WO2023231841A1 - 感知功能的切换方法、装置及通信设备 - Google Patents

感知功能的切换方法、装置及通信设备 Download PDF

Info

Publication number
WO2023231841A1
WO2023231841A1 PCT/CN2023/095793 CN2023095793W WO2023231841A1 WO 2023231841 A1 WO2023231841 A1 WO 2023231841A1 CN 2023095793 W CN2023095793 W CN 2023095793W WO 2023231841 A1 WO2023231841 A1 WO 2023231841A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
node
information
function node
switching
Prior art date
Application number
PCT/CN2023/095793
Other languages
English (en)
French (fr)
Inventor
袁雁南
丁圣利
姜大洁
李健之
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023231841A1 publication Critical patent/WO2023231841A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection

Definitions

  • the present application belongs to the field of wireless communication technology, and specifically relates to a sensing function switching method, device and communication equipment.
  • mobile communication network mobility management is mainly based on communication design and does not consider perception requirements.
  • sensing function nodes need to be switched. How to switch sensing function nodes to ensure the continuity of sensing services is a problem that needs to be solved.
  • Embodiments of the present application provide a sensing function switching method, device and communication equipment, which can solve the problem of how to switch sensing function nodes.
  • the first aspect provides a sensing function switching method, including:
  • the sensing node includes sensing terminals and/or sensing base stations participating in sensing;
  • the second aspect provides a sensing function switching method, including:
  • the second sensing function node receives the first switching information sent by the first sensing function node
  • the second sensing function node performs sensing related configuration according to the first switching information.
  • a sensing function switching device including:
  • the execution module is used to perform at least one of the following operations when it is determined that sensing function node switching is required:
  • the sensing node includes sensing terminals and/or sensing base stations participating in sensing;
  • a sensing function switching device including:
  • a receiving module configured to receive the first switching information sent by the first sensing function node
  • a configuration module configured to perform sensing-related configuration according to the first switching information.
  • a communication device in a fifth aspect, includes a processor and a memory.
  • the memory stores a program or instructions that can be run on the processor.
  • the program or instructions are implemented when executed by the processor. The steps of the method as described in the first aspect or the second aspect.
  • a communication device including a processor and a communication interface, wherein the processor is configured to perform at least one of the following operations when it is determined that sensing function node switching is required:
  • the sensing node includes sensing terminals and/or sensing base stations participating in sensing;
  • a communication device including a processor and a communication interface, wherein the communication interface is configured to receive the first switching information sent by the first sensing function node; the processor is configured to perform the switching according to the first switching information. information to perform sensing-related configurations.
  • An eighth aspect provides a communication system, including: a first sensing function node and a second sensing function node.
  • the first sensing function node can be used to perform the steps of the method described in the first aspect, and the second sensing function node
  • the perception function node may be used to perform the steps of the method as described in the second aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first or second aspect are implemented. .
  • a chip in a tenth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the first aspect or the second aspect. the method described.
  • a computer program/program product is provided, the computer program/program product being stored in In the storage medium, the computer program/program product is executed by at least one processor to implement the steps of the method described in the first aspect or the second aspect.
  • the sensing function node when the sensing function node determines that sensing function node switching needs to be performed, it sends the first switching information to the switching second sensing function node and/or sends the switching sensing function node switching instruction, the second sensing function node switching instruction to the sensing node.
  • Information and/or sensing end indication of the sensing function node so that the target sensing function node can continue to provide ongoing sensing services, ensuring the continuity of sensing services, and the sensing node can quickly interact with the second sensing function node to ensure Perceived business service quality during handover.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is one of the schematic flow diagrams of a sensing function switching method according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart 2 of the sensing function switching method according to the embodiment of the present application.
  • Figure 4 is a schematic flow chart of sensing function node switching between NG-RAN based on Xn;
  • Figure 5 is a schematic flow chart of sensing function node handover between NG-RAN based on N2;
  • Figure 6 is one of the structural schematic diagrams of a sensing function switching device according to an embodiment of the present application.
  • Figure 7 is a second structural schematic diagram of a sensing function switching device according to an embodiment of the present application.
  • Figure 8 is one of the structural schematic diagrams of the communication device according to the embodiment of the present application.
  • Figure 9 is a second structural schematic diagram of a communication device according to an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA single-carrier frequency division multiple access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet Device
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • WUE Vehicle User Equipment
  • PUE Pedestrian User Equipment
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computer, PC), teller machine or self-service machine and other terminal-side devices.
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets) bracelets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless access network unit.
  • the access network equipment may include a base station, a Wireless Local Area Networks (WLAN) access point or a Wireless Fidelity (WiFi) node, etc.
  • the base station may be called a Node B, an Evolved Node B (eNB), or an access point.
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP Transmission Reception Point
  • the base station is not limited to specific technical terms. It should be noted that in this application, in the embodiment, only the base station in the NR system is taken as an example for introduction, and the specific type of the base station is not limited.
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Service Discovery function (Edge Application Server Discovery Function, EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), centralized network configuration ( Centralized network configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • Integration of communication and perception means realizing the integrated design of communication and perception functions in the same system through spectrum sharing and hardware sharing. While transmitting information, the system can sense orientation, distance, speed and other information, and detect target devices or events. , tracking, identification, communication system and perception system complement each other to achieve overall performance improvement and bring a better service experience.
  • Sensing capability refers to one or more devices with sensing capabilities that can perceive the orientation, distance, speed and other information of target objects through the sending and receiving of wireless signals, or detect, track, and detect target objects, events or environments, etc. Recognition, imaging, etc.
  • small base stations with high-frequency and large-bandwidth capabilities such as millimeter waves and terahertz in 6G networks
  • the resolution of perception will be significantly improved compared to centimeter waves, allowing 6G networks to provide more refined perception services.
  • Typical sensing functions and application scenarios are shown in Table 1.
  • sensing such as intelligent transportation and high-precision maps are usually expressed in terms of sensing range, distance resolution, angle resolution, speed resolution and delay; flight intrusion detection sensing is usually expressed in terms of sensing range, distance resolution, angle resolution, speed resolution and delay. It is expressed in terms of coverage height, perception accuracy, and perception delay; respiratory monitoring is expressed in terms of perception distance, perception real-timeness, perception resolution, and perception accuracy; indoor intrusion detection is expressed in terms of perception distance, perception real-timeness, detection probability, and false alarm probability.
  • Gesture/posture recognition is expressed in terms of perceived distance, perceived real-time, and perceived accuracy.
  • the service request methods of the above-mentioned sensing services are different. For example, service requests based on static areas, based on a certain coordinate The system represents the geographical location area where the content needs to be sensed; a service request based on a dynamic area, M meters around a certain user equipment (User Equipment, UE) represents the geographical location range where the content needs to be sensed; a continuous sensing service request for a dynamic target, A sensing target that requires sensing content is represented by a target that has been detected and continuously tracked.
  • UE User Equipment
  • This embodiment of the present application provides a sensing function switching method, including:
  • Step 21 When the first sensing function node determines that sensing function node switching is required, perform at least one of the following operations:
  • the sensing node includes sensing terminals and/or sensing base stations participating in sensing;
  • the sensing function node when the sensing function node determines that sensing function node switching needs to be performed, it sends the first switching information to the switching second sensing function node and/or sends the switching sensing function node switching instruction, the second sensing function node switching instruction to the sensing node.
  • Information and/or sensing end indication of the sensing function node so that the target sensing function node can continue to provide ongoing sensing services, ensuring the continuity of sensing services, and the sensing node can quickly interact with the second sensing function node to ensure Perceived business service quality during handover.
  • the first sensing function node may also be called a source sensing function node, and the second sensing function node may also be called a target sensing function node.
  • the sensing function node (which may also be referred to as the sensing function for short) is a network function responsible for receiving sensing requests and providing sensing results, and may be named by other names.
  • the sensing terminal is a terminal participating in sensing.
  • the sensing terminal can serve as a sensing signal sending node, a sensing signal receiving node, a sensing auxiliary information providing node or a sensing service demand node.
  • the sensing base station is a base station that participates in sensing.
  • the sensing base station can serve as a sensing signal sending node, a sensing signal receiving node, a sensing auxiliary information providing node or a sensing service demand node.
  • the sensing terminal or sensing base station serves as.
  • Perception methods include at least one of the following:
  • the sensing base station serves as a sensing signal sending node and is used to send sensing signals.
  • the sensing terminal serves as a sensing signal receiving node to measure the received sensing signals and generate sensing measurement results (i.e. sensing data) and send them to sensing function nodes;
  • the sensing terminal serves as a sensing signal sending node for sending sensing signals.
  • the sensing base station serves as a sensing signal receiving node, measures the received sensing signal, and generates sensing measurement results (i.e., sensing data) and sends them to the sensing function node.
  • the sensing base station serves as a sensing signal sending node, and other sensing base stations serve as sensing signal receiving nodes, measure the received sensing signal, and generate sensing measurement results (ie, sensing data) and send them to sensing function nodes.
  • the sensing base station serves as a sensing signal sending node, and itself serves as a sensing signal receiving node, measuring the received sensing signals and generating sensing measurement results (i.e., sensing data) to send to sensing function nodes.
  • the sensing terminal serves as a sensing signal sending node, and itself serves as a sensing signal receiving node, measuring the received sensing signal, and generating sensing measurement results (i.e., sensing data) to send to the sensing function node.
  • the sensing terminal serves as a sensing signal sending node, and other sensing terminals serve as sensing signal receiving nodes, measure the received sensing signal, and generate sensing measurement results (i.e., sensing data) and send them to sensing function nodes.
  • the first sensing function node determines that sensing function node switching needs to be performed including: the first sensing function node determines the need for sensing function node switching based on the switching information of the sensing terminal, the movement information of the sensing target, and the resources of the sensing function. and at least one item of performance information, it is determined that sensing function node switching is required.
  • the reason for the switching of the sensing function node is at least one of the following three situations:
  • the sensing function node connected to the target base station is different from the current sensing function node. Perception function node.
  • the sensing function node causes changes in the sensing function node due to at least one of its computing resources, sensing business load, sensing performance monitoring information, etc.
  • the sensing terminal is at least one of a sensing signal sending node, a sensing signal receiving node, a sensing auxiliary node, and a sensing service demand node.
  • the handover information of the sensing terminal includes at least one of the identity of the sensing terminal, target base station information for handover of the sensing terminal, target AMF information, and target user plane function information.
  • the first sensing function node determines that sensing function node switching needs to be performed based on the switching information of the sensing terminal, which also includes:
  • the first sensing function node obtains the switching information of the sensing terminal through at least one of the following methods:
  • the first sensing function node subscribes to the AMF for the switching information of the sensing terminal
  • the AMF When the AMF receives a switching message (such as N2 Path Switch Request or Handover required) sent by a Radio Access Network (RAN) node (such as a base station), if the message is a sensing UE switching subscribed by the first sensing function node , then the AMF sends the handover information of the UE to the first sensing function node.
  • a switching message such as N2 Path Switch Request or Handover required
  • RAN Radio Access Network
  • the first sensing function node receives the switching information of the sensing terminal sent by the sensing terminal;
  • the sensing terminal when it receives a switching command from the base station, it sends switching information to the first sensing function node.
  • the switching information package at least includes the target base station information, target AMF and/or the switching information of the sensing terminal.
  • the first sensing function node receives the switching information of the sensing terminal sent by the source base station of the sensing terminal.
  • the source base station of the sensing terminal sends the switching information of the sensing terminal to the first sensing function node connected to the source base station.
  • the switching information at least includes the identification of the sensing terminal and the target base station information of the sensing terminal switching, Target AMF and/or target user plane (UP) functional information.
  • the sensing function node can obtain the switching information of the sensing terminal in various ways.
  • the movement information of the sensing target includes at least one of the position, movement direction and movement speed of the sensing target.
  • the first sensing function node determines that sensing function node switching needs to be performed based on the movement information of the sensing target, which also includes:
  • the first sensing function node obtains the movement information of the sensing target through at least one of the following methods:
  • the first sensing function node determines a sensing signal receiving node for sensing the movement information of the sensing target, sends sensing measurement configuration information to the sensing signal receiving node, and determines the sensing signal receiving node according to the sensing signal sent by the sensing signal receiving node.
  • the measurement results determine the movement information of the sensing target;
  • the sensing signal receiving node may be the same as the sensing node being used, or may be different. For example, if the information that needs to be sensed by the sensing target is trajectory tracking, then the first sensing function node can reuse the same sensing node and sensing measurement quantity; for example, if it is necessary to sense obstacles within a 10-meter range near the sensing target, then it may be necessary to determine a new sensing target.
  • the sensing signal sending node and receiving node sense the mobile information of the sensing target.
  • the first sensing function node requests the movement information of the sensing target from the application function or other sensing function nodes.
  • the first sensing function node can request the movement information of the sensing target from the map application function server.
  • the first sensing function node has the function of sensing the movement information of the target.
  • the first sensing function node is only responsible for sensing the information (such as gesture recognition) of the sensing target requested by the sensing service, and other sensing function nodes are responsible for sensing the movement information of the sensing target. Therefore, it is necessary to provide information to other sensing function nodes.
  • the sensing function node requests the movement information of the sensing target.
  • Other sensing function nodes are the same as the first sensing function node in method 1), and have the function of sensing the movement information of the target.
  • the first sensing function node determines that sensing function node switching needs to be performed based on the movement information of the sensing target, including:
  • the first sensing function node determines whether it is necessary to switch the sensing signal sending node and/or the sensing signal receiving node according to the sensing measurement result sent by the sensing signal receiving node;
  • the first sensing function node determines whether the sensing target will move out of the first sensing function node according to the movement information of the sensing target. Service area;
  • the first sensing function determines that sensing function node switching is required.
  • the first sensing function node determines that sensing function node switching needs to be performed based on the movement information of the sensing target, which further includes: the first sensing function node determines that the sensing target is non-stationary. sensing target, and the current sensing signal sending node and/or sensing signal receiving node is an edge node; wherein, the edge node refers to the sensing signal sending node and/or sensing signal receiving node located at the first sensing function node. The edge of the service range. When the edge node performs sensing, the movement of the sensing target may cause the sensing target to move out of the service range of the first sensing function node.
  • the first sensing function node does not need to obtain the mobility information of the sensing function and determine whether it needs to perform the sensing function.
  • the node is switched, thus saving the overhead of switching preparation.
  • the resource and performance information of the sensing function includes computing resource information (such as central processing unit (Central Processing Unit, CPU) resource utilization, graphics processing unit (Graphics Processing Unit, GPU) resource utilization, memory utilization, etc.), perceived service load information (such as the sensing function can handle up to N sensing services, and the current business compliance is 80%), sensing performance detection information (such as sensing delay performance, sensing accuracy performance, etc.) at least one of.
  • computing resource information such as central processing unit (Central Processing Unit, CPU) resource utilization, graphics processing unit (Graphics Processing Unit, GPU) resource utilization, memory utilization, etc.
  • perceived service load information such as the sensing function can handle up to N sensing services, and the current business compliance is 80%
  • sensing performance detection information such as sensing delay performance, sensing accuracy performance, etc.
  • the first sensing function node determines that sensing function node switching needs to be performed based on the resources and performance information of the sensing function, which also includes: the first sensing function node requests the network function node Resource and performance information of the sensing function.
  • the first switching information includes at least one of sensing node context, sensing service context, and historical sensing data.
  • the historical perception data includes at least one of historical perception results, historical perception measurement results, and historical perception auxiliary information. For some situations where sensing results need to be generated based on historical sensing measurement results over a period of time, historical sensing data helps the target sensing function node to still be able to quickly produce sensing results after the sensing function node is switched, without the need to re-accumulate the required time. all sensory data.
  • the first sensing function node sends the information of the second sensing function node to the sensing node in at least one of the following ways:
  • the sensing node includes a sensing terminal, and the first sensing function node sends the second sensing terminal to the sensing terminal through a downlink Non-Access Stratum (NAS) Protocol Data Unit (PDU).
  • Function node information; the downlink NAS protocol data unit (Protocol Data Unit, PDU) is, for example, the Additional information unit.
  • the sensing node includes a sensing base station, and the first sensing function node sends the information of the second sensing function node to the sensing base station through the N2 interface;
  • the first sensing function node sends the information of the second sensing function node to the sensing node through the information unit defined in the sensing protocol. If the sensing protocol is transmitted through NAS, the information unit of the second sensing function node is not parsed by the NAS layer.
  • the information of the second sensing function node at least includes identification information of the second sensing function node, and is used for sending a message to the second sensing function node after the sensing terminal is switched.
  • the first sensing function node after the first sensing function node sends the first switching information to the second sensing function node, it further includes: the first sensing function node receives the message sent by the second sensing function node.
  • Switching response information the switching response information includes indication information indicating whether to continue to use the current sensing signal sending node and/or sensing signal receiving node;
  • the first sensing function node performs at least one of the following:
  • the switching response information includes instruction information indicating to continue to use the current sensing signal sending node and/or sensing signal receiving node
  • the first sensing function node sends a signal to the sensing signal sending node and/or sensing signal receiving node. Send information about the second sensing function node;
  • the first sensing function node sends a message to the sensing signal sending node and/or sensing signal receiving node.
  • the node sends a sensing end indication.
  • the function of the sensing node function that receives the sensing measurement results (ie, the value of the sensing measurement quantity) and generates the sensing results can be called the sensing user function.
  • Functions other than the above-mentioned sensing user functions are called sensing control functions. According to traditional deployment experience of mobile communication networks, if control functions and user functions are separated and defined as different network functions (such as SMF and UPF), then usually one control plane function corresponds to multiple user plane functions.
  • the first sensing function node includes a sensing user function node and a sensing control function node; one sensing control function node may correspond to one or more sensing user function nodes.
  • the first sensing function node determines that sensing function node switching needs to be performed, including: the sensing control function node determines that sensing function node switching needs to be performed;
  • the performing at least one of the following operations includes: the user-aware function node performing at least one of the following:
  • receiving the sensing measurement results, generating the sensing results according to the sensing measurement results, and responding to the sensing service request according to the sensing results includes at least one of the following:
  • This embodiment of the present application also provides a sensing function switching method, including:
  • Step 31 The second sensing function node receives the first switching information sent by the first sensing function node
  • Step 32 The second sensing function node performs sensing related configuration according to the first switching information.
  • the second sensing function node receives the first switching information sent by the first sensing function node, and performs sensing related configurations, so that it can continue to provide ongoing sensing services and ensure the continuity of sensing services.
  • the first switching information includes at least one of sensing node context, sensing service context, and historical sensing data.
  • the historical sensing data includes historical sensing results, historical sensing measurement results, and historical sensing data. At least one item of perceptual auxiliary information.
  • the second sensing function node performs sensing-related configuration according to the first switching information, including at least one of the following:
  • the switching response information includes indication information indicating whether the first sensing function node continues to use the current sensing signal sending node and/or sensing signal receiving node.
  • sensing function node sensing function node
  • the first sensing function node includes at least one of the following functions:
  • the perceptual measurement quantity includes at least one of a first-level measurement quantity, a second-level measurement quantity, a third-level measurement quantity and a fourth-level measurement quantity. This will be explained in detail below.
  • the perception measurement quantity includes label information
  • the label information includes at least one of the following: perception signal identification information, perception measurement configuration identification information, perception service information, data subscription identification, measurement quantity Purpose, time information, sensing node information, sensing link information, measurement quantity description information and measurement quantity indicator information.
  • the sensing function node when it has the following functions, it is called a basic sensing function node: receiving sensing measurement results (ie, the value of the sensing measurement quantity), where the sensing measurement quantity is the first-level measurement quantity and/or The second-level measurement quantity produces sensing results (the third-level measurement quantity) and responds to the sensing service request.
  • sensing measurement results ie, the value of the sensing measurement quantity
  • the second-level measurement quantity produces sensing results (the third-level measurement quantity) and responds to the sensing service request.
  • the sensing function node when it has the following functions, it is called a derived sensing function node: receiving sensing measurement results (ie, the value of the sensing measurement quantity), where the sensing measurement quantity is a third-level measurement quantity, generating a perception Result (fourth level measurement quantity), response to sensing service request.
  • sensing measurement results ie, the value of the sensing measurement quantity
  • the sensing measurement quantity is a third-level measurement quantity
  • generating a perception Result fourth level measurement quantity
  • the sensing function node when it has the following functions, it is called a comprehensive sensing function node: receiving sensing measurement results (ie, the value of the sensing measurement quantity), where the sensing measurement quantity is the first-level measurement quantity and/or The second-level measurement quantity and/or the third-level measurement quantity generates sensing results (the fourth-level measurement quantity) and responds to the sensing service request.
  • sensing measurement results ie, the value of the sensing measurement quantity
  • the sensing measurement quantity is the first-level measurement quantity and/or
  • the second-level measurement quantity and/or the third-level measurement quantity generates sensing results (the fourth-level measurement quantity) and responds to the sensing service request.
  • Control of perceived service quality that is, based on perceived service quality requirements, control of perception-related nodes to meet perceived service quality of service (Quality of Service, QoS) requirements.
  • Sensing signal sending nodes or receiving nodes in mobile communication systems include network equipment (such as base stations) and UEs (such as mobile phones).
  • the sensing auxiliary node refers to information used to provide sensing assistance, such as sensing information from other sensors, and geographical location information, which is used to improve the performance of wireless sensing.
  • the sensing link may include at least one of the following: Uu link (sensing signals sent and received by the base station to the UE or received by the base station and sent by the UE), sidelink (sensing signals sent and received between UEs), echo link (sensing signals spontaneously and self-received by the base station), The UE spontaneously receives sensing signals), and the transceiver link between base stations (the sensing signals are sent and received between base stations).
  • the sensing method may include at least one of the following: the base station sends and receives sensing signals to the UE, the UE sends and receives sensing signals to the base station, the base station spontaneously and self-receives sensing signals, UEs send and receive sensing signals between UEs, base stations send and receive sensing signals between base stations, and the UE spontaneously and self-receives sensing signals.
  • the sensing signal includes a reference signal and/or a data signal, where the reference signal may be a communication reference signal or a sensing-specific reference signal.
  • the sensing resources include at least one of the following: unused time-frequency resources in communication (such as guard bands), time-frequency resources that have been used in shared communication (such as reference signals or data signals), and dedicated time-frequency resources for sensing . It is further necessary to determine the configuration of the sensing signal. Potential configurations include time domain, frequency domain and air domain resource information of the sensing signal. If it is determined that the node sensing time-frequency resources is not the sending node of the sensing signal, then the sensing signal configuration is sent to the sensing signal sending node.
  • the configuration of the sensing measurement quantity may include at least one of the following: an indication of sensing signals to be measured, a number or time of sensing signals to be measured, an indication of reporting of measurement results, etc. If the node that determines the perceptual measurement quantity configuration is not the receiving and measuring node of the perceptual signal, then the perceptual measurement quantity configuration is sent to the perceptual signal receiving node.
  • the sensing function node When the network side (NEF or AMF, etc.) determines the sensing function node based on the geographical scope of the requested sensing service and the geographical scope of the sensing service provided by the sensing function node, the sensing function node needs to be determined in at least one of the following situations: AMF: 1) When the UE is a sensing signal sending node or a sensing signal receiving node or a sensing auxiliary node, and the sensing target is a certain UE, the sensing function node is based on the geographical area required to be sensed, and based on the tracking of the AMF requested from the NRF Tracking Area Identity (TAI), and/or AMF ID or location (location), etc.
  • TAI NRF Tracking Area Identity
  • location location
  • the sensing function node selects the AMF based on the geographical location information of the sensing node (such as tracking area (TA), etc.) of the required transmission data, and based on the TAI of the AMF requested from the NRF, and/or the AMF ID or location; 3) When the sensing target is a 3GPP UE, the sensing function node determines the AMF based on the UE identity (such as AMF UE NGAP ID).
  • the UE identity such as AMF UE NGAP ID
  • the perceptual measurement quantity includes at least one of the following;
  • the first-level measurement quantity is the received signal or original channel information, including: the complex result of the received signal or channel response, amplitude or phase, I channel or Q channel and its (I channel or Q channel) operation result, where the operation includes At least one of addition, subtraction, multiplication and division, matrix addition, subtraction and multiplication, matrix transpose, trigonometric relation operation, square root operation and power operation, as well as threshold detection results, maximum/minimum value extraction results of the above operation results, etc.; the operation also includes Fast Fourier Transform (Fast Fourier Transform, FFT)/Inverse Fast Fourier Transform (IFFT), Discrete Fourier Transform (Discrete Fourier Transform, DFT)/Inverse Discrete Fourier Transform At least one of Fourier Transform (IDFT), 2D-FFT, 3D-FFT, matched filtering, autocorrelation operation, wavelet transform and digital filtering, as well as the threshold detection results, maximum/minimum value extraction results of the above operation results, etc.;
  • the second-level measurement quantity is the basic measurement quantity, including: delay, Doppler, angle, intensity, and their multi-dimensional combination representation; among them, delay, Doppler, angle, and intensity are each counted as one-dimensional data, Multidimensional combination is a combination of any two, three or four types, such as time delay Doppler spectrum (time delay and Doppler form a two-dimensional coordinate system, and the secondary measurement quantity can be the coordinate point of this two-dimensional coordinate system , it can also be the coordinate point plus the intensity value at the coordinate point), time delay angle spectrum, etc.
  • the third-level measurement quantity is the basic attribute or state, including: at least one of distance, speed, orientation, radar cross section (RCS), acceleration, etc.;
  • the fourth level measurement quantity is advanced attributes or states, including: spatial position, target presence, trajectory, movement, expression, vital signs, quantity, imaging results, weather, air quality, shape, material, composition, at least one of .
  • the sensing measurement quantity includes label information
  • the label information includes at least one of the following: sensing signal identification information, sensing measurement configuration identification information, sensing service information (such as sensing service ID), Data subscription identification, measurement purpose (such as communication, perception or synaesthesia), time information, sensing node information (such as UE ID, node location, device orientation), sensing link information (such as sensing link sequence number, sending and receiving node identification) , measurement quantity description information (such as form and resource information, form such as amplitude, phase, complex number, resource information such as antenna, antenna pair, antenna group, Physical Resource Block (PRB), symbol) and measurement quantity indicator information (such as Signal to Noise Ratio (SNR) or perceived SNR).
  • SNR Signal to Noise Ratio
  • SNR Signal to Noise Ratio
  • sensing node context is explained below.
  • the sensing node context refers to the sensing node (sensing signal sending node, sensing signal receiving node or sensing auxiliary node) identifier as the index, and includes at least one of the following information:
  • Sensing node identifier used as an index for each network function node when using sensing context.
  • the sensing node is a UE
  • the potential identifier may include at least one of the following: Subscription Permanent Identifier (SUPI), Globally Unique Temporary Identifier (GUTI), AMF UE NGAP ID, RAN UE NGAP ID, etc.; when the sensing node When it is a base station, the potential identifier is cell ID, etc.
  • Sensing service area used to indicate the area where the sensing node is willing to provide sensing services. For example, a user only signed a sensing authorization agreement with a certain operator and paid for sensing services provided by the UE. When the UE moves out of the area where it is willing to provide sensing services, the sensing services should be terminated.
  • Perception service restriction area used to represent the perception service restriction area of the sensing node. For example, users do not provide sensing services in certain areas or do not provide one or several sensing services.
  • the type of sensing function node allowed to be accessed is used to indicate the type of sensing function node allowed to be accessed by the sensing node.
  • the types of perception function nodes include the aforementioned basic perception functions, derived perception functions, and comprehensive perception functions that provide both basic perception results and derived perception results.
  • the derived perception functions can be further distinguished according to the perception content, for example, into macro perception categories and refined perception categories.
  • Sensing data transmission channel information between the sensing node and the first sensing function node used to represent a list of sensing data-related transmission channels between the sensing node and the sensing function node.
  • This information may include a transmission channel identifier and a transmission network protocol for sensing data. layer, if the transmission network protocol layer involves NAS or UP transmission channels, then the identification information of AMF, SMF or UPF needs to be included.
  • the perception service context assumed is used to represent one or more perception service contexts that the perception node is undertaking or performing, so that the continuity of the perception services being undertaken or performed can be maintained after the perception function node is switched.
  • the sensing functions undertaken include one or more sensing signal sending nodes, sensing signal receiving and measuring nodes, and sensing auxiliary nodes.
  • the perception service context refers to using the perception service identifier as an index, and includes at least one of the following information:
  • Awareness service identifier used as an index for each network function node to use the awareness service context.
  • the sensing service context includes the sensing target identifier.
  • the potential identifiers may include at least one of the following: SUPI, GUTI, AMF UE NGAP ID, RAN UE NGAP ID, etc.; when the sensing target is a non-UE, the potential identifiers may include at least one of the following: geographical location Information, Radar Cross Section (RCS), etc., for example, the geographical location information and/or RCS value within a certain period of time can be expressed through longitude, latitude and altitude.
  • RCS Radar Cross Section
  • the sensing geographical range can be a tracking area (TA), an access network notification area (RAN-based Notification Area, RNA), a cell ID (cell ID) or a geographical location range, etc.
  • TA tracking area
  • RAN-based Notification Area RNA
  • cell ID cell ID
  • geographical location range etc.
  • the perceived service demander can be represented by the perceived service demander identifier or IP address.
  • Performance indicators for sensing the sensing target area or sensing object including at least one of the following: sensing resolution (which may further include: at least one of ranging resolution, angle measurement resolution, speed measurement resolution, and imaging resolution) etc., perception accuracy (which may further include: at least one of ranging accuracy, angle measurement accuracy, speed measurement accuracy, positioning accuracy, etc.), perception range (which may further include: distance measurement range, speed measurement range, angle measurement range, imaging range) At least one of the following), sensing delay (the time interval from the sensing signal sent to the sensing result obtained, or the time interval from the sensing requirement initiated to the sensing result obtained), sensing update rate (the sensing update rate is performed twice consecutively and The time interval for obtaining sensing results), detection probability (the probability of being correctly detected when the sensing object exists), and false alarm probability (the probability of incorrectly detecting the sensing target when the sensing object does not exist).
  • sensing resolution which may further include: at least one of ranging resolution, angle measurement resolution, speed measurement resolution, and imaging resolution
  • perception accuracy which may further
  • Sensing methods may include: the base station sends a sensing signal and the UE receives it, the UE sends a sensing signal and the base station receives it, the base station spontaneously receives it, inter-UE transceiver, inter-base station transceiver, and the UE spontaneously receives it.
  • the first sensing function node provides the last sensing signal sending node and/or receiving node used before switching; optionally, it can also be within a certain period of time. Multiple sensing signals are used to transmit time series information of nodes and/or receive nodes.
  • the sensing signal includes a reference signal and/or a data signal, where the reference signal may be a communication reference signal or a sensing-specific reference signal.
  • the configuration of the sensing measurement quantity may include at least one of the following: indication of sensing signals to be measured, number or time of sensing signals to be measured, reporting indication of measurement results, etc. If the node that determines the perceptual measurement quantity configuration is not the receiving and measuring node of the perceptual signal, then the perceptual measurement quantity configuration is sent to the perceptual signal receiving node.
  • the wireless sensing capability information of the device in the integrated communication and sensing scenario represents whether the device can perform specific sensing tasks. services and a collection of information surrounding the performance level that a specific sensing service can achieve.
  • the sensing capabilities include: a first capability set and/or a second capability set.
  • the first capability set is a device capability set that enhances sensing functions (Sensing-Enhanced Ability Set); the second capability set is a sensing-specific device capability set (Sensing-Specific Ability Set).
  • the first capability set includes at least one of the following:
  • frequency-related capabilities include at least one of the following:
  • Each frequency band or frequency band group supports the sending and receiving capabilities of sensing signals: including: supporting sensing signal sending, sensing signal receiving, time-sharing sensing signal sending and receiving, and sensing signal simultaneous sending and receiving;
  • Each frequency band or frequency band group supports the number of independent radio frequency channels or the number of antennas or the antenna layout for sensing signal reception or transmission.
  • power-related capabilities include at least one of the following:
  • the power control step size is, for example, 1dB, and the power control range is, for example, -50dBm to 23dBm;
  • beam-related capabilities include at least one of the following:
  • the second capability set includes at least one of the following:
  • sensing specific radio frequency capabilities includes at least one of the following:
  • the bandwidth splicing refers to using discontinuous frequency bands to generate, send, receive and process sensing signals to achieve specific sensing performance requirements.
  • Multi-beams include: communication beams, sensing beams, and communication sensing beams;
  • frequency hopping of sensing signals is supported; if frequency hopping of sensing signals is supported, it further includes whether frequency hopping between sensing signal periods or frequency hopping between sensing signal frames is supported;
  • the described sensing signal period refers to the time for sending and receiving a sensing signal, which is the time dimension of the sensing signal.
  • the sensing signal frame includes several sensing signal periods, and the specific number of sensing signal periods included is set according to sensing requirements.
  • the supported sensing service types include at least one of the following:
  • radar detection business further including: radar speed measurement, radar range measurement, radar angle measurement, radar imaging;
  • Whether to support three-dimensional reconstruction business further including: terrain reconstruction, building surface reconstruction;
  • Whether to support weather and/or air quality detection services further including: rainfall detection, humidity detection, particulate matter (PM2.5/PM10) detection, and snowfall detection;
  • Whether to support health monitoring services further including: heartbeat monitoring, respiratory detection;
  • Whether to support action recognition business further including: gesture recognition, posture recognition, intrusion detection;
  • RFID Radio Frequency Identification
  • supported sensing signal waveforms include at least one of the following:
  • Communication signals including at least one of the following: NR signal, Wi-Fi signal;
  • NR signals are supported as sensing signals, it further includes: supporting communication data signals as sensing signals, supporting reference signals or synchronization signals (Synchronization Signal and PBCH block, SSB) or channel state information reference signals (Channel State Information Reference Signal, CSI-RS) or demodulation reference signal (Demodulation Reference Signal, DMRS) or phase tracking reference signal (Phase-tracking reference signal, PTRS) or channel detection reference signal (Sounding Reference Signal, SRS) or positioning reference signal ( Positioning Reference Signals, PRS)) as perception signals;
  • CSI-RS Channel State Information Reference Signal
  • DMRS demodulation Reference Signal
  • phase tracking reference signal Phase tracking reference signal
  • PTRS Phase tracking reference signal
  • SRS Sounding Reference Signal
  • PRS positioning reference signal
  • Wi-Fi signals are supported as sensing signals, it further includes: supporting communication data signals as sensing signals, supporting reference signals or synchronization signals (preamble or CSI-RS) as sensing signals;
  • Perception signals including at least one of the following: Frequency Modulated Continuous Wave (FMCW) radar signal, Orthogonal Frequency Division Multiplexing (OFDM) radar signal (including phase-encoded OFDM radar signal), Linear Frequency Modulation (Linear) Frequency Modulation (LFM) signal, simple pulse train signal, phase-encoded radar signal, etc., or other signal waveforms specially designed for perception;
  • FMCW Frequency Modulated Continuous Wave
  • OFDM Orthogonal Frequency Division Multiplexing
  • LFM Linear Frequency Modulation
  • Synaesthetic integrated signals including reference signals designed for sensing functions, including at least one of the following: periodic reference signals, aperiodic reference signals, and full-bandwidth reference signals;
  • supporting the above-mentioned sensing signal waveform is divided into: supporting sending the above-mentioned sensing signal waveform, supporting receiving the above-mentioned sensing signal waveform, supporting time-sharing sending and receiving the above-mentioned sensing signal waveform, and supporting simultaneous sending and receiving the above-mentioned sensing signal waveform.
  • supported perceptual measurement quantities include at least one of the following:
  • Original channel information compressed quantized information of the channel matrix H or H, channel state information (Channel State Information, CSI), such as the amplitude/sum of squares of the amplitude/or phase of the frequency domain channel response, or the I channel of the frequency domain channel response Characteristics of the Q-channel signals, such as the amplitude/square of the amplitude of the I-channel and/or Q-channel signals;
  • Channel State Information such as the amplitude/sum of squares of the amplitude/or phase of the frequency domain channel response, or the I channel of the frequency domain channel response
  • Characteristics of the Q-channel signals such as the amplitude/square of the amplitude of the I-channel and/or Q-channel signals
  • Signal strength information for example, including Reference Signal Received Power (RSRP) and/or Received Signal Strength Indication (RSSI);
  • RSRP Reference Signal Received Power
  • RSSI Received Signal Strength Indication
  • Spectral information channel power-delay profile (PDP), Doppler power spectrum, power angle spectrum (Power Azimuth Spectrum, PAS), pseudo-spectrum information (such as MUSIC spectrum), delay-Doppler II Dimensional spectrum, time delay-Doppler-angle three-dimensional spectrum;
  • PDP channel power-delay profile
  • PAS Power Azimuth Spectrum
  • pseudo-spectrum information such as MUSIC spectrum
  • delay-Doppler II Dimensional spectrum time delay-Doppler-angle three-dimensional spectrum
  • Multipath information power, phase, delay, and angle information of each path in the multipath channel (including at least the first reach path, line of sight (LOS) path, first-order reflection path, and multi-order reflection path);
  • Angle information arrival angle, departure angle (including UE side angle information, base station side angle information and reflection point angle information);
  • the projection operation can be I*cos(theta)+Q*sin(theta), where theta is a certain angle value, different theta corresponds to different projections, I represents the I-channel data, and Q represents the Q-channel data), the amplitude ratio or amplitude difference of the received signals of the first antenna and the second antenna, the phase difference of the signals of the first antenna and the second antenna, and the delay difference of the signals of the first antenna and the second antenna;
  • Target parameter information determined based on original channel information Doppler spread, Doppler frequency shift, maximum delay spread, angle spread, coherence bandwidth, and coherence time.
  • the above-mentioned measured quantities it also includes new measured quantities generated by operations based on two or more of the above-mentioned measured quantities.
  • supported perception indicators include at least one of the following:
  • Sensing coverage provided that certain requirements are met, the spatial range that the device can cover when performing specific sensing services, such as the distance range of radar detection, the area range of weather detection, etc.;
  • Perception resolution In a specific dimension, the difference between two targets, events or attributes when the device performs a specific perception service and can distinguish two different targets, events or attributes, such as: ranging resolution, angle measurement resolution, Speed measurement resolution, etc.;
  • Perception accuracy The error pattern between the target or event or attribute obtained by the device executing a specific sensing service and its corresponding real value, which can be expressed as an absolute value or standard deviation, such as ranging error, weather detection, etc. Rainfall rate measurement error, etc.;
  • Perception latency related capabilities including: the delay from the moment the perception requirement is received to the moment the perception signal is sent, the delay from the moment the perception requirement is received to the perception signal reception, and the delay from the moment the perception signal is received to completion
  • the delay is described in terms of sensing measurement quantities or sets of sensing measurement quantities, that is, the UE can report different sensing delays corresponding to each type of measurement quantity or each type of measurement quantity set;
  • the sensing signal reception time includes the start time or end time of sensing signal reception;
  • the sensing signal sending time includes the start time or end time of sensing signal sending;
  • Detection probability When a specific target exists or an event occurs, the probability that the device performs the sensing service and correctly detects the presence of the target or the occurrence of the event; for example: the probability that a human intrusion can be correctly detected in intrusion detection;
  • False alarm probability The probability that the device performs sensing services and incorrectly reports the existence of the target or the occurrence of an event when a specific target does not exist or the event does not occur; for example: the probability of the device reporting an intrusion when there is no intrusion during intrusion detection.
  • simultaneous scheduling of communication and sensing control information including: simultaneous scheduling of communication only, simultaneous scheduling of sensing only, simultaneous scheduling of communication and sensing, and simultaneous scheduling of communication and sensing integration; where scheduling sensing includes the control information received by the device, and the control information is scheduled
  • the device detects downlink sensing signals or schedules the device to send uplink sensing signals; scheduling communication includes the device receiving control information, and the control information schedules the device to receive downlink data or send uplink data.
  • the number of services supported simultaneously within a time unit includes: the number of services supported simultaneously and the number of services supported in time-sharing; it is further divided into: the number of sensing services supported simultaneously, the number of sensing signal waveforms supported simultaneously, and the number of sensing signal waveforms supported simultaneously.
  • Physical layer cache size used for aware data staging.
  • auxiliary information related to perception includes at least one of the following:
  • the mobility of the device itself refers to the movement characteristics that the equipment may have.
  • Specific sensing services have certain requirements for the movement characteristics of the equipment that performs the service. For example: positioning services usually require equipment to be stationary or move at low speed, and synthetic aperture radar imaging
  • the business requires the equipment to have a certain movement speed; the mobility of the equipment can be classified as follows: stationary equipment (for example, base station, Transmission Reception Point (TRP), Wi-Fi router, etc.), low-speed equipment (for example, smart household equipment), medium-speed equipment (for example, mobile phones (moving with pedestrians)), high-speed equipment (for example, vehicle radar).
  • stationary equipment for example, base station, Transmission Reception Point (TRP), Wi-Fi router, etc.
  • low-speed equipment for example, smart household equipment
  • medium-speed equipment for example, mobile phones (moving with pedestrians)
  • high-speed equipment for example, vehicle radar
  • the acquisition capability and accuracy of the device's own position/attitude/motion information Many use cases in communication and perception integration require the use of the device's position/attitude/motion information.
  • the acquisition capability and accuracy of the device's position/attitude/motion information determine It can perform specific sensing service types. For example, the positioning service requires the device to have high-precision location information, while the weather sensing service has lower requirements for the device location information (for example, the location error can be on the order of tens of meters).
  • Embodiment 1 A switching method of sensing function (SF) caused by UE switching (sensing UE remains unchanged, SF changes)
  • the sensing UE includes the UE as at least one of a sensing signal sending node, a sensing signal receiving node, a sensing auxiliary information providing node or a sensing service demand node.
  • This embodiment focuses on explaining how the sensing function node (SF) determines that cell switching occurs for the sensing UE, and how to perform sensing function node switching for the sensing UE.
  • the SF obtains the handover information of the sensing UE and determines whether SF handover is required based on the target base station information, target AMF and/or target UP function (such as UPF) information in the sensing UE's handover information. If SF handover is required, the target SF is determined, and the source SF sends the sensing node context information of the sensing UE to the target SF, and/or sends an SF switching indication, and/or sends the target SF information to the sensing UE, and/or sends The sensing end identifier is given to the sensing UE and/or the source base station.
  • target AMF target AMF
  • target UP function such as UPF
  • the SF handover indication is used to indicate whether the sensing UE needs to receive or parse the information unit of the target SF. For example, when the SF handover indication is 1, it means that the UE needs to perform SF handover, then the UE further parses the information unit of the target SF; when the handover indication is 0 Indicates that the UE does not need to perform SF handover and does not need to parse the information unit of the target SF.
  • the sensing end identifier is used to instruct the sensing UE and/or the source base station to stop sending sensing data to the source SF, and to delete the transmission channel (such as PDU session (session), wireless bearer) between the sensing UE and/or the source base station and the source SF. wait).
  • the target SF sends the time-frequency resource information used for sensing to the target sensing base station according to the received sensing context information of the sensing UE. If the sensing mode is UE spontaneous transmission or inter-UE transmission and reception, the target sensing base station allocates corresponding sensing resources to the sensing UE according to the received sensing time-frequency resource information. If the target sensing base station is a sending node or a receiving node of the sensing reference signal, then the target sensing base station sends the sensing reference or receives the sensing signal and measures it according to the received sensing time-frequency resource information. When the target sensing base station is a sensing signal receiving node, the target SF also needs to send sensing measurement configuration information to the target sensing base station. Sensing is performed between the sensing UE and the target sensing base station according to the configuration of the target SF, thereby ensuring the continuity of the ongoing sensing service during the UE handover process.
  • the source SF obtains the switching information of the sensing terminal through at least one of the following methods:
  • the source SF subscribes to the AMF for the switching information of the sensing terminal; when the AMF receives the switching message (such as N2 Path Switch Request or Handover required) sent by the RAN node, if the message is the sensing UE switching subscribed by the source SF, then the AMF sends The handover information of the UE is given to the SF.
  • the switching message such as N2 Path Switch Request or Handover required
  • the source SF receives the switching information of the sensing terminal sent by the sensing terminal; in the embodiment of the present application, when the sensing UE receives the switching command from the base station, it sends the switching information to the SF, and the switching information packet at least includes the target of the UE switching.
  • the source SF receives the switching information of the sensing terminal sent by the source base station of the sensing terminal.
  • the source base station that senses the UE sends the handover information of the sensed UE to the source SF connected to the source base station.
  • the handover information at least includes the identity of the sensing UE, the target base station information of the UE handover, the target AMF and/or Target UP function information.
  • the source SF sends the information of the target SF to the sensing UE in at least one of the following ways:
  • the source SF sends the target SF information to the sensing UE through the downlink (DL) NAS PDU.
  • the DL NAS PDU is, for example, an Additional information unit.
  • the source SF sends the target SF information to the sensing UE through the information unit defined in the sensing protocol. If the sensing protocol is transmitted through NAS, the target SF information unit is not parsed by the NAS layer.
  • the target SF information at least includes target SF identification information, which is used to send a message to the target SF after sensing the UE handover.
  • Embodiment 2 A method for switching sensing functions caused by sensing target movement
  • This embodiment assumes that the sensing target moves out of the service range of the current sensing function node, thereby causing the sensing function node to change.
  • This embodiment focuses on explaining how the sensing function node (SF) determines that the sensing target moves out of the service range of the current sensing function node and how to perform sensing function node switching.
  • the sensing signal sending node or sensing signal receiving node is divided into two categories: edge node and central node.
  • An edge node means that the sensing signal sending node or the sensing signal receiving node is located at the edge of the sensing function service range.
  • the sensing target movement may cause the sensing target to move within the service range of the current sensing function.
  • the central node refers to the sensing signal sending node or the sensing signal receiving node located in the non-edge area of the sensing function service range.
  • the movement of the sensing target may cause changes in the sensing signal sending node and/or the sensing signal receiving node. , but still within the service range of the sensing function node.
  • the SF determines whether SF handover is required based on the sensing measurement results and/or the movement information of the sensing target.
  • the movement information of the sensing target includes at least one of position, movement direction and movement speed of the sensing target. For example, the SF determines that the sensing signal sending node and/or the sensing signal receiving node may need to be switched based on the sensing measurement results. It further determines that the sensing target will move out of the service range of the current sensing function based on the sensing target position, movement direction, etc., thereby determining that SF switching is required. . If SF handover is required, the target SF is determined, and the source SF sends sensing service context information to the target SF.
  • the target SF can quickly complete sensing-related configuration information based on the received sensing service context to ensure the continuity of sensing services.
  • the target SF sends a handover response message, where the handover response information includes at least one of whether the target SF continues to use the current sensing signal sending node and whether the target SF continues to use the current sensing signal receiving node. If the target SF continues to use the current sensing signal sending node or receiving node, then the source SF sends the target SF information to the sensing signal sending node or receiving node. If the target SF does not use the current sensing signal sending node or receiving node, then the source SF sends the sensing end identifier to the corresponding sensing signal sending node or sensing signal receiving node.
  • the sensing end identifier is used by the sensing signal sending node or the sensing signal receiving node to stop sending sensing signals or sending sensing data to the source SF and delete the transmission channel (such as PDU session, wireless bearer, etc.) between it and the source SF.
  • the transmission channel such as PDU session, wireless bearer, etc.
  • the source SF obtains the movement information of the sensing target through at least one of the following methods:
  • the source SF determines a sensing signal receiving node for sensing the movement information of the sensing target, sends sensing measurement configuration information to the sensing signal receiving node, and determines the sensing signal receiving node based on the sensing measurement results sent by the sensing signal receiving node.
  • Sense the movement information of the target; the sensing signal receiving node can be the same as the sensing node being used, or Can be different.
  • SF can reuse the same sensing nodes and sensing measurements; for example, if it is necessary to sense obstacles within a 10-meter range near the sensing target, then it may be necessary to determine a new sensing signal to send.
  • the node and the receiving node perform mobile information sensing on the sensing target.
  • the movement information of the sensing target includes at least one of position, movement direction, movement speed, etc.
  • the source SF requests the movement information of the sensing target from the application function or other sensing function nodes.
  • the source SF information sends the target SF information to the sensing signal sending node and/or receiving node in at least one of the following ways:
  • the source SF extends the relevant interface (N1 interface or N2 interface, etc.).
  • the target SF information can be sent to the sensing UE through the DL NAS PDU; if the sensing node is a base station, the target can be sent through the N2 interface. SF information is given to the sensing base station.
  • the source SF sends the target SF information through the information unit defined in the sensing protocol, and the transport layer transparently transmits the target SF information in the sensing protocol.
  • the transport layer may be NAS or Stream Control Transmission Protocol/Internet Protocol (SCTP/IP), etc.
  • the target SF information at least includes target SF identification information, which can be represented by an identifier such as SF ID or IP address.
  • Embodiment 3 A method for switching sensing functions triggered by sensing functions
  • the sensing function determines whether SF switching is required based on the resource and performance information of the sensing function.
  • the resource and performance information of the sensing function includes at least one of the following: computing resource information (such as CPU resource utilization, GPU resource utilization, memory utilization, etc.), sensing business load information (such as the sensing function can handle up to N sensing service, the current service compliance is 80%), and at least one of perceived performance monitoring information (such as perceived delay performance, perceived accuracy performance, etc.).
  • the SF may request said resource and performance information based on internal resource and performance information or from the network management function or other network functions (such as computing functions). If SF handover is required, the target SF is determined, and the source SF sends sensing service context information to the target SF.
  • the target SF can quickly complete sensing-related configuration information based on the received sensing service context to ensure the continuity of sensing services.
  • the target SF sends a handover response message, where the handover response information includes at least one of whether the target SF continues to use the current sensing signal sending node and whether the target SF continues to use the current sensing signal receiving node. If the target SF continues to use the current sensing signal sending node or receiving node, then the source SF sends the target SF information to the sensing signal sending node or receiving node. If the target SF does not use the current sensing signal sending node or receiving node, then the source SF sends the sensing end identifier to the corresponding sensing signal sending node or sensing signal receiving node.
  • the sensing end identifier is used by the sensing signal sending node or the sensing signal receiving node to stop sending sensing signals or sending sensing data to the source SF and delete the transmission channel (such as PDU session, wireless bearer, etc.) between it and the source SF.
  • the transmission channel such as PDU session, wireless bearer, etc.
  • the source SF information sends the target SF information to the sensing signal sending node and/or receiving node in at least one of the following ways:
  • the source SF extends the relevant interface (N1 interface or N2 interface, etc.).
  • the target SF information can be sent to the sensing UE through the DL NAS PDU; if the sensing node is a base station, the target SF information can be sent through the N2 interface. Mark SF information to the sensing base station.
  • the source SF sends the target SF information through the information unit defined in the sensing protocol, and the transport layer transparently transmits the target SF information in the sensing protocol.
  • the transport layer may be NAS or SCTP/IP, etc.
  • Embodiment 4 A sensing function switching method based on separation of sensing control and user functions
  • the function of receiving the sensing measurement results (ie, the value of the sensing measurement quantity) and generating the sensing results among the aforementioned sensing node functions is called the sensing user function.
  • the perceptual measurement results and perceptual results used it is divided into basic perceptual functions, derived perceptual functions and comprehensive perceptual functions.
  • Functions other than the above-mentioned sensing user functions are called sensing control functions. According to traditional deployment experience of mobile communication networks, if control functions and user functions are separated and defined as different network functions (such as SMF and UPF), then usually one control plane function corresponds to multiple user plane functions.
  • the foregoing embodiments 1 to 3 are based on the fact that the functions responsible for all sensing function nodes need to be switched. When considering the separation of sensing control and user functions, it may happen that only sensing user functions need to be switched, while the sensing control function remains unchanged. Condition. This embodiment focuses on explaining how to perform user-aware function switching.
  • the sensing control function node determines whether to perform sensing user function switching based on at least one of sensing UE switching information, sensing target mobility information, sensing function resources and performance information. If it is necessary to switch the user-aware function, determine the target user-aware function.
  • the perception control function node sends the target perception user function identification information to the perception signal receiving node.
  • the source sensing user function sends a sensing end identifier to the sensing signal receiving node, or the source sensing user function sends historical sensing data to the target sensing user function.
  • the sensing end flag is used by the sensing signal receiving node to stop sending sensing measurement result data to the source sensing user function and delete the transmission channel (such as PDU session, wireless bearer, etc.) between it and the source SF.
  • the historical sensing data refers to the historical sensing measurement results reported by the sensing node (UE or base station). For some situations where sensing results need to be generated based on the historical sensing measurement results within a period of time, the historical sensing data is helpful for sensing function nodes. After switching, the target sensing function node can still quickly produce sensing results without re-accumulating all sensing data within the required time.
  • Each of the above embodiments may involve a wireless communication sensing process and a sensing function node switching process.
  • the above two processes are briefly introduced below.
  • Step 1 The sensing function (SF, a network function responsible for receiving sensing requests and providing sensing results, which can be named by other names) receives the sensing request.
  • the sensing request includes but is not limited to one or more of the following information:
  • Perception target area refers to the location area where the sensing object may exist, or the location area that requires imaging or three-dimensional reconstruction;
  • Sensing object type Classify sensing objects according to their possible motion characteristics. Each sensing object type contains information such as motion speed, motion acceleration, typical RCS and other information of typical sensing objects.
  • Sensing target object When one or more sensing target objects are sensed, the identification information of the sensing object is provided.
  • Potential identification methods include: feature identification on the distance, speed, angle spectrum, or UE ID identification based on the network;
  • Performance indicators for sensing the sensing target area or sensing object including at least one of the following: sensing resolution (which may further include: at least one of ranging resolution, angle measurement resolution, speed measurement resolution, and imaging resolution) one item), etc., perception accuracy (which may further include: at least one of ranging accuracy, angle measurement accuracy, speed measurement accuracy, positioning accuracy, etc.), perception range (which may further include: distance measurement range, speed measurement range, angle measurement range) , imaging range, etc.), sensing delay (the time interval from sending the sensing signal to obtaining the sensing result, or the time interval from initiating the sensing demand to obtaining the sensing result), sensing update rate (two consecutive The time interval between performing sensing and obtaining sensing results), detection probability (the probability of being correctly detected when the sensing object exists), and false alarm probability (the probability of incorrectly detecting the sensing target when the sensing object does not exist).
  • sensing resolution which may further include: at least one of ranging resolution, angle measurement resolution, speed measurement resolution, and imaging resolution
  • perception accuracy which may further include
  • Step 2 SF is responsible for the control of perceived service quality (QoS), that is, oriented to the perceived service quality requirements, it controls the sensing related nodes to meet the perceived service QoS requirements.
  • QoS perceived service quality
  • Step 3 The SF and/or the base station determine the sensing link or sensing method.
  • the sensing method may include: the base station sends a sensing signal and the UE receives it, the UE sends a sensing signal and the base station receives it, the base station spontaneously receives it, inter-UE transceiver, inter-base station transceiver, UE spontaneously Self harvesting.
  • the SF and/or the base station determine the sensing signal sending node and/or receiving node.
  • the sensing signal sending node or receiving node in the mobile communication system includes network equipment (such as a base station) and UE (such as a mobile phone).
  • the SF determines that the sensing mode is the base station sending and receiving the UE, selects base station A as the sensing signal sending node, and the SF and the base station jointly determine UE1 and UE2 as the sensing signal receiving nodes.
  • Step 4 The SF and/or the base station determine the sensing signal.
  • Potential sensing signals include reference signals and/or data signals, where the reference signals may be communication reference signals or sensing-specific reference signals.
  • Step 5 The SF and/or the base station determine the time-frequency resources used for sensing.
  • Potential sensing resources include unused time-frequency resources in communication (such as guard bands), time-frequency resources used in shared communication (such as reference signals or data signal), sensing dedicated time-frequency resources. It is further necessary to determine the configuration of the sensing signal. Potential configurations include time domain, frequency domain and air domain resource information of the sensing signal. If it is determined that the node sensing time-frequency resources is not the sending node of the sensing signal, then the sensing signal configuration is sent to the sensing signal sending node.
  • Step 6 The SF and/or the base station determines the configuration of the sensing measurement quantity.
  • the potential configuration includes at least one of the following: sensing signal indication to be measured, sensing signal quantity or time to be measured, measurement result reporting indication, and sensing measurement constraints. (Refers to which one or more constraints can be used for perceptual measurement. Potential constraint items include received signal signal-to-noise ratio/signal-to-drying ratio, signal-to-clutter ratio, and the ratio of the target perceived signal component to other perceived signal components. , the ratio of the channel response amplitude value in the target perception delay interval to the amplitude value in other delay intervals.
  • the received signal signal-to-noise ratio/signal-to-dryness ratio is not less than 10dB, the channel response amplitude value in the target perception delay interval and other delay intervals The ratio of the amplitude values in the interval is not less than -5dB), etc. If the node that determines the perceptual measurement quantity configuration is not the receiving and measuring node of the perceptual signal, then the perceptual measurement quantity configuration is sent to the perceptual signal receiving node.
  • Step 7 The SF and/or the base station determines and configures the transmission channel for reporting sensing measurement results, including establishing, modifying, or releasing the transmission channel.
  • Step 8 SF receives the sensing measurement results, generates sensing results, and responds to the sensing service request
  • Sensing function node handover based on 3GPP access mainly includes Xn-based inter NG-RAN handover (Xn based inter NG-RAN handover) and N2-based inter NG-RAN handover (Inter NG-RAN node N2 based handover).
  • the handover process mainly determines which PDU sessions to accept/reject and the maintenance of access network tunnel information, thereby updating the UE session management context. The process and interaction information do not consider whether the UE is sensing, for example, when the UE is a sending node or a receiving node of sensing signals.
  • the handover between NG-RAN based on N2 is divided into the preparation stage and the execution stage.
  • the preparation stage process is shown in Figure 5. From the flow chart, we can see the handover preparation stage.
  • AMF Access and Mobility Management Function
  • S-AMF source AMF
  • T-AMF destination AMF
  • the handover process and interaction information in the related art do not consider whether the UE is sensing, for example, when the UE is a sending node or a receiving node of sensing signals.
  • the above sensing function switching method in the embodiment of the present application is applicable to 5.5G or 6G systems, or other future communication networks.
  • the execution subject may be a sensing function switching device.
  • a sensing function switching device performing a sensing function switching method is used as an example to illustrate the sensing function switching device provided by the embodiment of the present application.
  • This embodiment of the present application also provides a sensing function switching device 60, which includes:
  • the execution module 61 is configured to perform at least one of the following operations when it is determined that sensing function node switching is required:
  • the sensing node includes sensing terminals and/or sensing base stations participating in sensing;
  • the sensing function switching device determines that sensing function node switching needs to be performed
  • the first switching information is sent to the switched second sensing function node and/or the switching sensing function node switching instruction
  • the third sensing function node switching instruction is sent to the sensing node.
  • the sensing function switching device 60 also includes:
  • the first determination module is configured to determine that sensing function node switching needs to be performed based on at least one of the switching information of the sensing terminal, the movement information of the sensing target, and the resource and performance information of the sensing function.
  • the sensing terminal is at least one of a sensing signal sending node, a sensing signal receiving node, a sensing auxiliary node, and a sensing service demand node.
  • the switching information of the sensing terminal includes at least one of the identity of the sensing terminal, target base station information for switching of the sensing terminal, target AMF information, and target user plane function information.
  • the sensing function switching device 60 further includes:
  • the first acquisition module is configured to acquire the switching information of the sensing terminal through at least one of the following methods:
  • the movement information of the sensing target includes at least one of the position, movement direction and movement speed of the sensing target.
  • the sensing function switching device 60 further includes:
  • the second acquisition module is used to acquire the movement information of the sensing target through at least one of the following methods:
  • the first determination module is used to determine whether it is necessary to switch the sensing signal sending node and/or the sensing signal receiving node according to the sensing measurement result sent by the sensing signal receiving node; if it is determined that the sensing signal sending node needs to be switched, and/or the sensing signal receiving node is switched, and based on the movement information of the sensing target, it is determined whether the sensing target will move out of the service range of the first sensing function node; if it is determined that the sensing target will move out of the first sensing function node The service scope of the sensing function node determines the need for sensing function node switching.
  • the sensing function switching device 60 further includes:
  • the second determination module is used to determine that the sensing target is a non-stationary sensing target, and the current sensing signal sending node and/or sensing signal receiving node is an edge node; wherein, the edge node refers to the sensing signal sending node and/or Or the sensing signal receiving node is located at the edge of the service range of the first sensing function node.
  • the edge node performs sensing, the movement of the sensing target may cause the sensing target to move out of the first sensing function node. Service area.
  • the resource and performance information of the sensing function includes at least one of computing resource information, sensing business load information, and sensing performance detection information.
  • the sensing function switching device 60 further includes:
  • a request module configured to request resources and performance information of the sensing function from the network function node.
  • the first switching information includes at least one of sensing node context, sensing service context, and historical sensing data
  • the historical sensing data includes at least one of historical sensing results, historical sensing measurement results, and historical sensing auxiliary information.
  • the sensing node context includes at least one of the following information: sensing node identification, sensing service area, sensing service restriction area, sensing function node type allowed to access, sensing node and the first sensing function node sensing Data transmission channel information, the sensing service context assumed, the sensing functions and sensing capabilities assumed.
  • the sensing capabilities include a first capability set and/or a second capability set.
  • the first capability set is a set of device capabilities with enhanced sensing functions
  • the second capability set is a set of device capabilities with specific sensing capabilities.
  • the first capability set includes at least one of the following: frequency-related capabilities, power-related capabilities, and beam-related capabilities.
  • the second capability set includes at least one of the following: sensing specific radio frequency capabilities, supported sensing service types, supported sensing signal waveforms, supported sensing measurement quantities, supported sensing indicators, supported sensing related The ability to control or dispatch capabilities, and auxiliary information related to perception.
  • the sensing service context includes at least one of the following information: sensing service identification, sensing target identification, sensing geographical location range, sensing service demander, sensing QoS information, sensing function node used by the first sensing function node Sensing mode, sensing signal sending node and/or sensing signal receiving node used by the first sensing function node, sensing signal configuration information used by the first sensing function node, sensing signal configuration information used by the first sensing function node Perception measurement configuration information.
  • the execution module 61 is configured to send the information of the second sensing function node to the sensing node in at least one of the following ways:
  • the sensing node includes a sensing terminal, and the first sensing function node sends the information of the second sensing function node to the sensing terminal through a downlink NAS PDU;
  • the sensing node includes a sensing base station, and the first sensing function node sends the information of the second sensing function node to the sensing base station through the N2 interface;
  • the first sensing function node sends the information of the second sensing function node to the sensing node through the information unit defined in the sensing protocol.
  • the sensing function switching device 60 further includes:
  • a receiving module configured to receive switching response information sent by the second sensing function node, where the switching response information includes indication information indicating whether to continue to use the current sensing signal sending node and/or sensing signal receiving node;
  • the execution module 61 is configured to send instructions to the sensing signal sending node and/or sensing signal receiving node if the switching response information includes instruction information indicating to continue using the current sensing signal sending node and/or sensing signal receiving node.
  • the node sends the information of the second sensing function node;
  • the handover response information includes instruction information indicating not to continue using the current sensing signal sending node and/or sensing signal receiving node, send a sensing end indication to the sensing signal sending node and/or sensing signal receiving node.
  • the sensing function switching device 60 includes a sensing user function node and a sensing control function node;
  • the perception control function node is used to execute the part executed by the execution module 61 to determine that switching of the perception function node is required;
  • the user-aware function node is used to perform the part performed by the execution module 61 for performing at least one of the following operations, and performing at least one of the following operations includes:
  • the sensing function switching device 60 includes at least one of the following functions:
  • Receive sensing measurement results generate sensing results based on the sensing measurement results, and respond to sensing service requests based on the sensing results;
  • the perceptual measurement quantity includes at least one of a first-level measurement quantity, a second-level measurement quantity, a third-level measurement quantity and a fourth-level measurement quantity.
  • the perception measurement quantity includes label information
  • the label information includes at least one of the following: perception signal identification information, perception measurement configuration identification information, perception service information, data subscription identification, measurement quantity usage, time information, perception Node information, sensing link information, measurement quantity description information and measurement quantity indicator information.
  • the step is to receive the sensing measurement result, generate the sensing result according to the sensing measurement result, and react according to the sensing result.
  • Service requests should include at least one of the following:
  • the sensing function switching device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the sensing function switching device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 2 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • This embodiment of the present application also provides a sensing function switching device 70, which includes:
  • the receiving module 71 is configured to receive the first switching information sent by the first sensing function node;
  • the configuration module 72 is configured to perform sensing-related configuration according to the first switching information.
  • the sensing function switching device receives the first switching information sent by the first sensing function node and performs sensing related configurations, so that the ongoing sensing service can continue to be provided and the continuity of the sensing service can be ensured.
  • the first switching information includes at least one of sensing node context, sensing service context, and historical sensing data
  • the historical sensing data includes at least one of historical sensing results, historical sensing measurement results, and historical sensing auxiliary information.
  • the configuration module 72 is used to perform at least one of the following:
  • the switching response information includes indication information indicating whether the first sensing function node continues to use the current sensing signal sending node and/or sensing signal receiving node.
  • the sensing function switching device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the sensing function switching device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 3 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 80, which includes a processor 81 and a memory 82.
  • the memory 82 stores programs or instructions that can be run on the processor 81.
  • the communication device 80 When 80 is a first sensing function node, when the program or instruction is executed by the processor 81, each step of the sensing function switching method embodiment executed by the first sensing function node is implemented, and the same technical effect can be achieved.
  • the communication device 80 is a second sensing function node, when the program or instruction is executed by the processor 81, the steps of the sensing function switching method embodiment executed by the second sensing function node are implemented, and the same technical effect can be achieved, To avoid repetition, no more Repeat.
  • An embodiment of the present application also provides a communication device, including a processor and a communication interface, wherein the processor is configured to perform at least one of the following operations when it is determined that sensing function node switching is required:
  • the sensing node includes sensing terminals and/or sensing base stations participating in sensing;
  • This communication device embodiment corresponds to the above-mentioned method embodiment executed by the first sensing function node.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this communication device embodiment, and can achieve the same technical effect.
  • An embodiment of the present application also provides a communication device, including a processor and a communication interface, wherein the communication interface is used to receive the first switching information sent by the first sensing function node; the processor is used to perform the switching according to the first switching information. information to perform sensing-related configurations.
  • This communication device embodiment corresponds to the above-mentioned method embodiment executed by the second sensing function node.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this communication device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a communication device.
  • the communication device 90 includes: a processor 91 , a network interface 92 and a memory 93 .
  • the network interface 92 is, for example, a common public radio interface (CPRI).
  • the communication device 90 in the embodiment of the present application also includes: instructions or programs stored in the memory 93 and executable on the processor 91.
  • the processor 91 calls the instructions or programs in the memory 93 to execute the steps shown in FIG. 6 or 7. It shows the execution method of each module and achieves the same technical effect. To avoid duplication, it will not be repeated here.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above-mentioned sensing function switching method embodiment is implemented, and can To achieve the same technical effect, to avoid repetition, we will not repeat them here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage media includes computer-readable storage media, such as computer read-only memory (Random Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the switching method of the above sensing function.
  • Each process in the example can achieve the same technical effect. To avoid repetition, we will not repeat it here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above sensing function switching method.
  • the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above sensing function switching method.
  • Embodiments of the present application also provide a communication system, including: a first sensing function node and a second sensing function node.
  • the first sensing function node can be used to perform the switching method of the sensing function performed by the first sensing function node.
  • the second sensing function node may be used to perform the steps of the sensing function switching method performed by the second sensing function node.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to related technologies.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种感知功能的切换方法、装置及通信设备,属于无线通信技术领域,本申请实施例的感知功能的切换方法包括:在第一感知功能节点确定需要进行感知功能节点切换的情况下,执行以下至少一项操作:向所述第二感知功能节点发送第一切换信息,所述第二感知功能节点为切换的目标感知功能节点;向感知节点发送感知功能节点切换指示,所述感知功能节点切换指示用于指示需要进行感知功能节点切换;所述感知节点包括参与感知的感知终端和/或感知基站;向所述感知节点发送所述第二感知功能节点的信息;向所述感知节点发送感知结束指示,所述感知结束指示用于指示所述感知节点停止向所述第一感知功能节点发送感知数据和/或删除所述感知节点与所述第一感知功能节点之间的传输通道。

Description

感知功能的切换方法、装置及通信设备
相关申请的交叉引用
本申请主张在2022年05月30日在中国提交的中国专利申请No.202210602524.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于无线通信技术领域,具体涉及一种感知功能的切换方法、装置及通信设备。
背景技术
相关技术中移动通信网络移动性管理主要是基于通信设计的,并没有考虑感知需求。在有些场景下,由于感知终端或感知目标等的移动,导致需要进行感知功能节点切换,如何进行感知功能节点切换,能够保证感知业务的连续性,是需要解决的问题。
发明内容
本申请实施例提供一种感知功能的切换方法、装置及通信设备,能够解决如何进行感知功能节点切换的问题。
第一方面,提供了一种感知功能的切换方法,包括:
在第一感知功能节点确定需要进行感知功能节点切换的情况下,执行以下至少一项操作:
向第二感知功能节点发送第一切换信息,所述第二感知功能节点为切换的目标感知功能节点;
向感知节点发送感知功能节点切换指示,所述感知功能节点切换指示用于指示需要进行感知功能节点切换;所述感知节点包括参与感知的感知终端和/或感知基站;
向所述感知节点发送所述第二感知功能节点的信息;
向所述感知节点发送感知结束指示,所述感知结束指示用于指示所述感知节点停止向所述第一感知功能节点发送感知数据和/或删除所述感知节点与所述第一感知功能节点之间的传输通道。
第二方面,提供了一种感知功能的切换方法,包括:
第二感知功能节点接收第一感知功能节点发送的第一切换信息;
所述第二感知功能节点根据所述第一切换信息,进行感知相关配置。
第三方面,提供了一种感知功能的切换装置,包括:
执行模块,用于在确定需要进行感知功能节点切换的情况下,执行以下至少一项操作:
向第二感知功能节点发送第一切换信息,所述第二感知功能节点为切换的目标感知功能节点;
向感知节点发送感知功能节点切换指示,所述感知功能节点切换指示用于指示需要进行感知功能节点切换;所述感知节点包括参与感知的感知终端和/或感知基站;
向所述感知节点发送所述第二感知功能节点的信息;
向所述感知节点发送感知结束指示,所述感知结束指示用于指示所述感知节点停止向第一感知功能节点发送感知数据和/或删除所述感知节点与所述第一感知功能节点之间的传输通道。
第四方面,提供了一种感知功能的切换装置,包括:
接收模块,用于接收第一感知功能节点发送的第一切换信息;
配置模块,用于根据所述第一切换信息,进行感知相关配置。
第五方面,提供了一种通信设备,该通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第六方面,提供了一种通信设备,包括处理器及通信接口,其中,所述处理器用于在确定需要进行感知功能节点切换的情况下,执行以下至少一项操作:
向第二感知功能节点发送第一切换信息,所述第二感知功能节点为切换的目标感知功能节点;
向感知节点发送感知功能节点切换指示,所述感知功能节点切换指示用于指示需要进行感知功能节点切换;所述感知节点包括参与感知的感知终端和/或感知基站;
向所述感知节点发送所述第二感知功能节点的信息;
向所述感知节点发送感知结束指示,所述感知结束指示用于指示所述感知节点停止向第一感知功能节点发送感知数据和/或删除所述感知节点与所述第一感知功能节点之间的传输通道。
第七方面,提供了一种通信设备,包括处理器及通信接口,其中,所述通信接口用于接收第一感知功能节点发送的第一切换信息;所述处理器用于根据所述第一切换信息,进行感知相关配置。
第八方面,提供了一种通信系统,包括:第一感知功能节点及第二感知功能节点,所述第一感知功能节点可用于执行如第一方面所述的方法的步骤,所述第二感知功能节点可用于执行如第二方面所述的方法的步骤。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第二方面所述的方法。
第十一方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在 存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面或第二方面所述的方法的步骤。
在本申请实施例中,感知功能节点确定需要进行感知功能节点切换的情况下,向切换的第二感知功能节点发送第一切换信息和/或向感知节点发送切换感知功能节点切换指示、第二感知功能节点的信息和/或感知结束指示,从而使得目标感知功能节点可继续提供正在进行的感知服务,保障感知服务的连续性,并且,感知节点可以与第二感知功能节点快速进行交互,保障切换过程中的感知业务服务质量。
附图说明
图1为本申请实施例可应用的一种无线通信系统的框图;
图2为本申请实施例的感知功能的切换方法的流程示意图之一;
图3为本申请实施例的感知功能的切换方法的流程示意图之二;
图4为基于Xn的NG-RAN间的感知功能节点切换的流程示意图;
图5为基于N2的NG-RAN间的感知功能节点切换的流程示意图;
图6为本申请实施例的感知功能的切换装置的结构示意图之一;
图7为本申请实施例的感知功能的切换装置的结构示意图之二;
图8为本申请实施例的通信设备的结构示意图之一;
图9为本申请实施例的通信设备的结构示意图之二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency  Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Networks,WLAN)接入点或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support  Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的感知功能的切换方法、装置及通信设备进行详细地说明。
为了便于更好地理解本申请实施例,下面先介绍相关的一些技术点。
通信感知一体化即在同一系统中通过频谱共享与硬件共享,实现通信、感知功能一体化设计,系统在进行信息传递的同时,能够感知方位、距离、速度等信息,对目标设备或事件进行检测、跟踪、识别,通信系统与感知系统相辅相成,实现整体性能上的提升并带来更好的服务体验。
未来移动通信系统例如超5代移动通信(Beyond 5th-Generation,B5G)系统或第六代移动通信(6th-Generation,6G)系统除了具备通信能力外,还将具备感知能力。感知能力,即具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。未来随着毫米波、太赫兹等具备高频段大带宽能力的小基站在6G网络的部署,感知的分辨率相比厘米波将明显提升,从而使得6G网络能够提供更精细的感知服务。典型的感知功能与应用场景如表1所示。
表1
上述感知业务的服务质量要求的表述各不相同,例如智能交通、高精地图等感知通常以感知范围、距离分辨率、角度分辨率、速度分辨率和时延等来表达;飞行入侵检测感知通常以覆盖高度、感知精度、感知时延来表达;呼吸监测以感知距离、感知实时性、感知分辨率和感知精度来表达;室内入侵检测以感知距离、感知实时性、检测概率和虚警概率来表达;手势/姿态识别以感知距离、感知实时性、感知精度来表达。
上述感知业务的服务请求方式各不相同,例如基于静态区域的服务请求,以某个坐标 系表示需感知内容的地理位置区域;基于动态区域的服务请求,以某个用户设备(User Equipment,UE)周围M米表示需要感知内容的地理位置范围;某个动态目标的连续感知服务请求,以某个已检测和持续位置追踪的目标表示需要感知内容的感知目标。
请参考图2,本申请实施例提供一种感知功能的切换方法,包括:
步骤21:在第一感知功能节点确定需要进行感知功能节点切换的情况下,执行以下至少一项操作:
向第二感知功能节点发送第一切换信息,所述第二感知功能节点为切换的目标感知功能节点;
向感知节点发送感知功能节点切换指示,所述感知功能节点切换指示用于指示需要进行感知功能节点切换;所述感知节点包括参与感知的感知终端和/或感知基站;
向所述感知节点发送所述第二感知功能节点的信息;
向所述感知节点发送感知结束指示,所述感知结束指示用于指示所述感知节点停止向所述第一感知功能节点发送感知数据和/或删除所述感知节点与所述第一感知功能节点之间的传输通道。
在本申请实施例中,感知功能节点确定需要进行感知功能节点切换的情况下,向切换的第二感知功能节点发送第一切换信息和/或向感知节点发送切换感知功能节点切换指示、第二感知功能节点的信息和/或感知结束指示,从而使得目标感知功能节点可继续提供正在进行的感知服务,保障感知服务的连续性,并且,感知节点可以与第二感知功能节点快速进行交互,保障切换过程中的感知业务服务质量。
其中,所述第一感知功能节点也可以称为源感知功能节点,第二感知功能节点也可以称为目标感知功能节点。
感知功能节点(也可以简称为感知功能),为用于负责接收感知请求和提供感知结果的网络功能,可以为其他名称。
所述感知终端为参与感知的终端,所述感知终端可以作为感知信号发送节点,感知信号接收节点,感知辅助信息提供节点或感知服务需求节点。
所述感知基站为参与感知的基站,所述感知基站可以作为感知信号发送节点,感知信号接收节点,感知辅助信息提供节点或感知服务需求节点。
根据感知方式的不同,可以确定感知终端或感知基站作为哪些节点。
感知方式包括以下至少一项:
感知基站作为感知信号发送节点,用于发送感知信号,感知终端作为感知信号接收节点,对接收到的感知信号进行测量,并产生感知测量结果(即感知数据)发送给感知功能节点;
感知终端作为感知信号发送节点,用于发送感知信号,感知基站作为感知信号接收节点,对接收到的感知信号进行测量,并产生感知测量结果(即感知数据)发送给感知功能节点。
感知基站作为感知信号发送节点,其他感知基站作为感知信号接收节点,对接收到的感知信号进行测量,并产生感知测量结果(即感知数据)发送给感知功能节点。
感知基站作为感知信号发送节点,其自身作为感知信号接收节点,对接收到的感知信号进行测量,并产生感知测量结果(即感知数据)发送给感知功能节点。
感知终端作为感知信号发送节点,其自身作为感知信号接收节点,对接收到的感知信号进行测量,并产生感知测量结果(即感知数据)发送给感知功能节点。
感知终端作为感知信号发送节点,其他感知终端作为感知信号接收节点,对接收到的感知信号进行测量,并产生感知测量结果(即感知数据)发送给感知功能节点。
本申请实施例中,可选地,所述第一感知功能节点确定需要进行感知功能节点切换包括:所述第一感知功能节点根据感知终端的切换信息、感知目标的移动信息、感知功能的资源和性能信息中的至少一项,确定需要进行感知功能节点切换。
即,感知功能节点切换的原因为以下三种情况中的至少一种:
1)因感知终端(包括终端作为感知信号发送节点,感知信号接收节点,感知辅助信息提供节点和/或感知服务需求节点等)移动性导致切换时,目标基站所连接的感知功能节点不同于当前感知功能节点。
2)感知目标移动出当前感知功能节点的服务范围而引起感知功能节点改变。
3)感知功能节点因其计算资源、感知业务负荷、感知性能监控信息等中的至少一项引起感知功能节点改变。
本申请实施例中,考虑多种感知功能节点的切换原因,使得感知功能节点切换的确定方式更加准确。
本申请实施例中,可选地,所述感知终端为感知信号发送节点、感知信号接收节点、感知辅助节点和感知服务需求节点中的至少一项。
本申请实施例中,可选地,所述感知终端的切换信息包括所述感知终端的标识、所述感知终端切换的目标基站信息、目标AMF信息和目标用户面功能信息中的至少一项。
本申请实施例中,可选地,所述第一感知功能节点根据感知终端的切换信息,确定需要进行感知功能节点切换,之前还包括:
所述第一感知功能节点通过以下方式中的至少一项,获取所述感知终端的切换信息:
1)所述第一感知功能节点向AMF订阅所述感知终端的切换信息;
当AMF接收到无线接入网(Radio Access Network,RAN)节点(如基站)发送的切换消息(例如N2 Path Switch Request或Handover required),如果该消息是第一感知功能节点所订阅的感知UE切换,那么AMF发送该UE的切换信息给第一感知功能节点。
2)所述第一感知功能节点接收所述感知终端发送的所述感知终端的切换信息;
本申请实施例中,可选地,当感知终端接收到基站的切换命令时,向第一感知功能节点发送切换信息,该切换信息包至少包括感知终端切换的目标基站信息、目标AMF和/或目标用户面(User Plane,UP)功能信息。
3)所述第一感知功能节点接收所述感知终端的源基站发送的所述感知终端的切换信息。
本申请实施例中,感知终端的源基站发送所述感知终端的切换信息给源基站所连接的第一感知功能节点,所述切换信息至少包括感知终端的标识,感知终端切换的目标基站信息,目标AMF和/或目标用户面(UP)功能信息。
即,感知功能节点可以通过多种方式获取感知终端的切换信息。
本申请实施例中,可选地,所述感知目标的移动信息包括所述感知目标的位置、移动方向和移动速度中的至少一项。
本申请实施例中,可选地,所述第一感知功能节点根据感知目标的移动信息,确定需要进行感知功能节点切换,之前还包括:
所述第一感知功能节点通过以下方式中的至少一项,获取所述感知目标的移动信息:
1)所述第一感知功能节点确定用于感知所述感知目标的移动信息的感知信号接收节点,向所述感知信号接收节点发送感知测量配置信息,并根据所述感知信号接收节点发送的感知测量结果确定所述感知目标的移动信息;
所述感知信号接收节点可以与正在使用的感知节点相同,也可以不同。例如需对感知目标感知的信息是轨迹追踪,那么第一感知功能节点可复用同样的感知节点和感知测量量;又例如需对感知目标附近10米范围障碍物进行感知,那么可能需要确定新的感知信号发送节点和接收节点对感知目标进行移动信息感知。
2)所述第一感知功能节点向应用功能或其他感知功能节点请求所述感知目标的移动信息。
举例来说,假设感知目标在进行地图导航的业务,那么第一感知功能节点可以向地图应用功能服务器请求感知目标的移动信息。
方式1)下,第一感知功能节点具备感知目标的移动信息的功能。方式2)下,可选地,第一感知功能节点仅负责感知服务所请求的感知目标的信息(例如手势识别)感知,其他感知功能节点负责感知目标的移动信息的感知,因此,需要向其他感知功能节点请求感知目标的移动信息。其他感知功能节点和方式1)中的第一感知功能节点一样,具备感知目标的移动信息的功能。
本申请实施例中,可选地,所述第一感知功能节点根据感知目标的移动信息,确定需要进行感知功能节点切换包括:
所述第一感知功能节点根据感知信号接收节点发送的感知测量结果,确定是否需要进行感知信号发送节点和/或感知信号接收节点切换;
若确定出需要进行感知信号发送节点和/或感知信号接收节点切换,所述第一感知功能节点根据所述感知目标的移动信息,确定所述感知目标是否将移出所述第一感知功能节点的服务范围;
若确定出所述感知目标将移出所述第一感知功能节点的服务范围,所述第一感知功能 节点确定需要进行感知功能节点切换。
本申请实施例中,可选地,所述第一感知功能节点根据感知目标的移动信息,确定需要进行感知功能节点切换,之前还包括:所述第一感知功能节点确定所述感知目标是非静止的感知目标,且当前感知信号发送节点和/或感知信号接收节点为边缘节点;其中,所述边缘节点指所述感知信号发送节点和/或感知信号接收节点位于所述第一感知功能节点的服务范围的边缘,当所述边缘节点进行感知时,所述感知目标的移动可能会引起所述感知目标移出所述第一感知功能节点的服务范围。
也就是说,如果感知目标是静止的,或者对感知目标进行感知的发送节点和感知信号都是中心节点,那么第一感知功能节点就不需要获取感知功能的移动性信息和判断需要进行感知功能节点切换了,从而可以节省切换准备的开销。
本申请实施例中,可选地,所述感知功能的资源和性能信息包括计算资源信息(如中央处理器(Central Processing Unit,CPU)资源利用率、图形处理器(Graphics Processing Unit,GPU)资源利用率、内存利用率等)、感知业务负荷信息(如感知功能最多可以处理N个感知业务,当前业务符合为80%)、感知性能检测信息(例如感知时延性能,感知精度性能等)中的至少一项。
本申请实施例中,可选地,所述第一感知功能节点根据感知功能的资源和性能信息,确定需要进行感知功能节点切换,之前还包括:所述第一感知功能节点向网络功能节点请求所述感知功能的资源和性能信息。
本申请实施例中,可选地,所述第一切换信息包括感知节点上下文、感知服务上下文和历史感知数据中的至少一项。
所述历史感知数据包括历史感知结果、历史感知测量结果、历史感知辅助信息中的至少一项。对于一些需要基于一段时间内历史感知测量结果才能产生感知结果的情况,历史感知数据有助于在感知功能节点切换后,目标感知功能节点仍然能够快速产生感知结果,无需再重新积累所需时间内的所有感知数据。
本申请实施例中,可选地,所述第一感知功能节点通过以下方式中的至少一种,向感知节点发送所述第二感知功能节点的信息:
所述感知节点包括感知终端,所述第一感知功能节点通过下行非接入层(Non-Access Stratum,NAS)协议数据单元(Protocol Data Unit,PDU)向所述感知终端发送所述第二感知功能节点的信息;下行NAS协议数据单元(Protocol Data Unit,PDU)例如为Additional information单元。
所述感知节点包括感知基站,所述第一感知功能节点通过N2接口向所述感知基站发送所述第二感知功能节点的信息;
所述第一感知功能节点通过感知协议中定义的信息单元向所述感知节点发送所述第二感知功能节点的信息。如果感知协议通过NAS进行传输,第二感知功能节点的信息单元NAS层不解析。
其中,第二感知功能节点的信息至少包括第二感知功能节点的标识信息,用于感知终端切换后发送消息给第二感知功能节点。
本申请实施例中,可选地,所述第一感知功能节点向所述第二感知功能节点发送第一切换信息之后还包括:所述第一感知功能节点接收所述第二感知功能节点发送的切换响应信息,所述切换响应信息包括用于指示是否继续使用当前的感知信号发送节点和/或感知信号接收节点的指示信息;
所述第一感知功能节点执行以下至少一项包括:
若所述切换响应信息包括用于指示继续使用当前的感知信号发送节点和/或感知信号接收节点的指示信息,所述第一感知功能节点向所述感知信号发送节点和/或感知信号接收节点发送所述第二感知功能节点的信息;
和/或
若所述切换响应信息包括用于指示不继续使用当前的感知信号发送节点和/或感知信号接收节点的指示信息,所述第一感知功能节点向所述感知信号发送节点和/或感知信号接收节点发送感知结束指示。
本申请实施例中,可选地,可以将感知节点功能中接收感知测量结果(即感知测量量的值),产生感知结果的功能称为感知用户功能。除上述被称为感知用户功能外的功能称为感知控制功能。根据移动通信网络传统部署经验,如果控制功能和用户功能分离定义为不同网络功能时(如SMF和UPF),那么通常一个控制面功能对应多个用户面功能。
本申请实施例中,可选地,所述第一感知功能节点包括感知用户功能节点和感知控制功能节点;一个感知控制功能节点可以对应一个或多个感知用户功能节点。
当考虑感知控制和用户功能分离的情况时,可能发生只需要对感知用户功能切换,而感知控制功能保持不变的情况。
即,所述第一感知功能节点确定需要进行感知功能节点切换包括:所述感知控制功能节点确定需要进行感知功能节点切换;
所述执行以下至少一项操作包括:所述感知用户功能节点执行以下至少一项:
向目标感知用户功能节点发送第一切换信息,所述目标感知用户功能节点为切换的感知用户功能节点;
向所述感知节点发送感知功能节点切换指示;
向所述感知节点发送所述第二感知功能节点的信息;
向所述感知节点发送感知结束指示。
本申请实施例中,可选地,所述接收感知测量结果,根据感知测量结果产生感知结果,根据感知结果响应感知服务请求包括以下至少一项:
接收包含第一级感知测量量和/或第二级感知测量量的感知测量结果,根据所述第一级感知测量量和/或第二级感知测量量产生包含第三级感知测量量的感知结果,根据所述包含第三级感知测量量的感知结果响应感知服务请求;
接收包含第三级感知测量量的感知测量结果,根据所述第三级感知测量量产生包含第四级感知测量量的感知结果,根据所述包含第四级感知测量量的感知结果响应感知服务请求。
请参考图3,本申请实施例还提供一种感知功能的切换方法,包括:
步骤31:第二感知功能节点接收第一感知功能节点发送的第一切换信息;
步骤32:所述第二感知功能节点根据所述第一切换信息,进行感知相关配置。
在本申请实施例中,第二感知功能节点接收第一感知功能节点发送的第一切换信息,并进行感知相关配置,从而可继续提供正在进行的感知服务,保障感知服务的连续性。
本申请实施例中,可选地,所述第一切换信息包括感知节点上下文、感知服务上下文和历史感知数据中的至少一项,所述历史感知数据包括历史感知结果、历史感知测量结果、历史感知辅助信息中的至少一项。
本申请实施例中,可选地,所述第二感知功能节点根据所述第一切换信息,进行感知相关配置包括以下至少一项:
向目标感知基站发送感知所使用的时频资源信息;
向目标感知基站发送感知测量配置信息;
向所述第一感知功能节点发送切换响应信息,所述切换响应信息包括用于指示所述第一感知功能节点是否继续使用当前的感知信号发送节点和/或感知信号接收节点的指示信息。
下面对本申请涉及的相关定义进行说明。
下面首先对感知功能节点(sensing function,SF)的定义进行说明。
本申请实施例中,可选地,所述第一感知功能节点包括以下功能中的至少一项:
1)接收感知服务请求,根据感知服务请求确定所需的感知测量量;
本申请实施例中,可选地,所述感知测量量包括第一级测量量、第二级测量量、第三级测量量和第四级测量量中的至少一项。下面内容中将进行详细说明。
本申请实施例中,可选地,所述感知测量量包括标签信息,所述标签信息包括以下至少一项:感知信号标识信息、感知测量配置标识信息、感知业务信息、数据订阅标识、测量量用途、时间信息、感知节点信息、感知链路信息、测量量说明信息和测量量指标信息。
2)接收感知测量结果(即感知测量量的值),根据感知测量结果产生感知结果,根据感知结果响应感知服务请求;
本申请实施例中,可选地,当感知功能节点具备以下功能称为基础感知功能节点:接收感知测量结果(即感知测量量的值),其中感知测量量为第一级测量量和/或第二级测量量,产生感知结果(第三级测量量),响应感知服务请求。
本申请实施例中,可选地,当感知功能节点具备以下功能称为衍生感知功能节点:接收感知测量结果(即感知测量量的值),其中感知测量量为第三级测量量,产生感知结果(第四级测量量),响应感知服务请求。
本申请实施例中,可选地,当感知功能节点具备以下功能称为综合感知功能节点:接收感知测量结果(即感知测量量的值),其中感知测量量为第一级测量量和/或第二级测量量和/或第三级测量量,产生感知结果(第四级测量量),响应感知服务请求。
3)感知服务质量的控制,即面向感知服务质量要求,对感知相关节点的进行控制,从而满足感知服务服务质量(Quality of Service,QoS)要求。
4)确定感知信号发送节点、感知信号接收节点、感知辅助节点和感知服务需求节点中的至少一项;
移动通信系统中的感知信号发送节点或接收节点包括网络设备(如基站)和UE(如手机)。其中感知辅助节点指用于提供感知辅助的信息如其它传感器等的感知信息,地理位置信息等用于提升无线感知的性能。
5)确定感知链路;
感知链路可以包括以下至少一项:Uu链路(基站发感知信号UE收或UE发感知信号基站收),sidelink(UE间收发感知信号),回波链路(基站自发自收感知信号,UE自发自收感知信号),基站间收发链路(基站间收发感知信号)。
6)确定感知方式;
感知方式可以包括以下至少一项:基站发感知信号UE收,UE发感知信号基站收,基站自发自收感知信号,UE间收发感知信号,基站间收发感知信号,UE自发自收感知信号。
7)确定感知信号;
本申请实施例中,感知信号包括参考信号和/或数据信号,其中参考信号可以为通信参考信号或感知专用参考信号。
8)确定感知所使用的时频资源;
可选地,感知资源包括以下至少一项:通信中未使用的时频资源(如保护带),共用通信中已使用的时频资源(如参考信号或数据信号),感知专用的时频资源。进一步还需确定感知信号的配置,潜在的配置包括感知信号的时域、频域和空域资源信息。如果确定感知时频资源的节点不是感知信号的发送节点,那么向感知信号发送节点发送感知信号配置。
9)确定感知测量量的配置;
感知测量量的配置可以包括以下至少一项:需测量的感知信号指示、需测量的感知信号数量或时间、测量结果的上报指示等。如果确定感知测量量配置的节点不是感知信号的接收和测量节点,那么向感知信号接收节点发送感知测量量配置。
10)确定和配置感知测量结果上报的传输通道,包括建立、修改或释放传输通道等。
11)确定AMF;
当网络侧(NEF或AMF等)根据所请求感知服务的地理范围和感知功能节点所提供感知服务的地理范围确定了感知功能节点后,在如下至少一种情况下感知功能节点需确定 AMF:1)当UE为感知信号发送节点或感知信号接收节点或感知辅助节点时,感知目标为某个UE时,感知功能节点基于所需感知的地理区域,以及根据从NRF请求的AMF的跟踪区标识(Tracking Area Identity,TAI),和/或AMF ID或位置(location)等选择AMF;2)当感知数据需经AMF传输(例如定义为NAS消息或者NAS层作为感知数据的传输承载协议层)时,感知功能节点基于所需传输数据的感知节点地理位置信息(如跟踪区(TA)等),以及根据从NRF请求的AMF的TAI,和/或AMF ID或location等选择AMF;3)当感知目标是3GPP UE时,感知功能节点根据UE标识(如AMF UE NGAP ID)等确定AMF。
12)维护感知节点上下文;
13)维护感知服务上下文。
下面对感知测量量的定义进行说明。
本申请实施例中,可选地,所述感知测量量包括以下至少一项;
1)第一级测量量
第一级测量量为接收信号或原始信道信息,包括:包括:接收信号或信道响应复数结果,幅度或相位,I路或Q路及其(I路或Q路)运算结果,其中,运算包括加减乘除、矩阵加减乘、矩阵转置、三角关系运算、平方根运算和幂次运算等中的至少一项,以及上述运算结果的门限检测结果、最大/最小值提取结果等;运算还包括快速傅里叶变换(Fast Fourier Transform,FFT)/快速傅里叶逆变换(Inverse Fast Fourier Transform,IFFT)、离散傅里叶变换(Discrete Fourier Transform,DFT)/离散傅里叶逆变换(Inverse Discrete Fourier Transform,IDFT)、2D-FFT、3D-FFT、匹配滤波、自相关运算、小波变换和数字滤波等中的至少一项,以及上述运算结果的门限检测结果、最大/最小值提取结果等;
2)第二级测量量
第二级测量量为基本测量量,包括:时延、多普勒、角度、强度,及其多维组合表示;其中,时延、多普勒、角度、强度每个算做一个维度的数据,多维组合就是任意两种、三种或四种的组合,例如时延多普勒谱(时延和多普勒组成一个二维坐标系,二级测量量可以是这个二维坐标系的坐标点,也可以是坐标点加该坐标点处的强度数值),时延角度谱等。
3)第三级测量量
第三级测量量为基本属性或状态,包括:距离、速度、朝向、雷达截面积(Radar Cross Section,RCS)、加速度等中的至少一项;
4)第四级测量量
第四级测量量为进阶属性或状态,包括:空间位置、目标是否存在、轨迹、动作、表情、生命体征、数量、成像结果、天气、空气质量、形状、材质、成分中的至少一项。
本申请实施例中,可选地,所述感知测量量包括标签信息,所述标签信息包括以下至少一项:感知信号标识信息、感知测量配置标识信息、感知业务信息(如感知业务ID)、 数据订阅标识、测量量用途(如通信、感知或通感)、时间信息、感知节点信息(如UE ID、节点位置、设备朝向)、感知链路信息(如感知链路序号、收发节点标识)、测量量说明信息(例如形式和资源信息,形式例如幅度、相位、复数,资源信息例如天线、天线对、天线组、物理资源块(Physical Resource Block,PRB)、符号)和测量量指标信息(如信噪比(Signal to Noise Ratio,SNR)或感知SNR)。
下面对感知节点上下文的定义进行说明。
感知节点上下文是指以感知节点(感知信号发送节点、感知信号接收节点或感知辅助节点)标识为索引,包括以下信息中的至少一项:
1)感知节点标识,用于各网络功能节点使用感知上下文时的索引。当感知节点是UE时,潜在的标识可以包括以下至少一项:签约永久标识(Subscription Permanent Identifier,SUPI)、全球唯一临时标识(GUTI)、AMF UE NGAP ID、RAN UE NGAP ID等;当感知节点是基站时,潜在的标识是小区ID等。
2)感知服务区域,用于表示该感知节点有意愿提供感知服务的区域。例如某个用户仅与某一个运营商签署了感知授权协议,并为该UE提供感知服务付费。当UE移动出其有意愿提供感知服务的区域后,感知服务应终止。
3)感知服务限制区域,用于表示该感知节点的感知服务限制区域。例如用户在某些区域不提供感知服务或者不提供某一种或几种感知服务等。
4)允许接入的感知功能节点类型,用于表示该感知节点允许接入的感知功能节点类型。其中感知功能节点类型包括前述基础感知功能、衍生感知功能和既提供基础感知结果又提供衍生感知结果的综合感知功能。可选地,衍生感知功能还可以进一步按照感知内容区分,例如分为宏观感知类和精细化感知类
5)感知节点与第一感知功能节点的感知数据传输通道信息,用于表示该感知节点与感知功能节点间的感知数据相关传输通道列表,该信息可以包括传输通道标识、感知数据的传输网络协议层,如果传输网络协议层涉及NAS或UP传输通道,那么还需要包括AMF或SMF或UPF的标识信息。
6)所承担的感知服务上下文,用于表示该感知节点正在承担或进行的一个或多个感知服务上下文,以便于在感知功能节点切换后可保持正在承担或进行的感知服务的连续性。
7)所承担的感知功能,包括感知信号发送节点,感知信号接收和测量节点,感知辅助节点中一种或多种
8)感知能力信息。
下面对感知服务上下文的定义进行说明。
本申请实施例中,可选地,所述感知服务上下文是指以感知服务标识作为索引,包括以下信息中的至少一项:
1)感知服务标识,用于各网络功能节点使用该感知服务上下文时的索引。
2)感知目标标识
如果该感知服务是对某个目标进行感知,那么感知服务上下文包括感知目标标识。感知目标是UE时,潜在的标识可以包括以下至少一项:SUPI、GUTI、AMF UE NGAP ID、RAN UE NGAP ID等;当感知目标是非UE时,潜在的标识可以包括以下至少一项:地理位置信息、雷达散射截面积(Radar Cross section,RCS)等,例如可以通过经纬度和高度表示某段时间内的地理位置信息和/或RCS值。
3)感知地理位置范围
如果是非目标感知,即对某个地理位置范围进行感知。感知地理范围可以是追踪区(tracking area,TA)、接入网通知区域(RAN-based Notification Area,RNA)、小区标识(cell ID)或地理位置范围等。
4)感知服务需求方,可以通过感知服务需求方标识或IP地址等表示。
5)感知服务质量(Quality of Service,QoS)信息
对感知目标区域或感知对象进行感知的性能指标,包括以下至少一项:感知分辨率(进一步可包括:测距分辨率、测角分辨率、测速分辨率、成像分辨率中的至少一项)等,感知精度(进一步可包括:测距精度、测角精度、测速精度、定位精度等中的至少一项),感知范围(进一步可包括:测距范围、测速范围、测角范围、成像范围等中的至少一项),感知时延(从感知信号发送到获得感知结果的时间间隔,或,从感知需求发起到获取感知结果的时间间隔),感知更新速率(相邻两次执行感知并获得感知结果的时间间隔),检测概率(在感知对象存在的情况下被正确检测出来的概率),虚警概率(在感知对象不存在的情况下错误检测出感知目标的概率)。
6)所述第一感知功能节点所使用的感知方式
感知方式可以包括:基站发感知信号UE收,UE发感知信号基站收,基站自发自收,UE间收发,基站间收发,UE自发自收。
7)所述第一感知功能节点所使用的感知信号发送节点和/或感知信号接收节点
如果仅提供一个感知信号发送节点和/或接收节点信息,那么第一感知功能节点提供切换前所使用的最后一个感知信号发送节点和/或接收节点;可选地,也可以是某一段时间内所使用的多个感知信号发送节点和/或接收节点的时间序列信息。
8)所述第一感知功能节点所使用的感知信号配置信息
本申请实施例中,感知信号包括参考信号和/或数据信号,其中参考信号可以为通信参考信号或感知专用参考信号。
9)所述第一感知功能节点所使用的感知测量配置信息。
本申请实施例中,感知测量量的配置可以包括以下至少一项:需测量的感知信号指示、需测量的感知信号数量或时间、测量结果的上报指示等。如果确定感知测量量配置的节点不是感知信号的接收和测量节点,那么向感知信号接收节点发送感知测量量配置。
下面对感知能力的定义进行说明。
通信感知一体化场景中设备的无线感知能力信息,是表征设备能否执行特定的感知业 务以及围绕特定感知业务能够达到的性能水平的信息集合,感知能力包括:第一能力集合和/或第二能力集合。所述第一能力集合是为感知功能增强的设备能力集合(Sensing-Enhanced Ability Set);所述第二能力集合是感知特定的设备能力集合(Sensing-Specific Ability Set)。
本申请实施例中,可选地,所述第一能力集合包括以下至少一项:
1)频率相关能力
可选地,频率相关能力包括以下至少一项:
支持感知功能的频带(band)或频带组(band combination)及相应的带宽;
每个频带或频带组支持感知信号的收发能力:包括:支持感知信号发送、支持感知信号接收、支持分时感知信号发送和接收、支持感知信号同时发送和接收;
每个频带或频带组支持感知信号收或发的独立射频通道数或天线数或天线布局。
2)功率相关能力
可选地,功率相关能力包括以下至少一项:
支持的感知信号功率等级、感知信号最大峰值功率和/或感知信号最大平均功率;
支持的感知信号最大发射时间占比和/或感知信号给定发射时间占比的最大发射功率;
是否支持感知信号的功率自适应调节,功率控制的步长例如为1dB,功率控制的范围例如为-50dBm到23dBm;
是否支持最大功率回退机制,如果支持,还包括支持的最大功率回退值。
3)波束相关能力
可选地,波束相关能力包括以下至少一项:
是否支持感知信号发送波束扫描或接收波束扫描;
是否支持感知信号发送波束选择或接收波束选择;
是否支持感知信号发送波束自适应或接收波束自适应;
是否支持感知信号发送波束赋型或接收波束赋型;
是否支持感知信号波束测量和波束报告。
本申请实施例中,可选地,所述第二能力集合包括以下至少一项:
1)感知特定的射频能力
可选地,感知特定的射频能力包括以下至少一项:
是否支持感知信号的带宽拼接及相应的信号处理;所述的带宽拼接是指利用不连续的频带进行感知信号的生成、发送、接收和处理,以达到特定的感知性能要求。
是否支持同时多波束的发送,多波束包括:通信波束、感知波束、通信感知波束;
感知波束的切换速度,以波束切换时间进行能力等级划分;
是否支持感知信号跳频;如果支持感知信号跳频,则进一步包括是支持感知信号周期之间的跳频还是支持感知信号帧之间的跳频;
所述的感知信号周期是指进行一次感知信号发送和接收的时间,是感知信号时间维度 资源调度的基本单元;
所述的感知信号帧包含若干个感知信号周期,具体包含的感知信号周期数根据感知需求设置。
2)支持的感知业务类型
可选地,支持的感知业务类型包括以下至少一项:
是否支持雷达探测业务,进一步包括:雷达测速、雷达测距、雷达测角、雷达成像;
是否支持用户定位和追踪业务;
是否支持三维重构业务,进一步包括:地形地貌重构、建筑物表面重构;
是否支持天气和/或空气质量检测业务,进一步包括:降雨检测、湿度检测、颗粒物(PM2.5/PM10)检测、降雪检测;
是否支持人流/车流检测业务;
是否支持健康监测业务,进一步包括:心跳监测、呼吸检测;
是否支持动作识别业务,进一步包括:手势识别、姿态识别、入侵检测;
是否支持基于射频识别(Radio Frequency Identification,RFID)或反向散射(backscatter)的感知信号发送或接收。
3)支持的感知信号波形
可选地,支持的感知信号波形包括以下至少一项:
31)通信信号,包括以下至少一项:NR信号、Wi-Fi信号;
如果支持NR信号作为感知信号,则进一步包括:支持通信数据信号作为感知信号、支持参考信号或同步信号(同步信号块(Synchronization Signal and PBCH block,SSB)或信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)或解调参考信号(Demodulation Reference Signal,DMRS)或相位跟踪参考信号(Phase-tracking reference signal,PTRS)或信道探测用参考信号(Sounding Reference Signal,SRS)或定位参考信号(Positioning Reference Signals,PRS))作为感知信号;
如果支持Wi-Fi信号作为感知信号,则进一步包括:支持通信数据信号作为感知信号、支持参考信号或同步信号(前导码(preamble)或CSI-RS)作为感知信号;
32)感知信号,包括以下至少一项:调频连续波(FMCW)雷达信号、正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)雷达信号(包括相位编码OFDM雷达信号)、线性调频(Linear Frequency Modulation,LFM)信号、简单脉冲串信号、相位编码雷达信号等,或者其他专为感知设计的信号波形;
33)通感一体信号,包括为感知功能设计的参考信号,包括以下至少一项:周期性参考信号、非周期性参考信号、全带宽参考信号;
进一步地,支持上述感知信号波形分为:支持发送上述感知信号波形、支持接收上述感知信号波形、支持分时发送和接收上述感知信号波形、支持同时发送和接收上述感知信号波形。
4)支持的感知测量量
可选地,支持的感知测量量包括以下至少一项:
原始信道信息:信道矩阵H或H的压缩量化信息、信道状态信息(Channel State Information,CSI),例如频域信道响应的幅度/幅度的平方和/或相位,或者是频域信道响应的I路与Q路信号特征,例如I路和/或Q路信号幅度/幅度的平方;
信号强度信息:例如包括参考信号接收功率(Reference Signal Received Power,RSRP)和/或接收信号强度指示(Received Signal Strength Indication,RSSI);
谱信息:信道功率时延谱(Power-delay Profile,PDP)、多普勒功率谱、功率角度谱(Power Azimuth Spectrum,PAS)、伪谱信息(例如MUSIC谱)、时延-多普勒二维谱、时延-多普勒-角度三维谱;
多径信息:多径信道中各条径(至少包括首达径、视距(line of sight,LOS)径、一阶反射径、多阶反射径)的功率、相位、时延、角度信息;
角度信息:到达角、离开角(包括UE侧角度信息、基站侧角度信息与反射点角度信息);
不同天线对应信号的差别信息:第一天线与第二天线的频域信道响应的商或共轭乘(或第一天线与第二天线的频域信道响应的商或共轭乘的幅度或相位,或第一天线与第二天线的频域信道响应的商或共轭乘的I路或Q路,或第一天线与第二天线的频域信道响应的商或共轭乘的I路或Q路的投影运算,投影运算可以是I*cos(theta)+Q*sin(theta),其中theta为某一角度值,不同的theta对应不同的投影,I代表I路数据,Q代表Q路数据)、第一天线与第二天线的接收信号的幅度比或幅度差、第一天线与第二天线信号的相位差、第一天线与第二天线信号的时延差;
基于原始信道信息确定的目标参数信息:多普勒扩展、多普勒频移、最大时延扩展、角度扩展、相干带宽、相干时间。
除上述测量量外,还包括基于上述测量量中的两个或两个以上进行运算生成的新的测量量。
5)支持的感知指标
可选地,支持的感知指标包括以下至少一项:
感知覆盖范围:满足一定要求的前提下,设备执行特定感知业务所能够覆盖的空间范围,例如:雷达探测的距离范围,天气检测的区域范围等;
感知分辨率:在特定维度上,设备执行特定感知业务能够将两个不同目标或事件或属性区分开来时两个目标或事件或属性的差别,例如:测距分辨率、测角分辨率、测速分辨率等;
感知精度(或感知误差):设备执行特定感知业务得到的目标或事件或属性与其对应的真实值之间的误差规律,可以表示为绝对值或标准差等,例如:测距误差、天气检测中的降雨率测量误差等;
感知时延相关能力:包括:从接收到感知需求的时刻到感知信号发送时刻之间的时延、从收到感知需求的时刻到接收感知信号之间的时延,从接收感知信号时刻到完成感知测量量生成之间的时延,从感知信号接收时刻到感知测量量上报的时刻之间的时延;其中,感知时延量化为若干个符号周期或其他时间单位,设备支持的感知信号时延分感知测量量或感知测量量集合进行描述,即UE可以上报每种测量量或每种测量量集合对应的不同的感知时延;感知信号接收时刻包括感知信号接收的开始时刻或者结束时刻;感知信号发送时刻包括感知信号发送的开始时刻或者结束时刻;
检测概率:在特定目标存在或事件发生时,设备执行感知业务并正确检测到目标存在或事件发生的概率;例如:入侵检测中有人员入侵时能被正确检测的概率;
虚警概率:在特定目标不存在或事件未发生时,设备执行感知业务并错误报告目标存在或事件发生的概率;例如:入侵检测中无人员入侵时设备报告有人员入侵的概率。
6)支持的感知相关的控制或调度能力
可选地,支持的感知相关的控制或调度能力包括以下至少一项:
是否支持同时调度通信和感知的控制信息,包括:同时仅调度通信、同时仅调度感知、同时调度通信和感知、同时调度通信感知一体化;其中调度感知包括设备接收到控制信息,该控制信息调度设备对下行感知信号进行检测或者调度设备发送上行感知信号;调度通信包括设备接收到控制信息,该控制信息调度设备接收下行数据或者发送上行数据。
一个时间单元内同时支持的业务数,包括:同时支持的业务数和分时支持的业务数两个方面;进一步分为:同时支持的感知业务数、同时支持的感知信号波形数、同时检测的感知信号数、同时支持/处理的感知测量量数;
是否支持用物理层信令指示和/或上报感知业务类型、和/或感知信号波形、和/或感知测量量;
用于感知数据暂存的物理层缓存大小。
7)与感知相关的辅助信息的能力
可选地,与感知相关的辅助信息的能力包括以下至少一项:
71)设备自身的移动性:是指设备可能具有的运动特性,特定感知业务对执行该业务的设备的运动特性具有一定要求,例如:定位业务通常要求设备静止或低速运动,而合成孔径雷达成像业务则要求设备具有一定的运动速度;设备的移动性可进行如下分类:静止设备(例如,基站、发送接收点(Transmission Reception Point,TRP)、Wi-Fi路由器等)、低速设备(例如,智能家居设备)、中速设备(例如,手机(随行人运动))、高速设备(例如,车载雷达)。
72)设备自身的位置/姿态/运动信息的获取能力与精度:通信感知一体化中许多用例均需使用设备的位置/姿态/运动信息,设备位置/姿态/运动信息的获取能力与精度决定了其能够执行特性的感知业务类型,例如:定位业务要求设备具有较高精度的位置信息,而天气感知业务则对设备位置信息的要求较低(例如,位置误差可在数十米量级)。
下面结合具体应用场景,对本申请的感知功能的切换方法举例进行说明。
实施例1:一种UE切换引起的感知功能(Sensing Function,SF)的切换方法(感知UE不变,SF变)
本实施例假设感知UE移动导致小区切换时,从而引起感知功能节点改变。所述感知UE包括UE作为感知信号发送节点,感知信号接收节点,感知辅助信息提供节点或感知服务需求节点中的至少一项。本实施例侧重于阐述感知功能节点(SF)如何确定感知UE发生小区切换,及如何进行感知UE的感知功能节点切换。
如果感知UE发生切换,SF获得感知UE的切换信息,根据感知UE的切换信息中的目标基站信息、目标AMF和/或目标UP功能(如UPF)信息确定是否需要进行SF切换。如果需要进行SF切换,确定目标SF,源SF发送感知UE的感知节点上下文信息给目标SF,和/或,发送SF切换指示,和/或,发送目标SF信息给感知UE,和/或,发送感知结束标识给感知UE和/或源基站。所述SF切换指示用于指示感知UE是否需要接或解析目标SF的信息单元,例如SF切换指示为1时表示UE需要进行SF切换,那么UE进一步解析目标SF的信息单元;切换指示为0时表示UE不需要进行SF切换,无需解析目标SF的信息单元。所述感知结束标识用于指示感知UE和/或源基站停止向源SF发送感知数据,以及删除感知UE和/或源基站与源SF之间的传输通道(例如PDU会话(session),无线承载等)。
目标SF根据所收到的感知UE的感知上下文信息,向目标感知基站发送感知所使用的时频资源信息。如果感知方式是UE自发自收或UE间收发,目标感知基站根据所接收到的感知时频资源信息为感知UE分配对应的感知资源。如果目标感知基站是感知参考信号的发送节点或接收节点,那么目标感知基站根据所接收到的感知时频资源信息发送感知参考或接收感知信号并测量。当目标感知基站是感知信号接收节点时,目标SF还需要发送感知测量配置信息给目标感知基站。感知UE和目标感知基站之间根据目标SF的配置进行感知,从而保证UE切换过程中正在进行的感知服务的连续性。
本实施例中,源SF通过以下方式中的至少一项,获取所述感知终端的切换信息:
源SF向AMF订阅所述感知终端的切换信息;当AMF接收到RAN节点发送的切换消息(例如N2 Path Switch Request或Handover required),如果该消息是源SF所订阅的感知UE切换,那么AMF发送该UE的切换信息给SF。
源SF接收所述感知终端发送的所述感知终端的切换信息;本申请实施例中,当感知UE接收到基站的切换命令时,向SF发送切换信息,该切换信息包至少包括UE切换的目标基站信息、目标AMF和/或目标UP功能信息
源SF接收所述感知终端的源基站发送的所述感知终端的切换信息。本申请实施例中,感知UE的源基站发送所述感知UE的切换信息给源基站所连接的源SF,所述切换信息至少包括感知UE标识,UE切换的目标基站信息,目标AMF和/或目标UP功能信息。
本实施例中,源SF通过以下方式中的至少一种,向感知UE发送目标SF的信息:
源SF通过下行(Downlink,DL)NAS PDU发送目标SF的信息给感知UE,DL NAS PDU例如为Additional information单元。
源SF通过感知协议中定义的信息单元发送目标SF的信息给感知UE,如果感知协议通过NAS进行传输,目标SF信息单元NAS层不解析。
其中,目标SF信息至少包括目标SF标识信息,用于感知UE切换后发送消息给目标SF。
实施例2:一种感知目标移动引起的感知功能的切换方法
本实施例假设感知目标移动出当前感知功能节点的服务范围,从而引起感知功能节点改变。本实施例侧重于阐述感知功能节点(SF)如何确定感知目标移出当前感知功能节点的服务范围及如何进行感知功能节点切换。
本实施例中,根据感知信号发送节点或感知信号接收节点所处的位置和感知功能节点的服务范围,将感知信号发送节点或感知信号接收节点分为边缘节点和中心节点两类。边缘节点指该感知信号发送节点或感知信号接收节点位于感知功能服务范围的边缘,当边缘节点进行感知时,感知目标移动可能会引起感知目标移动当前感知功能的服务范围。中心节点指的该感知信号发送节点或感知信号接收节点位于感知功能服务范围的非边缘区域,当中心节点进行感知时,感知目标移动可能会引起感知信号发送节点和/或感知信号接收节点的变化,但是仍然处于该感知功能节点的服务范围。
当感知目标具有移动性,并且被前述边缘节点感知时,SF根据感知测量结果和/或感知目标的移动信息确定是否需要进行SF切换。所述感知目标的移动信息包括感知目标位置、移动方向、移动速度的至少一项。例如SF根据感知测量结果判断可能需要进行感知信号发送节点和/或感知信号接收节点切换,进一步根据感知目标位置、移动方向等判断感知目标将移出当前感知功能的服务范围,从而确定需要进行SF切换。如果需要进行SF切换,确定目标SF,源SF发送感知服务上下文信息给目标SF。
目标SF根据所接收的感知服务上下文可快速完成感知相关配置信息,保障感知服务连续性。可选地,目标SF发送切换响应消息,所述切换响应信息包括目标SF是否继续使用当前感知信号发送节点,是否继续使用当前感知信号接收节点的至少一项。如果目标SF继续使用当前感知信号发送节点或接收节点,那么源SF向该感知信号发送节点或接收节点,发送目标SF的信息。如果目标SF不使用当前感知信号发送节点或接收节点,那么源SF发送感知结束标识给对应的感知信号发送节点或感知信号接收节点。所述感知结束标识用于感知信号发送节点或感知信号接收节点停止感知信号发送或向源SF发送感知数据以及删除其与源SF之间的传输通道(例如PDU session,无线承载等)。
可选地,源SF通过以下方式中的至少一项,获取所述感知目标的移动信息:
1)源SF确定用于感知所述感知目标的移动信息的感知信号接收节点,向所述感知信号接收节点发送感知测量配置信息,并根据所述感知信号接收节点发送的感知测量结果确定所述感知目标的移动信息;所述感知信号接收节点可以与正在使用的感知节点相同,也 可以不同。例如需对感知目标感知的信息是轨迹追踪,那么SF可复用同样的感知节点和感知测量量;又例如需对感知目标附近10米范围障碍物进行感知,那么可能需要确定新的感知信号发送节点和接收节点对感知目标进行移动信息感知。
所述感知目标的移动信息包括位置、移动方向或移动速度等中的至少一项。
2)源SF向应用功能或其他感知功能节点请求所述感知目标的移动信息。
可选地,所述源SF信息发送目标SF信息给感知信号发送节点和/或接收节点,可通过如下至少一种方式:
1)源SF通过扩展相关接口(N1接口或N2接口等),如感知节点UE时,可通过是DL NAS PDU发送目标SF信息给感知UE;如感知节点是基站时,可通过N2接口发送目标SF信息给感知基站。
2)源SF通过感知协议中定义的信息单元发送目标SF信息,传输层透传感知协议中的目标SF信息。所述传输层可以是NAS或流控制传输协议(Stream Control Transmission Protocol/Internet Protocol,SCTP/IP)等。
其中,目标SF信息至少包括目标SF标识信息,可以通过标识符如SF ID或者IP地址表示。
实施例3:一种感知功能触发的感知功能的切换方法
在本实施例中,感知功能根据感知功能的资源和性能信息确定是否需要进行SF切换。所述感知功能的资源和性能信息包括以下至少一项:计算资源信息(如CPU资源利用率、GPU资源利用率、内存利用率等)、感知业务负荷信息(如感知功能最多可以处理N个感知业务,当前业务符合为80%)、感知性能监控信息(例如感知时延性能,感知精度性能等)中至少一项。SF可根据内部资源和性能信息或向网络管理功能或其他网络功能(如计算功能)请求所述资源和性能信息。如果需要进行SF切换,确定目标SF,源SF发送感知服务上下文信息给目标SF。
目标SF根据所接收的感知服务上下文可快速完成感知相关配置信息,保障感知服务连续性。可选地,目标SF发送切换响应消息,所述切换响应信息包括目标SF是否继续使用当前感知信号发送节点,是否继续使用当前感知信号接收节点的至少一项。如果目标SF继续使用当前感知信号发送节点或接收节点,那么源SF向该感知信号发送节点或接收节点,发送目标SF的信息。如果目标SF不使用当前感知信号发送节点或接收节点,那么源SF发送感知结束标识给对应的感知信号发送节点或感知信号接收节点。所述感知结束标识用于感知信号发送节点或感知信号接收节点停止感知信号发送或向源SF发送感知数据以及删除其与源SF之间的传输通道(例如PDU session,无线承载等)。
可选地,所述源SF信息发送目标SF信息给感知信号发送节点和/或接收节点,可通过如下至少一种方式:
1)源SF通过扩展相关接口(N1接口或N2接口等),如感知节点UE时,可通过是DL NAS PDU发送目标SF信息给感知UE;如感知节点是基站时,可通过N2接口发送目 标SF信息给感知基站。
2)源SF通过感知协议中定义的信息单元发送目标SF信息,传输层透传感知协议中的目标SF信息。所述传输层可以是NAS或SCTP/IP等。
实施例4:一种基于感知控制和用户功能分离的感知功能的切换方法
本实施例将前述感知节点功能中接收感知测量结果(即感知测量量的值),产生感知结果的功能称为感知用户功能。如前所述,根据所使用的感知测量结果和感知结果,分为基础感知功能、衍生感知功能和综合感知功能。除上述被称为感知用户功能外的功能称为感知控制功能。根据移动通信网络传统部署经验,如果控制功能和用户功能分离定义为不同网络功能时(如SMF和UPF),那么通常一个控制面功能对应多个用户面功能。前述实施例1~3是基于所有感知功能节点负责的功能均需要进行切换,当考虑感知控制和用户功能分离的情况时,可能发生只需要对感知用户功能切换,而感知控制功能保持不变的情况。本实施例侧重于阐述如何进行感知用户功能切换。
感知控制功能节点根据感知UE的切换信息、感知目标的移动信息、感知功能的资源和性能信息的至少一项确定是否进行感知用户功能切换。如果需要进行感知用户功能切换,确定目标感知用户功能。感知控制功能节点向感知信号接收节点发送目标感知用户功能标识信息。可选地,源感知用户功能向感知信号接收节点发送感知结束标识,或者源感知用户功能向目标感知用户功能发送历史感知数据。所述感知结束标识用于感知信号接收节点停止向源感知用户功能发送感知测量结果数据以及删除其与源SF之间的传输通道(例如PDU session,无线承载等)。所述历史感知数据指该感知节点(UE或基站)所上报的历史感知测量结果,对于一些需要基于一段时间内历史感知测量结果才能产生感知结果的情况,历史感知数据有助于在感知功能节点切换后,目标感知功能节点仍然能够快速产生感知结果,无需再重新积累所需时间内的所有感知数据。
上述各实施例中,可能会涉及到无线通信感知流程和感知功能节点切换流程,下面对上述两个流程进行简单介绍。
(1)无线通信感知流程简介
步骤1:感知功能(sensing function,SF,负责接收感知请求和提供感知结果的网络功能,可以为其他名称)接收感知请求,感知请求中包括但不限于如下信息中的一项或多项:
感知目标区域:是指感知对象可能存在的位置区域,或者,需要进行成像或三维重构的位置区域;
感知对象类型:针对感知对象可能的运动特性对感知对象进行分类,每个感知对象类型中包含了典型感知对象的运动速度、运动加速度、典型RCS等信息。
感知目标对象:当对某一个或多个感知目标对象进行感知时提供感知对象的标识信息,潜在的标识方式包括:距离、速度、角度谱上的特征标识或者基于网络可识别的UE ID标识;
感知QoS:对感知目标区域或感知对象进行感知的性能指标,包括以下至少一项:感知分辨率(进一步可包括:测距分辨率、测角分辨率、测速分辨率、成像分辨率中的至少一项)等,感知精度(进一步可包括:测距精度、测角精度、测速精度、定位精度等中的至少一项),感知范围(进一步可包括:测距范围、测速范围、测角范围、成像范围等中的至少一项),感知时延(从感知信号发送到获得感知结果的时间间隔,或,从感知需求发起到获取感知结果的时间间隔),感知更新速率(相邻两次执行感知并获得感知结果的时间间隔),检测概率(在感知对象存在的情况下被正确检测出来的概率),虚警概率(在感知对象不存在的情况下错误检测出感知目标的概率)。
步骤2:SF负责感知服务质量(QoS)的控制,即面向感知服务质量要求,对感知相关节点的进行控制,从而满足感知服务QoS要求。
步骤3:SF和/或基站确定感知链路或感知方式,感知方式可以包括:基站发感知信号UE收,UE发感知信号基站收,基站自发自收,UE间收发,基站间收发,UE自发自收。SF和/或基站确定感知信号发送节点和/或接收节点,移动通信系统中的感知信号发送节点或接收节点包括网络设备(如基站)和UE(如手机)。例如SF确定感知方式为基站发UE收,选择基站A作为感知信号发送节点,SF和基站联合确定UE1、UE2为感知信号接收节点。
步骤4:SF和/或基站确定感知信号,潜在的感知信号包括参考信号和/或数据信号,其中参考信号可以为通信参考信号或感知专用参考信号。
步骤5:SF和/或基站确定感知所使用的时频资源,潜在的感知资源包括通信中未使用的时频资源(如保护带),共用通信中已使用的时频资源(如参考信号或数据信号),感知专用的时频资源。进一步还需确定感知信号的配置,潜在的配置包括感知信号的时域、频域和空域资源信息。如果确定感知时频资源的节点不是感知信号的发送节点,那么向感知信号发送节点发送感知信号配置。
步骤6:SF和/或基站确定感知测量量的配置,潜在的配置包括一下至少一项:需测量的感知信号指示、需测量的感知信号数量或时间、测量结果的上报指示、感知测量约束条件(指在满足哪一项或多项约束条件下可进行感知测量,潜在的约束条件项包括接收信号信噪比/信干燥比,信号杂波比,目标感知信号分量与其他感知信号分量之比,目标感知时延区间的信道响应幅度值与其它时延区间的幅度值之比。例如接收信号信噪比/信干燥比不小于10dB,目标感知时延区间的信道响应幅度值与其它时延区间的幅度值之比不小于-5dB)等。如果确定感知测量量配置的节点不是感知信号的接收和测量节点,那么向感知信号接收节点发送感知测量量配置。
步骤7:SF和/或基站确定和配置感知测量结果上报的传输通道,包括建立、修改或释放传输通道等。
步骤8:SF接收感知测量结果,并产生感知结果,响应感知服务请求
(2)感知功能节点切换流程
基于3GPP接入的感知功能节点切换主要包括基于Xn的NG-RAN间切换(Xn based inter NG-RAN handover)和基于N2的NG-RAN间切换(Inter NG-RAN node N2 based handover)。根据用户面(User Plane,UP)功能是不是需要修改,基于Xn的NG-RAN间切换分为无UP功能再分配流程(Xn based inter NG-RAN handover without User Plane function re-allocation,见图4)、中间UPF(User plane Function,用户面功能)插入的流程(Xn based inter NG-RAN handover with insertion of intermediate UPF)和中间UPF再分配的流程(Xn based inter NG-RAN handover with re-allocation of intermediate UPF)。从流程图上可以看出切换过程中主要判断接受/拒绝哪些PDU session和接入网隧道信息的维护,从而对UE会话管理上下文进行更新。流程和交互信息中并没有考虑UE是否正在进行感知,例如UE是感知信号的发送节点或接收节点等情况。
基于N2的NG-RAN间切换分为准备阶段和执行阶段,准备阶段流程如图5所示,从流程图上可以看出切换准备阶段,除上述PDU session等UP面信息维护外,如果需要切换接入和移动性管理功能(Access and Mobility Management Function,AMF),那么源AMF(S-AMF)和目的AMF(T-AMF)之间交互UE上下文信息。同样,相关技术中切换流程和交互信息中并没有考虑UE是否正在进行感知,例如UE是感知信号的发送节点或接收节点等情况。
本申请实施例中的上述感知功能的切换方法适用于5.5G或6G系统,或者,其他未来的通信网络。
本申请实施例提供的感知功能的切换方法,执行主体可以为感知功能的切换装置。本申请实施例中以感知功能的切换装置执行感知功能的切换方法为例,说明本申请实施例提供的感知功能的切换装置。
请参考图6,本申请实施例还提供一种感知功能的切换装置60,包括:
执行模块61,用于在确定需要进行感知功能节点切换的情况下,执行以下至少一项操作:
向第二感知功能节点发送第一切换信息,所述第二感知功能节点为切换的目标感知功能节点;
向感知节点发送感知功能节点切换指示,所述感知功能节点切换指示用于指示需要进行感知功能节点切换;所述感知节点包括参与感知的感知终端和/或感知基站;
向所述感知节点发送所述第二感知功能节点的信息;
向所述感知节点发送感知结束指示,所述感知结束指示用于指示所述感知节点停止向第一感知功能节点发送感知数据和/或删除所述感知节点与所述第一感知功能节点之间的传输通道。
在本申请实施例中感知功能的切换装置确定需要进行感知功能节点切换的情况下,向切换的第二感知功能节点发送第一切换信息和/或向感知节点发送切换感知功能节点切换指示、第二感知功能节点的信息和/或感知结束指示,从而使得目标感知功能节点可继续 提供正在进行的感知服务,保障感知服务的连续性,并且,感知节点可以与第二感知功能节点快速进行交互,保障切换过程中的感知业务服务质量。
可选地,所述感知功能的切换装置60,还包括:
第一确定模块,用于根据感知终端的切换信息、感知目标的移动信息、感知功能的资源和性能信息中的至少一项,确定需要进行感知功能节点切换。
可选地,所述感知终端为感知信号发送节点、感知信号接收节点、感知辅助节点和感知服务需求节点中的至少一项。
可选地,所述感知终端的切换信息包括所述感知终端的标识、所述感知终端切换的目标基站信息、目标AMF信息和目标用户面功能信息中的至少一项。
可选地,所述感知功能的切换装置60还包括:
第一获取模块,用于通过以下方式中的至少一项,获取所述感知终端的切换信息:
向AMF订阅所述感知终端的切换信息;
接收所述感知终端发送的所述感知终端的切换信息;
接收所述感知终端的源基站发送的所述感知终端的切换信息。
可选地,所述感知目标的移动信息包括所述感知目标的位置、移动方向和移动速度中的至少一项。
可选地,所述感知功能的切换装置60还包括:
第二获取模块,用于通过以下方式中的至少一项,获取所述感知目标的移动信息:
确定用于感知所述感知目标的移动信息的感知信号接收节点,向所述感知信号接收节点发送感知测量配置信息,并根据所述感知信号接收节点发送的感知测量结果确定所述感知目标的移动信息;
向应用功能或其他感知功能节点请求所述感知目标的移动信息。
可选地,所述第一确定模块,用于根据感知信号接收节点发送的感知测量结果,确定是否需要进行感知信号发送节点和/或感知信号接收节点切换;若确定出需要进行感知信号发送节点和/或感知信号接收节点切换,根据所述感知目标的移动信息,确定所述感知目标是否将移出所述第一感知功能节点的服务范围;若确定出所述感知目标将移出所述第一感知功能节点的服务范围,确定需要进行感知功能节点切换。
可选地,所述感知功能的切换装置60还包括:
第二确定模块,用于确定所述感知目标是非静止的感知目标,且当前感知信号发送节点和/或感知信号接收节点为边缘节点;其中,所述边缘节点指所述感知信号发送节点和/或感知信号接收节点位于所述第一感知功能节点的服务范围的边缘,当所述边缘节点进行感知时,所述感知目标的移动可能会引起所述感知目标移出所述第一感知功能节点的服务范围。
可选地,所述感知功能的资源和性能信息包括计算资源信息、感知业务负荷信息、感知性能检测信息中的至少一项。
可选地,所述感知功能的切换装置60还包括:
请求模块,用于向网络功能节点请求所述感知功能的资源和性能信息。
可选地,所述第一切换信息包括感知节点上下文、感知服务上下文和历史感知数据中的至少一项,所述历史感知数据包括历史感知结果、历史感知测量结果、历史感知辅助信息中的至少一项。
可选地,所述感知节点上下文包括以下信息中的至少一项:感知节点标识、感知服务区域、感知服务限制区域、允许接入的感知功能节点类型、感知节点与第一感知功能节点的感知数据传输通道信息、所承担的感知服务上下文、所承担的感知功能和感知能力。
可选地,所述感知能力包括第一能力集合和/或第二能力集合,所述第一能力集合为感知功能增强的设备能力集合,所述第二能力集合为感知特定的设备能力集合。
可选地,所述第一能力集合包括以下至少一项:频率相关能力、功率相关能力和波束相关能力。
可选地,所述第二能力集合包括以下至少一项:感知特定的射频能力、支持的感知业务类型、支持的感知信号波形、支持的感知测量量、支持的感知指标、支持的感知相关的控制或调度能力、与感知相关的辅助信息的能力。
可选地,所述感知服务上下文包括以下信息中的至少一项:感知服务标识、感知目标标识、感知地理位置范围、感知服务需求方、感知QoS信息、所述第一感知功能节点所使用的感知方式、所述第一感知功能节点所使用的感知信号发送节点和/或感知信号接收节点、所述第一感知功能节点所使用的感知信号配置信息、所述第一感知功能节点所使用的感知测量配置信息。
可选地,所述执行模块61,用于通过以下方式中的至少一种,向感知节点发送所述第二感知功能节点的信息:
所述感知节点包括感知终端,所述第一感知功能节点通过下行NAS PDU向所述感知终端发送所述第二感知功能节点的信息;
所述感知节点包括感知基站,所述第一感知功能节点通过N2接口向所述感知基站发送所述第二感知功能节点的信息;
所述第一感知功能节点通过感知协议中定义的信息单元向所述感知节点发送所述第二感知功能节点的信息。
可选地,所述感知功能的切换装置60还包括:
接收模块,用于接收所述第二感知功能节点发送的切换响应信息,所述切换响应信息包括用于指示是否继续使用当前的感知信号发送节点和/或感知信号接收节点的指示信息;
所述执行模块61,用于若所述切换响应信息包括用于指示继续使用当前的感知信号发送节点和/或感知信号接收节点的指示信息,向所述感知信号发送节点和/或感知信号接收节点发送所述第二感知功能节点的信息;
和/或
若所述切换响应信息包括用于指示不继续使用当前的感知信号发送节点和/或感知信号接收节点的指示信息,向所述感知信号发送节点和/或感知信号接收节点发送感知结束指示。
可选地,所述感知功能的切换装置60包括感知用户功能节点和感知控制功能节点;
所述感知控制功能节点用于执行所述执行模块61执行的确定需要进行感知功能节点切换的部分;
所述感知用户功能节点用于执行所述执行模块61执行的用于执行以下至少一项操作的部分,所述执行以下至少一项操作包括:
向目标感知用户功能节点发送第一切换信息,所述目标感知用户功能节点为切换的感知用户功能节点;
向所述感知节点发送感知功能节点切换指示;
向所述感知节点发送所述第二感知功能节点的信息;
向所述感知节点发送感知结束指示。
可选地,所述感知功能的切换装置60包括以下功能中的至少一项:
接收感知服务请求,根据感知服务请求确定所需的感知测量量;
接收感知测量结果,根据感知测量结果产生感知结果,根据感知结果响应感知服务请求;
感知服务质量的控制;
确定感知信号发送节点、感知信号接收节点、感知辅助节点和感知服务需求节点中的至少一项;
确定感知链路;
确定感知方式;
确定感知信号;
确定感知所使用的时频资源;
确定感知测量量的配置;
确定和配置感知测量结果上报的传输通道;
确定AMF;
维护感知节点上下文;
维护感知服务上下文。
可选地,所述感知测量量包括第一级测量量、第二级测量量、第三级测量量和第四级测量量中的至少一项。
可选地,所述感知测量量包括标签信息,所述标签信息包括以下至少一项:感知信号标识信息、感知测量配置标识信息、感知业务信息、数据订阅标识、测量量用途、时间信息、感知节点信息、感知链路信息、测量量说明信息和测量量指标信息。
可选地,所述接收感知测量结果,根据感知测量结果产生感知结果,根据感知结果响 应感知服务请求包括以下至少一项:
接收包含第一级感知测量量和/或第二级感知测量量的感知测量结果,根据所述第一级感知测量量和/或第二级感知测量量产生包含第三级感知测量量的感知结果,根据所述包含第三级感知测量量的感知结果响应感知服务请求;
接收包含第三级感知测量量的感知测量结果,根据所述第三级感知测量量产生包含第四级感知测量量的感知结果,根据所述包含第四级感知测量量的感知结果响应感知服务请求。
本申请实施例中的感知功能的切换装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。
本申请实施例提供的感知功能的切换装置能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
请参考图7,本申请实施例还提供一种感知功能的切换装置70,包括:
接收模块71,用于接收第一感知功能节点发送的第一切换信息;
配置模块72,用于根据所述第一切换信息,进行感知相关配置。
在本申请实施例中,感知功能的切换装置接收第一感知功能节点发送的第一切换信息,并进行感知相关配置,从而可继续提供正在进行的感知服务,保障感知服务的连续性。
可选地,所述第一切换信息包括感知节点上下文、感知服务上下文和历史感知数据中的至少一项,所述历史感知数据包括历史感知结果、历史感知测量结果、历史感知辅助信息中的至少一项。
可选地,所述配置模块72,用于执行以下至少一项:
向目标感知基站发送感知所使用的时频资源信息;
向目标感知基站发送感知测量配置信息;
向所述第一感知功能节点发送切换响应信息,所述切换响应信息包括用于指示所述第一感知功能节点是否继续使用当前的感知信号发送节点和/或感知信号接收节点的指示信息。
本申请实施例中的感知功能的切换装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。
本申请实施例提供的感知功能的切换装置能够实现图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
如图8所示,本申请实施例还提供一种通信设备80,包括处理器81和存储器82,存储器82上存储有可在所述处理器81上运行的程序或指令,例如,该通信设备80为第一感知功能节点时,该程序或指令被处理器81执行时实现上述第一感知功能节点执行的感知功能的切换方法实施例的各个步骤,且能达到相同的技术效果。该通信设备80为第二感知功能节点时,该程序或指令被处理器81执行时实现上述第二感知功能节点执行的感知功能的切换方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再 赘述。
本申请实施例还提供一种通信设备,包括处理器及通信接口,其中,所述处理器用于在确定需要进行感知功能节点切换的情况下,执行以下至少一项操作:
向第二感知功能节点发送第一切换信息,所述第二感知功能节点为切换的目标感知功能节点;
向感知节点发送感知功能节点切换指示,所述感知功能节点切换指示用于指示需要进行感知功能节点切换;所述感知节点包括参与感知的感知终端和/或感知基站;
向所述感知节点发送所述第二感知功能节点的信息;
向所述感知节点发送感知结束指示,所述感知结束指示用于指示所述感知节点停止向第一感知功能节点发送感知数据和/或删除所述感知节点与所述第一感知功能节点之间的传输通道。
该通信设备实施例与上述第一感知功能节点执行的方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该通信设备实施例中,且能达到相同的技术效果。
本申请实施例还提供一种通信设备,包括处理器及通信接口,其中,所述通信接口用于接收第一感知功能节点发送的第一切换信息;所述处理器用于根据所述第一切换信息,进行感知相关配置。该通信设备实施例与上述第二感知功能节点执行的方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该通信设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种通信设备。如图9所示,该通信设备90包括:处理器91、网络接口92和存储器93。其中,网络接口92例如为通用公共无线接口(common public radio interface,CPRI)。具体地,本申请实施例的通信设备90还包括:存储在存储器93上并可在处理器91上运行的指令或程序,处理器91调用存储器93中的指令或程序执行图6或图7所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述感知功能的切换方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Random Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述感知功能的切换方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述感知功能的切换方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:第一感知功能节点及第二感知功能节点,所述第一感知功能节点可用于执行上述第一感知功能节点执行的感知功能的切换方法的步骤,所述第二感知功能节点可用于执行上述第二感知功能节点执行的感知功能的切换方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (31)

  1. 一种感知功能的切换方法,包括:
    在第一感知功能节点确定需要进行感知功能节点切换的情况下,执行以下至少一项操作:
    向第二感知功能节点发送第一切换信息,所述第二感知功能节点为切换的目标感知功能节点;
    向感知节点发送感知功能节点切换指示,所述感知功能节点切换指示用于指示需要进行感知功能节点切换;所述感知节点包括参与感知的感知终端和/或感知基站;
    向所述感知节点发送所述第二感知功能节点的信息;
    向所述感知节点发送感知结束指示,所述感知结束指示用于指示所述感知节点停止向所述第一感知功能节点发送感知数据和/或删除所述感知节点与所述第一感知功能节点之间的传输通道。
  2. 根据权利要求1所述的方法,所述方法还包括:
    所述第一感知功能节点根据感知终端的切换信息、感知目标的移动信息、感知功能的资源和性能信息中的至少一项,确定需要进行感知功能节点切换。
  3. 根据权利要求2所述的方法,其中,所述感知终端为感知信号发送节点、感知信号接收节点、感知辅助节点和感知服务需求节点中的至少一项。
  4. 根据权利要求2所述的方法,其中,所述感知终端的切换信息包括所述感知终端的标识、所述感知终端切换的目标基站信息、目标接入和移动性管理功能AMF信息和目标用户面功能信息中的至少一项。
  5. 根据权利要求2所述的方法,其中,所述第一感知功能节点根据感知终端的切换信息,确定需要进行感知功能节点切换,之前还包括:
    所述第一感知功能节点通过以下方式中的至少一项,获取所述感知终端的切换信息:
    所述第一感知功能节点向AMF订阅所述感知终端的切换信息;
    所述第一感知功能节点接收所述感知终端发送的所述感知终端的切换信息;
    所述第一感知功能节点接收所述感知终端的源基站发送的所述感知终端的切换信息。
  6. 根据权利要求2所述的方法,其中,所述感知目标的移动信息包括所述感知目标的位置、移动方向和移动速度中的至少一项。
  7. 根据权利要求2所述的方法,其中,所述第一感知功能节点根据感知目标的移动信息,确定需要进行感知功能节点切换,之前还包括:
    所述第一感知功能节点通过以下方式中的至少一项,获取所述感知目标的移动信息:
    所述第一感知功能节点确定用于感知所述感知目标的移动信息的感知信号接收节点,向所述感知信号接收节点发送感知测量配置信息,并根据所述感知信号接收节点发送的感知测量结果确定所述感知目标的移动信息;
    所述第一感知功能节点向应用功能或其他感知功能节点请求所述感知目标的移动信息。
  8. 根据权利要求2所述的方法,其中,所述第一感知功能节点根据感知目标的移动信息,确定需要进行感知功能节点切换包括:
    所述第一感知功能节点根据感知信号接收节点发送的感知测量结果,确定是否需要进行感知信号发送节点和/或感知信号接收节点切换;
    若确定出需要进行感知信号发送节点和/或感知信号接收节点切换,所述第一感知功能节点根据所述感知目标的移动信息,确定所述感知目标是否将移出所述第一感知功能节点的服务范围;
    若确定出所述感知目标将移出所述第一感知功能节点的服务范围,所述第一感知功能节点确定需要进行感知功能节点切换。
  9. 根据权利要求8所述的方法,其中,所述第一感知功能节点根据感知目标的移动信息,确定需要进行感知功能节点切换,之前还包括:
    所述第一感知功能节点确定所述感知目标是非静止的感知目标,且当前感知信号发送节点和/或感知信号接收节点为边缘节点;
    其中,所述边缘节点指所述感知信号发送节点和/或感知信号接收节点位于所述第一感知功能节点的服务范围的边缘,当所述边缘节点进行感知时,所述感知目标的移动可能会引起所述感知目标移出所述第一感知功能节点的服务范围。
  10. 根据权利要求2所述的方法,其中,所述感知功能的资源和性能信息包括计算资源信息、感知业务负荷信息、感知性能检测信息中的至少一项。
  11. 根据权利要求2所述的方法,其中,所述第一感知功能节点根据感知功能的资源和性能信息,确定需要进行感知功能节点切换,之前还包括:
    所述第一感知功能节点向网络功能节点请求所述感知功能的资源和性能信息。
  12. 根据权利要求1所述的方法,其中,所述第一切换信息包括感知节点上下文、感知服务上下文和历史感知数据中的至少一项,所述历史感知数据包括历史感知结果、历史感知测量结果、历史感知辅助信息中的至少一项。
  13. 根据权利要求12所述的方法,其中,所述感知节点上下文包括以下信息中的至少一项:感知节点标识、感知服务区域、感知服务限制区域、允许接入的感知功能节点类型、感知节点与第一感知功能节点的感知数据传输通道信息、所承担的感知服务上下文、所承担的感知功能和感知能力。
  14. 根据权利要求13所述的方法,其中,所述感知能力包括第一能力集合和/或第二能力集合,所述第一能力集合为感知功能增强的设备能力集合,所述第二能力集合为感知特定的设备能力集合。
  15. 根据权利要求14所述的方法,其中,所述第一能力集合包括以下至少一项:频率相关能力、功率相关能力和波束相关能力。
  16. 根据权利要求14所述的方法,其中,所述第二能力集合包括以下至少一项:感知特定的射频能力、支持的感知业务类型、支持的感知信号波形、支持的感知测量量、支持的感知指标、支持的感知相关的控制或调度能力、与感知相关的辅助信息的能力。
  17. 根据权利要求12或13所述的方法,其中,所述感知服务上下文包括以下信息中的至少一项:感知服务标识、感知目标标识、感知地理位置范围、感知服务需求方、感知QoS信息、所述第一感知功能节点所使用的感知方式、所述第一感知功能节点所使用的感知信号发送节点和/或感知信号接收节点、所述第一感知功能节点所使用的感知信号配置信息、所述第一感知功能节点所使用的感知测量配置信息。
  18. 根据权利要求1所述的方法,其中,所述第一感知功能节点通过以下方式中的至少一种,向感知节点发送所述第二感知功能节点的信息:
    所述感知节点包括感知终端,所述第一感知功能节点通过下行NAS PDU向所述感知终端发送所述第二感知功能节点的信息;
    所述感知节点包括感知基站,所述第一感知功能节点通过N2接口向所述感知基站发送所述第二感知功能节点的信息;
    所述第一感知功能节点通过感知协议中定义的信息单元向所述感知节点发送所述第二感知功能节点的信息。
  19. 根据权利要求1所述的方法,其中,
    所述第一感知功能节点向所述第二感知功能节点发送第一切换信息之后还包括:所述第一感知功能节点接收所述第二感知功能节点发送的切换响应信息,所述切换响应信息包括用于指示是否继续使用当前的感知信号发送节点和/或感知信号接收节点的指示信息;
    所述第一感知功能节点执行以下至少一项包括:
    若所述切换响应信息包括用于指示继续使用当前的感知信号发送节点和/或感知信号接收节点的指示信息,所述第一感知功能节点向所述感知信号发送节点和/或感知信号接收节点发送所述第二感知功能节点的信息;
    和/或,
    若所述切换响应信息包括用于指示不继续使用当前的感知信号发送节点和/或感知信号接收节点的指示信息,所述第一感知功能节点向所述感知信号发送节点和/或感知信号接收节点发送感知结束指示。
  20. 根据权利要求1所述的方法,其中,所述第一感知功能节点包括感知用户功能节点和感知控制功能节点;
    所述第一感知功能节点确定需要进行感知功能节点切换包括:所述感知控制功能节点确定需要进行感知功能节点切换;
    所述执行以下至少一项操作包括:所述感知用户功能节点执行以下至少一项:
    向目标感知用户功能节点发送第一切换信息,所述目标感知用户功能节点为切换的感知用户功能节点;
    向所述感知节点发送感知功能节点切换指示;
    向所述感知节点发送所述第二感知功能节点的信息;
    向所述感知节点发送感知结束指示。
  21. 根据权利要求1所述的方法,其中,所述第一感知功能节点包括以下功能中的至少一项:
    接收感知服务请求,根据感知服务请求确定所需的感知测量量;
    接收感知测量结果,根据感知测量结果产生感知结果,根据感知结果响应感知服务请求;
    感知服务质量的控制;
    确定感知信号发送节点、感知信号接收节点、感知辅助节点和感知服务需求节点中的至少一项;
    确定感知链路;
    确定感知方式;
    确定感知信号;
    确定感知所使用的时频资源;
    确定感知测量量的配置;
    确定和配置感知测量结果上报的传输通道;
    确定AMF;
    维护感知节点上下文;
    维护感知服务上下文。
  22. 根据权利要求21所述的方法,其中,所述感知测量量包括第一级测量量、第二级测量量、第三级测量量和第四级测量量中的至少一项。
  23. 根据权利要求21所述的方法,其中,所述感知测量量包括标签信息,所述标签信息包括以下至少一项:感知信号标识信息、感知测量配置标识信息、感知业务信息、数据订阅标识、测量量用途、时间信息、感知节点信息、感知链路信息、测量量说明信息和测量量指标信息。
  24. 根据权利要求22所述的方法,其中,所述接收感知测量结果,根据感知测量结果产生感知结果,根据感知结果响应感知服务请求包括以下至少一项:
    接收包含第一级感知测量量和/或第二级感知测量量的感知测量结果,根据所述第一级感知测量量和/或第二级感知测量量产生包含第三级感知测量量的感知结果,根据所述包含第三级感知测量量的感知结果响应感知服务请求;
    接收包含第三级感知测量量的感知测量结果,根据所述第三级感知测量量产生包含第四级感知测量量的感知结果,根据所述包含第四级感知测量量的感知结果响应感知服务请求。
  25. 一种感知功能的切换方法,包括:
    第二感知功能节点接收第一感知功能节点发送的第一切换信息;
    所述第二感知功能节点根据所述第一切换信息,进行感知相关配置。
  26. 根据权利要求25所述的方法,其中,所述第一切换信息包括感知节点上下文、感知服务上下文和历史感知数据中的至少一项,所述历史感知数据包括历史感知结果、历史感知测量结果、历史感知辅助信息中的至少一项。
  27. 根据权利要求25所述的方法,其中,所述第二感知功能节点根据所述第一切换信息,进行感知相关配置包括以下至少一项:
    向目标感知基站发送感知所使用的时频资源信息;
    向目标感知基站发送感知测量配置信息;
    向所述第一感知功能节点发送切换响应信息,所述切换响应信息包括用于指示所述第一感知功能节点是否继续使用当前的感知信号发送节点和/或感知信号接收节点的指示信息。
  28. 一种感知功能的切换装置,包括:
    执行模块,用于在确定需要进行感知功能节点切换的情况下,执行以下至少一项操作:
    向第二感知功能节点发送第一切换信息,所述第二感知功能节点为切换的目标感知功能节点;
    向感知节点发送感知功能节点切换指示,所述感知功能节点切换指示用于指示需要进行感知功能节点切换;所述感知节点包括参与感知的感知终端和/或感知基站;
    向所述感知节点发送所述第二感知功能节点的信息;
    向所述感知节点发送感知结束指示,所述感知结束指示用于指示所述感知节点停止向第一感知功能节点发送感知数据和/或删除所述感知节点与所述第一感知功能节点之间的传输通道。
  29. 一种感知功能的切换装置,包括:
    接收模块,用于接收第一感知功能节点发送的第一切换信息;
    配置模块,用于根据所述第一切换信息,进行感知相关配置。
  30. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至24任一项所述的感知功能的切换方法的步骤,或者,所述程序或指令被所述处理器执行时实现如权利要求25至27任一项所述的感知功能的切换方法的步骤。
  31. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至24任一项所述的感知功能的切换方法的步骤,或者实现如权利要求25至27任一项所述的感知功能的切换方法的步骤。
PCT/CN2023/095793 2022-05-30 2023-05-23 感知功能的切换方法、装置及通信设备 WO2023231841A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210602524.2 2022-05-30
CN202210602524.2A CN117202276A (zh) 2022-05-30 2022-05-30 感知功能的切换方法、装置及通信设备

Publications (1)

Publication Number Publication Date
WO2023231841A1 true WO2023231841A1 (zh) 2023-12-07

Family

ID=88989227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095793 WO2023231841A1 (zh) 2022-05-30 2023-05-23 感知功能的切换方法、装置及通信设备

Country Status (2)

Country Link
CN (1) CN117202276A (zh)
WO (1) WO2023231841A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170006493A1 (en) * 2012-05-31 2017-01-05 Interdigital Patent Holdings, Inc. Sensing measurement configuration and reporting in a long term evolution system operating over license exempt bands
CN112804662A (zh) * 2021-03-18 2021-05-14 成都极米科技股份有限公司 提供无线感知业务的方法、装置、终端设备及存储介质
CN113179540A (zh) * 2018-10-22 2021-07-27 华为技术有限公司 一种移动切换方法及相关设备
US20210345141A1 (en) * 2018-09-12 2021-11-04 Sony Corporation Electronic device and method for wireless communication, and computer-readable storage medium
WO2022001560A1 (en) * 2020-06-30 2022-01-06 Qualcomm Incorporated Precoding for joint sensing and communication services
CN114270964A (zh) * 2020-07-31 2022-04-01 华为技术有限公司 通信方法、装置及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170006493A1 (en) * 2012-05-31 2017-01-05 Interdigital Patent Holdings, Inc. Sensing measurement configuration and reporting in a long term evolution system operating over license exempt bands
US20210345141A1 (en) * 2018-09-12 2021-11-04 Sony Corporation Electronic device and method for wireless communication, and computer-readable storage medium
CN113179540A (zh) * 2018-10-22 2021-07-27 华为技术有限公司 一种移动切换方法及相关设备
WO2022001560A1 (en) * 2020-06-30 2022-01-06 Qualcomm Incorporated Precoding for joint sensing and communication services
CN114270964A (zh) * 2020-07-31 2022-04-01 华为技术有限公司 通信方法、装置及系统
CN112804662A (zh) * 2021-03-18 2021-05-14 成都极米科技股份有限公司 提供无线感知业务的方法、装置、终端设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOMI: "New SID on Study on Sensing based services", 3GPP TSG SA2 MEETING #146E, S2-2106378, 10 August 2021 (2021-08-10), XP052054106 *

Also Published As

Publication number Publication date
CN117202276A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
WO2023116753A1 (zh) 定位感知方法、装置及相关设备
WO2023231841A1 (zh) 感知功能的切换方法、装置及通信设备
WO2023231844A1 (zh) 感知测量方法、装置、设备、终端和存储介质
WO2023174345A1 (zh) 感知处理方法、装置、通信设备及可读存储介质
WO2023231921A1 (zh) 无线感知切换方法及设备
WO2023226826A1 (zh) 感知方法、装置及通信设备
WO2023231919A1 (zh) 无线感知条件切换方法及设备
WO2023231867A1 (zh) 感知方式切换方法、装置及通信设备
WO2024099153A1 (zh) 信息传输方法、装置及通信设备
WO2024061067A1 (zh) 链路监测方法、装置及终端
WO2023131315A1 (zh) 无线感知方法、装置、设备及存储介质
WO2024099152A1 (zh) 信息传输方法、装置及通信设备
WO2023231839A1 (zh) 感知数据传输方式的协商方法、装置及通信设备
WO2024051545A1 (zh) 测量信息发送方法、接收方法及通信设备
WO2023093662A1 (zh) 感知业务共享通道建立方法及装置
WO2024099125A1 (zh) 测量信息反馈方法、接收方法及通信设备
WO2023185921A1 (zh) 信息指示方法、指示获取方法、装置、设备和存储介质
WO2024131760A1 (zh) 移动性管理方法、装置、通信设备及可读存储介质
WO2024083045A1 (zh) 鉴权确定方法、鉴权方法、装置及节点
CN118250817A (zh) 信号配置方法、装置、通信设备及可读存储介质
CN117676675A (zh) 数据传输方法、装置及节点
CN117640726A (zh) 数据收集方法、装置及通信设备
CN117793770A (zh) 波束恢复方法、装置及终端
CN117715127A (zh) 感知方式切换方法、装置及设备
CN117202277A (zh) 通信方法、装置、终端、网络侧设备及核心网设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815025

Country of ref document: EP

Kind code of ref document: A1