entity receiving and sending the sensing signal.
  • the relationship between the entity corresponding to the sensing mode and the sending and receiving signal includes at least one of the following:
  • the first network node sends a sensing signal, and the second network node receives the sensing signal;
  • This situation refers to that the base station A sends the sensing signal, and the base station B receives the sensing signal.
  • the first network node sends and receives a sensing signal
  • This situation refers to that the base station A sends the sensing signal, and the base station A receives the sensing signal.
  • the first network node sends a sensing signal, and a terminal device associated with the first network node receives the sensing signal;
  • This situation refers to that the base station A sends the sensing signal, and the terminal receives the sensing signal.
  • the first terminal device sends the sensing signal, and the second terminal device receives the sensing signal;
  • This situation refers to that terminal A sends a sensing signal, and terminal B receives the sensing signal;
  • the first terminal device sends and receives a sensing signal
  • This situation refers to that terminal A sends a sensing signal, and terminal A receives the sensing signal;
  • the first terminal device sends a sensing signal, and the first network node receives the sensing signal;
  • This situation refers to that the terminal A sends the sensing signal, and the base station A receives the sensing signal.
  • the sensing functional entity can be located on the core network side or the base station side. If the sensing functional entity is located on the base station side, all processes of the sensing service are completed in the radio access network (Radio Access Network, RAN) (for base station triggered Sensing business, or UE triggers sensing business); the sensing functional entity can be a separate functional entity/physical entity, or deployed in the general server of the core network as one of the functions of the core network, or deployed on the base station side as a base station One of the functions; the sensing function entity directly interacts with the application server (such as the operator's application server) for sensing requests and sensing results; or, the sensing function entity interacts with the AMF for sensing requests and sensing results, and the AMF can directly or indirectly (through the gateway's The Gateway Mobile Location Center (GMLC) and the Network Exposure Function (NEF) exchange perception requests and perception results with application servers (such as third-party application servers).
  • GMLC Gateway Mobile Location Center
  • NEF Network Exposure Function
  • Orthogonal Frequency Division Multiplex OFDM
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • OTFS Orthogonal Time Frequency Space
  • FMCW Frequency Modulated Continuous Wave
  • pulse signal etc.
  • H102 the subcarrier spacing of the sensing signal
  • the subcarrier spacing of OFDM system is 30KHz.
  • the guard interval refers to the time interval from the moment when the signal ends to the moment when the latest echo signal of the signal is received; this parameter is proportional to the maximum sensing distance; for example, it can be passed 2dmax/c Calculated, dmax is the maximum sensing distance (belonging to the sensing requirement). For example, for the sensing signal sent and received spontaneously, dmax represents the maximum distance from the sensing signal receiving and receiving point to the signal transmitting point; in some cases, OFDM signal cyclic prefix (Cyclic prefix , CP) can play the role of the minimum guard interval.
  • OFDM signal cyclic prefix Cyclic prefix
  • this parameter is inversely proportional to the distance resolution, which can be obtained by c/(2 ⁇ delta_d), where delta_d is the distance resolution (belonging to perception requirements); c is the speed of light.
  • the burst duration is inversely proportional to the rate resolution (belonging to the perception requirement), which is the time span of the perception signal, mainly to calculate the Doppler frequency offset; this parameter can be calculated by c/(2 ⁇ delta_v ⁇ fc) Get; Among them, delta_v is the speed resolution; fc is the carrier frequency of the perceived signal.
  • time domain interval can be calculated by c/(2 ⁇ fc ⁇ v_range); among them, v_range is the maximum rate minus the minimum speed (belonging to the sensory demand); this parameter is the difference between two adjacent sensory signals time interval between.
  • the signal format may be: Sounding Reference Signal (Sounding Reference Signal, SRS), Demodulation Reference Signal (Demodulation Reference Signal, DMRS), Positioning Reference Signal (Positioning Reference Signal, PRS), etc., or other predefined signals, And related sequence format and other information.
  • SRS Sounding Reference Signal
  • DMRS Demodulation Reference Signal
  • PRS Positioning Reference Signal
  • the signal direction may be the direction of the sensing signal or beam information.
  • the time resource may be the time slot index where the sensing signal is located or the symbol index of the time slot; wherein, the time resource is divided into two types, one is a one-off time resource, for example, one symbol sends an omnidirectional first signal ;
  • the frequency resource includes a center frequency point of the sensing signal, a bandwidth, a resource block (Resource Block, RB) or a subcarrier, a reference point A (Point A), a starting bandwidth position, and the like.
  • a resource block Resource Block, RB
  • a subcarrier a reference point A (Point A)
  • Point A reference point A
  • the sensing signal includes multiple resources, and each resource is quasi co-located (Quasi co-location, QCL) with a Synchronization Signal Block (SSB), and the QCL includes types (Type) A, B, C or D.
  • QCL quasi co-located
  • SSB Synchronization Signal Block
  • the first type of measurement includes at least one of the following:
  • RSRP Reference Signal Received Power
  • K116 the time delay of each path in the multipath channel
  • K120 the phase difference between the sensing signal received by the first antenna and the sensing signal received by the second antenna
  • K121 the delay difference between the sensing signal received by the first antenna and the sensing signal received by the second antenna
  • K122 the characteristic difference between the I-channel signal and the Q-channel signal
  • the characteristic difference may be a phase difference or other differences between the I-channel signal and the Q-channel signal.
  • I-channel signal and the Q-channel signal are in-phase signals and quadrature signals respectively, I is in-phase, Q is quadrature, and the phase difference between the I-channel signal and the Q-channel signal is 90 degrees.
  • the second type of measurement includes at least one of the following:
  • the feature information of the target object is information that can reflect the attribute or state of the target object, and can be at least one of the following: the existence of the target object, the distance of the target object, the position of the target object, and the speed of the target object , the acceleration of the target object, the material of the target object, the shape of the target object, the category of the target object, the radar cross section (Radar Cross Section, RCS) of the target object, polarization scattering characteristics, etc.
  • RCS Radar Cross Section
  • the relevant information of the target event is the information related to the target event, that is, the information that can be detected/perceived when the target event occurs, which can be at least one of the following: fall detection, intrusion detection, quantity statistics, indoor positioning , Gesture recognition, lip recognition, gait recognition, expression recognition, breathing monitoring, heart rate monitoring, etc.
  • the relevant information of the target environment can be at least one of the following: humidity, brightness, temperature and humidity, atmospheric pressure, air quality, weather conditions, topography, building/vegetation distribution, population statistics, crowd density, vehicle density, etc. .
  • the measured quantities may also include at least one of the following:
  • the measurement amount is a measurement amount for each antenna or a measurement amount for each sensing resource.
  • the above measurement quantity is the measurement quantity of each antenna (port) at the transmitting end or the receiving end, or the above measurement quantity is the measurement quantity on each sensing resource, such as each resource block (Resource Block, RB), subcarrier or the measured volume of the RB group.
  • each sensing resource such as each resource block (Resource Block, RB), subcarrier or the measured volume of the RB group.
  • the core network or the sensing network functional entity/sensing network element determines which base station the associated base station is based on the target area, and determines the direction in which the base station sends the sensing signal .
  • Base station A sends sensing signals, UE receives sensing signals, and third-party applications initiate sensing services
  • Step S101 the application server receives a perception requirement from a third-party application
  • the perception requirement is to perceive a three-dimensional map of the target area (the accuracy/resolution of the map is 5m). Including the information of the target area, such as the latitude and longitude (range) of the area;
  • Step S102 the application server (including an internal server such as an intranet management system (Intranet Management System, IMS) or an external server) sends the sensing requirement to the core network (for example, AMF) or the sensing network function entity/sensing network element (if exists); or, the application server sends the perception requirement to the AMF, and the AMF forwards the requirement to the perception network functional entity/perception network element;
  • IMS Intranet Management System
  • the sensing network functional entity/sensing network element performs target information interaction with the target UE or the serving base station of the target UE or the base station associated with the target area (the target information includes processing sensing requests, interactive sensing capabilities, interactive sensing assistance data, Interaction perception measurement or perception result) to obtain the target perception result or perception measurement (uplink measurement or downlink measurement); it is also possible to obtain interaction information that may be required by interacting with other network elements/functions in the core network based on the target area base station information.
  • the core network or sensory network functional entity/sensory network element or application server or other nodes (such as AMF) complete the supervision process. If the AMF forwards the requirement to the perception network function entity/perception network element, and multiple perception network function entities/perception network elements can correspond to one AMF, then there is a problem of selection of the perception network function entity/perception network element (by AMF) choose):
  • the consideration factors for AMF to select the sensing network functional entity/perceiving network element include at least one of the following: requested QoS (such as sensing accuracy, response time, sensing QoS level), access type (Third Generation Partnership Projects (Third Generation Partnership Projects) , 3GPP) access/non-3GPP access), the fifth-generation mobile communication technology (5th-Generation, 5G) access network (Access Network, AN) type (ie 5G NR or eLTE) of the target UE, and the serving AN node (i.e.
  • gNodeB or NG-eNodeB RAN configuration information, perceived network functional entity/perceived network element capability, perceived network functional entity/perceived network element load, perceived network functional entity/perceived network element location, single event reporting or multiple events Reporting instructions, event reporting duration, network slicing information, etc.
  • Step S103 the core network (or the sensing network functional entity/sensing network element) sends the configuration information of sensing requirements or sensing signals to base station A;
  • the configuration information of the sensing signal can also be associated with the sensing requirement, only the sensing requirement needs to be notified, and the receiving end determines the configuration information of the sensing signal according to the sensing requirement and the association relationship;
  • the manner of determining the configuration information of the perception signal according to the perception requirement may adopt at least one of the following methods;
  • Base station A reports its own sensing capabilities (capabilities related to sending sensing signals, such as the maximum bandwidth for sending sensing signals, the maximum transmission power of sensing signals, etc.) to the core network, and/or UE reports its own sensing capabilities (receiving Capabilities related to the sensing signal, such as the maximum bandwidth of the sensing signal that can be received, the measurement amount of the supported sensing signal, etc.) are reported to the core network (AMF or sensing network function entity/sensing network element); then the core network determines the sensing Signal configuration information;
  • the base station determines the configuration information of the sensing signal according to the sensing requirement
  • the core network recommends the configuration information of the sensing signal to the base station according to the sensing requirements, and the base station finally determines the configuration information of the sensing signal;
  • the base station recommends the configuration information of the sensing signal to the core network according to the sensing requirements, and the core network finally determines the configuration information of the sensing signal;
  • the UE sends the proposed sensing signal configuration information to the base station, and the base station determines the sensing signal configuration information;
  • the UE sends the proposed configuration information of the sensing signal to the core network, and the core network determines the configuration information of the sensing signal;
  • At least two of the core network, the base station, and the UE each determine a part of the configuration information of the sensing signal.
  • the core network or sensory network functional entity/sensory network element determines the associated base station as base station A according to the target area, and determines the direction in which base station A sends the sensing signal.
  • Step S104 the core network (or sensing network functional entity/sensing network element) or base station A sends configuration information (including time-frequency information, sequence information, etc.) or sensing requirements of the sensing signal to the UE;
  • the base station determines the UE participating in the sensing (that is, receiving the sensing signal), or the AMF/perceiving network function entity/perceiving network element determines the UE participating in the sensing;
  • the base station can further screen the UE according to the sensing measurement signal related information reported by the UE, such as RSSI, RSRP, mobility and other measurement quantities.
  • Step S105 the core network (or sensory network functional entity/sensory network element) or base station A will need the measurement quantity related to the sensory signal measured by the UE (such as angle-of-arrival (Angle-of-Arrival, AOA), angle-of-arrival (Angel of Departure, AOD), delay, RSRP, radar spectrum information, etc.) are sent to UE; or,
  • the measurement quantity is determined by the UE according to the perception requirement, and no separate signaling indication is required (the mapping table from the perception requirement to the measurement quantity)
  • Step S106 base station A sends a sensing signal
  • base station A sends sensing signals in a beam sweeping (beam sweeping) manner.
  • Step S107 the UE receives the sensing signal.
  • the UE After receiving the sensing signal, the UE will obtain the measurement value of the corresponding measurement quantity, and one of the following processing methods can be selected for the measurement value:
  • Processing method 1 The conversion from the measured quantity to the perceived result is completed in the core network or application server
  • Step S108 the UE sends the measured quantity to the base station A, and the base station A sends the measured quantity to the core network (or the sensing network functional entity/perceiving network element)
  • Step S109 the core network (or sensing network functional entity/perceiving network element) sends the measured quantity to the application server, and the application server determines the sensing result according to the measured quantity; or,
  • the core network determines the sensing result according to the measurement quantity, and sends the sensing result to the application server;
  • Step S110 the application server sends the sensing result to the third-party application.
  • Processing method 2 The conversion from the measurement quantity to the perception result is completed in the base station
  • Step S108 the UE sends the measured quantity to the base station A;
  • Step S109 base station A determines the sensing result according to the measurement quantity, and sends the measurement result to the core network (or sensing network functional entity/sensing network element);
  • Step S110 the core network (or sensing network functional entity/perceiving network element) sends the sensing result to the application server;
  • Step S111 the application server sends the sensing result to the third-party application.
  • Processing method 3 The conversion from the measurement quantity to the perception result is completed in the UE
  • Step S108 the UE determines the sensing result according to the measurement quantity
  • Step S109 the UE sends the sensing result to the base station A, and the base station A sends the sensing result to the core network (or sensing network functional entity/sensing network element);
  • Step S110 the core network (or sensing network functional entity/perceiving network element) sends the sensing result to the application server;
  • Step S111 the application server sends the sensing result to the third-party application.
  • base station A relevant information of base station A, such as antenna position, synchronization information (SFN start time), AI related information, etc., also needs to be sent to the node that completes the above conversion to assist in completing the conversion process.
  • SFN start time synchronization information
  • AI related information etc.
  • the charging function is completed in the core network or the application server.
  • the sensing signal in the above process can be sent by multiple base stations/Transmission Reception Points (TRP), and the receiving sensing signal can also be multiple UEs; at this time, the core network needs to decide to send the sensing signal
  • TRP Transmission Reception Points
  • the set of base stations and the set of base stations receiving the sensing signals, and the configuration information of the sensing signals of the multiple base stations are sent to the corresponding multiple base stations and multiple UEs, and the measurement quantities related to the sensing signals that need to be measured by the receiving base stations are respectively Send to corresponding multiple UEs.
  • multiple transmitting base stations need to exchange configuration information of sensing signals (for example, a base station serving as a coordinator sends configuration information of sensing signals to other transmitting base stations, and sends measurement quantities related to sensing signals to UE); corresponding , base station A in the above process may be TRP A.
  • the UE may reject the sensing requirement or agree to the sensing requirement.
  • Base station A sends a sensing signal
  • UE receives the sensing signal
  • the core network or network management system, or base station
  • the implementation process in this case is mainly as follows:
  • Step S201 the core network AMF sends configuration information of sensing requirements or sensing signals to the sensing network functional entity/sensing network element;
  • the perception requirement is to perceive a three-dimensional map of the target area (the accuracy/resolution of the map is 5m). Including the information of the target area, such as the latitude and longitude (range) of the area and other information.
  • the AMF receives the configuration information of sensing requirements or sensing signals sent by the network management system, and forwards it to the sensing network functional entity/sensing network element;
  • the AMF receives the configuration information of the sensing requirements or sensing signals sent by the base station, and forwards them to the sensing network functional entity/sensing network element (Note: The sensing demands of base station A or the configuration information of sensing signals may not be sent to the core network, but may be directly sent to base station B).
  • Step S202 the sensing network function entity/sensing network element (the characteristics of the sensing network function entity/sensing network element are the same as the description in the specific application situation 1) sends the configuration information of sensing requirements or sensing signals to base station A (or, AMF Send the configuration information of the sensing requirement or the sensing signal to the base station A);
  • the configuration information of the sensing signal can also be associated with the sensing requirement, only the sensing requirement needs to be notified, and the receiving end determines the configuration information of the sensing signal according to the sensing requirement and the association relationship;
  • the specific implementation of determining the configuration information of the sensing signal according to the sensing requirement is the same as the specific application case 1, and will not be repeated here.
  • the configuration information of the sensing signal and the measurement quantity of the sensing signal are the same as the specific application situation 1.
  • Step S203 the core network (or sensing network functional entity/sensing network element) or base station A sends configuration information (including time-frequency information, sequence information, etc.) or sensing requirements of sensing signals to UE (receiving base station)
  • configuration information including time-frequency information, sequence information, etc.
  • sensing requirements of sensing signals to UE (receiving base station)
  • Step S204 the core network (or sensing network functional entity/sensing network element) or base station A sends the measurement quantities related to the sensing signal (such as AOA, AOD, delay, RSRP, radar spectrum information, etc.) to the UE; or,
  • the measurement quantity is determined by the UE according to the perception requirement, and no separate signaling indication (mapping table from perception requirement to measurement quantity) is required.
  • Step S205 base station A sends a sensing signal
  • base station A sends sensing signals in a beam sweeping manner.
  • Step S206 the UE receives the sensing signal
  • the UE After receiving the sensing signal, the UE will obtain the measurement value of the corresponding measurement quantity, and one of the following processing methods can be selected for the measurement value:
  • Processing method 1 The conversion from the measured quantity to the perceived result is completed in the core network
  • Step S207 the UE sends the measured quantity to the base station A;
  • Step S208 base station A sends the measured quantity to the core network (AMF or sensing network function entity/perceiving network element);
  • AMF sensing network function entity/perceiving network element
  • Step S209 the core network (AMF or sensing network function entity/perceiving network element) converts the measured quantity into a sensing result.
  • AMF sensing network function entity/perceiving network element
  • Processing method 2 The conversion from the measurement quantity to the perception result is completed in the base station
  • Step S207 the UE sends the measured quantity to the base station A;
  • Step S208 base station A determines the sensing result according to the measurement quantity
  • Step S209 base station A sends the sensing result to the core network (AMF or sensing network function entity/sensing network element).
  • AMF sensing network function entity/sensing network element
  • the UE may reject the sensing requirement or agree to the sensing requirement.
  • Processing method 3 The conversion from the measurement quantity to the perception result is completed in the UE
  • Step S207 the UE determines the sensing result according to the measurement quantity
  • Step S208 UE sends the sensing result to base station A
  • Step S209 base station A sends the sensing result to the core network (or sensing network functional entity/sensing network element).
  • the entire sensing service may not pass through the core network.
  • the sensing signals in the above process can be sent by multiple base stations/TRPs, and multiple UEs can receive the sensing signals;
  • the base stations assemble, and send the configuration information of the sensing signals of multiple base stations to corresponding multiple base stations and multiple UEs, and send the measurement quantities related to the sensing signals that need to be received by the base station to the corresponding multiple UEs.
  • the configuration information of the sensing signal needs to be exchanged between multiple transmitting base stations (for example, the base station serving as a coordinator sends the configuration information of the sensing signal to other transmitting base stations, and sends the measurement quantity related to the sensing signal to the UE);
  • the corresponding , base station A in the above process may be TRP A.
  • Base station A sends sensing signals, UE receives sensing signals, and UE initiates sensing services
  • the implementation process in this case is mainly as follows:
  • Step S301 the UE sends configuration information of sensing requirements or sensing signals to the AMF through NAS signaling;
  • the perception requirement is to perceive a three-dimensional map of the target area (the accuracy/resolution of the map is 5m). Including the information of the target area, such as the latitude and longitude (range) of the area and other information.
  • Step S302 the AMF sends configuration information of sensing requirements or sensing signals to the sensing network functional entity/sensing network element;
  • Step S303 the sensing network function entity/sensing network element (the characteristics of the sensing network function entity/sensing network element are the same as the description in the specific application situation 1) sends the configuration information of sensing requirements or sensing signals to base station A (or, AMF Send the configuration information of the sensing requirement or the sensing signal to the base station A);
  • the configuration information of the sensing signal can also be associated with the sensing requirement, only the sensing requirement needs to be notified, and the receiving end determines the configuration information of the sensing signal according to the sensing requirement and the association relationship;
  • the manner of determining the configuration information of the perception signal according to the perception requirement includes at least one of several methods:
  • Base station A reports its sensing capabilities (capabilities related to sending sensing signals, such as the maximum bandwidth for sending sensing signals, the maximum transmission power of sensing signals, etc.) to the core network (AMF or sensing network functional entity/sensing network element), And/or, the UE reports its sensing capabilities (capabilities related to receiving sensing signals, such as the maximum bandwidth of sensing signals that can be received, the measurement amount of supported sensing signals, etc.) to the core network; then the core network determines the sensing Signal configuration information;
  • the base station determines the configuration information of the sensing signal according to the sensing requirement
  • the core network determines the configuration information of a part of the sensing signals, and the base station determines the configuration information of another part of the sensing signals;
  • the core network recommends the configuration information of the sensing signal to the base station according to the sensing requirements, and the base station finally determines the configuration information of the sensing signal;
  • the base station recommends the configuration information of the sensing signal to the core network according to the sensing requirements, and the core network finally determines the configuration information of the sensing signal;
  • the UE recommends the configuration information of the sensing signal to the base station according to the sensing requirement, and the base station finally determines the configuration information of the sensing signal;
  • the UE recommends the configuration information of the sensing signal to the core network according to the sensing requirements, and the core network finally determines the configuration information of the sensing signal;
  • the UE determines the configuration information of the sensing signal according to the sensing requirement.
  • Step S304 the core network (or sensing network functional entity/sensing network element) or base station A sends configuration information (including time-frequency information, sequence information, etc.) or sensing requirements of the sensing signal to the UE;
  • Step S305 the core network (or sensing network functional entity/sensing network element) or base station A sends the measurement quantities related to the sensing signal (such as AOA, AOD, delay, RSRP, radar spectrum information, etc.) to the UE; or,
  • the measurement quantity is determined by the UE according to the perception requirement, and no separate signaling indication is required (the mapping table from the perception requirement to the measurement quantity);
  • Step S306 base station A sends a sensing signal
  • base station A sends sensing signals in a beam sweeping manner.
  • Step S307 the UE receives the sensing signal.
  • the UE After receiving the sensing signal, the UE will obtain the measurement value of the corresponding measurement quantity, and one of the following processing methods can be selected for the measurement value:
  • Processing method 1 The conversion from the measured quantity to the perceived result is completed in the core network
  • Step S308 the UE sends the measured quantity to the base station A;
  • Step S309 base station A sends the measured quantity to the core network (AMF or sensory network function entity/sensory network element);
  • AMF core network
  • Step S310 the core network (AMF or sensing network function entity/sensing network element) determines the sensing result according to the measurement quantity;
  • Step S311 the core network (AMF or sensing network function entity/sensing network element) sends the sensing result to the UE (via NAS signaling).
  • AMF sensing network function entity/sensing network element
  • Processing method 2 The conversion from the measurement quantity to the sensing result is completed in the base station A
  • Step S308 the UE sends the measured quantity to the base station A;
  • Step S309 base station A determines the sensing result according to the measurement amount, and sends the measurement result to the core network (AMF or sensing network function entity/sensing network element);
  • AMF sensing network function entity/sensing network element
  • Step S310 the core network (AMF or sensing network function entity/sensing network element) sends the sensing result to the UE (via NAS signaling).
  • AMF sensing network function entity/sensing network element
  • Processing method 3 The conversion from the measurement quantity to the perception result is completed in the UE
  • step S308 the UE determines a sensing result according to the measurement quantity.
  • the sensing signals in the above process can be sent by multiple base stations/TRPs, and multiple UEs can receive the sensing signals;
  • the base stations assemble, and send the configuration information of the sensing signals of multiple base stations to corresponding multiple base stations and multiple UEs, and send the measurement quantities related to the sensing signals that need to be received by the base station to the corresponding multiple UEs.
  • the configuration information of the sensing signal needs to be exchanged between multiple transmitting base stations (for example, the base station serving as a coordinator sends the configuration information of the sensing signal to other transmitting base stations, and sends the measurement quantity related to the sensing signal to the UE);
  • the corresponding , base station A in the above process may be TRP A.
  • the UE may reject the sensing requirement or agree to the sensing requirement.
  • Base station A sends a sensing signal
  • UE receives the sensing signal
  • a third-party application initiates a sensing service (the sensing signal is a broadcast sensing signal, and the entire sensing service is transparent to the base station)
  • the implementation process in this case is mainly as follows:
  • Step S401 the application server receives the perception requirement of the third-party application
  • the perception requirement is to perceive a three-dimensional map of the target area (the accuracy/resolution of the map is 5m). Including the information of the target area, such as the latitude and longitude (range) of the area and other information.
  • Step S402 the application server (including an on-network server such as IMS or an off-network server) sends the sensing requirement to the core network (such as AMF) or the sensing network functional entity/sensing network element of the core network (if it exists);
  • the core network such as AMF
  • the sensing network functional entity/sensing network element of the core network if it exists
  • the application server sends the perception requirement to the AMF, and the AMF forwards the requirement to the perception network function entity/perception network element.
  • Step S403 the core network (or sensory network functional entity/sensory network element) sends the sensory demand or the sensory signal index information that the UE needs to measure to the UE;
  • the sensing signal index information is associated with the sensing demand, only the sensing demand needs to be notified, and the receiving end determines the sensing signal information to be measured according to the sensing demand and the association relationship;
  • the base station determines the UE participating in the sensing (that is, receiving the sensing signal), or the AMF/sensing network function entity/sensing network element determines the UE participating in the sensing;
  • Step S404 the core network (or the sensing network functional entity/sensing network element) sends the measurement quantities related to the sensing signal (such as AOA, AOD, delay, RSRP, radar spectrum information, etc.) that the UE needs to report to the UE; or,
  • the measurement quantity is determined by the UE according to the perception requirement, and no separate signaling indication (mapping table from perception requirement to measurement quantity) is required.
  • Step S405 base station A sends a sensing signal (broadcast sensing signal);
  • base station A sends sensing signals in a beam sweeping manner.
  • Step S406 the UE receives the sensing signal
  • the UE reads the broadcast signaling to obtain configuration information of the sensing signal.
  • the UE After receiving the sensing signal, the UE will obtain the measurement value of the corresponding measurement quantity, and one of the following processing methods can be selected for the measurement value:
  • Processing method 1 The conversion from the measured quantity to the perceived result is completed in the core network or application server
  • Step S407 the UE sends the measured quantity to the base station A, and the base station A sends the measured quantity to the core network (or the sensing network functional entity/perceiving network element);
  • Step S408 the core network (or sensing network functional entity/perceiving network element) sends the measured quantity to the application server, and the application server determines the sensing result according to the measured quantity; or,
  • the core network determines the sensing result according to the measurement quantity, and sends the sensing result to the application server.
  • Step S409 the application server sends the sensing result to the third-party application.
  • Processing method 2 The conversion from the measurement quantity to the sensing result is completed in the UE;
  • Step S407 the UE determines the sensing result according to the measurement quantity
  • Step S408 the UE sends the sensing result to the base station A, and the base station A sends the sensing result to the core network (or the sensing network functional entity/sensing network element);
  • Step S409 the core network (or the sensing network functional entity/sensing network element) sends the sensing result to the application server;
  • Step S410 the application server sends the sensing result to the third-party application.
  • the sensing signals in the above process can be sent by multiple base stations/TRPs, and multiple UEs can also receive the sensing signals; at this time, the core network needs to determine the set of base stations that send the sensing signals and the base stations that receive the sensing signals Collect and send the configuration information of the sensing signals of multiple base stations to the corresponding multiple base stations and multiple UEs, and send the measurement quantities related to the sensing signals that need to be received by the base station to the corresponding multiple UEs.
  • multiple transmitting base stations need to exchange configuration information of sensing signals (for example, a base station serving as a coordinator sends configuration information of sensing signals to other transmitting base stations, and sends measurement quantities related to sensing signals to UE);
  • base station A in the above process may be TRP A.
  • the UE may reject the sensing requirement or agree to the sensing requirement.
  • Base station A sends a sensing signal
  • UE receives the sensing signal
  • the core network or network management system, or base station
  • initiates a sensing service the sensing signal is a broadcast sensing signal, and the entire sensing service is transparent to the base station
  • the implementation process in this case is mainly as follows:
  • Step S501 the core network AMF sends configuration information of sensing requirements or sensing signals to the sensing network functional entity/sensing network element;
  • the perception requirement is to perceive a three-dimensional map of the target area (the accuracy/resolution of the map is 5m). Including the information of the target area, such as the latitude and longitude (range) of the area and other information.
  • the AMF receives the configuration information of sensing requirements or sensing signals sent by the network management system, and forwards it to the sensing network functional entity/sensing network element;
  • the AMF receives the configuration information of the sensing requirements or sensing signals sent by the base station, and forwards them to the sensing network functional entity/sensing network element (Note: The sensing demands of base station A or the configuration information of sensing signals may not be sent to the core network, but may be directly sent to base station B).
  • Step S502 the sensing network function entity/perceiving network element sends the configuration information of the sensing requirement or the sensing signal to the base station A (or, the AMF sends the configuration information of the sensing requirement or the sensing signal to the base station A)
  • the configuration information of the sensing signal is associated with the sensing requirement, only the sensing requirement needs to be notified, and the receiver determines the configuration information of the sensing signal according to the sensing requirement and the association relationship;
  • Step S503 the core network (or sensory network functional entity/sensory network element) sends the sensory demand or the sensory signal index information that the UE needs to measure to the UE;
  • the sensing signal index information is associated with the sensing demand, only the sensing demand needs to be notified, and the receiving end determines the sensing signal index information to be measured according to the sensing demand and the association relationship;
  • the base station determines the UE participating in the sensing (that is, receiving the sensing signal), or the AMF/perceiving network function entity/perceiving network element determines the UE participating in the sensing;
  • Step S504 the core network (or the sensing network functional entity/sensing network element) sends the sensing signal-related measurement quantities (such as AOA, AOD, delay, RSRP, radar spectrum information, etc.) that the UE needs to report to the UE; or,
  • the sensing signal-related measurement quantities such as AOA, AOD, delay, RSRP, radar spectrum information, etc.
  • the measurement quantity is determined by the UE according to the perception requirement, and no separate signaling indication (mapping table from perception requirement to measurement quantity) is required.
  • Step S505 base station A sends a sensing signal (broadcast sensing signal);
  • base station A sends sensing signals in a beam sweeping manner.
  • Step S506 the UE receives the sensing signal
  • the UE reads the broadcast signaling to obtain configuration information of the sensing signal.
  • the UE After receiving the sensing signal, the UE will obtain the measurement value of the corresponding measurement quantity, and one of the following processing methods can be selected for the measurement value:
  • Processing method 1 The conversion from the measured quantity to the perceived result is completed in the core network
  • Step S507 UE sends the measured quantity to base station A;
  • Step S508 base station A sends the measured quantity to the core network (AMF or sensory network function entity/sensory network element);
  • AMF core network
  • Step S509 the core network (AMF or sensing network function entity/perceiving network element) converts the measured quantity into a sensing result.
  • AMF sensing network function entity/perceiving network element
  • Processing method 2 The conversion from the measurement quantity to the perception result is completed in the base station
  • Step S507 UE sends the measured quantity to base station A;
  • Step S508 base station A determines the sensing result according to the measurement quantity
  • Step S509 base station A sends the sensing result to the core network (AMF or sensing network function entity/perceiving network element).
  • AMF sensing network function entity/perceiving network element
  • Processing method 3 The conversion from the measurement quantity to the perception result is completed in the UE
  • Step S507 the UE determines the sensing result according to the measurement quantity
  • Step S508 UE sends the sensing result to base station A;
  • Step S509 base station A sends the sensing result to the core network (or sensing network functional entity/perceiving network element).
  • the entire sensing service may not pass through the core network.
  • the sensing signals in the above process can be sent by multiple base stations/TRPs, and multiple UEs can also receive the sensing signals; at this time, the core network needs to determine the set of base stations that send the sensing signals and the base stations that receive the sensing signals Collect and send the configuration information of the sensing signals of multiple base stations to the corresponding multiple base stations and multiple UEs, and send the measurement quantities related to the sensing signals that need to be received by the base station to the corresponding multiple UEs.
  • the configuration information of the sensing signal needs to be exchanged between multiple transmitting base stations (for example, the base station serving as a coordinator sends the configuration information of the sensing signal to other transmitting base stations, and sends the measurement quantity related to the sensing signal to the UE); the corresponding , base station A in the above process may be TRP A.
  • the UE may reject the sensing requirement or agree to the sensing requirement.
  • Base station A sends a sensing signal, UE receives the sensing signal, and UE initiates a sensing service (the sensing signal sent by base station A is a public sensing signal, such as SSB; the entire sensing service is transparent to the base station)
  • the sensing signal sent by base station A is a public sensing signal, such as SSB; the entire sensing service is transparent to the base station
  • the implementation process in this case is mainly as follows:
  • Step S601 UE (through NAS signaling) sends a sensing requirement to AMF (or other network elements of the core network);
  • the perception requirement is to perceive a three-dimensional map of the target area (the accuracy/resolution of the map is 5m). Including the information of the target area, such as the latitude and longitude (range) of the area and other information.
  • Step S602 the AMF sends an ACK to the UE; or, the AMF forwards the sensing request to the sensing network function entity/perceiving network element, and the sensing network function entity/perceiving network element sends an ACK to the UE;
  • the AMF sends to the UE the measurement quantity that needs to be reported by the UE in the sensing request;
  • Step S604 the UE sends the measurement value obtained by receiving the sensing signal sent by the base station to the AMF;
  • the UE reads the broadcast signaling to obtain the configuration information of the sensing signal;
  • Step S605 AMF sends the measurement value to the core network
  • Step S606 the core network (AMF or sensing network function entity/sensing network element) determines the sensing result according to the measurement quantity;
  • Step S607 the core network (for example, AMF or sensing network function entity/perceiving network element) sends the sensing result to the UE;
  • the core network for example, AMF or sensing network function entity/perceiving network element
  • the core network usually sends the sensing result to the terminal through NAS signaling.
  • the sensing signals in the above process can be sent by multiple base stations/TRPs, and multiple UEs can receive the sensing signals;
  • the base stations assemble, and send the configuration information of the sensing signals of multiple base stations to corresponding multiple base stations and multiple UEs, and send the measurement quantities related to the sensing signals that need to be received by the base station to the corresponding multiple UEs.
  • multiple transmitting base stations need to exchange configuration information of sensing signals (for example, a base station serving as a coordinator sends configuration information of sensing signals to other transmitting base stations, and sends measurement quantities related to sensing signals to UE), optional
  • base station A in the above process may be TRP A.
  • the UE may reject the sensing requirement or agree to the sensing requirement.
  • sensing services mentioned in the embodiments of this application can be: weather monitoring, reconstruction of 3D maps, traffic/crowd sensing, air quality detection such as PM2.5, monitoring factory pollutant detection, farm livestock monitoring, Or human action/posture recognition, etc.
  • the base station A sends the sensing signal
  • the UE receives the sensing signal (the sensing signal is a broadcast sensing signal, and the entire sensing service is transparent to the base station), and the specific The sensing signals in application cases 1, 2, and 3 are dedicated.
  • the embodiment of the present application provides the wireless sensing related process based on the base station sending the sensing signal, specifically including: the sensing process when the base station sends the sensing signal, the UE receives the sensing signal, and the signaling interaction between different sensing nodes etc., adding the function of sensing network functional entities/perceiving network elements, so as to improve the network communication process and ensure the smooth progress of sensing.
  • the sensing method provided in the embodiment of the present application may be executed by a sensing device, or a control module in the sensing device for executing the sensing method.
  • the sensing device provided in the embodiment of the present application is described by taking the sensing device executing the sensing method as an example.
  • the embodiment of the present application provides a sensing device 600, which is applied to a terminal, including:
  • the first determination module 601 is configured to determine the measurement quantity of the sensing signal
  • the first acquisition module 602 is configured to detect the sensing signal, and acquire a measurement value corresponding to the measurement quantity
  • the sensing signal is sent by the first network device, and the first network device is a base station.
  • the first determination module 601 is configured to implement at least one of the following:
  • first indication information sent by the first network device or the second network device, where the first indication information is used to indicate the measurement amount of the sensing signal that the terminal needs to measure;
  • the first obtaining module 602 detects the sensing signal and obtains the measurement value corresponding to the measurement quantity, it further includes:
  • the second determining module is configured to determine configuration information of the sensing signal.
  • the second determination module is configured to implement at least one of the following:
  • the second determination module is configured to:
  • the second determination module acquires the configuration information of the sensing signal sent by the first network device through broadcast signaling, it may further include:
  • the third determining module is used for the terminal to determine the sensing signal to be measured according to the first information
  • the first information includes at least one of the following:
  • Sensing signal index information to be measured by the terminal sent by the second network device Sensing signal index information to be measured by the terminal sent by the second network device.
  • the first perception requirement meets at least one of the following:
  • the first perceived need is associated with at least one of:
  • any of the following items is further included:
  • the first execution module sends the measured quantity and the measured value corresponding to the measured quantity to the first network device or the second network device;
  • the second execution module is configured to determine a perception result according to the measurement quantity and a measurement value corresponding to the measurement quantity.
  • the method further includes:
  • the first receiving module is configured to receive the sensing result from the second network device side.
  • the first execution module determines the perception result according to the measurement quantity and the measurement value corresponding to the measurement quantity, it further includes:
  • a third sending module configured to send the sensing result to the first network device.
  • the perception results include at least one of the following:
  • the second network device includes: a mobility and access management function AMF entity or a perception function entity;
  • the perception function entity satisfies at least one of the following:
  • the second information includes: at least one of the perceived client type, the perceived quality of service (QoS), the sensing capability of the terminal, and the sensing capability of the first network device;
  • QoS perceived quality of service
  • the sensing means are associated with entities receiving and sending sensing signals.
  • the configuration information of the sensing signal includes at least one of the following parameters:
  • the subcarrier spacing of the sensing signal is the subcarrier spacing of the sensing signal
  • the sending signal power of the sensing signal
  • the measured quantities include at least one of the following:
  • the first type of measurement quantity includes at least one of the following:
  • the second type of measurement includes at least one of the following:
  • the measurement amount is a measurement amount for each antenna or a measurement amount for each sensing resource.
  • this device embodiment is a device corresponding to the above-mentioned method, and all the implementation modes in the above-mentioned method embodiment are applicable to this device embodiment, and can also achieve the same technical effect, so details are not repeated here.
  • the sensing device in this embodiment of the present application may be a device, a device with an operating system or an electronic device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but not limited to, a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook , ultra-mobile personal computer (UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle equipment (Vehicle User Equipment, VUE), pedestrian terminal (Pedestrian User Equipment, PUE) and other terminal-side devices, wearable devices include: smart watches, bracelets, earphones, glasses, etc., non-mobile terminals can be servers, Network Attached Storage (NAS), personal computers, PC), television (television, TV), teller machine or self-service machine, etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • PC personal computers
  • TV television
  • the sensing device provided by the embodiment of the present application can realize each process realized by the method embodiment in FIG. 4 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface, the processor is configured to determine a measurement quantity of a sensing signal; detect the sensing signal, and acquire a measurement value corresponding to the measurement quantity;
  • the sensing signal is sent by the first network device, and the first network device is a base station.
  • FIG. 7 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, and a processor 710, etc. at least some of the components.
  • the terminal 700 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 710 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 704 may include a graphics processor (Graphics Processing Unit, GPU) 7041 and a microphone 7042, and the graphics processor 7041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072 .
  • the touch panel 7071 is also called a touch screen.
  • the touch panel 7071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 7072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 701 receives the downlink data from the network device, and processes it to the processor 710; in addition, sends the uplink data to the network device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 709 can be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 709 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 710 may include one or more processing units; optionally, the processor 710 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface and application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 710 .
  • processor 710 is used to implement:
  • the sensing signal is sent by the first network device, and the first network device is a base station.
  • processor 710 is further configured to implement at least one of the following:
  • first indication information sent by the first network device or the second network device, where the first indication information is used to indicate the measurement amount of the sensing signal that the terminal needs to measure;
  • processor 710 is also configured to implement:
  • processor 710 is further configured to implement at least one of the following:
  • processor 710 is also configured to implement:
  • processor 710 is also configured to implement:
  • the first information includes at least one of the following:
  • Sensing signal index information to be measured by the terminal sent by the second network device Sensing signal index information to be measured by the terminal sent by the second network device.
  • the first perception requirement meets at least one of the following:
  • the first perceived need is associated with at least one of:
  • processor 710 is also configured to implement:
  • a perception result is determined according to the measurement quantity and a measurement value corresponding to the measurement quantity.
  • the method further includes:
  • the radio frequency unit 701 is also used to implement:
  • the perception results include at least one of the following:
  • the second network device includes: a mobility and access management function (AMF) entity or a perception function entity.
  • AMF mobility and access management function
  • the perception function entity satisfies at least one of the following:
  • the second information includes: at least one of the perceived client type, the perceived quality of service (QoS), the sensing capability of the terminal, and the sensing capability of the first network device;
  • QoS perceived quality of service
  • the sensing means are associated with entities receiving and sending sensing signals.
  • the configuration information of the sensing signal includes at least one of the following parameters:
  • the subcarrier spacing of the sensing signal is the subcarrier spacing of the sensing signal
  • the sending signal power of the sensing signal
  • the measured quantities include at least one of the following:
  • the first type of measurement quantity includes at least one of the following:
  • the second type of measurement includes at least one of the following:
  • the measurement amount is a measurement amount for each antenna or a measurement amount for each sensing resource.
  • an embodiment of the present application further provides a terminal, including a processor, a memory, and a program or instruction stored in the memory and operable on the processor, and the program or instruction implements the sensing method when executed by the processor.
  • the embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored, and when the program or instruction is executed by the processor, each process of the embodiment of the sensing method can be realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the readable storage medium is, for example, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application also provides a sensing method, including:
  • Step 801 the first network device sends a sensing signal to the terminal, so that the terminal detects the sensing signal, and obtains a measurement value corresponding to the measurement amount of the sensing signal;
  • the first network device is a base station.
  • the method before the first network device sends the sensing signal to the terminal, the method further includes:
  • the first network device sends first indication information to the terminal, where the first indication information is used to indicate the measurement amount of the sensing signal that the terminal needs to measure.
  • the method before the first network device sends the sensing signal to the terminal, the method further includes:
  • the first network device determines configuration information of the sensing signal.
  • the first network device determines that the configuration information of the sensing signal includes the following item:
  • the first network device receives the second configuration information of the sensing signal sent by the second network device
  • the first network device determines first configuration information of the sensing signal according to the third information
  • the third information includes at least one of the following:
  • First recommendation information of configuration information where the first recommendation information is determined by the second network device according to the first perception requirement
  • Second recommendation information of configuration information where the second recommendation information is sent by the terminal to the first network device.
  • the method further includes:
  • the first network device sends the second indication information to the terminal
  • the second indication information includes: at least one of the first configuration information of the sensing signal and the first sensing requirement.
  • the method further includes:
  • the first network device sends configuration information of the sensing signal through broadcast signaling.
  • the first network device determining configuration information of the sensing signal includes:
  • the first network device determines configuration information of the sensing signal according to the first sensing requirement.
  • the first network device sending a sensing signal to the terminal includes:
  • the first network device determines at least one terminal receiving the sensing signal
  • the first network device sends a sensing signal to the at least one terminal.
  • the first network device determining at least one terminal receiving the sensing signal includes:
  • the first network device determines at least one terminal receiving the sensing signal according to the fourth information
  • the fourth information includes the following item:
  • Other prior information where the other prior information includes: terminal location information.
  • the first sensing requirement is sent by the second network device to the first network device.
  • the first perceived need is associated with at least one of the following:
  • the method further includes:
  • the first network device receives the measurement amount sent by the terminal and a measurement value corresponding to the measurement amount
  • the first operation includes one of the following:
  • the method further includes:
  • the first network device receives a perception result of a measurement value corresponding to the measurement quantity sent by the terminal;
  • the perception results include at least one of the following:
  • the configuration information of the sensing signal includes at least one of the following parameters:
  • the subcarrier spacing of the sensing signal is the subcarrier spacing of the sensing signal
  • the sending signal power of the sensing signal
  • the measured quantities include at least one of the following:
  • the first type of measurement quantity includes at least one of the following:
  • the second type of measurement includes at least one of the following:
  • the measurement amount is a measurement amount for each antenna or a measurement amount for each sensing resource.
  • the second network device includes: a mobility and access management function (AMF) entity or a perception function entity.
  • AMF mobility and access management function
  • the perception function entity satisfies at least one of the following:
  • the second information includes: at least one of the perceived client type, the perceived quality of service (QoS), the sensing capability of the terminal, and the sensing capability of the first network device;
  • QoS perceived quality of service
  • the sensing means are associated with entities receiving and sending sensing signals.
  • the embodiment of the present application also provides a sensing device 900, which is applied to a first network device, and the first network device is a base station, including:
  • the first sending module 901 is configured to send a sensing signal to a terminal, so that the terminal detects the sensing signal, and obtains a measurement value corresponding to a measurement quantity of the sensing signal.
  • the first sending module 901 before the first sending module 901 sends the sensing signal to the terminal, it further includes:
  • a fourth sending module configured to send first indication information to the terminal, where the first indication information is used to indicate the measurement amount of the sensing signal that the terminal needs to measure.
  • the first sending module 901 before the first sending module 901 sends the sensing signal to the terminal, it further includes:
  • the fourth determination module is configured to determine configuration information of the sensing signal.
  • the fourth determining module is used to implement the following one:
  • the third information includes at least one of the following:
  • First recommendation information of configuration information where the first recommendation information is determined by the second network device according to the first perception requirement
  • Second recommendation information of configuration information where the second recommendation information is sent by the terminal to the first network device.
  • the third determining module determines the configuration information of the sensing signal, it further includes:
  • a fifth sending module configured to send the second indication information to the terminal
  • the second indication information includes: at least one of the first configuration information of the sensing signal and the first sensing requirement.
  • the third determination module determines the configuration information of the sensing signal, it further includes:
  • the sixth sending module is configured to send the configuration information of the sensing signal through broadcast signaling.
  • the fourth determining module determines configuration information of the sensing signal, including:
  • the fifth determining module is configured to determine configuration information of the sensing signal according to the first sensing requirement.
  • the first sending module 901 includes:
  • a first determining unit configured to determine at least one terminal receiving the sensing signal
  • a first sending unit configured to send a sensing signal to the at least one terminal.
  • the first determining unit is configured to:
  • the first network device determines at least one terminal receiving the sensing signal according to the fourth information
  • the fourth information includes the following item:
  • Other prior information where the other prior information includes: terminal location information.
  • the first sensing requirement is sent by the second network device to the first network device.
  • the first perceived need is associated with at least one of the following:
  • the first sending module 901 sends the sensing signal to the terminal, it further includes:
  • a second receiving module configured to receive the measurement quantity sent by the terminal and a measurement value corresponding to the measurement quantity
  • a third execution module configured to execute a first operation based on the measured quantity and a measured value corresponding to the measured quantity
  • the first operation includes one of the following:
  • the first sending module 901 sends the sensing signal to the terminal, it further includes:
  • a third receiving module configured to receive a perception result of a measurement value corresponding to the measurement quantity sent by the terminal
  • a seventh sending module configured to send the sensing result to the second network device.
  • the perception results include at least one of the following:
  • the configuration information of the sensing signal includes at least one of the following parameters:
  • the subcarrier spacing of the sensing signal is the subcarrier spacing of the sensing signal
  • the sending signal power of the sensing signal
  • the measured quantities include at least one of the following:
  • the first type of measurement quantity includes at least one of the following:
  • the second type of measurement includes at least one of the following:
  • the measurement amount is a measurement amount for each antenna or a measurement amount for each sensing resource.
  • the second network device includes: a mobility and access management function (AMF) entity or a perception function entity.
  • AMF mobility and access management function
  • the perception function entity satisfies at least one of the following:
  • the second information includes: at least one of the perceived client type, the perceived quality of service (QoS), the sensing capability of the terminal, and the sensing capability of the first network device;
  • QoS perceived quality of service
  • the sensing means are associated with entities receiving and sending sensing signals.
  • this device embodiment is a device corresponding to the above-mentioned method, and all the implementation modes in the above-mentioned method embodiment are applicable to this device embodiment, and can also achieve the same technical effect, so details are not repeated here.
  • an embodiment of the present application further provides a network device, where the network device is a first network device, including a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the processor, each process of the sensing method embodiment applied to the first network device side can be realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a readable storage medium, on which a computer-readable storage medium stores a program or an instruction, and when the program or instruction is executed by a processor, each process of the embodiment of the sensing method applied to the first network device side is realized , and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the computer-readable storage medium is, for example, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • magnetic disk or an optical disk and the like.
  • An embodiment of the present application further provides a network device, the network device is a first network device, and includes a processor and a communication interface, and the communication interface is used to send a sensing signal to a terminal, so that the terminal detects the sensing signal, A measurement value corresponding to the measurement quantity of the sensing signal is obtained.
  • This network device embodiment corresponds to the above-mentioned network device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application further provides a network device, where the network device is a first network device.
  • the network device 1000 includes: an antenna 1001 , a radio frequency device 1002 , and a baseband device 1003 .
  • the antenna 1001 is connected to the radio frequency device 1002 .
  • the radio frequency device 1002 receives information through the antenna 1001, and sends the received information to the baseband device 1003 for processing.
  • the baseband device 1003 processes the information to be sent and sends it to the radio frequency device 1002
  • the radio frequency device 1002 processes the received information and sends it out through the antenna 1001 .
  • the foregoing frequency band processing apparatus may be located in the baseband apparatus 1003 , and the method performed by the network device in the above embodiments may be implemented in the baseband apparatus 1003 , and the baseband apparatus 1003 includes a processor 1004 and a memory 1005 .
  • the baseband device 1003 may include, for example, at least one baseband board, and the baseband board is provided with a plurality of chips, as shown in FIG.
  • the baseband device 1003 may also include a network interface 1006 for exchanging information with the radio frequency device 1002, such as a common public radio interface (common public radio interface, CPRI).
  • a network interface 1006 for exchanging information with the radio frequency device 1002, such as a common public radio interface (common public radio interface, CPRI).
  • CPRI common public radio interface
  • the network device in the embodiment of the present invention also includes: instructions or programs stored in the memory 1005 and executable on the processor 1004, and the processor 1004 calls the instructions or programs in the memory 1005 to execute the modules shown in FIG. 9 method, and achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • the embodiment of the present application also provides a sensing method, including:
  • Step 1101 the second network device sends the first sensing information to the terminal or the first network device;
  • the first sensing information includes: at least one of a first sensing requirement, configuration information of sensing signals, and sensing signal index information to be measured by the terminal;
  • the first network device is a base station.
  • the method further includes:
  • the second network device sends the first indication information to the terminal or the first network device
  • the first indication information is used to indicate the measurement amount of the sensing signal that the terminal needs to measure.
  • the configuration information of sensing signals includes: second configuration information of sensing signals
  • the manner of determining the second configuration information of the sensing signal includes:
  • the fifth information includes at least one of the following:
  • Third recommendation information of the configuration information is determined by the first network device according to the first perception requirement and sent to the second network device;
  • the fourth recommendation information of the configuration information is determined by the terminal according to the first perception requirement and sent to the second network device;
  • the manner of obtaining the first perceived demand includes the following one:
  • the first sensing requirement sent by the terminal or the third network device is received.
  • the first perceived need is associated with at least one of the following:
  • the method further includes:
  • the second network device determines at least one terminal that receives the first sensing information according to the sixth information
  • the sixth information includes the following item:
  • Other prior information where the other prior information includes: terminal location information.
  • the following item is further included:
  • the sensing result of the sensing signal sent by the first network device or the terminal is received.
  • the method further includes:
  • the method further includes:
  • the perception results include at least one of the following:
  • the measured quantities include at least one of the following:
  • the first type of measurement quantity includes at least one of the following:
  • the second type of measurement includes at least one of the following:
  • the measurement amount is a measurement amount for each antenna or a measurement amount for each sensing resource.
  • the configuration information of the sensing signal includes at least one of the following parameters:
  • the subcarrier spacing of the sensing signal is the subcarrier spacing of the sensing signal
  • the sending signal power of the sensing signal
  • the second network device includes: a mobility and access management function AMF entity or a perception function entity;
  • the perception function entity satisfies at least one of the following:
  • the second information includes: at least one of the perceived client type, the perceived quality of service (QoS), the sensing capability of the terminal, and the sensing capability of the first network device;
  • QoS perceived quality of service
  • the sensing means are associated with entities receiving and sending sensing signals.
  • the embodiment of the present application also provides a sensing device 1200, which is applied to the second network device, including:
  • the second sending module 1201 is configured to send the first perception information to the terminal or the first network device;
  • the first sensing information includes: at least one of a first sensing requirement, configuration information of sensing signals, and sensing signal index information to be measured by the terminal.
  • the second sending module 1201 sends the first sensing information to the terminal or the first network device, it further includes:
  • An eighth sending module configured to send the first indication information to the terminal or the first network device
  • the first indication information is used to indicate the measurement amount of the sensing signal that the terminal needs to measure.
  • the configuration information of the sensing signal includes: second configuration information of the sensing signal
  • the manner of determining the second configuration information of the sensing signal includes:
  • the fifth information includes at least one of the following:
  • Perception capability information sent by the first network device
  • Third recommendation information of the configuration information is determined by the first network device according to the first perception requirement and sent to the second network device;
  • the fourth recommendation information of the configuration information is determined by the terminal according to the first perception requirement and sent to the second network device;
  • the manner of obtaining the first perceived demand includes the following one:
  • the first sensing requirement sent by the terminal or the third network device is received.
  • the first perceived need is associated with at least one of the following:
  • the second sending module 1201 sends the first sensing information to the terminal, it further includes:
  • a sixth determining module configured to determine at least one terminal receiving the first sensing information according to the sixth information
  • the sixth information includes the following item:
  • Other prior information where the other prior information includes: terminal location information.
  • the eighth sending module sends the first indication information to the terminal or the first network device, the following item is further included:
  • the fourth receiving module is configured to receive the measurement amount of the sensing signal sent by the first network device or the terminal and the measurement value corresponding to the measurement amount;
  • the fifth receiving module is configured to receive a sensing result of the sensing signal sent by the first network device or terminal.
  • the fourth receiving module after the fourth receiving module receives the measurement amount of the sensing signal sent by the first network device or the terminal and the measurement value corresponding to the measurement amount, it further includes:
  • a seventh determining module configured to determine a perception result according to the measured quantity and the measured value corresponding to the measured quantity
  • a ninth sending module configured to send the sensing result to a terminal or a third network device.
  • the fifth receiving module after the fifth receiving module receives the sensing result of the sensing signal sent by the first network device, it further includes:
  • a tenth sending module configured to send the sensing result to a terminal or a third network device.
  • the perception results include at least one of the following:
  • the measured quantities include at least one of the following:
  • the first type of measurement quantity includes at least one of the following:
  • the delay difference between the sensing signal received by the first antenna and the sensing signal received by the second antenna is the delay difference between the sensing signal received by the first antenna and the sensing signal received by the second antenna
  • the second type of measurement includes at least one of the following:
  • the measurement amount is a measurement amount for each antenna or a measurement amount for each sensing resource.
  • the configuration information of the sensing signal includes at least one of the following parameters:
  • the subcarrier spacing of the sensing signal is the subcarrier spacing of the sensing signal
  • the sending signal power of the sensing signal
  • the second network device includes: a mobility and access management function (AMF) entity or a perception function entity.
  • AMF mobility and access management function
  • the perception function entity satisfies at least one of the following:

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种感知方法、装置、终端及网络设备,属于通信技术领域,本申请实施例的感知方法包括:终端确定感知信号的测量量;终端对所述感知信号进行检测,获取所述测量量对应的测量值;其中,所述感知信号是第一网络设备发送的,所述第一网络设备为基站。

Description

感知方法、装置、终端及网络设备
相关申请的交叉引用
本申请主张在2021年07月23日在中国提交的中国专利申请No.202110839591.1的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信领域,特别涉及一种感知方法、装置、终端及网络设备。
背景技术
未来移动通信系统例如全新第五代通信技术(Beyond 5th Generation,B5G)系统或第六代移动通信(6th Generation,6G)系统除了具备通信能力外,还将具备感知能力。感知能力,即具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。未来随着毫米波、太赫兹等具备高频段大带宽能力的小基站在6G网络的部署,感知的分辨率相比厘米波将明显提升,从而使得6G网络能够提供更精细的感知服务。
感知的目的主要分为两大类。第一类目的是感知用于辅助通信或者增强通信性能,例如,基站通过跟踪设备的移动轨迹以提供更精准的波束赋型对准设备;另一类目的是与通信没有直接关系的感知,例如基站通过无线信号对天气情况进行监测,手机通过毫米波无线感知识别用户的手势等等。
感知方式可以分为以下几种:
(1)主动感知:设备利用自身发射信号的反射信号例如回波进行感知,收发机位于同一位置,可采用不同天线,可以感知设备周围环境信息,如图1所示;
(2)被动感知:收发机位于不同位置,接收机利用发送机发射的无线信号进行感知,例如基站A通过接收来自基站B的无线信号感知基站A和基站B之间的环境信息,如图2所示。
(3)交互感知:感知者与目标对象之间通过信息交互,对电磁波发送的主体、时间、频率、格式等进行约定,完成感知的过程。
相关技术中并没有无线感知的相关流程,造成通信流程不完整。
发明内容
本申请实施例提供一种感知方法、装置、终端及网络设备,能够解决没有无线感知的相关交互流程,无法实现通信感知的问题。
第一方面,提供了一种感知方法,包括:
终端确定感知信号的测量量;
终端对所述感知信号进行检测,获取所述测量量对应的测量值;
其中,所述感知信号是第一网络设备发送的,所述第一网络设备为基站。
第二方面,提供了一种感知装置,应用于终端,包括:
第一确定模块,用于确定感知信号的测量量;
第一获取模块,用于对所述感知信号进行检测,获取所述测量量对应的测量值;
其中,所述感知信号是第一网络设备发送的,所述第一网络设备为基站。
第三方面,提供了一种感知方法,包括:
第一网络设备向终端发送感知信号,使得所述终端对所述感知信号进行检测,得到所述感知信号的测量量对应的测量值;
其中,所述第一网络设备为基站。
第四方面,提供了一种感知装置,应用于第一网络设备,包括:
第一发送模块,用于向终端发送感知信号,使得所述终端对所述感知信号进行检测,得到所述感知信号的测量量对应的测量值;
其中,所述第一网络设备为基站。
第五方面,提供了一种感知方法,包括:
第二网络设备向终端或第一网络设备发送第一感知信息;
其中,所述第一感知信息包括:第一感知需求、感知信号的配置信息和终端需测量的感知信号索引信息中的至少一项;
所述第一网络设备为基站。
第六方面,提供了一种感知装置,应用于第二网络设备,包括:
第二发送模块,用于向终端或第一网络设备发送第一感知信息;
其中,所述第一感知信息包括:第一感知需求、感知信号的配置信息和终端需测量的感知信号索引信息中的至少一项;
所述第一网络设备为基站。
第七方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第八方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于确定感知信号的测量量,对所述感知信号进行检测,获取所述测量量对应的测量值;
其中,所述感知信号是第一网络设备发送的。
第九方面,提供了一种网络设备,该网络设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面或第五方面所述的方法的步骤。
第十方面,提供了一种网络设备,所述网络设备为第一网络设备,包括处理器及通信接口,其中,所述通信接口用于向终端发送感知信号,使得所述终端对所述感知信号进行检测,得到所述感知信号的测量量对应的测量值。
第十一方面,提供了一种网络设备,所述网络设备为第二网络设备,包括处理器及通信接口,其中,所述通信接口用于向终端或第一网络设备发送第一感知信息;
其中,所述第一感知信息包括:第一感知需求、感知信号的配置信息和终端需测量的感知信号索引信息中的至少一项。
第十二方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面、第三方面或第五方面所述的方法的步骤。
第十三方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面、第三方面或第五方面所述的方法的步骤。
第十四方面,提供了一种计算机程序产品,所述计算机程序产品被存储在存储介质中,所述程序产品被至少一个处理器执行以实现如第一方面、第三方面或第五方面所述的方法的步骤。
在本申请实施例中,通过利用感知信号的测量量对接收的感知信号进行检测,获取测量量对应的测量值,以此完善了网络感知流程,保证网络能够顺利的进行感知。
附图说明
图1是主动感知示意图;
图2是主动感知示意图;
图3是感知和通信的波形一体化分类的示意图;
图4是本申请实施例的感知方法的流程示意图之一;
图5是具体应用情况一所涉及的网络单元示意图;
图6是本申请实施例的感知装置的模块示意图之一;
图7是本申请实施例的终端的结构框图;
图8是本申请实施例的感知方法的流程示意图之二;
图9是本申请实施例的感知装置的模块示意图之二;
图10是本申请实施例的网络设备的结构框图;
图11是本申请实施例的感知方法的流程示意图之三;
图12是本申请实施例的感知装置的模块示意图之三;
图13是本申请实施例的通信设备的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术 语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
下面先对本申请所涉及的相关技术进行描述如下:
无线感知的功能和应用用途如表1所示:
表1无线感知的功能和应用用途
Figure PCTCN2022107078-appb-000001
Figure PCTCN2022107078-appb-000002
通过发送感知信号和接收/检测感知信号可以实现表1中的感知功能或者其他感知需求;其中,发送感知信号和接收/检测感知信号的设备可以是同一个设备,也可以是不同的设备。
通感一体化设计从以下四个方面来看,存在可行性:
通信系统与感知系统均基于电磁波理论,利用电磁波的发射和接收来完成信息的获取和传递;
通信系统与感知系统均具备天线、发射机、接收机、信号处理器等结构,在硬件资源上有很大重叠;
随着技术的发展,两者在工作频段上也有越来越多的重合;
在信号调制与接收检测、波形设计等关键技术上存在相似性。
B5G系统或6G系统的空口设计,将同时支持无线通信信号和无线感知信号,通过信号联合设计和/或硬件共享等通信感知一体化手段,实现通信、感知功能一体化设计,在进行信息传递的同时,具备感知能力或者提供感知服务。
通感一体化带来的好处包括如下几个方面:
节约成本;
减小设备尺寸;
降低设备功耗;
提升频谱效率;
减小通感间的互干扰,提升系统性能。
目前通感一体化的范畴没有明确定义,广义的通感一体化包括如下几种:
同一网络提供通信服务和感知服务;
同一终端提供通信服务和感知服务;
同一频谱提供通信服务和感知服务;
同一次无线电发射中完成集成的通感一体化服务,即通信信号和感知信 号的联合设计。
感知和通信的波形一体化分类的示意图如图3所示。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的感知方法、装置、终端及网络设备进行详细地说明。
如图4所示,本申请实施例提供一种感知方法,包括:
步骤401,终端确定感知信号的测量量;
需要说明的是,本申请实施例中所提到的感知信号指的是终端需要测量的感知信号,例如,可以是某一个或某几个感知信号。
步骤402,终端对所述感知信号进行检测,获取所述测量量对应的测量值;
其中,所述感知信号是第一网络设备发送的。
需要说明的是,本申请实施例主要针对的是基站发送感知信号,终端接收感知信号进行检测得到测量值,也就是说,本申请实施例中所提到的第一网络设备指的是位于接入网侧的基站;本申请实施例中所提到的第二网络设备可以为核心网侧的移动和接入管理功能(Access and Mobility Management Function,AMF)实体;第二网络设备也可以为感知功能实体,例如,感知网络功能实体或感知网元,该感知功能实体可以位于核心网侧也可以位于接入网侧;第二网络设备还可以是核心网侧的其他功能实体。
需要说明的是,终端可以采用如下方式中至少一项确定感知信号的测量量:
A11、接收第一网络设备或第二网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端需要测量的所述感知信号的测量量;
也就是说,此种情况下,感知信号的测量量可以是基站发送给终端的,也可以是AMF或者感知功能实体发送给终端的。
A12、根据第一感知需求,确定所述终端需要测量的所述感知信号的测量量;
也就是说,此种情况下,感知信号的测量量是终端根据第一感知需求自己确定的;可选地,第一感知需求可以是由第一网络设备或第二网络设备发送给终端;也可以是由终端生成的。
还需要说明的是,为了能准确的进行感知信号的接收,终端在接收感知信号之前需要先确定所述感知信号的配置信息。
本申请实施例提供了两种感知信号的发送方式,下面分别在这两种方式下对终端如何确定所述感知信号的配置信息进行详细说明如下。
方式一、基站需要依据感知信号的配置信息进行感知信号的发送
需要说明的是,在此种情况下,终端确定所述感知信号的配置信息的实现方式,包括以下至少一项:
B11、终端接收所述感知信号的第一配置信息,所述第一配置信息是第一网络设备发送的;
B12、终端接收所述感知信号的第二配置信息,所述第二配置信息是第二网络设备发送的;
B13、终端根据第一感知需求,确定所述感知信号的第三配置信息。
这里需要说明的是,感知信号的配置信息可以仅仅是基站告知终端的,在此种情况下,第一配置信息中包含的便是感知信号的所有配置;感知信号的配置信息也可以仅仅是AMF实体或感知功能实体告知终端的,在此种情况下,第二配置信息中包含的便是感知信号的所有配置;感知信号的配置信息还可以仅仅是终端自己确定的,在此种情况下,第三配置信息中包含的便是感知信号的所有配置;感知信号的配置信息更可以是基站、终端以及AMF实体(或感知功能实体)中的至少两项确定的,也就是说,每个设备仅确定感知信号的配置信息中的部分参数或者部分配置信息。
例如,感知信号的配置信息中包括A、B、C三个配置参数,在感知信号的配置信息仅仅是基站告知终端的情况下,第一配置信息中包含的便是感知信号的A、B、C三个配置参数;在感知信号的配置信息仅仅是AMF实体或感知功能实体告知终端的情况下,第二配置信息中包含的便是感知信号的A、B、C三个配置参数;在感知信号的配置信息仅仅是终端自己确定的情况下,第三配置信息中包含的便是感知信号的A、B、C三个配置参数;在感知信号的配置信息是基站和AMF告知终端的情况下,第一配置信息中包含的是感知信号的A、B、C三个配置参数中的部分参数(例如第一配置信息包括A),第二配置信息中包含的是感知信号的A、B、C三个配置参数中的另一部分参 数(例如第一配置信息包括B和C);依此类推,其他情况同理,在此不再一一赘述。
下面在此种情况下,以终端、基站、感知功能实体为例,对终端检测感知信号之前的过程进行说明如下。
情况一、终端接收感知功能实体发送的第一感知需求,终端根据该第一感知需求,确定感知信号的配置信息;基站确定感知信号的配置信息;终端接收感知功能实体发送的第一指示信息,所述第一指示信息用于指示所述终端需要测量的所述感知信号的测量量,基站按照感知信号的配置信息进行感知信号的发送,终端按照感知信号的配置信息进行感知信号的接收。
这里需要说明的是,基站确定感知信号的配置信息的方式包括以下一项:
B111、第一网络设备接收第二网络设备发送的感知信号的第二配置信息;
B112、第一网络设备根据第三信息,确定感知信号的第一配置信息;
其中,所述第三信息包括以下至少一项:
B1121、第一感知需求;
B1122、配置信息的第一推荐信息,所述第一推荐信息由第二网络设备根据第一感知需求确定;
B1123、配置信息的第二推荐信息,所述第二推荐信息由终端发送给第一网络设备。
情况二、终端接收基站发送的第一感知需求,终端根据该第一感知需求,确定感知信号的配置信息;基站接收感知功能实体发送的感知信号的配置信息;终端接收基站发送的第一指示信息,所述第一指示信息用于指示所述终端需要测量的所述感知信号的测量量,基站按照感知信号的配置信息进行感知信号的发送,终端按照感知信号的配置信息进行感知信号的接收。
具体地,感知功能实体确定感知信号的配置信息的方式包括:
根据第五信息,确定所述感知信号的配置信息;
其中,所述第五信息,包括以下至少一项:
B121、第一感知需求;
B122、第一网络设备发送的感知能力信息;
例如,该感知能力信息可以为第一网络设备支持的测量量相关的能力, 例如终端支持获取哪几种测量量;再例如,该感知能力信息可以为第一网络设备可以发送的感知信号的格式信息,例如第一网络设备可以发送的感知信号的最大带宽是100MHz。该感知能力信息可以由第一网络设备上报给第二网络设备。
B123、终端发送的感知能力信息;
例如,该感知能力信息可以为终端支持的测量量相关的能力,例如终端支持获取哪几种测量量;再例如,该感知能力可以为终端可以检测的感知信号的格式信息,例如终端可以检测的感知信号的最大带宽是100MHz。该感知能力可以由终端上报给第二网络设备。
B124、配置信息的第三推荐信息,所述第三推荐信息由第一网络设备根据第一感知需求确定并发送给第二网络设备;
B125、配置信息的第四推荐信息,所述第四推荐信息由终端根据第一感知需求确定并发送给第二网络设备;
B126、配置信息的第五推荐信息,所述第五推荐信息由终端发送给第二网络设备。
方式二、基站广播感知信号,终端只接收需要测量的感知信号
需要说明的是,在此种情况下,终端确定所述感知信号的配置信息的实现方式,包括:
终端获取第一网络设备通过广播信令发送的所述感知信号的配置信息。
需要说明的是,此种情况下,因基站是进行感知信号的广播,因此感知信号的配置信息也是在广播感知信号之前广播的;在此种情况下,终端必须要知道其需要测量哪些感知信号,才能依据感知信号的配置信息,准确的接收感知信号,因此,本申请另一实施例中,在所述终端获取第一网络设备通过广播信令发送的所述感知信号的配置信息之前,还包括:
终端根据第一信息,确定待测量的感知信号;
其中,所述第一信息包括以下至少一项:
B21、第二网络设备发送的第一感知需求;
需要说明的是,此种情况下,第一感知需求与终端待测量的感知信号具有关联关系,也就是说,第一感知需求与终端待测量的感知信号是对应的, 终端可以依据第一感知需求直接确定待测量的感知信号。
B22、第二网络设备发送的终端需测量的感知信号索引信息;
此处的感知信号指的是公共感知信号。
需要说明的是,因基站会发送多个公共感知信号,该感知信号索引信息用于指示具体为哪一个或几个公共感知信号,例如,当感知信号索引信息为1时,终端需要测量编号或索引为1的公共感知信号。
下面在此种情况下,以终端、基站、感知功能实体为例,对终端检测感知信号之前的过程进行说明如下。
情况一、终端接收感知功能实体发送的第一感知需求,终端根据该第一感知需求,确定待测量的感知信号,终端接收基站广播的所述待测量的感知信号的配置信息;基站根据第一感知需求,确定感知信号的配置信息;终端接收感知功能实体发送的第一指示信息,所述第一指示信息用于指示所述终端需要测量的所述感知信号的测量量,基站按照感知信号的配置信息进行感知信号的发送,终端按照待测量的感知信号以及感知信号的配置信息进行感知信号的接收。
情况二、终端接收感知功能实体发送的第一感知需求和终端需测量的感知信号索引信息,确定待测量的感知信号,终端接收基站广播的所述待测量的感知信号的配置信息;基站根据第一感知需求,确定感知信号的配置信息;终端接收基站发送的第一指示信息,所述第一指示信息用于指示所述终端需要测量的所述感知信号的测量量,基站按照感知信号的配置信息进行感知信号的发送,终端按照待测量的感知信号以及感知信号的配置信息进行感知信号的接收。
还需要说明的是,基站和核心网在向终端发送信息之前,都需要先确定能够接收信息的终端,具体地,基站和核心网通过以下信息中的一项确定接收信息的终端(即参与感知的终端):
B31、终端是否接入第一网络设备的信息;
此信息指的是,终端是否能够接入关联的基站。
B32、终端上报的感知能力;
例如,该感知能力可以为终端支持的测量量相关的能力,例如终端支持 获取哪几种测量量;再例如,该感知能力可以为终端可以检测的感知信号的格式信息,例如终端可以检测的感知信号的最大带宽是100MHz。该感知能力可以由终端上报给第一网络设备或者上报给第二网络设备。
B33、其他先验信息,所述其他先验信息包括:终端位置信息;
例如,对于三维(3-dimension,3D)环境映射(environment mapping),仅需要在待重构环境范围内的用户设备(User Equipment,UE)参与。
这里还需要说明的是,确定参与感知的UE后,根据UE上报的感知测量信号相关信息,例如,接收信号强度指示(Received Signal Strength Indicator,RSSI),参考信号接收功率(Reference Signal Receiving Power,RSRP),移动性等测量量,基站还可以进一步筛选UE。
进一步需要说明的是,本申请实施例中所说的第一感知需求与以下至少一项相关联:
C11、感知对象;
可选地,所述感知对象包括但不限于:物体、设备、人、动物、建筑物、汽车、环境、空气质量、湿度、温度和特定区域(即某一区域)中的至少一项。
C12、感知量;
可选地,所述感知量包括但不限于:感知对象的位置、感知对象的距离、感知对象的移动速度、感知对象的成像、感知对象的运动轨迹、感知对象的质地分析和材质分析中的至少一项。
C13、感知指标;
可选地,所述感知指标包括但不限于:感知精度、感知误差、感知范围、感知时延、检测概率和虚警概率中的至少一项;
具体地,该感知精度包括:距离分辨率、成像分辨率、移动速度分辨率或者角度分辨率;该感知误差包括:距离误差、成像误差或者移动速度误差。
需要说明的是,第一感知需求同时关联到感知对象与感知量结合,可产生如下感知需求:
目标物体的特征信息:目标物体的存在、距离、位置、速度、加速度、材料、形状、类别、雷达散射截面积(Radar Cross Section,RCS),极化散射 特性等
目标事件的相关信息:跌倒检测、入侵检测、数量统计、室内定位、手势识别、唇语识别、步态识别、表情识别、呼吸监测、心率监测等
目标环境的相关信息:湿度、亮度、温度湿度、大气压强、空气质量、天气情况、地形地貌、建筑/植被分布、人数统计、人群密度、车辆密度等
可选的,第一感知需求还可以关联到感知信号的配置信息或感知信号的测量量。
如表2所示,可将第一感知需求划分为几个感知分类,每一种感知分类关联到感知信号的配置信息、感知信号的测量量的至少一项。关联关系可以是协议约定的,或者是不同设备之间通过信令通知的,如果某一设备有感知需求,例如,该感知需求需要另一设备(例如终端)测量并反馈环境重构相关的测量量,则该感知需求即为感知索引1。可选地,终端设备根据接收其他设备发送的信令来获取感知索引1,并根据感知索引1和表2来确定感知信号的配置信息和/或感知信号的测量量。
表2感知分类与感知信号的配置信息及测量量的关系
Figure PCTCN2022107078-appb-000003
Figure PCTCN2022107078-appb-000004
可选地,本申请的另一实施例中,在终端获取测量量对应的测量值之后,还包括以下任一项:
D11、所述终端将所述测量量以及所述测量量对应的测量值发送给第一网络设备或第二网络设备;
可选地,当测量量以及所述测量量对应的测量值发送给第一网络设备的情况下,第一网络设备可以将测量量以及所述测量量对应的测量值发送给第二网络设备,由第二网络设备进行感知结果的转换,并将感知结果发送给终端(对应终端发起感知业务的情况)或第三网络设备(对应除终端外的其他设备发起感知业务的情况),具体地,该第三网络设备可以为其他基站,即除测量感知信号之外的基站,核心网中的其他网元,例如应用服务器(此种情况对应第三方应用发起感知业务的情况)、网管系统等。
可选地,当测量量以及所述测量量对应的测量值发送给第一网络设备的情况下,第一网络设备也可以根据测量量以及所述测量量对应的测量值转换为感知结果,将感知结果发送给第二网络设备;第二网络设备直接将感知结果发送给终端或第三网络设备。
可选地,当测量量以及所述测量量对应的测量值发送给第二网络设备的情况下,由第二网络设备进行感知结果的转换,并将感知结果发送给终端或第三网络设备。
可选地,当终端为感知业务的发起端时,终端还可以从第二网络设备侧 接收的感知结果。
D12、所述终端根据所述测量量以及所述测量量对应的测量值确定感知结果;
可选地,在此之后,终端可以将所述感知结果发送给第一网络设备。
可选的,所述测量量以及所述测量量对应的测量值即是感知结果。
在终端将感知结果发送给第一网络设备的情况下,第一网络设备将感知结果发送给第二网络设备,第二网络设备将感知结果发送给第三网络设备。
下面从感知业务发起端的角度为例,对终端得到测量量之后需要执行的动作举例说明如下:
在第三方应用发起感知业务的情况下,可选地,终端在得到测量值后,可以将测量量以及所述测量量对应的测量值发送给基站,基站再将测量量以及所述测量量对应的测量值发送给感知功能实体,感知功能实体根据测量值确定感知结果,并发送给应用服务器,由应用服务器发送感知结果给第三方应用;可选地,终端在得到测量值后,可以将测量量以及所述测量量对应的测量值发送给基站,基站根据测量值确定感知结果并发送给感知功能实体,感知功能实体将感知结果,发送给应用服务器,由应用服务器发送感知结果给第三方应用;可选地,终端在得到测量值后,可以根据测量量以及所述测量量对应的测量值确定感知结果并将感知结果发送给基站,基站转发感知结果给感知功能实体,感知功能实体将感知结果发送给应用服务器,由应用服务器发送感知结果给第三方应用。
在AMF发起感知业务的情况下,可选地,终端在得到测量值后,可以将测量量以及所述测量量对应的测量值发送给基站,基站再将测量量以及所述测量量对应的测量值发送给AMF,AMF根据测量值确定感知结果;可选地,终端在得到测量值后,可以将测量量以及所述测量量对应的测量值发送给基站,基站根据测量值确定感知结果并发送给AMF;可选地,终端在得到测量值后,可以根据测量量以及所述测量量对应的测量值确定感知结果并将感知结果发送给基站,基站转发感知结果给AMF。
在终端发起感知业务的情况下,可选地,终端在得到测量值后,可以将测量量以及所述测量量对应的测量值发送给基站,基站再将测量量以及所述 测量量对应的测量值发送给AMF,AMF根据测量值确定感知结果,然后将感知结果通过非接入层面(Non-Access Stratum,NAS)信令发送给终端;可选地,终端在得到测量值后,可以将测量量以及所述测量量对应的测量值发送给基站,基站根据测量值确定感知结果并发送给AMF,AMF根据测量值确定感知结果,然后将感知结果通过NAS信令发送给终端;可选地,终端在得到测量值后,可以根据测量量以及所述测量量对应的测量值确定感知结果。
还需要说明的是,本申请实施例中所说的感知结果包括以下至少一项:
E11、目标物体的特征信息;
例如,特征信息可以为目标物体的存在、距离、位置、速度、加速度、材料、形状、类别、雷达散射截面积RCS,极化散射特性等;
E12、目标事件的相关信息;
例如,目标时间的相关信息可以为跌倒检测、入侵检测、数量统计、室内定位、手势识别、唇语识别、步态识别、表情识别、呼吸监测、心率监测等;
E13、目标环境的相关信息;
例如,目标环境的相关信息可以为湿度、亮度、温度湿度、大气压强、空气质量、天气情况、地形地貌、建筑/植被分布、人数统计、人群密度、车辆密度等。
可选地,感知结果还可以包括以下至少一项:
E101、目标对象的位置;
E102、目标对象的距离;
E103、目标对象的速度;
E104、目标对象的检测结果;
E105、目标对象的跟踪结果;
E106、目标对象的识别结果;
E107、目标对象的成像结果;
E108、目标环境的湿度;
E109、目标环境的温度;
E110、目标环境的空气质量。
本申请实施例中所说的感知功能实体满足以下至少一项:
F101、管理感知所需资源的整体协调和调度;
F102、计算感知结果;
F103、估计感知精度;
F104、验证感知结果;
F105、支持立即感知请求;
F106、支持延迟感知请求;
F107、支持周期性或事件触发感知请求;
F108、支持取消周期或触发性的感知行为;
F109、对应至少一个AMF实体;
也就是说,多个感知功能实体可以对应到一个AMF实体,也可以是一个感知功能实体对应连接到多个AMF实体。
F110、根据第二信息确定感知方式;
其中,所述第二信息包括:感知客户端的类型、感知服务质量(Quality of Service,QoS)、终端的感知能力、第一网络设备的感知能力的至少一项;
所述感知方式与接收和发送感知信号的实体相关联,具体地,所述感知方式所对应的实体与收发信号的关系包括以下至少一项:
F1101、第一网络节点发送感知信号,第二网络节点接收感知信号;
此种情况指的是,基站A发送感知信号,基站B接收感知信号。
F1102、第一网络节点发送并接收感知信号;
此种情况指的是,基站A发送感知信号,基站A接收感知信号。
F1103、第一网络节点发送感知信号,第一网络节点关联的终端设备接收感知信号;
此种情况指的是,基站A发送感知信号,终端接收感知信号。
F1104、第一终端设备发送感知信号,第二终端设备接收感知信号;
此种情况指的是,终端A发送感知信号,终端B接收感知信号;
F1105、第一终端设备发送并接收感知信号;
此种情况指的是,终端A发送感知信号,终端A接收感知信号;
F1106、第一终端设备发送感知信号,第一网络节点接收感知信号;
此种情况指的是,终端A发送感知信号,基站A接收感知信号。
还需要说明的是,该感知功能实体可以位于核心网侧或基站侧,若感知功能实体位于基站侧,则感知业务的所有流程在无线接入网络(Radio Access Network,RAN)完成(针对基站触发感知业务,或者UE触发感知业务的情况);该感知功能实体可以是单独的功能实体/物理实体,或者部署在核心网的通用服务器中作为核心网功能之一,或者部署在基站侧作为基站的功能之一;该感知功能实体直接与应用服务器(例如运营商的应用服务器)交互感知请求和感知结果;或者,感知功能实体与AMF交互感知请求和感知结果,AMF可以直接或间接(通过网关的移动位置中心(Gateway Mobile Location Centre,GMLC)和网络开放功能(Network Exposure Function,NEF))与应用服务器(例如第三方的应用服务器)交互感知请求和感知结果。
需要说明的是,本申请实施例中的感知信号的配置信息包括以下参数中的至少一项:
H101、所述感知信号的波形;
例如,正交频分复用(Orthogonal Frequency Division Multiplex,OFDM),单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA),正交时频空间(Orthogonal Time Frequency Space,OTFS),调频连续波(Frequency Modulated Continuous Wave,FMCW),脉冲信号等。
H102、所述感知信号的子载波间隔;
例如,OFDM系统的子载波间隔30KHz。
H103、所述感知信号的保护间隔;
需要说明的是,该保护间隔指的是从信号结束发送时刻到该信号的最迟回波信号被接收的时刻之间的时间间隔;该参数正比于最大感知距离;例如,可以通过2dmax/c计算得到,dmax是最大感知距离(属于感知需求),例如对于自发自收的感知信号,dmax代表感知信号收发点到信号发射点的最大距离;在某些情况下,OFDM信号循环前缀(Cyclic prefix,CP)可以起到最小保护间隔的作用。
H104、所述感知信号的带宽;
需要说明的是,该参数反比于距离分辨率,可以通过c/(2×delta_d)得 到,其中delta_d是距离分辨率(属于感知需求);c是光速。
H105、所述感知信号的突发(burst)持续时间;
需要说明的是,burst持续时间反比于速率分辨率(属于感知需求),其是感知信号的时间跨度,主要为了计算多普勒频偏;该参数可通过c/(2×delta_v×fc)计算得到;其中,delta_v是速度分辨率;fc是感知信号的载频。
H106、所述感知信号的时域间隔;
需要说明的是,该时域间隔可通过c/(2×fc×v_range)计算得到;其中,v_range是最大速率减去最小速度(属于感知需求);该参数是相邻的两个感知信号之间的时间间隔。
H107、所述感知信号的发送信号功率;
例如,从-20dBm到23dBm每隔2dBm取一个值。
H108、所述感知信号的信号格式;
例如,该信号格式可以为:探测参考信号(Sounding Reference Signal,SRS),解调参考信号(Demodulation Reference Signal,DMRS),定位参考信号(Positioning Reference Signal,PRS)等,或者其他预定义的信号,以及相关的序列格式等信息。
H109、所述感知信号的信号方向;
例如,该信号方向可以为感知信号的方向或者波束信息。
H110、所述感知信号的时间资源;
例如,该时间资源可以为感知信号所在的时隙索引或者时隙的符号索引;其中,时间资源分为两种,一种是一次性的时间资源,例如一个符号发送一个全向的第一信号;一种是非一次性的时间资源,例如多组周期性的时间资源或者不连续的时间资源(可包含开始时间和结束时间),每一组周期性的时间资源发送同一方向的感知信号,不同组的周期性时间资源上的波束方向不同。
H111、所述感知信号的频率资源;
可选地,该频率资源包括感知信号的中心频点,带宽,资源块(Resource Block,RB)或者子载波,参考点A(Point A),起始带宽位置等。
H112、所述感知信号的准共址QCL关系;
例如,感知信号包括多个资源,每个资源与一个同步信号块(Synchronization Signal Block,SSB)准共址(Quasi co-location,QCL),QCL包括类型(Type)A,B,C或者D。
需要说明的是,本申请实施例中的所述测量量包括以下至少一项:
K11、第一类测量量;
具体地,所述第一类测量量包括以下至少一项:
K111、信道矩阵H;
K112、接收的信号强度指示(RSSI);
K113、参考信号接收功率(RSRP);
K114、信道状态信息(CSI);
K115、多径信道中每条径的功率;
K116、多径信道中每条径的时延;
K117、多径信道中每条径的角度信息;
K118、多普勒扩展;
K119、多普勒频移;
K120、第一天线接收的感知信号与第二天线接收的感知信号的相位差;
K121、第一天线接收的感知信号与第二天线接收的感知信号的时延差;
K122、I路信号和Q路信号之间的特征差别;
需要说明的是,该特征差别可以是I路信号和Q路信号之间的相位差或者其他差别。
这里需要说明的是,I路信号和Q路信号分别为同相信号和正交信号,I为in-phase,Q为quadrature,I路信号和Q路信号的相位相差90度。
K12、第二类测量量;
具体地,所述第二类测量量包括以下至少一项:
K121、目标物体的特征信息;
需要说明的是,目标物体的特征信息是能够反映目标物体的属性或所处状态的信息,可以为以下至少一项:目标物体的存在、目标物体的距离、目标物体的位置、目标物体的速度、目标物体的加速度、目标物体的材料、目标物体的形状、目标物体的类别、目标物体的雷达散射截面积(Radar Cross  Section,RCS)、极化散射特性等。
K122、目标事件的相关信息;
需要说明的是,目标事件的相关信息是与目标事件有关的信息,即在目标事件发生时能够检测/感知到的信息,可以为以下至少一项:跌倒检测、入侵检测、数量统计、室内定位、手势识别、唇语识别、步态识别、表情识别、呼吸监测、心率监测等。
K123、目标环境的相关信息;
需要说明的是,目标环境的相关信息可以为以下至少一项:湿度、亮度、温度湿度、大气压强、空气质量、天气情况、地形地貌、建筑/植被分布、人数统计、人群密度、车辆密度等。
可选地,所述测量量还可以包括以下至少一项:
K21、反射点的位置、材料、形状和/或类别;
K22、雷达谱信息。
可选地,所述测量量为针对每个天线的测量量或者针对每个感知资源的测量量。
例如,上述测量量为发送端或接收端的每个天线(端口)的测量量,或者,上述测量量为每个感知资源上的测量量,如每个资源块(Resource Block,RB)、子载波或RB组的测量量。
需要说明的是,在核心网向基站发送感知相关信息的情况下,核心网或感知网络功能实体/感知网元根据目标区域确定关联的基站为哪一个基站,并确定该基站发送感知信号的方向。
下面对实际应用的具体应用情况进行举例说明如下。
具体应用情况一、基站A发感知信号,UE收感知信号,第三方应用发起感知业务
此种情况所涉及的网络设备如图5所示,此种情况下的实现过程主要为:
步骤S101、应用服务器收到第三方应用的感知需求;
例如,感知需求是感知目标区域的三维地图(地图的精度/分辨率是5m),该目标区域可以是指定的区域,如某个建筑物周边,也可以是目标UE的周边区域,感知需求可以包括目标区域的信息,如区域经纬度(范围)等信息;
步骤S102、应用服务器(包括网内服务器如内网管理系统(Intranet Management System,IMS)或网外服务器)将感知需求发送给核心网(例如,AMF)或感知网络功能实体/感知网元(如果存在);或者,应用服务器将感知需求发送AMF,AMF将该需求转发给感知网络功能实体/感知网元;
这里需要说明的是,感知网络功能实体/感知网元与目标UE或者目标UE的服务基站或者目标区域关联的基站进行目标信息交互(目标信息包括处理感知请求,交互感知能力,交互感知辅助数据,交互感知测量量或感知结果)以获得目标感知结果或感知测量量(上行测量量或下行测量量);还可以基于目标区域,通过与核心网内其他网元/功能交互,获取可能需要交互信息的基站信息。
还需要说明的是,核心网(或感知网络功能实体/感知网元)或者应用服务器或者其他节点(例如AMF)完成监管流程。如果AMF将该需求转发给感知网络功能实体/感知网元,且多个感知网络功能实体/感知网元可以对应到一个AMF,则存在感知网络功能实体/感知网元的选择问题(由AMF进行选择):
AMF选择感知网络功能实体/感知网元的考虑因素包括以下至少之一:请求的QoS(如感知精度、响应时间、感知QoS等级)、接入类型(第三代伙伴组织计划(Third Generation Partnership Projects,3GPP)接入/非3GPP接入)、目标UE的第五代移动通信技术(5th-Generation,5G)接入网(Access Network,AN)类型(即5G NR或eLTE)以及服务AN节点(即gNodeB或NG-eNodeB)、RAN配置信息、感知网络功能实体/感知网元能力、感知网络功能实体/感知网元负载、感知网络功能实体/感知网元位置、单次事件上报还是多次事件上报的指示、事件上报持续时间、网络切片信息等。
步骤S103、核心网(或感知网络功能实体/感知网元)把感知需求或感知信号的配置信息发给基站A;
还需要说明的是,还可以将感知信号的配置信息与感知需求关联,只需要通知感知需求,接收端根据感知需求和关联关系确定感知信号的配置信息;
可选地,根据感知需求确定感知信号的配置信息(例如,根据感知分辨率需求确定感知信号的带宽大小等)的方式可以采用以下几种方式中的至少 一项;
Y11、基站A将自己的感知能力(发送感知信号相关的能力,例如发送感知信号的最大带宽,感知信号的最大发射功率等)上报给核心网,和/或,UE将自己的感知能力(接收感知信号相关的能力,例如能接收的感知信号的最大带宽,支持的感知信号的测量量等)上报给核心网(AMF或感知网络功能实体/感知网元);然后核心网根据感知需求确定感知信号的配置信息;
Y12、基站根据感知需求确定感知信号的配置信息;
Y13、核心网根据感知需求向基站推荐感知信号的配置信息,基站最终决定感知信号的配置信息;
Y14、基站根据感知需求向核心网推荐感知信号的配置信息,核心网最终决定感知信号的配置信息;
Y15、UE将建议的感知信号的配置信息发送给基站,基站确定感知信号的配置信息;
Y16、UE将建议的感知信号的配置信息发送给核心网,核心网确定感知信号的配置信息;
Y17、核心网,基站和UE三者的至少两者各确定感知信号的配置信息的一部分。
这里需要说明的是,基站A的确定方法:核心网或感知网络功能实体/感知网元根据目标区域确定关联的基站为基站A,并确定基站A发送感知信号的方向。
步骤S104、核心网(或感知网络功能实体/感知网元)或基站A将感知信号的配置信息(包括时频信息,序列信息等)或感知需求发送给UE;
基站确定参与感知(即接收感知信号)的UE,或者AMF/感知网络功能实体/感知网元确定参与感知的UE;
具体地确定参与感知的UE的方式可以参见上述描述,在此不再赘述。
需要说明的是,确定参与感知的UE后,根据UE上报的感知测量信号相关信息,例如RSSI,RSRP,移动性等测量量,基站还可以进一步筛选UE。
步骤S105、核心网(或感知网络功能实体/感知网元)或基站A将需要UE测量的感知信号相关的测量量(如到达角度测距(Angle-of-Arrival,AOA), 离开角度测距(Angel of Departure,AOD),时延,RSRP,雷达谱信息等)发送给UE;或,
测量量由UE根据感知需求确定,不需要单独信令指示(感知需求到测量量的映射表)
步骤S106、基站A发送感知信号;
需要说明的是,基站A以波束扫描(beam sweeping)的方式发送感知信号。
步骤S107、UE接收感知信号。
在进行接收感知信号后,UE会得到对应的测量量的测量值,对于该测量值可以选择如下处理方式中的一种:
处理方式一、测量量到感知结果的转换在核心网或应用服务器完成
步骤S108、UE把测量量发送给基站A,基站A把测量量发送给核心网(或感知网络功能实体/感知网元)
步骤S109、核心网(或感知网络功能实体/感知网元)将测量量发送给应用服务器,应用服务器根据测量量确定感知结果;或者,
核心网(或感知网络功能实体/感知网元)根据测量量确定感知结果,并把感知结果发送给应用服务器;
步骤S110、应用服务器将感知结果发送给第三方应用。
处理方式二、测量量到感知结果的转换在基站完成
步骤S108、UE把测量量发送给基站A;
步骤S109、基站A根据测量量确定感知结果,并把测量结果发送给核心网(或感知网络功能实体/感知网元);
步骤S110、核心网(或感知网络功能实体/感知网元)将感知结果发送给应用服务器;
步骤S111、应用服务器将感知结果发送给第三方应用。
需要说明的是,此种处理方式下,测量量(例如角度信息,RSRP信息等)到感知结果(例如三维地图)的转换在基站A。
处理方式三、测量量到感知结果的转换在UE完成
步骤S108、UE根据测量量确定感知结果;
步骤S109、UE把感知结果发送给基站A,基站A把感知结果发送给核心网(或感知网络功能实体/感知网元);
步骤S110、核心网(或感知网络功能实体/感知网元)将感知结果发送给应用服务器;
步骤S111、应用服务器将感知结果发送给第三方应用。
还需要说明的是,基站A的相关信息例如天线位置,同步信息(SFN起始时间),AI相关信息等也需要发送给完成上述转换的节点,以辅助完成转换过程。
还需要说明的是,计费功能在核心网或应用服务器完成。
还需要说明的是,以上流程中的感知信号可以由多个基站/发送接收点(Transmission Reception Point,TRP)发送,接收感知信号也可以是多个UE;此时,核心网需要决定发送感知信号的基站集合,以及接收感知信号的基站集合,并把多个基站的感知信号的配置信息分别发给对应的多个基站以及多个UE,并把需要接收基站测量的感知信号相关的测量量分别发给对应的多个UE。可选的,多个发送基站之间需要交互感知信号的配置信息(例如充当协调者的基站把感知信号的配置信息发给其他发送基站,把感知信号相关的测量量发给UE);对应的,上述流程中的基站A可以是TRP A。
还需要说明的是,UE收到第一网络设备或第二网络设备发送的感知需求或感知相关的测量量后,UE可以拒绝该感知需求,或者同意该感知需求。
具体应用情况二、基站A发感知信号,UE收感知信号,核心网(或者网管系统,或者基站)发起感知业务
此种情况下的实现过程主要为:
步骤S201、核心网AMF把感知需求或感知信号的配置信息发给感知网络功能实体/感知网元;
例如,感知需求是感知目标区域的三维地图(地图的精度/分辨率是5m),该目标区域可以是指定的区域,如某个建筑物周边,也可以是目标UE的周边区域,感知需求可以包括目标区域的信息,如区域经纬度(范围)等信息。
或者AMF接收网管系统发送的感知需求或感知信号的配置信息,并转发给感知网络功能实体/感知网元;
或者AMF接收基站发送的感知需求或感知信号的配置信息,并转发给感知网络功能实体/感知网元(注:基站A的感知需求或感知信号的配置信息,可以不发给核心网,可以直接发给基站B)。
步骤S202、感知网络功能实体/感知网元(该感知网络功能实体/感知网元的特征与具体应用情况一中的描述相同)把感知需求或感知信号的配置信息发给基站A(或者,AMF把感知需求或感知信号的配置信息发给基站A);
还需要说明的是,还可以将感知信号的配置信息与感知需求关联,只需要通知感知需求,接收端根据感知需求和关联关系确定感知信号的配置信息;
可选地,根据感知需求确定感知信号的配置信息(例如,根据感知分辨率需求确定感知信号的带宽大小等)的具体地实现方式与具体应用情况一相同,在此不再赘述。
其中,感知信号的配置信息以及感知信号的测量量均与具体应用情况一相同。
步骤S203、核心网(或感知网络功能实体/感知网元)或基站A将感知信号的配置信息(包括时频信息,序列信息等)或感知需求发送给UE(接收基站)
可选地,核心网或基站确定参与感知UE的方式可参见上述描述,在此不再赘述。
步骤S204、核心网(或感知网络功能实体/感知网元)或基站A将感知信号相关的测量量(如AOA,AOD,时延,RSRP,雷达谱信息等)发送给UE;或,
测量量由UE根据感知需求确定,不需要单独信令指示(感知需求到测量量的映射表)。
步骤S205、基站A发送感知信号;
需要说明的是,基站A以beam sweeping的方式发送感知信号。
步骤S206、UE接收感知信号;
在进行接收感知信号后,UE会得到对应的测量量的测量值,对于该测量值可以选择如下处理方式中的一种:
处理方式一、测量量到感知结果的转换在核心网完成
步骤S207、UE把测量量发送给基站A;
步骤S208、基站A把测量量发送给核心网(AMF或感知网络功能实体/感知网元);
步骤S209、核心网(AMF或感知网络功能实体/感知网元)把测量量转换为感知结果。
处理方式二、测量量到感知结果的转换在基站完成
步骤S207、UE把测量量发送给基站A;
步骤S208、基站A根据测量量确定感知结果;
步骤S209、基站A将感知结果发送给核心网(AMF或感知网络功能实体/感知网元)。
还需要说明的是,UE收到第一网络设备或第二网络设备发送的感知需求或感知相关的测量量后,UE可以拒绝该感知需求,或者同意该感知需求。
处理方式三、测量量到感知结果的转换在UE完成
步骤S207、UE根据测量量确定感知结果
步骤S208、UE把感知结果发送给基站A
步骤S209、基站A把感知结果发送给核心网(或感知网络功能实体/感知网元)。
这里需要说明的是,如果感知网络功能实体/感知网元部署在基站,一种可选的方案是:整个感知业务可以不经过核心网。
还需要说明的是,以上流程中的感知信号可以由多个基站/TRP发送,接收感知信号也可以是多个UE;此时,核心网需要决定发送感知信号的基站集合,以及接收感知信号的基站集合,并把多个基站的感知信号的配置信息分别发给对应的多个基站以及多个UE,并把需要接收基站测量的感知信号相关的测量量分别发给对应的多个UE。可选地,多个发送基站之间需要交互感知信号的配置信息(例如充当协调者的基站把感知信号的配置信息发给其他发送基站,把感知信号相关的测量量发给UE);对应的,上述流程中的基站A可以是TRP A。
具体应用情况三、基站A发感知信号,UE收感知信号,UE发起感知业务
此种情况下的实现过程主要为:
步骤S301、UE通过NAS信令发送感知需求或感知信号的配置信息给AMF;
例如,感知需求是感知目标区域的三维地图(地图的精度/分辨率是5m),该目标区域可以是指定的区域,如某个建筑物周边,也可以是目标UE的周边区域,感知需求可以包括目标区域的信息,如区域经纬度(范围)等信息。
步骤S302、AMF把感知需求或感知信号的配置信息发给感知网络功能实体/感知网元;
步骤S303、感知网络功能实体/感知网元(该感知网络功能实体/感知网元的特征与具体应用情况一中的描述相同)把感知需求或感知信号的配置信息发给基站A(或者,AMF把感知需求或感知信号的配置信息发给基站A);
还需要说明的是,还可以将感知信号的配置信息与感知需求关联,只需要通知感知需求,接收端根据感知需求和关联关系确定感知信号的配置信息;
可选地,根据感知需求确定感知信号的配置信息(例如根据感知分辨率需求确定感知信号的带宽大小等)的方式包括几种方式中的至少一项:
Y21、基站A将自己的感知能力(发送感知信号相关的能力,例如发送感知信号的最大带宽,感知信号的最大发射功率等)上报给核心网(AMF或者感知网络功能实体/感知网元),和/或,UE将自己的感知能力(接收感知信号相关的能力,例如能接收的感知信号的最大带宽,支持的感知信号的测量量等)上报给核心网;然后核心网根据感知需求确定感知信号的配置信息;
Y22、基站根据感知需求确定感知信号的配置信息;
Y23、核心网确定一部分感知信号的配置信息,基站确定另一部分感知信号的配置信息;
Y24、核心网根据感知需求向基站推荐感知信号的配置信息,基站最终决定感知信号的配置信息;
Y25、基站根据感知需求向核心网推荐感知信号的配置信息,核心网最终决定感知信号的配置信息;
Y26、UE根据感知需求向基站推荐感知信号的配置信息,基站最终决定感知信号的配置信息;
Y27、UE根据感知需求向核心网推荐感知信号的配置信息,核心网最终决定感知信号的配置信息;
Y28、UE根据感知需求确定感知信号的配置信息。
步骤S304、核心网(或感知网络功能实体/感知网元)或基站A将感知信号的配置信息(包括时频信息,序列信息等)或感知需求发送给UE;
步骤S305、核心网(或感知网络功能实体/感知网元)或基站A将感知信号相关的测量量(如AOA,AOD,时延,RSRP,雷达谱信息等)发送给UE;或,
测量量由UE根据感知需求确定,不需要单独信令指示(感知需求到测量量的映射表);
步骤S306、基站A发送感知信号;
需要说明的是,基站A以beam sweeping的方式发送感知信号。
步骤S307、UE接收感知信号。
在进行接收感知信号后,UE会得到对应的测量量的测量值,对于该测量值可以选择如下处理方式中的一种:
处理方式一、测量量到感知结果的转换在核心网完成
步骤S308、UE把测量量发送给基站A;
步骤S309、基站A将测量量发送给核心网(AMF或感知网络功能实体/感知网元);
步骤S310、核心网(AMF或感知网络功能实体/感知网元)根据测量量确定感知结果;
步骤S311、核心网(AMF或感知网络功能实体/感知网元)(通过NAS信令)把感知结果发送给UE。
处理方式二、测量量到感知结果的转换在基站A完成
步骤S308、UE把测量量发送给基站A;
步骤S309、基站A根据测量量确定感知结果,并把测量结果发送给核心网(AMF或感知网络功能实体/感知网元);
步骤S310、核心网(AMF或感知网络功能实体/感知网元)(通过NAS信令)把感知结果发送给UE。
处理方式三、测量量到感知结果的转换在UE完成
步骤S308、UE根据测量量确定感知结果。
还需要说明的是,以上流程中的感知信号可以由多个基站/TRP发送,接收感知信号也可以是多个UE;此时,核心网需要决定发送感知信号的基站集合,以及接收感知信号的基站集合,并把多个基站的感知信号的配置信息分别发给对应的多个基站以及多个UE,并把需要接收基站测量的感知信号相关的测量量分别发给对应的多个UE。可选地,多个发送基站之间需要交互感知信号的配置信息(例如充当协调者的基站把感知信号的配置信息发给其他发送基站,把感知信号相关的测量量发给UE);对应的,上述流程中的基站A可以是TRP A。
还需要说明的是,UE收到第一网络设备或第二网络设备发送的感知需求或感知相关的测量量后,UE可以拒绝该感知需求,或者同意该感知需求。
具体应用情况四、基站A发感知信号,UE收感知信号,第三方应用发起感知业务(感知信号是广播感知信号,整个感知业务对基站是透明的)
此种情况下的实现过程主要为:
步骤S401、应用服务器收到第三方应用的感知需求;
例如,感知需求是感知目标区域的三维地图(地图的精度/分辨率是5m),该目标区域可以是指定的区域,如某个建筑物周边,也可以是目标UE的周边区域,感知需求可以包括目标区域的信息,如区域经纬度(范围)等信息。
步骤S402、应用服务器(包括网内服务器如IMS或网外服务器)将感知需求发送给核心网(例如AMF)或核心网的感知网络功能实体/感知网元(如果存在);
或者,应用服务器将感知需求发送AMF,AMF将该需求转发给感知网络功能实体/感知网元。
步骤S403、核心网(或感知网络功能实体/感知网元)把感知需求或UE需要测量的感知信号索引信息发给UE;
或感知信号索引信息与感知需求关联,只需要通知感知需求,接收端根据感知需求和关联关系确定需要测量的感知信号信息;
可选地,基站确定参与感知(即接收感知信号)的UE,或者AMF/感知 网络功能实体/感知网元确定参与感知的UE;
具体地,确定参与感知的UE的方式参见上述描述,在此不再赘述。
步骤S404、核心网(或感知网络功能实体/感知网元)将UE需要上报的感知信号相关的测量量(如AOA,AOD,时延,RSRP,雷达谱信息等)发送给UE;或,
测量量由UE根据感知需求确定,不需要单独信令指示(感知需求到测量量的映射表)。
步骤S405、基站A发送感知信号(广播感知信号);
需要说明的是,基站A以beam sweeping的方式发送感知信号。
步骤S406、UE接收感知信号;
还需要说明的是,在UE接收感知信号前,UE读取广播信令获得感知信号的配置信息。
在进行接收感知信号后,UE会得到对应的测量量的测量值,对于该测量值可以选择如下处理方式中的一种:
处理方式一、测量量到感知结果的转换在核心网或应用服务器完成
步骤S407、UE把测量量发送给基站A,基站A把测量量发送给核心网(或感知网络功能实体/感知网元);
步骤S408、核心网(或感知网络功能实体/感知网元)将测量量发送给应用服务器,应用服务器根据测量量确定感知结果;或者,
核心网(或感知网络功能实体/感知网元)根据测量量确定感知结果,并把感知结果发送给应用服务器。
步骤S409、应用服务器将感知结果发送给第三方应用。
处理方式二、测量量到感知结果的转换在UE完成;
步骤S407、UE根据测量量确定感知结果;
步骤S408、UE把感知结果发送给基站A,基站A把感知结果发送给核心网(或感知网络功能实体/感知网元);
步骤S409、核心网(或感知网络功能实体/感知网元)将感知结果发送给应用服务器;
步骤S410、应用服务器将感知结果发送给第三方应用。
需要说明的是,以上流程中的感知信号可以由多个基站/TRP发送,接收感知信号也可以是多个UE;此时,核心网需要决定发送感知信号的基站集合,以及接收感知信号的基站集合,并把多个基站的感知信号的配置信息分别发给对应的多个基站以及多个UE,并把需要接收基站测量的感知信号相关的测量量分别发给对应的多个UE。可选地,多个发送基站之间需要交互感知信号的配置信息(例如充当协调者的基站把感知信号的配置信息发给其他发送基站,把感知信号相关的测量量发给UE);可选地,上述流程中的基站A可以是TRP A。
还需要说明的是,UE收到第一网络设备或第二网络设备发送的感知需求或感知相关的测量量后,UE可以拒绝该感知需求,或者同意该感知需求。
具体应用情况五、基站A发感知信号,UE收感知信号,核心网(或者网管系统,或者基站)发起感知业务(感知信号是广播感知信号,整个感知业务对基站是透明的)
此种情况下的实现过程主要为:
步骤S501、核心网AMF把感知需求或感知信号的配置信息发给感知网络功能实体/感知网元;
例如,感知需求是感知目标区域的三维地图(地图的精度/分辨率是5m),该目标区域可以是指定的区域,如某个建筑物周边,也可以是目标UE的周边区域,感知需求可以包括目标区域的信息,如区域经纬度(范围)等信息。
或者AMF接收网管系统发送的感知需求或感知信号的配置信息,并转发给感知网络功能实体/感知网元;
或者AMF接收基站发送的感知需求或感知信号的配置信息,并转发给感知网络功能实体/感知网元(注:基站A的感知需求或感知信号的配置信息,可以不发给核心网,可以直接发给基站B)。
步骤S502、感知网络功能实体/感知网元把感知需求或感知信号的配置信息发给基站A(或者,AMF把感知需求或感知信号的配置信息发给基站A)
或感知信号的配置信息与感知需求关联,只需要通知感知需求,接收端根据感知需求和关联关系确定感知信号的配置信息;
根据感知需求确定感知信号的配置信息的方式参见上述描述,在此不再 赘述。
步骤S503、核心网(或感知网络功能实体/感知网元)把感知需求或UE需要测量的感知信号索引信息发给UE;
或感知信号索引信息与感知需求关联,只需要通知感知需求,接收端根据感知需求和关联关系确定需要测量的感知信号索引信息;
基站确定参与感知(即接收感知信号)的UE,或者AMF/感知网络功能实体/感知网元确定参与感知的UE;
可选地,确定参与感知的UE的方式参见上述描述,在此不再赘述。
步骤S504、核心网(或感知网络功能实体/感知网元)将UE需要上报的感知信号相关的测量量(如AOA,AOD,时延,RSRP,雷达谱信息等)发送给UE;或,
测量量由UE根据感知需求确定,不需要单独信令指示(感知需求到测量量的映射表)。
步骤S505、基站A发送感知信号(广播感知信号);
需要说明的是,基站A以beam sweeping的方式发送感知信号。
步骤S506、UE接收感知信号
还需要说明的是,在UE接收感知信号前,UE读取广播信令获得感知信号的配置信息。
在进行接收感知信号后,UE会得到对应的测量量的测量值,对于该测量值可以选择如下处理方式中的一种:
处理方式一、测量量到感知结果的转换在核心网完成
步骤S507、UE把测量量发送给基站A;
步骤S508、基站A把测量量发送给核心网(AMF或感知网络功能实体/感知网元);
步骤S509、核心网(AMF或感知网络功能实体/感知网元)把测量量转换为感知结果。
处理方式二、测量量到感知结果的转换在基站完成
步骤S507、UE把测量量发送给基站A;
步骤S508、基站A根据测量量确定感知结果;
步骤S509、基站A将感知结果发送给核心网(AMF或感知网络功能实体/感知网元)。
处理方式三、测量量到感知结果的转换在UE完成
步骤S507、UE根据测量量确定感知结果;
步骤S508、UE把感知结果发送给基站A;
步骤S509、基站A把感知结果发送给核心网(或感知网络功能实体/感知网元)。
这里需要说明的是,如果感知网络功能实体/感知网元部署在基站,一种可选的方案是:整个感知业务可以不经过核心网。
需要说明的是,以上流程中的感知信号可以由多个基站/TRP发送,接收感知信号也可以是多个UE;此时,核心网需要决定发送感知信号的基站集合,以及接收感知信号的基站集合,并把多个基站的感知信号的配置信息分别发给对应的多个基站以及多个UE,并把需要接收基站测量的感知信号相关的测量量分别发给对应的多个UE。可选地,多个发送基站之间需要交互感知信号的配置信息(例如充当协调者的基站把感知信号的配置信息发给其他发送基站,把感知信号相关的测量量发给UE);对应的,上述流程中的基站A可以是TRP A。
还需要说明的是,UE收到第一网络设备或第二网络设备发送的感知需求或感知相关的测量量后,UE可以拒绝该感知需求,或者同意该感知需求。
具体应用情况六、基站A发感知信号,UE收感知信号,UE发起感知业务(基站A发送的感知信号是公共感知信号,例如SSB;整个感知业务对基站是透明的)
此种情况下的实现过程主要为:
步骤S601、UE(通过NAS信令)发送感知需求给AMF(或核心网其他网元);
例如,感知需求是感知目标区域的三维地图(地图的精度/分辨率是5m),该目标区域可以是指定的区域,如某个建筑物周边,也可以是目标UE的周边区域,感知需求可以包括目标区域的信息,如区域经纬度(范围)等信息。
步骤S602、AMF向UE发送ACK;或者,AMF把感知请求转发给感知 网络功能实体/感知网元,感知网络功能实体/感知网元向UE发送ACK;
步骤S603、可选地,AMF将上述感知请求需要UE上报的测量量发送给UE;
步骤S604、UE将接收基站发送的感知信号获得的测量量数值发送给AMF;
需要说明的是,在UE接收感知信号前,UE读取广播信令获得感知信号的配置信息;
步骤S605、AMF把测量量数值发给核心网;
步骤S606、核心网(AMF或感知网络功能实体/感知网元)根据测量量确定感知结果;
步骤S607、核心网(例如,AMF或感知网络功能实体/感知网元)把感知结果发送给UE;
需要说明的是,核心网通常通过NAS信令将感知结果发送给终端。
还需要说明的是,以上流程中的感知信号可以由多个基站/TRP发送,接收感知信号也可以是多个UE;此时,核心网需要决定发送感知信号的基站集合,以及接收感知信号的基站集合,并把多个基站的感知信号的配置信息分别发给对应的多个基站以及多个UE,并把需要接收基站测量的感知信号相关的测量量分别发给对应的多个UE。可选地,多个发送基站之间需要交互感知信号的配置信息(例如充当协调者的基站把感知信号的配置信息发给其他发送基站,把感知信号相关的测量量发给UE),可选地,上述流程中的基站A可以是TRP A。
还需要说明的是,UE收到第一网络设备或第二网络设备发送的感知需求或感知相关的测量量后,UE可以拒绝该感知需求,或者同意该感知需求。
需要说明的是,本申请实施例中所提到的感知业务可以是:天气监测,重构三维地图,交通/人群感知,空气质量检测例如PM2.5,监测工厂污染物检测,农场家畜监测,或人的动作/姿势识别等。
还需要说明的是,本申请中的具体应用情况四、五、六均是基站A发感知信号,UE收感知信号(感知信号是广播感知信号,整个感知业务对基站是透明的),而具体应用情况一、二、三中的感知信号是专用的。
需要说明的是,本申请实施例给出了基于基站发送感知信号的无线感知相关的流程,具体包括:基站发感知信号,UE收感知信号方式时的感知流程,不同感知节点间的信令交互等,新增感知网络功能实体/感知网元的功能,以此完善了网络通信流程,保证了感知的顺利进行。
需要说明的是,本申请实施例提供的感知方法,执行主体可以为感知装置,或者,该感知装置中的用于执行感知方法的控制模块。本申请实施例中以感知装置执行感知方法为例,说明本申请实施例提供的感知装置。
如图6所示,本申请实施例提供一种感知装置600,应用于终端,包括:
第一确定模块601,用于确定感知信号的测量量;
第一获取模块602,用于对所述感知信号进行检测,获取所述测量量对应的测量值;
其中,所述感知信号是第一网络设备发送的,所述第一网络设备为基站。
可选地,所述第一确定模块601,用于实现以下至少一项:
接收第一网络设备或第二网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端需要测量的所述感知信号的测量量;
根据第一感知需求,确定所述终端需要测量的所述感知信号的测量量。
可选地,在所述第一获取模块602对所述感知信号进行检测,获取所述测量量对应的测量值之前,还包括:
第二确定模块,用于确定所述感知信号的配置信息。
可选地,所述第二确定模块,用于实现以下至少一项:
接收所述感知信号的第一配置信息,所述第一配置信息是第一网络设备发送的;
接收所述感知信号的第二配置信息,所述第二配置信息是第二网络设备发送的;
根据第一感知需求,确定所述感知信号的第三配置信息。
可选地,所述第二确定模块,用于实现:
获取第一网络设备通过广播信令发送的所述感知信号的配置信息。
可选地,在所述所述第二确定模块获取第一网络设备通过广播信令发送的所述感知信号的配置信息之前,还包括:
第三确定模块,用于终端根据第一信息,确定待测量的感知信号;
其中,所述第一信息包括以下至少一项:
第二网络设备发送的第一感知需求;
第二网络设备发送的终端需测量的感知信号索引信息。
可选地,所述第一感知需求满足以下至少一项:
由第一网络设备或第二网络设备发送给终端;
由终端生成;
和/或
所述第一感知需求与以下至少一项相关联:
感知对象;
感知量;
感知指标。
可选地,在所述第一获取模块602获取所述测量量对应的测量值之后,还包括以下任一项:
第一执行模块,将所述测量量以及所述测量量对应的测量值发送给第一网络设备或第二网络设备;
第二执行模块,根据所述测量量以及所述测量量对应的测量值确定感知结果。
可选地,在所述第一执行模块将所述测量量对应的测量值发送给第一网络设备或第二网络设备之后,还包括:
第一接收模块,用于从第二网络设备侧接收感知结果。
可选地,在所述第一执行模块根据所述测量量以及所述测量量对应的测量值确定感知结果之后,还包括:
第三发送模块,用于将所述感知结果发送给第一网络设备。
可选地,所述感知结果包括以下至少一项:
目标物体的特征信息;
目标事件的相关信息;
目标环境的相关信息。
可选地,所述第二网络设备包括:移动和接入管理功能AMF实体或感知 功能实体;
其中,所述感知功能实体满足以下至少一项:
管理感知所需资源的整体协调和调度;
计算感知结果;
估计感知精度;
验证感知结果;
支持立即感知请求;
支持延迟感知请求;
支持周期性或事件触发感知请求;
支持取消周期或触发性的感知行为;
根据第二信息确定感知方式;
其中,所述第二信息包括:感知客户端的类型、感知服务质量QoS、终端的感知能力、第一网络设备的感知能力的至少一项;
所述感知方式与接收和发送感知信号的实体相关联。
可选地,所述感知信号的配置信息包括以下参数中的至少一项:
所述感知信号的波形;
所述感知信号的子载波间隔;
所述感知信号的保护间隔;
所述感知信号的带宽;
所述感知信号的突发burst持续时间;
所述感知信号的时域间隔;
所述感知信号的发送信号功率;
所述感知信号的信号格式;
所述感知信号的信号方向;
所述感知信号的时间资源;
所述感知信号的频率资源;
所述感知信号的准共址QCL关系。
可选地,所述测量量包括以下至少一项:
第一类测量量;
第二类测量量;
其中,所述第一类测量量包括以下至少一项:
信道矩阵H;
信道状态信息CSI;
多径信道中每条径的功率;
多径信道中每条径的时延;
多径信道中每条径的角度信息;
多普勒扩展;
多普勒频移;
第一天线接收的感知信号与第二天线接收的感知信号的相位差;
第一天线接收的感知信号与第二天线接收的感知信号的时延差;
I路信号和Q路信号之间的特征差别;
所述第二类测量量包括以下至少一项:
目标物体的特征信息;
目标事件的相关信息;
目标环境的相关信息。
可选地,所述测量量为针对每个天线的测量量或者针对每个感知资源的测量量。
需要说明的是,该装置实施例是与上述方法对应的装置,上述方法实施例中的所有实现方式均适用于该装置实施例中,也能达到相同的技术效果,在此不再赘述。
本申请实施例中的感知装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User  Equipment,PUE)等终端侧设备,可穿戴式设备包括:智能手表、手环、耳机、眼镜等,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的感知装置能够实现图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于确定感知信号的测量量;对所述感知信号进行检测,获取所述测量量对应的测量值;
其中,所述感知信号是第一网络设备发送的,所述第一网络设备为基站。
该终端实施例是与上述终端侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图7为实现本申请实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、以及处理器710等中的至少部分部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关 按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701将来自网络设备的下行数据接收后,给处理器710处理;另外,将上行的数据发送给网络设备。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器710可包括一个或多个处理单元;可选地,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,处理器710用于实现:
确定感知信号的测量量;
对所述感知信号进行检测,获取所述测量量对应的测量值;
其中,所述感知信号是第一网络设备发送的,所述第一网络设备为基站。
可选地,所述处理器710还用于实现以下至少一项:
接收第一网络设备或第二网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端需要测量的所述感知信号的测量量;
根据第一感知需求,确定所述终端需要测量的所述感知信号的测量量。
可选地,所述处理器710还用于实现:
确定所述感知信号的配置信息。
可选地,所述所述处理器710还用于实现以下至少一项:
通过射频单元701接收所述感知信号的第一配置信息,所述第一配置信息是第一网络设备发送的;
通过射频单元701接收所述感知信号的第二配置信息,所述第二配置信息是第二网络设备发送的;
根据第一感知需求,确定所述感知信号的第三配置信息。
可选地,所述处理器710还用于实现:
获取第一网络设备通过广播信令发送的所述感知信号的配置信息。
可选地,所述处理器710还用于实现:
根据第一信息,确定待测量的感知信号;
其中,所述第一信息包括以下至少一项:
第二网络设备发送的第一感知需求;
第二网络设备发送的终端需测量的感知信号索引信息。
可选地,所述第一感知需求满足以下至少一项:
由第一网络设备或第二网络设备发送给终端;
由终端生成;
和/或
所述第一感知需求与以下至少一项相关联:
感知对象;
感知量;
感知指标。
可选地,所述处理器710还用于实现:
通过射频单元701将所述测量量以及所述测量量对应的测量值发送给第一网络设备或第二网络设备;
根据所述测量量以及所述测量量对应的测量值确定感知结果。
可选地,在所述将所述测量量对应的测量值发送给第一网络设备或第二网络设备之后,还包括:
接收第二网络设备发送的感知结果。
可选地,所述射频单元701还用于实现:
将所述感知结果发送给第一网络设备。
可选地,所述感知结果包括以下至少一项:
目标物体的特征信息;
目标事件的相关信息;
目标环境的相关信息。
可选地,所述第二网络设备包括:移动和接入管理功能AMF实体或感知功能实体。
可选地,所述感知功能实体满足以下至少一项:
管理感知所需资源的整体协调和调度;
计算感知结果;
估计感知精度;
验证感知结果;
支持立即感知请求;
支持延迟感知请求;
支持周期性或事件触发感知请求;
支持取消周期或触发性的感知行为;
根据第二信息确定感知方式;
其中,所述第二信息包括:感知客户端的类型、感知服务质量QoS、终端的感知能力、第一网络设备的感知能力的至少一项;
所述感知方式与接收和发送感知信号的实体相关联。
可选地,所述感知信号的配置信息包括以下参数中的至少一项:
所述感知信号的波形;
所述感知信号的子载波间隔;
所述感知信号的保护间隔;
所述感知信号的带宽;
所述感知信号的突发burst持续时间;
所述感知信号的时域间隔;
所述感知信号的发送信号功率;
所述感知信号的信号格式;
所述感知信号的信号方向;
所述感知信号的时间资源;
所述感知信号的频率资源;
所述感知信号的准共址QCL关系。
可选地,所述测量量包括以下至少一项:
第一类测量量;
第二类测量量;
其中,所述第一类测量量包括以下至少一项:
信道矩阵H;
信道状态信息CSI;
多径信道中每条径的功率;
多径信道中每条径的时延;
多径信道中每条径的角度信息;
多普勒扩展;
多普勒频移;
第一天线接收的感知信号与第二天线接收的感知信号的相位差;
第一天线接收的感知信号与第二天线接收的感知信号的时延差;
I路信号和Q路信号之间的特征差别;
所述第二类测量量包括以下至少一项:
目标物体的特征信息;
目标事件的相关信息;
目标环境的相关信息。
可选地,所述测量量为针对每个天线的测量量或者针对每个感知资源的测量量。
可选地,本申请实施例还提供一种终端,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的程序或指令,该程序或指令被处理器执行时实现感知方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现感知方法实施例的各个过程,且能 达到相同的技术效果,为避免重复,这里不再赘述。其中,所述可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
如图8所示,本申请实施例还提供一种感知方法,包括:
步骤801,第一网络设备向终端发送感知信号,使得所述终端对所述感知信号进行检测,得到所述感知信号的测量量对应的测量值;
其中,所述第一网络设备为基站。
可选地,在所述第一网络设备向终端发送感知信号之前,还包括:
第一网络设备向终端发送第一指示信息,所述第一指示信息用于指示所述终端需要测量的所述感知信号的测量量。
可选地,在所述第一网络设备向终端发送感知信号之前,还包括:
第一网络设备确定感知信号的配置信息。
可选地,所述第一网络设备确定感知信号的配置信息包括以下一项:
第一网络设备接收第二网络设备发送的感知信号的第二配置信息;
第一网络设备根据第三信息,确定感知信号的第一配置信息;
其中,所述第三信息包括以下至少一项:
第一感知需求;
配置信息的第一推荐信息,所述第一推荐信息由第二网络设备根据第一感知需求确定;
配置信息的第二推荐信息,所述第二推荐信息由终端发送给第一网络设备。
可选地,在第一网络设备确定感知信号的配置信息之后,还包括:
第一网络设备向终端发送第二指示信息,
其中,所述第二指示信息包括:感知信号的第一配置信息和第一感知需求中的至少一项。
可选地,在所述第一网络设备确定感知信号的配置信息之后,还包括:
第一网络设备通过广播信令发送感知信号的配置信息。
可选地,所述第一网络设备确定感知信号的配置信息,包括:
第一网络设备根据第一感知需求,确定感知信号的配置信息。
可选地,所述第一网络设备向终端发送感知信号,包括:
第一网络设备确定接收所述感知信号的至少一个终端;
第一网络设备向所述至少一个终端发送感知信号。
可选地,所述第一网络设备确定接收所述感知信号的至少一个终端,包括:
第一网络设备按照第四信息,确定接收所述感知信号的至少一个终端;
其中,所述第四信息包括以下一项:
终端是否接入第一网络设备的信息;
终端上报的感知能力;
其他先验信息,所述其他先验信息包括:终端位置信息。
可选地,所述第一感知需求由第二网络设备发送给第一网络设备。
可选地,所述第一感知需求与以下至少一项相关联:
感知对象;
感知量;
感知指标。
可选地,在所述第一网络设备向终端发送感知信号之后,还包括:
第一网络设备接收所述终端发送的所述测量量以及所述测量量对应的测量值;
基于所述测量量以及所述测量量对应的测量值,执行第一操作;
其中,所述第一操作包括以下一项:
发送所述测量量以及所述测量量对应的测量值给第二网络设备;
根据所述测量量以及所述测量量对应的测量值确定感知结果,将所述感知结果发送给第二网络设备。
可选地,在所述第一网络设备向终端发送感知信号之后,还包括:
第一网络设备接收终端发送的所述测量量对应的测量值的感知结果;
将所述感知结果发送给第二网络设备。
可选地,所述感知结果包括以下至少一项:
目标物体的特征信息;
目标事件的相关信息;
目标环境的相关信息。
可选地,所述感知信号的配置信息包括以下参数中的至少一项:
所述感知信号的波形;
所述感知信号的子载波间隔;
所述感知信号的保护间隔;
所述感知信号的带宽;
所述感知信号的突发burst持续时间;
所述感知信号的时域间隔;
所述感知信号的发送信号功率;
所述感知信号的信号格式;
所述感知信号的信号方向;
所述感知信号的时间资源;
所述感知信号的频率资源;
所述感知信号的准共址QCL关系。
可选地,所述测量量包括以下至少一项:
第一类测量量;
第二类测量量;
其中,所述第一类测量量包括以下至少一项:
信道矩阵H;
信道状态信息CSI;
多径信道中每条径的功率;
多径信道中每条径的时延;
多径信道中每条径的角度信息;
多普勒扩展;
多普勒频移;
第一天线接收的感知信号与第二天线接收的感知信号的相位差;
第一天线接收的感知信号与第二天线接收的感知信号的时延差;
I路信号和Q路信号之间的特征差别;
所述第二类测量量包括以下至少一项:
目标物体的特征信息;
目标事件的相关信息;
目标环境的相关信息。
可选地,所述测量量为针对每个天线的测量量或者针对每个感知资源的测量量。
可选地,所述第二网络设备包括:移动和接入管理功能AMF实体或感知功能实体。
可选地,所述感知功能实体满足以下至少一项:
管理感知所需资源的整体协调和调度;
计算感知结果;
估计感知精度;
验证感知结果;
支持立即感知请求;
支持延迟感知请求;
支持周期性或事件触发感知请求;
支持取消周期或触发性的感知行为;
根据第二信息确定感知方式;
其中,所述第二信息包括:感知客户端的类型、感知服务质量QoS、终端的感知能力、第一网络设备的感知能力的至少一项;
所述感知方式与接收和发送感知信号的实体相关联。
需要说明的是,上述实施例中所有关于第一网络设备的描述均适用于该感知方法的实施例中,也能达到相同的技术效果,在此不再赘述。
如图9所示,本申请实施例还提供一种感知装置900,应用于第一网络设备,所述第一网络设备为基站,包括:
第一发送模块901,用于向终端发送感知信号,使得所述终端对所述感知信号进行检测,得到所述感知信号的测量量对应的测量值。
可选地,在所述第一发送模块901向终端发送感知信号之前,还包括:
第四发送模块,用于向终端发送第一指示信息,所述第一指示信息用于指示所述终端需要测量的所述感知信号的测量量。
可选地,在所述第一发送模块901向终端发送感知信号之前,还包括:
第四确定模块,用于确定感知信号的配置信息。
可选地,所述第四确定模块用于实现以下一项:
接收第二网络设备发送的感知信号的第二配置信息;
根据第三信息,确定感知信号的第一配置信息;
其中,所述第三信息包括以下至少一项:
第一感知需求;
配置信息的第一推荐信息,所述第一推荐信息由第二网络设备根据第一感知需求确定;
配置信息的第二推荐信息,所述第二推荐信息由终端发送给第一网络设备。
可选地,在第三确定模块确定感知信号的配置信息之后,还包括:
第五发送模块,用于向终端发送第二指示信息,
其中,所述第二指示信息包括:感知信号的第一配置信息和第一感知需求中的至少一项。
可选地,在所述第三确定模块确定感知信号的配置信息之后,还包括:
第六发送模块,用于通过广播信令发送感知信号的配置信息。
可选地,所述第四确定模块确定感知信号的配置信息,包括:
第五确定模块,用于根据第一感知需求,确定感知信号的配置信息。
可选地,所述第一发送模块901,包括:
第一确定单元,用于确定接收所述感知信号的至少一个终端;
第一发送单元,用于向所述至少一个终端发送感知信号。
可选地,所述第一确定单元,用于:
第一网络设备按照第四信息,确定接收所述感知信号的至少一个终端;
其中,所述第四信息包括以下一项:
终端是否接入第一网络设备的信息;
终端上报的感知能力;
其他先验信息,所述其他先验信息包括:终端位置信息。
可选地,所述第一感知需求由第二网络设备发送给第一网络设备。
可选地,所述第一感知需求与以下至少一项相关联:
感知对象;
感知量;
感知指标。
可选地,在所述第一发送模块901向终端发送感知信号之后,还包括:
第二接收模块,用于接收所述终端发送的所述测量量以及所述测量量对应的测量值;
第三执行模块,用于基于所述测量量以及所述测量量对应的测量值,执行第一操作;
其中,所述第一操作包括以下一项:
发送所述测量量以及所述测量量对应的测量值给第二网络设备;
根据所述测量量以及所述测量量对应的测量值确定感知结果,将所述感知结果发送给第二网络设备。
可选地,在所述第一发送模块901向终端发送感知信号之后,还包括:
第三接收模块,用于接收终端发送的所述测量量对应的测量值的感知结果;
第七发送模块,用于将所述感知结果发送给第二网络设备。
可选地,所述感知结果包括以下至少一项:
目标物体的特征信息;
目标事件的相关信息;
目标环境的相关信息。
可选地,所述感知信号的配置信息包括以下参数中的至少一项:
所述感知信号的波形;
所述感知信号的子载波间隔;
所述感知信号的保护间隔;
所述感知信号的带宽;
所述感知信号的突发burst持续时间;
所述感知信号的时域间隔;
所述感知信号的发送信号功率;
所述感知信号的信号格式;
所述感知信号的信号方向;
所述感知信号的时间资源;
所述感知信号的频率资源;
所述感知信号的准共址QCL关系。
可选地,所述测量量包括以下至少一项:
第一类测量量;
第二类测量量;
其中,所述第一类测量量包括以下至少一项:
信道矩阵H;
信道状态信息CSI;
多径信道中每条径的功率;
多径信道中每条径的时延;
多径信道中每条径的角度信息;
多普勒扩展;
多普勒频移;
第一天线接收的感知信号与第二天线接收的感知信号的相位差;
第一天线接收的感知信号与第二天线接收的感知信号的时延差;
I路信号和Q路信号之间的特征差别;
所述第二类测量量包括以下至少一项:
目标物体的特征信息;
目标事件的相关信息;
目标环境的相关信息。
可选地,所述测量量为针对每个天线的测量量或者针对每个感知资源的测量量。
可选地,所述第二网络设备包括:移动和接入管理功能AMF实体或感知功能实体。
可选地,所述感知功能实体满足以下至少一项:
管理感知所需资源的整体协调和调度;
计算感知结果;
估计感知精度;
验证感知结果;
支持立即感知请求;
支持延迟感知请求;
支持周期性或事件触发感知请求;
支持取消周期或触发性的感知行为;
根据第二信息确定感知方式;
其中,所述第二信息包括:感知客户端的类型、感知服务质量QoS、终端的感知能力、第一网络设备的感知能力的至少一项;
所述感知方式与接收和发送感知信号的实体相关联。
需要说明的是,该装置实施例是与上述方法对应的装置,上述方法实施例中的所有实现方式均适用于该装置实施例中,也能达到相同的技术效果,在此不再赘述。
可选地,本申请实施例还提供一种网络设备,所述网络设备为第一网络设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的程序或指令,该程序或指令被处理器执行时实现应用于第一网络设备侧的感知方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,计算机可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现应用于第一网络设备侧的感知方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例还提供一种网络设备,所述网络设备为第一网络设备,包括处理器和通信接口,通信接口用于向终端发送感知信号,使得所述终端对所述感知信号进行检测,得到所述感知信号的测量量对应的测量值。
该网络设备实施例是与上述网络设备方法实施例对应的,上述方法实施 例的各个实施过程和实现方式均可适用于该网络设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络设备,该网络设备为第一网络设备。如图10所示,该网络设备1000包括:天线1001、射频装置1002、基带装置1003。天线1001与射频装置1002连接。在上行方向上,射频装置1002通过天线1001接收信息,将接收的信息发送给基带装置1003进行处理。在下行方向上,基带装置1003对要发送的信息进行处理,并发送给射频装置1002,射频装置1002对收到的信息进行处理后经过天线1001发送出去。
上述频带处理装置可以位于基带装置1003中,以上实施例中网络设备执行的方法可以在基带装置1003中实现,该基带装置1003包括处理器1004和存储器1005。
基带装置1003例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图10所示,其中一个芯片例如为处理器1004,与存储器1005连接,以调用存储器1005中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置1003还可以包括网络接口1006,用于与射频装置1002交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络设备还包括:存储在存储器1005上并可在处理器1004上运行的指令或程序,处理器1004调用存储器1005中的指令或程序执行图9所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
如图11所示,本申请实施例还提供一种感知方法,包括:
步骤1101,第二网络设备向终端或第一网络设备发送第一感知信息;
其中,所述第一感知信息包括:第一感知需求、感知信号的配置信息和终端需测量的感知信号索引信息中的至少一项;
所述第一网络设备为基站。
可选地,在第二网络设备向终端或第一网络设备发送第一感知信息之后,还包括:
第二网络设备向终端或第一网络设备发送第一指示信息;
其中,所述第一指示信息用于指示所述终端需要测量的所述感知信号的 测量量。
可选地,所述第一感知信息中包括感知信号的配置信息的情况下,所述感知信号的配置信息包括:感知信号的第二配置信息;
所述感知信号的第二配置信息的确定方式包括:
根据第五信息,确定所述感知信号的第二配置信息;
其中,所述第五信息,包括以下至少一项:
第一感知需求;
第一网络设备发送的感知能力信息;
终端发送的感知能力信息;
配置信息的第三推荐信息,所述第三推荐信息由第一网络设备根据第一感知需求确定并发送给第二网络设备;
配置信息的第四推荐信息,所述第四推荐信息由终端根据第一感知需求确定并发送给第二网络设备;
配置信息的第五推荐信息,所述第五推荐信息由终端发送给第二网络设备。
可选地,所述第一感知需求的获取方式,包括以下一项:
接收终端或第三网络设备发送的第一感知需求。
可选地,所述第一感知需求与以下至少一项相关联:
感知对象;
感知量;
感知指标。
可选地,在第二网络设备向终端发送第一感知信息的情况下,还包括:
第二网络设备按照第六信息,确定接收所述第一感知信息的至少一个终端;
其中,所述第六信息包括以下一项:
终端是否接入第一网络设备的指示信息;
终端能力上报信息;
其他先验信息,所述其他先验信息包括:终端位置信息。
可选地,在第二网络设备向终端或第一网络设备发送第一指示信息之后, 还包括以下一项:
接收第一网络设备或终端发送的感知信号的测量量以及所述测量量对应的测量值;
接收第一网络设备或终端发送的感知信号的感知结果。
可选地,在所述接收第一网络设备或终端发送的感知信号的测量量以及所述测量量对应的测量值之后,还包括:
根据所述测量量以及所述测量量对应的测量值确定感知结果;
将所述感知结果发送给终端或第三网络设备。
可选地,在所述接收第一网络设备发送的感知信号的感知结果之后,还包括:
将所述感知结果发送给终端或第三网络设备。
可选地,所述感知结果包括以下至少一项:
目标物体的特征信息;
目标事件的相关信息;
目标环境的相关信息。
可选地,所述测量量包括以下至少一项:
第一类测量量;
第二类测量量;
其中,所述第一类测量量包括以下至少一项:
信道矩阵H;
信道状态信息CSI;
多径信道中每条径的功率;
多径信道中每条径的时延;
多径信道中每条径的角度信息;
多普勒扩展;
多普勒频移;
第一天线接收的感知信号与第二天线接收的感知信号的相位差;
第一天线接收的感知信号与第二天线接收的感知信号的时延差;
I路信号和Q路信号之间的特征差别;
所述第二类测量量包括以下至少一项:
目标物体的特征信息;
目标事件的相关信息;
目标环境的相关信息。
可选地,所述测量量为针对每个天线的测量量或者针对每个感知资源的测量量。
可选地,所述感知信号的配置信息包括以下参数中的至少一项:
所述感知信号的波形;
所述感知信号的子载波间隔;
所述感知信号的保护间隔;
所述感知信号的带宽;
所述感知信号的突发burst持续时间;
所述感知信号的时域间隔;
所述感知信号的发送信号功率;
所述感知信号的信号格式;
所述感知信号的信号方向;
所述感知信号的时间资源;
所述感知信号的频率资源;
所述感知信号的准共址QCL关系。
可选地,所述第二网络设备包括:移动和接入管理功能AMF实体或感知功能实体;
其中,所述感知功能实体满足以下至少一项:
管理感知所需资源的整体协调和调度;
计算感知结果;
估计感知精度;
验证感知结果;
支持立即感知请求;
支持延迟感知请求;
支持周期性或事件触发感知请求;
支持取消周期或触发性的感知行为;
根据第二信息确定感知方式;
其中,所述第二信息包括:感知客户端的类型、感知服务质量QoS、终端的感知能力、第一网络设备的感知能力的至少一项;
所述感知方式与接收和发送感知信号的实体相关联。
需要说明的是,上述实施例中所有关于第二网络设备的描述均适用于该感知方法的实施例中,也能达到相同的技术效果,在此不再赘述。
如图12所示,本申请实施例还提供一种感知装置1200,应用于第二网络设备,包括:
第二发送模块1201,用于向终端或第一网络设备发送第一感知信息;
其中,所述第一感知信息包括:第一感知需求、感知信号的配置信息和终端需测量的感知信号索引信息中的至少一项。
可选地,在第二发送模块1201向终端或第一网络设备发送第一感知信息之后,还包括:
第八发送模块,用于向终端或第一网络设备发送第一指示信息;
其中,所述第一指示信息用于指示所述终端需要测量的所述感知信号的测量量。
可选地,所述第一感知信息中包括感知信号的配置信息的情况下,所述感知信号的配置信息包括:感知信号的第二配置信息;
所述感知信号的第二配置信息的确定方式包括:
根据第五信息,确定所述感知信号的第二配置信息;
其中,所述第五信息,包括以下至少一项:
第一感知需求;
第一网络设备发送的感知能力信息;
终端发送的感知能力信息;
配置信息的第三推荐信息,所述第三推荐信息由第一网络设备根据第一感知需求确定并发送给第二网络设备;
配置信息的第四推荐信息,所述第四推荐信息由终端根据第一感知需求确定并发送给第二网络设备;
配置信息的第五推荐信息,所述第五推荐信息由终端发送给第二网络设备。
可选地,所述第一感知需求的获取方式,包括以下一项:
接收终端或第三网络设备发送的第一感知需求。
可选地,所述第一感知需求与以下至少一项相关联:
感知对象;
感知量;
感知指标。
可选地,在第二发送模块1201向终端发送第一感知信息的情况下,还包括:
第六确定模块,用于按照第六信息,确定接收所述第一感知信息的至少一个终端;
其中,所述第六信息包括以下一项:
终端是否接入第一网络设备的指示信息;
终端能力上报信息;
其他先验信息,所述其他先验信息包括:终端位置信息。
可选地,在第八发送模块向终端或第一网络设备发送第一指示信息之后,还包括以下一项:
第四接收模块,用于接收第一网络设备或终端发送的感知信号的测量量以及所述测量量对应的测量值;
第五接收模块,用于接收第一网络设备或终端发送的感知信号的感知结果。
可选地,在所述第四接收模块接收第一网络设备或终端发送的感知信号的测量量以及所述测量量对应的测量值之后,还包括:
第七确定模块,用于根据所述测量量以及所述测量量对应的测量值确定感知结果;
第九发送模块,用于将所述感知结果发送给终端或第三网络设备。
可选地,在所述第五接收模块接收第一网络设备发送的感知信号的感知结果之后,还包括:
第十发送模块,用于将所述感知结果发送给终端或第三网络设备。
可选地,所述感知结果包括以下至少一项:
目标物体的特征信息;
目标事件的相关信息;
目标环境的相关信息。
可选地,所述测量量包括以下至少一项:
第一类测量量;
第二类测量量;
其中,所述第一类测量量包括以下至少一项:
信道矩阵H;
信道状态信息CSI;
多径信道中每条径的功率;
多径信道中每条径的时延;
多径信道中每条径的角度信息;
多普勒扩展;
多普勒频移;
第一天线接收的感知信号与第二天线接收的感知信号的相位差;
第一天线接收的感知信号与第二天线接收的感知信号的时延差;
I路信号和Q路信号之间的特征差别;
所述第二类测量量包括以下至少一项:
目标物体的特征信息;
目标事件的相关信息;
目标环境的相关信息。
可选地,所述测量量为针对每个天线的测量量或者针对每个感知资源的测量量。
可选地,所述感知信号的配置信息包括以下参数中的至少一项:
所述感知信号的波形;
所述感知信号的子载波间隔;
所述感知信号的保护间隔;
所述感知信号的带宽;
所述感知信号的突发burst持续时间;
所述感知信号的时域间隔;
所述感知信号的发送信号功率;
所述感知信号的信号格式;
所述感知信号的信号方向;
所述感知信号的时间资源;
所述感知信号的频率资源;
所述感知信号的准共址QCL关系。
可选地,所述第二网络设备包括:移动和接入管理功能AMF实体或感知功能实体。
可选地,所述感知功能实体满足以下至少一项:
管理感知所需资源的整体协调和调度;
计算感知结果;
估计感知精度;
验证感知结果;
支持立即感知请求;
支持延迟感知请求;
支持周期性或事件触发感知请求;
支持取消周期或触发性的感知行为;
根据第二信息确定感知方式;
其中,所述第二信息包括:感知客户端的类型、感知服务质量QoS、终端的感知能力、第一网络设备的感知能力的至少一项;
所述感知方式与接收和发送感知信号的实体相关联。
需要说明的是,该装置实施例是与上述方法对应的装置,上述方法实施例中的所有实现方式均适用于该装置实施例中,也能达到相同的技术效果,在此不再赘述。
可选地,本申请实施例还提供一种网络设备,所述网络设备为第二网络设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的程 序或指令,该程序或指令被处理器执行时实现应用于第二网络设备侧的感知方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,计算机可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现应用于第二网络设备侧的感知方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例还提供一种网络设备,所述网络设备为第二网络设备,包括处理器和通信接口,通信接口用于向终端或第一网络设备发送第一感知信息;
其中,所述第一感知信息包括:第一感知需求、感知信号的配置信息和终端需测量的感知信号索引信息中的至少一项。
该网络设备实施例是与上述网络设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络设备,该网络设备为第二网络设备,具体地,第二网络设备的结构可参见图10的网络设备的结构,在此不再赘述。
具体地,处理器调用存储器中的指令或程序执行图12所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
可选地,如图13所示,本申请实施例还提供一种通信设备1300,包括处理器1301,存储器1302,存储在存储器1302上并可在所述处理器1301上运行的程序或指令,例如,该通信设备1300为终端时,该程序或指令被处理器1301执行时实现上述感知方法实施例的各个过程,且能达到相同的技术效果。该通信设备1300为网络设备时,该程序或指令被处理器1301执行时实现上述感知方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例涉及的终端,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的第一网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
第一网络设备与终端之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所 述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述感知方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (38)

  1. 一种感知方法,包括:
    终端确定感知信号的测量量;
    终端对所述感知信号进行检测,获取所述测量量对应的测量值;
    其中,所述感知信号是第一网络设备发送的,所述第一网络设备为基站。
  2. 根据权利要求1所述的方法,其中,所述终端确定感知信号的测量量,包括以下至少一项:
    接收第一网络设备或第二网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端需要测量的所述感知信号的测量量;
    根据第一感知需求,确定所述终端需要测量的所述感知信号的测量量。
  3. 根据权利要求1所述的方法,其中,在所述终端对所述感知信号进行检测,获取所述测量量对应的测量值之前,还包括:
    终端确定所述感知信号的配置信息。
  4. 根据权利要求3所述的方法,其中,所述终端确定所述感知信号的配置信息,包括以下至少一项:
    终端接收所述感知信号的第一配置信息,所述第一配置信息是第一网络设备发送的;
    终端接收所述感知信号的第二配置信息,所述第二配置信息是第二网络设备发送的;
    终端根据第一感知需求,确定所述感知信号的第三配置信息。
  5. 根据权利要求3所述的方法,其中,所述终端确定所述感知信号的配置信息,包括:
    终端获取第一网络设备通过广播信令发送的所述感知信号的配置信息。
  6. 根据权利要求3、4或5所述的方法,其中,所述感知信号的配置信息包括以下参数中的至少一项:
    所述感知信号的波形;
    所述感知信号的子载波间隔;
    所述感知信号的保护间隔;
    所述感知信号的带宽;
    所述感知信号的突发burst持续时间;
    所述感知信号的时域间隔;
    所述感知信号的发送信号功率;
    所述感知信号的信号格式;
    所述感知信号的信号方向;
    所述感知信号的时间资源;
    所述感知信号的频率资源;
    所述感知信号的准共址QCL关系。
  7. 根据权利要求5所述的方法,其中,在所述终端获取第一网络设备通过广播信令发送的所述感知信号的配置信息之前,还包括:
    终端根据第一信息,确定待测量的感知信号;
    其中,所述第一信息包括以下至少一项:
    第二网络设备发送的第一感知需求;
    第二网络设备发送的终端需测量的感知信号索引信息。
  8. 根据权利要求2、4或7所述的方法,其中,所述第一感知需求满足以下至少一项:
    由第一网络设备或第二网络设备发送给终端;
    由终端生成;
    和/或
    所述第一感知需求与以下至少一项相关联:
    感知对象;
    感知量;
    感知指标。
  9. 根据权利要求1所述的方法,其中,在所述获取所述测量量对应的测量值之后,还包括以下任一项:
    所述终端将所述测量量以及所述测量量对应的测量值发送给第一网络设备或第二网络设备;
    所述终端根据所述测量量以及所述测量量对应的测量值确定感知结果。
  10. 根据权利要求9所述的方法,其中,在所述终端将所述测量量对应的测量值发送给第一网络设备或第二网络设备之后,还包括:
    所述终端从第二网络设备侧接收感知结果。
  11. 根据权利要求9所述的方法,其中,在所述终端根据所述测量量以及所述测量量对应的测量值确定感知结果之后,还包括:
    将所述感知结果发送给第一网络设备。
  12. 根据权利要求9、10或11所述的方法,其中,所述感知结果包括以下至少一项:
    目标物体的特征信息;
    目标事件的相关信息;
    目标环境的相关信息。
  13. 根据权利要求2、4、7、9或10所述的方法,其中,所述第二网络设备包括:移动和接入管理功能AMF实体或感知功能实体;
    其中,所述感知功能实体满足以下至少一项:
    管理感知所需资源的整体协调和调度;
    计算感知结果;
    估计感知精度;
    验证感知结果;
    支持立即感知请求;
    支持延迟感知请求;
    支持周期性或事件触发感知请求;
    支持取消周期或触发性的感知行为;
    根据第二信息确定感知方式;
    其中,所述第二信息包括:感知客户端的类型、感知服务质量QoS、终端的感知能力、第一网络设备的感知能力的至少一项;
    所述感知方式与接收和发送感知信号的实体相关联。
  14. 根据权利要求1所述的方法,其中,所述测量量包括以下至少一项:
    第一类测量量;
    第二类测量量;
    其中,所述第一类测量量包括以下至少一项:
    信道矩阵H;
    接收的信号强度指示RSSI;
    参考信号接收功率RSRP;
    信道状态信息CSI;
    多径信道中每条径的功率;
    多径信道中每条径的时延;
    多径信道中每条径的角度信息;
    多普勒扩展;
    多普勒频移;
    第一天线接收的感知信号与第二天线接收的感知信号的相位差;
    第一天线接收的感知信号与第二天线接收的感知信号的时延差;
    I路信号和Q路信号之间的特征差别;
    所述第二类测量量包括以下至少一项:
    目标物体的特征信息;
    目标事件的相关信息;
    目标环境的相关信息。
  15. 一种感知方法,包括:
    第一网络设备向终端发送感知信号,使得所述终端对所述感知信号进行检测,得到所述感知信号的测量量对应的测量值;
    其中,所述第一网络设备为基站。
  16. 根据权利要求15所述的方法,其中,在所述第一网络设备向终端发送感知信号之前,还包括:
    第一网络设备向终端发送第一指示信息,所述第一指示信息用于指示所述终端需要测量的所述感知信号的测量量。
  17. 根据权利要求15所述的方法,其中,在所述第一网络设备向终端发送感知信号之前,还包括:
    第一网络设备确定感知信号的配置信息。
  18. 根据权利要求17所述的方法,其中,所述第一网络设备确定感知信 号的配置信息包括以下一项:
    第一网络设备接收第二网络设备发送的感知信号的第二配置信息;
    第一网络设备根据第三信息,确定感知信号的第一配置信息;
    其中,所述第三信息包括以下至少一项:
    第一感知需求;
    配置信息的第一推荐信息,所述第一推荐信息由第二网络设备根据第一感知需求确定;
    配置信息的第二推荐信息,所述第二推荐信息由终端发送给第一网络设备。
  19. 根据权利要求18所述的方法,其中,在第一网络设备确定感知信号的配置信息之后,还包括:
    第一网络设备向终端发送第二指示信息,
    其中,所述第二指示信息包括:感知信号的第一配置信息和第一感知需求中的至少一项。
  20. 根据权利要求17所述的方法,其中,在所述第一网络设备确定感知信号的配置信息之后,还包括:
    第一网络设备通过广播信令发送感知信号的配置信息。
  21. 根据权利要求20所述的方法,其中,所述第一网络设备确定感知信号的配置信息,包括:
    第一网络设备根据第一感知需求,确定感知信号的配置信息。
  22. 根据权利要求15所述的方法,其中,所述第一网络设备向终端发送感知信号,包括:
    第一网络设备确定接收所述感知信号的至少一个终端;
    第一网络设备向所述至少一个终端发送感知信号。
  23. 根据权利要求22所述的方法,其中,所述第一网络设备确定接收所述感知信号的至少一个终端,包括:
    第一网络设备按照第四信息,确定接收所述感知信号的至少一个终端;
    其中,所述第四信息包括以下一项:
    终端是否接入第一网络设备的信息;
    终端上报的感知能力;
    其他先验信息,所述其他先验信息包括:终端位置信息。
  24. 根据权利要求15所述的方法,其中,在所述第一网络设备向终端发送感知信号之后,还包括:
    第一网络设备接收所述终端发送的所述测量量以及所述测量量对应的测量值;
    基于所述测量量以及所述测量量对应的测量值,执行第一操作;
    其中,所述第一操作包括以下一项:
    发送所述测量量以及所述测量量对应的测量值给第二网络设备;
    根据所述测量量以及所述测量量对应的测量值确定感知结果,将所述感知结果发送给第二网络设备。
  25. 根据权利要求15所述的方法,其中,在所述第一网络设备向终端发送感知信号之后,还包括:
    第一网络设备接收终端发送的所述测量量对应的测量值的感知结果;
    将所述感知结果发送给第二网络设备。
  26. 一种感知方法,包括:
    第二网络设备向终端或第一网络设备发送第一感知信息;
    其中,所述第一感知信息包括:第一感知需求、感知信号的配置信息和终端需测量的感知信号索引信息中的至少一项;
    所述第一网络设备为基站。
  27. 根据权利要求26所述的方法,其中,在第二网络设备向终端或第一网络设备发送第一感知信息之后,还包括:
    第二网络设备向终端或第一网络设备发送第一指示信息;
    其中,所述第一指示信息用于指示所述终端需要测量的所述感知信号的测量量。
  28. 根据权利要求26所述的方法,其中,所述第一感知信息中包括感知信号的配置信息的情况下,所述感知信号的配置信息包括:感知信号的第二配置信息;
    所述感知信号的第二配置信息的确定方式包括:
    根据第五信息,确定所述感知信号的第二配置信息;
    其中,所述第五信息,包括以下至少一项:
    第一感知需求;
    第一网络设备发送的感知能力信息;
    终端发送的感知能力信息;
    配置信息的第三推荐信息,所述第三推荐信息由第一网络设备根据第一感知需求确定并发送给第二网络设备;
    配置信息的第四推荐信息,所述第四推荐信息由终端根据第一感知需求确定并发送给第二网络设备;
    配置信息的第五推荐信息,所述第五推荐信息由终端发送给第二网络设备。
  29. 根据权利要求26所述的方法,其中,在第二网络设备向终端发送第一感知信息的情况下,还包括:
    第二网络设备按照第六信息,确定接收所述第一感知信息的至少一个终端;
    其中,所述第六信息包括以下一项:
    终端是否接入第一网络设备的指示信息;
    终端能力上报信息;
    其他先验信息,所述其他先验信息包括:终端位置信息。
  30. 根据权利要求26所述的方法,其中,在第二网络设备向终端或第一网络设备发送第一指示信息之后,还包括以下一项:
    接收第一网络设备或终端发送的感知信号的测量量以及所述测量量对应的测量值;
    接收第一网络设备或终端发送的感知信号的感知结果。
  31. 根据权利要求30所述的方法,其中,在所述接收第一网络设备或终端发送的感知信号的测量量以及所述测量量对应的测量值之后,还包括:
    根据所述测量量以及所述测量量对应的测量值确定感知结果;
    将所述感知结果发送给终端或第三网络设备。
  32. 根据权利要求30所述的方法,其中,在所述接收第一网络设备发送 的感知信号的感知结果之后,还包括:
    将所述感知结果发送给终端或第三网络设备。
  33. 一种感知装置,应用于终端,包括:
    第一确定模块,用于确定感知信号的测量量;
    第一获取模块,用于对所述感知信号进行检测,获取所述测量量对应的测量值;
    其中,所述感知信号是第一网络设备发送的,所述第一网络设备为基站。
  34. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至14任一项所述的感知方法的步骤。
  35. 一种感知装置,应用于第一网络设备,所述第一网络设备为基站,包括:
    第一发送模块,用于向终端发送感知信号,使得所述终端对所述感知信号进行检测,得到所述感知信号的测量量对应的测量值。
  36. 一种感知装置,应用于第二网络设备,包括:
    第二发送模块,用于向终端或第一网络设备发送第一感知信息;
    其中,所述第一感知信息包括:第一感知需求、感知信号的配置信息和终端需测量的感知信号索引信息中的至少一项。
  37. 一种网络设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求15至32任一项所述的感知方法的步骤。
  38. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至32中任一项所述的感知方法的步骤。
PCT/CN2022/107078 2021-07-23 2022-07-21 感知方法、装置、终端及网络设备 WO2023001243A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22845406.2A EP4376470A1 (en) 2021-07-23 2022-07-21 Sensing method and apparatus, terminal, and network device
US18/411,846 US20240155394A1 (en) 2021-07-23 2024-01-12 Sensing method and apparatus, terminal, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110839591.1 2021-07-23
CN202110839591.1A CN115696370A (zh) 2021-07-23 2021-07-23 感知方法、装置、终端及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/411,846 Continuation US20240155394A1 (en) 2021-07-23 2024-01-12 Sensing method and apparatus, terminal, and network device

Publications (1)

Publication Number Publication Date
WO2023001243A1 true WO2023001243A1 (zh) 2023-01-26

Family

ID=84979735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107078 WO2023001243A1 (zh) 2021-07-23 2022-07-21 感知方法、装置、终端及网络设备

Country Status (4)

Country Link
US (1) US20240155394A1 (zh)
EP (1) EP4376470A1 (zh)
CN (1) CN115696370A (zh)
WO (1) WO2023001243A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117687013A (zh) * 2024-02-04 2024-03-12 中亿(深圳)信息科技有限公司 基于5g的安防高精度定位方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116112959B (zh) * 2023-04-11 2023-07-04 中国移动通信有限公司研究院 协同感知簇确定方法、装置、电子设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404780A (zh) * 2010-09-09 2012-04-04 华为技术有限公司 用户感受测量方法、设备和系统
CN103546888A (zh) * 2012-07-11 2014-01-29 华为技术有限公司 一种在lte系统中的感知实现方法及装置
US20140105042A1 (en) * 2011-11-16 2014-04-17 Telefonaktiebolaget L M Ericsson (Publ) Methods and Arrangements for Reference Signal Measurements
CN111866927A (zh) * 2019-04-30 2020-10-30 大唐移动通信设备有限公司 一种定位测量量的上报方法、终端及网络设备
CN112584420A (zh) * 2019-09-29 2021-03-30 大唐移动通信设备有限公司 一种信号测量方法、终端及网络侧设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404780A (zh) * 2010-09-09 2012-04-04 华为技术有限公司 用户感受测量方法、设备和系统
US20140105042A1 (en) * 2011-11-16 2014-04-17 Telefonaktiebolaget L M Ericsson (Publ) Methods and Arrangements for Reference Signal Measurements
CN103546888A (zh) * 2012-07-11 2014-01-29 华为技术有限公司 一种在lte系统中的感知实现方法及装置
CN111866927A (zh) * 2019-04-30 2020-10-30 大唐移动通信设备有限公司 一种定位测量量的上报方法、终端及网络设备
CN112584420A (zh) * 2019-09-29 2021-03-30 大唐移动通信设备有限公司 一种信号测量方法、终端及网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Discussion on Measurements and RS Design for CLI Mitigation", 3GPP DRAFT; R1-1707204, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, 5 May 2017 (2017-05-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 9, XP051261271 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117687013A (zh) * 2024-02-04 2024-03-12 中亿(深圳)信息科技有限公司 基于5g的安防高精度定位方法
CN117687013B (zh) * 2024-02-04 2024-05-17 中亿(深圳)信息科技有限公司 基于5g的安防高精度定位方法

Also Published As

Publication number Publication date
US20240155394A1 (en) 2024-05-09
EP4376470A1 (en) 2024-05-29
CN115696370A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2023001243A1 (zh) 感知方法、装置、终端及网络设备
WO2023030228A1 (zh) 检测方法、装置及设备
WO2023274029A1 (zh) 通信感知方法、装置及网络设备
US20240154708A1 (en) Sensing method, apparatus, and network device
WO2023088299A1 (zh) 感知信号传输处理方法、装置及相关设备
WO2023088298A1 (zh) 感知信号检测方法、感知信号检测处理方法及相关设备
WO2023001183A1 (zh) 通信感知方法、装置及设备
CN112469131B (zh) 一种配置srs资源符号数的方法及终端设备
WO2023001270A1 (zh) 感知方法、装置及网络设备
WO2023001184A1 (zh) 感知信号测量方法、装置、网络设备及终端
WO2023001179A1 (zh) 通信感知方法、装置及设备
WO2023045840A1 (zh) 感知定位方法、装置及通信设备
WO2023045841A1 (zh) 通信感知方法、装置及通信设备
KR20200057406A (ko) 정보 획득과 타켓의 상태 센싱을 동시에 수행하는 모니터링 방법 및 장치
WO2024027664A1 (zh) 载波相位定位方法、装置、设备及介质
WO2024120359A1 (zh) 信息处理、传输方法及通信设备
WO2024099152A1 (zh) 信息传输方法、装置及通信设备
WO2024083045A1 (zh) 鉴权确定方法、鉴权方法、装置及节点
WO2024114460A1 (zh) 测量方法、装置及设备
US20230421993A1 (en) Crowd sensing using radio frequency sensing from multiple wireless nodes
US20230417861A1 (en) Coordination of crowd sensing using radio frequency sensing from multiple wireless nodes
WO2023231870A1 (zh) 通信方法、装置、终端、网络侧设备及核心网设备
WO2024099153A1 (zh) 信息传输方法、装置及通信设备
WO2023083131A1 (zh) 感知方法、装置及通信设备
WO2023030327A1 (zh) 感知业务的处理方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845406

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022845406

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022845406

Country of ref document: EP

Effective date: 20240223