WO2024083045A1 - 鉴权确定方法、鉴权方法、装置及节点 - Google Patents
鉴权确定方法、鉴权方法、装置及节点 Download PDFInfo
- Publication number
- WO2024083045A1 WO2024083045A1 PCT/CN2023/124495 CN2023124495W WO2024083045A1 WO 2024083045 A1 WO2024083045 A1 WO 2024083045A1 CN 2023124495 W CN2023124495 W CN 2023124495W WO 2024083045 A1 WO2024083045 A1 WO 2024083045A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- perception
- node
- authentication
- sensing
- request
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 140
- 230000008447 perception Effects 0.000 claims description 606
- 230000006870 function Effects 0.000 claims description 91
- 238000005259 measurement Methods 0.000 claims description 73
- 238000013475 authorization Methods 0.000 claims description 69
- 230000002123 temporal effect Effects 0.000 claims description 3
- 238000004891 communication Methods 0.000 abstract description 44
- 230000008569 process Effects 0.000 description 21
- 230000005540 biological transmission Effects 0.000 description 19
- 238000012544 monitoring process Methods 0.000 description 16
- 238000001514 detection method Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000001960 triggered effect Effects 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 239000003999 initiator Substances 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 5
- 230000029058 respiratory gaseous exchange Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 238000004590 computer program Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 238000007726 management method Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 235000014510 cooky Nutrition 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/06—Authentication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/08—Network architectures or network communication protocols for network security for authentication of entities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/321—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving a third party or a trusted authority
- H04L9/3213—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving a third party or a trusted authority using tickets or tokens, e.g. Kerberos
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/40—Network security protocols
Definitions
- the present application belongs to the technical field of communication perception integration, and specifically relates to an authentication determination method, an authentication method, a device and a node.
- Communication and perception integration means realizing the integrated design of communication and perception functions through spectrum sharing and hardware sharing in the same system. While transmitting information, the system can perceive information such as direction, distance, speed, and detect, track, and identify target devices or events.
- the communication system and the perception system complement each other to achieve overall performance improvement and bring a better service experience.
- the fifth generation ( 5th Generation, 5G) network in the related technology performs two-way authentication between the terminal and the network for communication.
- the purpose of the authentication and key agreement process is to achieve mutual authentication between the terminal and the network, and to provide key materials that can be used between the terminal and the service network in subsequent security processes; and the authorization and authentication information is mainly obtained based on the terminal identification as the index.
- the embodiments of the present application provide an authentication determination method, an authentication method, an apparatus and a node, which can realize authentication in a synaesthesia integrated network scenario.
- an authentication determination method comprising:
- the first node determines whether authentication is required according to the perception data level corresponding to the perception request; wherein the perception data level is used to indicate the security and privacy requirements of the perception data.
- an authentication method comprising:
- the second node with the perception authentication function enabled receives the perception request or the perception configuration information
- the second node performs authentication according to the perception request or the perception configuration information.
- an authentication determination device which is applied to a first node and includes:
- the first determination module is used to determine whether authentication is required according to the perception data level corresponding to the perception request; wherein the perception data level is used to indicate the security and privacy requirements of the perception data.
- an authentication device which is applied to a second node that enables a perception authentication function, including:
- a second receiving module used to receive a sensing request or sensing configuration information
- the authentication module is used to perform authentication based on the perception request or perception configuration information.
- a first node which terminal includes a processor and a memory, wherein the memory stores a program or instruction that can be executed on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect are implemented.
- a first node comprising a processor and a communication interface, wherein the processor is used to determine whether authentication is required based on a perception data level corresponding to a perception request; wherein the perception data level is used to indicate security and privacy requirements of the perception data.
- a second node in the seventh aspect, includes a processor and a memory, the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the second aspect are implemented.
- a second node comprising a processor and a communication interface, wherein the communication interface is used to receive a perception request or perception configuration information; and the processor is used to perform authentication based on the perception request or perception configuration information.
- a readable storage medium on which a program or instruction is stored.
- the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method described in the second aspect are implemented.
- a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the method described in the first aspect, or to implement the method described in the second aspect.
- a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the steps of the method described in the first aspect, or to implement the steps of the method described in the second aspect.
- the first node determines whether authentication is required according to the level of the perception data corresponding to the perception request, and realizes authentication in the interawareness integrated network scenario.
- authentication based on perception data authentication helps to perform perception authentication on demand, thereby reducing unnecessary authentication and improving authentication efficiency.
- FIG1 is a block diagram of a wireless communication system to which an embodiment of the present application can be applied;
- FIG2 is a flowchart showing the steps of the authentication determination method provided in an embodiment of the present application.
- FIG3 is a flowchart showing the steps of the authentication method provided in an embodiment of the present application.
- FIG4 is a schematic diagram showing the structure of an authentication determination device provided in an embodiment of the present application.
- FIG5 is a schematic diagram showing the structure of an authentication device provided in an embodiment of the present application.
- FIG6 is a schematic diagram showing the structure of a communication device provided in an embodiment of the present application.
- FIG. 7 is a schematic diagram showing the structure of a network side device provided in an embodiment of the present application.
- first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
- the first object can be one or more.
- “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
- LTE Long Term Evolution
- LTE-A Long Term Evolution
- CDMA Code Division Multiple Access
- TDMA Time Division Multiple Access
- FDMA Frequency Division Multiple Access
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single-carrier Frequency Division Multiple Access
- NR new radio
- FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
- the wireless communication system includes a terminal 11 and a network side device 12 .
- the terminal 11 may be a mobile phone, a tablet computer, a laptop computer or a notebook computer, a personal digital assistant (PDA), a handheld computer, a netbook, an ultra-mobile personal computer (UMPC), a mobile Internet device (MID), an augmented reality (AR)/virtual reality (VR) device, a robot, a wearable device, a vehicle user equipment (VUE), a pedestrian terminal (PUE), a smart home (a home appliance with wireless communication function, such as a refrigerator, a television, a washing machine or furniture, etc.), a game console, a personal computer (PC), a teller machine or a self-service machine and other terminal side devices, and the wearable device includes: a smart watch, a smart bracelet, a smart headset, a smart glasses, smart jewelry (smart bracelet, smart bracelet, smart ring
- the network side device 12 may include access network equipment or core network equipment, wherein the access network equipment may also be referred to as wireless access network equipment, wireless access network (RAN), wireless access network function or wireless access network unit.
- the access network equipment may include base stations, wireless local area network (WLAN) access points or WiFi nodes, etc.
- the base stations may be referred to as node B, evolved node B (eNB), access nodes, etc.
- base transceiver station Base Transceiver Station, BTS
- radio base station radio transceiver
- basic service set Basic Service Set, BSS
- extended service set Extended Service Set, ESS
- home B node home evolved B node
- transmission reception point Transmission Reception Point, TRP
- TRP Transmission Reception Point
- Communication and perception integration means realizing the integrated design of communication and perception functions through spectrum sharing and hardware sharing in the same system. While transmitting information, the system can perceive information such as direction, distance, speed, and detect, track, and identify target devices or events.
- the communication system and the perception system complement each other to achieve overall performance improvement and bring a better service experience.
- Perception capability refers to the ability of one or more devices with perception capabilities to perceive the direction, distance, speed and other information of target objects through the transmission and reception of wireless signals, or to detect, track, identify and image target objects, events or environments.
- the perception resolution will be significantly improved compared to centimeter waves, enabling 6G networks to provide more sophisticated perception services.
- Typical perception functions and application scenarios are shown in Table 1.
- perception of intelligent transportation, high-precision maps, etc. is usually expressed in terms of perception range, distance resolution, angle resolution, speed resolution, and latency
- flight intrusion detection perception is usually expressed in terms of coverage height, perception accuracy, and perception latency
- respiratory monitoring is expressed in terms of perception distance, perception real-time, perception resolution, and perception accuracy
- indoor intrusion detection is expressed in terms of perception distance, perception real-time, detection probability, and false alarm probability
- gesture/posture recognition is expressed in terms of perception distance, perception real-time, and perception accuracy.
- the service request methods of the above-mentioned perception services are different. For example, in a service request based on a static area, a certain coordinate system is used to represent the geographical location area of the content to be perceived; in a service request based on a dynamic area, M meters around a certain UE is used to represent the geographical location range of the content to be perceived, where M is a positive number; in a continuous perception service request for a dynamic target, a target that has been detected and continuously tracked is used to represent the perception target of the content to be perceived.
- the Access and Mobility Management Function requests the Authentication Server Function (AUSF) for authentication. Based on the request information from AMF, AUSF performs UE authentication. AUSF selects the Unified Data Management (UDM) and obtains authentication data from the UDM.
- UDM Unified Data Management
- the home network identifier (such as mobile network code MNC and mobile country code MCC) of the Subscription Concealed Identifier (SUCI)/Subscription Permanent Identifier (SUPI), the network identifier (NID) of the Stand-alone Non-Public Network (SNPN) (provided by NG-RAN) and the routing indicator of the terminal (UE).
- SUCI Subscription Concealed Identifier
- SUPI Subscribescription Permanent Identifier
- NID network identifier
- SNPN Stand-alone Non-Public Network
- UE routing indicator of the terminal
- UDM group identity (Identity, ID) of the terminal's SUPI.
- the UDM NF consumer selects the UDM instance based on the SUPI range to which the UE’s SUPI belongs or based on the result of the discovery process of the Network Repository Function (NRF) using the UE’s SUPI or internal group ID as UDM discovery input.
- NRF Network Repository Function
- GPSI or External Group ID When the UDM NF consumer is unaware of the SUPI/SUCI (e.g. NEF), the UDM NF consumer selects the UDM instance based on the GPSI or External Group ID range to which the UE’s Generic Public Subscription Identifier (GPSI) or External Group ID belongs, or based on the result of the discovery process of the NRF using the UE’s GPSI or External Group ID as UDM discovery input.
- GPSI Generic Public Subscription Identifier
- the data AUSF obtains from UDM includes:
- the AUSF sends the authentication result to the UDM, including the SUPI, the timestamp of the authentication time/type, and the serving network name, and the UDM then stores the above (SUPI, authentication result, timestamp, serving network name) authentication status information of the UE.
- the user enters login credentials
- the server verifies that the credentials are correct and returns a signed token.
- the client is responsible for storing the token, which can be stored locally or in a cookie.
- the request to the server carries this token
- the server decodes the JWT and processes the request if the token is valid.
- the client destroys the token.
- the Open Authorization (OAuth) authentication and authorization process mainly includes obtaining an unauthorized Request Token; obtaining a user-authorized Request Token; and exchanging an authorized Request Token for an Access Token.
- OAuth Open Authorization
- the client (third-party software) requests an unauthorized RequestToken from the OAuth service provider. That is, it initiates a request to the RequestToken URL;
- the OAuth service provider agrees to the user's request and issues an unauthorized oauth_token and the corresponding oauth_token_secret to the user, and returns it to the user;
- the user requests the OAuth service provider for a RequestToken for user authorization. That is, a request is made to the UserAuthorization URL and the unauthorized token and its key issued by the service provider in the previous step are carried in the request;
- the OAuth service provider requires the user to log in and guide the user to complete the authorization through the web page
- the request parameter has one more parameter than the first step, which is the RequestToken.
- the OAuth service provider agrees to the user's request, issues an AccessToken and the corresponding key, and returns it to the user;
- the user can then use the AccessToken returned in the previous step to access the user-authorized resources.
- perception For perception, if the receiving or sending device of the perception signal is UE, etc., then authorization and authentication need to perform two-way authentication of perception on the basis of communication.
- perception also involves perception auxiliary nodes (for example, providing perception auxiliary information such as geographic location information), perception result generation nodes (converting perception measurement results into perception results required by the requesting party), etc.
- perception auxiliary nodes for example, providing perception auxiliary information such as geographic location information
- perception result generation nodes converting perception measurement results into perception results required by the requesting party
- Different perception devices may support different functions, and even support some or all functions based on conditions. In the perception process, the importance and security requirements of corresponding perception data are different due to different perception areas, perception targets, perception results, perception performance indicators, etc. Therefore, the embodiments of the present application provide a grading method for perception data and a method for determining authentication based on the level of perception data.
- the embodiment of the present application provides an authentication determination method, including:
- Step 201 The first node determines whether authentication is required according to the perception data level corresponding to the perception request; wherein the perception data level is used to indicate the security and privacy requirements of the perception data.
- the perception data level may also be referred to as perception data classification, perception data grading, etc., which is not specifically limited here.
- the first node is a network function node, such as at least one of a network exposure function (NEF) node, a sensing function (SF) node, an access and mobility management function (AMF) node, and an authentication service function (AUSF) node.
- NEF network exposure function
- SF sensing function
- AMF access and mobility management function
- AUSF authentication service function
- the SF node includes at least one of the following functions:
- a sensing service request is received, and a required sensing measurement quantity is determined according to the sensing service request.
- perception measurement results i.e., the values of perception measurement quantities
- the perception measurement quantities are first-level measurement quantities and/or second-level measurement quantities
- this function is referred to as a basic perception function node.
- a derived perception function node Receives the perception measurement result of the third-level measurement quantity, generate a perception result (fourth-level measurement quantity), respond to the perception service request, and in this application, this function is referred to as a derived perception function node
- a perception measurement result i.e., the value of a perception measurement quantity
- the perception measurement quantity is a first-level measurement quantity and/or a second-level measurement quantity and/or a third-level measurement quantity
- this function is referred to as an integrated perception function node.
- QoS perceived quality of service
- the perception signal sending or receiving node in the mobile communication system includes network equipment (such as base stations) and user equipment UE (such as mobile phones).
- the perception auxiliary node refers to the information used to provide perception assistance, such as perception information of other sensors, geographic location information, etc., which is used to improve the performance of wireless perception.
- the perception link may include Uu link (base station sends/UE receives or base station receives/UE sends), sidelink (transmission and reception between UEs), echo link (base station sends and receives spontaneously, UE sends and receives spontaneously), and inter-base station transceiver link (transmission and reception between base stations);
- the perception method may include base station sending and UE receiving, UE sending and base station receiving, base station sending and receiving spontaneously, transmission and reception between UEs, transmission and reception between base stations, and UE sending and receiving spontaneously.
- a perception signal is determined, where potential perception signals include reference signals and data signals, wherein the reference signal may be a communication reference signal or a perception-specific reference signal.
- Potential perception resources include time-frequency resources not used in communication (such as guard bands), time-frequency resources used in shared communication (such as reference signals or data signals), and time-frequency resources dedicated to perception. Further, it is necessary to determine the configuration of the perception signal. Potential configurations include time, frequency, and spatial domain resource information of the perception signal. If it is determined that the node for the perception time-frequency resource is not the sending node of the perception signal, then send the perception signal configuration to the sending node of the perception signal.
- Determine the configuration of the perception measurement amount, and potential configurations include an indication of the perception signal to be measured, the number or time of the perception signal to be measured, an indication of reporting the measurement result, etc. If it is determined that the node for configuring the perception measurement amount is not a receiving and measuring node of the perception signal, then send the perception measurement amount configuration to the perception signal receiving node.
- the perception function node After the network side determines the perception function node according to the geographical scope of the requested perception service and the geographical scope of the perception service provided by the perception function node, the perception function node needs to determine the AMF in at least one of the following cases: 1) When the UE is a perception signal sending node, a perception signal receiving node or a perception auxiliary node, and the perception target is a certain UE, the perception function node selects the AMF based on the geographical area to be perceived, and the tracking area identity (TAI) of the AMF requested from the network storage function (NRF), and/or the AMF ID/location; 2) When the perception data needs to be transmitted via the AMF (for example, defined as the non-access layer NAS message or NAS layer is used as the transmission bearer protocol layer for perception data), the perception function node selects AMF based on the geographical location information of the perception node for the required transmission data (such as TA, etc.), and the TAI of the AMF requested from the NRF, and/or the A
- the method further includes:
- the first node receives a sensing request, where the sensing request carries sensing data level information
- the first node determines, according to the sensing data level information carried by the sensing request, the sensing data level corresponding to the sensing request;
- the perception data level information is used to indicate the perception data level.
- the perception data level information may be low, medium or high to represent different levels, or may be numerical values to represent different levels, which is not specifically limited here.
- the method further includes:
- the first node determines, according to first information, a level of sensing data corresponding to the sensing request; wherein the first information includes at least one of the following:
- the first node determines the perception data level according to the first information.
- low, medium or high may represent different levels, or numerical values may represent different levels, which is not specifically limited here.
- the perception area attributes include: first indication information indicating whether the perception area requires authorization; for example, to perceive the weather of a scenic spot, usually the geographical location area of the scenic spot does not require authorization; for example, perception areas such as private houses or airports require authorization from the owner or manager of the perception area.
- the perception result attributes include: second indication information indicating whether the perception result requires authorization, and/or perception result classification information; for example, whether the perception result requires authorization, for example, the perception result is weather (such as sunny, heavy rain, moderate rain, light rain) information, usually no authorization is required; for example, the perception result is the trajectory of a certain target, which requires authorization from the target or the target owner.
- second indication information indicating whether the perception result requires authorization
- perception result classification information for example, whether the perception result requires authorization, for example, the perception result is weather (such as sunny, heavy rain, moderate rain, light rain) information, usually no authorization is required; for example, the perception result is the trajectory of a certain target, which requires authorization from the target or the target owner.
- the perception result classification information is used to indicate the importance of the perception result
- the perception result classification information is related to the importance of the perception measurement quantity.
- the perception result classification information for example, in principle, all perception results can be calculated based on the first-level perception measurement quantity (received signal/original channel) and/or the second-level perception measurement quantity (basic measurement quantity), so the first-level and second-level perception measurement quantities have a larger amount of information and the data is more important; the third level (basic attribute/state)/fourth level (advanced attribute state) of the perception result is mainly oriented to a specific perception result, which is difficult to calculate based on The third/fourth level perception measurements are less important than the first two levels because other unauthorized perception information is calculated based on the perception results.
- the perception result grading information may also be referred to as perception result classification information.
- a potential classification method is to classify the perception measurement quantity into the following 4 categories (this description focuses on describing the measurement quantity, which can also be divided into 3 categories or unclassified, etc., and the 4 categories are only for illustration).
- the third and fourth level measurement quantities below are also generally referred to as perception results.
- the second level and/or first level measurement quantity is referred to as perception measurement data.
- First-level measurement quantity (received signal/original channel information), including: received signal/channel response complex result, amplitude/phase, I-channel/Q-channel and its operation results (operations include addition, subtraction, multiplication and division, matrix addition, subtraction and multiplication, matrix transposition, trigonometric relationship operation, square root operation and power operation, as well as threshold detection results, maximum/minimum value extraction results, etc.
- operations also include Fast Fourier Transform (FFT)/Inverse Fast Fourier Transform (IFFT), Discrete Fourier Transform (DFT)/Inverse Discrete Fourier Transform (IDFT), 2D-FFT, 3D-FFT, matched filtering, autocorrelation operation, wavelet transform and digital filtering, as well as threshold detection results, maximum/minimum value extraction results, etc. of the above operation results);
- FFT Fast Fourier Transform
- IFFT Discrete Fourier Transform
- DFT Discrete Fourier Transform
- IDFT Inverse Discrete Fourier Transform
- 2D-FFT 3D-FFT
- matched filtering matched filtering
- autocorrelation operation matched filtering
- wavelet transform and digital filtering as well as threshold detection results, maximum/minimum value extraction results, etc. of the above operation results
- Second-level measurement quantities (basic measurement quantities), including: delay, Doppler, angle, signal strength, and their multi-dimensional combination representation;
- Level 3 measurements including: distance, speed, angle/direction, RCS, acceleration;
- Level 4 measurement quantities including: spatial position, target presence, trajectory, movement, expression, vital signs, quantity, imaging results, weather, air quality, shape, material, and composition.
- the perception performance indicators include: at least one of perception accuracy, perception resolution, perception range, perception delay and perception update frequency: for example, when the perception performance indicator (such as perception accuracy) is greater than a certain threshold, the importance and security requirements of the perception data are high.
- the surveying and mapping accuracy of environmental perception is 1:50,000 basic geographic information, 1:10,000 basic geographic information, 1:20 million basic geographic information, etc.
- the large-scale fine information has high importance and security requirements and can only be provided to the designated perception requester.
- the perception target attribute includes: third indication information indicating whether the perception target has a perception target identifier; for example, the perception target identifier is a UE ID, a tag, a position location identifier, etc. Generally, when the perception data has a perception target identifier, the security requirement is high.
- the attributes of the sensing request sending node include: information indicating whether the sensing request sending node has authority to request sensing results; for example, only an authority recognized by a country or an international alliance can request sensing results, such as the National Geographic Information Center, which can request environmental sensing information including the highest accuracy;
- the attributes of the perception result receiving node include: information indicating whether the perception result receiving node has the authority to obtain the perception result; for example, an authoritative organization recognized by a country or international alliance can obtain the perception result, such as the National Geographic Information Center, which can obtain environmental perception information including the highest accuracy.
- the first node or the sensing request sending node may send a sensing request based on the sensing area attribute, the sensing result attribute, the sensing performance index, and the sensing result attribute.
- the level of the sensed data includes at least two of the following levels, or a combination of the following levels (e.g., levels 1 and 2 are combined into one level, etc.). It is assumed that the greater the level of the sensed data, the higher the corresponding importance and security requirements.
- the levels of the sensed data include:
- Perception data level 1 The perception area does not require authorization, there is no perception target identification, the perception result does not require authorization, and the perception accuracy is lower than a certain threshold;
- Perception data level 2 The perception area does not require authorization, and there is no perception target identification, and the perception result does not require authorization, and the perception accuracy is higher than a certain threshold, and the sender of the perception request and/or the receiver of the perception demand have high authority;
- Perception data level 3 The perception area does not require authorization, there is no perception target identification, and the perception result does not require authorization, and the perception accuracy is higher than a certain threshold, and the sender of the perception request and/or the receiver of the perception demand have low authority;
- Perception data level 4 Perception area requires authorization, no perception target identification
- Perception data level 5 with perception target identification, and no authorization is required for the perception area;
- Perception data level 6 with perception target identification, the perception area requires authorization.
- determining whether authentication is required according to the perception data level is specifically as follows:
- the first node sends a sensing request to the sensing function.
- the first node sends a rejection message to the sender of the perception request.
- the first node selects a suitable network function (AMF or SF) for authentication, and the network function obtains the perception area authorization information and determines whether the authentication is passed.
- AMF AMF or SF
- the first node selects a suitable network function (AMF or SF) for authentication, and the network function obtains the sensing target authorization information and determines whether the authentication is passed.
- AMF Access Management Function
- the first node selects a suitable network function (AMF or SF) for authentication, and the network function obtains the sensing target authorization information and the sensing area authorization, and determines whether the authentication is passed.
- AMF Access Management Function
- the perception request also carries at least one of the following information:
- fourth indication information indicating whether to determine (specify) a perception node, wherein the perception node is a node that performs at least one of sending a perception signal, receiving a perception signal, measuring a perception signal, reporting perception auxiliary data, and generating a perception result;
- the fourth indication information may also be understood as indicating whether to specify a perception node, and if at least one of the above-mentioned nodes is specified, it indicates that the perception node is specified; if at least one of the above-mentioned nodes is not specified, it indicates that the perception node is not specified;
- the sensing request also includes a list of the specified sensing nodes; for example, sensing node 1 is used for sensing signal transmission; sensing node 2 is used for sensing signal reception and measurement; sensing node 3 is used for sensing result generation;
- Sensing area the area where the network senses, such as a highway area or a housing area;
- Perception target the object that the network perceives, such as a drone terminal
- a sense request sending node identifier may also be called a sense request party identifier, a sense request initiator identifier, etc.;
- Perception content also known as perception service type.
- potential perception content includes distance, speed, direction, position, trajectory, presence of target, environment reconstruction, breathing monitoring, heartbeat monitoring, motion recognition, weather monitoring, air quality detection, material composition analysis, etc.
- the time information of the execution perception can be absolute time information (Monday, 13:00-19:00) or relative time information (such as within the next month).
- the time information may include the start time, end time or duration, etc.;
- QoS Perceived quality of service
- Authorization credentials such as a token
- the perceived QoS includes at least one performance indicator and corresponding information (such as numerical requirements, etc.) as shown in Table 2.
- the method further includes:
- the first node determines an authentication method; wherein the authentication method includes: single-node authentication and/or multi-node authentication;
- the first node determines at least one node that performs authentication.
- the single-node authentication is performed by a certain node to determine whether the authentication is passed, and the multi-node authentication is performed by at least two nodes to determine whether the authentication is passed.
- the method further comprises:
- the first node When it is determined that authentication is required and the nodes performing authentication include other nodes except the first node, the first node sends fourth indication information to the node performing authentication, and the fourth indication information is used to instruct the corresponding node to perform authentication.
- the embodiments of the present application consider different requirements for perception authentication performance and integrity in different scenarios, and support the selection of multiple perception authentication methods.
- a multi-node authentication authentication method can be adopted.
- the perception data level 6 in the above embodiment considering the mobility of the perception target, as the area where the perception target is located changes, the perception target may move from the area where perception is allowed to the area where perception is not allowed, then it is necessary for multiple nodes to determine whether perception can be performed (perform perception authentication), that is, it is necessary to adopt a multi-node authentication authentication method.
- An optional method is: the first node determines the node for the first authentication and the node for the second authentication (here taking two authentications as an example, the specific number of authentications can be greater than or equal to two times), and sends a fourth indication information to instruct the selected node to perform authentication.
- At least one node performing authentication obtains authorization information to determine whether the authentication is successful; the authorization information includes at least one of perception area authorization information, perception target authorization information, and perception device authorization information.
- the sensing area is an area where the network senses, such as a highway area or a housing area.
- the sensing area authorization information may be provided by the sensing area owner and/or the sensing area manager.
- the sensing area authorization information specifically includes at least one of the following:
- the perception area authorization information includes at least one of the following:
- First indication information indicating that the first area allows perception
- the first area allows a range of perception
- Second indication information indicating that the first area is prohibited from being sensed
- the communication information of the device with the authorization authority for the first area is the device identification of the device; when the area sensing authorization information is updated or each sensing request inquires whether to authorize, the device identification is used for the network to receive the area sensing authorization update information or interact with it to sense the authorization information.
- the user equipment (UE) identification such as SUPI or telephone number
- the server access address of the area manager such as Internet Protocol (IP) address and/or port number
- IP Internet Protocol
- the first area allows a range of perception including at least one of the following:
- the content that the first area allows to be perceived can also be called the perception result that the first area allows to be perceived, which is the perception result required by the perception service calculated by the network based on the perception measurement data.
- Potential perception content includes distance, speed, direction, position, trajectory, whether there is a target, environmental reconstruction, breathing monitoring, heartbeat monitoring, motion recognition, weather monitoring, air quality detection, material composition analysis, etc.
- the first area allows the perception measurement data to be perceived, and the perception measurement data includes at least one of the first-level measurement quantity and the second-level measurement quantity of the aforementioned perception measurement quantity;
- the sensing request sending node allowed in the first area may also be referred to as a sensing requester, an initiator of a sensing request, a sending device of a sensing request, etc.; for example, by an IP address, a port number, a UE ID (such as a user permanent identifier SUPI, At least one of the following items indicates the sending node of the sensing request;
- the perception result receiving node allowed in the first area may also be referred to as a perception result user, a perception result receiving device, etc., for example, the perception result receiving node is indicated by at least one of an IP address, a port number, and a UE ID (such as a user permanent identifier SUPI, a telephone number, etc.);
- sensing device allowed in the first area, wherein the sensing device is a device that performs at least one of sending a sensing signal, receiving a sensing signal, measuring a sensing signal, reporting sensing auxiliary data, and generating a sensing result;
- the first area allows a perceived service quality QoS, and the perceived service quality QoS includes at least one of the perceived performance indicators in Table 2. For example, it is allowed when the accuracy is lower than a certain value, and the accuracy can be a perceived accuracy or a perceived resolution.
- the prohibited sensing range of the first area includes at least one of the following:
- the content that is prohibited from being perceived in the first area can also be called the perception result that is prohibited from being perceived in the first area, and the potential perception content includes distance, speed, direction, position, trajectory, whether there is a target, environment reconstruction, breathing monitoring, heartbeat monitoring, motion recognition, weather monitoring, air quality detection, material composition analysis, etc.;
- the first area is prohibited from sensing measurement data
- the sensing request sending node prohibited in the first area may also be referred to as a sensing requester, an initiator of a sensing request, a sending device of a sensing request, etc.; for example, the sensing request sending node is indicated by at least one of an IP address, a port number, and a UE ID (such as a user permanent identifier SUPI, a telephone number, etc.);
- the sensing result receiving node prohibited in the first area may also be referred to as a sensing result user, a sensing result receiving device, etc., for example, the sensing result receiving node is indicated by at least one of an IP address, a port number, and a UE ID (such as a user permanent identifier SUPI, a telephone number, etc.);
- the sensing device prohibited in the first area is a device that performs at least one of sending a sensing signal, receiving a sensing signal, measuring a sensing signal, reporting sensing auxiliary data, and generating a sensing result;
- the perceived quality of service QoS prohibited in the first area is, for example, prohibited when the accuracy is higher than a certain value.
- the sensing target is an object that the network senses, such as a drone terminal. When the sensing target has a network-recognizable identifier, it is more suitable for the network to authorize and authenticate the sensing target.
- the sensing target authorization information can be provided by the sensing target and/or the sensing target owner and/or the manager of the sensing target.
- the sensing target authorization information specifically includes at least one of the following:
- the communication information of the device having the first target authorization authority is the device identification of the device; when the target When the sensing authorization information is updated or each sensing request inquires whether to be authorized, the device identifier is used for the network to receive the target sensing authorization update information or to exchange sensing authorization information with it. If the sensing target is a UE, then the communication information can be the UE's SUPI/IMSI ID.
- the range in which the first target is allowed to be perceived includes at least one of the following:
- the first target allows the content to be perceived; it can also be called the perception result that the first target allows to be perceived, which is the perception result required by the perception service calculated by the network based on the perception measurement data.
- Potential perception content includes distance, speed, direction, position, trajectory, whether there is a target, environmental reconstruction, breathing monitoring, heartbeat monitoring, motion recognition, weather monitoring, air quality detection, material composition analysis, etc.
- the first target allows the perception measurement data to be perceived;
- the perception measurement data includes at least one of the first-level measurement quantity and the second-level measurement quantity of the aforementioned perception measurement quantity;
- the sensing request sending node allowed by the first target may also be referred to as a sensing requester, an initiator of a sensing request, a sending device of a sensing request, etc.; for example, the sensing request sending node is indicated by at least one of an IP address, a port number, and a UE ID (such as a user permanent identifier SUPI, a telephone number, etc.);
- the perception result receiving node allowed by the first target may also be referred to as a perception result user, a perception result receiving device, etc., for example, the perception result receiving node is indicated by at least one of an IP address, a port number, and a UE ID (such as a user permanent identifier SUPI, a telephone number, etc.);
- the sensing device allowed by the first target is a device that performs at least one of sending a sensing signal, receiving a sensing signal, measuring a sensing signal, reporting sensing auxiliary data, and generating a sensing result;
- the first target allows a perceived service quality QoS, and the perceived service quality QoS includes at least one of the perceived performance indicators in Table 2.
- the accuracy is allowed when it is lower than a certain value, and the accuracy can be a perceived accuracy or a perceived resolution.
- the range in which the first target is prohibited from being perceived includes at least one of the following:
- the first target is prohibited from being perceived; it can also be called the perception result that the first target is prohibited from being perceived, which is the perception result required by the perception service calculated by the network based on the perception measurement data.
- Potential perception content includes distance, speed, direction, position, trajectory, whether there is a target, environmental reconstruction, breathing monitoring, heartbeat monitoring, action recognition, weather monitoring, air quality detection, material composition analysis, etc.
- the first target is prohibited from being perceived by the sensed measurement data, the sensed measurement data comprising at least one of the first-level measurement quantity and the second-level measurement quantity of the aforementioned sensed measurement quantity;
- the first target prohibited sensing request sending node may also be referred to as a sensing requester, an initiator of a sensing request, a sending device of a sensing request, etc.; for example, the sensing request sending node is indicated by at least one of an IP address, a port number, and a UE ID (such as a user permanent identifier SUPI, a telephone number, etc.);
- the first target prohibited perception result receiving node may also be referred to as a perception result user, a perception result receiving device, etc., for example, by an IP address, a port number, a UE ID (such as a user permanent identifier SUPI, a telephone number, etc.) At least one item in the indicates a sensing result receiving node;
- the first target prohibits a sensing device, wherein the sensing device is a device that performs at least one of sending a sensing signal, receiving a sensing signal, measuring a sensing signal, reporting sensing auxiliary data, and generating a sensing result;
- the first target prohibits the perceived service quality QoS, and the perceived service quality QoS includes at least one of the perceived performance indicators in Table 2. For example, it is prohibited when the accuracy is higher than a certain value, and the accuracy can be the perceived accuracy or the perceived resolution.
- a sensing device (also referred to as a sensing node) is a device that performs at least one of the following functions: sensing signal transmission, sensing signal reception, sensing signal measurement, sensing assistance, and sensing result generation.
- a sensing device may be a user equipment (UE), a base station, a network function, etc.
- the sensing device authorization information may be provided by the sensing device and/or the sensing device owner.
- the sensing device authorization information specifically includes at least one of the following:
- the first device allows the scope of participation in perception
- the first device is prohibited from participating in the sensing range.
- the scope in which the first device is allowed to participate in the perception includes at least one of the following:
- the first device is allowed to participate in a sensing function, wherein the sensing function includes at least one of sensing signal sending, sensing signal receiving, sensing signal measurement, sensing auxiliary data reporting, and sensing result generation;
- eighth indication information indicating the node sending the sensing request that allows the first device to be determined to participate in sensing
- the perception measurement quantity comprising at least one of the aforementioned perception measurement quantities
- the first device allows the perception assistance data, and the perception assistance data includes at least one of position information, time information, speed information, and target identification information.
- the location information is the GPS location, the relative position based on a certain reference object, etc.
- the time information is the absolute time or the relative time, etc.
- the speed information is the stationary, low speed, high speed or a certain speed value, etc.
- the target identification information is the camera image containing the target identification such as the license plate, or when the target is the UE, the permanent identification such as the SUPI of the target UE; no specific limitation is made here.
- the range in which the first device is prohibited from participating in the sensing includes at least one of the following:
- Tenth indication information indicating prohibiting the node sending the perception request from determining that the first device participates in the perception
- a perception measurement quantity prohibited by the first device wherein the perception measurement quantity includes at least one of the aforementioned perception measurement quantities;
- the first device prohibits the perception assistance data, wherein the perception assistance data includes at least one of position information, time information, speed information, and target identification information.
- the location information is the GPS location, the relative location based on a reference object, etc.
- the time information is the absolute time. Or relative time, etc.; speed information is stationary, low speed, high speed or a certain speed value, etc.; target identification information is a camera image containing target identification such as a license plate, or when the target is a UE, a permanent identification such as the SUPI of the target UE; no specific limitation is made here.
- the first node determines whether authentication is required based on the perception data level corresponding to the perception request; the first node indicates the level of security and privacy requirements of the requested perception data based on the perception data level, and authentication based on perception data authentication helps to perform perception authentication on demand, thereby reducing unnecessary authentication and improving authentication efficiency.
- the embodiment of the present application also provides an authentication method, including:
- Step 301 A second node with a sensing authentication function enabled receives a sensing request or sensing configuration information
- Step 302 The second node performs authentication according to the perception request or perception configuration information.
- the second node is a node that sends and/or receives a perception signal.
- the embodiments of the present application consider different requirements for perception authentication performance and integrity in different scenarios, and support the selection of multiple perception authentication methods.
- a multi-node authentication authentication method can be adopted.
- the perception data level 6 in the above embodiment considering the mobility of the perception target, as the area where the perception target is located changes, the perception target may move from the area where perception is allowed to the area where perception is not allowed, then it is necessary to determine whether perception can be executed (perform perception authentication) by multiple nodes, that is, it is necessary to adopt a multi-node authentication authentication method.
- One implementation method is to enable a node with a perception authentication function.
- the node When the node receives a perception request or perception configuration information, it must first perform authentication, and determine whether to perform perception based on the authentication result. For example, a base station deployed in a prohibited perception area or a UE located in a prohibited perception area both turns on the perception authentication function. If other nodes pass a perception authentication once due to inaccurate information or the mobility of the perception target, then when the base station or UE receives a perception request or perception configuration, it determines whether the perception request or perception configuration is allowed to be executed through authentication.
- the embodiment of the present application enables the perception authentication function of the second node so that the second node performs authentication first after receiving the perception request or perception configuration information to determine whether to perform perception, thereby providing a more complete authentication and avoiding inaccurate authentication results of a single node.
- Example 1 Perception authentication method based on perception data level
- AF application function
- internal network function such as AMF, etc.
- UE can send a perception request
- the first node such as NEF, AMF, SF or AUSF
- a process based on 5G network is briefly described as follows.
- Step 1 AF sends a perception request to NEF, or an internal network function (such as SMF, etc.) sends a perception request to SF, or UE sends a perception request to AMF.
- an internal network function such as SMF, etc.
- SF a perception request to SF
- UE a perception request to AMF.
- the content carried in the perception request can be found in the method implementation example section.
- Step 2 If the sensing request does not include the sensing data level information, the first node receives the sensing data from the requested sensing area, sensing target, sensing result, sensing performance indicator, the sender of the sensing request and the receiver of the sensing result. At least one item determines the level of the sensed data.
- Step 3 Determine whether authentication is required based on the level of the perception data.
- the level of the perception data in the above embodiment Take the level of the perception data in the above embodiment as an example:
- the first node sends a sensing request to the sensing function
- the first node sends a rejection message to the sender of the perception request
- the first node selects an appropriate network function (AMF or SF) for authentication, and the network function obtains the perception area authorization information and determines whether the authentication is passed;
- AMF Access Management Function
- the first node selects an appropriate network function (AMF or SF) for authentication, and the network function obtains the sensing target authorization information and determines whether the authentication is passed;
- AMF Access Management Function
- the first node selects a suitable network function (AMF or SF) for authentication, and the network function obtains the sensing target authorization information and the sensing area authorization, and determines whether the authentication is passed.
- AMF Access Management Function
- Step 4 After authorization/authentication is passed, in one mode, NEF selects a suitable AMF and sends a perception service request message to AMF. When triggered by an internal network element, the internal network element selects a suitable AMF and sends a perception service request message to AMF.
- NEF selects the AMF that serves the area based on the area information in the AF request.
- NEF selects the AMF serving the area based on the target location information in the AF request; if the target itself has a UE communication module and has UE capabilities, such as a vehicle, then it can be considered that target-oriented perception is the perception of the UE's surroundings. At this time, the UE's service AMF can be selected as the AMF, and NEF obtains the AMF information serving the UE by querying the UDM.
- NEF can select SF first, and then SF selects AMF.
- the internal network element selects SF, and then SF selects AMF.
- NEF selects the SF that serves the area based on the area information in the AF request.
- NEF selects the SF serving the area based on the target location information in the AF request; if the target itself has a UE communication module and has UE capabilities, such as a vehicle, then it can be considered that target-oriented perception is to perceive the surroundings of the UE.
- the service SF of the UE can be selected as the SF, and NEF obtains the AMF ID serving the UE by querying the UDM, and then selects the appropriate SF based on the AMF ID.
- Step 5 AMF sends the sensing request to SF.
- Step 6 If SF determines the sensing mode and sensing base station/UE according to the sensing request, the sensing modes are divided from the perspective of the sensing signal sending node and the receiving node, including base station self-transmission and self-reception, base station-to-base station transmission and reception, UE transmission and base station reception, base station transmission and UE reception, UE self-transmission and self-reception, and UE-to-UE transmission and reception.
- a sensing response is returned to the SF, carrying a success indication, otherwise a failure indication is returned.
- the sensing network element then returns a sensing response to the third-party application requesting the service.
- Step 7 SF performs perception calculation based on the perception measurement data fed back by the base station and obtains the final perception result.
- Step 8 SF returns the sensing result to AMF.
- SF can return the sensing result to AF through AMF and NEF, or directly return the sensing result to AF through NEF.
- Step 9 AMF returns the sensing result to AF through NEF.
- AMF sends the sensing result to the internal network element.
- Example 2 Perception authentication method based on perception authentication method selection
- Step 1 AF sends a perception request message to NEF, or an internal network function (such as SMF, etc.) sends a perception request to SF, or UE sends a perception request to AMF.
- an internal network function such as SMF, etc.
- Step 2 If the perception request does not include the perception data level information, the first node determines the perception data level according to at least one of the requested perception area, the perception target, the perception result, the perception performance indicator, the sender of the perception request and the receiver of the perception result.
- Step 3 based on the perceived data level, whether authentication is really required. If authentication is required, then determine the authentication method and the node for authentication. The following will continue to explain by taking the perception data level in the above embodiment as an example where a multi-node authentication method is required for some perception data levels.
- the first node sends a sensing request to the sensing function
- the first node sends a rejection message to the sender of the perception request
- the authentication method is determined to be a multi-node authentication method.
- the first node selects a suitable network function (AMF or SF) for the first authentication, and the network function obtains the perception area authorization information and determines whether the authentication is passed. If the first authentication is passed, one method is that the first node selects a suitable node (such as a base station or UE) for the second authentication, and the base station or UE determines whether the authentication is passed;
- AMF network function
- the first node selects an appropriate network function (AMF or SF) for authentication, and the network function obtains the sensing target authorization information and determines whether the authentication is passed;
- AMF Access Management Function
- the first node selects a suitable network function (AMF or SF) for the first authentication, and the network function obtains the sensing target authorization information and the sensing area authorization to determine whether the authentication is passed. If the first authentication is passed, one way is that the first node selects a suitable node (such as a base station or UE) for the second authentication, and the base station or UE determines whether the authentication is passed.
- AMF Access Management Function
- SF network function
- Step 4 After authorization/authentication is passed, in one mode, NEF selects a suitable AMF and sends a perception service request message to AMF. When triggered by an internal network element, the internal network element selects a suitable AMF and sends a perception service request message to AMF.
- NEF selects the AMF that serves the area based on the area information in the AF request.
- NEF selects the AMF serving the area based on the target location information in the AF request; if the target itself has a UE communication module and has UE capabilities, such as a vehicle, then it can be considered that target-oriented perception is the perception of the UE's surroundings. At this time, the UE's service AMF can be selected as the AMF, and NEF obtains the AMF information serving the UE by querying the UDM.
- NEF can select SF first, and then SF selects AMF.
- the internal network element selects SF, and then SF selects AMF.
- NEF selects the SF that serves the area based on the area information in the AF request.
- NEF selects the SF serving the area based on the target location information in the AF request; if the target itself has a UE communication module and has UE capabilities, such as a vehicle, then it can be considered that target-oriented perception is to perceive the surroundings of the UE.
- the service SF of the UE can be selected as the SF, and NEF obtains the AMF ID serving the UE by querying the UDM, and then selects the appropriate SF based on the AMF ID.
- Step 5 AMF sends the sensing request to SF.
- Step 6 If SF determines the sensing mode and sensing base station/UE according to the sensing request, the sensing modes are divided from the perspective of the sensing signal sending node and the receiving node, including base station self-transmission and self-reception, base station-to-base station transmission and reception, UE transmission and base station reception, base station transmission and UE reception, UE self-transmission and self-reception, and UE-to-UE transmission and reception.
- the selected perception base station/UE starts the perception authentication function. Then, when the perception base station/UE receives a perception request or a perception configuration, the perception base station/UE determines whether the perception request or the perception configuration is allowed to be executed according to the perception authorization information of the location. If the base station and the terminal can perform the perception operation, a perception response is returned to the SF, carrying a success indication, otherwise a failure indication is carried.
- the failure indication includes that the perception authentication fails, or that the perception data of the level is not allowed to be requested.
- the perception network element then returns a perception response to the third-party application requesting the service.
- Step 7 SF performs perception calculation based on the perception measurement data fed back by the base station and obtains the final perception result.
- Step 8 SF returns the sensing result to AMF.
- SF can return the sensing result to AF through AMF and NEF, or directly return the sensing result to AF through NEF.
- Step 9 AMF returns the sensing result to AF through NEF.
- AMF sends the sensing result to the internal network element.
- the authentication determination method or authentication method provided in the embodiment of the present application can be executed by an authentication determination device or an authentication device.
- an authentication determination device or an authentication device executing the authentication determination method or the authentication method is taken as an example to illustrate the authentication determination device or the authentication device provided in the embodiment of the present application.
- the embodiment of the present application further provides an authentication determination device 400, which is applied to a first node and includes:
- the first determination module 401 is used to determine whether authentication is required according to the perception data level corresponding to the perception request; wherein the perception data level is used to indicate the security and privacy requirements of the perception data.
- the device further includes:
- a first receiving module configured to receive a sensing request, wherein the sensing request carries sensing data level information
- a second determination module configured to determine the perception data level corresponding to the perception request according to the perception data level information carried by the perception request
- the perception data level information is used to indicate the perception data level.
- the device further includes:
- a third determining module is configured to determine a sensing data level corresponding to the sensing request according to the first information; wherein the first information includes at least one of the following:
- the perception area attribute includes: first indication information indicating whether the perception area needs authorization;
- the perception result attributes include: second indication information indicating whether the perception result needs authorization, and/or perception result classification information;
- the perception performance indicator includes at least one of perception accuracy, perception resolution, perception range, perception delay and perception update frequency:
- the perception target attribute includes: third indication information indicating whether the perception target has a perception target identifier;
- the attributes of the perception request sending node include: information indicating whether the perception request sending node has authority to request a perception result;
- the attribute of the perception result receiving node includes: information indicating whether the perception result receiving node has authority to obtain the perception result.
- the perception result grading information is used to indicate the importance of the perception result, and the perception result grading information is related to the importance of the perception measurement quantity.
- the perception request further carries at least one of the following information:
- the perception node is a node that performs at least one of sending a perception signal, receiving a perception signal, measuring a perception signal, reporting perception assistance data, and generating a perception result;
- QoS Perceived quality of service
- the device further includes:
- a fourth determination module is used to determine an authentication method when it is determined that authentication is required; wherein the authentication method includes: single-node authentication and/or multi-node authentication;
- the device further includes:
- the first sending module is used to send fourth indication information to the node performing authentication when it is determined that authentication is required and the nodes performing authentication include other nodes except the first node, wherein the fourth indication information is used to instruct the corresponding node to perform authentication.
- the first node determines whether authentication is required based on the perception data level corresponding to the perception request; the first node indicates the level of security and privacy requirements of the requested perception data based on the perception data level, and authentication based on perception data authentication helps to perform perception authentication on demand, thereby reducing unnecessary authentication and improving authentication efficiency.
- the authentication determination device provided in the embodiment of the present application is a device capable of executing the above-mentioned authentication determination method. All embodiments of the above-mentioned authentication determination method are applicable to the device and can achieve the same or similar beneficial effects, which will not be repeated here.
- the embodiment of the present application further provides an authentication device 500, which is applied to a second node that enables a perception authentication function, including:
- the second receiving module 501 is used to receive a sensing request or sensing configuration information
- the authentication module 502 is used to perform authentication based on the perception request or perception configuration information.
- the second node is a node that sends and/or receives a perception signal.
- the embodiment of the present application enables the perception authentication function of the second node so that the second node performs authentication first after receiving the perception request or perception configuration information to determine whether to perform perception, thereby providing more complete authentication and avoiding inaccurate authentication results of a single node.
- the first node is a network function node
- the network function node includes at least one of the following:
- the authentication device provided in the embodiment of the present application is a device capable of executing the above-mentioned authentication method. All embodiments of the above-mentioned authentication method are applicable to the device and can achieve the same or similar beneficial effects, which will not be repeated here.
- the authentication determination device or authentication device in the embodiment of the present application can be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
- the electronic device can be a terminal, or it can be other devices other than a terminal.
- the terminal can include but is not limited to the types of terminals 11 listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
- the authentication determination device or authentication device provided in the embodiment of the present application can implement the various processes implemented by the method embodiments of Figures 1 to 3 and achieve the same technical effects. To avoid repetition, they will not be described here.
- the embodiment of the present application further provides a communication device 600, including a processor 601 and a memory 602, wherein the memory 602 stores a program or instruction that can be run on the processor 601.
- the communication device 600 is a first node
- the program or instruction is executed by the processor 601 to implement the various steps of the above-mentioned authentication determination method embodiment, and can achieve the same technical effect.
- the communication device 600 is a second node
- the program or instruction is executed by the processor 601 to implement the various steps of the above-mentioned authentication method embodiment, and can achieve the same technical effect. To avoid repetition, I will not go into details here.
- the embodiment of the present application also provides a network side device, including a processor and a communication interface, wherein the processor is used to determine whether authentication is required according to the perception data level corresponding to the perception request; wherein the perception data level is used to indicate the security and privacy requirements of the perception data.
- the communication interface is used to receive perception requests or perception configuration information; the processor is used to perform authentication according to the perception request or the perception configuration information.
- This network side device embodiment corresponds to the above-mentioned first node side method embodiment or the second node side method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to this network side device embodiment, and can achieve the same technical effect.
- the embodiment of the present application also provides a network side device.
- the network side device 700 includes: an antenna 71, a radio frequency device 72, a baseband device 73, a processor 74, and a memory 75.
- the antenna 71 is connected to the radio frequency device 72.
- the radio frequency device 72 receives information through the antenna 71 and sends the received information to the baseband device 73 for processing.
- the baseband device 73 processes the information to be sent and sends it to the radio frequency device 72.
- the radio frequency device 72 processes the received information and sends it out through the antenna 71.
- the method executed by the network-side device in the above embodiment may be implemented in the baseband device 73, which includes a baseband processor.
- the baseband device 73 may include, for example, at least one baseband board, on which a plurality of chips are arranged, as shown in FIG. 7 , wherein one of the chips is, for example, a baseband processor, which is connected to the memory 75 via a bus interface to call a program in the memory 75 and execute the network device operations shown in the above method embodiment.
- the network side device may also include a network interface 76, which is, for example, a common public radio interface (CPRI).
- a network interface 76 which is, for example, a common public radio interface (CPRI).
- CPRI common public radio interface
- the network side device 700 of the embodiment of the present application also includes: instructions or programs stored in the memory 75 and executable on the processor 74.
- the processor 74 calls the instructions or programs in the memory 75 to execute the methods executed by the modules shown in Figure 4 or 5 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
- An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
- a program or instruction is stored.
- the various processes of the above-mentioned authentication determination method or authentication method embodiment are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
- the processor is the processor in the terminal described in the above embodiment.
- the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
- An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned authentication determination method or authentication method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
- the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
- the present application embodiment further provides a computer program/program product, which is stored in a storage medium and executed by at least one processor to implement the above authentication determination method.
- a computer program/program product which is stored in a storage medium and executed by at least one processor to implement the above authentication determination method.
- the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk), and includes a number of instructions for a terminal (which can be a mobile phone, computer, server, air conditioner, or network equipment, etc.) to execute the methods described in each embodiment of the present application.
- a storage medium such as ROM/RAM, magnetic disk, optical disk
- a terminal which can be a mobile phone, computer, server, air conditioner, or network equipment, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种鉴权确定方法、鉴权方法、装置及节点,属于通信感知一体化领域,本申请实施例的鉴权确定方法包括:第一节点根据感知请求对应的感知数据级别,确定是否需要进行鉴权;其中,所述感知数据级别用于指示感知数据的安全隐私要求。
Description
相关申请的交叉引用
本申请主张在2022年10月20日在中国提交的中国专利申请No.202211289830.1的优先权,其全部内容通过引用包含于此。
本申请属于通信感知一体化技术领域,具体涉及一种鉴权确定方法、鉴权方法、装置及节点。
通信感知一体化即在同一系统中通过频谱共享与硬件共享,实现通信、感知功能一体化设计,系统在进行信息传递的同时,能够感知方位、距离、速度等信息,对目标设备或事件进行检测、跟踪、识别,通信系统与感知系统相辅相成,实现整体性能上的提升并带来更好的服务体验。
相关技术中的第五代(5th Generation,5G)网络面向通信进行终端和网络之间的双向鉴权,认证和密钥协议过程的目的是实现终端和网络之间的相互认证,并提供在后续安全过程中可以在终端和服务网络之间使用的密钥材料;且主要以终端标识为索引获取授权和鉴权信息。
然而,如何针对感知一体化网络场景进行鉴权,目前尚未有相关技术方案。
发明内容
本申请实施例提供一种鉴权确定方法、鉴权方法、装置及节点,能够实现通感一体化网络场景下的鉴权。
第一方面,提供了一种鉴权确定方法,包括:
第一节点根据感知请求对应的感知数据级别,确定是否需要进行鉴权;其中,所述感知数据级别用于指示感知数据的安全隐私要求。
第二方面,提供了一种鉴权方法,包括:
开启感知鉴权功能的第二节点接收感知请求或感知配置信息;
所述第二节点根据感知请求或感知配置信息,进行鉴权。
第三方面,提供了一种鉴权确定装置,应用于第一节点,包括:
第一确定模块,用于根据感知请求对应的感知数据级别,确定是否需要进行鉴权;其中,所述感知数据级别用于指示感知数据的安全隐私要求。
第四方面,提供了一种鉴权装置,应用于开启感知鉴权功能的第二节点,包括:
第二接收模块,用于接收感知请求或感知配置信息;
鉴权模块,用于根据感知请求或感知配置信息,进行鉴权。
第五方面,提供了一种第一节点,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种第一节点,包括处理器及通信接口,其中,所述处理器用于根据感知请求对应的感知数据级别,确定是否需要进行鉴权;其中,所述感知数据级别用于指示感知数据的安全隐私要求。
第七方面,提供了一种第二节点,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种第二节点,包括处理器及通信接口,其中,所述通信接口用于接收感知请求或感知配置信息;所述处理器用于根据感知请求或感知配置信息,进行鉴权。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十一方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
在本申请实施例中,第一节点根据感知请求对应的感知数据级别,确定是否需要进行鉴权,实现通感一体化网络场景下的鉴权。此外,由于第一节点根据感知数据级别指示所请求感知数据安全隐私要求的高低,基于感知数据鉴权的鉴权有助于按需进行感知鉴权,从而减少不必要的鉴权,提升鉴权效率。
图1表示本申请实施例可应用的一种无线通信系统的框图;
图2表示本申请实施例提供的鉴权确定方法的步骤流程图;
图3表示本申请实施例提供的鉴权方法的步骤流程图;
图4表示本申请实施例提供的鉴权确定装置的结构示意图;
图5表示本申请实施例提供的鉴权装置的结构示意图;
图6表示本申请实施例提供的通信设备的结构示意图;
图7表示本申请实施例提供的网络侧设备的结构示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接
入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
为了方便理解,以下对本申请实施例涉及的一些内容进行说明:
一、通信感知一体化:
通信感知一体化即在同一系统中通过频谱共享与硬件共享,实现通信、感知功能一体化设计,系统在进行信息传递的同时,能够感知方位、距离、速度等信息,对目标设备或事件进行检测、跟踪、识别,通信系统与感知系统相辅相成,实现整体性能上的提升并带来更好的服务体验。
未来移动通信系统,例如,超5代(Beyond 5G,B5G)移动通信系统或6G移动通信系统等,除了具备通信能力外,还将具备感知能力。感知能力,即具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。未来随着毫米波、太赫兹等具备高频段大带宽能力的小基站在6G网络的部署,感知的分辨率相比厘米波将明显提升,从而使得6G网络能够提供更精细的感知服务。典型的感知功能与应用场景如表1所示。
上述感知业务的服务质量要求的表述各不相同,例如智能交通、高精地图等感知通常以感知范围、距离分辨率、角度分辨率、速度分辨率和时延等来表达;飞行入侵检测感知通常以覆盖高度、感知精度、感知时延来表达;呼吸监测以感知距离、感知实时性、感知分辨率和感知精度来表达;室内入侵检测以感知距离、感知实时性、检测概率和虚警概率来表达;手势/姿态识别以感知距离、感知实时性、感知精度来表达。
上述感知业务的服务请求方式各不相同,例如基于静态区域的服务请求,以某个坐标系表示需感知内容的地理位置区域;基于动态区域的服务请求,以某个UE周围M米表示需要感知内容的地理位置范围,M为正数;某个动态目标的连续感知服务请求,以某个已检测和持续位置追踪的目标表示需要感知内容的感知目标。
表1
二、通信过程中UE注册和鉴权
在UE和网络的注册过程中,如果需要进行鉴权(authentication),那么接入和移动管理功能(Access and Mobility Management Function,AMF)请求鉴权服务功能(Authentication Server Function,AUSF)进行鉴权。基于AMF的请求信息,AUSF执行UE鉴权。AUSF选择统一数据管理实体(Unified Data Management,UDM),并从UDM获取鉴权数据。其中UDM选择主要根据如下至少一项:
1.签约加密标识(Subscription Concealed Identifier,SUCI)/签约永久标识(Subscription Permanent Identifier,SUPI)的归属网络标识符(如移动网络码MNC和移动国家码MCC),以及独立非公共网络(Stand-alone Non-Public Network,SNPN)的网络标识(Network identifier,NID)(由NG-RAN提供)和终端(UE)的路由指示符。
2.终端的SUPI的UDM组标识(Identity,ID)。
3.SUPI或内部组ID;UDM NF消费者根据UE的SUPI所属的SUPI范围或基于使用UE的SUPI或内部组ID作为UDM发现输入的网络存储功能(Network Repository Function,NRF)的发现过程的结果选择UDM实例。
4.GPSI或外部组ID;当UDM NF消费者不知道SUPI/SUCI(例如NEF)时,UDM NF消费者根据UE的一般公共签约标识(Generic Public Subscription Identifier,GPSI)或外部组ID所属的GPSI或外部组ID范围选择UDM实例,或基于使用UE的GPSI或外部组ID作为UDM发现输入的NRF的发现过程的结果。
AUSF从UDM获取的数据包括:
SUCI或SUPI;
服务网络名称;
如果从安全锚功能(Security Anchor Functionality,SEAF)收到,灾难漫游服务指示。;
AUSF将鉴权结果发送给UDM,包括SUPI、鉴权时间/类型的时间戳和服务网络名称,进而UDM存储UE的上述(SUPI,认证结果,时间戳,服务网络名称)鉴权状态信息。
三、鉴权方式说明
1.凭据(Token)鉴权(认证)过程:
用户输入登陆凭据;
服务器验证凭据是否正确,然后返回一个经过签名的令牌(token);
客户端负责存储token,可以存在本地存储,或者cookie中
对服务器的请求带上这个token;
服务器对JWT进行解码,如果token有效,则处理该请求;
一旦用户登出,客户端销毁token。
2.开放授权协议(Open Authorization,OAuth)鉴权(认证)和授权过程主要包括获取未授权的Request Token(请求Token);获取用户授权的Request Token;用授权的Request Token换取Access Token(访问Token),具体阐述如下:
客户端(第三方软件)向OAuth服务提供商请求未授权的RequestToken。即向RequestToken URL发起请求;
OAuth服务提供商同意使用者的请求,并向其颁发未经用户授权的oauth_token与对应的oauth_token_secret,并返回给使用者;
使用者向OAuth服务提供商请求用户授权的RequestToken。即向UserAuthorization URL发起请求并在请求中携带上一步服务提供商颁发的未授权的token与其密钥;
OAuth服务提供商通过网页要求用户登录并引导用户完成授权;
RequestToken授权后,使用者将向AccessToken URL发起请求,将上步授权的RequestToken换取成AccessToken。请求的参数比第一步多了一个参数就是RequestToken;
OAuth服务提供商同意使用者的请求,并向其颁发AccessToken与对应的密钥,并返回给使用者;
使用者以后就可以使用上步返回的AccessToken访问用户授权的资源。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的鉴权确定方法及鉴权方法进行详细地说明。
对于感知而言,如果感知信号的收或发设备是UE等,那么授权和鉴权需要在通信基础上进行感知的双向鉴权。感知除了涉及前述感知信号发送或接收外,还涉及感知辅助节点(例如提供地理位置信息等感知辅助信息)、感知结果生成节点(将感知测量结果转换为请求方所需的感知结果)等。不同的感知设备可能支持不同的功能,甚至是基于条件支持某些或全部功能。感知过程中因感知区域、感知目标、感知结果、感知性能指标等不同对应感知数据的重要程度和安全需求不同,因此本申请实施例提供感知数据的分级方法以及基于感知数据级别确定鉴权的方法。
如图2所示,本申请实施例提供一种鉴权确定方法,包括:
步骤201,第一节点根据感知请求对应的感知数据级别,确定是否需要进行鉴权;其中,所述感知数据级别用于指示感知数据的安全隐私要求。
可选地,感知数据级别也可以称为感知数据分类、感知数据分级等,在此不做具体限定。
可选地,第一节点为网络功能节点,如网络开放功能(Network Exposure Function,NEF)节点、感知功能(Sensing Function,SF)节点、接入和移动管理功能(Access and Mobility Management Function,AMF)节点、鉴权服务功能(Authentication Server Function,AUSF)节点中至少一项。
需要说明的是,SF节点包括如下至少一项功能:
接收感知服务请求,根据感知服务请求确定所需的感知测量量。
接收感知测量结果(即感知测量量的值),其中感知测量量为第一级测量量和/或第二级测量量,产生感知结果(第三级测量量),响应感知服务请求,在本申请中将这一功能称为基础感知功能节点
接收所述第三级测量量的感知测量结果,产生感知结果(第四级测量量),响应感知服务请求,在本申请中将这一功能从称为衍生感知功能节点
接收感知测量结果(即感知测量量的值),其中感知测量量为第一级测量量和/或第二级测量量和/或第三级测量量,产生感知结果(第四级测量量),响应感知服务请求,在本申请中将这一功能称为综合感知功能节点
感知服务质量(Quality of Service,QoS)的控制,即面向感知服务质量要求,对感知相关节点的进行控制,从而满足感知服务QoS要求。
确定感知信号发送或接收节点或感知辅助节点,移动通信系统中的感知信号发送或接收节点包括网络设备(如基站)和用户设备UE(如手机)。其中感知辅助节点指用于提供感知辅助的信息如其它传感器等的感知信息,地理位置信息等用于提升无线感知的性能。
确定感知链路或感知方式,其中感知链路可以包括Uu链路(基站发/UE收或基站收/UE发),旁链(Sidelink)(UE间收发),回波链路(基站自发自收,UE自发自收),基站间收发链路(基站间收发);感知方式可以包括基站发UE收,UE发基站收,基站自发自收,UE间收发,基站间收发,UE自发自收。
确定感知信号,潜在的感知信号包括参考信号和数据信号,其中参考信号可以为通信参考信号或感知专用参考信号。
确定感知所使用的时频资源,潜在的感知资源包括通信中未使用的时频资源(如保护带),共用通信中已使用的时频资源(如参考信号或数据信号),感知专用的时频资源。进一步还需确定感知信号的配置,潜在的配置包括感知信号的时、频和空域资源信息。如果确定感知时频资源的节点不是感知信号的发送节点,那么向感知信号发送节点发送感知信号配置。
确定感知测量量的配置,潜在的配置包括需测量的感知信号指示、需测量的感知信号数量或时间、测量结果的上报指示等。如果确定感知测量量配置的节点不是感知信号的接收和测量节点,那么向感知信号接收节点发送感知测量量配置。
确定和配置感知测量结果上报的传输通道,包括建立、修改或释放传输通道等。
确定AMF,当网络侧根据所请求感知服务的地理范围和感知功能节点所提供感知服务的地理范围确定了感知功能节点后,在如下至少一种情况下感知功能解节点需确定AMF:1)当UE为感知信号发送节点或感知信号接收节点或感知辅助节点时感知目标为某个UE时,感知功能节点基于所需感知的地理区域,以及根据从网络存储功能(Network Repository Function,NRF)请求的AMF的跟踪区识别码(Tracking Area identity,TAI),和/或AMF ID/位置等选择AMF;2)当感知数据需经AMF传输(例如定义为非接入层
NAS消息或者NAS层作为感知数据的传输承载协议层)时,感知功能节点基于所需传输数据的感知节点地理位置信息(如TA等),以及根据从NRF请求的AMF的TAI,和/或,AMF ID/位置等选择AMF;3)当感知目标是第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)UE时,感知功能节点根据UE标识等确定AMF。
在本申请的一个可选实施例中,所述方法还包括:
所述第一节点接收感知请求,所述感知请求携带感知数据级别信息;
所述第一节点根据所述感知请求携带的感知数据级别信息,确定所述感知请求对应的感知数据级别;
其中,所述感知数据级别信息用于指示感知数据级别。例如,感知数据级别信息可以是低、中或高表示不同的级别,也可以是数值表示不同的级别,在此不做具体限定。
在本申请的另一个可选实施例中,所述方法还包括:
所述第一节点根据第一信息,确定所述感知请求对应的感知数据级别;其中,所述第一信息包括以下至少一项:
感知区域属性;
感知结果属性;
感知性能指标;
感知目标属性;
感知请求发送节点的属性;
感知结果接收节点的属性。
可选地,若感知请求中未携带所述感知数据级别信息,则第一节点根据第一信息确定感知数据级别。
可选地,可以是低、中或高表示不同的级别,也可以是数值表示不同的级别,在此不做具体限定。
作为一个可选实施例,所述感知区域属性包括:指示感知区域是否需要授权的第一指示信息;例如对某一景区天气进行感知,通常该景区的地理位置区域无需授权;例如私有房屋或机场等感知区域需要该感知区域的所有人或管理者授权。
作为一个可选实施例,所述感知结果属性包括:指示感知结果是否需要授权的第二指示信息,和/或,感知结果分级信息;例如,对于感知结果是否需要授权,例如感知结果是天气(如晴天、大雨、中雨、小雨)信息,通常不需要授权;例如感知结果是某个目标的轨迹需要该目标或目标所有者授权。
其中,所述感知结果分级信息用于指示感知结果的重要性,所述感知结果分级信息与感知测量量的重要性相关。对于感知结果分级信息,例如原则上所有感知结果均可以基于第一级感知测量量(接收信号/原始信道)和/或第二级感知测量量(基本测量量)计算得到,因此第一级和第二级感知测量量的信息量更大,数据更重要;被称为感知结果的第三级(基本属性/状态)/第四级(进阶属性状态)主要面向某一具体的感知结果,难以基于
感知结果而计算出其它非授权的感知信息,因此第三级/第四级感知测量量相较于前两级重要性要低。
可选地,感知结果分级信息也可以称为感知结果分类信息。
可选地,一种潜在的分类方式是将感知测量量分为以下4类(本说明侧重于说明测量量,也可以分为3类或不分类等,4类仅做示意)。根据感知测量量与感知业务的关系,下方第三和四级测量量通常也被称为感知结果。第二级和/或第一级测量量被称为感知测量数据。
a)第一级测量量(接收信号/原始信道信息),包括:接收信号/信道响应复数结果,幅度/相位,I路/Q路及其运算结果(运算包括加减乘除、矩阵加减乘、矩阵转置、三角关系运算、平方根运算和幂次运算等,以及上述运算结果的门限检测结果、最大/最小值提取结果等;运算还包括快速傅里叶变换(Fast Fourier Transform,FFT)/快速傅里叶逆变换(Inverse Fast Fourier Transform,IFFT)、离散傅里叶变换(Discrete Fourier Transform,DFT)/离散傅里叶逆变换(Inverse Discrete Fourier Transform,IDFT)、2D-FFT、3D-FFT、匹配滤波、自相关运算、小波变换和数字滤波等,以及上述运算结果的门限检测结果、最大/最小值提取结果等);
b)第二级测量量(基本测量量),包括:时延、多普勒、角度、信号强度,及其多维组合表示;
c)第三级测量量(基本属性/状态),包括:距离、速度、角度/朝向、RCS、加速度;
d)第四级测量量(进阶属性/状态),包括:空间位置、目标是否存在、轨迹、动作、表情、生命体征、数量、成像结果、天气、空气质量、形状、材质、成分。
作为一个可选实施例,所述感知性能指标包括:感知精度,感知分辨率,感知范围,感知时延以及感知更新频率中的至少一项:例如感知性能指标(如感知精度)大于某一阈值时感知数据重要程度和安全要求高,具体地如环境感知的测绘精度为1:5万比例尺基础地理信息、1:1万比例尺基础地理信息、1:2000万比例尺基础地理信息等,大比例尺的精细信息重要程度和安全要求高,只能提供给指定的感知请求方。
作为一个可选实施例,所述感知目标属性包括:指示感知目标是否具有感知目标标识的第三指示信息;例如,感知目标标识为UE ID、标签Tag、地位位置标识等。通常具有感知目标标识时感知数据的安全要求高。
作为一个可选实施例,所述感知请求发送节点的属性包括:指示感知请求发送节点是否具有请求感知结果的权限信息;例如国家或国际联盟认可的权威机构可请求感知结果,如国家地理信息中心才可以请求包括最高精度在内的环境感知信息;
作为一个可选实施例,所述感知结果接收节点的属性包括:指示感知结果接收节点是否具有获取感知结果的权限信息;例如国家或国际联盟认可的权威机构可获取感知结果,如国家地理信息中心才可以获取包括最高精度在内的环境感知信息。
例如,第一节点或感知请求发送节点根据感知区域属性、感知结果属性、感知性能指
标、感知目标属性和感知请求发送者以及感知结果接收者的属性中的至少一项,确定感知数据级别包括如下至少两个级别,或者如下级别的组合(例如级别1和2合为1个级别等)。下面假设感知数据级别越大,对应重要和安全要求越高。感知数据级别包括:
感知数据级别1:感知区域无需授权,且无感知目标标识,且感知结果无需授权,且感知精度低于某一阈值;
感知数据级别2:感知区域无需授权,且无感知目标标识,且感知结果无需授权,且感知精度高于某一阈值,且感知请求发送者和/或感知需求接收者权限高;
感知数据级别3:感知区域无需授权,且无感知目标标识,且感知结果无需授权,且感知精度高于某一阈值,且感知请求发送者和/或感知需求接收者权限低;
感知数据级别4:感知区域需授权,无感知目标标识;
感知数据级别5:有感知目标标识,感知区域无需授权;
感知数据级别6:有感知目标标识,感知区域需授权。
可选地,以上述感知数据级别为例,根据感知数据级别确定是否需要进行鉴权具体为:
如果是级别1或2,那么不需要鉴权。第一节点发送感知请求给感知功能。
如果是级别3,那么不需要鉴权。第一节点发送拒绝消息给感知请求发送者。
如果是级别4,那么需要鉴权。第一节点选择合适的网络功能(AMF或SF)进行鉴权,所述网络功能获取感知区域授权信息,确定是否通过鉴权。
如果是级别5,那么需要鉴权。第一节点选择合适的网络功能(AMF或SF)进行鉴权,所述网络功能获取感知目标授权信息,确定是否通过鉴权。
如果是级别6,那么需要鉴权。第一节点选择合适的网络功能(AMF或SF)进行鉴权,所述网络功能获取感知目标授权信息和感知区域授权,确定是否通过鉴权。
在本申请的至少一个实施例中,所述感知请求还携带以下至少一项信息:
指示是否确定(指定)感知节点的第四指示信息,所述感知节点是进行感知信号发送、感知信号接收、感知信号测量、感知辅助数据上报和感知结果生成中至少一项的节点;第四指示信息也可以理解为指示是否指定感知节点,如果指定了上述至少一个节点,则表示指定了感知节点;如果没有指定上述至少一个节点,则表示不指定感知节点;
确定(指定)的感知节点的信息;若第四指示信息指定感知设备的情况下,感知请求还包括指定的感知节点的列表;例如,感知节点1,用于感知信号发送;感知节点2,用于感知信号接收和测量;感知节点3,用于感知结果生成;
感知区域;即网络进行感知的区域,例如高速路区域或某个房屋区域等;
感知目标;即网络进行感知的对象,例如无人机终端等;
感知请求发送节点标识;也可以称为感知请求方标识、感知请求发起者标识等;
感知内容;也可以称为感知业务类型,例如,潜在的感知内容包括距离、速度、朝向、位置、轨迹、是否存在目标、环境重构、呼吸监测、心跳监测、动作识别、天气监测、空气质量检测、物质成分分析等;
执行感知的时间信息;也可以称为感知时间,可以是绝对时间信息(周一,13:00-19:00)或者相对时间信息(如未来一个月内)。该时间信息可以包括起始时间、结束时间或持续时长等;
感知服务质量QoS;
授权凭据,如令牌(token);
鉴权凭据。
可选地,所述感知QoS包括如表2所示的至少一项性能指标和对应的信息(如数值要求等)。
表2,感知性能指标的定义
在本申请的至少一个实施例中,所述方法还包括:
在确定需要进行鉴权的情况下,所述第一节点确定鉴权方式;其中,所述鉴权方式包括:单节点鉴权,和/或,多节点鉴权;
和/或,
在确定需要进行鉴权的情况下,所述第一节点确定执行鉴权的至少一个节点。
其中,所述单节点鉴权由某一个节点确定是否鉴权通过,所述多节点鉴权至少由两个节点进行鉴权来确定是否通过。
可选地,所述方法还包括:
在确定需要进行鉴权,且执行鉴权的节点包括除所述第一节点之外的其他节点的情况下,所述第一节点向所述进行鉴权的节点发送第四指示信息,所述第四指示信息用于指示对应节点进行鉴权。
本申请实施例考虑不同场景下感知鉴权性能和完整性的要求不同,支持多种感知鉴权方式的选择。例如,针对上述实施例中的感知数据级别4,考虑感知区域的动态变化、区域重叠或区域包含或被包含等情况,为了更好地保障感知安全隐私,那么可采用多节点鉴权的鉴权方式。又例如,针对上述实施例中的感知数据级别6,考虑到感知目标的移动性,随着感知目标所在区域的变化,感知目标可能由允许感知的区域移动到不允许感知的区域,那么需要由多个节点确定是否可执行感知(进行感知鉴权),即需要采用多节点鉴权的鉴权方式。一种可选方式为:第一节点确定进行第一次鉴权的节点和第二次鉴权的节点(这里以两次鉴权为例,具体的鉴权次数可以大于或者等于两次),并发送第四指示信息指示所选的节点进行鉴权。
在本申请的至少一个实施例中,执行鉴权的至少一个节点获取授权信息,确定是否鉴权通过;所述授权信息包括感知区域授权信息、感知目标授权信息和感知设备授权信息中的至少一项。
其中,感知区域是网络进行感知的区域,例如高速路区域或某个房屋区域等。感知区域授权信息可以由感知区域所有者和/或感知区域的管理者提供。感知区域授权信息具体包括如下至少一项:
在本申请的至少一个实施例中,所述感知区域授权信息包括以下至少一项:
指示第一区域允许感知的第一指示信息;
所述第一区域允许感知的范围;
指示第一区域禁止感知的第二指示信息;
所述第一区域禁止感知的范围;
具有所述第一区域授权权限的设备的通信信息。
例如,具有所述第一区域授权权限的设备的通信信息为该设备的设备标识;当该区域感知授权信息更新或者每次感知请求询问是否授权时,该设备标识用于网络接收该区域感知授权更新信息或与其交互感知授权信息。例如该区域管理者的用户设备(UE)标识(如SUPI或电话号码)等,该区域管理者的服务器访问地址(如互联网协议(Internet Protocol,IP)地址和/或端口号)等。
可选地,所述第一区域允许感知的范围包括以下至少一项:
所述第一区域允许被感知的内容;也可以称为该第一区域允许被感知的感知结果,是网络基于感知测量数据计算出感知业务所需的感知结果。潜在的感知内容包括距离、速度、朝向、位置、轨迹、是否存在目标、环境重构、呼吸监测、心跳监测、动作识别、天气监测、空气质量检测、物质成分分析等;
所述第一区域允许被感知的感知测量数据,所述感知测量数据包括前述感知测量量的第一级测量量和第二级测量量中至少一项;
所述第一区域允许的感知请求发送节点,也可以称为感知请求方、感知请求的发起者、感知请求的发送设备等;例如通过IP地址、端口号、UE ID(如用户永久标识符SUPI、
电话号码等)中的至少一项指示感知请求发送节点;
所述第一区域允许的感知结果接收节点,也可以称为感知结果使用者、感知结果的接收设备等,例如通过IP地址、端口号、UE ID(如用户永久标识符SUPI、电话号码等)中的至少一项指示感知结果接收节点;
所述第一区域允许的感知设备,所述感知设备是进行感知信号发送、感知信号接收、感知信号测量、感知辅助数据上报和感知结果生成中至少一项的设备;
所述第一区域允许感知的时间;
所述第一区域允许的感知服务质量QoS,所述感知服务质量QoS至少包括表2感知性能指标中的一项。例如精度低于某一数值情况下允许,所述精度可以是感知精度或感知分辨率等。
可选地,所述第一区域禁止感知的范围包括以下至少一项:
所述第一区域禁止被感知的内容;也可以称为该第一区域禁止被感知的感知结果,潜在的感知内容包括距离、速度、朝向、位置、轨迹、是否存在目标、环境重构、呼吸监测、心跳监测、动作识别、天气监测、空气质量检测、物质成分分析等;
所述第一区域禁止被感知的感知测量数据;
所述第一区域禁止的感知请求发送节点,也可以称为感知请求方、感知请求的发起者、感知请求的发送设备等;例如通过IP地址、端口号、UE ID(如用户永久标识符SUPI、电话号码等)中的至少一项指示感知请求发送节点;
所述第一区域禁止的感知结果接收节点,也可以称为感知结果使用者、感知结果的接收设备等,例如通过IP地址、端口号、UE ID(如用户永久标识符SUPI、电话号码等)中的至少一项指示感知结果接收节点;
所述第一区域禁止的感知设备,所述感知设备是进行感知信号发送、感知信号接收、感知信号测量、感知辅助数据上报和感知结果生成中至少一项的设备;
所述第一区域禁止感知的时间;
所述第一区域禁止的感知服务质量QoS,例如精度高于某一数值情况下禁止。
感知目标是网络进行感知的对象,例如无人机终端等。当感知目标具有网络可识别标识时,更适合于网络对感知目标进行授权和鉴权。感知目标授权信息可以由感知目标和/或感知目标所有者和/或感知目标的管理者提供。感知目标授权信息具体包括如下至少一项:
指示第一目标允许被感知的第三指示信息;
所述第一目标允许被感知的范围;
指示所述第一目标禁止被感知的第四指示信息;
所述第一目标禁止被感知的范围;
具有所述第一目标授权权限的设备的通信信息。
例如,具有所述第一目标授权权限的设备的通信信息为该设备的设备标识;当该目标
感知授权信息更新或者每次感知请求询问是否授权时,该设备标识用于网络接收该目标感知授权更新信息或与其交互感知授权信息。如果感知目标为UE时,那么该通信信息可以是UE的SUPI/IMSI等ID。
可选地,所述第一目标允许被感知的范围包括以下至少一项:
所述第一目标允许被感知的内容;也可以称为该第一目标允许被感知的感知结果,是网络基于感知测量数据计算出感知业务所需的感知结果。潜在的感知内容包括距离、速度、朝向、位置、轨迹、是否存在目标、环境重构、呼吸监测、心跳监测、动作识别、天气监测、空气质量检测、物质成分分析等;
所述第一目标允许被感知的感知测量数据;所述感知测量数据包括前述感知测量量的第一级测量量和第二级测量量中至少一项;
所述第一目标允许的感知请求发送节点,也可以称为感知请求方、感知请求的发起者、感知请求的发送设备等;例如通过IP地址、端口号、UE ID(如用户永久标识符SUPI、电话号码等)中的至少一项指示感知请求发送节点;
所述第一目标允许的感知结果接收节点,也可以称为感知结果使用者、感知结果的接收设备等,例如通过IP地址、端口号、UE ID(如用户永久标识符SUPI、电话号码等)中的至少一项指示感知结果接收节点;
所述第一目标允许的感知设备,所述感知设备是进行感知信号发送、感知信号接收、感知信号测量、感知辅助数据上报和感知结果生成中至少一项的设备;
所述第一目标允许感知的时间;
所述第一目标允许被感知的区域;
所述第一目标允许的感知服务质量QoS,所述感知服务质量QoS至少包括表2感知性能指标中的一项。例如精度低于某一数值情况下允许,所述精度可以是感知精度或感知分辨率等。
可选地,所述第一目标禁止被感知的范围包括以下至少一项:
所述第一目标禁止被感知的内容;也可以称为该第一目标禁止被感知的感知结果,是网络基于感知测量数据计算出感知业务所需的感知结果。潜在的感知内容包括距离、速度、朝向、位置、轨迹、是否存在目标、环境重构、呼吸监测、心跳监测、动作识别、天气监测、空气质量检测、物质成分分析等;
所述第一目标禁止被感知的感知测量数据,所述感知测量数据包括前述感知测量量的第一级测量量和第二级测量量中至少一项;
所述第一目标禁止许的感知请求发送节点,也可以称为感知请求方、感知请求的发起者、感知请求的发送设备等;例如通过IP地址、端口号、UE ID(如用户永久标识符SUPI、电话号码等)中的至少一项指示感知请求发送节点;
所述第一目标禁止的感知结果接收节点,也可以称为感知结果使用者、感知结果的接收设备等,例如通过IP地址、端口号、UE ID(如用户永久标识符SUPI、电话号码等)
中的至少一项指示感知结果接收节点;
所述第一目标禁止许的感知设备,所述感知设备是进行感知信号发送、感知信号接收、感知信号测量、感知辅助数据上报和感知结果生成中至少一项的设备;
所述第一目标禁止感知的时间;
所述第一目标禁止被感知的区域;
所述第一目标禁止的感知服务质量QoS,所述感知服务质量QoS至少包括表2感知性能指标中的一项。例如精度高于某一数值情况下禁止,所述精度可以是感知精度或感知分辨率等。
感知设备(也可以称为感知节点)是进行感知信号发送、感知信号接收、感知信号测量、感知辅助和感知结果生成中至少一项功能的设备。感知设备可以是用户设备(UE)、基站、网络功能等。感知设备授权信息可以由感知设备和/或感知设备所有者提供。感知设备授权信息具体包括如下至少一项:
指示第一设备允许参与感知的第五指示信息;
所述第一设备允许参与感知的范围;
指示第一设备禁止参与感知的第六指示信息;
所述第一设备禁止参与感知的范围。
可选地,所述第一设备允许参与感知的范围包括以下至少一项:
所述第一设备允许参与的感知功能,所述感知功能包括感知信号发送、感知信号接收、感知信号测量、感知辅助数据上报和感知结果生成中至少一项;
指示所述第一设备允许被感知请求发送节点确定参与感知的第七指示信息;
指示允许确定所述第一设备参与感知的感知请求发送节点的第八指示信息;
所述第一设备允许的感知测量量,所述感知测量量包括前述感知测量量中至少一项;
所述第一设备允许的感知辅助数据,所述感知辅助数据包括位置信息、时间信息、速度信息、目标标识信息中至少一项。
其中,位置信息为GPS位置、基于某一参照物的相对位置等;时间信息为绝对时间或相对时间等;速度信息为静止、低速、高速或者某一速度数值等;目标标识信息是包含车牌等目标标识的摄像头图像,或者当目标为UE时,该目标UE的SUPI等永久标识;在此不做具体限定。
可选地,所述第一设备禁止参与感知的范围包括以下至少一项:
指示所述第一设备禁止被感知请求发送节点确定参与感知的第九指示信息;
指示禁止确定所述第一设备参与感知的感知请求发送节点的第十指示信息;
所述第一设备禁止的感知测量量,所述感知测量量包括前述感知测量量中至少一项;
所述第一设备禁止的感知辅助数据,所述感知辅助数据包括位置信息、时间信息、速度信息、目标标识信息中至少一项。
其中,位置信息为GPS位置、基于某一参照物的相对位置等;时间信息为绝对时间
或相对时间等;速度信息为静止、低速、高速或者某一速度数值等;目标标识信息是包含车牌等目标标识的摄像头图像,或者当目标为UE时,该目标UE的SUPI等永久标识;在此不做具体限定。
综上,本申请实施例中,第一节点根据感知请求对应的感知数据级别,确定是否需要进行鉴权;第一节点根据感知数据级别指示所请求感知数据安全隐私要求的高低,基于感知数据鉴权的鉴权有助于按需进行感知鉴权,从而减少不必要的鉴权,提升鉴权效率。
如图3所示,本申请实施例还提供一种鉴权方法,包括:
步骤301,开启感知鉴权功能的第二节点接收感知请求或感知配置信息;
步骤302,所述第二节点根据感知请求或感知配置信息,进行鉴权。
可选地,所述第二节点为发送和/或接收感知信号的节点。
本申请实施例考虑不同场景下感知鉴权性能和完整性的要求不同,支持多种感知鉴权方式的选择。例如,针对上述实施例中的感知数据级别4,考虑感知区域的动态变化、区域重叠或区域包含或被包含等情况,为了更好地保障感知安全隐私,那么可采用多节点鉴权的鉴权方式。又例如,针对上述实施例中的感知数据级别6,考虑到感知目标的移动性,随着感知目标所在区域的变化,感知目标可能由允许感知的区域移动到不允许感知的区域,那么需要由多个节点确定是否可执行感知(进行感知鉴权),即需要采用多节点鉴权的鉴权方式。一种实现方式是开启感知鉴权功能的节点,当该节点接收到感知请求或感知配置信息,均需先进行鉴权,基于鉴权结果确定是否执行感知。例如部署在禁止感知区域的基站或者位于禁止感知区域的UE均开启感知鉴权功能,如果其他节点因为信息不准确或感知目标移动性等原因通过一次感知鉴权,那么所述基站或UE接收到感知请求或感知配置时,通过鉴权确定所述感知请求或感知配置是否允许执行。
综上,本申请实施例通过开启第二节点的感知鉴权功能,使得第二节点接收到感知请求或感知配置信息后先进行鉴权来确定是否执行感知,从而提供更完备的鉴权,避免单节点鉴权结果不准确。
为了更完整的表述本申请实施例提供的鉴权确定方法及鉴权方法,下面结合两个示例进行说明。
示例一,基于感知数据级别的感知鉴权方法
AF(应用功能)或内部网络功能(如AMF等)或UE可以发送感知请求,第一节点(如NEF、AMF、SF或AUSF)确定所述感知请求对应的感知数据级别,基于感知数据级别确定是否需要鉴权。如果需要鉴权,那么确定进行鉴权的网络功能节点。一种基于5G网络的流程简述如下。
步骤1,AF向NEF发送感知请求,或者内部网络功能(如SMF等)向SF发送感知请求,或者UE向AMF发送感知请求,感知请求携带的内容见方法实施例部分。
步骤2,如果所述感知请求未包含感知数据级别信息,那么第一节点根据所请求的感知区域、感知目标、感知结果、感知性能指标、感知请求的发送者和感知结果的接收者中
至少一项确定感知数据级别。
步骤3,基于所述感知数据级别确实是否需要鉴权,以上述实施例的感知数据级别为例:
如果是级别1或2,那么不需要鉴权。第一节点发送感知请求给感知功能;
如果是级别3,那么不需要鉴权。第一节点发送拒绝消息给感知请求发送者;
如果是级别4,那么需要鉴权。第一节点选择合适的网络功能(AMF或SF)进行鉴权,所述网络功能获取感知区域授权信息,确定是否通过鉴权;
如果是级别5,那么需要鉴权。第一节点选择合适的网络功能(AMF或SF)进行鉴权,所述网络功能获取感知目标授权信息,确定是否通过鉴权;
如果是级别6,那么需要鉴权。第一节点选择合适的网络功能(AMF或SF)进行鉴权,所述网络功能获取感知目标授权信息和感知区域授权,确定是否通过鉴权。
步骤4,授权/鉴权通过后,在一种方式中,NEF选择合适的AMF,并向AMF发送感知业务请求消息。当内部网元触发时,由内部网元选择合适的AMF,并向AMF发送感知业务请求消息。
如果是面向区域的感知,NEF依据AF请求中的区域信息选择服务该区域的AMF。
如果是面向目标的感知,NEF依据AF请求中的目标位置信息选择服务该区域的AMF;如果目标本身拥有UE通信模块而具备UE能力,例如车辆,则可以认为面向目标感知是对UE周边进行感知,此时可以选择该UE的服务AMF作为AMF,且NEF通过查询UDM获得服务该UE的AMF信息。
在另一种方式中,NEF可以先选择SF,再由SF选择AMF。当内部网元触发时,由内部网元选择SF,再有SF选择AMF。
如果是面向区域的感知,NEF依据AF请求中的区域信息选择服务该区域的SF。
如果是面向目标感知,NEF依据AF请求中的目标位置信息选择服务该区域的SF;如果目标本身拥有UE通信模块而具备UE能力,例如车辆,则可以认为面向目标感知是对UE周边进行感知,此时可以选择该UE的服务SF作为SF,且NEF通过查询UDM获得服务该UE的AMF ID,再根据AMF ID选择合适的SF。
步骤5,AMF将感知请求发送给SF。
步骤6,如果SF根据感知请求确定感知方式和感知基站/UE,从感知信号发送节点和接收节点角度划分感知方式包括基站自发自收、基站间收发、UE发基站收,基站发UE收,UE自发自收,UE间收发。
如果基站和终端能够执行感知操作,则向SF返回感知响应,携带成功指示,否则携带失败指示。感知网元进而向请求业务的第三方应用返回感知响应。
步骤7,SF根据基站反馈的感知测量数据进行感知计算,并得到最终感知结果。
步骤8,SF将感知结果返回给AMF。对于区域感知场景,SF可以通过AMF和NEF返回给AF,或者直接将感知结果通过NEF返回给AF。
步骤9,AMF将感知结果通过NEF返回给AF。当内部网元触发时,AMF将感知结果发送给内部网元。
示例二,基于感知鉴权方式选择的感知鉴权方法
一种基于5G网络的流程简述如下。
步骤1,AF向NEF发送感知请求信息,或者内部网络功能(如SMF等)向SF发送感知请求,或者UE向AMF发送感知请求,感知请求携带的信息详见上述实施例。
步骤2,如果所述感知请求未包含感知数据级别信息,那么第一节点根据所请求的感知区域、感知目标、感知结果、感知性能指标、感知请求的发送者和感知结果的接收者中至少一项确定感知数据级别。
步骤3,基于所述感知数据级别确实是否需要鉴权。如果需求鉴权,那么确定鉴权方式和进行鉴权的节点。下面以有的感知数据级别需多节点鉴权方式为例继续阐述。以上述实施例的感知数据级别为例:
如果是级别1或2,那么不需要鉴权。第一节点发送感知请求给感知功能;
如果是级别3,那么不需要鉴权。第一节点发送拒绝消息给感知请求发送者;
如果是级别4,那么需要鉴权,确定鉴权方式为多节点鉴权方式。第一节点选择合适的网络功能(AMF或SF)进行第一次鉴权,所述网络功能获取感知区域授权信息,确定是否通过鉴权。如果第一次鉴权通过,一种方式是第一节点选择合适的节点(如基站或UE)进行第二次鉴权,所述基站或UE确定是否通过鉴权;
如果是级别5,那么需要鉴权。第一节点选择合适的网络功能(AMF或SF)进行鉴权,所述网络功能获取感知目标授权信息,确定是否通过鉴权;
如果是级别6,那么需要鉴权。第一节点选择合适的网络功能(AMF或SF)进行第一次鉴权,所述网络功能获取感知目标授权信息和感知区域授权,确定是否通过鉴权。如果第一次鉴权通过,一种方式是第一节点选择合适的节点(如基站或UE)进行第二次鉴权,所述基站或UE确定是否通过鉴权。
步骤4,授权/鉴权通过后,在一种方式中,NEF选择合适的AMF,并向AMF发送感知业务请求消息。当内部网元触发时,由内部网元选择合适的AMF,并向AMF发送感知业务请求消息。
如果是面向区域的感知,NEF依据AF请求中的区域信息选择服务该区域的AMF。
如果是面向目标的感知,NEF依据AF请求中的目标位置信息选择服务该区域的AMF;如果目标本身拥有UE通信模块而具备UE能力,例如车辆,则可以认为面向目标感知是对UE周边进行感知,此时可以选择该UE的服务AMF作为AMF,且NEF通过查询UDM获得服务该UE的AMF信息。
在另一种方式中,NEF可以先选择SF,再由SF选择AMF。当内部网元触发时,由内部网元选择SF,再有SF选择AMF。
如果是面向区域的感知,NEF依据AF请求中的区域信息选择服务该区域的SF。
如果是面向目标感知,NEF依据AF请求中的目标位置信息选择服务该区域的SF;如果目标本身拥有UE通信模块而具备UE能力,例如车辆,则可以认为面向目标感知是对UE周边进行感知,此时可以选择该UE的服务SF作为SF,且NEF通过查询UDM获得服务该UE的AMF ID,再根据AMF ID选择合适的SF。
步骤5,AMF将感知请求发送给SF。
步骤6,如果SF根据感知请求确定感知方式和感知基站/UE,从感知信号发送节点和接收节点角度划分感知方式包括基站自发自收、基站间收发、UE发基站收,基站发UE收,UE自发自收,UE间收发。
另一种方式是所选择的感知基站/UE开始感知鉴权功能,那么当感知基站/UE接收到感知请求或感知配置时,感知基站/UE根据所在位置的感知授权信息确定是否所述感知请求或感知配置允许被执行。如果基站和终端能够执行感知操作,则向SF返回感知响应,携带成功指示,否则携带失败指示。所述失败指示包括感知鉴权不通过,或不允许请求所述级别的感知数据。感知网元进而向请求业务的第三方应用返回感知响应。
步骤7,SF根据基站反馈的感知测量数据进行感知计算,并得到最终感知结果。
步骤8,SF将感知结果返回给AMF。对于区域感知场景,SF可以通过AMF和NEF返回给AF,或者直接将感知结果通过NEF返回给AF。
步骤9,AMF将感知结果通过NEF返回给AF。当内部网元触发时,AMF将感知结果发送给内部网元。
本申请实施例提供的鉴权确定方法或鉴权方法,执行主体可以为鉴权确定装置或鉴权装置。本申请实施例中以鉴权确定装置或鉴权装置执行鉴权确定方法或鉴权方法为例,说明本申请实施例提供的鉴权确定装置或鉴权装置。
如图4所示,本申请实施例还提供一种鉴权确定装置400,应用于第一节点,包括:
第一确定模块401,用于根据感知请求对应的感知数据级别,确定是否需要进行鉴权;其中,所述感知数据级别用于指示感知数据的安全隐私要求。
作为一个可选实施例,所述装置还包括:
第一接收模块,用于接收感知请求,所述感知请求携带感知数据级别信息;
第二确定模块,用于根据所述感知请求携带的感知数据级别信息,确定所述感知请求对应的感知数据级别;
其中,所述感知数据级别信息用于指示感知数据级别。
作为一个可选实施例,所述装置还包括:
第三确定模块,用于根据第一信息,确定所述感知请求对应的感知数据级别;其中,所述第一信息包括以下至少一项:
感知区域属性;
感知结果属性;
感知性能指标;
感知目标属性;
感知请求发送节点的属性;
感知结果接收节点的属性。
作为一个可选实施例,所述感知区域属性包括:指示感知区域是否需要授权的第一指示信息;
所述感知结果属性包括:指示感知结果是否需要授权的第二指示信息,和/或,感知结果分级信息;
所述感知性能指标包括:感知精度,感知分辨率,感知范围,感知时延以及感知更新频率中的至少一项:
所述感知目标属性包括:指示感知目标是否具有感知目标标识的第三指示信息;
所述感知请求发送节点的属性包括:指示感知请求发送节点是否具有请求感知结果的权限信息;
所述感知结果接收节点的属性包括:指示感知结果接收节点是否具有获取感知结果的权限信息。
作为一个可选实施例,所述感知结果分级信息用于指示感知结果的重要性,所述感知结果分级信息与感知测量量的重要性相关。
作为一个可选实施例,所述感知请求还携带以下至少一项信息:
指示是否确定感知节点的第四指示信息,所述感知节点是进行感知信号发送、感知信号接收、感知信号测量、感知辅助数据上报和感知结果生成中至少一项的节点;
确定的感知节点的信息;
感知区域;
感知目标;
感知请求发送节点标识;
感知内容;
执行感知的时间信息;
感知服务质量QoS;
授权凭据。
作为一个可选实施例,所述装置还包括:
第四确定模块,用于在确定需要进行鉴权的情况下,确定鉴权方式;其中,所述鉴权方式包括:单节点鉴权,和/或,多节点鉴权;
和/或,在确定需要进行鉴权的情况下,确定执行鉴权的至少一个节点。
作为一个可选实施例,所述装置还包括:
第一发送模块,用于在确定需要进行鉴权,且执行鉴权的节点包括除所述第一节点之外的其他节点的情况下,向所述进行鉴权的节点发送第四指示信息,所述第四指示信息用于指示对应节点进行鉴权。
本申请实施例中,第一节点根据感知请求对应的感知数据级别,确定是否需要进行鉴权;第一节点根据感知数据级别指示所请求感知数据安全隐私要求的高低,基于感知数据鉴权的鉴权有助于按需进行感知鉴权,从而减少不必要的鉴权,提升鉴权效率。
需要说明的是,本申请实施例提供的鉴权确定装置是能够执行上述鉴权确定方法的装置,则上述鉴权确定方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果,在此不做重复赘述。
如图5所示,本申请实施例还提供一种鉴权装置500,应用于开启感知鉴权功能的第二节点,包括:
第二接收模块501,用于接收感知请求或感知配置信息;
鉴权模块502,用于根据感知请求或感知配置信息,进行鉴权。
作为一个可选实施例,所述第二节点为发送和/或接收感知信号的节点。
本申请实施例通过开启第二节点的感知鉴权功能,使得第二节点接收到感知请求或感知配置信息后先进行鉴权来确定是否执行感知,从而提供更完备的鉴权,避免单节点鉴权结果不准确。
作为一个可选实施例,所述第一节点为网络功能节点,所述网络功能节点包括以下至少一项:
网络开放功能节点;
感知功能节点;
接入和移动管理功能节点;
鉴权服务功能节点。
需要说明的是,本申请实施例提供的鉴权装置是能够执行上述鉴权方法的装置,则上述鉴权方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果,在此不做重复赘述。
本申请实施例中的鉴权确定装置或鉴权装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的鉴权确定装置或鉴权装置能够实现图1至图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图6所示,本申请实施例还提供一种通信设备600,包括处理器601和存储器602,存储器602上存储有可在所述处理器601上运行的程序或指令,例如,该通信设备600为第一节点时,该程序或指令被处理器601执行时实现上述鉴权确定方法实施例的各个步骤,且能达到相同的技术效果。该通信设备600为第二节点时,该程序或指令被处理器601执行时实现上述鉴权方法实施例的各个步骤,且能达到相同的技术效果,为
避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,所述处理器用于根据感知请求对应的感知数据级别,确定是否需要进行鉴权;其中,所述感知数据级别用于指示感知数据的安全隐私要求。或者,所述通信接口用于接收感知请求或感知配置信息;所述处理器用于根据感知请求或感知配置信息,进行鉴权。该网络侧设备实施例与上述第一节点侧方法实施例或第二节点侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图7所示,该网络侧设备700包括:天线71、射频装置72、基带装置73、处理器74和存储器75。天线71与射频装置72连接。在上行方向上,射频装置72通过天线71接收信息,将接收的信息发送给基带装置73进行处理。在下行方向上,基带装置73对要发送的信息进行处理,并发送给射频装置72,射频装置72对收到的信息进行处理后经过天线71发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置73中实现,该基带装置73包括基带处理器。
基带装置73例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图7所示,其中一个芯片例如为基带处理器,通过总线接口与存储器75连接,以调用存储器75中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口76,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备700还包括:存储在存储器75上并可在处理器74上运行的指令或程序,处理器74调用存储器75中的指令或程序执行图4或图5所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述鉴权确定方法或鉴权方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述鉴权确定方法或鉴权方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述鉴权确定方
法或鉴权方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。
Claims (25)
- 一种鉴权确定方法,包括:第一节点根据感知请求对应的感知数据级别,确定是否需要进行鉴权;其中,所述感知数据级别用于指示感知数据的安全隐私要求。
- 根据权利要求1所述的方法,其中,所述方法还包括:所述第一节点接收感知请求,所述感知请求携带感知数据级别信息;所述第一节点根据所述感知请求携带的感知数据级别信息,确定所述感知请求对应的感知数据级别;其中,所述感知数据级别信息用于指示感知数据级别。
- 根据权利要求1所述的方法,其中,所述方法还包括:所述第一节点根据第一信息,确定所述感知请求对应的感知数据级别;其中,所述第一信息包括以下至少一项:感知区域属性;感知结果属性;感知性能指标;感知目标属性;感知请求发送节点的属性;感知结果接收节点的属性。
- 根据权利要求3所述的方法,其中,所述感知区域属性包括:指示感知区域是否需要授权的第一指示信息;所述感知结果属性包括:指示感知结果是否需要授权的第二指示信息,和/或,感知结果分级信息;所述感知性能指标包括:感知精度,感知分辨率,感知范围,感知时延以及感知更新频率中的至少一项:所述感知目标属性包括:指示感知目标是否具有感知目标标识的第三指示信息;所述感知请求发送节点的属性包括:指示感知请求发送节点是否具有请求感知结果的权限信息;所述感知结果接收节点的属性包括:指示感知结果接收节点是否具有获取感知结果的权限信息。
- 根据权利要求4所述的方法,其中,所述感知结果分级信息用于指示感知结果的重要性,所述感知结果分级信息与感知测量量的重要性相关。
- 根据权利要求2所述的方法,其中,所述感知请求还携带以下至少一项信息:指示是否确定感知节点的第四指示信息,所述感知节点是进行感知信号发送、感知信号接收、感知信号测量、感知辅助数据上报和感知结果生成中至少一项的节点;确定的感知节点的信息;感知区域;感知目标;感知请求发送节点标识;感知内容;执行感知的时间信息;感知服务质量QoS;授权凭据。
- 根据权利要求1至6中任一项所述方法,其中,所述方法还包括:在确定需要进行鉴权的情况下,所述第一节点确定鉴权方式;其中,所述鉴权方式包括:单节点鉴权,和/或,多节点鉴权;和/或,在确定需要进行鉴权的情况下,所述第一节点确定执行鉴权的至少一个节点。
- 根据权利要求7所述的方法,其中,所述方法还包括:在确定需要进行鉴权,且执行鉴权的节点包括除所述第一节点之外的其他节点的情况下,所述第一节点向所述进行鉴权的节点发送第四指示信息,所述第四指示信息用于指示对应节点进行鉴权。
- 根据权利要求1至8中任一项所述的方法,其中,所述第一节点为网络功能节点,所述网络功能节点包括以下至少一项:网络开放功能节点;感知功能节点;接入和移动管理功能节点;鉴权服务功能节点。
- 一种鉴权方法,包括:开启感知鉴权功能的第二节点接收感知请求或感知配置信息;所述第二节点根据感知请求或感知配置信息,进行鉴权。
- 根据权利要求10所述的方法,其中,所述第二节点为发送和/或接收感知信号的节点。
- 一种鉴权确定装置,应用于第一节点,包括:第一确定模块,用于根据感知请求对应的感知数据级别,确定是否需要进行鉴权;其中,所述感知数据级别用于指示感知数据的安全隐私要求。
- 根据权利要求12所述的装置,其中,所述装置还包括:第一接收模块,用于接收感知请求,所述感知请求携带感知数据级别信息;第二确定模块,用于根据所述感知请求携带的感知数据级别信息,确定所述感知请求对应的感知数据级别;其中,所述感知数据级别信息用于指示感知数据级别。
- 根据权利要求12所述的装置,其中,所述装置还包括:第三确定模块,用于根据第一信息,确定所述感知请求对应的感知数据级别;其中,所述第一信息包括以下至少一项:感知区域属性;感知结果属性;感知性能指标;感知目标属性;感知请求发送节点的属性;感知结果接收节点的属性。
- 根据权利要求14所述的装置,其中,所述感知区域属性包括:指示感知区域是否需要授权的第一指示信息;所述感知结果属性包括:指示感知结果是否需要授权的第二指示信息,和/或,感知结果分级信息;所述感知性能指标包括:感知精度,感知分辨率,感知范围,感知时延以及感知更新频率中的至少一项:所述感知目标属性包括:指示感知目标是否具有感知目标标识的第三指示信息;所述感知请求发送节点的属性包括:指示感知请求发送节点是否具有请求感知结果的权限信息;所述感知结果接收节点的属性包括:指示感知结果接收节点是否具有获取感知结果的权限信息。
- 根据权利要求15所述的装置,其中,所述感知结果分级信息用于指示感知结果的重要性,所述感知结果分级信息与感知测量量的重要性相关。
- 根据权利要求13所述的装置,其中,所述感知请求还携带以下至少一项信息:指示是否确定感知节点的第四指示信息,所述感知节点是进行感知信号发送、感知信号接收、感知信号测量、感知辅助数据上报和感知结果生成中至少一项的节点;确定的感知节点的信息;感知区域;感知目标;感知请求发送节点标识;感知内容;执行感知的时间信息;感知服务质量QoS;授权凭据。
- 根据权利要求12至17中任一项所述的装置,其中,所述装置还包括:第四确定模块,用于在确定需要进行鉴权的情况下,确定鉴权方式;其中,所述鉴权方式包括:单节点鉴权,和/或,多节点鉴权;和/或,在确定需要进行鉴权的情况下,确定执行鉴权的至少一个节点。
- 根据权利要求18所述的装置,其中,所述装置还包括:第一发送模块,用于在确定需要进行鉴权,且执行鉴权的节点包括除所述第一节点之外的其他节点的情况下,向所述进行鉴权的节点发送第四指示信息,所述第四指示信息用于指示对应节点进行鉴权。
- 根据权利要求12至19中任一项所述的装置,其中,所述第一节点为网络功能节点,所述网络功能节点包括以下至少一项:网络开放功能节点;感知功能节点;接入和移动管理功能节点;鉴权服务功能节点。
- 一种第一节点,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至9中任一项所述的鉴权确定方法的步骤。
- 一种鉴权装置,应用于开启感知鉴权功能的第二节点,包括:第二接收模块,用于接收感知请求或感知配置信息;鉴权模块,用于根据感知请求或感知配置信息,进行鉴权。
- 根据权利要求22所述的装置,其中,所述第二节点为发送和/或接收感知信号的节点。
- 一种第二节点,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求10或11所述的鉴权方法的步骤。
- 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至9中任一项所述的鉴权确定方法的步骤,或者实现如权利要求10或11所述的鉴权方法的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211289830.1 | 2022-10-20 | ||
CN202211289830.1A CN117956454A (zh) | 2022-10-20 | 2022-10-20 | 鉴权确定方法、鉴权方法、装置及节点 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024083045A1 true WO2024083045A1 (zh) | 2024-04-25 |
Family
ID=90736904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/124495 WO2024083045A1 (zh) | 2022-10-20 | 2023-10-13 | 鉴权确定方法、鉴权方法、装置及节点 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117956454A (zh) |
WO (1) | WO2024083045A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104796206A (zh) * | 2014-01-17 | 2015-07-22 | 普天信息技术有限公司 | 一种获取可用频谱资源的方法及系统 |
CN113612729A (zh) * | 2021-06-30 | 2021-11-05 | 苏州浪潮智能科技有限公司 | 一种鉴权认证方法和相关装置 |
CN113873462A (zh) * | 2021-11-02 | 2021-12-31 | 中国联合网络通信集团有限公司 | 通信感知业务通信方法、网元、系统、设备及介质 |
WO2022133951A1 (en) * | 2020-12-24 | 2022-06-30 | Huawei Technologies Co., Ltd. | Integrated sensing and communication network |
-
2022
- 2022-10-20 CN CN202211289830.1A patent/CN117956454A/zh active Pending
-
2023
- 2023-10-13 WO PCT/CN2023/124495 patent/WO2024083045A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104796206A (zh) * | 2014-01-17 | 2015-07-22 | 普天信息技术有限公司 | 一种获取可用频谱资源的方法及系统 |
WO2022133951A1 (en) * | 2020-12-24 | 2022-06-30 | Huawei Technologies Co., Ltd. | Integrated sensing and communication network |
CN113612729A (zh) * | 2021-06-30 | 2021-11-05 | 苏州浪潮智能科技有限公司 | 一种鉴权认证方法和相关装置 |
CN113873462A (zh) * | 2021-11-02 | 2021-12-31 | 中国联合网络通信集团有限公司 | 通信感知业务通信方法、网元、系统、设备及介质 |
Non-Patent Citations (3)
Title |
---|
" IMT-2030(6G)Promotion Group Publishes 2023 Sensing and Communication Series Research Report (III))", 30 October 2023, IMT-2030(6G)PROMOTION GROUP, CN, article IMT-2030(6G)PROMOTION GROUP: "6G Integrated Sensing and Communication System Design Research Report", pages: 1 - 81, XP009556335 * |
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; LCS Architecture for 3GPP Interworking WLAN; Release 7", 3GPP STANDARD; 3GPP TR 23.837, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. V0.1.0, 1 January 2006 (2006-01-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 8, XP050380917 * |
GAO FEI: "Research and Challenges of Integrated Sensing and Communication", MOBILE COMMUNICATIONS, YIDONG TONGXIN ZAZHISHE, CN, vol. 46, no. 5, 15 May 2022 (2022-05-15), CN , pages 45 - 51, XP093159941, ISSN: 1006-1010, DOI: 10.3969/j.issn.1006-1010.2022.05.007 * |
Also Published As
Publication number | Publication date |
---|---|
CN117956454A (zh) | 2024-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240155394A1 (en) | Sensing method and apparatus, terminal, and network device | |
WO2023001270A1 (zh) | 感知方法、装置及网络设备 | |
US20240236911A1 (en) | Sensing Device Registration Method | |
CN115755027A (zh) | 感知业务的处理方法和设备 | |
WO2024083045A1 (zh) | 鉴权确定方法、鉴权方法、装置及节点 | |
WO2024083040A1 (zh) | 感知鉴权方法、装置及节点 | |
WO2024208205A1 (zh) | 感知能力的上报方法、接收方法、装置、通信设备及介质 | |
WO2024083038A1 (zh) | 侦听方法、装置及相关设备 | |
WO2023231839A1 (zh) | 感知数据传输方式的协商方法、装置及通信设备 | |
WO2024099152A1 (zh) | 信息传输方法、装置及通信设备 | |
WO2024083044A1 (zh) | 侦听方法、装置及相关设备 | |
WO2024120359A1 (zh) | 信息处理、传输方法及通信设备 | |
WO2024140572A1 (zh) | 感知通道建立方法及装置 | |
WO2023231841A1 (zh) | 感知功能的切换方法、装置及通信设备 | |
WO2024032460A1 (zh) | 数据收集方法、装置及通信设备 | |
WO2024099153A1 (zh) | 信息传输方法、装置及通信设备 | |
WO2024099125A1 (zh) | 测量信息反馈方法、接收方法及通信设备 | |
WO2023231870A1 (zh) | 通信方法、装置、终端、网络侧设备及核心网设备 | |
WO2024227421A1 (zh) | 感知业务的能力开放方法、装置及设备 | |
WO2024192774A1 (zh) | 通信方法、装置、设备、存储介质、芯片、产品及程序 | |
WO2024208237A1 (zh) | 信息发送方法、信息接收方法、装置及通信设备 | |
EP4432716A1 (en) | Perception method and apparatus, and communication device | |
WO2024227420A1 (zh) | 网元查找方法、网元注册方法、装置及相关设备 | |
WO2023226826A1 (zh) | 感知方法、装置及通信设备 | |
CN117676675A (zh) | 数据传输方法、装置及节点 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23879036 Country of ref document: EP Kind code of ref document: A1 |