WO2024061067A1 - 链路监测方法、装置及终端 - Google Patents

链路监测方法、装置及终端 Download PDF

Info

Publication number
WO2024061067A1
WO2024061067A1 PCT/CN2023/118444 CN2023118444W WO2024061067A1 WO 2024061067 A1 WO2024061067 A1 WO 2024061067A1 CN 2023118444 W CN2023118444 W CN 2023118444W WO 2024061067 A1 WO2024061067 A1 WO 2024061067A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
condition
target
information
link
Prior art date
Application number
PCT/CN2023/118444
Other languages
English (en)
French (fr)
Inventor
姜大洁
鲍炜
潘学明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024061067A1 publication Critical patent/WO2024061067A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • This application belongs to the technical field of synaesthesia integration, and specifically relates to a link monitoring method, device and terminal.
  • the radio link monitoring (RLM) process mainly includes:
  • the physical layer measures at least one radio link monitoring reference signal (RLM-RS) configured by the base station every indication period to evaluate the corresponding physical downlink control channel (Physical Downlink Control Channel, Receive block error rate (BLER) performance of PDCCH);
  • RLM-RS radio link monitoring reference signal
  • RLM-RS can be a synchronization signal and a physical broadcast channel (Synchronization Signal and PBCH block, SSB) signal or a channel state information reference signal (Channel State Information Reference Signal, CSI-RS) or a mixture of the two.
  • SSB Synchronization Signal and Physical Broad Channel
  • CSI-RS Channel State Information Reference Signal
  • the physical layer reports In-Sync (IS) to the upper layer (Radio Resource Control (RRC) layer);
  • Reference Signal Reference Signal
  • the physical layer reports Out-Of-Sync (OOS) to the higher layer;
  • OOS Out-Of-Sync
  • RRC Radio Link Failure
  • Embodiments of the present application provide a link monitoring method, device, and terminal to implement wireless link monitoring in a synesthesia-integrated scenario.
  • the first aspect provides a link monitoring method, including:
  • the terminal detects the target signal
  • the terminal performs measurements according to the target signal to obtain the link performance corresponding to the target signal;
  • the target signal includes: a first signal, or the target signal includes: a first signal and a second signal; the first signal is a reference signal or a perception signal;
  • the link performance includes: perceived link performance, or the link performance includes: perceived link performance and communication link performance.
  • a link monitoring device comprising:
  • Detection module used to detect target signals
  • An acquisition module configured to measure according to the target signal and obtain the link performance corresponding to the target signal
  • the target signal includes: a first signal, or the target signal includes: a first signal and a second signal; the first signal is a reference signal or a sensing signal;
  • the link performance includes: perceived link performance, or the link performance includes: perceived link performance and communication link performance.
  • a terminal in a third aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to detect a target signal; perform measurements according to the target signal to obtain link performance corresponding to the target signal;
  • the target signal includes: a first signal, or the target signal includes: a first signal and a second signal; the first signal is a reference signal or a sensing signal;
  • the link performance includes: perceived link performance, or the link performance includes: perceived link performance and communication link performance.
  • a link monitoring system including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the link monitoring method described in the first aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented.
  • a chip in a seventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. .
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the method described in the first aspect Steps of the link monitoring method.
  • At least one first signal is measured to at least obtain perceived link performance, thereby achieving wireless link monitoring in a scenario of synaesthesia integration.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is a schematic flow chart of the link monitoring method according to the embodiment of the present application.
  • Figure 3 is a schematic diagram of one-dimensional image SNR calculation
  • Figure 4 is a module schematic diagram of the link monitoring device according to the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the structure of a communication device according to an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of this application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in much of the following description, but these techniques can also be applied to applications other than NR system applications, such as 6th Generation , 6G) communication system.
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • Mobile Internet Device MID
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • WUE Vehicle User Equipment
  • PUE Pedestrian User Equipment
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • personal computers personal Terminal-side devices such as computer (PC), teller machine or self-service machine
  • wearable devices include: smart watches, smart phones, etc. Bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side equipment 12 may include access network equipment and core network equipment, where the access network equipment may also be called radio access network equipment, radio access network (Radio Access Network, RAN), radio access network function or wireless access network unit.
  • Access network equipment may include a base station, a Wireless Local Area Network (WLAN) access point or a WiFi node, etc.
  • WLAN Wireless Local Area Network
  • the base station may be called a Node B, an Evolved Node B (eNB), an access point, a base transceiver station ( Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved B-node, transmitting and receiving point ( Transmitting Receiving Point (TRP) or some other appropriate terminology in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only in the NR system The base station is introduced as an example, and the specific type of base station is not limited.
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Service Discovery function (Edge Application Server Discovery Function, EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), centralized network configuration ( Centralized network configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • Sensing capability refers to one or more devices with sensing capabilities that can perceive the orientation, distance, speed and other information of target objects through the sending and receiving of wireless signals, or detect, track, and detect target objects, events or environments, etc. Recognition, imaging, etc.
  • small base stations with high-frequency and large-bandwidth capabilities such as millimeter waves and terahertz in 6G networks
  • the resolution of perception will be significantly improved compared to centimeter waves, allowing 6G networks to provide more refined perception services.
  • Typical sensing functions and application scenarios are shown in Table 1.
  • sensing signal sending node and the receiving node. According to the difference between the sensing signal sending node and the receiving node, it is divided into 6 basic sensing methods, including:
  • the base station spontaneously receives and senses. In this sensing mode, base station A sends a sensing signal and performs sensing measurements by receiving the echo of the sensing signal.
  • base station B receives the sensing signal sent by base station A and performs sensing measurement.
  • base station A receives the sensing signal sent by terminal A and performs sensing measurement.
  • terminal B receives the sensing signal sent by base station B and performs sensing measurement.
  • terminal A spontaneously receives and perceives. At this time, terminal A sends a sensing signal and performs sensing measurement by receiving the echo of the sensing signal.
  • terminal B receives the sensing signal sent by terminal A and performs sensing measurement.
  • each sensing method can have one or more sending nodes and receiving nodes.
  • this embodiment of the present application provides a link monitoring method, including:
  • Step 201 the terminal detects the target signal
  • Step 202 The terminal performs measurements according to the target signal to obtain the link performance corresponding to the target signal;
  • the target signal includes: a first signal, or the target signal includes: a first signal and a second signal; the first signal is a reference signal or a sensing signal;
  • the link performance includes: perceived link performance, or the link performance includes: perceived link performance and communication link performance.
  • the sensing link performance corresponding to the first signal when performing sensing measurement on the first signal, can be obtained; when performing sensing measurement and communication measurement on the first signal, the sensing link corresponding to the first signal can be obtained path performance and communication link performance; when sensing measurement is performed on the first signal and communication measurement is performed on the second signal, the sensing link performance corresponding to the first signal and the communication link performance corresponding to the second signal can be obtained.
  • sensing services can be supported by receiving sensing signals, for example, sensing measurements or sensing results can be obtained by receiving the signals.
  • the first signal in the embodiment of this application may be a signal that does not contain transmission information, such as LTE/NR synchronization and reference signals in related technologies, including synchronization signals and physical broadcast channels (Synchronization Signal and PBCH block) , SSB) signal, channel state information reference signal (Channel State Information-Reference Signal, CSI-RS), demodulation reference signal (Demodulation Reference Signal, DMRS), channel sounding reference signal (Sounding Reference Signal, SRS), positioning reference signal (Positioning Reference Signal, PRS), Phase Tracking Reference Signal (PTRS), etc.; it can also be single-frequency continuous wave (Continuous Wave, CW), frequency modulated continuous wave (Frequency Modulated CW, FMCW) commonly used in radar, and ultra-wideband Gaussian pulses, etc.; it can also be a newly designed dedicated signal with good correlation characteristics and low peak-to-average power ratio, or a newly designed synaesthesia integrated signal that not only carries certain information but also has good perceptual performance .
  • the new signal is spliced/combined/superimposed on at least one dedicated sensing signal/reference signal and at least one communication signal in the time domain and/or frequency domain.
  • the form of the second signal is similar to that of the first signal and will not be described again here.
  • the perceived link performance includes at least one of the following:
  • it can be the power value of the sensing path.
  • the power value of the signal component associated with the sensing target is the power of the signal component in the received first signal that is greatly affected by the sensing target, and may be at least one of the following:
  • the power value is calculated by taking the amplitude corresponding to the sample point with the largest amplitude in the frequency domain channel response of the received first signal as the target amplitude, or by taking the amplitude corresponding to multiple sample points with the largest amplitude as the target amplitude.
  • the amplitude of the value point is the power value calculated from the target amplitude.
  • the amplitude corresponding to the largest multiple sample points is the power value calculated from the target amplitude
  • the power value calculated by taking the amplitude corresponding to the sample point with the largest amplitude within a specific delay range as the target amplitude or the power value calculated by taking the amplitude corresponding to multiple sample points with the largest amplitude as the target amplitude.
  • the amplitude corresponding to the largest multiple sample points is the power value calculated from the target amplitude
  • the power value calculated by taking the amplitude corresponding to the sample point with the largest amplitude in a specific Doppler range as the target amplitude or the power value calculated by taking the amplitude corresponding to multiple sample points with the largest amplitude as the target amplitude.
  • the power value calculated by taking the two-dimensional Fourier transform result of the channel response of the received first signal that is, the amplitude corresponding to the sample point with the largest amplitude in the delay-Doppler domain result as the target amplitude, or taking the amplitude
  • the amplitude corresponding to the largest multiple sample points is the power value calculated from the target amplitude
  • the power value is calculated by taking the amplitude corresponding to the sampling point with the largest amplitude within a specific delay-Doppler range as the target amplitude, or the power value is calculated by taking the amplitude corresponding to multiple sampling points with the largest amplitude as the target amplitude.
  • the maximum amplitude may also be an amplitude exceeding a specific threshold value, and the specific threshold value may be indicated by a network-side device or calculated by the terminal according to noise and/or interference power.
  • the specific delay/Doppler range is related to the perception requirement, and may be indicated by the network side device, or may be obtained by the terminal according to the perception requirement.
  • the power value of the signal component associated with the sensing target is the echo power.
  • the method for obtaining the echo signal power can be at least one of the following options:
  • the method of determining the target signal amplitude can also be to use the maximum amplitude sample point of CFAR over-threshold and the average of several of its nearest over-threshold sample points as the target signal amplitude.
  • A102 Perceptual signal-to-noise ratio (Signal-to-Noise Ratio, SNR);
  • the perception SNR may be the ratio of the power value of the signal component associated with the perception target to the noise power.
  • SINR Signal to Interference plus Noise Ratio
  • the perceived SINR may be the ratio of the power value of the signal component associated with the sensing target to the sum of the powers of noise and interference.
  • the SNR/SINR acquisition method may be:
  • B21 Perform constant false alarm detection (CFAR) based on the time-delay one-dimensional map obtained by fast time-dimensional FFT processing of the echo signal.
  • the sample point with the maximum amplitude of CFAR crossing the threshold is the target sample point, and its amplitude is the target signal amplitude.
  • CFAR constant false alarm detection
  • the target signal amplitude can also be determined by taking the maximum sample point where CFAR crosses the threshold and its nearest neighbor. The average of several threshold-passing sample points is used as the target signal amplitude;
  • the interference/noise sample points can also be determined by further screening based on the interference/noise sample points determined above, and the screening method is: for the one-dimensional delay graph, remove several sample points near the delay of 0, and use the remaining interference/noise sample points as noise sample points; for the one-dimensional Doppler graph, remove several sample points near the Doppler of 0, and use the remaining interference/noise sample points as interference/noise sample points; for the two-dimensional delay-Doppler graph, remove the interference/noise sample points in the strip range composed of several points near the delay of 0 and the entire Doppler range, and use the remaining noise sample points as interference/noise sample points; for the three-dimensional delay-Doppler-angle graph, remove the interference/noise sample points in the slice range composed of several points near the time dimension 0, the entire Doppler range and the entire angle range, and use the remaining interference/noise sample points as interference/noise sample points.
  • A104 Sense whether the target exists
  • A105 the number of targets that perceive the existence of the target
  • the number of targets that have sensing targets within the preset range of distance or delay is the number of targets that have sensing targets within the preset range of distance or delay.
  • A104 and A105 may be notified to the terminal by other devices (for example, other terminals, access network equipment or core network equipment) according to sensing requirements.
  • the way to determine whether there is a sensing target can be: for example, whether there is a sample point with an amplitude exceeding a specific threshold in the delay/Doppler one-dimensional or two-dimensional map. If it exists, it is considered to be detected.
  • Sense target time delay/ The number of sample points in the Doppler one-dimensional or two-dimensional map whose amplitude exceeds a specific threshold is considered to be the number of perceived targets.
  • the RCS information may be the RCS information of a single sensing target or the RCS information of multiple sensing targets.
  • the spectrum information may include at least one of the following: delay power spectrum, Doppler power spectrum, delay/distance-Doppler/velocity spectrum, angle power spectrum, delay/distance-angle spectrum, Doppler/velocity-angle spectrum, delay/distance-Doppler/velocity-angle spectrum.
  • A109 The distance of at least one sensing target
  • A111 The speed of at least one perceived target
  • the communication link performance includes at least one of the following:
  • RSRP Reference signal received power
  • RSSI received signal strength indicator
  • PMI precoding matrix indicator
  • RI rank indicator
  • CQI channel quality indicator
  • SNR SINR
  • bit error probability bit error probability (BER)
  • BLER block error rate
  • the terminal performs measurements according to the target signal
  • the specific implementation method for obtaining the link performance corresponding to the target signal is:
  • the terminal measures at least one target signal every first cycle through the physical layer to obtain the link performance corresponding to the target signal.
  • the target signal is configured to the terminal by the network side device (such as the base station), that is, the specific implementation method for the terminal to measure the target signal configured by the network side device is: the terminal passes the physical layer every In the first period, at least one target signal configured by the network side device is measured once.
  • the terminal measures the signal based on the first signal, the parameter configuration information of the first signal and the second signal, and the parameter configuration information is configured for the terminal by the network side device.
  • parameter configuration information of different signals includes at least one of the following:
  • Waveform type such as orthogonal frequency division multiplexing (OFDM), single-carrier frequency division multiple access (Single-carrier Frequency-Division Multiple Access, SC-FDMA), orthogonal time-frequency-space (Orthogonal Time Frequency Space (OTFS), Frequency Modulated Continuous Wave (FMCW), pulse signal, etc.;
  • Subcarrier spacing For example, the subcarrier spacing of the OFDM system is 30KHz;
  • Guard interval the time interval from the time when the signal ends sending to the time when the latest echo signal of the signal is received; this parameter is proportional to the maximum sensing distance; for example, it can be calculated by 2d max /c, d max is the maximum sensing distance (belonging to sensing requirements). For example, for a target signal that is spontaneously received, d max represents the maximum distance from the target signal transceiver point to the signal emission point; in some cases, OFDM signal cyclic prefix CP can provide minimum protection Interval effect;
  • C105 Burst duration
  • This parameter is inversely proportional to the rate resolution (belongs to the perception requirements).
  • This parameter is the time span of the target signal, mainly for calculating the Doppler frequency offset; this parameter can be calculated by c/(2f c ⁇ v) ;where, ⁇ v is the velocity resolution; f c is the carrier frequency of the target signal;
  • Time domain interval This parameter can be calculated by c/(2f c v range ); where v range is the maximum rate minus the minimum speed (belonging to the perception requirements); this parameter is the distance between two adjacent target signals time interval;
  • C107 Transmit signal power, for example, take a value every 2dBm from -20dBm to 23dBm;
  • Signal format such as channel sounding reference signal (Sounding Reference Signal, SRS), demodulation reference signal (Demodulation Reference Signal, DMRS), positioning reference signal (Positioning Reference Signal, PRS), etc., or other predefined signals, and related sequence format and other information;
  • SRS Sounding Reference Signal
  • DMRS demodulation Reference Signal
  • PRS positioning reference signal
  • C109 signal direction; such as the direction or beam information of the target signal;
  • Time resources such as the time slot index where the target signal is located or the symbol index of the time slot; there are two types of time resources, one is a one-time time resource, such as one symbol transmitting an omnidirectional target signal; one One is a non-disposable time resource, such as multiple groups of periodic time resources or discontinuous time resources (which can include start time and end time). Each group of periodic time resources sends a target signal in the same direction, and different groups of time resources send target signals in the same direction. The beam directions on periodic time resources are different;
  • Frequency resources including the center frequency point of the target signal, bandwidth, RB or subcarrier, Point A, starting bandwidth position, etc.;
  • the target signal includes multiple resources, each resource is associated with an SSB QCL, and the QCL includes Type A, B, C or D;
  • the antenna configuration information of the sensing node includes at least one of the following:
  • Antenna element identification (Identity, ID) or antenna port ID used to send and/or receive target signals;
  • the position information of the antenna element used to send and/or receive target signals relative to a local reference point on the antenna array can use Cartesian coordinates (x, y, z) or spherical coordinates express);
  • the position information of the panel used to send and/or receive target signals relative to a local reference point on the antenna array can use Cartesian coordinates (x, y, z) or spherical coordinates Represented), and the position information of these antenna elements used to transmit target signals in the selected panel relative to a unified reference point of the panel (such as the center point of the panel) (can use Cartesian coordinates (x, y, z) or spherical coordinate express);
  • bitmap information of the antenna array element For example: the bitmap uses “1” to indicate that the array element is selected to send and/or receive target signals, and uses “0" to indicate that the array element is not selected (the reverse can also be done);
  • bitmap information of array panel For example: This bitmap uses “1” to indicate that the panel is selected for Send and/or receive target signals, use “0” to indicate that the array element is not selected (it can also be reversed). And the bitmap information of these array elements in the selected panel;
  • Threshold information that is, a threshold value used for at least one of the source node, the first device, and the candidate node to determine whether the obtained sensing measurement value meets the first condition.
  • the threshold values may be different; for any candidate node and/or candidate tag, the sensing measurement quantity and its corresponding threshold value may be greater than 1; the first condition is: obtaining sensing The corresponding candidate node/candidate tag of the measurement value can be used as the target node/target tag.
  • the terminal after the terminal performs measurements according to the target signal and obtains the link performance corresponding to the target signal, at least one of the following is further included:
  • the terminal reports the first information to the higher layer through the physical layer
  • the first situation includes one of the following: the perceptual link performance corresponding to the first signal satisfies the first condition; the perceptual link performance corresponding to the first signal satisfies the first condition and the communication corresponding to the first signal satisfies the first condition.
  • the link performance satisfies the second condition; the perception link performance corresponding to the first signal satisfies the first condition and the communication link performance corresponding to the second signal satisfies the second condition;
  • the first information is used to indicate that the perceptual link performance corresponding to the first signal satisfies a first condition, the perceptual link performance corresponding to the first signal satisfies the first condition and the communication link corresponding to the first signal satisfies the first condition.
  • the performance satisfies the second condition, or the performance of the sensing link corresponding to the first signal satisfies the first condition and the performance of the communication link corresponding to the second signal satisfies the second condition.
  • the terminal reports the second information to the higher layer through the physical layer
  • the second situation includes one of the following: the perceptual link performance corresponding to the first signal does not meet the first condition; the perceptual link performance corresponding to the first signal does not meet the first condition and/or the first The performance of the communication link corresponding to the signal does not meet the second condition;
  • the second information is used to indicate that the perceived link performance corresponding to the first signal does not meet the first condition, or the perceived link performance corresponding to the first signal does not meet the first condition and/or the first The communication link performance corresponding to the signal does not meet the second condition.
  • the terminal reports the target information to the higher layer through the physical layer
  • the third situation includes: the perception link performance corresponding to the first signal does not meet the first condition and/or the communication link performance corresponding to the second signal does not meet the second condition;
  • the target information is used to indicate that the perception link performance corresponding to the first signal does not meet the first condition and/or the communication link performance corresponding to the second signal does not meet the second condition.
  • the terminal reports target information to the higher layer through the physical layer, including at least one of the following:
  • the terminal When the perceived link performance corresponding to the first signal does not satisfy the first condition and the communication link performance corresponding to the second signal satisfies the second condition, the terminal reports third information to the higher layer through the physical layer, and the third information is used to indicate that the perceived link performance corresponding to the first signal does not satisfy the first condition and the communication link performance corresponding to the second signal does not satisfy the first condition.
  • the performance meets the second condition;
  • the terminal reports the fourth information to the higher layer through the physical layer, so The fourth information is used to indicate that the perception link performance corresponding to the first signal satisfies the first condition and the communication link performance corresponding to the second signal does not satisfy the second condition;
  • the terminal reports the fifth information to the higher layer through the physical layer,
  • the fifth information is used to indicate that the perception link performance corresponding to the first signal does not meet the first condition and the communication link performance corresponding to the second signal does not meet the second condition.
  • the reporting status of the terminal includes the following situations:
  • the terminal reports the first information to the higher layer through the physical layer;
  • the first information is used to indicate that the perceived link performance corresponding to the first signal satisfies the first condition.
  • the terminal reports the second information to the higher layer through the physical layer;
  • the second information is used to indicate that the perceived link performance corresponding to the first signal does not meet the first condition.
  • the terminal reports the first information to the higher layer through the physical layer;
  • the first information is used to indicate that the perception link performance corresponding to the first signal satisfies the first condition and the communication link performance corresponding to the first signal satisfies the second condition.
  • the terminal reports the third condition to the higher layer through the physical layer.
  • the second information is used to indicate that the perceptual link performance corresponding to the first signal does not meet the first condition and/or the communication link performance corresponding to the first signal does not meet the first condition. Second condition.
  • the terminal reports the first information to the higher layer through the physical layer;
  • the first information is used to indicate that the perception link performance corresponding to the first signal satisfies the first condition and the communication link performance corresponding to the second signal satisfies the second condition.
  • the terminal reports the target to the higher layer through the physical layer. information
  • the target information is used to indicate that the perceptual link performance corresponding to the first signal does not meet the first condition and/or the communication link performance corresponding to the second signal does not meet the third condition. Two conditions.
  • the terminal reports the target information to the higher layer through the physical layer, including at least one of the following:
  • the terminal reports the third information to the higher layer through the physical layer.
  • the third information is used to indicate that the perception link performance corresponding to the first signal does not meet the first condition and the communication link performance corresponding to the second signal meets the second condition;
  • the terminal reports the fourth information to the higher layer through the physical layer.
  • the fourth information is used to indicate that the perception link performance corresponding to the first signal satisfies the first condition and the communication link performance corresponding to the second signal does not satisfy the second condition;
  • the terminal reports the fifth value to the higher layer through the physical layer.
  • Information the fifth information is used to indicate that the perception link performance corresponding to the first signal does not meet the first condition and the communication link performance corresponding to the second signal does not meet the second condition.
  • D21 and D22 are a group
  • D23 and D24 are a group
  • D25 and D26 are a group.
  • how the terminal measures the signal uses the information reporting method corresponding to the measurement. , for example, when the terminal measures the first signal to obtain the perceptual link performance, the above-mentioned D21 and D22 are used; when the terminal measures the first signal to obtain the perceptual link performance and communication link performance, the above-mentioned D23 and D22 are used D24; When the terminal measures the first signal to obtain the sensing link performance, and measures the second signal to obtain the communication link performance, the above-mentioned D25 and D26 are used.
  • the first condition includes at least one of the following:
  • At least Y sensing targets are detected
  • Y is configured by the base station, and Y is a positive integer.
  • this situation corresponds to the situation of detecting multiple targets at the same time.
  • the bitmap corresponding to the sensing target determined based on monitoring is consistent with the preset bitmap configured on the network side device;
  • each bit in the bitmap represents a certain target.
  • a bit of 1 means that the target has been detected, and a bit of 0 means that the target has not been detected.
  • this situation corresponds to the situation of detecting multiple targets at the same time.
  • the RCS may be the RCS information of a single sensing target or the RCS information of multiple sensing targets.
  • the first preset condition is that RCS reaches K1 square meters, and K1 is a positive real number.
  • the range-rate spectrum of the sensing target satisfies the second preset condition.
  • the second preset condition at this time is that the sensing target can be distinguished on the range-rate spectrum (the range-rate spectrum has a point or a region whose amplitude reaches the predetermined level). set value); or, the delay-Doppler spectrum of the perceived target satisfies the second preset condition.
  • the second preset condition is that the perceived target (time-delay-Doppler spectrum) can be distinguished on the delay-Doppler spectrum.
  • the Puler spectrum has a point or a region where the amplitude reaches a preset value);
  • the first parameter of the sensing target satisfies the third preset condition, and the first parameter includes at least one of the following: delay, distance, Doppler, speed, and angle information;
  • the first parameter may be the first parameter of a single sensing target or the first parameters of multiple sensing targets.
  • the delay of sensing the target satisfies the third preset condition (for example, the delay satisfies an interval value); for another example, the distance of the sensing target satisfies the third preset condition (for example, the distance satisfies an interval value); for another example, the sensing target
  • the Doppler of the sensor satisfies the third preset condition (for example, the Doppler satisfies an interval value); for another example, the velocity of the perceived target satisfies the third preset condition (for example, the velocity satisfies an interval value); for another example, the angle of the perceived target
  • the information satisfies the third preset condition (for example, the angle information satisfies an interval value).
  • the second condition is the threshold corresponding to the specific parameter.
  • the RSRP may be lower than a preset value such as -90dBm, or the SNR or SINR may be lower than a preset value such as 5dB.
  • the terminal reports the first information or the second information from the physical layer to the higher layer (such as the RRC layer) based on the perceived link performance obtained by measuring the first signal; when the first specific condition is met, the first timer is started. ; When the first timer times out, it is determined that the sensing link fails;
  • the first specific condition includes one of the following:
  • the number of second information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the first threshold
  • the amount of second information reported by the terminal to the higher layer through the physical layer is greater than or equal to the second threshold, and N1 is a positive integer.
  • N1 is configured by the network side device, and the timing duration of the first timer is also configured by the network side device.
  • the first timer is stopped
  • the second specific condition includes one of the following:
  • the number of first information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the fourth threshold
  • the number of first information reported by the terminal to the higher layer through the physical layer is greater than or equal to the fifth threshold, and N2 is a positive integer;
  • N2 is configured for the network side device.
  • the terminal After determining that the sensing link fails, the terminal performs radio resource control RRC reconstruction; or the terminal reports measurement related information to the network side device, and the measurement related information includes at least one of the following: sensing link failure, reason for sensing link failure, Perceived link performance measurements, communication link failures, causes of communication link failures, communication link performance measurements.
  • the first signal is measured to obtain the perceptual link performance corresponding to the first signal and the communication link performance corresponding to the first signal.
  • the terminal reports the first information or the second information from the physical layer to the higher layer (such as the RRC layer) based on the perceived link performance and communication link performance measured on the first signal respectively; when the first specific condition is met, Start the first timer; when the first timer times out, determine that the sensing link fails;
  • the higher layer such as the RRC layer
  • the first specific condition includes one of the following:
  • the number of second information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the first threshold
  • the amount of second information reported by the terminal to the higher layer through the physical layer is greater than or equal to the second threshold, and N1 is a positive integer.
  • N1 is configured by the network side device, and the timing duration of the first timer is also configured by the network side device.
  • the first timer is stopped
  • the second specific condition includes one of the following:
  • the number of first information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the fourth threshold
  • the number of first information reported by the terminal to the higher layer through the physical layer is greater than or equal to the fifth threshold, and N2 is a positive integer;
  • N2 is configured for the network side device.
  • the terminal After determining that the sensing link fails, the terminal performs radio resource control RRC reconstruction; or the terminal reports measurement related information to the network side device, and the measurement related information includes at least one of the following: sensing link failure, reason for sensing link failure, Perceived link performance measurements, communication link failures, causes of communication link failures, communication link performance measurements.
  • the first signal and the second signal are measured to obtain the perceptual link performance corresponding to the first signal and the communication link performance corresponding to the second signal.
  • the terminal reports the first information or target information from the physical layer to the higher layer (such as the RRC layer) based on the perceived link performance obtained by measuring the first signal and the communication link performance obtained by measuring the second signal; special Under certain conditions, start the first timer; when the first timer times out, determine that the sensing link fails;
  • the first specific condition includes:
  • the number of target information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the third threshold
  • the first specific condition refers to: the number of third information, fourth information or fifth information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the third threshold.
  • the first timer is stopped
  • the second specific condition includes one item:
  • the number of first information or first information and target information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the sixth threshold
  • the number of first pieces of information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the sixth threshold; or, the number of first pieces of information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the sixth threshold.
  • the number of information and third information is greater than or equal to the sixth threshold; or, the number of first information and fourth information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the sixth threshold; or, the terminal passes the physical layer
  • the number of first information and fifth information continuously reported by the physical layer to the higher layer is greater than or equal to the sixth threshold; or, the number of first information, third information and fourth information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to Equal to the sixth threshold; or, the number of first information, third information and fifth information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the sixth threshold; or, the number of the first information, third information and fifth information continuously reported by the terminal to the higher layer through the physical layer
  • the number of first information, fourth information and fifth information is greater than or equal to the sixth threshold; or, the number of first information, third information, fourth information and fifth information continuously reported by the terminal to the higher layer through the physical layer
  • the quantity is greater than or equal to the sixth threshold
  • the terminal After determining that the sensing link has failed, the terminal performs radio resource control RRC reconstruction. For example, the terminal sends a random access preamble to the network side; or the terminal reports measurement-related information to the network-side device.
  • the measurement-related information includes at least one of the following: : Perception link failure, reason for perception link failure, measurement value of perception link performance, communication link failure, reason for communication link failure, measurement value of communication link performance.
  • step 201 it also includes:
  • the first message carries first indication information, and the first indication information is used to indicate the reason for RRC connection release.
  • the first message also includes: measurement results of perceptual link performance.
  • the reason for releasing the RRC connection includes: the perceived link performance corresponding to the first signal does not meet a first condition.
  • this situation is the process of triggering RRC connection release when the perceived link performance does not meet the requirements. That is, when the RRC connection is released, the network side device is notified that the perceived link performance does not meet the requirements.
  • Sensing link monitoring process Evaluate whether the signal meets the sensing link performance. If the number of times that the condition is not met reaches the preset number, RRC reconstruction is performed.
  • the communication link monitoring process and the sensing link monitoring process are performed independently; the parameters of the two sets of processes are independently configured; if the timer of any process (such as the sensing link monitoring process T1 (corresponding to the above-mentioned first timer), or T310 of the communication link monitoring process) times out, the RRC layer declares a link failure, and the UE performs RRC reestablishment.
  • the timer of any process such as the sensing link monitoring process T1 (corresponding to the above-mentioned first timer), or T310 of the communication link monitoring process
  • the information is configured by the base station.
  • the physical layer of the UE reports the satisfied condition (i.e., the first information) to the higher layer (RRC layer).
  • the target threshold is configured by the base station;
  • the physical layer reports to the higher layer that the condition is not met (i.e., the second information).
  • N1 is configured by the base station; the timing duration of the first timer is configured by the base station.
  • N2 is configured by the base station.
  • the UE performs RRC reconstruction.
  • the UE reports the perceived link failure, and/or the cause of the perceived link failure (ie, the cause of step S12), and/or the measured value of the perceived link performance to the base station so that the base station triggers switching.
  • Application case 2 The first case of joint monitoring of sensing links and communication links
  • Joint monitoring process of sensing link and communication link evaluate whether the first signal meets the sensing link performance and communication link performance. If not and reaches the preset number of times, RRC reconstruction is performed;
  • the physical layer of the UE measures the first signal configured by the base station every fixed period (this period is configured by the base station) to evaluate its sensing link performance and communication link performance; the parameter configuration information of the first signal is configured by the base station. .
  • the UE measures one or more first signals.
  • the physical layer of the UE reports the first information to the higher layer (RRC layer); otherwise, reports the second information;
  • N1 is configured by the base station; the timing duration of the first timer is configured by the base station.
  • N2 is configured by the base station
  • the UE performs RRC reconstruction.
  • the UE reports the link failure, and/or the cause of the link failure (ie, the cause of step S22), and/or the measurement value of the link performance to the base station, so that the base station triggers handover.
  • Joint monitoring process of sensing link and communication link (four states in total): Evaluate whether the signal meets the sensing link performance and communication link performance. If neither is satisfied or any one is not satisfied and reaches the preset number of times, then Perform RRC reconstruction;
  • the physical layer of the UE measures the first signal configured by the base station every fixed period (this period is configured by the base station) to evaluate its perceived link performance;
  • the UE also measures the second signal configured by the base station to evaluate its communication link performance; the parameter configuration information of the first signal and the second signal is configured by the base station;
  • first signal and the second signal may be the same or different signals, or the first signal and the second signal may be the same signal in different time domains, different frequency domains, or different code domains (i.e., corresponding to: the link performance evaluation of communication and perception shares a reference signal, and the link performance evaluation of communication and perception uses different reference signals respectively);
  • the physical layer of the UE reports the first information to the higher layer (RRC layer);
  • the physical layer of the UE reports third information to the higher layer (RRC layer);
  • the physical layer of the UE reports fourth information to the higher layer (RRC layer);
  • the physical layer of the UE reports the fifth information to the higher layer (RRC layer).
  • N1 is configured by the base station; the timing duration of the first timer is configured by the base station.
  • N2 is configured by the base station
  • the UE performs RRC reconstruction.
  • the UE reports to the base station the link failure, and/or the cause of the link failure (i.e., the cause of step S32, and the information of states A, B, C, and D), and/or the measurement value of the link performance, so that the base station Trigger switch.
  • the cause of the link failure i.e., the cause of step S32, and the information of states A, B, C, and D
  • the measurement value of the link performance so that the base station Trigger switch.
  • Application case 4 UE triggers RRC connection release, and the trigger reason can be "perceived performance does not meet requirements";
  • the UE sends a first message to the base station.
  • the first message is used to indicate: RRC connection release request;
  • the first message may also carry a Release assistance indication (Release assistance Indication) identifier (for example, the reason for the RRC connection release); wherein, the reasons for the RRC connection release include: the perceived link performance obtained by the UE measuring the first signal cannot meet the first requirement. condition;
  • reasons for RRC release also include: changes in the UE's position, speed, panel, remaining power, orientation, etc.;
  • the first message may also include: the measurement result of the perceived link performance
  • the UE needs to measure the first signal to obtain the corresponding perceived link performance.
  • the perception measurement amount in this embodiment of the present application includes at least one of the following:
  • the first-level measurement quantity includes at least one of the following: the result of the operation of I-channel data and Q-channel data of the frequency domain channel response of the receiving object (that is, the operation result of the I-channel data and the Q-channel data), the result of the frequency domain channel response of the receiving object (for example, the result of the frequency domain channel response can be obtained by channel estimation; usually, the result of the frequency domain channel response is in a complex form), the amplitude of the frequency domain channel response of the receiving object, the phase of the frequency domain channel response of the receiving object, the I-channel data of the frequency domain channel response of the receiving object, and the Q-channel data of the frequency domain channel response of the receiving object, and the receiving object includes a received signal or a received channel;
  • the above-mentioned operations may include addition, subtraction, multiplication, division, matrix addition, subtraction, multiplication, matrix transposition, trigonometric relation operations, square root operations, power operations, etc., as well as threshold detection results and maximum results of the above operation results.
  • Minimum value extraction results, etc. operations also include Fast Fourier Transform (FFT)/Inverse Fast Fourier Transform (IFFT), Discrete Fourier Transform (DFT) / Inverse Discrete Fourier Transform (IDFT), 2D-FFT, 3D-FFT, matched filtering, autocorrelation operation, wavelet transform and digital filtering, etc., as well as the threshold detection results and final results of the above operation results Large/minimum value extraction results, etc.
  • the result of the operation of I channel data and Q channel data can be determined according to I ⁇ cos(theta)+Q ⁇ sin(theta), where theta is a certain angle value, I represents the I channel data, and Q represents the Q channel data.
  • the second-level measurement quantities include at least one of the following: delay, Doppler, angle, and signal strength;
  • This second-level measurement quantity can be regarded as a basic measurement quantity.
  • the third-level measurement quantity includes at least one of the following: distance of the perceived target, speed of the perceived target, direction of the perceived target, spatial position of the perceived target, acceleration of the perceived target;
  • This third-level measurement quantity can be regarded as the basic attribute/state of the perceived target.
  • the fourth level measurement quantity includes: target existence, trajectory, movement, expression, vital signs, quantity, imaging results, weather, air quality, shape, material, and composition.
  • the above-mentioned perceptual measurement quantity may also include corresponding label information, and the label information includes at least one of the following:
  • Sensing business information for example, sensing business ID
  • sensing node information e.g., UE ID, node location, device orientation
  • Sensing link information for example, sensing link sequence number, sending and receiving node identification
  • Measurement quantity description information (forms such as amplitude, phase, complex number, resource information such as antenna/antenna pair/antenna group, PRB, symbol)
  • Measurement quantity index information for example, SNR, perceived SNR.
  • perception results mentioned in the embodiments of this application include at least one of the following:
  • Perceive the shape of the target perceive the outline of the target, perceive the existence of the target, perceive the trajectory of the target, perceive the movement of the target, perceive the expression of the target, perceive the vital signs of the target, perceive the number of targets, perceive the imaging results of the target, weather, air Quality, the material of the perceived target, the composition of the perceived target, the gesture of the perceived target, the breathing rate of the perceived target, the heartbeat rate of the perceived target, and the sleep quality of the perceived target.
  • the embodiment of the present application provides a sensing link monitoring process and a joint link monitoring process of sensing and communication, which can timely discover that the sensing performance of the link does not meet the requirements, thereby finding a new link. road to meet perceived needs.
  • the execution subject may be a link monitoring device.
  • the link monitoring method performed by the link monitoring device is used as an example to illustrate the link monitoring device provided by the embodiment of the present application.
  • this embodiment of the present application provides a link monitoring device 400, which is applied to a terminal and includes:
  • Detection module 401 used to detect target signals
  • An acquisition module configured to measure according to the target signal and obtain the link performance corresponding to the target signal
  • the target signal includes: a first signal, or the target signal includes: a first signal and a second signal; the first signal is a reference signal or a sensing signal;
  • the link performance includes: perceived link performance, or the link performance includes: perceived link performance and communication link performance.
  • the monitoring module 401 is used for:
  • the physical layer measures at least one target signal every first cycle to obtain the link performance corresponding to the target signal.
  • the acquisition module after the acquisition module performs measurements according to the target signal and obtains the link performance corresponding to the target signal, it also includes at least one of the following:
  • the first reporting module is used to report the first information to the higher layer through the physical layer if the first condition is met;
  • the second reporting module is used to report the second information to the higher layer through the physical layer if the second condition is met;
  • the third reporting module is used to report the target information to the higher layer through the physical layer if the third condition is met;
  • the first situation includes one of the following: the perceptual link performance corresponding to the first signal satisfies the first condition; the perceptual link performance corresponding to the first signal satisfies the first condition and the first signal corresponds to The performance of the communication link satisfies the second condition; the performance of the sensing link corresponding to the first signal satisfies the first condition and the performance of the communication link corresponding to the second signal satisfies the second condition;
  • the first information is used to indicate that the perceptual link performance corresponding to the first signal satisfies a first condition, the perceptual link performance corresponding to the first signal satisfies the first condition and the communication link corresponding to the first signal satisfies the first condition.
  • the performance satisfies the second condition, or the performance of the sensing link corresponding to the first signal satisfies the first condition and the performance of the communication link corresponding to the second signal satisfies the second condition;
  • the second situation includes one of the following: the perceptual link performance corresponding to the first signal does not meet the first condition; the perceptual link performance corresponding to the first signal does not meet the first condition and/or the first The performance of the communication link corresponding to the signal does not meet the second condition;
  • the second information is used to indicate that the perceived link performance corresponding to the first signal does not meet the first condition, or the perceived link performance corresponding to the first signal does not meet the first condition and/or the first The performance of the communication link corresponding to the signal does not meet the second condition;
  • the third situation includes: the perception link performance corresponding to the first signal does not meet the first condition and/or the communication link performance corresponding to the second signal does not meet the second condition;
  • the target information is used to indicate that the perception link performance corresponding to the first signal does not meet the first condition and/or the communication link performance corresponding to the second signal does not meet the second condition.
  • the third reporting module is used to implement at least one of the following:
  • third information is reported to the higher layer through the physical layer.
  • the third information is used to indicate that the perceived link performance corresponding to the first signal does not meet the first condition and the communication link performance corresponding to the second signal satisfy the second condition;
  • fourth information is reported to the higher layer through the physical layer.
  • the fourth information is used to indicate that the perception link performance corresponding to the first signal satisfies the first condition and the communication link performance corresponding to the second signal does not satisfy the second condition;
  • fifth information is reported to the higher layer through the physical layer, and the fifth information is used to indicate that the perceived link performance corresponding to the first signal does not meet the first condition and the communication link performance corresponding to the second signal does not meet the second condition.
  • the device also includes:
  • a start module used to start the first timer when the first specific condition is met
  • a determination module configured to determine that the sensing link fails when the first timer times out
  • the first specific condition includes at least one of the following:
  • the number of second information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the first threshold
  • the number of second information reported by the terminal to the higher layer through the physical layer is greater than or equal to the second threshold, and N1 is a positive integer;
  • the amount of target information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to a third threshold.
  • the device also includes:
  • a stop module configured to stop the first timer when the second specific condition is met during the running of the first timer
  • the second specific condition includes at least one of the following:
  • the number of first information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the fourth threshold
  • the number of first information reported by the terminal to the higher layer through the physical layer is greater than or equal to the fifth threshold, and N2 is a positive integer;
  • the number of first information or first information and target information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the sixth threshold.
  • the determining module determines that the sensing link fails, it also includes:
  • Reconstruction module used for radio resource control RRC reconstruction
  • the fourth reporting module is used to report measurement related information to the network side device.
  • the measurement related information includes at least one of the following: sensing link failure, reason for sensing link failure, measurement value of sensing link performance, communication link Failures, causes of communication link failures, measurements of communication link performance.
  • the device also includes:
  • a sending module configured to send a first message to the network side device when the perceived link performance corresponding to the first signal does not meet the first condition, where the first message is used to indicate an RRC connection release request;
  • the first message carries first indication information, and the first indication information is used to indicate the reason for RRC connection release.
  • the first message also includes: a measurement result of the perceived link performance.
  • the reason for RRC connection release includes: the perceived link performance corresponding to the first signal does not meet the first condition.
  • the first condition includes at least one of the following:
  • the power value of the sensing target-related signal component of at least one first signal satisfies the first threshold
  • the perceived signal-to-noise ratio SNR of at least one first signal satisfies the second threshold
  • a perceived signal to interference plus noise ratio SINR of at least one first signal satisfies a third threshold
  • At least Y sensing targets are detected
  • the bitmap corresponding to the sensing target determined based on monitoring is consistent with the preset bitmap configured on the network side device;
  • the radar cross-sectional area RCS of the perceived target meets the first preset condition
  • the spectral information of the perceived target satisfies the second preset condition
  • the first parameter of the sensing target satisfies the third preset condition, and the first parameter includes at least one of the following: delay, distance, Doppler, speed, and angle information;
  • Y is a positive integer.
  • the perceived link performance includes at least one of the following:
  • the communication link performance includes at least one of the following:
  • Reference signal received power RSRP Reference signal received power RSRP, received signal strength indicator RSSI, precoding matrix indicator PMI, rank indicator RI, channel quality indicator CQI, SNR, SINR, bit error probability BER, and block error rate BLER.
  • this device embodiment is a device corresponding to the above-mentioned method. All implementation methods in the above-mentioned method embodiment are applicable to this device embodiment and can achieve the same technical effect, which will not be described again here.
  • the detection device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 4 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • the link monitoring device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or Can be a component in an electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the link monitoring device provided in the embodiment of the present application can implement each process implemented in the method embodiment of Figure 2 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • Embodiments of the present application also provide a terminal, including a processor and a communication interface.
  • the processor is used to detect a target signal; perform measurements according to the target signal to obtain link performance corresponding to the target signal;
  • the target signal includes: a first signal, or the target signal includes: a first signal and a second signal; the first signal is a reference signal or a sensing signal;
  • the link performance includes: perceived link performance, or the link performance includes: perceived link performance and communication link performance.
  • the processor is used for:
  • the physical layer measures at least one target signal every first cycle to obtain the link performance corresponding to the target signal.
  • the communication interface is also used to implement at least one of the following:
  • the first information is reported to the higher layer through the physical layer
  • the second information is reported to the higher layer through the physical layer
  • the target information is reported to the higher layer through the physical layer
  • the first situation includes one of the following: the perceptual link performance corresponding to the first signal satisfies the first condition; the perceptual link performance corresponding to the first signal satisfies the first condition and the first signal corresponds to The performance of the communication link satisfies the second condition; the performance of the sensing link corresponding to the first signal satisfies the first condition and the performance of the communication link corresponding to the second signal satisfies the second condition;
  • the first information is used to indicate that the perceptual link performance corresponding to the first signal satisfies a first condition, the perceptual link performance corresponding to the first signal satisfies the first condition and the communication link corresponding to the first signal satisfies the first condition.
  • the performance satisfies the second condition, or the performance of the sensing link corresponding to the first signal satisfies the first condition and the performance of the communication link corresponding to the second signal satisfies the second condition;
  • the second situation includes one of the following: the perceived link performance corresponding to the first signal does not meet the first condition; the perceived link performance corresponding to the first signal does not meet the first condition and/or the first The performance of the communication link corresponding to the signal does not meet the second condition;
  • the second information is used to indicate that the perceived link performance corresponding to the first signal does not meet the first condition, or the perceived link performance corresponding to the first signal does not meet the first condition and/or the first The performance of the communication link corresponding to the signal does not meet the second condition;
  • the third situation includes: the perception link performance corresponding to the first signal does not meet the first condition and/or the communication link performance corresponding to the second signal does not meet the second condition;
  • the target information is used to indicate that the perceived link performance corresponding to the first signal does not satisfy a first condition and/or the communication link performance corresponding to the second signal does not satisfy a second condition.
  • the communication interface is used to implement at least one of the following:
  • third information is reported to the higher layer through the physical layer.
  • the third information is used to indicate that the perception link performance corresponding to the first signal does not meet the first condition and the communication link performance corresponding to the second signal meets the second condition;
  • fourth information is reported to the higher layer through the physical layer.
  • the fourth information is used to indicate that the perception link performance corresponding to the first signal satisfies the first condition and the communication link performance corresponding to the second signal does not satisfy the second condition;
  • the fifth information is reported to the higher layer through the physical layer, so The fifth information is used to indicate that the perception link performance corresponding to the first signal does not meet the first condition and the communication link performance corresponding to the second signal does not meet the second condition.
  • the processor is also used to:
  • the first specific condition includes at least one of the following:
  • the number of second information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the first threshold
  • the number of second information reported by the terminal to the higher layer through the physical layer is greater than or equal to the second threshold, and N1 is a positive integer;
  • the amount of target information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the third threshold.
  • the processor is also used to:
  • the second specific condition includes at least one of the following:
  • the number of first information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to a fourth threshold
  • the number of first information reported by the terminal to the higher layer through the physical layer is greater than or equal to the fifth threshold, and N2 is a positive integer;
  • the number of first information or first information and target information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the sixth threshold.
  • the processor is also used to:
  • the communication interface is used to report measurement related information to the network side device.
  • the measurement related information includes at least one of the following: sensing link failure, cause of sensing link failure, measurement value of sensing link performance, communication link failure. ,Pass Reasons for communication link failure and measurement of communication link performance.
  • the communication interface is also used for:
  • the first message carries first indication information, and the first indication information is used to indicate the reason for RRC connection release.
  • the first message also includes: measurement results of perceptual link performance.
  • the reason for RRC connection release includes: the perceived link performance corresponding to the first signal does not meet the first condition.
  • the first condition includes at least one of the following:
  • the power value of the sensing target-related signal component of at least one first signal satisfies the first threshold
  • the perceived signal-to-noise ratio SNR of at least one first signal satisfies the second threshold
  • the perceived signal to interference plus noise ratio SINR of at least one first signal satisfies the third threshold
  • At least Y sensing targets are detected
  • the bitmap corresponding to the sensing target determined based on monitoring is consistent with the preset bitmap configured on the network side device;
  • the radar cross-sectional area RCS of the perceived target meets the first preset condition
  • the spectral information of the perceived target satisfies the second preset condition
  • the first parameter of the sensing target satisfies the third preset condition, and the first parameter includes at least one of the following: delay, distance, Doppler, speed, and angle information;
  • Y is a positive integer.
  • the perceived link performance includes at least one of the following:
  • the communication link performance includes at least one of the following:
  • Reference signal received power RSRP Reference signal received power RSRP, received signal strength indicator RSSI, precoding matrix indicator PMI, rank indicator RI, channel quality indicator CQI, SNR, SINR, bit error probability BER, and block error rate BLER.
  • FIG. 5 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 500 includes but is not limited to: radio frequency unit 501, network module 502, audio output unit 503, input unit 504, sensor 505, display unit 506, user input unit 507, interface unit 508, memory 509, processor 510, etc. at least some parts of it.
  • the terminal 500 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 510 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 5 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 504 may include a graphics processor (Graphics Processing Unit, GPU) 5041 and a microphone 5042.
  • the graphics processor 5041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 506 may include a display panel 5061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 507 includes a touch panel 5071 and other input devices 5072 . Touch panel 5071, also called touch screen.
  • the touch panel 5071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 5072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 501 receives the downlink data from the network side device and then sends it to the processor 510 for processing; in addition, it sends the uplink data to the network side device.
  • the radio frequency unit 501 includes, but is not limited to, an antenna, at least one amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 509 may be used to store software programs or instructions as well as various data.
  • the memory 509 may mainly include a storage program or instruction area and a data storage area, where the storage program or instruction area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, an image playback function, etc.), and the like.
  • the memory 509 may include high-speed random access memory, and may also include non-volatile memory, where the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM).
  • PROM erasable programmable read-only memory
  • Erasable PROM EPROM
  • Electrically erasable programmable read-only memory Electrically EPROM, EEPROM
  • flash memory For example, at least one disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 510 may include one or more processing units; optionally, the processor 510 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 510.
  • the processor 510 is used to implement:
  • the target signal includes: a first signal, or the target signal includes: a first signal and a second signal; the first signal is a reference signal or a sensing signal;
  • the link performance includes: perceived link performance, or the link performance includes: perceived link performance and communication link performance.
  • processor 510 is used to:
  • the physical layer measures at least one target signal every first cycle to obtain the link performance corresponding to the target signal.
  • the radio frequency unit 501 is also used to implement at least one of the following:
  • the first information is reported to the higher layer through the physical layer
  • the second information is reported to the higher layer through the physical layer
  • the target information is reported to the higher layer through the physical layer
  • the first situation includes one of the following: the perceptual link performance corresponding to the first signal satisfies the first condition; the perceptual link performance corresponding to the first signal satisfies the first condition and the first signal corresponds to The performance of the communication link satisfies the second condition; the performance of the sensing link corresponding to the first signal satisfies the first condition and the performance of the communication link corresponding to the second signal satisfies the second condition;
  • the first information is used to indicate that the perceptual link performance corresponding to the first signal satisfies a first condition, the perceptual link performance corresponding to the first signal satisfies the first condition and the communication link corresponding to the first signal satisfies the first condition.
  • the performance satisfies the second condition, or the performance of the sensing link corresponding to the first signal satisfies the first condition and the performance of the communication link corresponding to the second signal satisfies the second condition;
  • the second situation includes one of the following: the perceptual link performance corresponding to the first signal does not meet the first condition; the perceptual link performance corresponding to the first signal does not meet the first condition and/or the first The performance of the communication link corresponding to the signal does not meet the second condition;
  • the second information is used to indicate that the perceived link performance corresponding to the first signal does not meet the first condition, or the perceived link performance corresponding to the first signal does not meet the first condition and/or the first The performance of the communication link corresponding to the signal does not meet the second condition;
  • the third situation includes: the perception link performance corresponding to the first signal does not meet the first condition and/or the communication link performance corresponding to the second signal does not meet the second condition;
  • the target information is used to indicate that the perception link performance corresponding to the first signal does not meet the first condition and/or the communication link performance corresponding to the second signal does not meet the second condition.
  • the radio frequency unit 501 is used to implement at least one of the following:
  • third information is reported to the higher layer through the physical layer.
  • the third information is used to indicate that the perception link performance corresponding to the first signal does not meet the first condition and the communication link performance corresponding to the second signal meets the second condition;
  • fourth information is reported to the higher layer through the physical layer.
  • the fourth information is used to indicate that the perception link performance corresponding to the first signal satisfies the first condition and the communication link performance corresponding to the second signal does not satisfy the second condition;
  • the fifth information is reported to the higher layer through the physical layer, so The fifth information is used to indicate that the perception link performance corresponding to the first signal does not meet the first condition and the communication link performance corresponding to the second signal does not meet the second condition.
  • processor 510 is also used to:
  • the first specific condition includes at least one of the following:
  • the number of second information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the first threshold
  • the number of second information reported by the terminal to the higher layer through the physical layer is greater than or equal to the second threshold, and N1 is a positive integer;
  • the amount of target information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the third threshold.
  • processor 510 is also used to:
  • the second specific condition includes at least one of the following:
  • the number of first information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the fourth threshold
  • the number of first information reported by the terminal to the higher layer through the physical layer is greater than or equal to the fifth threshold, and N2 is a positive integer;
  • the number of first information or first information and target information continuously reported by the terminal to the higher layer through the physical layer is greater than or equal to the sixth threshold.
  • processor 510 is also used to:
  • the communication interface is used to report measurement related information to the network side device.
  • the measurement related information includes at least one of the following: sensing link failure, cause of sensing link failure, measurement value of sensing link performance, communication link failure. , causes of communication link failure, measurements of communication link performance.
  • the radio frequency unit 501 is also used to:
  • the first message carries first indication information, and the first indication information is used to indicate the reason for RRC connection release.
  • the first message also includes: measurement results of perceptual link performance.
  • the reason for releasing the RRC connection includes: the perceived link performance corresponding to the first signal does not meet the One condition.
  • the first condition includes at least one of the following:
  • the power value of the sensing target-related signal component of at least one first signal satisfies the first threshold
  • the perceived signal-to-noise ratio SNR of at least one first signal satisfies the second threshold
  • a perceived signal to interference plus noise ratio SINR of at least one first signal satisfies a third threshold
  • At least Y sensing targets are detected
  • the bitmap corresponding to the sensing target determined based on monitoring is consistent with the preset bitmap configured on the network side device;
  • the radar cross-sectional area RCS of the perceived target meets the first preset condition
  • the spectral information of the perceived target satisfies the second preset condition
  • the first parameter of the sensing target satisfies the third preset condition, and the first parameter includes at least one of the following: delay, distance, Doppler, speed, and angle information;
  • Y is a positive integer.
  • the perceived link performance includes at least one of the following:
  • the communication link performance includes at least one of the following:
  • Reference signal received power RSRP Reference signal received power RSRP, received signal strength indication RSSI, precoding matrix indication PMI, rank indication RI, channel quality indication CQI, SNR, SINR, bit error probability BER, block error rate BLER.
  • At least one first signal is measured to obtain at least the perceptual link performance, thereby achieving wireless link monitoring in a scenario of integrated synaesthesia.
  • Embodiments of the present application also provide a readable storage medium. Programs or instructions are stored on the readable storage medium. When the program or instructions are executed by a processor, each process of the above link monitoring method embodiment is implemented, and can achieve The same technical effects will not be repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk wait.
  • this embodiment of the present application also provides a communication device 600, including a processor 601, a memory 602, and programs or instructions stored on the memory 602 and executable on the processor 601.
  • a communication device 600 including a processor 601, a memory 602, and programs or instructions stored on the memory 602 and executable on the processor 601.
  • the communication device 600 is a terminal
  • the program or instruction is executed by the processor 601
  • each process of the above link monitoring method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, the details will not be described here.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above link monitoring method embodiments. Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above link monitoring method.
  • Each process in the example can achieve the same technical effect. To avoid repetition, it will not be described again here.
  • Embodiments of the present application also provide a link monitoring system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the link monitoring method as described above.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to related technologies.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种链路监测方法、装置及终端,属于通感一体化技术领域,本申请实施例的链路监测方法,包括:终端检测目标信号;所述终端根据所述目标信号进行测量,获取所述目标信号对应的链路性能;其中,所述目标信号包括:第一信号,或者,所述目标信号包括:第一信号和第二信号;所述第一信号为参考信号或者感知信号;所述链路性能包括:感知链路性能,或者,所述链路性能包括:感知链路性能和通信链路性能。

Description

链路监测方法、装置及终端
相关申请的交叉引用
本申请主张在2022年09月20日在中国提交的中国专利申请No.202211146463.X的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通感一体化技术领域,具体涉及一种链路监测方法、装置及终端。
背景技术
无线链路监测(Radio link monitoring,RLM)流程主要包括:
1、物理层每隔指示周期(indication period)测量一次基站配置的至少一个无线链路监测参考信号(Radio link monitoring Reference Signal,RLM-RS)以评估对应的物理下行控制信道(Physical Downlink Control Channel,PDCCH)的接收块误码率(block error rate,BLER)性能;
RLM-RS可以是同步信号和物理广播信道(Synchronization Signal and PBCH block,SSB)信号或者信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)或者二者的混合。
2、如果BLER性能低于目标BLER门限如2%,则物理层向高层(无线资源控制(Radio Resource Control,RRC)层)上报同步(In-Sync,IS);
只要有一个参考信号(Reference Signal,RS)满足条件就上报IS。
3、如果BLER性能高于目标BLER门限如10%,则物理层向高层上报失步(Out-Of-Sync,OOS);
所有RS都满足条件才上报OOS。
4、如果连续上报OOS的数量超过一个阈值N310,则启动T310计数器。
5、如果在T310计数器运行期间,连续上报的IS数量达到一定的阈值N311,则停止T310计数器(此时仍保持RRC连接)
6、否则,RRC宣告无线链路失败(Radio Link Failure,RLF),进行RRC重建。
但是目前的无线链路监测流程不适用于通感一体化的场景。
发明内容
本申请实施例提供一种链路监测方法、装置及终端,以实现通感一体化的场景下的无线链路监测。
第一方面,提供了一种链路监测方法,包括:
终端检测目标信号;
所述终端根据所述目标信号进行测量,获取所述目标信号对应的链路性能;
其中,所述目标信号包括:第一信号,或者,所述目标信号包括:第一信号和第二信号;所述第一信号为参考信号或者感知信号;
所述链路性能包括:感知链路性能,或者,所述链路性能包括:感知链路性能和通信链路性能。
第二方面,提供了一种链路监测装置,包括:
检测模块,用于检测目标信号;
获取模块,用于根据所述目标信号进行测量,获取所述目标信号对应的链路性能;
其中,所述目标信号包括:第一信号,或者,所述目标信号包括:第一信号和第二信号;所述第一信号为参考信号或者感知信号;
所述链路性能包括:感知链路性能,或者,所述链路性能包括:感知链路性能和通信链路性能。
第三方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于检测目标信号;根据所述目标信号进行测量,获取所述目标信号对应的链路性能;
其中,所述目标信号包括:第一信号,或者,所述目标信号包括:第一信号和第二信号;所述第一信号为参考信号或者感知信号;
所述链路性能包括:感知链路性能,或者,所述链路性能包括:感知链路性能和通信链路性能。
第五方面,提供了一种链路监测系统,包括:终端和网络侧设备,所述终端可用于执行如第一方面所述的链路监测方法的步骤。
第六方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第七方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第八方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的链路监测方法的步骤。
在本申请实施例中,通过对至少一个第一信号进行测量,以至少获取感知链路性能,以此实现通感一体化的场景下的无线链路监测。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例的链路监测方法的流程示意图;
图3是一维图SNR计算示意图;
图4是本申请实施例的链路监测装置的模块示意图;
图5是本申请实施例的终端的结构示意图;
图6是本申请实施例的通信设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能 手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备和核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
下面先对本申请所涉及的相关技术进行描述如下:
一、通信感知一体化
未来移动通信系统例如超第5代(Beyound 5th Generation,B5G)系统或6G系统除了具备通信能力外,还将具备感知能力。感知能力,即具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。未来随着毫米波、太赫兹等具备高频段大带宽能力的小基站在6G网络的部署,感知的分辨率相比厘米波将明显提升,从而使得6G网络能够提供更精细的感知服务。典型的感知功能与应用场景如表1所示。
表1典型的感知功能与应用场景对照表

根据感知信号发送节点和接收节点的不同,分为6种基本感知方式,具体包括:
(1)基站自发自收感知。在这种感知方式下,基站A发送感知信号,并通过接收该感知信号的回波来进行感知测量。
(2)基站间空口感知。此时,基站B接收基站A发送的感知信号,进行感知测量。
(3)上行空口感知。此时,基站A接收终端A发送的感知信号,进行感知测量。
(4)下行空口感知。此时,终端B接收基站B发送的感知信号,进行感知测量。
(5)终端自发自收感知。此时,终端A发送感知信号,并通过接收该感知信号的回波来进行感知测量。
(6)终端间旁链路(Sidelink)感知。此时,终端B接收终端A发送的感知信号,进行感知测量。
值得注意的是,实际系统中,根据不同的感知用例和感知需求可以选择一种或多种不同的感知方式,且每种感知方式的发送节点和接收节点可以有一个或多个。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的链路监测方法、装置及终端进行详细地说明。
如图2所示,本申请实施例提供一种链路监测方法,包括:
步骤201,终端检测目标信号;
步骤202,所述终端根据所述目标信号进行测量,获取所述目标信号对应的链路性能;
其中,所述目标信号包括:第一信号,或者,所述目标信号包括:第一信号和第二信号;所述第一信号为参考信号或者感知信号;
所述链路性能包括:感知链路性能,或者,所述链路性能包括:感知链路性能和通信链路性能。
可选地,当对第一信号进行感知测量时,可以获取到第一信号对应的感知链路性能;当对第一信号进行感知测量和通信测量时,可以获取到第一信号对应的感知链路性能和通信链路性能;当对第一信号进行感知测量,对第二信号进行通信测量时,可以获取到第一信号对应的感知链路性能以及第二信号对应的通信链路性能。
需要说明的是,通过接收感知信号可以支持感知业务,例如通过接收该信号可得到感知测量量或者感知结果。
需要说明的是,通过对至少一个第一信号进行测量,以至少获取感知链路性能,以实现通感一体化的场景下的无线链路监测。
可选地,本申请实施例中所说的第一信号可以是不包含传输信息的信号,如相关技术中的LTE/NR同步和参考信号,包括同步信号和物理广播信道(Synchronization Signal and PBCH block,SSB)信号、信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)、解调参考信号(Demodulation Reference Signal,DMRS)、信道探测参考信号(Sounding Reference Signal,SRS)、定位参考信号(Positioning Reference Signal,PRS)、相位追踪参考信号(Phase Tracking Reference Signal,PTRS)等;也可以是雷达常用的单频连续波(Continuous Wave,CW)、调频连续波(Frequency Modulated CW,FMCW),以及超宽带高斯脉冲等;还可以是新设计的专用信号,具有良好的相关特性和低峰均功率比,或者新设计的通感一体化信号,既承载一定信息,同时具有较好的感知性能。例如,该新信号为至少一种专用感知信号/参考信号,和至少一种通信信号在时域和/或频域上拼接/组合/叠加而成。该第二信号与第一信号的形式类似,在此不再赘述。
可选地,本申请的另一实施例中,所述感知链路性能包括以下至少一项:
A101、感知目标关联信号分量的功率值;
例如,可以为感知径的功率值。
需要说明的是,所述感知目标关联信号分量的功率值为接收的第一信号中受感知目标影响较大的信号分量功率,可以是以下至少一项:
A1011、以接收的第一信号的频域信道响应中幅度最大的样值点对应的幅度为目标幅度计算得到的功率值,或以幅度最大的多个样值点对应的幅度为目标幅度计算得到的功率值;或以某一个指定子载波或物理资源块(Physical Resource Block,PRB)对应的样值点的幅度为目标幅度计算得到的功率值,或以多个指定子载波或PRB对应的样值点的幅度为目标幅度计算得到的功率值。
A1012、以接收的第一信号的频域信道响应的逆傅里叶变换(IFFT)结果(时延域)中幅度最大的样值点对应的幅度为目标幅度计算得到的功率值,或以幅度最大的多个样值点对应的幅度为目标幅度计算得到的功率值;
或者以特定时延范围内幅度最大的样值点对应的幅度为目标幅度计算得到的功率值,或以幅度最大的多个样值点对应的幅度为目标幅度计算得到的功率值。
A1013、以接收的第一信号的时域信道响应的傅里叶变换(FFT)结果(多普勒域)中幅度最大的样值点对应的幅度为目标幅度计算得到的功率值,或以幅度最大的多个样值点对应的幅度为目标幅度计算得到的功率值;
或者以特定多普勒范围内幅度最大的样值点对应的幅度为目标幅度计算得到的功率值,或以幅度最大的多个样值点对应的幅度为目标幅度计算得到的功率值。
A1014、以接收的第一信号的信道响应的二维傅里叶变换结果,即时延-多普勒域结果中幅度最大的样值点对应的幅度为目标幅度计算得到的功率值,或以幅度最大的多个样值点对应的幅度为目标幅度计算得到的功率值;
或者以特定时延-多普勒范围内幅度最大的样值点对应的幅度为目标幅度计算得到的功率值,或以幅度最大的多个样值点对应的幅度为目标幅度计算得到的功率值。
需要说明的是,所述幅度最大也可以是幅度超过特定门限值,所述特定门限值可以是网络侧设备指示的,也可以是终端根据噪声和/或干扰功率计算得到的。
所述特定时延/多普勒范围与感知需求相关,可以是网络侧设备指示的,也可以是终端根据感知需求得到的。
以雷达检测为例,所述感知目标关联信号分量的功率值为回波功率,回波信号功率的获取方法,可以是以下选项中的至少一项:
B11、基于回波信号快时间维FFT处理得到的时延一维图进行恒虚警检测(CFAR),以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,如图3所示;
B12、基于回波信号慢时间维FFT处理得到的多普勒一维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,同图3所示;
B13、基于回波信号二维(2D)-FFT处理得到的时延-多普勒二维图进CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度;
B14、基于回波信号3D-FFT处理得到的时延-多普勒-角度三维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度;
需要说明的是,目标信号幅度的确定方法除以上的以CFAR过门限的幅度最大样值点为目标样值点以外,还可以是,以CFAR过门限的幅度最大样值点及其最邻近的若干个过门限样值点的均值作为目标信号幅度。
A102、感知信噪比(Signal-to-Noise Ratio,SNR);
例如,该感知SNR可以是感知目标关联信号分量的功率值与噪声功率的比值。
A103、感知信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR);
例如,该感知SINR可以是感知目标关联信号分量的功率值与噪声和干扰的功率之和的比值。
具体地,所述SNR/SINR的获取方法可以是:
B21、基于回波信号快时间维FFT处理得到的时延一维图进行恒虚警检测(CFAR),以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以一维图中距离目标样值点位置±ε个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均干扰/幅度为干扰/噪声信号幅度,如图3所示,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
B22、基于回波信号慢时间维FFT处理得到的多普勒一维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以一维图中距离目标样 值点位置±η个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
B23、基于回波信号2D-FFT处理得到的时延-多普勒二维图进CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以二维图中距离目标样值点±ε(快时间维)和±η(慢时间维)个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
B24、基于回波信号3D-FFT处理得到的时延-多普勒-角度三维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以三维图中距离目标样值点±ε(快时间维)、±η(慢时间维)和±δ(角度维)个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
需要说明的是,目标信号幅度的确定方式除以上的以CFAR过门限的幅度最大样值点为目标样值点以外,还可以是,以CFAR过门限的幅度最大样值点及其最邻近的若干个过门限样值点的均值作为目标信号幅度;
需要说明的是,干扰/噪声样值点的确定方式还可以是根据上述确定的干扰/噪声样值点进一步筛选,筛选方式是:对于时延一维图,去除时延为0附近的若干个样值点,以剩下的干扰/噪声样值点作为噪声样值点;对于多普勒一维图,去除多普勒为0附近的若干个样值点,以剩下的干扰/噪声样值点为干扰/噪声样值点;对于时延-多普勒二维图,去除以时延为0附近若干个点、全部多普勒范围构成的条状范围的干扰/噪声样值点,以剩下的噪声样值点作为干扰/噪声样值点;对于时延-多普勒-角度三维图,去除以时间维0附件若干个点、全部多普勒范围和全部角度范围构成的切片状范围的干扰/噪声样值点,以剩下的干扰/噪声样值点作为干扰/噪声样值点。
A104、感知目标是否存在;
可以包括以下至少一项:
是否存在速度或多普勒预设范围内的感知目标;
是否存在距离或时延预设范围内的感知目标。
A105、感知目标存在的目标个数;
可以包括以下至少一项:
存在速度或多普勒预设范围内的感知目标的目标个数;
存在距离或时延预设范围内的感知目标的目标个数。
需要说明的是,上述的A104和A105可以是根据感知需求由其他设备(例如,其他终端,接入网设备或核心网设备)通知给终端的。
需要说明的是,判断是否有感知目标存在的方式可以是:例如,时延/多普勒一维或二维图中是否存在幅度超过特定门限值的样值点,若存在则认为检测到感知目标;时延/ 多普勒一维或二维图中幅度超过特定门限值的样值点的个数认为是感知目标的个数。
A106、感知目标的雷达截面面积(Radar cross-section,RCS)信息;
需要说明的是,该RCS信息可以是单个感知目标的RCS信息,也可以是多个感知目标的RCS信息。
A107、感知目标的谱信息;
需要说明的是,该谱信息可以包括以下至少一项:时延功率谱、多普勒功率谱、时延/距离-多普勒/速度谱、角度功率谱、时延/距离-角度谱、多普勒/速度-角度谱、时延/距离-多普勒/速度-角度谱。
A108、至少一个感知目标的时延;
A109、至少一个感知目标的距离;
A110、至少一个感知目标的多普勒;
A111、至少一个感知目标的速度;
A112、至少一个感知目标的角度信息。
可选地,所述通信链路性能包括以下至少一项:
参考信号接收功率(RSRP)、接收信号强度指示(RSSI)、预编码矩阵指示(PMI)、秩指示(RI)、信道质量指示(CQI)、SNR、SINR、比特出错概率(BER)、误块率(BLER)。
可选地,本申请的另一实施例中,所述终端根据所述目标信号进行测量,获取所述目标信号对应的链路性能的具体实现方式为:
所述终端通过物理层每隔第一周期对至少一个目标信号进行一次测量,获取所述目标信号对应的链路性能。
需要说明的是,可选地,该目标信号是由网络侧设备(例如基站)配置给终端的,即终端对网络侧设备配置的目标信号进行测量的具体实现方式为:终端通过物理层每隔第一周期对网络侧设备配置的至少一个目标信号进行一次测量。
需要说明的是,终端基于第一信号、第一信号和第二信号的参数配置信息对信号进行测量,该参数配置信息是网络侧设备为终端配置的。
需要说明的是,不同信号的参数配置信息包括以下至少一项:
C101、波形类型,例如,正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM),单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA),正交时频空(Orthogonal Time Frequency Space,OTFS),调频连续波(Frequency Modulated Continuous Wave,FMCW),脉冲信号等;
C102、子载波间隔:例如,OFDM系统的子载波间隔30KHz;
C103、保护间隔:从信号结束发送时刻到该信号的最迟回波信号被接收的时刻之间的时间间隔;该参数正比于最大感知距离;例如,可以通过2dmax/c计算得到,dmax是最大感知距离(属于感知需求),例如对于自发自收的目标信号,dmax代表目标信号收发点到信号发射点的最大距离;在某些情况下,OFDM信号循环前缀CP可以起到最小保护间隔的 作用;
C104、带宽:该参数反比于距离分辨率,可以通过c/(2Δd)得到,其中Δd是距离分辨率(属于感知需求);c是光速;
C105、Burst持续时间:该参数反比于速率分辨率(属于感知需求),该参数是目标信号的时间跨度,主要为了计算多普勒频偏;该参数可通过c/(2fcΔv)计算得到;其中,Δv是速度分辨率;fc是目标信号的载频;
C106、时域间隔:该参数可通过c/(2fcvrange)计算得到;其中,vrange是最大速率减去最小速度(属于感知需求);该参数是相邻的两个目标信号之间的时间间隔;
C107、发送信号功率,例如从-20dBm到23dBm每隔2dBm取一个值;
C108、信号格式,例如是信道探测参考信号(Sounding Reference Signal,SRS),解调参考信号(Demodulation Reference Signal,DMRS),定位参考信号(Positioning Reference Signal,PRS)等,或者其他预定义的信号,以及相关的序列格式等信息;
C109、信号方向;例如目标信号的方向或者波束信息;
C110、时间资源,例如目标信号所在的时隙索引或者时隙的符号索引;其中,时间资源分为两种,一种是一次性的时间资源,例如一个符号发送一个全向的目标信号;一种是非一次性的时间资源,例如多组周期性的时间资源或者不连续的时间资源(可包含开始时间和结束时间),每一组周期性的时间资源发送同一方向的目标信号,不同组的周期性时间资源上的波束方向不同;
C111、频率资源,包括目标信号的中心频点,带宽,RB或者子载波,Point A,起始带宽位置等;
C112、准共址(Quasi Co-Location,QCL)关系,例如目标信号包括多个资源,每个资源与一个SSB QCL,QCL包括Type A,B,C或者D;
C113、感知节点(基站或用户终端(User Equipment,UE)的)天线配置信息;
该感知节点(基站或UE的)天线配置信息包括以下至少一项:
C1131、用于发送和/或接收目标信号的天线阵元标识(Identity,ID)或者天线端口ID;
C1132、用于发送和/或接收目标信号的panel ID+阵元ID;
C1133、用于发送和/或接收目标信号的天线阵元相对天线阵列上某个局部参考点的位置信息(可以用笛卡尔坐标(x,y,z)或者球坐标表示);
C1134、用于发送和/或接收目标信号的panel相对天线阵列上某个局部参考点的位置信息(可以用笛卡尔坐标(x,y,z)或者球坐标表示),以及这些被选择panel内的用于发送目标信号的天线阵元相对panel某个统一参考点(例如panel中心点)的位置信息(可以用笛卡尔坐标(x,y,z)或者球坐标表示);
C1135、天线阵元的比特位图(bitmap)信息。例如:该bitmap使用“1”指示阵元被选择用于发送和/或接收目标信号,使用“0”表示阵元未被选择(也可反过来);
C1136、阵列panel的bitmap信息。例如:该bitmap使用“1”指示panel被选择用于 发送和/或接收目标信号,使用“0”表示阵元未被选择(也可以反过来)。以及这些被选择panel内的阵元bitmap信息;
C1137、门限信息,即用于给源节点、第一设备、候选节点任意至少一者判决所获得的感知测量量测量值是否满足第一条件的门限值。对于不同候选节点和/或候选tag,门限值可以不同;对于任意一个候选节点和/或候选tag,感知测量量及其对应门限值可以大于1个;所述第一条件为:获得感知测量量测量值的对应候选节点/候选tag可以作为目标节点/目标tag。
可选地,本申请的另一实施例中,在所述终端根据所述目标信号进行测量,获取所述目标信号对应的链路性能之后,还包括以下至少一项:
D11、若满足第一情况,终端通过物理层向高层上报第一信息;
所述第一情况包括以下一项:所述第一信号对应的感知链路性能满足第一条件;所述第一信号对应的感知链路性能满足第一条件且所述第一信号对应的通信链路性能满足第二条件;所述第一信号对应的感知链路性能满足第一条件且所述第二信号对应的通信链路性能满足第二条件;
所述第一信息用于指示所述第一信号对应的感知链路性能满足第一条件,所述第一信号对应的感知链路性能满足第一条件且所述第一信号对应的通信链路性能满足第二条件,或,所述第一信号对应的感知链路性能满足第一条件且所述第二信号对应的通信链路性能满足第二条件。
D12、若满足第二情况,终端通过物理层向高层上报第二信息;
所述第二情况包括以下一项:所述第一信号对应的感知链路性能不满足第一条件;所述第一信号对应的感知链路性能不满足第一条件和/或所述第一信号对应的通信链路性能不满足第二条件;
所述第二信息用于指示所述第一信号对应的感知链路性能不满足第一条件,或者,所述第一信号对应的感知链路性能不满足第一条件和/或所述第一信号对应的通信链路性能不满足第二条件。
D13、若满足第三情况,终端通过物理层向高层上报目标信息;
所述第三情况包括:所述第一信号对应的感知链路性能不满足第一条件和/或所述第二信号对应的通信链路性能不满足第二条件;
所述目标信息用于指示所述第一信号对应的感知链路性能不满足第一条件和/或所述第二信号对应的通信链路性能不满足第二条件。
可选地,所述若满足第三情况,终端通过物理层向高层上报目标信息,包括以下至少一项:
在所述第一信号对应的感知链路性能不满足第一条件、且所述第二信号对应的通信链路性能满足第二条件的情况下,终端通过物理层向高层上报第三信息,所述第三信息用于指示所述第一信号对应的感知链路性能不满足第一条件且所述第二信号对应的通信链路 性能满足第二条件;
在所述第一信号对应的感知链路性能满足第一条件、且所述第二信号对应的通信链路性能不满足第二条件的情况下,终端通过物理层向高层上报第四信息,所述第四信息用于指示所述第一信号对应的感知链路性能满足第一条件且所述第二信号对应的通信链路性能不满足第二条件;
在所述第一信号对应的感知链路性能不满足第一条件、且所述第二信号对应的通信链路性能不满足第二条件的情况下,终端通过物理层向高层上报第五信息,所述第五信息用于指示所述第一信号对应的感知链路性能不满足第一条件且所述第二信号对应的通信链路性能不满足第二条件。
由上述可知,终端的上报情况包括如下情况:
D21、在所述第一信号对应的感知链路性能满足第一条件的情况下,终端通过物理层向高层上报第一信息;
需要说明的是,此种情况下,所述第一信息用于指示所述第一信号对应的感知链路性能满足第一条件。
D22、在所述第一信号对应的感知链路性能不满足第一条件的情况下,终端通过物理层向高层上报第二信息;
需要说明的是,此种情况下,所述第二信息用于指示所述第一信号对应的感知链路性能不满足第一条件。
D23、在所述第一信号对应的感知链路性能满足第一条件且所述第一信号对应的通信链路性能满足第二条件的情况下,终端通过物理层向高层上报第一信息;
需要说明的是,此种情况下,所述第一信息用于指示所述第一信号对应的感知链路性能满足第一条件且所述第一信号对应的通信链路性能满足第二条件。
D24、在所述第一信号对应的感知链路性能不满足第一条件和/或所述第一信号对应的通信链路性能不满足第二条件的情况下,终端通过物理层向高层上报第二信息;
需要说明的是,此种情况下,所述第二信息用于指示所述第一信号对应的感知链路性能不满足第一条件和/或所述第一信号对应的通信链路性能不满足第二条件。
D25、在所述第一信号对应的感知链路性能满足第一条件且所述第二信号对应的通信链路性能满足第二条件的情况下,终端通过物理层向高层上报第一信息;
需要说明的是,此种情况下,所述第一信息用于指示所述第一信号对应的感知链路性能满足第一条件且所述第二信号对应的通信链路性能满足第二条件。
D26、在所述第一信号对应的感知链路性能不满足第一条件和/或所述第二信号对应的通信链路性能不满足第二条件的情况下,终端通过物理层向高层上报目标信息;
需要说明的是,此种情况下,所述目标信息用于指示所述第一信号对应的感知链路性能不满足第一条件和/或所述第二信号对应的通信链路性能不满足第二条件。
可选地,本申请的另一实施例中,在所述第一信号对应的感知链路性能不满足第一条 件和/或所述第二信号对应的通信链路性能不满足第二条件的情况下,终端通过物理层向高层上报目标信息的实现方式,包括以下至少一项:
D261、在所述第一信号对应的感知链路性能不满足第一条件、且所述第二信号对应的通信链路性能满足第二条件的情况下,终端通过物理层向高层上报第三信息,所述第三信息用于指示所述第一信号对应的感知链路性能不满足第一条件且所述第二信号对应的通信链路性能满足第二条件;
D262、在所述第一信号对应的感知链路性能满足第一条件、且所述第二信号对应的通信链路性能不满足第二条件的情况下,终端通过物理层向高层上报第四信息,所述第四信息用于指示所述第一信号对应的感知链路性能满足第一条件且所述第二信号对应的通信链路性能不满足第二条件;
D263、在所述第一信号对应的感知链路性能不满足第一条件、且所述第二信号对应的通信链路性能不满足第二条件的情况下,终端通过物理层向高层上报第五信息,所述第五信息用于指示所述第一信号对应的感知链路性能不满足第一条件且所述第二信号对应的通信链路性能不满足第二条件。
这里需要说明的是,上述的D21和D22为一组,D23和D24为一组,D25和D26为一组,在实际应用时,终端如何进行信号的测量,则采用与测量对应的信息上报方式,例如,当终端测量第一信号获取感知链路性能的情况下,使用上述的D21和D22;当终端测量第一信号获取感知链路性能和通信链路性能的情况下,使用上述的D23和D24;当终端测量第一信号获取感知链路性能,和测量第二信号获取通信链路性能的情况下,使用上述的D25和D26。
这里需要说明的是,该第一条件包括以下至少一项:
E11、一个第一信号的感知目标关联信号分量的功率值满足第一门限;
E12、至少一个第一信号的SNR满足第二门限;
E13、至少一个第一信号的SINR满足第三门限;
E14、至少检测到Y个感知目标;
Y是基站配置的,Y为正整数。
需要说明的是,此种情况对应同时检测多个目标的情况。
E15、基于监测所确定的感知目标对应的比特位图(bitmap)与网络侧设备配置的预设比特位图一致;
例如,bitmap的每bit的位置代表某一个目标,bit为1代表检测到了该目标,为0代表没有检测到该目标。
需要说明的是,此种情况对应同时检测多个目标的情况。
E16、感知目标的RCS满足第一预设条件;
需要说明的是,该RCS可以是单个感知目标的RCS信息,也可以是多个感知目标的RCS信息。
例如,该第一预设条件为RCS达到K1平方米,K1为正实数。
E17、感知目标的谱信息满足第二预设条件;
例如,感知目标的距离-速率谱满足第二预设条件,此时的第二预设条件是距离-速率谱上能分辨出感知目标(距离-速率谱有一个点或者一个区域的幅度达到预设值);或者,感知目标的时延-多普勒谱满足第二预设条件,此时的第二预设条件是时延-多普勒谱上能分辨出感知目标(时延-多普勒谱有一个点或者一个区域的幅度达到预设值);
E18、感知目标的第一参量满足第三预设条件,所述第一参量包括以下至少一项:时延、距离、多普勒、速度、角度信息;
需要说明的是,该第一参量可以是单个感知目标的第一参量,也可以是多个感知目标的第一参量。
例如,感知目标的时延满足第三预设条件(例如时延满足一个区间值);再例如,感知目标的距离满足第三预设条件(例如距离满足一个区间值);再例如,感知目标的多普勒满足第三预设条件(例如多普勒满足一个区间值);再例如,感知目标的速度满足第三预设条件(例如速度满足一个区间值);再例如,感知目标的角度信息满足第三预设条件(例如角度信息满足一个区间值)。
可选地,因所述通信链路性能包括RSRP、RSSI、PMI、RI、CQI、SNR、SINR、BER、BLER等参数中的至少一项,该第二条件即为与特定参数对应的门限值,例如,通信链路性能不满足第二条件可以是RSRP低于预设值例如-90dBm,或者,SNR或SINR低于预设值如5dB。
下面分别在不同的情况下,对上面不同的信息上报方式的具体实现情况进行详细说明如下。
一、在D21和D22的情况下
需要说明的是,此种情况下只对第一信号进行测量,获取第一信号对应的感知链路性能。
终端分别根据对第一信号进行测量得到的感知链路性能,由物理层向高层(例如RRC层)上报第一信息或第二信息;在满足第一特定条件的情况下,启动第一计时器;在第一计时器超时的情况下,确定感知链路失败;
其中,所述第一特定条件包括以下一项:
所述终端通过物理层向高层连续上报第二信息的数量大于或等于第一阈值;
在连续的N1次测量中,所述终端通过物理层向高层上报的第二信息的数量大于或等于第二阈值,N1为正整数。
具体的,N1为网络侧设备配置的,第一计时器的计时时长也是网络侧设备配置的。
可选地,在所述第一计时器运行期间,在满足第二特定条件的情况下,停止第一计时器;
其中,所述第二特定条件包括以下一项:
所述终端通过物理层向高层连续上报第一信息的数量大于或等于第四阈值;
在连续的N2次测量中,所述终端通过物理层向高层上报的第一信息的数量大于或等于第五阈值,N2为正整数;
具体的,N2为网络侧设备配置的。
在确定感知链路失败之后,终端进行无线资源控制RRC重建;或者终端向网络侧设备上报测量相关信息,所述测量相关信息包括以下至少一项:感知链路失败、感知链路失败的原因、感知链路性能的测量值、通信链路失败、通信链路失败的原因、通信链路性能的测量值。
二、在D23和D24的情况下
需要说明的是,此种情况下对第一信号进行测量,获取第一信号对应的感知链路性能和第一信号对应的通信链路性能。
终端分别根据对第一信号进行测量得到的感知链路性能和通信链路性能,由物理层向高层(例如RRC层)上报第一信息或第二信息;在满足第一特定条件的情况下,启动第一计时器;在第一计时器超时的情况下,确定感知链路失败;
其中,所述第一特定条件包括以下一项:
所述终端通过物理层向高层连续上报第二信息的数量大于或等于第一阈值;
在连续的N1次测量中,所述终端通过物理层向高层上报的第二信息的数量大于或等于第二阈值,N1为正整数。
具体的,N1为网络侧设备配置的,第一计时器的计时时长也是网络侧设备配置的。
可选地,在所述第一计时器运行期间,在满足第二特定条件的情况下,停止第一计时器;
其中,所述第二特定条件包括以下一项:
所述终端通过物理层向高层连续上报第一信息的数量大于或等于第四阈值;
在连续的N2次测量中,所述终端通过物理层向高层上报的第一信息的数量大于或等于第五阈值,N2为正整数;
具体的,N2为网络侧设备配置的。
在确定感知链路失败之后,终端进行无线资源控制RRC重建;或者终端向网络侧设备上报测量相关信息,所述测量相关信息包括以下至少一项:感知链路失败、感知链路失败的原因、感知链路性能的测量值、通信链路失败、通信链路失败的原因、通信链路性能的测量值。
三、在D25和D26的情况下
需要说明的是,此种情况下对第一信号和第二信号进行测量,获取第一信号对应的感知链路性能和第二信号对应的通信链路性能。
终端分别根据对第一信号进行测量得到的感知链路性能,对第二信号进行测量得到通信链路性能,由物理层向高层(例如RRC层)上报第一信息或目标信息;在满足第一特 定条件的情况下,启动第一计时器;在第一计时器超时的情况下,确定感知链路失败;
其中,所述第一特定条件包括:
所述终端通过物理层向高层连续上报的目标信息的数量大于或等于第三阈值;
通常情况下,该第一特定条件指的是:所述终端通过物理层向高层连续上报的第三信息第四信息或第五信息的数量大于或等于第三阈值。
可选地,在所述第一计时器运行期间,在满足第二特定条件的情况下,停止第一计时器;
其中,所述第二特定条件包括一项:
所述终端通过物理层向高层连续上报的第一信息或第一信息及目标信息的数量大于或等于第六阈值;
需要说明的是,此种情况下可以理解为所述终端通过物理层向高层连续上报的第一信息的数量大于或等于第六阈值;或者,所述终端通过物理层向高层连续上报的第一信息和第三信息的数量大于或等于第六阈值;或者,所述终端通过物理层向高层连续上报的第一信息和第四信息的数量大于或等于第六阈值;或者,所述终端通过物理层向高层连续上报的第一信息和第五信息的数量大于或等于第六阈值;或者,所述终端通过物理层向高层连续上报的第一信息、第三信息和第四信息的数量大于或等于第六阈值;或者,所述终端通过物理层向高层连续上报的第一信息、第三信息和第五信息的数量大于或等于第六阈值;或者,所述终端通过物理层向高层连续上报的第一信息、第四信息和第五信息的数量大于或等于第六阈;或者,所述终端通过物理层向高层连续上报的第一信息、第三信息、第四信息和第五信息的数量大于或等于第六阈值。
在确定感知链路失败之后,终端进行无线资源控制RRC重建,例如终端向网络侧发送随机接入的前导码;或者终端向网络侧设备上报测量相关信息,所述测量相关信息包括以下至少一项:感知链路失败、感知链路失败的原因、感知链路性能的测量值、通信链路失败、通信链路失败的原因、通信链路性能的测量值。
可选地,本申请的另一实施例中,在步骤201之后,还包括:
在所述第一信号对应的感知链路性能不满足第一条件的情况下,向网络侧设备发送第一消息,所述第一消息用于指示RRC连接释放请求;
所述第一消息中携带第一指示信息,所述第一指示信息用于指示RRC连接释放原因。
可选地,所述第一消息中还包括:感知链路性能的测量结果。
可选地,所述RRC连接释放原因包括:所述第一信号对应的感知链路性能不满足第一条件。
需要说明的是,此种情况是在感知链路性能不满足要求时,触发RRC连接释放的过程。即在RRC连接释放时,向网络侧设备通知感知链路性能未达到要求。
下面在实际应用中对本申请实施例进行详细说明如下。
应用情况1、感知链路监测流程
感知链路监测流程:评估信号是否满足感知链路性能,若不满足条件的次数达到预设次数,则进行RRC重建。
需要说明的是,此种情况下的通信链路监测流程和感知链路监测流程分别独立进行的;两套流程的参数是独立配置的;如果任意一个流程的计时器(如感知链路监测流程的T1(对应上述的第一计时器),或者通信链路监测流程的T310)超时,则RRC层宣告链路失败,UE进行RRC重建。
主要包括如下过程:
S21、UE的物理层每隔固定周期(该周期是基站配置的)测量一次基站配置的N个(N>=1)第一信号以评估其感知链路性能;其中,第一信号的参数配置信息是基站配置的。
S22、如果所述感知链路性能满足第一条件,则UE的物理层向高层(RRC层)上报满足条件(即第一信息),所述目标门限是基站配置的;
否则,如果所述感知链路性能无法满足第一条件,则物理层向高层上报不满足条件(即第二信息)
S23、如果连续上报第二信息的数量超过一个阈值N1(或者,在连续的N0次测量中上报第二信息的数量超过一个阈值N1,N0>N1),则启动第一计时器;
N1是基站配置的;第一计时器的计时时长是基站配置的。
S24、如果在第一计时器运行期间,连续上报的第一信息数量达到一定的阈值N2(或者,在连续的N3次测量中上报第一信息的数量超过N2,N3>N2),则停止第一计时器(此时仍保持RRC连接);
N2是基站配置的。
S25、如果第一计时器超时,RRC层宣告感知链路失败。
S26、UE进行RRC重建,
或者,
UE向基站上报感知链路失败,和/或,感知链路失败的原因(即步骤S12的原因),和/或感知链路性能的测量值,以便基站触发切换。
应用情况2、感知链路和通信链路的联合监测的第一种情况
感知链路和通信链路的联合监测流程:评估第一信号是否满足感知链路性能和通信链路性能,若不满足并达到预设次数,则进行RRC重建;
主要包括如下过程:
S21、UE的物理层每隔固定周期(该周期是基站配置的)测量一次基站配置的第一信号以评估其感知链路性能和通信链路性能;第一信号的参数配置信息是基站配置的。
UE测量一个或多个第一信号。
S22、如果一个或多个第一信号的感知链路性能满足第一条件且相同的第一信号的通信链路性能满足第二条件,或者,一个或多个第一信号的感知链路性能满足感知条件且另 外的一个或多个第一信号的通信链路性能满足通信条件,则UE的物理层向高层(RRC层)上报第一信息;否则,上报第二信息;
需要说明的是,只要有一个第一信号满足通信条件就意味着通信链路性能满足通信条件;
S23、如果连续上报第二信息的数量超过一个阈值N1,则启动第一计时器;
N1是基站配置的;第一计时器的计时时长是基站配置的。
S24、如果在第一计时器运行期间,连续上报的第一信息的数量达到一定的阈值N2,则停止第一计时器(此时仍保持RRC连接);
N2是基站配置的;
S25、如果T1计数器超时,RRC层宣告链路失败;
S26、UE进行RRC重建,
或者,
UE向基站上报链路失败,和/或,链路失败的原因(即步骤S22的原因),和/或链路性能的测量值,以便基站触发切换。
应用情况3、感知链路和通信链路的联合监测的第二种情况
感知链路和通信链路的联合监测流程(共四种状态):评估信号是否满足感知链路性能和通信链路性能,若两个都不满足或者不满足任意一个并达到预设次数,则进行RRC重建;
主要包括如下过程:
S31、UE的物理层每隔固定周期(该周期是基站配置的)测量一次基站配置的第一信号以评估其感知链路性能;
可选的,UE还测量基站配置的第二信号以评估其通信链路性能;第一信号和第二信号的参数配置信息是基站配置的;
需要说明的是,第一信号和第二信号可以是相同的或者不同的信号,或者第一信号和第二信号是不同时域或不同频域或不同码域的同一种信号(即分别对应:通信和感知的链路性能评估共用一个参考信号,和通信和感知的链路性能评估分别使用不同参考信号两种情况);
S32、如果一个或多个第一信号的感知链路性能满足感知第一条件且第二信号的通信链路性能满足第二条件,则UE的物理层向高层(RRC层)上报第一信息;
其中,只要有一个第二信号满足第二条件就意味着通信链路性能满足通信条件;
如果第一信号的感知链路性能不满足第一条件且第二信号的通信链路性能满足第二条件,则UE的物理层向高层(RRC层)上报第三信息;
如果第一信号的感知链路性能满足感知条件且第二信号的通信链路性能不满足第二条件,则UE的物理层向高层(RRC层)上报第四信息;
如果第一信号的感知链路性能不满足第一条件且第二信号的通信链路性能不满足第 二条件,则UE的物理层向高层(RRC层)上报第五信息。
S33、如果连续上报第五信息、第四信息或第三信息的数量超过一个阈值N1,则启动第一计时器;
N1是基站配置的;第一计时器的计时时长是基站配置的。
S34、如果在第一计时器运行期间,连续上报的第一信息的数量(或者第一信息与第三信息、第四信息、第五信息中的至少一项的数量之和)达到一定的阈值N2,则停止第一计时器(此时仍保持RRC连接);
N2是基站配置的;
S35、如果T1计数器超时,RRC层宣告链路失败;
S36、UE进行RRC重建,
或者,
UE向基站上报链路失败,和/或,链路失败的原因(即步骤S32的原因,以及状态A,B,C,D的信息),和/或,链路性能的测量值,以便基站触发切换。
应用情况4、UE触发RRC连接释放,触发的原因可以是“感知性能达不到需求”;
主要包括如下过程:
S41、UE向基站发送第一消息,第一消息用于指示:RRC连接释放请求;
S42、第一消息还可以携带释放辅助指示(Release assistance Indication)标识(例如RRC连接释放的原因);其中,RRC连接释放的原因包括:UE测量第一信号得到的感知链路性能无法满足第一条件;
此外,RRC释放的原因还包括:UE的位置、速度、面板、剩余电量、朝向等的变化;
第一消息还可以包括:感知链路性能的测量结果;
需要说明的是,在S41之前,UE需要对第一信号进行测量得到对应的感知链路性能。
可选地,本申请实施例所说的所述感知测量量包括以下至少一项:
Q11、第一级测量量,所述第一级测量量包括以下至少一项:接收对象的频域信道响应的I路数据与Q路数据进行运算的结果(即I路数据与Q路数据的运算结果)、接收对象的频域信道响应的结果(例如,该频域信道响应的结果可以通过信道估计的方式获取;通常情况下,该频域信道响应的结果为复数形式)、接收对象的频域信道响应的幅度、接收对象的频域信道响应的相位、接收对象的频域信道响应的I路数据、接收对象的频域信道响应的Q路数据,该接收对象包括接收信号或接收信道;
可选地,上述所说的运算可以包括加、减、乘、除、矩阵加减乘、矩阵转置、三角关系运算、平方根运算和幂次运算等,以及上述运算结果的门限检测结果、最大/最小值提取结果等;运算还包括快速傅里叶变换(Fast Fourier Transform,FFT)/快速傅里叶逆变换(Inverse Fast Fourier Transform,IFFT)、离散傅里叶变换(Discrete Fourier Transform,DFT)/离散傅里叶逆变换(Inverse Discrete Fourier Transform,IDFT)、2D-FFT、3D-FFT、匹配滤波、自相关运算、小波变换和数字滤波等,以及上述运算结果的门限检测结果、最 大/最小值提取结果等。
例如,I路数据和Q路数据进行运算的结果可以根据I×cos(theta)+Q×sin(theta)确定得到,其中,theta为某一角度值,I代表I路数据,Q代表Q路数据。
Q12、第二级测量量,所述第二级测量量包括以下至少一项:时延、多普勒、角度、信号强度;
该第二级测量量可以看作是基本测量量。
Q13、第三级测量量,所述第三级测量量包括以下至少一项:感知目标的距离、感知目标的速度、感知目标的朝向、感知目标的空间位置、感知目标的加速度;
该第三级测量量可以看作是感知目标的基本属性/状态。
Q14、第四级测量量(进阶属性/状态),包括:目标是否存在、轨迹、动作、表情、生命体征、数量、成像结果、天气、空气质量、形状、材质、成分。
可选地,上述感知测量量还可以包括对应的标签信息,该标签信息包括以下至少一项:
Q301、感知信号标识信息
Q302、感知测量配置标识信息
Q303、感知业务信息(例如,感知业务ID)
Q304、数据订阅ID
Q305、测量量用途(通信、感知、通感)
Q306、时间信息
Q307、感知节点信息(例如,UE ID、节点位置、设备朝向)
Q308、感知链路信息(例如,感知链路序号、收发节点标识)
Q309、测量量说明信息(形式例如幅度、相位、复数,资源信息例如天线/天线对/天线组、PRB、符号)
Q310、测量量指标信息(例如,SNR、感知SNR)。
可选地,本申请实施例中所提到的感知结果,包括以下至少一项:
感知目标的形状、感知目标的轮廓、感知目标是否存在、感知目标的轨迹、感知目标的动作、感知目标的表情、感知目标的生命体征、感知目标的数量、感知目标的成像结果、天气、空气质量、感知目标的材质、感知目标的成分、感知目标的手势、感知目标的呼吸频率、感知目标的心跳频率、感知目标的睡眠质量。
综上可知,本申请实施例给出了一种感知链路监测流程,并且给出了感知和通信的联合链路监测流程,能及时发现链路的感知性能不满足需求,从而寻找新的链路来满足感知需求。
本申请实施例提供的链路监测方法,执行主体可以为链路监测装置。本申请实施例中以链路监测装置执行链路监测方法为例,说明本申请实施例提供的链路监测装置。
如图4所示,本申请实施例提供一种链路监测装置400,应用于终端,包括:
检测模块401,用于检测目标信号;
获取模块,用于根据所述目标信号进行测量,获取所述目标信号对应的链路性能;
其中,所述目标信号包括:第一信号,或者,所述目标信号包括:第一信号和第二信号;所述第一信号为参考信号或者感知信号;
所述链路性能包括:感知链路性能,或者,所述链路性能包括:感知链路性能和通信链路性能。
可选地,所述监测模块401,用于:
通过物理层每隔第一周期对至少一个目标信号进行一次测量,获取所述目标信号对应的链路性能。
可选地,在所述获取模块根据所述目标信号进行测量,获取所述目标信号对应的链路性能之后,还包括以下至少一项:
第一上报模块,用于若满足第一情况,通过物理层向高层上报第一信息;
第二上报模块,用于若满足第二情况,通过物理层向高层上报第二信息;
第三上报模块,用于若满足第三情况,通过物理层向高层上报目标信息;
其中,所述第一情况包括以下一项:所述第一信号对应的感知链路性能满足第一条件;所述第一信号对应的感知链路性能满足第一条件且所述第一信号对应的通信链路性能满足第二条件;所述第一信号对应的感知链路性能满足第一条件且所述第二信号对应的通信链路性能满足第二条件;
所述第一信息用于指示所述第一信号对应的感知链路性能满足第一条件,所述第一信号对应的感知链路性能满足第一条件且所述第一信号对应的通信链路性能满足第二条件,或,所述第一信号对应的感知链路性能满足第一条件且所述第二信号对应的通信链路性能满足第二条件;
所述第二情况包括以下一项:所述第一信号对应的感知链路性能不满足第一条件;所述第一信号对应的感知链路性能不满足第一条件和/或所述第一信号对应的通信链路性能不满足第二条件;
所述第二信息用于指示所述第一信号对应的感知链路性能不满足第一条件,或者,所述第一信号对应的感知链路性能不满足第一条件和/或所述第一信号对应的通信链路性能不满足第二条件;
所述第三情况包括:所述第一信号对应的感知链路性能不满足第一条件和/或所述第二信号对应的通信链路性能不满足第二条件;
所述目标信息用于指示所述第一信号对应的感知链路性能不满足第一条件和/或所述第二信号对应的通信链路性能不满足第二条件。
可选地,所述第三上报模块,用于实现以下至少一项:
在所述第一信号对应的感知链路性能不满足第一条件、且所述第二信号对应的通信链路性能满足第二条件的情况下,通过物理层向高层上报第三信息,所述第三信息用于指示所述第一信号对应的感知链路性能不满足第一条件且所述第二信号对应的通信链路性能 满足第二条件;
在所述第一信号对应的感知链路性能满足第一条件、且所述第二信号对应的通信链路性能不满足第二条件的情况下,通过物理层向高层上报第四信息,所述第四信息用于指示所述第一信号对应的感知链路性能满足第一条件且所述第二信号对应的通信链路性能不满足第二条件;
在所述第一信号对应的感知链路性能不满足第一条件、且所述第二信号对应的通信链路性能不满足第二条件的情况下,通过物理层向高层上报第五信息,所述第五信息用于指示所述第一信号对应的感知链路性能不满足第一条件且所述第二信号对应的通信链路性能不满足第二条件。
可选地,所述装置,还包括:
启动模块,用于在满足第一特定条件的情况下,启动第一计时器;
确定模块,用于在第一计时器超时的情况下,确定感知链路失败;
其中,所述第一特定条件包括以下至少一项:
所述终端通过物理层向高层连续上报第二信息的数量大于或等于第一阈值;
在连续的N1次测量中,所述终端通过物理层向高层上报的第二信息的数量大于或等于第二阈值,N1为正整数;
所述终端通过物理层向高层连续上报的目标信息的数量大于或等于第三阈值。
可选地,所述装置,还包括:
停止模块,用于在所述第一计时器运行期间,在满足第二特定条件的情况下,停止第一计时器;
其中,所述第二特定条件包括以下至少一项:
所述终端通过物理层向高层连续上报第一信息的数量大于或等于第四阈值;
在连续的N2次测量中,所述终端通过物理层向高层上报的第一信息的数量大于或等于第五阈值,N2为正整数;
所述终端通过物理层向高层连续上报的第一信息或第一信息及目标信息的数量大于或等于第六阈值。
可选地,在所述确定模块确定感知链路失败之后,还包括:
重建模块,用于进行无线资源控制RRC重建;
第四上报模块,用于向网络侧设备上报测量相关信息,所述测量相关信息包括以下至少一项:感知链路失败、感知链路失败的原因、感知链路性能的测量值、通信链路失败、通信链路失败的原因、通信链路性能的测量值。
可选地,所述装置,还包括:
发送模块,用于在所述第一信号对应的感知链路性能不满足第一条件的情况下,向网络侧设备发送第一消息,所述第一消息用于指示RRC连接释放请求;
所述第一消息中携带第一指示信息,所述第一指示信息用于指示RRC连接释放原因。
可选地,所述第一消息中还包括:感知链路性能的测量结果。
可选地,所述RRC连接释放原因包括:所述第一信号对应的感知链路性能不满足第一条件。
可选地,所述第一条件包括以下至少一项:
至少一个第一信号的感知目标关联信号分量的功率值满足第一门限;
至少一个第一信号的感知信噪比SNR满足第二门限;
至少一个第一信号的感知信号与干扰加噪声比SINR满足第三门限;
至少检测到Y个感知目标;
基于监测所确定的感知目标对应的比特位图与网络侧设备配置的预设比特位图一致;
感知目标的雷达截面面积RCS满足第一预设条件;
感知目标的谱信息满足第二预设条件;
感知目标的第一参量满足第三预设条件,所述第一参量包括以下至少一项:时延、距离、多普勒、速度、角度信息;
其中,Y为正整数。
可选地,所述感知链路性能包括以下至少一项:
感知目标关联信号分量的功率值;
感知SNR;
感知SINR;
感知目标是否存在;
感知目标存在的目标个数;
感知目标的RCS信息;
感知目标的谱信息;
至少一个感知目标的时延;
至少一个感知目标的距离;
至少一个感知目标的多普勒;
至少一个感知目标的速度;
至少一个感知目标的角度信息。
可选地,所述通信链路性能包括以下至少一项:
参考信号接收功率RSRP、接收信号强度指示RSSI、预编码矩阵指示PMI、秩指示RI、信道质量指示CQI、SNR、SINR、比特出错概率BER、误块率BLER。
需要说明的是,该装置实施例是与上述方法对应的装置,上述方法实施例中的所有实现方式均适用于该装置实施例中,也能达到相同的技术效果,在此不再赘述。
本申请实施例提供的检测装置能够实现图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例中的链路监测装置可以是电子设备,例如具有操作系统的电子设备,也 可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的链路监测装置能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于检测目标信号;根据所述目标信号进行测量,获取所述目标信号对应的链路性能;
其中,所述目标信号包括:第一信号,或者,所述目标信号包括:第一信号和第二信号;所述第一信号为参考信号或者感知信号;
所述链路性能包括:感知链路性能,或者,所述链路性能包括:感知链路性能和通信链路性能。
可选地,所述处理器,用于:
通过物理层每隔第一周期对至少一个目标信号进行一次测量,获取所述目标信号对应的链路性能。
可选地,所述通信接口还用于实现以下至少一项:
若满足第一情况,通过物理层向高层上报第一信息;
若满足第二情况,通过物理层向高层上报第二信息;
若满足第三情况,通过物理层向高层上报目标信息;
其中,所述第一情况包括以下一项:所述第一信号对应的感知链路性能满足第一条件;所述第一信号对应的感知链路性能满足第一条件且所述第一信号对应的通信链路性能满足第二条件;所述第一信号对应的感知链路性能满足第一条件且所述第二信号对应的通信链路性能满足第二条件;
所述第一信息用于指示所述第一信号对应的感知链路性能满足第一条件,所述第一信号对应的感知链路性能满足第一条件且所述第一信号对应的通信链路性能满足第二条件,或,所述第一信号对应的感知链路性能满足第一条件且所述第二信号对应的通信链路性能满足第二条件;
所述第二情况包括以下一项:所述第一信号对应的感知链路性能不满足第一条件;所述第一信号对应的感知链路性能不满足第一条件和/或所述第一信号对应的通信链路性能不满足第二条件;
所述第二信息用于指示所述第一信号对应的感知链路性能不满足第一条件,或者,所述第一信号对应的感知链路性能不满足第一条件和/或所述第一信号对应的通信链路性能不满足第二条件;
所述第三情况包括:所述第一信号对应的感知链路性能不满足第一条件和/或所述第二信号对应的通信链路性能不满足第二条件;
所述目标信息用于指示所述第一信号对应的感知链路性能不满足第一条件和/或所述第二信号对应的通信链路性能不满足第二条件。
可选地,所述通信接口,用于实现以下至少一项:
在所述第一信号对应的感知链路性能不满足第一条件、且所述第二信号对应的通信链路性能满足第二条件的情况下,通过物理层向高层上报第三信息,所述第三信息用于指示所述第一信号对应的感知链路性能不满足第一条件且所述第二信号对应的通信链路性能满足第二条件;
在所述第一信号对应的感知链路性能满足第一条件、且所述第二信号对应的通信链路性能不满足第二条件的情况下,通过物理层向高层上报第四信息,所述第四信息用于指示所述第一信号对应的感知链路性能满足第一条件且所述第二信号对应的通信链路性能不满足第二条件;
在所述第一信号对应的感知链路性能不满足第一条件、且所述第二信号对应的通信链路性能不满足第二条件的情况下,通过物理层向高层上报第五信息,所述第五信息用于指示所述第一信号对应的感知链路性能不满足第一条件且所述第二信号对应的通信链路性能不满足第二条件。
可选地,所述处理器,还用于:
在满足第一特定条件的情况下,启动第一计时器;
在第一计时器超时的情况下,确定感知链路失败;
其中,所述第一特定条件包括以下至少一项:
所述终端通过物理层向高层连续上报第二信息的数量大于或等于第一阈值;
在连续的N1次测量中,所述终端通过物理层向高层上报的第二信息的数量大于或等于第二阈值,N1为正整数;
所述终端通过物理层向高层连续上报的目标信息的数量大于或等于第三阈值。
可选地,所述处理器,还用于:
在所述第一计时器运行期间,在满足第二特定条件的情况下,停止第一计时器;
其中,所述第二特定条件包括以下至少一项:
所述终端通过物理层向高层连续上报第一信息的数量大于或等于第四阈值;
在连续的N2次测量中,所述终端通过物理层向高层上报的第一信息的数量大于或等于第五阈值,N2为正整数;
所述终端通过物理层向高层连续上报的第一信息或第一信息及目标信息的数量大于或等于第六阈值。
可选地,所述处理器,还用于:
进行无线资源控制RRC重建;
所述通信接口用于向网络侧设备上报测量相关信息,所述测量相关信息包括以下至少一项:感知链路失败、感知链路失败的原因、感知链路性能的测量值、通信链路失败、通 信链路失败的原因、通信链路性能的测量值。
可选地,所述通信接口,还用于:
在所述第一信号对应的感知链路性能不满足第一条件的情况下,向网络侧设备发送第一消息,所述第一消息用于指示RRC连接释放请求;
所述第一消息中携带第一指示信息,所述第一指示信息用于指示RRC连接释放原因。
可选地,所述第一消息中还包括:感知链路性能的测量结果。
可选地,所述RRC连接释放原因包括:所述第一信号对应的感知链路性能不满足第一条件。
可选地,所述第一条件包括以下至少一项:
至少一个第一信号的感知目标关联信号分量的功率值满足第一门限;
至少一个第一信号的感知信噪比SNR满足第二门限;
至少一个第一信号的感知信号与干扰加噪声比SINR满足第三门限;
至少检测到Y个感知目标;
基于监测所确定的感知目标对应的比特位图与网络侧设备配置的预设比特位图一致;
感知目标的雷达截面面积RCS满足第一预设条件;
感知目标的谱信息满足第二预设条件;
感知目标的第一参量满足第三预设条件,所述第一参量包括以下至少一项:时延、距离、多普勒、速度、角度信息;
其中,Y为正整数。
可选地,所述感知链路性能包括以下至少一项:
感知目标关联信号分量的功率值;
感知SNR;
感知SINR;
感知目标是否存在;
感知目标存在的目标个数;
感知目标的RCS信息;
感知目标的谱信息;
至少一个感知目标的时延;
至少一个感知目标的距离;
至少一个感知目标的多普勒;
至少一个感知目标的速度;
至少一个感知目标的角度信息。
可选地,所述通信链路性能包括以下至少一项:
参考信号接收功率RSRP、接收信号强度指示RSSI、预编码矩阵指示PMI、秩指示RI、信道质量指示CQI、SNR、SINR、比特出错概率BER、误块率BLER。
该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图5为实现本申请实施例的一种终端的硬件结构示意图。
该终端500包括但不限于:射频单元501、网络模块502、音频输出单元503、输入单元504、传感器505、显示单元506、用户输入单元507、接口单元508、存储器509、以及处理器510等中的至少部分部件。
本领域技术人员可以理解,终端500还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图5中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元504可以包括图形处理器(Graphics Processing Unit,GPU)5041和麦克风5042,图形处理器5041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元506可包括显示面板5061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板5061。用户输入单元507包括触控面板5071以及其他输入设备5072。触控面板5071,也称为触摸屏。触控面板5071可包括触摸检测装置和触摸控制器两个部分。其他输入设备5072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元501将来自网络侧设备的下行数据接收后,给处理器510处理;另外,将上行的数据发送给网络侧设备。通常,射频单元501包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器509可用于存储软件程序或指令以及各种数据。存储器509可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器509可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器510可包括一个或多个处理单元;可选的,处理器510可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
其中,处理器510用于实现:
检测目标信号;
根据所述目标信号进行测量,获取所述目标信号对应的链路性能;
其中,所述目标信号包括:第一信号,或者,所述目标信号包括:第一信号和第二信号;所述第一信号为参考信号或者感知信号;
所述链路性能包括:感知链路性能,或者,所述链路性能包括:感知链路性能和通信链路性能。
可选地,所述处理器510,用于:
通过物理层每隔第一周期对至少一个目标信号进行一次测量,获取所述目标信号对应的链路性能。
可选地,所述射频单元501还用于实现以下至少一项:
若满足第一情况,通过物理层向高层上报第一信息;
若满足第二情况,通过物理层向高层上报第二信息;
若满足第三情况,通过物理层向高层上报目标信息;
其中,所述第一情况包括以下一项:所述第一信号对应的感知链路性能满足第一条件;所述第一信号对应的感知链路性能满足第一条件且所述第一信号对应的通信链路性能满足第二条件;所述第一信号对应的感知链路性能满足第一条件且所述第二信号对应的通信链路性能满足第二条件;
所述第一信息用于指示所述第一信号对应的感知链路性能满足第一条件,所述第一信号对应的感知链路性能满足第一条件且所述第一信号对应的通信链路性能满足第二条件,或,所述第一信号对应的感知链路性能满足第一条件且所述第二信号对应的通信链路性能满足第二条件;
所述第二情况包括以下一项:所述第一信号对应的感知链路性能不满足第一条件;所述第一信号对应的感知链路性能不满足第一条件和/或所述第一信号对应的通信链路性能不满足第二条件;
所述第二信息用于指示所述第一信号对应的感知链路性能不满足第一条件,或者,所述第一信号对应的感知链路性能不满足第一条件和/或所述第一信号对应的通信链路性能不满足第二条件;
所述第三情况包括:所述第一信号对应的感知链路性能不满足第一条件和/或所述第二信号对应的通信链路性能不满足第二条件;
所述目标信息用于指示所述第一信号对应的感知链路性能不满足第一条件和/或所述第二信号对应的通信链路性能不满足第二条件。
可选地,所述射频单元501,用于实现以下至少一项:
在所述第一信号对应的感知链路性能不满足第一条件、且所述第二信号对应的通信链路性能满足第二条件的情况下,通过物理层向高层上报第三信息,所述第三信息用于指示所述第一信号对应的感知链路性能不满足第一条件且所述第二信号对应的通信链路性能满足第二条件;
在所述第一信号对应的感知链路性能满足第一条件、且所述第二信号对应的通信链路性能不满足第二条件的情况下,通过物理层向高层上报第四信息,所述第四信息用于指示所述第一信号对应的感知链路性能满足第一条件且所述第二信号对应的通信链路性能不满足第二条件;
在所述第一信号对应的感知链路性能不满足第一条件、且所述第二信号对应的通信链路性能不满足第二条件的情况下,通过物理层向高层上报第五信息,所述第五信息用于指示所述第一信号对应的感知链路性能不满足第一条件且所述第二信号对应的通信链路性能不满足第二条件。
可选地,所述处理器510,还用于:
在满足第一特定条件的情况下,启动第一计时器;
在第一计时器超时的情况下,确定感知链路失败;
其中,所述第一特定条件包括以下至少一项:
所述终端通过物理层向高层连续上报第二信息的数量大于或等于第一阈值;
在连续的N1次测量中,所述终端通过物理层向高层上报的第二信息的数量大于或等于第二阈值,N1为正整数;
所述终端通过物理层向高层连续上报的目标信息的数量大于或等于第三阈值。
可选地,所述处理器510,还用于:
在所述第一计时器运行期间,在满足第二特定条件的情况下,停止第一计时器;
其中,所述第二特定条件包括以下至少一项:
所述终端通过物理层向高层连续上报第一信息的数量大于或等于第四阈值;
在连续的N2次测量中,所述终端通过物理层向高层上报的第一信息的数量大于或等于第五阈值,N2为正整数;
所述终端通过物理层向高层连续上报的第一信息或第一信息及目标信息的数量大于或等于第六阈值。
可选地,所述处理器510,还用于:
进行无线资源控制RRC重建;
所述通信接口用于向网络侧设备上报测量相关信息,所述测量相关信息包括以下至少一项:感知链路失败、感知链路失败的原因、感知链路性能的测量值、通信链路失败、通信链路失败的原因、通信链路性能的测量值。
可选地,所述射频单元501,还用于:
在所述第一信号对应的感知链路性能不满足第一条件的情况下,向网络侧设备发送第一消息,所述第一消息用于指示RRC连接释放请求;
所述第一消息中携带第一指示信息,所述第一指示信息用于指示RRC连接释放原因。
可选地,所述第一消息中还包括:感知链路性能的测量结果。
可选地,所述RRC连接释放原因包括:所述第一信号对应的感知链路性能不满足第 一条件。
可选地,所述第一条件包括以下至少一项:
至少一个第一信号的感知目标关联信号分量的功率值满足第一门限;
至少一个第一信号的感知信噪比SNR满足第二门限;
至少一个第一信号的感知信号与干扰加噪声比SINR满足第三门限;
至少检测到Y个感知目标;
基于监测所确定的感知目标对应的比特位图与网络侧设备配置的预设比特位图一致;
感知目标的雷达截面面积RCS满足第一预设条件;
感知目标的谱信息满足第二预设条件;
感知目标的第一参量满足第三预设条件,所述第一参量包括以下至少一项:时延、距离、多普勒、速度、角度信息;
其中,Y为正整数。
可选地,所述感知链路性能包括以下至少一项:
感知目标关联信号分量的功率值;
感知SNR;
感知SINR;
感知目标是否存在;
感知目标存在的目标个数;
感知目标的RCS信息;
感知目标的谱信息;
至少一个感知目标的时延;
至少一个感知目标的距离;
至少一个感知目标的多普勒;
至少一个感知目标的速度;
至少一个感知目标的角度信息。
可选地,所述通信链路性能包括以下至少一项:
参考信号接收功率RSRP、接收信号强度指示RSSI、预编码矩阵指示PMI、秩指示RI、信道质量指示CQI、SNR、SINR、比特出错概率BER、误块率BLER。
本申请实施例,通过对至少一个第一信号进行测量,以至少获取感知链路性能,以此实现通感一体化的场景下的无线链路监测。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述链路监测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘 等。
可选的,如图6所示,本申请实施例还提供一种通信设备600,包括处理器601,存储器602,存储在存储器602上并可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述链路监测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述链路监测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述链路监测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种链路监测系统,包括:终端和网络侧设备,所述终端可用于执行如上所述的链路监测方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (16)

  1. 一种链路监测方法,包括:
    终端检测目标信号;
    所述终端根据所述目标信号进行测量,获取所述目标信号对应的链路性能;
    其中,所述目标信号包括:第一信号,或者,所述目标信号包括:第一信号和第二信号;所述第一信号为参考信号或者感知信号;
    所述链路性能包括:感知链路性能,或者,所述链路性能包括:感知链路性能和通信链路性能。
  2. 根据权利要求1所述的方法,其中,所述终端根据所述目标信号进行测量,获取所述目标信号对应的链路性能,包括:
    所述终端通过物理层每隔第一周期对至少一个目标信号进行一次测量,获取所述目标信号对应的链路性能。
  3. 根据权利要求1所述的方法,其中,在所述终端根据所述目标信号进行测量,获取所述目标信号对应的链路性能之后,还包括以下至少一项:
    若满足第一情况,终端通过物理层向高层上报第一信息;
    若满足第二情况,终端通过物理层向高层上报第二信息;
    若满足第三情况,终端通过物理层向高层上报目标信息;
    其中,所述第一情况包括以下一项:所述第一信号对应的感知链路性能满足第一条件;所述第一信号对应的感知链路性能满足第一条件且所述第一信号对应的通信链路性能满足第二条件;所述第一信号对应的感知链路性能满足第一条件且所述第二信号对应的通信链路性能满足第二条件;
    所述第一信息用于指示所述第一信号对应的感知链路性能满足第一条件,所述第一信号对应的感知链路性能满足第一条件且所述第一信号对应的通信链路性能满足第二条件,或,所述第一信号对应的感知链路性能满足第一条件且所述第二信号对应的通信链路性能满足第二条件;
    所述第二情况包括以下一项:所述第一信号对应的感知链路性能不满足第一条件;所述第一信号对应的感知链路性能不满足第一条件和/或所述第一信号对应的通信链路性能不满足第二条件;
    所述第二信息用于指示所述第一信号对应的感知链路性能不满足第一条件,或者,所述第一信号对应的感知链路性能不满足第一条件和/或所述第一信号对应的通信链路性能不满足第二条件;
    所述第三情况包括:所述第一信号对应的感知链路性能不满足第一条件和/或所述第二信号对应的通信链路性能不满足第二条件;
    所述目标信息用于指示所述第一信号对应的感知链路性能不满足第一条件和/或所述 第二信号对应的通信链路性能不满足第二条件。
  4. 根据权利要求3所述的方法,其中,所述若满足第三情况,终端通过物理层向高层上报目标信息,包括以下至少一项:
    在所述第一信号对应的感知链路性能不满足第一条件、且所述第二信号对应的通信链路性能满足第二条件的情况下,终端通过物理层向高层上报第三信息,所述第三信息用于指示所述第一信号对应的感知链路性能不满足第一条件且所述第二信号对应的通信链路性能满足第二条件;
    在所述第一信号对应的感知链路性能满足第一条件、且所述第二信号对应的通信链路性能不满足第二条件的情况下,终端通过物理层向高层上报第四信息,所述第四信息用于指示所述第一信号对应的感知链路性能满足第一条件且所述第二信号对应的通信链路性能不满足第二条件;
    在所述第一信号对应的感知链路性能不满足第一条件、且所述第二信号对应的通信链路性能不满足第二条件的情况下,终端通过物理层向高层上报第五信息,所述第五信息用于指示所述第一信号对应的感知链路性能不满足第一条件且所述第二信号对应的通信链路性能不满足第二条件。
  5. 根据权利要求3所述的方法,其中,还包括:
    在满足第一特定条件的情况下,启动第一计时器;
    在第一计时器超时的情况下,确定感知链路失败;
    其中,所述第一特定条件包括以下至少一项:
    所述终端通过物理层向高层连续上报第二信息的数量大于或等于第一阈值;
    在连续的N1次测量中,所述终端通过物理层向高层上报的第二信息的数量大于或等于第二阈值,N1为正整数;
    所述终端通过物理层向高层连续上报的目标信息的数量大于或等于第三阈值。
  6. 根据权利要求5所述的方法,其中,还包括:
    在所述第一计时器运行期间,在满足第二特定条件的情况下,停止第一计时器;
    其中,所述第二特定条件包括以下至少一项:
    所述终端通过物理层向高层连续上报第一信息的数量大于或等于第四阈值;
    在连续的N2次测量中,所述终端通过物理层向高层上报的第一信息的数量大于或等于第五阈值,N2为正整数;
    所述终端通过物理层向高层连续上报的第一信息或第一信息及目标信息的数量大于或等于第六阈值。
  7. 根据权利要求5所述的方法,其中,在所述确定感知链路失败之后,还包括以下一项:
    进行无线资源控制RRC重建;
    向网络侧设备上报测量相关信息,所述测量相关信息包括以下至少一项:感知链路失 败、感知链路失败的原因、感知链路性能的测量值、通信链路失败、通信链路失败的原因、通信链路性能的测量值。
  8. 根据权利要求1所述的方法,其中,还包括:
    在所述第一信号对应的感知链路性能不满足第一条件的情况下,向网络侧设备发送第一消息,所述第一消息用于指示RRC连接释放请求;
    所述第一消息中携带第一指示信息,所述第一指示信息用于指示RRC连接释放原因。
  9. 根据权利要求8所述的方法,其中,所述第一消息中还包括:感知链路性能的测量结果。
  10. 根据权利要求8所述的方法,其中,所述RRC连接释放原因包括:所述第一信号对应的感知链路性能不满足第一条件。
  11. 根据权利要求3、8或10所述的方法,其中,所述第一条件包括以下至少一项:
    至少一个第一信号的感知目标关联信号分量的功率值满足第一门限;
    至少一个第一信号的感知信噪比SNR满足第二门限;
    至少一个第一信号的感知信号与干扰加噪声比SINR满足第三门限;
    至少检测到Y个感知目标;
    基于监测所确定的感知目标对应的比特位图与网络侧设备配置的预设比特位图一致;
    感知目标的雷达截面面积RCS满足第一预设条件;
    感知目标的谱信息满足第二预设条件;
    感知目标的第一参量满足第三预设条件,所述第一参量包括以下至少一项:时延、距离、多普勒、速度、角度信息;
    其中,Y为正整数。
  12. 根据权利要求1所述的方法,其中,所述感知链路性能包括以下至少一项:
    感知目标关联信号分量的功率值;
    感知SNR;
    感知SINR;
    感知目标是否存在;
    感知目标存在的目标个数;
    感知目标的RCS信息;
    感知目标的谱信息;
    至少一个感知目标的时延;
    至少一个感知目标的距离;
    至少一个感知目标的多普勒;
    至少一个感知目标的速度;
    至少一个感知目标的角度信息。
  13. 根据权利要求1所述的方法,其中,所述通信链路性能包括以下至少一项:
    参考信号接收功率RSRP、接收信号强度指示RSSI、预编码矩阵指示PMI、秩指示RI、信道质量指示CQI、SNR、SINR、比特出错概率BER、误块率BLER。
  14. 一种链路监测装置,应用于终端,包括:
    检测模块,用于检测目标信号;
    获取模块,用于根据所述目标信号进行测量,获取所述目标信号对应的链路性能;
    其中,所述目标信号包括:第一信号,或者,所述目标信号包括:第一信号和第二信号;所述第一信号为参考信号或者感知信号;
    所述链路性能包括:感知链路性能,或者,所述链路性能包括:感知链路性能和通信链路性能。
  15. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至13任一项所述的链路监测方法的步骤。
  16. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至13任一项所述的链路监测方法的步骤。
PCT/CN2023/118444 2022-09-20 2023-09-13 链路监测方法、装置及终端 WO2024061067A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211146463.X 2022-09-20
CN202211146463.XA CN117793771A (zh) 2022-09-20 2022-09-20 链路监测方法、装置及终端

Publications (1)

Publication Number Publication Date
WO2024061067A1 true WO2024061067A1 (zh) 2024-03-28

Family

ID=90382147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118444 WO2024061067A1 (zh) 2022-09-20 2023-09-13 链路监测方法、装置及终端

Country Status (2)

Country Link
CN (1) CN117793771A (zh)
WO (1) WO2024061067A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101120531A (zh) * 2004-12-22 2008-02-06 高通股份有限公司 用于对递增冗余发射作出选择性响应的装置和方法
CN108604949A (zh) * 2016-02-05 2018-09-28 高通股份有限公司 自适应无线链路监测
US20210298046A1 (en) * 2016-09-27 2021-09-23 Zte Corporation Data processing method, node and terminal
WO2022029197A1 (en) * 2020-08-05 2022-02-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Interference detection and handling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101120531A (zh) * 2004-12-22 2008-02-06 高通股份有限公司 用于对递增冗余发射作出选择性响应的装置和方法
CN108604949A (zh) * 2016-02-05 2018-09-28 高通股份有限公司 自适应无线链路监测
US20210298046A1 (en) * 2016-09-27 2021-09-23 Zte Corporation Data processing method, node and terminal
WO2022029197A1 (en) * 2020-08-05 2022-02-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Interference detection and handling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI - MODERATOR: "SOD on Use Cases for SI on Data Collection", 3GPP DRAFT; R3-206874, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20201102 - 20201112, 17 November 2020 (2020-11-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052255816 *

Also Published As

Publication number Publication date
CN117793771A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
US20240098534A1 (en) Communication sensing method and apparatus, and network device
JP2024520106A (ja) メッセージ伝送方法、信号送信方法、及び通信機器
WO2023001179A1 (zh) 通信感知方法、装置及设备
WO2023001184A1 (zh) 感知信号测量方法、装置、网络设备及终端
WO2024061067A1 (zh) 链路监测方法、装置及终端
WO2024061066A1 (zh) 波束恢复方法、装置及终端
WO2024099153A1 (zh) 信息传输方法、装置及通信设备
WO2023226826A1 (zh) 感知方法、装置及通信设备
WO2024099152A1 (zh) 信息传输方法、装置及通信设备
WO2024061065A1 (zh) 前导码发送方法、终端及存储介质
WO2024169815A1 (zh) 感知信号发送方法、感知信号测量方法、装置及设备
WO2023231844A1 (zh) 感知测量方法、装置、设备、终端和存储介质
WO2023231840A1 (zh) 测量处理方法、装置、通信设备及可读存储介质
WO2024099125A1 (zh) 测量信息反馈方法、接收方法及通信设备
WO2024131691A1 (zh) 感知处理方法、装置、通信设备及可读存储介质
WO2023231870A1 (zh) 通信方法、装置、终端、网络侧设备及核心网设备
WO2024032460A1 (zh) 数据收集方法、装置及通信设备
WO2023231841A1 (zh) 感知功能的切换方法、装置及通信设备
WO2024120359A1 (zh) 信息处理、传输方法及通信设备
WO2024078378A1 (zh) 多普勒测量方法、装置及通信设备
WO2024099126A1 (zh) 测量信息发送方法、接收方法及通信设备
WO2023186123A1 (zh) 感知信号处理方法、设备及可读存储介质
WO2023186098A1 (zh) 感知信号处理方法、设备及可读存储介质
WO2024131760A1 (zh) 移动性管理方法、装置、通信设备及可读存储介质
WO2023186089A1 (zh) 感知信号的处理方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867356

Country of ref document: EP

Kind code of ref document: A1