WO2024051545A1 - 测量信息发送方法、接收方法及通信设备 - Google Patents

测量信息发送方法、接收方法及通信设备 Download PDF

Info

Publication number
WO2024051545A1
WO2024051545A1 PCT/CN2023/115667 CN2023115667W WO2024051545A1 WO 2024051545 A1 WO2024051545 A1 WO 2024051545A1 CN 2023115667 W CN2023115667 W CN 2023115667W WO 2024051545 A1 WO2024051545 A1 WO 2024051545A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
measurement result
sensor
measurement
perceptual
Prior art date
Application number
PCT/CN2023/115667
Other languages
English (en)
French (fr)
Inventor
姚健
姜大洁
袁雁南
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024051545A1 publication Critical patent/WO2024051545A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a measurement information sending method, a receiving method and a communication device.
  • Perception capability that is, one or more devices with perception capabilities can sense the orientation, distance and/or speed of target objects through the transmission and reception of wireless signals, or detect and detect target objects, events or environments, etc. Tracking, identification or imaging, etc.
  • perceptual measurement by those skilled in the art only relies on wireless signals.
  • communication devices can only transmit measurement results corresponding to wireless signals, which results in poor perceptual performance of communication devices.
  • the embodiments of the present application provide a measurement information sending method, a receiving method and a communication device, which can solve the problem of poor perception performance of the communication device.
  • the first aspect provides a method for sending measurement information, including:
  • the first device sends first information to the second device, where the first information includes:
  • the first perceptual measurement result is a measurement result obtained by the first device based on a wireless signal
  • the first sensor measurement result is a measurement result obtained by the first device based on a sensor
  • the first sensor measurement result is a measurement result obtained by the first device based on a sensor.
  • the first sensor measurement result is used to assist the sensing measurement.
  • a method for receiving measurement information including:
  • the second device receives the first information sent by the first device, where the first information includes:
  • the first perceptual measurement result is a measurement result obtained by the first device based on a wireless signal
  • the first sensor measurement result is a measurement result obtained by the first device based on a sensor
  • the first sensor measurement result is a measurement result obtained by the first device based on a sensor.
  • the first sensor measurement result is used to assist the sensing measurement.
  • a measurement information sending device including:
  • the first sending module is used to send first information to the second device, where the first information includes:
  • the first perceptual measurement result is a measurement result obtained by a first device corresponding to the device based on a perceptual measurement based on a wireless signal
  • the first sensor measurement result is a measurement result obtained by the first device based on a sensor measurement.
  • the first sensor measurement result is used to assist perceptual measurement.
  • a measurement information receiving device including:
  • a first receiving module configured to receive first information sent by the first device, where the first information includes:
  • the first perceptual measurement result is a measurement result obtained by the first device based on a wireless signal
  • the first sensor measurement result is a measurement result obtained by the first device based on a sensor
  • the first sensor measurement result is a measurement result obtained by the first device based on a sensor.
  • the first sensor measurement result is used to assist the sensing measurement.
  • a communication device is provided.
  • the communication device is a first device.
  • the communication device includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • a communication device is provided.
  • the communication device is a first device and includes a processor and a communication interface, wherein the communication interface is used to send first information to a second device, and the first information includes : the first perceptual measurement result and the first sensor measurement result; wherein the first perceptual measurement result is the measurement result obtained by the first device corresponding to the device performing perceptual measurement based on the wireless signal, and the first sensor measurement result is The first device measures a measurement result based on a sensor, and the first sensor measurement result is used to assist perceptual measurement.
  • a communication device is provided.
  • the communication device is a second device.
  • the communication device includes a processor and a memory.
  • the memory stores a program or instructions that can be run on the processor. The program or When the instructions are executed by the processor, the steps of the measurement information receiving method provided by the embodiments of the present application are implemented.
  • a communication device is provided.
  • the communication device is a second device and includes a processor and a communication interface, wherein the communication interface is used to receive first information sent by the first device, and the first information It includes: a first perceptual measurement result and a first sensor measurement result; wherein the first perceptual measurement result is a measurement result obtained by the first device based on a perceptual measurement based on a wireless signal, and the first sensor measurement result is the The first device performs measurement based on the measurement result obtained by the sensor, and the first sensor measurement result is used to assist the sensing measurement.
  • a measurement information transmission system including: a first device and a second device.
  • the first device can be used to perform the steps of the measurement information sending method provided in the embodiment of the present application.
  • the second device It can be used to perform the steps of the measurement information receiving method provided by the embodiments of the present application.
  • a readable storage medium is provided.
  • Programs or instructions are stored on the readable storage medium.
  • the steps of the measurement information sending method provided by the embodiments of the present application are implemented.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the methods provided by the embodiments of the present application. Measurement information sending method, or implement the measurement information receiving method as provided in the embodiment of this application.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the embodiments of the present application.
  • the steps of the measurement information sending method, or the computer program/program product is executed by at least one processor to implement the steps of the measurement information receiving method provided by the embodiments of the present application.
  • the first device sends first information to the second device, and the first information includes: a first perceptual measurement result and a first sensor measurement result; wherein the first perceptual measurement result is the The first device measures a measurement result based on a wireless signal, and the first sensor measurement result is a measurement result obtained by the first device based on a sensor, and the first sensor measurement result is used to assist the sensing measurement.
  • the sensing performance of the communication device can be improved.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is a schematic diagram of a perceptual measurement scenario provided by an embodiment of the present application.
  • Figure 3 is a flow chart of a method for sending measurement information provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a perceptual signal-to-noise ratio (SNR) calculation provided by an embodiment of the present application;
  • Figure 5 is a flow chart of a method for receiving measurement information provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of a measurement information transmission method provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of another measurement information transmission method provided by an embodiment of the present application.
  • Figure 8 is a structural diagram of a measurement information sending device provided by an embodiment of the present application.
  • Figure 9 is a structural diagram of a measurement information receiving device provided by an embodiment of the present application.
  • Figure 10 is a structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 11 is a structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 12 is a structural diagram of another communication device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims means at least one of the connected objects, The character “/” generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • Mobile Internet Device MID
  • augmented reality augmented reality, AR
  • VR virtual reality
  • robots wearable devices
  • WUE vehicle user equipment
  • PUE pedestrian terminal
  • RSU roadside unit
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or Furniture, etc.
  • PC personal computers
  • teller machines or self-service machines and other terminal-side devices such as refrigerators, TVs, washing machines or Furniture, etc.
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, Smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, smart helmets, smart joysticks, etc.), smart wristbands, smart clothing, etc. It should be noted that the embodiment of the present application does not limit the specific type of the terminal 11.
  • sidelink sidelink, or translated as secondary link, side link, side link, etc., abbreviated as SL
  • SL sidelink
  • SL transmission can be performed between terminals 11, that is, the terminals 11 can directly transmit on the physical layer.
  • SL transmission between terminals 11 may be broadcast, unicast, multicast or multicast, etc.
  • the terminals for SL transmission can be all online or all offline, or some devices can be online and some offline.
  • the network side equipment 12 may include radio access network equipment and core network equipment, where the radio access network equipment may also be called a radio access network (Radio Access Network, RAN), radio access network function or radio access network unit.
  • Wireless access network equipment may include base stations, Wireless Local Area Network (WLAN) access points or Wireless Fidelity (WiFi) nodes, etc.
  • the base station may be called Node B, Evolved Node B (Evolved Node B).
  • eNB access point
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • home B node home evolved B node
  • TRP transmission reception point
  • small base station small base station or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to special Specific technical vocabulary, it should be noted that in the embodiment of this application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Services Discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data warehousing (Unified Data Repository, UDR), home subscriber server (Home Subscriber Server, HSS), centralized network configuration ( Centralized network configuration, CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application function (Application Function, AF), network data analysis function (Network Data Analytics Function, NWDAF), location management function (Location Management Function, L
  • the core network equipment can also be called sensing network function, sensing network element or sensing management function (Sensing Management Function, Sensing MF). It can be located on the RAN side or the core network side and refers to the core network and/or RAN.
  • the network node responsible for at least one function such as sensing request processing, sensing resource scheduling, sensing information interaction, and sensing data processing can be based on the AMF or LMF upgrade in the 5G network, or it can be other network nodes or newly defined network nodes.
  • network-side devices and terminals have sensing capabilities and can sense the orientation, distance, speed and other information of target objects through the sending and receiving of wireless signals, or detect and track target objects, events or environments, etc. , recognition, imaging, etc.
  • Communication and perception integration refers to realizing the integrated design of communication and perception functions through spectrum sharing and hardware sharing in the same system.
  • the system transmits information while , can sense information such as orientation, distance, speed, etc., and detect, track, and identify target devices or events.
  • the communication system and the sensing system complement each other to achieve an improvement in overall performance and bring a better service experience.
  • the integration of communication and radar is a typical communication-aware integration (communication-aware fusion) application
  • the integration of communication and radar systems can bring many advantages, such as cost savings, size reduction, power consumption reduction, spectrum efficiency improvement, Reduce mutual interference, etc., thereby improving the overall performance of the system.
  • each sensing link in Figure 2 is illustrated with a sending node and a receiving node.
  • different sensing links can be selected according to different sensing requirements.
  • the characteristics of each sensing link There may be one or more sending nodes and receiving nodes, and the actual sensing system may include a variety of different sensing links.
  • the sensing objects in Figure 2 take people and cars as examples, the sensing objects of the actual system will be more abundant.
  • Sensing link 1 base station echo sensing.
  • the base station sends a sensing signal and obtains the sensing result by receiving the echo of the sensing signal;
  • Sensing link 2 air interface sensing between base stations. In this mode, base station 2 receives the sensing signal sent by base station 1 and obtains the sensing result.
  • Sensing link 3 Uplink air interface sensing. In this mode, the base station receives the sensing signal sent by the terminal and obtains the sensing result.
  • Sensing link 4 Downlink air interface sensing. In this mode, the terminal receives the sensing signal sent by the base station and obtains the sensing result.
  • Sensing link 5 Terminal echo sensing. In this mode, the terminal sends a sensing signal and obtains sensing results by receiving the echo of the sensing signal.
  • Awareness link 6 Sidelink awareness between terminals. For example, terminal 2 receives the sensing signal sent by terminal 1 and obtains the sensing result, or terminal 1 receives the sensing signal sent by terminal 2 and obtains the sensing result.
  • Figure 3 is a flow chart of a method for sending measurement information provided by an embodiment of the present application. As shown in Figure 3, it includes the following steps, including:
  • Step 301 The first device sends first information to the second device, where the first information includes:
  • the first perceptual measurement result is a measurement result obtained by the first device based on a wireless signal
  • the first sensor measurement result is a measurement result obtained by the first device based on a sensor
  • the first sensor measurement result is a measurement result obtained by the first device based on a sensor.
  • the first sensor measurement result is used to assist the sensing measurement.
  • the above-mentioned first device may be a communication device that performs sensing measurements based on wireless signals and measurements based on sensors. equipment, such as terminal.
  • the first device may also be a network-side device.
  • the above-mentioned wireless signal may be a wireless signal sent by the first device, or may be a wireless signal sent by other devices.
  • the above-mentioned wireless signal can be a communication signal, such as a reference signal, a synchronization signal or a data signal.
  • the above-mentioned wireless signal can also be a dedicated sensing signal, such as a radar pulse signal or a frequency modulated continuous wave (Frequency Modulated Continuous Wave, FMCW) signal.
  • a dedicated sensing signal such as a radar pulse signal or a frequency modulated continuous wave (Frequency Modulated Continuous Wave, FMCW) signal.
  • FMCW Frequency Modulated Continuous Wave
  • the above-mentioned sensor may be one or more sensors in the above-mentioned first device, so that the sensor in the first device can be used to assist in sensing measurement, thereby improving the sensing performance of the communication device.
  • the first sensor measurement result may be used to assist the perception measurement.
  • the second device may obtain the perception result based on the first sensor measurement result and the first perception measurement result. In this way, the perception result may be obtained based on the two measurement results. more precise. Or the above-mentioned first sensor measurement result can be used to assist the perception measurement.
  • the second device adjusts the configuration of the wireless signal based on the first sensor measurement result so that the wireless signal can be better used for perception measurement, thereby improving the sensing of the wireless signal. Measurement results are more accurate.
  • the second device may be a network-side device, such as an access network device (such as a base station) or a sensing network function/sensing network element (Sensing Management Function, Sensing MF).
  • an access network device such as a base station
  • a sensing network function/sensing network element Sensing Management Function, Sensing MF
  • the sensing network function/functional characteristics of the sensing network element may include at least one of the following:
  • the target information includes sensing processing requests, sensing capabilities, and sensing assistance data, Sensing measurement type, sensing resource configuration information, etc., to obtain the target sensing result or the value of the sensing measurement (uplink measurement or downlink measurement) sent by the wireless signal measurement device; wherein, the wireless signal can also be called a sensing signal.
  • the sensor used is determined based on factors such as the type of sensing service, sensing service consumer information, required sensing quality of service (QoS) requirement information, the sensing capability of the wireless signal sending device, the sensing capability of the wireless signal measurement device, etc.
  • the sensing method may include: base station A sends and base station B receives, or base station sends and terminal receives, or base station A spontaneously receives, or terminal sends and base station receives, or terminal spontaneously receives, or terminal A sends and terminal B receives, etc.
  • the sensing device serving the sensing service is determined based on factors such as the type of sensing service, sensing service consumer information, required sensing QoS requirement information, the sensing capability of the wireless signal sending device, the sensing capability of the wireless signal measurement device, etc., where , the sensing device includes a wireless signal transmitting device and/or a wireless signal measuring device.
  • the network awareness function/aware network element can be located in the core network domain or access network domain or network management domain.
  • the aware network function/aware network element can be a new network element with the above functional characteristics, or a network element co-located with the network function/network element (such as LMF) defined in the protocol.
  • the first sensor measurement result for assisting perceptual measurement can also be transmitted between the first device and the second device, thereby improving the communication device. perceived performance.
  • the senor includes at least one of the following:
  • Acceleration sensor gyroscope, magnetic sensor, rotation vector sensor, positioning sensor, pressure sensor, temperature sensor, humidity sensor, light sensor.
  • the above-mentioned sensor may be a sensor configured in the above-mentioned first device.
  • the above-mentioned first sensor measurement result may include: measuring the acceleration applied to the first device.
  • the measurement results can also be divided into at least one of a result including gravitational acceleration, a result not including gravitational acceleration, a result including deviation compensation, and a result not including deviation compensation.
  • the magnetic sensor can be combined with other sensors to obtain rotation angle information.
  • the above-mentioned first sensor measurement results may include: the rotation vector sensor can be obtained through a combination of different sensors to obtain the terminal angle.
  • the above-mentioned positioning sensor may be a satellite positioning sensor, such as a Global Navigation Satellite System (GNSS) sensor.
  • GNSS Global Navigation Satellite System
  • the above-mentioned first sensor measurement result may include: the terminal receives the satellite signal broadcast by the navigation satellite, demodulates and collects sufficient data information, and then calculates the position information of the current receiving end.
  • the above-mentioned first sensor measurement result may include: an acquired ambient air pressure value.
  • the above-mentioned first sensor measurement result may include: the acquired ambient temperature;
  • the first sensor measurement result may include: acquired relative humidity information of the environment, or acquired dew point and/or absolute humidity information in combination with the temperature sensor.
  • the above-mentioned first sensor measurement result may include: perceived light brightness of the current environment of the first device.
  • the above-mentioned first information may also be image information or video information, or may include abstract information obtained based on at least one sensor measurement result.
  • the abstract information may include at least one of the following:
  • LOS Line of sight
  • NLOS non-line of sight
  • Obstacle or occlusion information for example: the network side can pre-configure at least one of a specific direction, location, and depth, and require the terminal to report corresponding occlusion for at least one of the specific direction, location, and depth;
  • the network side can pre-configure typical scene environments, requiring terminals to judge and report.
  • a variety of sensor measurement results can be obtained through at least one of the above-mentioned sensors, thereby achieving higher performance of perceptual measurement.
  • the first sensor measurement result includes at least one of the following:
  • Movement information, location-related information, environmental information, and equipment parameter information are examples of parameters
  • the above-mentioned motion information may include at least one of the following:
  • Acceleration information speed information, rotation rate information.
  • the above-mentioned acceleration information may be the acceleration information of the above-mentioned first device, such as the acceleration along at least one of the x-axis, y-axis, and z-axis.
  • the x-axis, y-axis and z-axis in the embodiment of the present application may be the coordinate axes of the local coordinate system (such as the sensor coordinate system) or the coordinate axes of the global coordinate system.
  • the above acceleration information may include original acceleration information affected by gravity, or may be linear acceleration information without the effect of gravity.
  • the above-mentioned acceleration information may be acceleration information without deviation compensation or acceleration information with deviation compensation.
  • the above-mentioned speed information may be the speed information of the first device, for example, it may be the speed along at least one of the x-axis, the y-axis, and the z-axis.
  • the above-mentioned rotation rate information may be the rotation rate information of the first device, for example, it may be the rotation rate around at least one of the x-axis, the y-axis, and the z-axis;
  • the above rotation rate information may be rotation rate information without drift compensation, or may be rotation rate information with drift compensation.
  • the second device can obtain the sensing result based on the motion information, or adjust the configuration of the wireless signal, thereby improving the sensing performance.
  • the above location-related information may include at least one of the following:
  • Geomagnetic intensity information moving distance information, rotation angle information, orientation information, position information, and relative distance information.
  • the above geomagnetic intensity information may be geomagnetic intensity information of at least one of the x-axis, y-axis, and z-axis;
  • the above-mentioned movement distance information may be the movement distance information of the first device, for example: the movement distance along at least one of the x-axis, y-axis, and z-axis;
  • the above-mentioned rotation angle information may be the rotation angle information of the first device, for example: the rotation angle along at least one of the x-axis, y-axis, and z-axis;
  • the above orientation information may be orientation information of the first device, for example: at least one of sensor orientation information and antenna orientation information;
  • the above location information may be location information of the first device, such as current location information, or location information at a certain time in the future calculated based on speed;
  • the relative distance information may be the distance information between the first device and the object, for example, the absolute distance in cm or other units, or it may be a binary value indicating a near or far state.
  • the second device can obtain the sensing result based on the location-related information, or adjust the configuration of the wireless signal, thereby improving sensing performance.
  • the above environmental information may include at least one of the following:
  • Ambient temperature information light intensity information, air pressure information, humidity information.
  • the above humidity information can be environmental relative humidity or absolute humidity.
  • the second device can obtain the sensing result based on the environmental information, or adjust the configuration of the wireless signal, thereby improving sensing performance.
  • the above device parameter information may include at least one of the following:
  • the second device can obtain the sensing result based on the device parameter information, or adjust the configuration of the wireless signal, thereby improving sensing performance.
  • the first perceptual measurement result includes the result of a perceptual measurement quantity, and the perceptual measurement quantity includes at least one of the following:
  • Signal-related measurement quantities channel-related measurement quantities, time-domain-related measurement quantities, frequency-domain-related measurement quantities, spatial-related measurement quantities, environment-related measurement quantities, and target object-related measurement quantities.
  • the first perceptual measurement result includes the perceptual measurement quantity
  • the first perceptual measurement result corresponds to the perceptual measurement quantity, specifically the value of the perceptual measurement quantity.
  • first-level measurement quantities received signal/original channel information
  • Received signal/channel response complex results, amplitude/phase, I/Q channels and their operation results include addition, subtraction, multiplication and division, matrix addition, subtraction and multiplication, matrix transpose, trigonometric relationship operations, square root operations and power operations, etc., and Threshold detection results, maximum/minimum value extraction results, etc. of the above operation results.
  • the above operations also include Fast Fourier Transform (FFT)/Inverse Fast Fourier Transform (IFFT), Discrete Fourier Transform (DFT)/Inverse Discrete Fourier Transform (IDFT), 2D-FFT, 3D-FFT, matched filtering, autocorrelation operation, wavelet transform and digital filtering, etc.
  • FFT Fast Fourier Transform
  • IFFT Discrete Fourier Transform
  • IDFT Discrete Fourier Transform
  • 2D-FFT 3D-FFT
  • matched filtering autocorrelation operation
  • wavelet transform and digital filtering etc.
  • time domain related measurement quantities and frequency domain related measurement quantities can be second-level measurement quantities (basic measurement quantities), which can include: delay, Doppler, angle, intensity, and their multi-dimensional combination representation;
  • the above-mentioned space-related measurement quantities and environment-related measurement quantities can be third-level measurement quantities (basic attributes/states), which can include: distance, speed, orientation, spatial position, acceleration, and multi-dimensional combination representations thereof;
  • the measurement quantity related to the above target object can be the fourth level measurement quantity (advanced attribute/status), which can include: target Whether the target exists, trajectory, movement, expression, vital signs, quantity, imaging results, weather, air quality, shape, material, composition, and its multi-dimensional combination representation.
  • the first sensor measurement result is used to assist perceptual measurement, including at least one of the following:
  • the first sensor measurement result is used by the second device to obtain the sensing result
  • the first sensor measurement is used by the second device to adjust the configuration of the wireless signal.
  • the above-mentioned first sensor measurement result is used by the second device to obtain the perception result.
  • the second device obtains the perception result based on the above-mentioned first sensor measurement result and the first perception measurement result. In this way, since the perception result is obtained based on the two measurement results, This can make the perception results more accurate.
  • the first sensor measurement result is used by the second device to adjust the configuration of the wireless signal.
  • the second device adjusts the configuration of the wireless signal based on the first sensor measurement result so that the wireless signal can be better used for perception measurement. , thereby improving the accuracy of wireless signal sensing measurement results.
  • the first sensor measurement result can also be used by the second device to change the sensing device.
  • the second device determines that the first device is no longer suitable as a sensing device through the first sensor measurement result.
  • the second device replaces the sensing measuring device.
  • the method also includes:
  • the first device receives configuration information sent by the second device, where the configuration information includes the adjusted configuration of the wireless signal.
  • the adjusted configuration of the wireless signal may be a configuration obtained by adjusting the configuration of the wireless signal based on at least one of the first perception measurement result and the first sensor measurement result by the second device. That is to say, in addition to adjusting the configuration of the wireless signal based on the first sensor measurement result, the second device can also adjust the configuration of the wireless signal based on the first perception measurement result, or can also adjust the configuration of the wireless signal based on the first perception measurement result and the first sensor measurement result. As a result, the configuration of the wireless signal is adjusted.
  • the second device adjusts the configuration of the wireless signal based on at least one of the first sensing measurement result and the first sensor measurement result.
  • at least one of the following configurations of the wireless signal can be adjusted:
  • Beam direction signal type, waveform, subcarrier spacing, guard interval, bandwidth, frequency domain spacing, time domain duration, time domain spacing.
  • the transmit beam direction of the wireless signal is adjusted, so that the transmit beam direction of the wireless signal can be indicated to the first device, or the transmit beam direction of the wireless signal can be indicated to the first device.
  • the transmission power signal type or waveform of the wireless signal is adjusted.
  • the first sensor measures The result is terminal position information and/or movement speed information.
  • the perceptual performance index corresponding to the first perceptual measurement result is perceptual SNR.
  • the perceptual SNR received by the second device is lower than a certain threshold, it is judged that the perceptual performance has declined at this time, and further based on the received Based on the received terminal position information and/or speed information, it is judged that the longer the transceiver distance causes the degradation of perception performance, the second device increases the transmission power of the wireless signal to improve the perception performance.
  • the first device since the first device receives the configuration information sent by the second device, it can perform sensing measurements based on the adjusted wireless signal, thereby improving the accuracy of the sensing results.
  • the second device can obtain a sensing result based on the first sensing measurement result and the first sensor measurement result, which can improve the accuracy of the sensing result.
  • the first perception measurement result is corrected based on the first sensor measurement result
  • the perception result is obtained based on the corrected perception measurement result.
  • the Doppler result measured by the wireless signal includes both the Doppler influence caused by the motion of the perceived target in the channel and the Doppler influence caused by the terminal's own movement.
  • the second device After simultaneously obtaining the first perception measurement result measured by the wireless signal, that is, the Doppler result, and the first sensor measurement result, that is, the terminal motion information, and/or the terminal's position and orientation information, it can be eliminated based on the first sensor measurement result.
  • the influence of terminal movement on the first perception measurement result thereby obtaining information related to the movement of the perceived target.
  • the second device may also change the sensing device based on at least one of the first sensing measurement result and the first sensor measurement result, such as switching from the first device to another device to perform sensing measurement.
  • the first information also includes at least one of the following:
  • first instruction information second instruction information, and third instruction information
  • the first indication information is used to indicate whether the first information includes the first sensor measurement result
  • the second indication information is used to indicate information related to the measurement results of the first sensor
  • the third indication information is used to indicate the perception performance index corresponding to the first perception measurement result.
  • the above-mentioned first indication information may be represented by 1 bit, "0" means that it only contains the first perceptual measurement result, and “1” means that it contains the first perceptual measurement result and the sensor measurement result.
  • Information related to the above-mentioned first sensor measurement results may include at least one of the following:
  • the type of the first sensor measurement result the sensor type corresponding to the first sensor measurement result, the timestamp of the first sensor measurement result, and the coordinate system relationship corresponding to the first sensor measurement result.
  • the type of the above-mentioned first sensor measurement result may be a sensor data type, such as: acceleration, speed, moving distance, and orientation. Specifically, 1 or 2 or multiple bits may be used to indicate the type of the first sensor measurement result.
  • the sensor type corresponding to the above-mentioned first sensor measurement result may be which type of sensor the first sensor measurement result comes from, such as an accelerometer or a gyroscope.
  • the timestamp of the above-mentioned first sensor measurement result may be the time information of the first sensor measurement result, may be an absolute time, or may be a relative time relationship between the sensor measurement result and the first sensing measurement result.
  • the coordinate system relationship corresponding to the above-mentioned first sensor measurement result may be: the coordinate system corresponding to the first sensor measurement result
  • the relationship with the global coordinate system such as the conversion parameters from the local coordinate system to the global coordinate system, that is, the rotation angle of the local coordinate system relative to the global coordinate system: ⁇ (bearing angle), ⁇ (downtilt angle) and ⁇ (tilt angle); Or the relationship between the coordinate system corresponding to the first sensor measurement result and the coordinate system corresponding to the first sensory measurement result.
  • the above-mentioned information related to the measurement results of the first sensor can be used to send information more related to the sensor measurement to the second device to better assist the sensing measurement and further improve the sensing performance.
  • the perception performance index corresponding to the above-mentioned first perception measurement result may be the perception signal-to-noise ratio (SNR) corresponding to the first perception measurement result, for example: the signal component power and noise associated with the perception target in the received signal
  • the ratio of the power or it can be the signal to interference plus noise ratio (SINR) corresponding to the first perception measurement result, for example: the power of the signal component associated with the perception target in the received signal and the power of the noise and interference
  • SINR signal to interference plus noise ratio
  • the ratio of the sum, or the received signal strength information corresponding to the first sensing measurement result such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), Received Signal Strength Indication (Received Signal Strength Indication, RSSI).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RSSI Received Signal Strength Indication
  • the perceptual performance index corresponding to the first perceptual measurement result can represent the perceptual performance of the perceptual measurement result, so that the second device can use the first perceptual measurement result according to actual needs or situations.
  • the sensing SNR may be the ratio of the signal component power associated with the sensing target to the noise power, and the sensing SNR may be the ratio of the signal component power associated with the sensing target to the sum of the power of noise and interference.
  • the power of the signal component associated with the perceived target is the echo power.
  • the method for obtaining the echo signal power can be at least one of the following options:
  • Constant False Alarm Rate Detector is performed based on the time-delay one-dimensional map obtained by the fast time dimension Fast Fourier Transform (FFT) processing of the echo signal.
  • FFT Fast Fourier Transform
  • the maximum sample amplitude of CFAR crossing the threshold is The value point is the target sample point and its amplitude is the target signal amplitude to calculate the echo signal power, as shown in Figure 4;
  • CFAR is performed based on the Doppler one-dimensional map obtained by slow-time FFT processing of the echo signal.
  • the sample point with the maximum amplitude of the CFAR crossing the threshold is the target sample point, and its amplitude is the target signal amplitude to calculate the echo signal power. Same as shown in Figure 4;
  • CFAR is performed based on the delay-Doppler-angle three-dimensional map obtained by 3D-FFT processing of the echo signal.
  • the sample point with the maximum amplitude of the CFAR crossing the threshold is the target sample point, and its amplitude is the target signal amplitude to calculate the echo. signal power;
  • the method can also be to use the maximum sample point of CFAR that crosses the threshold and its nearest several samples that cross the threshold.
  • the mean value of the value points is used as the target signal amplitude to calculate the echo signal power.
  • the method for obtaining the SNR/SINR of the echo signal can be at least one of the following options:
  • CFAR is performed based on the time delay one-dimensional map obtained by fast time-dimensional FFT processing of the echo signal, and the amplitude of CFAR crossing the threshold is The sample point with the largest degree is the target sample point, its amplitude is the target signal amplitude, and all sample points other than ⁇ sample points from the target sample point position in the one-dimensional diagram are interference/noise sample points. And the average interference/amplitude is calculated as the interference/noise signal amplitude, as shown in Figure 4. Finally, the SNR/SINR is calculated based on the target signal amplitude and the interference/noise signal amplitude;
  • CFAR is performed based on the Doppler one-dimensional map obtained by the slow-time FFT processing of the echo signal.
  • the sample point with the maximum amplitude of the CFAR crossing the threshold is the target sample point, and its amplitude is the target signal amplitude.
  • the distance in the one-dimensional map is All sample points other than ⁇ n sample points at the target sample point position are interference/noise sample points, and their average amplitude is calculated as the interference/noise signal amplitude.
  • the SNR is calculated based on the target signal amplitude and the interference/noise signal amplitude. /SINR;
  • the delay-Doppler two-dimensional map obtained by 2D-FFT processing of the echo signal is entered into CFAR.
  • the sample point with the maximum amplitude of the CFAR crossing the threshold is the target sample point, and its amplitude is the target signal amplitude.
  • the two-dimensional map is All sample points except the ⁇ (fast time dimension) and ⁇ (slow time dimension) sample points of the mid-distance target sample points are interference/noise sample points, and their average amplitude is calculated as the interference/noise signal amplitude. , and finally calculate the SNR/SINR based on the target signal amplitude and the interference/noise signal amplitude;
  • CFAR is performed based on the delay-Doppler-angle three-dimensional map obtained by 3D-FFT processing of the echo signal.
  • the sample point with the maximum amplitude of the CFAR crossing the threshold is the target sample point, and its amplitude is the target signal amplitude.
  • the three-dimensional map is All sample points except the ⁇ (fast time dimension), ⁇ (slow time dimension) and ⁇ (angle dimension) sample points of the mid-distance target sample points are interference/noise sample points, and their averages are calculated
  • the amplitude is the interference/noise signal amplitude
  • the SNR/SINR is calculated based on the target signal amplitude and the interference/noise signal amplitude;
  • the method can also be to use the maximum sample point of CFAR crossing the threshold and its nearest several samples that cross the threshold.
  • the mean value of the value points is used as the target signal amplitude
  • the method for determining the interference/noise sample points can also be to further screen based on the interference/noise sample points determined above.
  • the screening method is: for the one-dimensional time delay diagram, remove several sample points near the time delay of 0, so as to The remaining interference/noise sample points are used as noise sample points; for the Doppler one-dimensional map, several sample points near Doppler 0 are removed, and the remaining interference/noise sample points are used as interference/noise sample points.
  • Noise sample points for the delay-Doppler two-dimensional diagram, remove the interference/noise sample points in the strip range composed of several points near the delay 0 and the entire Doppler range, and use the remaining noise The sample points are used as interference/noise sample points; for the delay-Doppler-angle three-dimensional diagram, the interference of the slice-like range composed of several points attached to the time dimension 0, the entire Doppler range and the entire angle range is removed/ Noise sample points, use the remaining interference/noise sample points as interference/noise sample points.
  • the method before the first device sends the first information to the second device, the method further includes:
  • the first device sends second information to the second device, where the second information includes at least one of the following:
  • the sensor type supported by the first device the type of first sensor measurement result supported by the first device, the usage status of the sensor of the first device, and the device parameter information of the first device.
  • the above device parameter information may include at least one of the following:
  • the usage status of the above-mentioned sensors can be the current usage status of one or more sensors, such as currently in use or unused.
  • the acceleration sensor is in use due to the needs of other applications.
  • the first device can send priority Acceleration sensor measurement results, thereby reducing the additional acquisition cost of sensor measurement data.
  • the second device since the above-mentioned second information is sent to the second device, the second device can know the relevant information of the first sensor measurement result sent by the first device, so that the second device can better use the first sensor measurement result. Sensor measurement results.
  • the first device sends the first information to the second device, including:
  • the first device sends the first information to the second device;
  • the first condition includes at least one of the following:
  • the second device triggers the first device to send the first sensor measurement result
  • a scheduled event occurs.
  • the second device triggers the first device to send the first sensor measurement result.
  • the second device triggers the first device to send the first information through a message.
  • the above-mentioned reporting period for arriving at the first sensor measurement result may be that the first device periodically sends the above-mentioned first information to the second device.
  • the occurrence of the above preset events may include at least one of the following:
  • the first device enters the preset area
  • the measurement result of the preset measurement signal meets the first threshold condition
  • the moving distance of the first device satisfies the second threshold condition
  • the change in orientation of the first device satisfies the third threshold condition
  • the movement speed of the first device meets the fourth threshold condition
  • the environmental change information detected by the first device meets the fifth threshold condition
  • the first device initiates a target sensing service
  • the first device initiates the target communication service
  • the measurement result of the sensor in the use state is associated with the indicated measurement result, which is the measurement result that the second device indicates to be fed back by the first device.
  • the above-mentioned preset area may be a location area or cell preset by the first device or preconfigured by the network side.
  • the above-mentioned preset time may be a time preset by the first device or preconfigured by the network side.
  • any one of the above first threshold condition, second threshold condition, third threshold condition, fourth threshold condition and fifth threshold condition may include one or more thresholds. For example, if the measurement result of the above-mentioned preset measurement signal satisfies the first threshold condition, the measurement value of the preset measurement signal reaches the first threshold value.
  • the moving distance of the above-mentioned first device satisfying the second threshold condition may be that the first device moves from the current position to exceed the second threshold, or the first device moves beyond the second threshold, or the first device moves beyond the second threshold. The moving distance from the current position is between the second threshold and the third threshold.
  • the orientation change of the first device satisfies the third threshold condition
  • the orientation change angle of the first device exceeds the fourth threshold, or the orientation change angle of the first device is between the fourth threshold and the fifth threshold.
  • the moving speed of the first device meets the fourth threshold condition
  • the moving speed of the first device exceeds the sixth threshold.
  • the environmental change information detected by the first device satisfying the fifth threshold condition may be that the environmental information change (such as temperature, humidity, light intensity) measured by the sensor of the first device exceeds the seventh threshold.
  • the above-mentioned target sensing service and target communication service are services preset by the first device or preconfigured by the network side.
  • the correlation between the measurement results of the above-mentioned sensors in use and the indicated measurement results may be that a certain type of sensor is in use due to the needs of other applications and the corresponding sensor measurement results are associated with the measurement results that the second device requires feedback from the first device.
  • the measurement result of the status sensor is associated with the ongoing communication or sensing service between the first device and the second device. In this way, the first information is sent, thereby reducing the power consumption of the first device because the sensor is already in use. state.
  • the first sensor measurement result can be sent when the preset event occurs, thereby saving transmission overhead.
  • the above methods also include:
  • the first device sends third information to the second device, where the third information includes at least one of the following:
  • the second perceptual measurement result is a measurement result obtained by the first device based on perceptual measurement based on wireless signals.
  • the sensor measurement results are not sent, thereby saving transmission overhead.
  • the method before the first device sends the first information to the second device, the method further includes:
  • the first device receives fourth information sent by the second device, and the fourth information is used to instruct the first device to send the first information to the second device.
  • the above-mentioned fourth information may include at least one of the following:
  • Configuration information of the wireless signal perceptual measurement quantity, indication information of whether to send the first sensor measurement result, desired sensor type, desired first sensor measurement result type, transmission period of the first information, the first Conditions for sending sensor measurement results.
  • the above sending conditions may refer to the first condition described in the embodiment.
  • the second device can instruct the first device how the terminal sends the measurement results, so that the first device sends based on the instructions of the second device, thereby reducing transmission overhead and also reducing measurement overhead.
  • the configuration information of the wireless signal may include at least one of the following:
  • Signal configuration identification signal type, waveform, subcarrier interval, guard interval, bandwidth, frequency domain interval, time domain duration, time domain interval.
  • the above-mentioned signal configuration identifier may be used to indicate the configuration information of the corresponding wireless signal. That is, in this embodiment, different signal configuration identifiers may indicate different configuration information.
  • the above signal types include at least one of the following: perception signals, communication signals, and synaesthesia integrated signals.
  • the above waveforms can be Orthogonal frequency division multiplex (OFDM), Single-carrier Frequency-Division Multiple Access (SC-FDMA), Orthogonal Time Frequency Space , OTFS), Frequency Modulated Continuous Wave (FMCW), pulse signals, etc.
  • OFDM Orthogonal frequency division multiplex
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • OTFS Orthogonal Time Frequency Space
  • FMCW Frequency Modulated Continuous Wave
  • pulse signals etc.
  • the above-mentioned subcarrier spacing may be the subcarrier spacing of an orthogonal frequency division multiplex (OFDM) system of 30KHz.
  • OFDM orthogonal frequency division multiplex
  • the above-mentioned guard interval can be the time interval from the time when the signal ends sending to the time when the latest echo signal of the signal is received; this parameter is proportional to the maximum sensing distance; for example, it can be calculated by c/(2R max ), R max is the maximum sensing distance (belonging to sensing requirements).
  • R max represents the maximum distance from the sensing signal transceiver point to the signal transmitting point; in some cases, OFDM signal cyclic prefix (Cyclic prefix, CP) can play the role of the minimum guard interval, and c is the speed of light.
  • the above bandwidth can be inversely proportional to the distance resolution, such as the frequency domain bandwidth of each wireless signal B ⁇ c/(2 ⁇ R), where c is the speed of light and ⁇ R is the distance resolution.
  • the above frequency domain spacing can be inversely proportional to the maximum ambiguity-free distance/delay, where for the OFDM system when the subcarriers adopt continuous mapping, the frequency domain spacing is equal to the subcarrier spacing.
  • the above time domain duration can also be called burst duration.
  • the time domain duration is inversely proportional to the rate resolution (belonging to the sensing requirement information). It is the time span of the sensing signal and is mainly used to calculate the Doppler frequency offset.
  • the time domain duration T p of each wireless signal satisfies at least one of the following:
  • T p T d
  • T d the coherence processing time. If the speed direction is not considered, the coherence processing time satisfies T d ⁇ ⁇ R/(2v max ). If the speed direction is considered, the coherence processing time satisfies T d ⁇ R/(2
  • the above time domain interval can be the time interval between two adjacent sensing signals; for example: among the multiple time units of the time domain resource of the wireless signal, if the speed direction is not considered, the time domain of the two adjacent time units The interval ⁇ T ⁇ c/(2f c v max ), if the speed direction is considered, the time domain interval of two adjacent time units is ⁇ T ⁇ c/(4f c
  • At least one of the above subcarrier intervals, guard intervals, bandwidth, frequency domain intervals, time domain duration, and time domain intervals may also be called resource information of the wireless signal.
  • the method further includes:
  • the first device receives fifth information sent by the second device, where the fifth information includes at least one of the following:
  • the third sensing measurement result and the second sensor measurement result are the sensing measurement result and the sensor measurement result obtained by performing measurements by the third device.
  • the above-mentioned third device is another device that performs measurement, such as a terminal or a network-side device.
  • the above-mentioned fifth information may be sent by the second device to the first device on its own initiative or may be requested by the first device.
  • the method further includes:
  • the first device sends a request message to the second device, where the request message is used to request the fifth information.
  • the first device since the first device obtains the measurement results from the second device and performs measurements on the third device, this is beneficial to the first device in better developing sensing services, thereby further improving the sensing performance of the first device.
  • the first device sends first information to the second device, and the first information includes: a first perceptual measurement result and a first sensor measurement result; wherein the first perceptual measurement result is the The first device measures a measurement result based on a wireless signal, and the first sensor measurement result is a measurement result obtained by the first device based on a sensor, and the first sensor measurement result is used to assist the sensing measurement.
  • the sensing performance of the communication device can be improved.
  • Figure 5 is a flow chart of a method for receiving measurement information provided by an embodiment of the present application. As shown in Figure 5, it includes the following steps:
  • Step 501 The second device receives the first information sent by the first device, where the first information includes:
  • the first perceptual measurement result is a measurement result obtained by the first device based on a wireless signal
  • the first sensor measurement result is a measurement result obtained by the first device based on a sensor
  • the first sensor measurement result is a measurement result obtained by the first device based on a sensor.
  • the first sensor measurement result is used to assist the sensing measurement.
  • the senor includes at least one of the following:
  • Acceleration sensor gyroscope, magnetic sensor, rotation vector sensor, positioning sensor, pressure sensor, temperature sensor, humidity sensor, light sensor.
  • the first sensor measurement result includes at least one of the following:
  • Movement information, location-related information, environmental information, and equipment parameter information are examples of parameters
  • the motion information includes at least one of the following:
  • Acceleration information speed information, rotation rate information.
  • the location-related information includes at least one of the following:
  • Geomagnetic intensity information moving distance information, rotation angle information, orientation information, position information, and relative distance information.
  • the environment information includes at least one of the following:
  • Ambient temperature information light intensity information, air pressure information, humidity information.
  • the first perceptual measurement result includes the result of a perceptual measurement quantity
  • the perceptual measurement quantity includes at least one of the following:
  • Signal-related measurement quantities channel-related measurement quantities, time-domain-related measurement quantities, frequency-domain-related measurement quantities, spatial-related measurement quantities, environment-related measurement quantities, and target object-related measurement quantities.
  • the method also includes at least one of the following:
  • the second device obtains a sensing result based on the first sensing measurement result and the first sensor measurement result
  • the second device adjusts the configuration of the wireless signal based on at least one of the first perception measurement and the first sensor measurement.
  • the method also includes:
  • the second device sends configuration information to the first device, where the configuration information includes the adjusted configuration of the wireless signal.
  • the first information also includes at least one of the following:
  • first instruction information second instruction information, and third instruction information
  • the first indication information is used to indicate whether the first information includes the first sensor measurement result
  • the second indication information is used to indicate information related to the measurement results of the first sensor
  • the third indication information is used to indicate the perception performance index corresponding to the first perception measurement result.
  • the information related to the first sensor measurement result includes at least one of the following:
  • the type of the first sensor measurement result the sensor type corresponding to the first sensor measurement result, the timestamp of the first sensor measurement result, and the coordinate system relationship corresponding to the first sensor measurement result.
  • the method before the second device receives the first information sent by the first device, the method further includes:
  • the second device receives the second information sent by the first device, and the second information includes at least one of the following:
  • the sensor type supported by the first device the type of first sensor measurement result supported by the first device, the usage status of the sensor of the first device, and the device parameter information of the first device.
  • the device parameter information includes:
  • the second device receives the first information sent by the first device, including:
  • the second device receives the first information sent by the first device;
  • the first condition includes at least one of the following:
  • the second device triggers the first device to send the first sensor measurement result
  • a scheduled event occurs.
  • the method also includes:
  • the second device receives third information sent by the first device, where the third information includes at least one of the following:
  • the second perceptual measurement result is a measurement result obtained by the first device based on perceptual measurement based on wireless signals.
  • the method before the second device receives the first information sent by the first device, the method further includes:
  • the fourth information sent by the second device to the first device is used to instruct the first device to send the first information to the second device.
  • the fourth information includes at least one of the following:
  • Configuration information of the wireless signal perceptual measurement quantity, indication information of whether to send the first sensor measurement result, desired sensor type, desired first sensor measurement result type, transmission period of the first information, the first Conditions for sending sensor measurement results.
  • the configuration information of the wireless signal includes at least one of the following:
  • Signal configuration identification signal type, waveform, subcarrier interval, guard interval, bandwidth, frequency domain interval, time domain duration, time domain interval.
  • the method also includes:
  • the second device sends fifth information to the first device, where the fifth information includes at least one of the following:
  • the third perception measurement result and the second sensor measurement result are the perception measurement result and the sensor measurement result obtained by performing measurements by the third device.
  • the method also includes:
  • the second device receives a request message sent by the first device, where the request message is used to request the fifth information.
  • this embodiment is an implementation of the second device corresponding to the embodiment shown in Figure 3.
  • Step 1 The second device (base station or Sensing MF) obtains sensing requirement information, where the sensing requirement information includes at least one of the following:
  • Perception business divided by type or specific to a certain business, such as environment reconstruction, breathing or heartbeat detection, positioning or trajectory tracking, action recognition, weather monitoring, radar ranging and speed measurement, etc.;
  • the sensing object may have a location area, or a location area that requires imaging or environment reconstruction;
  • Sensing object type Classify sensing objects according to their possible motion characteristics. Each sensing object type contains information such as the motion speed, motion acceleration, typical radar cross section (RCS) of typical sensing objects;
  • RCS radar cross section
  • Performance indicators for sensing the sensing target area or sensing object including at least one of the following:
  • Perception resolution can be further divided into: ranging resolution, angle measurement resolution, speed measurement resolution, imaging resolution, etc.;
  • Perception accuracy can be further divided into: ranging accuracy, angle measurement accuracy, speed measurement accuracy, positioning accuracy, etc.;
  • the sensing range can be further divided into: ranging range, speed measuring range, angle measuring range, imaging range, etc.;
  • Sensing delay such as the time interval from the sensing signal being sent to the sensing result being obtained, or the time interval from the sensing requirement being initiated to the sensing result being obtained;
  • Perception update rate such as the time interval between two consecutive sensing operations and obtaining sensing results
  • Detection probability such as the probability of being correctly detected given the presence of the perceived object
  • False alarm probability such as the probability of incorrectly detecting a sensing target when the sensing object does not exist
  • the sensing service is environment reconstruction, such as Simultaneous Localization and Mapping (SLAM), and the target area of sensing is the area and range of environment reconstruction, for example, X meters near the first device
  • SLAM Simultaneous Localization and Mapping
  • the corresponding perceived QoS can be at least one of the following:
  • the accuracy/error of environment reconstruction such as the deviation of the size and position of an obstacle from its true size and position
  • the environment reconstruction delay requirement can be the maximum allowable delay or the allowable delay range.
  • Step 2 (optional).
  • the second device sends a device information acquisition request to the first device, requesting to acquire the device information of the first device.
  • the device information may be the second information in the embodiment as shown in Figure 3.
  • Step 3 (optional).
  • the first device feeds back the device information to the second device according to the received device information acquisition request.
  • the device information is the sensor data type supported by the feedback, it can be indicated in the form of a bitmap. For example, x bits are used to correspond to x sensor data types. Supported is expressed as 1, and unsupported is expressed as 0.
  • Step 4. The second device sends indication information to the first device.
  • the indication information may indicate at least one of the following:
  • Configuration information of the first signal wherein the first signal may be sent by the second device and received by the first device, or may be spontaneously received by the first device;
  • the perceptual measurement quantity is used to instruct the first device to measure the first signal and feed back the first perceptual measurement result.
  • the perceptual measurement quantity can be: reflection path delay, delay difference between reflection paths, reflection point relative The distance from the first device, the arrival angle of the reflection path on the side of the first device (which can be the angle relative to the local coordinate system based on the first device), the signal strength of the reflection path, and the reflection order identifier of the reflection path (such as the first-order reflection , multi-order reflection), reflection point coordinates in the reference coordinate system based on the first device, etc.;
  • Desired sensor data type which can include at least one of the following:
  • Step 5 The second device sends the first signal, or the first device spontaneously receives the first signal.
  • Step 6 Based on the above indication information, the first device measures the first signal and feeds back the first information to the second device.
  • the first information may include at least one of the following:
  • Step 7 The second device obtains the sensing results required for the environment reconstruction service based on the first sensing measurement results and/or sensor measurement results.
  • Step 1 The second device (base station or Sensing MF) obtains sensing requirement information.
  • the sensing service is to detect and track passive targets in a specific area in the environment.
  • the passive targets refer to targets that do not send or receive signals.
  • Step 2 (optional).
  • the second device sends a device information acquisition request to the first device, requesting to acquire the device information of the first device.
  • the device information is as described in the application plan.
  • Step 3 (optional).
  • the first device feeds back the device information to the second device according to the received device information acquisition request.
  • the device information may be the second information in the embodiment shown in Figure 3 .
  • Step 4 The second device sends first instruction information to the first device, and the first instruction information indicates at least one of the following:
  • a first signal configuration wherein the first signal may be sent by the second device and received by the first device, or may be spontaneously received by the first device;
  • the perceptual measurement quantity is used to instruct the first device to measure the first signal and feed back the first perceptual measurement result.
  • the perceptual measurement quantity can be: delay information and/or Doppler information and/or angle information (can is the angle of the global coordinate system);
  • the trigger event for reporting sensor measurement results is when the perceived SNR is lower than the preset threshold
  • Desired sensor data type which can include at least one of the following:
  • Step 5 The second device sends the first signal, or the first device can spontaneously receive the first signal.
  • Step 6 The first device measures the first signal based on the first indication information, and when the first indicator information corresponding to the first perception measurement result, that is, the perception SNR is higher than the preset threshold, feeds back the first information to the second device , including at least one of the following:
  • the second device determines the perception result, that is, the position and/or motion state of the target based on the first perception measurement result.
  • the first indicator information corresponding to the first perception measurement result that is, the perception SNR is lower than the preset threshold
  • the first information is fed back to the second device, as shown in step 8, including at least one of the following:
  • the second device adjusts the transmitting beam direction for transmitting the first signal or instructs the first device to adjust the receiving beam direction, or switches the sensing device, that is, no longer uses the third sensing device.
  • One device acts as a sensing device.
  • the first device sends device information and/or first information to the second device.
  • the device information includes supported sensors/sensor data types, sensor usage status, power, etc.; the first information includes wireless sensing measurement results and sensor measurement results, Sensor/sensor data type indication, timestamp, coordinate relationship, etc.
  • the second device instructs the first device to sense signal configuration and sensor information reporting requirements, and receives device information and/or first information reported by the first device, obtains sensing results based on wireless sensing measurement results and sensor measurement results, or adjusts sensing Signal configuration.
  • various sensor data can be used to assist wireless sensing services, thereby improving sensing performance.
  • the execution subject of the measurement information sending method and receiving method provided by the embodiments of this application may be a device.
  • the device performs sending and receiving measurement information as an example to illustrate the measurement information sending device and receiving device provided by the embodiments of the present application.
  • Figure 8 is a structural diagram of a measurement information sending device provided by an embodiment of the present application. As shown in Figure 8, the measurement information sending device 800 includes:
  • the first sending module 801 is used to send first information to the second device, where the first information includes:
  • the first perceptual measurement result is a measurement result obtained by a first device corresponding to the device based on a perceptual measurement based on a wireless signal
  • the first sensor measurement result is a measurement result obtained by the first device based on a sensor measurement.
  • the first sensor measurement result is used to assist perceptual measurement.
  • the first device corresponding to the above-mentioned device can be understood as the first device includes the above-mentioned device, or the above-mentioned device is the above-mentioned first device.
  • the above devices also include:
  • An acquisition module is used to acquire the above-mentioned first perception measurement result and first sensor measurement result.
  • the senor includes at least one of the following:
  • Acceleration sensor gyroscope, magnetic sensor, rotation vector sensor, positioning sensor, pressure sensor, temperature sensor, humidity sensor, light sensor.
  • the first sensor measurement result includes at least one of the following:
  • Movement information, location-related information, environmental information, and equipment parameter information are examples of parameters
  • the motion information includes at least one of the following:
  • Acceleration information speed information, rotation rate information.
  • the location-related information includes at least one of the following:
  • Geomagnetic intensity information moving distance information, rotation angle information, orientation information, position information, and relative distance information.
  • the environment information includes at least one of the following:
  • Ambient temperature information light intensity information, air pressure information, humidity information.
  • the first perceptual measurement result includes the result of a perceptual measurement quantity
  • the perceptual measurement quantity includes at least one of the following:
  • Signal-related measurement quantities channel-related measurement quantities, time-domain-related measurement quantities, frequency-domain-related measurement quantities, spatial-related measurement quantities, environment-related measurement quantities, and target object-related measurement quantities.
  • the first sensor measurement result is used to assist perceptual measurement, including at least one of the following:
  • the first sensor measurement result is used by the second device to obtain the sensing result
  • the first sensor measurement is used by the second device to adjust the configuration of the wireless signal.
  • the device also includes:
  • a first receiving module configured to receive configuration information sent by the second device, where the configuration information includes the adjusted configuration of the wireless signal.
  • the first information also includes at least one of the following:
  • first instruction information second instruction information, and third instruction information
  • the first indication information is used to indicate whether the first information includes the first sensor measurement result
  • the second indication information is used to indicate information related to the measurement results of the first sensor
  • the third indication information is used to indicate the perception performance index corresponding to the first perception measurement result.
  • the information related to the first sensor measurement result includes at least one of the following:
  • the type of the first sensor measurement result the sensor type corresponding to the first sensor measurement result, the timestamp of the first sensor measurement result, and the coordinate system relationship corresponding to the first sensor measurement result.
  • the device also includes:
  • a second sending module configured to send second information to the second device, where the second information includes at least one of the following:
  • the sensor type supported by the first device the type of first sensor measurement result supported by the first device, the usage status of the sensor of the first device, and the device parameter information of the first device.
  • the device parameter information includes at least one of the following:
  • the first sending module 801 is used for:
  • the first condition includes at least one of the following:
  • the second device triggers the first device to send the first sensor measurement result
  • a scheduled event occurs.
  • the occurrence of a preset event includes at least one of the following:
  • the first device enters the preset area
  • the measurement result of the preset measurement signal meets the first threshold condition
  • the moving distance of the first device satisfies the second threshold condition
  • the change in orientation of the first device satisfies the third threshold condition
  • the movement speed of the first device meets the fourth threshold condition
  • the environmental change information detected by the first device meets the fifth threshold condition
  • the first device initiates a target sensing service
  • the first device initiates the target communication service
  • the measurement result of the sensor in the use state is associated with the indicated measurement result, which is the measurement result that the second device indicates to be fed back by the first device.
  • the device also includes:
  • a third sending module configured to send the first device to the second device when the first condition is not met, where the third information includes at least one of the following:
  • the second perceptual measurement result is a measurement result obtained by the first device based on perceptual measurement based on wireless signals.
  • the device also includes:
  • the second receiving module is configured to receive fourth information sent by the second device, where the fourth information is used to instruct the first device to send the first information to the second device.
  • the fourth information includes at least one of the following:
  • Configuration information of the wireless signal perceptual measurement quantity, indication information of whether to send the first sensor measurement result, desired sensor type, desired first sensor measurement result type, transmission period of the first information, the Conditions for sending the first sensor measurement results.
  • the configuration information of the wireless signal includes at least one of the following:
  • Signal configuration identification signal type, waveform, subcarrier interval, guard interval, bandwidth, frequency domain interval, time domain duration duration, time domain interval.
  • the device also includes:
  • a third receiving module configured to receive fifth information sent by the second device, where the fifth information includes at least one of the following:
  • the third sensing measurement result and the second sensor measurement result are the sensing measurement result and the sensor measurement result obtained by performing measurements by the third device.
  • the device also includes:
  • a fourth sending module is configured to send a request message to the second device, where the request message is used to request the fifth information.
  • the above measurement information sending device can improve sensing performance.
  • the measurement information sending device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a network-side device, or may be other devices besides the network-side device.
  • network-side devices may include but are not limited to the types of network-side devices listed in the embodiments of this application.
  • Other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiments of this application. .
  • the measurement information sending device provided by the embodiment of the present application can implement each process implemented by the method embodiment shown in Figure 3 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • Figure 9 is a structural diagram of a measurement information receiving device provided by an embodiment of the present application. As shown in Figure 9, the measurement information receiving device 900 includes:
  • the first receiving module 901 is used to receive the first information sent by the first device, where the first information includes:
  • the first perceptual measurement result is a measurement result obtained by the first device based on a wireless signal
  • the first sensor measurement result is a measurement result obtained by the first device based on a sensor
  • the first sensor measurement result is a measurement result obtained by the first device based on a sensor.
  • the first sensor measurement result is used to assist the sensing measurement.
  • the senor includes at least one of the following:
  • Acceleration sensor gyroscope, magnetic sensor, rotation vector sensor, positioning sensor, pressure sensor, temperature sensor, humidity sensor, light sensor.
  • the first sensor measurement result includes at least one of the following:
  • Movement information, location-related information, environmental information, and equipment parameter information are examples of parameters
  • the motion information includes at least one of the following:
  • Acceleration information speed information, rotation rate information.
  • the location-related information includes at least one of the following:
  • Geomagnetic intensity information moving distance information, rotation angle information, orientation information, position information, and relative distance information.
  • the environment information includes at least one of the following:
  • Ambient temperature information light intensity information, air pressure information, humidity information.
  • the first perceptual measurement result includes the result of a perceptual measurement quantity
  • the perceptual measurement quantity includes at least one of the following:
  • Signal-related measurements channel-related measurements, time-domain-related measurements, frequency-domain-related measurements, space-related measurements, environment-related measurements, and target object-related measurements.
  • the device also includes at least one of the following:
  • An acquisition module configured to acquire a sensing result based on the first sensing measurement result and the first sensor measurement result
  • An adjustment module configured to adjust the configuration of the wireless signal based on at least one of the first perception measurement result and the first sensor measurement result.
  • the device also includes:
  • a first sending module configured to send configuration information to the first device, where the configuration information includes the adjusted configuration of the wireless signal.
  • the first information also includes at least one of the following:
  • first instruction information second instruction information, and third instruction information
  • the first indication information is used to indicate whether the first information includes the first sensor measurement result
  • the second indication information is used to indicate information related to the measurement results of the first sensor
  • the third indication information is used to indicate the perception performance index corresponding to the first perception measurement result.
  • the information related to the first sensor measurement result includes at least one of the following:
  • the type of the first sensor measurement result the sensor type corresponding to the first sensor measurement result, the timestamp of the first sensor measurement result, and the coordinate system relationship corresponding to the first sensor measurement result.
  • the device also includes:
  • a second receiving module configured to receive second information sent by the first device, where the second information includes at least one of the following:
  • the sensor type supported by the first device the type of first sensor measurement result supported by the first device, the usage status of the sensor of the first device, and the device parameter information of the first device.
  • the device parameter information includes:
  • the first receiving module 901 is used for:
  • the second device receives the first information sent by the first device;
  • the first condition includes at least one of the following:
  • the second device triggers the first device to send the first sensor measurement result
  • a scheduled event occurs.
  • the device also includes:
  • a third receiving module configured for the second device to receive the third information sent by the first device when the first condition is not met, where the third information includes at least one of the following:
  • the second perceptual measurement result is a measurement result obtained by the first device based on perceptual measurement based on wireless signals.
  • the device also includes:
  • the second sending module is configured to send fourth information to the first device, where the fourth information is used to instruct the first device to send the first information to the second device.
  • the fourth information includes at least one of the following:
  • Configuration information of the wireless signal perceptual measurement quantity, indication information of whether to send the first sensor measurement result, desired sensor type, desired first sensor measurement result type, transmission period of the first information, the Conditions for sending the first sensor measurement results.
  • the configuration information of the wireless signal includes at least one of the following:
  • Signal configuration identification signal type, waveform, subcarrier interval, guard interval, bandwidth, frequency domain interval, time domain duration, time domain interval.
  • the device also includes:
  • a third sending module configured to send fifth information to the first device, where the fifth information includes at least one of the following:
  • the third sensing measurement result and the second sensor measurement result are the sensing measurement result and the sensor measurement result obtained by performing measurements by the third device.
  • the device also includes:
  • a fourth receiving module is configured to receive a request message sent by the first device, where the request message is used to request the fifth information.
  • the above measurement information receiving device can improve sensing performance.
  • the measurement information receiving device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • the terminal may include but is not limited to the types of terminals listed in the embodiments of this application, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiments of this application.
  • NAS Network Attached Storage
  • the measurement information receiving device provided by the embodiment of the present application can implement each process implemented by the method embodiment shown in Figure 5 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 1000, which includes a processor 1001 and a memory 1002.
  • the memory 1002 stores programs or instructions that can be run on the processor 1001, such as .
  • the communication device 1000 is the first device, when the program or instruction is executed by the processor 1001, each step of the above embodiment of the measurement information sending method is implemented, and the same technical effect can be achieved.
  • the communication device 1000 is a second device, when the program or instruction is executed by the processor 1001, the steps of the above embodiments of the measurement information receiving method are implemented, and the same technical effect can be achieved. To avoid duplication, they will not be described again here.
  • An embodiment of the present application also provides a communication device.
  • the communication device is a first device and includes a processor and a communication interface.
  • the communication interface is used to send first information to a second device.
  • the first information includes: The perceptual measurement result and the first sensor measurement result; wherein the first perceptual measurement result is the measurement result obtained by the first device corresponding to the device based on the perceptual measurement based on the wireless signal, and the first sensor measurement result is the third sensor measurement result.
  • a device measures a measurement result based on a sensor, and the first sensor measurement result is used to assist perceptual measurement.
  • the first device embodiment corresponds to the above-mentioned first device-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to the second terminal embodiment and can achieve the same technical effect.
  • FIG. 11 is a schematic diagram of the hardware structure of a communication device that implements an embodiment of the present application.
  • the communication device 1100 is a first device, including but not limited to: radio frequency unit 1101, network module 1102, audio output unit 1103, input unit 1104, sensor 1105, display unit 1106, user input unit 1107, interface unit 1108, memory 1109 and At least some components of the processor 1110 and the like.
  • the communication device 1100 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1110 through a power management system, thereby achieving management of charging, discharging, and function through the power management system. Consumption management and other functions.
  • the structure of the communication device shown in Figure 11 does not constitute a limitation on the communication device.
  • the communication device may include more or less components than shown in the figure, or combine certain components, or arrange different components, which will not be described again here. .
  • the input unit 1104 may include a graphics processing unit (Graphics Processing Unit, GPU) 11041 and a microphone 11042.
  • the graphics processing unit 11041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 1106 may include a display panel 11061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1107 includes at least one of a touch panel 11071 and other input devices 11072 .
  • Touch panel 11071 also called touch screen.
  • the touch panel 11071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 11072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 1101 after receiving downlink data from the network side device, the radio frequency unit 1101 can transmit it to the processor 1110 for processing; in addition, the radio frequency unit 1101 can send uplink data to the network side device.
  • the radio frequency unit 1101 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 1109 may be used to store software programs or instructions as well as various data.
  • the memory 1109 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 1109 may include volatile memory or nonvolatile memory, or memory 1109 may include volatile Both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus
  • the processor 1110 may include one or more processing units; optionally, the processor 1110 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 1110.
  • the communication device 1100 in the embodiment of the present application also includes: instructions or programs stored in the memory 1109 and executable on the processor 1110.
  • the processor 1110 calls the instructions or programs in the memory 1109 to execute the modules shown in Figure 8 The implementation method and achieve the same technical effect will not be repeated here to avoid repetition.
  • the first device is used as the terminal for illustration.
  • the radio frequency unit 1101 is used to send first information to the second device, where the first information includes:
  • the first perceptual measurement result is a measurement result obtained by the first device based on a wireless signal
  • the first sensor measurement result is a measurement result obtained by the first device based on a sensor
  • the first sensor measurement result is a measurement result obtained by the first device based on a sensor.
  • the first sensor measurement result is used to assist the sensing measurement.
  • the senor includes at least one of the following:
  • Acceleration sensor gyroscope, magnetic sensor, rotation vector sensor, positioning sensor, pressure sensor, temperature sensor, humidity sensor, light sensor.
  • the first sensor measurement result includes at least one of the following:
  • Movement information, location-related information, environmental information, and equipment parameter information are examples of parameters
  • the motion information includes at least one of the following:
  • Acceleration information speed information, rotation rate information.
  • the location-related information includes at least one of the following:
  • Geomagnetic intensity information moving distance information, rotation angle information, orientation information, position information, and relative distance information.
  • the environment information includes at least one of the following:
  • Ambient temperature information light intensity information, air pressure information, humidity information.
  • the first perceptual measurement result includes the result of perceptual measurement quantity, and the perceptual measurement quantity includes the following: One item missing:
  • Signal-related measurements channel-related measurements, time-domain-related measurements, frequency-domain-related measurements, space-related measurements, environment-related measurements, and target object-related measurements.
  • the first sensor measurement result is used to assist perceptual measurement, including at least one of the following:
  • the first sensor measurement result is used by the second device to obtain the sensing result
  • the first sensor measurement is used by the second device to adjust the configuration of the wireless signal.
  • the radio frequency unit 1101 is also used for:
  • the first information also includes at least one of the following:
  • first instruction information second instruction information, and third instruction information
  • the first indication information is used to indicate whether the first information includes the first sensor measurement result
  • the second indication information is used to indicate information related to the measurement results of the first sensor
  • the third indication information is used to indicate the perception performance index corresponding to the first perception measurement result.
  • the information related to the first sensor measurement result includes at least one of the following:
  • the type of the first sensor measurement result the sensor type corresponding to the first sensor measurement result, the timestamp of the first sensor measurement result, and the coordinate system relationship corresponding to the first sensor measurement result.
  • the radio frequency unit 1101 is also used to:
  • the sensor type supported by the first device the type of first sensor measurement result supported by the first device, the usage status of the sensor of the first device, and the device parameter information of the first device.
  • the optional device parameter information includes at least one of the following:
  • sending the first information to the second device includes:
  • the first condition includes at least one of the following:
  • the second device triggers the first device to send the first sensor measurement result
  • a scheduled event occurs.
  • the occurrence of a preset event includes at least one of the following:
  • the first device enters the preset area
  • the measurement result of the preset measurement signal meets the first threshold condition
  • the moving distance of the first device satisfies the second threshold condition
  • the change in orientation of the first device satisfies the third threshold condition
  • the movement speed of the first device meets the fourth threshold condition
  • the environmental change information detected by the first device meets the fifth threshold condition
  • the first device initiates a target sensing service
  • the first device initiates the target communication service
  • the measurement result of the sensor in the use state is associated with the indicated measurement result, which is the measurement result that the second device indicates to be fed back by the first device.
  • the radio frequency unit 1101 is also used for:
  • third information is sent to the second device, where the third information includes at least one of the following:
  • the second perceptual measurement result is a measurement result obtained by the first device based on perceptual measurement based on wireless signals.
  • the radio frequency unit 1101 is also used to:
  • Receive fourth information sent by the second device where the fourth information is used to instruct the first device to send the first information to the second device.
  • the fourth information includes at least one of the following:
  • Configuration information of the wireless signal perceptual measurement quantity, indication information of whether to send the first sensor measurement result, desired sensor type, desired first sensor measurement result type, transmission period of the first information, the first Conditions for sending sensor measurement results.
  • the configuration information of the wireless signal includes at least one of the following:
  • Signal configuration identification signal type, waveform, subcarrier interval, guard interval, bandwidth, frequency domain interval, time domain duration, time domain interval.
  • the radio frequency unit 1101 is also used for:
  • the third sensing measurement result and the second sensor measurement result are the sensing measurement result and the sensor measurement result obtained by performing measurements by the third device.
  • the radio frequency unit 1101 is also used for:
  • a request message is sent to the second device, where the request message is used to request the fifth information.
  • the first device described above can improve perceptual performance.
  • An embodiment of the present application also provides a communication device.
  • the communication device is a second device and includes a processor and a communication interface.
  • the communication interface is used to receive first information sent by the first device, where the first information includes: A perceptual measurement result and a first sensor measurement result; wherein, the first perceptual measurement result is a measurement result obtained by the first device based on a wireless signal, and the first sensor measurement result is a perceptual measurement result obtained by the first device.
  • Sensor-based measurements The resulting measurement results are obtained, and the first sensor measurement results are used to assist in sensing measurements.
  • This second device embodiment corresponds to the above-mentioned second device-side method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this second device embodiment, and can achieve the same technical effect.
  • the communication device 1200 includes: an antenna 1201, a radio frequency device 1202, a baseband device 1203, a processor 1204 and a memory 1205.
  • Antenna 1201 is connected to radio frequency device 1202.
  • the radio frequency device 1202 receives information through the antenna 1201 and sends the received information to the baseband device 1203 for processing.
  • the baseband device 1203 processes the information to be sent and sends it to the radio frequency device 1202.
  • the radio frequency device 1202 processes the received information and then sends it out through the antenna 1201.
  • the method performed by the communication device in the above embodiment can be implemented in the baseband device 1203, which includes a baseband processor.
  • the baseband device 1203 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the communication device may also include a network interface 1206, such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the communication device 1200 in the embodiment of the present application also includes: instructions or programs stored in the memory 1205 and executable on the processor 1204.
  • the processor 1204 calls the instructions or programs in the memory 1205 to execute the modules shown in Figure 9 The implementation method and achieve the same technical effect will not be repeated here to avoid repetition.
  • the second device is used as an access network device for illustration.
  • the radio frequency device 1202 is used to receive the first information sent by the first device, where the first information includes:
  • the first perceptual measurement result is a measurement result obtained by the first device based on a wireless signal
  • the first sensor measurement result is a measurement result obtained by the first device based on a sensor
  • the first sensor measurement result is a measurement result obtained by the first device based on a sensor.
  • the first sensor measurement result is used to assist the sensing measurement.
  • the senor includes at least one of the following:
  • Acceleration sensor gyroscope, magnetic sensor, rotation vector sensor, positioning sensor, pressure sensor, temperature sensor, humidity sensor, light sensor.
  • the first sensor measurement result includes at least one of the following:
  • Movement information, location-related information, environmental information, and equipment parameter information are examples of parameters
  • the motion information includes at least one of the following:
  • Acceleration information speed information, rotation rate information.
  • the location-related information includes at least one of the following:
  • Geomagnetic intensity information moving distance information, rotation angle information, orientation information, position information, and relative distance information.
  • the environment information includes at least one of the following:
  • Ambient temperature information light intensity information, air pressure information, humidity information.
  • the first perceptual measurement result includes the result of a perceptual measurement quantity
  • the perceptual measurement quantity includes at least one of the following:
  • Signal-related measurement quantities channel-related measurement quantities, time-domain-related measurement quantities, frequency-domain-related measurement quantities, spatial-related measurement quantities, environment-related measurement quantities, and target object-related measurement quantities.
  • the processor 1204 is used for at least one of the following:
  • a configuration of the wireless signal is adjusted based on at least one of the first sensory measurement and the first sensor measurement.
  • the radio frequency device 1202 is also used for:
  • the first information also includes at least one of the following:
  • first instruction information second instruction information, and third instruction information
  • the first indication information is used to indicate whether the first information includes the first sensor measurement result
  • the second indication information is used to indicate information related to the measurement results of the first sensor
  • the third indication information is used to indicate the perception performance index corresponding to the first perception measurement result.
  • the information related to the first sensor measurement result includes at least one of the following:
  • the type of the first sensor measurement result the sensor type corresponding to the first sensor measurement result, the timestamp of the first sensor measurement result, and the coordinate system relationship corresponding to the first sensor measurement result.
  • the radio frequency device 1202 is also used to:
  • the sensor type supported by the first device the type of first sensor measurement result supported by the first device, the usage status of the sensor of the first device, and the device parameter information of the first device.
  • the device parameter information includes:
  • receiving the first information sent by the first device includes:
  • the first condition includes at least one of the following:
  • the second device triggers the first device to send the first sensor measurement result
  • a scheduled event occurs.
  • the radio frequency device 1202 is also used for:
  • the second perceptual measurement result is a measurement result obtained by the first device based on perceptual measurement based on wireless signals.
  • the radio frequency device 1202 is also used to:
  • the fourth information sent by the second device to the first device is used to instruct the first device to send the first information to the second device.
  • the fourth information includes at least one of the following:
  • Configuration information of the wireless signal perceptual measurement quantity, indication information of whether to send the first sensor measurement result, desired sensor type, desired first sensor measurement result type, transmission period of the first information, the first Conditions for sending sensor measurement results.
  • the configuration information of the wireless signal includes at least one of the following:
  • Signal configuration identification signal type, waveform, subcarrier interval, guard interval, bandwidth, frequency domain interval, time domain duration, time domain interval.
  • the radio frequency device 1202 is also used for:
  • the third sensing measurement result and the second sensor measurement result are the sensing measurement result and the sensor measurement result obtained by performing measurements by the third device.
  • the radio frequency device 1202 is also used for:
  • the second device described above can improve perceived performance.
  • Embodiments of the present application also provide a readable storage medium, with a program or instructions stored on the readable storage medium.
  • the program or instructions are executed by a processor, each of the above embodiments of the measurement information sending method or measurement information receiving method is implemented.
  • the process can achieve the same technical effect. To avoid repetition, it will not be described again here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above measurement information sending method or measurement.
  • Each process of the information receiving method embodiment can achieve the same technical effect, so to avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above measurement information sending.
  • Each process of the embodiment of the sending method or the measurement information receiving method can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • An embodiment of the present application also provides a measurement information transmission system, including: a first device and a second device.
  • the first device can be used to perform the steps of the measurement information sending method provided by the embodiment of the present application.
  • the second device The device may be configured to perform the steps of the measurement information receiving method provided by the embodiments of the present application.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种测量信息发送方法、接收方法及通信设备,属于通信技术领域,本申请实施例的感知测量方法包括:第一设备向第二设备发送第一信息,所述第一信息包括:第一感知测量结果和第一传感器测量结果;其中,所述第一感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。

Description

测量信息发送方法、接收方法及通信设备
相关申请的交叉引用
本申请主张在2022年09月05日在中国提交的中国专利申请No.202211079793.1的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种测量信息发送方法、接收方法及通信设备。
背景技术
未来移动通信系统(例如超5代移动通信系统(Beyond 5th-Generation,B5G)或第六代移动通信系统(6th Generation,6G))除了具备通信能力外,还将具备感知能力。感知能力,即具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离和/或速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别或成像等。但目前本领域技术人员对于感知测量的研究还仅依赖于无线信号,在感知测量业务中通信设备之间只能传递无线信号对应的测量结果,这样导致通信设备的感知性能比较差。
发明内容
本申请实施例提供一种测量信息发送方法、接收方法及通信设备,能够解决通信设备的感知性能比较差的问题。
第一方面,提供了一种测量信息发送方法,包括:
第一设备向第二设备发送第一信息,所述第一信息包括:
第一感知测量结果和第一传感器测量结果;
其中,所述第一感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。
第二方面,提供了一种测量信息接收方法,包括:
第二设备接收第一设备发送的第一信息,所述第一信息包括:
第一感知测量结果和第一传感器测量结果;
其中,所述第一感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。
第三方面,提供了一种测量信息发送装置,包括:
第一发送模块,用于向第二设备发送第一信息,所述第一信息包括:
第一感知测量结果和第一传感器测量结果;
其中,所述第一感知测量结果为所述装置对应的第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。
第四方面,提供了一种测量信息接收装置,包括:
第一接收模块,用于接收第一设备发送的第一信息,所述第一信息包括:
第一感知测量结果和第一传感器测量结果;
其中,所述第一感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。
第五方面,提供了一种通信设备,所述通信设备为第一设备,该通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如本申请实施例提供的测量信息发送方法的步骤。
第六方面,提供了一种通信设备,所述通信设备为第一设备,包括处理器及通信接口,其中,所述通信接口用于向第二设备发送第一信息,所述第一信息包括:第一感知测量结果和第一传感器测量结果;其中,所述第一感知测量结果为所述装置对应的第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。
第七方面,提供了一种通信设备,所述通信设备为第二设备,该通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现本申请实施例提供的测量信息接收方法的步骤。
第八方面,提供了一种通信设备,所述通信设备为第二设备,包括处理器及通信接口,其中,所述通信接口用于接收第一设备发送的第一信息,所述第一信息包括:第一感知测量结果和第一传感器测量结果;其中,所述第一感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。
第九方面,提供了一种测量信息传递系统,包括:第一设备及第二设备,所述第一设备可用于执行如本申请实施例提供的测量信息发送方法的步骤,所述第二设备可用于执行如本申请实施例提供的测量信息接收方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如本申请实施例提供的测量信息发送方法的步骤,或者实现如本申请实施例提供的测量信息接收方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如本申请实施例提供的测量信息发送方法,或实现如本申请实施例提供的测量信息接收方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如本申请实施例提供的测量信息发送方法的步骤,或者所述计算机程序/程序产品被至少一个处理器执行以实现如本申请实施例提供的测量信息接收方法的步骤。
在本申请实施例中,第一设备向第二设备发送第一信息,所述第一信息包括:第一感知测量结果和第一传感器测量结果;其中,所述第一感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。这样由于第一设备与第二设备之间除了传递第一感知测量结果之外,还传递了用于辅助感知测量的第一传感器测量结果,从而可以提升通信设备的感知性能。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例提供的一种感知测量的场景示意图;
图3是本申请实施例提供的一种测量信息发送方法的流程图;
图4是本申请实施例提供的一种感知信噪比(Signal-to-noise Ratio,SNR)计算的示意图;
图5是本申请实施例提供的一种测量信息接收方法的流程图;
图6是本申请实施例提供的一种测量信息传输方法的示意图;
图7是本申请实施例提供的另一种测量信息传输方法的示意图;
图8是本申请实施例提供的一种测量信息发送装置的结构图;
图9是本申请实施例提供的一种测量信息接收装置的结构图;
图10是本申请实施例提供的一种通信设备的结构图;
图11是本申请实施例提供的另一种通信设备的结构图;
图12是本申请实施例提供的另一种通信设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一, 字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、路侧单元(Road side unit,RSU)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链、智能头盔、智能操纵杆等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。
本申请实施例中,终端11之间可以进行旁链路(sidelink,或译为副链路,侧链路,边链路等,简称为SL)传输,即终端11之间直接在物理层上进行数据传输。终端11之间SL传输可以是广播、单播、多播或组播等。且SL传输的终端可以均是在网的,或者均是脱网的,还可以是部分设备在网,部分设备脱网。
网络侧设备12可以包括无线接入网设备和核心网设备,其中,无线接入网设备也可以称为无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。无线接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(Evolved Node B,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)、小基站或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特 定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)、网络数据分析功能(Network Data Analytics Function,NWDAF)、位置管理功能(Location Management Function,LMF)等。
在一些实施方式中,核心网设备又可以称为感知网络功能、感知网元或者感知管理功能(Sensing Management Function,Sensing MF),可以处于RAN侧或核心网侧,是指核心网和/或RAN中负责感知请求处理、感知资源调度、感知信息交互、感知数据处理等至少一项功能的网络节点,可以是基于5G网络中AMF或LMF升级,也可以是其他网络节点或新定义的网络节点。
需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
本申请实施例中,网络侧设备和终端具备感知能力,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。一些感知功能与应用场景如表1所示:
表1

需要说明的是,上述表1所示的感知类别仅是一个举例说明,本申请实施例中对感知测量的类别并不作限定。
另外,本申请实施例可以应用于通信感知一体化场景,其中,通信感知一体化是指在同一系统中通过频谱共享与硬件共享,实现通信和感知功能一体化设计,系统在进行信息传递的同时,能够感知方位、距离、速度等信息,对目标设备或事件进行检测、跟踪、识别,通信系统与感知系统相辅相成,实现整体性能上的提升并带来更好的服务体验。
例如:通信与雷达的一体化属于典型的通信感知一体化(通信感知融合)应用,且通信与雷达系统融合能够带来许多优势,例如节约成本、减小尺寸、降低功耗、提升频谱效率、减小互干扰等,从而提升系统整体性能。
本申请实施例中,根据感知信号发送节点和接收节点的不同,可以包括但不限于图2所示的6种感知链路。需要说明的是,图2中每种感知链路都是以一个发送节点和一个接收节点进行举例说明,实际系统中,根据不同的感知需求可以选择不同的感知链路,每种感知链路的发送节点和接收节点可以有一个或多个,且实际感知系统可以包括多种不同的感知链路。且图2中的感知对象以人和车作为例子,实际系统的感知对象将更加丰富。
感知链路1:基站回波感知。该方式下基站发送感知信号,并通过接收该感知信号的回波来获得感知结果;
感知链路2:基站间空口感知。该方式下基站2接收基站1发送的感知信号,获得感知结果。
感知链路3:上行空口感知。该方式下基站接收终端发送的感知信号,获得感知结果。
感知链路4:下行空口感知。该方式下终端接收基站发送的感知信号,获得感知结果。
感知链路5:终端回波感知。该方式下终端发送感知信号,并通过接收该感知信号的回波来获得感知结果。
感知链路6:终端间Sidelink感知。例如,终端2接收终端1发送的感知信号,获得感知结果,或者终端1接收终端2发送的感知信号,获得感知结果。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的一种测量信息发送方法、接收方法及通信设备进行详细地说明。
请参见图3,图3是本申请实施例提供的一种测量信息发送方法的流程图,如图3所示,包括以下步骤,包括:
步骤301、第一设备向第二设备发送第一信息,所述第一信息包括:
第一感知测量结果和第一传感器测量结果;
其中,所述第一感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。
上述第一设备可以是基于无线信号进行感知测量,以及基于传感器进行测量的通信设 备,例如:终端。在一些实施方式中,上述第一设备也可以是网络侧设备。
上述无线信号可以是第一设备发送的无线信号,也可以是其他设备发送的无线信号。
上述无线信号可以是通信信号,例如参考信号、同步信号或数据信号,上述无线信号也可以是专用感知信号,例如雷达脉冲信号或调频连续波(Frequency Modulated Continuous Wave,FMCW)信号。
上述传感器可以是上述第一设备中的一种或者多种传感器,这样可以利用第一设备中的传感器辅助感知测量,从而提高通信设备的感知性能。
上述第一传感器测量结果用于辅助感知测量可以是,第二设备基于上述第一传感器测量结果和第一感知测量结果获取感知结果,这样由于基于两种测量结果获取感知结果,从而可以使得感知结果更加准确。或者上述第一传感器测量结果用于辅助感知测量可以是,第二设备基于第一传感器测量结果,调整无线信号的配置,使得无线信号能够更好地用于感知测量,进而提高无线信号的感测测量结果更加的准确性。
本申请实施例中,第二设备可以是网络侧设备,如接入网设备(如基站)或者感知网络功能/感知网元(Sensing Management Function,Sensing MF)。
其中,感知网络功能/感知网元的功能特性可以包括以下至少一项:
与无线信号发送设备和/或无线信号测量设备(包括目标终端或者目标终端的服务基站或者目标区域关联的基站)进行目标信息交互,其中,目标信息包括感知处理请求,感知能力,感知辅助数据,感知测量量类型,感知资源配置信息等,以获得无线信号测量设备发送目标感知结果或感知测量量(上行测量量或下行测量量)的值;其中,无线信号也可以称作感知信号。
根据感知业务的类型、感知业务消费者信息、所需的感知服务质量(Quality of Service,QoS)要求信息、无线信号发送设备的感知能力、无线信号测量设备的感知能力等因素来决定使用的感知方法,该感知方法可以包括:基站A发基站B收,或者基站发终端收,或者基站A自发自收,或者终端发基站收,或者终端自发自收,或者终端A发终端B收等。
根据感知业务的类型、感知业务消费者的信息、所需的感知QoS要求信息、无线信号发送设备的感知能力、无线信号测量设备的感知能力等因素,来决定为感知业务服务的感知设备,其中,感知设备包括无线信号发送设备和/或无线信号测量设备。
管理感知业务所需资源的整体协调和调度,如对基站和/或终端的感知资源进行相应的配置;
对感知测量量的值进行数据处理,或进行计算获得感知结果。进一步地,验证感知结果,估计感知精度等。
其中,网络感知功能/感知网元可以位于核心网域或接入网域或者网络管理域等。感知网络功能/感知网元可以是一个具备上述功能特性的新网元,或者与协议中已定义的网络功能/网元(如LMF)合设的网元。
本申请实施例中,通过上述步骤可以实现第一设备与第二设备之间除了传递第一感知测量结果之外,还传递了用于辅助感知测量的第一传感器测量结果,从而可以提升通信设备的感知性能。
作为一种可选的实施方式,所述传感器包括如下至少一项:
加速度传感器、陀螺仪、磁力传感器、旋转矢量传感器、定位传感器、压力传感器、温度传感器、湿度传感器、光传感器。
上述传感器可以是上述第一设备中配置的一种传感器。
对上述加速度传感器(或者称作加速度计),上述第一传感器测量结果可以包括:测量施加到第一设备的加速度。其中,该测量结果格式为a=[ax,ay,az]T,分别表示沿x轴、y轴和z轴的加速度。进一步地,该测量结果还可以划分为包含重力加速度的结果、不包含重力加速度的结果、包含偏差补偿的结果、不包含偏差补偿的结果中的至少一项。
对于上述陀螺仪,上述第一传感器测量结果可以包括:测量围绕设备的x轴、y轴和z轴的旋转速率(弧度/秒),与加速度计类似可以表示为三维矢量,如ω=[ωxyz]T,分别表示x轴、y轴和z轴的旋转速率。
对于上述磁力传感器(也可以称作磁力计),上述第一传感器测量结果可以包括:监测地球磁场的变化,测量沿三个坐标轴中每个坐标轴的地磁场强度数据(以微特斯拉为单位),格式为m=[mx,my,mz]T,分别表示x轴、y轴和z轴的地磁场强度数据。在一些实施方式中,该磁力传感器可以和其他传感器结合获取旋转角度信息。
对于上述旋转矢量传感器,上述第一传感器测量结果可以包括:通过不同传感器的组合可以得到旋转矢量传感器,获取终端角度,格式为θ=[θxyz]T,分别对应终端绕x轴、y轴、z轴旋转的角度,或者相对于东北天(East-North-Up)/北东地(North-East-Down)坐标轴的旋转角度。
上述定位传感器可以是卫星定位传感器,如全球导航卫星系统(Global Navigation Satellite System,GNSS)传感器。对上述定位传感器,上述第一传感器测量结果可以包括:终端接收导航卫星播发的卫星信号,解调和收集到足够的数据信息后解算当前接收端的位置信息。
对于上述压力传感器,上述第一传感器测量结果可以包括:获取的环境空气压力值。
对于上述温度传感器,上述第一传感器测量结果可以包括:获取的环境温度;
对于上述湿度传感器第一传感器测量结果可以包括:获取的环境的相对湿度信息,或者与温度传感器结合获取露点和/或绝对湿度信息。
对于上述光传感器,上述第一传感器测量结果可以包括:感知的第一设备当前环境的光照亮度。
在一些实施方式中,上述第一信息还可以图像信息或视频信息,也可以包括根据至少一种传感器测量结果得到的抽象信息,该抽象信息可以包括如下至少一项:
视距(Line of Sight,LOS)或非视距(Non Line of Sight,NLOS);
障碍物或遮挡信息,例如:网络侧可以预配置特定方向、位置、深度中的至少一项,要求终端针对该特定方向、位置、深度中的至少一项上报相应的遮挡;
所处环境信息,例如:室内或室外,高铁等交通工具上,网络侧可以预配置典型的场景环境,要求终端判断并上报。
该实施方式中,通过上述至少一种传感器可以获取多种传感器测量结果,从而可以使得感知测量的性能更高。
作为一种可选的实施方式,所述第一传感器测量结果包括如下至少一项:
运动信息、位置相关信息、环境信息、设备参数信息。
其中,上述运动信息可以包括如下至少一项:
加速度信息、速度信息、旋转速率信息。
上述加速度信息可以是,上述第一设备的加速度信息,如是沿x轴、y轴、z轴中至少一项的加速度。
需要说明的是,本申请实施例中的x轴、y轴和z轴可以是本地坐标系(例如传感器坐标系)的坐标轴,也可以是全局坐标系的坐标轴。
在一些实施方式中,上述加速度信息可以包含重力影响的原始加速度信息,也可以是不包含重力影响的线性加速度信息。
在一些实施方式中,上述加速度信息可以是无偏差补偿的加速度信息,也可以是带有偏差补偿的加速度信息。
上述速度信息可以是,第一设备的速度信息,例如:可以是沿x轴、y轴、z轴中至少一项的速度。
上述旋转速率信息可以是,第一设备的旋转速率信息,例如:可以是绕x轴、y轴、z轴中至少一项的旋转速率;
在一些实施方式中,上述旋转速率信息可以是无漂移补偿的旋转速率信息,也可以是带有漂移补偿的旋转速率信息。
该实施方式中,由于第一传感器测量结果包括上述运动信息,这样第二设备可以基于该运动信息获取感知结果,或者调整无线信号的配置,从而可以提高感知性能。
上述位置相关信息可以包括如下至少一项:
地磁强度信息、移动距离信息、旋转角度信息、朝向信息、位置信息、相对距离信息。
上述地磁强度信息可以是x轴、y轴、z轴中至少一项的地磁强度信息;
上述移动距离信息可以是,第一设备移动距离信息,例如:沿x轴、y轴、z轴中至少一项的移动距离;
上述旋转角度信息可以是,第一设备的旋转角度信息,例如:沿x轴、y轴、z轴中至少一项的旋转角度;
上述朝向信息可以是,第一设备的朝向信息,例如:传感器朝向信息和天线朝向信息中的至少一项;
上述位置信息可以为,第一设备的位置信息,例如:当前位置信息,也可以是根据速度推算的未来某时刻的位置信息;
上述相对距离信息可以是,第一设备与物体的距离信息,例如:以cm为单位或者其他单位的绝对距离,也可以是二进制值表示近或远的状态。
该实施方式中,由于第一传感器测量结果包括上述位置相关信息,这样第二设备可以基于该位置相关信息获取感知结果,或者调整无线信号的配置,从而可以提高感知性能。
上述环境信息可以包括如下至少一项:
环境温度信息、光照强度信息、空气压力信息、湿度信息。
上述湿度信息可以是,环境相对湿度或绝对湿度。
该实施方式中,由于第一传感器测量结果包括上述环境信息,这样第二设备可以基于该环境信息获取感知结果,或者调整无线信号的配置,从而可以提高感知性能。
上述设备参数信息可以包括如下至少一项:
电量信息、温度信息。
该实施方式中,由于第一传感器测量结果包括上述设备参数信息,这样第二设备可以基于该设备参数信息获取感知结果,或者调整无线信号的配置,从而可以提高感知性能。
作为一种可选的实施方式,所述第一感知测量结果包括感知测量量的结果,所述感知测量量包括如下至少一项:
信号相关的测量量、信道相关的测量量、时域相关的测量量、频域相关的测量量、空间相关的测量量、环境相关的测量量、目标对象相关的测量量。
上述第一感知测量结果包括感知测量量的结果可以理解为,第一感知测量结果与感知测量量对应,具体为感知测量量的值。
上述信号相关的测量量和信道相关的测量量可以称作为第一级测量量(接收信号/原始信道信息),具体可以包括:
接收信号/信道响应复数结果,幅度/相位,I路/Q路及其运算结果(运算包括加减乘除、矩阵加减乘、矩阵转置、三角关系运算、平方根运算和幂次运算等,以及上述运算结果的门限检测结果、最大/最小值提取结果等。其中,上述运算还包括快速傅里叶变换(Fast Fourier Transform,FFT)/快速傅里叶逆变换(Inverse Fast Fourier Transform,IFFT)、离散傅里叶变换(Discrete Fourier Transform,DFT)/离散傅里叶逆变换(Inverse Discrete Fourier Transform,IDFT)、2D-FFT、3D-FFT、匹配滤波、自相关运算、小波变换和数字滤波等,以及上述运算结果的门限检测结果、最大/最小值提取结果等。
上述时域相关的测量量、频域相关的测量量可以是,第二级测量量(基本测量量),可以包括:时延、多普勒、角度、强度,及其多维组合表示;
上述空间相关的测量量、环境相关的测量量可以是,第三级测量量(基本属性/状态),可以包括:距离、速度、朝向、空间位置、加速度,及其多维组合表示;
上述目标对象相关的测量量可以是,第四级测量量(进阶属性/状态),可以包括:目 标是否存在、轨迹、动作、表情、生命体征、数量、成像结果、天气、空气质量、形状、材质、成分,及其多维组合表示。
作为一种可选的实施方式,所述第一传感器测量结果用于辅助感知测量,包括如下至少一项:
所述第一传感器测量结果用于所述第二设备获取感知结果;
所述第一传感器测量结果用于所述第二设备调整所述无线信号的配置。
上述第一传感器测量结果用于所述第二设备获取感知结果可以是,第二设备基于上述第一传感器测量结果和第一感知测量结果获取感知结果,这样由于基于两种测量结果获取感知结果,从而可以使得感知结果更加准确。
上述第一传感器测量结果用于所述第二设备调整所述无线信号的配置可以是,第二设备基于第一传感器测量结果,调整无线信号的配置,使得无线信号能够更好地用于感知测量,进而提高无线信号的感测测量结果的准确性。
需要说明的是,一些实施方式中,所述第一传感器测量结果也可以用于第二设备变换感知设备,例如:第二设备通过上述第一传感器测量结果确定第一设备不再适合作为执行感知测量的设备时,第二设备更换感知测量的设备。
可选的,所述方法还包括:
所述第一设备接收所述第二设备发送配置信息,所述配置信息包括所述无线信号调整后的配置。
其中,所述无线信号调整后的配置可以为:所述第二设备基于所述第一感知测量结果和所述第一传感器测量结果中的至少一项,调整无线信号的配置得到的配置。也就是说,第二设备除了基于第一传感器测量结果调整无线信号的配置,之外,还可以基于第一感知测量结果调整无线信号的配置,也可以基于第一感知测量结果和第一传感器测量结果调整无线信号的配置。
该实施方式中,第二设备基于所述第一感知测量结果和所述第一传感器测量结果中的至少一项,调整无线信号的配置。其中,可以调整无线信号的如下至少一项配置:
波束方向、信号类型、波形、子载波间隔、保护间隔、带宽、频域间隔、时域持续时间、时域间隔。
例如:在上述第一传感器测量结果表示终端的位置与无线信号的波束方向不匹配时,调整无线信号的发送波束方向,从而可以向第一设备指示无线信号的发送波束方向,或者向第一设备指示调整接收波束方向。例如:第一传感器测量结果中包括终端的运动速度(例如平移速度或旋转速度),以及终端的位置信息或朝向信息,则第二设备可以基于第一终端的运动速度以及终端当前位置信息或朝向信息,预测终端下一信号接收时刻对应的位置或朝向,从而确定下一信号接收时刻对应的最优发射波束方向和接收波束方向。
又例如:上述第一传感器测量结果和/或第一感知测量结果对应的感知性能指标超过一定阈值的情况下,调整无线信号的发射功率信号类型或波形等。例如,第一传感器测量 结果为终端位置信息和/或运动速度信息,第一感知测量结果对应的感知性能指标为感知SNR,当第二设备接收到的感知SNR低于一定阈值时判断此时感知性能下降,进一步根据接收到的终端位置信息和/或速度信息判断此时收发距离拉远导致感知性能下降,第二设备增大无线信号的发射功率以改善感知性能,需要说明的是,本申请实施例中,并不限定第二设备调整无线信号的配置具体实施方式,第二设备可以根据实际情况或者需求进行灵活调整。
该实施方式中,由于第一设备接收第二设备发送的配置信息,从而可以基于调整后的无线信号进行感知测量,进而提高感知结果的准确性。
在一些实施方式中,第二设备可以基于所述第一感知测量结果和所述第一传感器测量结果,获取感知结果,这样可以提高感知结果的准确性。例如:基于第一传感器测量结果对第一感知测量结果进行校正,再基于校正后的感知测量结果获取感知结果。例如:进行多普勒测量时,无线信号测得的多普勒结果既包括信道中感知目标运动带来的多普勒影响,也包括终端自身运动带来的多普勒影响,因此第二设备同时获取无线信号测得的第一感知测量结果即多普勒结果,以及第一传感器测量结果,即终端运动信息,和/或终端的位置、朝向信息后,便可以根据第一传感器测量结果消除终端运动对第一感知测量结果的影响,从而得到感知目标运动相关的信息。
在一些实施方式中,第二设备还可以基于上述第一感知测量结果和所述第一传感器测量结果中的至少一项,更换感知设备,如从第一设备切换到其他设备来执行感知测量。
作为一种可选的实施方式,所述第一信息还包括如下至少一项:
第一指示信息、第二指示信息、第三指示信息;
其中,所述第一指示信息用于指示所述第一信息是否包括所述第一传感器测量结果;
所述第二指示信息用于指示所述第一传感器测量结果的相关信息;
所述第三指示信息用于指示所述第一感知测量结果对应的感知性能指标。
上述第一指示信息可以采用1比特表示,“0”表示仅包含第一感知测量结果,“1”表示包含第一感知测量结果和传感器测量结果。
上述第一传感器测量结果的相关信息可以包括如下至少一项:
所述第一传感器测量结果的类型、所述第一传感器测量结果对应的传感器类型、所述第一传感器测量结果的时间戳、所述第一传感器测量结果对应的坐标系关系。
上述第一传感器测量结果的类型可以是,传感器数据类型,例如:加速度、速度、移动距离、朝向。具体可以是采用1或2或多比特(bit)指示第一传感器测量结果的类型。
上述第一传感器测量结果对应的传感器类型可以是,第一传感器测量结果来自哪种类型传感器,例如加速度计或陀螺仪。
上述第一传感器测量结果的时间戳可以是,第一传感器测量结果的时间信息,可以是绝对时间,也可以是传感器测量结果与第一感知测量结果的相对时间关系。
上述第一传感器测量结果对应的坐标系关系可以是,第一传感器测量结果对应坐标系 与全局坐标系的关系,例如本地坐标系到全局坐标系的转换参数,即本地坐标系相对于全局坐标系的转动角度:α(轴承角),β(下倾角)和γ(倾斜角);或者第一传感器测量结果对应坐标系与第一感知测量结果对应坐标系的关系。
该实施方式中,通过上述第一传感器测量结果的相关信息可以向第二设备发送更加传感器测量相关的信息,以更好的辅助感知测量,进一步提高感知性能。
上述第一感知测量结果对应的感知性能指标可以是,第一感知测量结果对应的感知信噪比(Signal-to-noise Ratio,SNR),例如:接收信号中感知目标关联的信号分量功率与噪声功率的比值,或者可以是第一感知测量结果对应的感知信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR),例如:接收信号中感知目标关联的信号分量功率与噪声和干扰功率之和的比值,或者可以是,第一感知测量结果对应的接收信号强度信息,如参考信号接收功率(Reference Signal Received Power,RSRP)、参考信号接收质量(Reference Signal Received Quality,RSRQ)、接收信号强度指示(Received Signal Strength Indication,RSSI)。
通过上述第一感知测量结果对应的感知性能指标可以表示上述感知测量结果的感知性能,从而使得第二设备可以根据实际需求或者情况使用上述第一感知测量结果。
本申请实施例中,感知SNR可以是感知目标关联信号分量功率与噪声功率的比值,感知SNR可以是感知目标关联信号分量功率与噪声和干扰的功率之和的比值。
以雷达检测为例,感知目标关联信号分量功率为回波功率,回波信号功率的获取方法,可以是以下选项中的至少一项:
基于回波信号快时间维快速傅里叶变换(Fast Fourier Transform,FFT)处理得到的时延一维图进行恒虚警检测(Constant False Alarm Rate Detector,CFAR),以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度来计算回波信号功率,如图4所示;
基于回波信号慢时间维FFT处理得到的多普勒一维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度来计算回波信号功率,同图4所示;
基于回波信号2D-FFT处理得到的时延-多普勒二维图进CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度来计算回波信号功率;
基于回波信号3D-FFT处理得到的时延-多普勒-角度三维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度来计算回波信号功率;
目标信号幅度的确定方法除以上的以CFAR过门限的幅度最大样值点为目标样值点以外,还可以是,以CFAR过门限的幅度最大样值点及其最邻近的若干个过门限样值点的均值作为目标信号幅度来计算回波信号功率。
其中,回波信号的SNR/SINR的获取方法可以是以下选项中的至少一项:
基于回波信号快时间维FFT处理得到的时延一维图进行CFAR,以CFAR过门限的幅 度最大样值点为目标样值点、以其幅度为目标信号幅度,以一维图中距离目标样值点位置±ε个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均干扰/幅度为干扰/噪声信号幅度,如图4所示,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
基于回波信号慢时间维FFT处理得到的多普勒一维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以一维图中距离目标样值点位置±η个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
基于回波信号2D-FFT处理得到的时延-多普勒二维图进CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以二维图中距离目标样值点±ε(快时间维)和±η(慢时间维)个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
基于回波信号3D-FFT处理得到的时延-多普勒-角度三维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以三维图中距离目标样值点±ε(快时间维)、±η(慢时间维)和±δ(角度维)个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
目标信号幅度的确定方法除以上的以CFAR过门限的幅度最大样值点为目标样值点以外,还可以是,以CFAR过门限的幅度最大样值点及其最邻近的若干个过门限样值点的均值作为目标信号幅度;
干扰/噪声样值点的确定方法还可以是根据上述确定的干扰/噪声样值点进一步筛选,筛选方法是:对于时延一维图,去除时延为0附近的若干个样值点,以剩下的干扰/噪声样值点作为噪声样值点;对于多普勒一维图,去除多普勒为0附近的若干个样值点,以剩下的干扰/噪声样值点为干扰/噪声样值点;对于时延-多普勒二维图,去除以时延为0附近若干个点、全部多普勒范围构成的条状范围的干扰/噪声样值点,以剩下的噪声样值点作为干扰/噪声样值点;对于时延-多普勒-角度三维图,去除以时间维0附件若干个点、全部多普勒范围和全部角度范围构成的切片状范围的干扰/噪声样值点,以剩下的干扰/噪声样值点作为干扰/噪声样值点。
作为一种可选的实施方式,所述第一设备向第二设备发送第一信息之前,所述方法还包括:
所述第一设备向所述第二设备发送第二信息,所述第二信息包括如下至少一项:
所述第一设备支持的传感器类型、所述第一设备支持的第一传感器测量结果的类型、所述第一设备的传感器的使用情况、所述第一设备的设备参数信息。
其中,上述设备参数信息可以包括如下至少一项:
电量信息、温度信息。
上述传感器的使用情况可以是一种或者多种传感器的当前使用状态,如当前处于使用状态或者未使用状态,例如:加速度传感器由于其他应用的需要正处于使用状态,这样,第一设备可以优先发送加速度传感器的测量结果,从而减小传感器测量数据的额外获取成本。
该实施方式中,由于向第二设备发送了上述第二信息,从而可以使得第二设备知道第一设备发送的第一传感器测量结果的相关信息,以使得第二设备可以更好地使用第一传感器测量结果。
可选的,所述第一设备向第二设备发送第一信息,包括:
在满足第一条件的情况下,所述第一设备向第二设备发送第一信息;
其中,所述第一条件包括如下至少一项:
所述第二设备触发所述第一设备发送所述第一传感器测量结果;
到达所述第一传感器测量结果的上报周期;
发生预设事件。
上述第二设备触发所述第一设备发送所述第一传感器测量结果可以是,第二设备通过消息触发第一设备发送上述第一信息。
上述到达所述第一传感器测量结果的上报周期可以是,第一设备周期性向第二设备发送上述第一信息。
上述发生预设事件可以包括如下至少一项:
所述第一设备进入预设区域;
到达预设时间;
预设测量信号的测量结果满足第一门限条件;
所述第一设备的移动距离满足第二门限条件;
所述第一设备的朝向变化满足第三门限条件;
所述第一设备的运动速度满足第四门限条件;
所述第一设备检测的环境变化信息满足第五门限条件;
所述第一设备发起目标感知业务;
所述第一设备发起目标通信业务;
处于使用状态的传感器的测量结果与指示测量结果关联,所述指示测量结果为所述第二设备指示所述第一设备反馈的测量结果。
上述预设区域可以是,第一设备预先设定或者网络侧预先配置的位置区域或者小区。
上述预设时间可以是,第一设备预先设定或者网络侧预先配置的时间。
上述第一门限条件、第二门限条件、第三门限条件、第四门限条件和第五门限条件中任一门限条件可以包括一个或者多个门限。例如:上述预设测量信号的测量结果满足第一门限条件可以是,预设测量信号的测量值达到第一门限值。又例如:上述第一设备的移动距离满足第二门限条件可以是,第一设备从当前位置移动超过第二门限,或者,第一设备 从当前位置移动距离在第二门限和第三门限之间。又例如:上述第一设备的朝向变化满足第三门限条件可以是,第一设备朝向改变的角度超过第四门限,或者,第一设备朝向改变的角度在第四门限和第五门限之间。又例如:上述第一设备的运动速度满足第四门限条件可以是,第一设备的运动速度超过第六门限。上述第一设备检测的环境变化信满足第五门限条件可以是,第一设备的传感器测量得到的环境信息变化(例如温度、湿度、光照强度)超过第七门限。
上述目标感知业务和目标通信业务为第一设备预先设定或者网络侧预先配置的业务。
上述处于使用状态的传感器的测量结果与指示测量结果关联可以是,某类传感器由于其他应用的需要处于使用状态且对应的传感器测量结果与第二设备要求第一设备反馈的测量结果关联,处于使用状态的传感器的测量结果与第一设备和第二设备之间正在进行的通信或感知业务关联,这样发送上述第一信息,从而可以降低第一设备的功耗开销,因为,该传感器已经处于使用状态。
该实施方式中,由于在上述发生预设事件发送第一信息,这样可以实现第一传感器测量结果是在上述发生预设事件的情况下发送,从而节约传输开销。
可选的,上述方法还包括:
在不满足所述第一条件的情况下,所述第一设备向第二设备发送第三信息,所述第三信息包括如下至少一项:
第二感知测量结果;
是否包含传感器测量结果的指示信息;
所述第二感知测量结果对应的感知性能指标的指示信息;
其中,所述第二感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果。
该实施方式中,可以实现在不满足上述第一条件的情况下,不发送传感器测量结果,从而可以节约传输开销。
作为一种可选的实施方式,所述第一设备向第二设备发送第一信息之前,所述方法还包括:
所述第一设备接收所述第二设备发送的第四信息,所述第四信息用于指示所述第一设备向所述第二设备发送所述第一信息。
其中,上述第四信息可以包括如下至少一项:
无线信号的配置信息、感知测量量、是否发送所述第一传感器测量结果的指示信息、期望的传感器类型、期望的第一传感器测量结果类型、所述第一信息的发送周期、所述第一传感器测量结果的发送条件。
其中,上述发送条件可以参见实施方式描述的第一条件。
该实施方式中,第二设备可以向第一设备指示终端如何发送测量结果,这样第一设备基于第二设备的指示进行发送,从而可以降低传输开销,且还可以降低测量开销。
在上述实施方式,上述无线信号的配置信息可以包括如下至少一项:
信号配置标识、信号类型、波形、子载波间隔、保护间隔、带宽、频域间隔、时域持续时间、时域间隔。
上述信号配置标识可以用于指示对应的无线信号的配置信息,即该实施方式中不同信号配置标识可以指示不同的配置信息。
上述信号类型包括以下至少一项:感知信号、通信信号通感一体化信号。
上述波形可以是正交频分复用(Orthogonal frequency division multiplex,OFDM),单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA),正交时频空间(Orthogonal Time Frequency Space,OTFS),调频连续波(Frequency Modulated Continuous Wave,FMCW),脉冲信号等。
上述子载波间隔可以是正交频分复用(Orthogonal frequency division multiplex,OFDM)系统的子载波间隔30KHz。
上述保护间隔可以是从信号结束发送时刻到该信号的最迟回波信号被接收的时刻之间的时间间隔;该参数正比于最大感知距离;例如,可以通过c/(2Rmax)计算得到,Rmax是最大感知距离(属于感知需求),例如对于自发自收的感知信号,Rmax代表感知信号收发点到信号发射点的最大距离;在某些情况下,OFDM信号循环前缀(Cyclic prefix,CP)可以起到最小保护间隔的作用,c是光速。
上述带宽可以反比于距离分辨率,如每个无线信号的频域带宽B≥c/(2ΔR),其中,c为光速,ΔR为距离分辨率。
上述频域间隔可以反比于最大无模糊距离/时延,其中,对于OFDM系统当子载波采用连续映射时频域间隔等于子载波间隔。
上述时域持续时间也可以称作突发(burst)持续时间,时域持续时间反比于速率分辨率(属于感知需求信息),是感知信号的时间跨度,主要为了计算多普勒频偏。其中,每个无线信号的时域持续时间占据的时长Tp满足以下至少一项:
Tp≥c/(2fcΔv),其中,c为光速,fc为载波频率,Δv为速度分辨率;
Tp≥Td,其中,Td为相干处理时间,若不考虑速度方向,所述相干处理时间满足Td≤ΔR/(2vmax),若考虑速度方向,所述相干处理时间满足Td≤ΔR/(2|vmax|),其中,ΔR为距离分辨率,vmax为最大可检测径向运动速度。
上述时域间隔可以是相邻的两个感知信号之间的时间间隔;例如:无线信号的时域资源的多个时间单元中,若不考虑速度方向,相邻的两个时间单元的时域间隔ΔT≤c/(2fcvmax),若考虑速度方向,相邻的两个时间单元的时域间隔ΔT≤c/(4fc|vmax|)。
其中,上述子载波间隔、保护间隔、带宽、频域间隔、时域持续时间、时域间隔中的至少一项可以也可以称作无线信号的资源信息。
作为一种可选的实施方式,所述方法还包括:
所述第一设备接收所述第二设备发送的第五信息,所述第五信息包括如下至少一项:
第三感知测量结果、第二传感器测量结果;
所述第三感知测量结果和第二传感器测量结果为第三设备执行测量得到的感知测量结果和传感器测量结果。
上述第三设备为另一执行测量的设备,如终端或者网络侧设备。
其中,上述第五信息可以是第二设备主动发送给第一设备也可以是第一设备请求发送的,例如:所述方法还包括:
所述第一设备向所述第二设备发送请求消息,所述请求消息用于请求所述第五信息。
该实施方式中,由于第一设备从第二设备获取到第三设备执行测量得到测量结果,这样有利于第一设备更好的开展感知业务,以进一步提高第一设备的感知性能。
在本申请实施例中,第一设备向第二设备发送第一信息,所述第一信息包括:第一感知测量结果和第一传感器测量结果;其中,所述第一感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。这样由于第一设备与第二设备之间除了传递第一感知测量结果之外,还传递了用于辅助感知测量的第一传感器测量结果,从而可以提升通信设备的感知性能。
请参见图5,图5是本申请实施例提供的一种测量信息接收方法的流程图,如图5所示,包括以下步骤:
步骤501、第二设备接收第一设备发送的第一信息,所述第一信息包括:
第一感知测量结果和第一传感器测量结果;
其中,所述第一感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。
可选的,所述传感器包括如下至少一项:
加速度传感器、陀螺仪、磁力传感器、旋转矢量传感器、定位传感器、压力传感器、温度传感器、湿度传感器、光传感器。
可选的,所述第一传感器测量结果包括如下至少一项:
运动信息、位置相关信息、环境信息、设备参数信息。
可选的,所述运动信息包括如下至少一项:
加速度信息、速度信息、旋转速率信息。
可选的,所述位置相关信息包括如下至少一项:
地磁强度信息、移动距离信息、旋转角度信息、朝向信息、位置信息、相对距离信息。
可选的,所述环境信息包括如下至少一项:
环境温度信息、光照强度信息、空气压力信息、湿度信息。
可选的,所述第一感知测量结果包括感知测量量的结果,所述感知测量量包括如下至少一项:
信号相关的测量量、信道相关的测量量、时域相关的测量量、频域相关的测量量、空间相关的测量量、环境相关的测量量、目标对象相关的测量量。
可选的,所述方法还包括如下至少一项:
所述第二设备基于所述第一感知测量结果和所述第一传感器测量结果,获取感知结果;
所述第二设备基于所述第一感知测量结果和所述第一传感器测量结果中的至少一项,调整所述无线信号的配置。
可选的,所述方法还包括:
所述第二设备向所述第一设备发送配置信息,所述配置信息包括所述无线信号调整后的配置。
可选的,所述第一信息还包括如下至少一项:
第一指示信息、第二指示信息、第三指示信息;
其中,所述第一指示信息用于指示所述第一信息是否包括所述第一传感器测量结果;
所述第二指示信息用于指示所述第一传感器测量结果的相关信息;
所述第三指示信息用于指示所述第一感知测量结果对应的感知性能指标。
可选的,所述第一传感器测量结果的相关信息包括如下至少一项:
所述第一传感器测量结果的类型、所述第一传感器测量结果对应的传感器类型、所述第一传感器测量结果的时间戳、所述第一传感器测量结果对应的坐标系关系。
可选的,所述第二设备接收第一设备发送的第一信息之前,所述方法还包括:
所述第二设备接收所述第一设备发送的第二信息,所述第二信息包括如下至少一项:
所述第一设备支持的传感器类型、所述第一设备支持的第一传感器测量结果的类型、所述第一设备的传感器的使用情况、所述第一设备的设备参数信息。
可选的,所述设备参数信息包括:
电量信息、温度信息。
可选的,所述第二设备接收第一设备发送的第一信息,包括:
在满足第一条件的情况下,所述第二设备接收第一设备发送的第一信息;
其中,所述第一条件包括如下至少一项:
所述第二设备触发所述第一设备发送所述第一传感器测量结果;
到达所述第一传感器测量结果的上报周期;
发生预设事件。
可选的,所述方法还包括:
在不满足所述第一条件的情况下,所述第二设备接收所述第一设备发送的第三信息,所述第三信息包括如下至少一项:
第二感知测量结果;
是否包含传感器测量结果的指示信息;
所述第二感知测量结果对应的感知性能指标的指示信息;
其中,所述第二感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果。
可选的,所述第二设备接收第一设备发送的第一信息之前,所述方法还包括:
所述第二设备向所述第一设备发送的第四信息,所述第四信息用于指示所述第一设备向所述第二设备发送所述第一信息。
可选的,所述第四信息包括如下至少一项:
无线信号的配置信息、感知测量量、是否发送所述第一传感器测量结果的指示信息、期望的传感器类型、期望的第一传感器测量结果类型、所述第一信息的发送周期、所述第一传感器测量结果的发送条件。
可选的,所述无线信号的配置信息包括如下至少一项:
信号配置标识、信号类型、波形、子载波间隔、保护间隔、带宽、频域间隔、时域持续时间、时域间隔。
可选的,所述方法还包括:
所述第二设备向所述第一设备发送第五信息,所述第五信息包括如下至少一项:
第三感知测量结果、第二传感器测量结果;
所述第三感知测量结果和第二传感器测量结果为第三设备执行测量得到的感知测量结果和传感器测量结果。
可选的,所述方法还包括:
所述第二设备接收所述第一设备发送的请求消息,所述请求消息用于请求所述第五信息。
需要说明的是,本实施例作为与图3所示的实施例中对应的第二设备的实施方式,其具体的实施方式可以参见图3所示的实施例的相关说明,以为避免重复说明,本实施例不再赘述。
下面通过多个实施例对本申请实施例提供方法进行举例说明:
实施例一
该实施例如图6所示,包括如下步骤:
步骤1.第二设备(基站或Sensing MF)获取感知需求信息,其中,感知需求信息至少包括以下一项:
感知业务:按类型划分或具体到某项业务,例如环境重构、呼吸或心跳检测、定位或轨迹追踪、动作识别、天气监测、雷达测距测速等;
感知目标区域:感知对象可能存在位置区域,或者,需要进行成像或环境重构的位置区域;
感知对象类型:针对感知对象可能的运动特性对感知对象进行分类,每个感知对象类型中包含了典型感知对象的运动速度、运动加速度、典型雷达散射截面积(Radar Cross Section,RCS)等信息;
感知QoS:对感知目标区域或感知对象进行感知的性能指标,包括以下至少一项:
感知分辨率,进一步可分为:测距分辨率、测角分辨率、测速分辨率、成像分辨率等;
感知精度,进一步可分为:测距精度、测角精度、测速精度、定位精度等;
感知范围,进一步可分为:测距范围、测速范围、测角范围、成像范围等;
感知时延,如从感知信号发送到获得感知结果的时间间隔,或,从感知需求发起到获取感知结果的时间间隔;
感知更新速率,如相邻两次执行感知并获得感知结果的时间间隔;
检测概率,如在感知对象存在的情况下被正确检测出来的概率;
虚警概率,如在感知对象不存在的情况下错误检测出感知目标的概率;
可感知的最大目标个数。
其中,本实施例可以假设感知业务为进行环境重构,如时定位与地图构建(Simultaneous Localization and Mapping,SLAM),感知的目标区域为环境重构的区域和范围,例如第一设备附近X米范围内的环境重构,相应的感知QoS可以是如下至少一项:
环境重构的精度/误差,例如某个障碍物的尺寸、位置与其真实尺寸、位置的偏差;
环境重构分辨率,即重构地图的分辨率;
环境重构时延要求,可以是最大允许时延或允许时延范围。
步骤2(可选的).第二设备向第一设备发送设备信息获取请求,请求获取第一设备的设备信息,该设备信息可以如图3所示实施例中的第二信息。
步骤3(可选的).第一设备根据接收到的设备信息获取请求,向第二设备反馈设备信息,假设设备信息为反馈支持的传感器数据类型,可以采用位图(bitmap)的方式指示,例如用x比特对应x种传感器数据类型,支持表示为1,不支持表示为0。
步骤4.第二设备向第一设备发送指示信息,该指示信息可以指示如下至少一项:
第一信号的配置信息,其中,第一信号可以是第二设备发送,第一设备接收,还可以是第一设备自发自收;
感知测量量,用于指示第一设备对第一信号进行测量并反馈第一感知测量结果,具体的,感知测量量可以是:反射径时延、反射径之间的时延差、反射点相对于第一设备的距离、第一设备侧反射径的到达角度(可以是相对于第一设备为基准的本地坐标系的角度)、反射径信号强度、反射径反射阶数标识(例如一阶反射、多阶反射)、以第一设备为基准的参考坐标系下的反射点坐标等;
需要上报传感器测量结果;
期望的传感器数据类型,可以包括以下至少一项:
第一设备的运动信息;
第一设备的位置信息;
第一设备的朝向信息。
步骤5.第二设备发送第一信号,或者可以是第一设备自发自收第一信号。
步骤6.第一设备基于上述指示信息,对第一信号进行测量,向第二设备反馈第一信息,第一信息可以包括以下至少一项:
包含传感器测量结果的指示;
传感器数据类型指示;
传感器测量结果;
第一感知测量结果。
步骤7.第二设备基于第一感知测量结果和/或传感器测量结果得到环境重构业务所需的感知结果。
实施例二
该实施例如图7所示,包括如下步骤:
步骤1.第二设备(基站或Sensing MF)获取感知需求信息。
本实施例中可以假设感知业务为对环境中特定区域的无源目标进行检测和跟踪,该无源目标指的是不进行信号发送或接收的目标。
步骤2(可选的).第二设备向第一设备发送设备信息获取请求,请求获取第一设备的设备信息,所述设备信息如申请方案所述。
步骤3(可选的).第一设备根据接收到的设备信息获取请求,向第二设备反馈设备信息,该设备信息可以如图3所示实施例中的第二信息。
步骤4.第二设备向第一设备发送第一指示信息,第一指示信息指示如下以下至少一项:
第一信号配置,其中,第一信号可以是第二设备发送,第一设备接收,还可以是第一设备自发自收;
感知测量量,用于指示第一设备对第一信号进行测量并反馈第一感知测量结果,具体的,感知测量量可以是:时延信息和/或多普勒信息和/或角度信息(可以是全局坐标系的角度);
上报传感器测量结果的触发事件为感知SNR低于预设阈值;
期望的传感器数据类型,可以包括以下至少一项:
第一设备的运动信息;
第一设备的位置信息;
第一设备的朝向信息。
步骤5.第二设备发送第一信号,或者,可以是第一设备自发自收第一信号。
步骤6.第一设备基于第一指示信息,对第一信号进行测量,当第一感知测量结果对应的第一指标信息,即感知SNR高于预设阈值时,向第二设备反馈第一信息,包括以下至少一项:
不包含传感器测量结果的指示;
第一感知测量结果;
感知SNR/SINR。
第二设备基于第一感知测量结果确定感知结果,即目标的位置和/或运动状态。
或者,
当第一感知测量结果对应的第一指标信息,即感知SNR低于预设阈值时,向第二设备反馈第一信息,如步骤8所示,包括以下至少一项:
包含传感器测量结果的指示;
传感器数据类型指示;
传感器测量结果;
第一感知测量结果;
感知SNR/SINR。
该实施例中,第二设备基于传感器测量结果和/或第一感知测量结果,调整发送第一信号的发送波束方向或指示第一设备调整接收波束方向,或者切换感知设备,即不再使用第一设备作为感知设备。
本申请实施例中可以实现如下:
第一设备向第二设备发送设备信息和/或第一信息,该设备信息包括支持的传感器/传感器数据类型,传感器使用状态,电量等;该第一信息包括无线感知测量结果和传感器测量结果,传感器/传感器数据类型指示,时间戳,坐标关系等。
第二设备指示第一设备感知信号配置和对传感器信息上报的要求,并接收第一设备上报的设备信息和/或第一信息,基于无线感知测量结果和传感器测量结果得到感知结果,或者调整感知信号配置。
本申请实施例中,可以利用各种传感器数据辅助无线感知业务,从而提升感知性能。
本申请实施例提供的测量信息发送方法和接收方法,执行主体可以为装置。本申请实施例中以装置执行测量信息发送和接收为例,说明本申请实施例提供的测量信息发送装置和接收装置。
请参见图8,图8是本申请实施例提供的一种测量信息发送装置的结构图,如图8所示,测量信息发送装置800包括:
第一发送模块801,用于向第二设备发送第一信息,所述第一信息包括:
第一感知测量结果和第一传感器测量结果;
其中,所述第一感知测量结果为所述装置对应的第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。
上述装置对应的第一设备可以理解为,第一设备包括上述装置,或者,上述装置为上述第一设备。
可选的,上述装置还包括:
获取模块,用于获取上述第一感知测量结果和第一传感器测量结果。
可选的,所述传感器包括如下至少一项:
加速度传感器、陀螺仪、磁力传感器、旋转矢量传感器、定位传感器、压力传感器、温度传感器、湿度传感器、光传感器。
可选的,所述第一传感器测量结果包括如下至少一项:
运动信息、位置相关信息、环境信息、设备参数信息。
可选的,所述运动信息包括如下至少一项:
加速度信息、速度信息、旋转速率信息。
可选的,所述位置相关信息包括如下至少一项:
地磁强度信息、移动距离信息、旋转角度信息、朝向信息、位置信息、相对距离信息。
可选的,所述环境信息包括如下至少一项:
环境温度信息、光照强度信息、空气压力信息、湿度信息。
可选的,所述第一感知测量结果包括感知测量量的结果,所述感知测量量包括如下至少一项:
信号相关的测量量、信道相关的测量量、时域相关的测量量、频域相关的测量量、空间相关的测量量、环境相关的测量量、目标对象相关的测量量。
可选的,所述第一传感器测量结果用于辅助感知测量,包括如下至少一项:
所述第一传感器测量结果用于所述第二设备获取感知结果;
所述第一传感器测量结果用于所述第二设备调整所述无线信号的配置。
可选的,所述装置还包括:
第一接收模块,用于接收所述第二设备发送的配置信息,所述配置信息包括所述无线信号调整后的配置。
可选的,所述第一信息还包括如下至少一项:
第一指示信息、第二指示信息、第三指示信息;
其中,所述第一指示信息用于指示所述第一信息是否包括所述第一传感器测量结果;
所述第二指示信息用于指示所述第一传感器测量结果的相关信息;
所述第三指示信息用于指示所述第一感知测量结果对应的感知性能指标。
可选的,所述第一传感器测量结果的相关信息包括如下至少一项:
所述第一传感器测量结果的类型、所述第一传感器测量结果对应的传感器类型、所述第一传感器测量结果的时间戳、所述第一传感器测量结果对应的坐标系关系。
可选的,所述装置还包括:
第二发送模块,用于向所述第二设备发送第二信息,所述第二信息包括如下至少一项:
所述第一设备支持的传感器类型、所述第一设备支持的第一传感器测量结果的类型、所述第一设备的传感器的使用情况、所述第一设备的设备参数信息。
可选的,所述设备参数信息包括如下至少一项:
电量信息、温度信息。
可选的,所述第一发送模块801用于:
在满足第一条件的情况下,向第二设备发送第一信息;
其中,所述第一条件包括如下至少一项:
所述第二设备触发所述第一设备发送所述第一传感器测量结果;
到达所述第一传感器测量结果的上报周期;
发生预设事件。
可选的,所述发生预设事件包括如下至少一项:
所述第一设备进入预设区域;
到达预设时间;
预设测量信号的测量结果满足第一门限条件;
所述第一设备的移动距离满足第二门限条件;
所述第一设备的朝向变化满足第三门限条件;
所述第一设备的运动速度满足第四门限条件;
所述第一设备检测的环境变化信息满足第五门限条件;
所述第一设备发起目标感知业务;
所述第一设备发起目标通信业务;
处于使用状态的传感器的测量结果与指示测量结果关联,所述指示测量结果为所述第二设备指示所述第一设备反馈的测量结果。
可选的,所述装置还包括:
第三发送模块,用于在不满足所述第一条件的情况下,所述第一设备向第二设备发送第三信息,所述第三信息包括如下至少一项:
第二感知测量结果;
是否包含传感器测量结果的指示信息;
所述第二感知测量结果对应的感知性能指标的指示信息;
其中,所述第二感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果。
可选的,所述装置还包括:
第二接收模块,用于接收所述第二设备发送的第四信息,所述第四信息用于指示所述第一设备向所述第二设备发送所述第一信息。
可选的,所述第四信息包括如下至少一项:
所述无线信号的配置信息、感知测量量、是否发送所述第一传感器测量结果的指示信息、期望的传感器类型、期望的第一传感器测量结果类型、所述第一信息的发送周期、所述第一传感器测量结果的发送条件。
可选的,所述无线信号的配置信息包括如下至少一项:
信号配置标识、信号类型、波形、子载波间隔、保护间隔、带宽、频域间隔、时域持 续时间、时域间隔。
可选的,所述装置还包括:
第三接收模块,用于接收所述第二设备发送的第五信息,所述第五信息包括如下至少一项:
第三感知测量结果、第二传感器测量结果;
所述第三感知测量结果和第二传感器测量结果为第三设备执行测量得到的感知测量结果和传感器测量结果。
可选的,所述装置还包括:
第四发送模块,用于向所述第二设备发送请求消息,所述请求消息用于请求所述第五信息。
上述测量信息发送装置可以提高感知性能。
本申请实施例中的测量信息发送装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。例如:该电子设备可以是网络侧设备,也可以为除网络侧设备之外的其他设备。示例性的,网络侧设备可以包括但不限于本申请实施例所列举的网络侧设备的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的测量信息发送装置能够实现图3所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
请参见图9,图9是本申请实施例提供的一种测量信息接收装置的结构图,如图9所示,测量信息接收装置900包括:
第一接收模块901,用于接收第一设备发送的第一信息,所述第一信息包括:
第一感知测量结果和第一传感器测量结果;
其中,所述第一感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。
可选的,所述传感器包括如下至少一项:
加速度传感器、陀螺仪、磁力传感器、旋转矢量传感器、定位传感器、压力传感器、温度传感器、湿度传感器、光传感器。
可选的,所述第一传感器测量结果包括如下至少一项:
运动信息、位置相关信息、环境信息、设备参数信息。
可选的,所述运动信息包括如下至少一项:
加速度信息、速度信息、旋转速率信息。
可选的,所述位置相关信息包括如下至少一项:
地磁强度信息、移动距离信息、旋转角度信息、朝向信息、位置信息、相对距离信息。
可选的,所述环境信息包括如下至少一项:
环境温度信息、光照强度信息、空气压力信息、湿度信息。
可选的,所述第一感知测量结果包括感知测量量的结果,所述感知测量量包括如下至少一项:
信号相关的测量量、信道相关的测量量、时域相关的测量量、频域相关的测量量、空间相关的测量量、环境相关的测量量、目标对象相关的测量量。
可选的,所述装置还包括如下至少一项:
获取模块,用于基于所述第一感知测量结果和所述第一传感器测量结果,获取感知结果;
调整模块,用于基于所述第一感知测量结果和所述第一传感器测量结果中的至少一项,调整所述无线信号的配置。
可选的,所述装置还包括:
第一发送模块,用于向所述第一设备发送配置信息,所述配置信息包括所述无线信号调整后的配置。
可选的,所述第一信息还包括如下至少一项:
第一指示信息、第二指示信息、第三指示信息;
其中,所述第一指示信息用于指示所述第一信息是否包括所述第一传感器测量结果;
所述第二指示信息用于指示所述第一传感器测量结果的相关信息;
所述第三指示信息用于指示所述第一感知测量结果对应的感知性能指标。
可选的,所述第一传感器测量结果的相关信息包括如下至少一项:
所述第一传感器测量结果的类型、所述第一传感器测量结果对应的传感器类型、所述第一传感器测量结果的时间戳、所述第一传感器测量结果对应的坐标系关系。
可选的,所述装置还包括:
第二接收模块,用于接收所述第一设备发送的第二信息,所述第二信息包括如下至少一项:
所述第一设备支持的传感器类型、所述第一设备支持的第一传感器测量结果的类型、所述第一设备的传感器的使用情况、所述第一设备的设备参数信息。
可选的,所述设备参数信息包括:
电量信息、温度信息。
可选的,第一接收模块901用于:
在满足第一条件的情况下,所述第二设备接收第一设备发送的第一信息;
其中,所述第一条件包括如下至少一项:
所述第二设备触发所述第一设备发送所述第一传感器测量结果;
到达所述第一传感器测量结果的上报周期;
发生预设事件。
可选的,所述装置还包括:
第三接收模块,用于在不满足所述第一条件的情况下,所述第二设备接收所述第一设备发送的第三信息,所述第三信息包括如下至少一项:
第二感知测量结果;
是否包含传感器测量结果的指示信息;
所述第二感知测量结果对应的感知性能指标的指示信息;
其中,所述第二感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果。
可选的,所述装置还包括:
第二发送模块,用于向所述第一设备发送的第四信息,所述第四信息用于指示所述第一设备向所述第二设备发送所述第一信息。
可选的,所述第四信息包括如下至少一项:
所述无线信号的配置信息、感知测量量、是否发送所述第一传感器测量结果的指示信息、期望的传感器类型、期望的第一传感器测量结果类型、所述第一信息的发送周期、所述第一传感器测量结果的发送条件。
可选的,所述无线信号的配置信息包括如下至少一项:
信号配置标识、信号类型、波形、子载波间隔、保护间隔、带宽、频域间隔、时域持续时间、时域间隔。
可选的,所述装置还包括:
第三发送模块,用于向所述第一设备发送第五信息,所述第五信息包括如下至少一项:
第三感知测量结果、第二传感器测量结果;
所述第三感知测量结果和第二传感器测量结果为第三设备执行测量得到的感知测量结果和传感器测量结果。
可选的,所述装置还包括:
第四接收模块,用于接收所述第一设备发送的请求消息,所述请求消息用于请求所述第五信息。
上述测量信息接收装置可以提高感知性能。
本申请实施例中的测量信息接收装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。例如:该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于本申请实施例所列举的终端的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的测量信息接收装置能够实现图5所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图10所示,本申请实施例还提供一种通信设备1000,包括处理器1001和存储器1002,存储器1002上存储有可在所述处理器1001上运行的程序或指令,例如, 该通信设备1000为第一设备时,该程序或指令被处理器1001执行时实现上述测量信息发送方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1000为第二设备时,该程序或指令被处理器1001执行时实现上述测量信息接收方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种通信设备,该通信设备为第一设备,包括处理器和通信接口,所述通信接口用于向第二设备发送第一信息,所述第一信息包括:第一感知测量结果和第一传感器测量结果;其中,所述第一感知测量结果为所述装置对应的第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。该第一设备实施例与上述第一设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该第二终端实施例中,且能达到相同的技术效果。
具体地,图11为实现本申请实施例的一种通信设备的硬件结构示意图。
该通信设备1100为第一设备,包括但不限于:射频单元1101、网络模块1102、音频输出单元1103、输入单元1104、传感器1105、显示单元1106、用户输入单元1107、接口单元1108、存储器1109以及处理器1110等中的至少部分部件。
本领域技术人员可以理解,通信设备1100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图11中示出的通信设备结构并不构成对通信设备的限定,通信设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1104可以包括图形处理单元(Graphics Processing Unit,GPU)11041和麦克风11042,图形处理单元11041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1106可包括显示面板11061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板11061。用户输入单元1107包括触控面板11071以及其他输入设备11072中的至少一种。触控面板11071,也称为触摸屏。触控面板11071可包括触摸检测装置和触摸控制器两个部分。其他输入设备11072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1101接收来自网络侧设备的下行数据后,可以传输给处理器1110进行处理;另外,射频单元1101可以向网络侧设备发送上行数据。通常,射频单元1101包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1109可用于存储软件程序或指令以及各种数据。存储器1109可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1109可以包括易失性存储器或非易失性存储器,或者,存储器1109可以包括易失 性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1109包括但不限于这些和任意其它适合类型的存储器。
处理器1110可包括一个或多个处理单元;可选的,处理器1110集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1110中。
具体地,本申请实施例的通信设备1100还包括:存储在存储器1109上并可在处理器1110上运行的指令或程序,处理器1110调用存储器1109中的指令或程序执行图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
需要说明的是,该实施例以是第一设备为终端进行举例说明。
其中,射频单元1101,用于向第二设备发送第一信息,所述第一信息包括:
第一感知测量结果和第一传感器测量结果;
其中,所述第一感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。
可选的,所述传感器包括如下至少一项:
加速度传感器、陀螺仪、磁力传感器、旋转矢量传感器、定位传感器、压力传感器、温度传感器、湿度传感器、光传感器。
可选的,所述第一传感器测量结果包括如下至少一项:
运动信息、位置相关信息、环境信息、设备参数信息。
可选的,所述运动信息包括如下至少一项:
加速度信息、速度信息、旋转速率信息。
可选的,所述位置相关信息包括如下至少一项:
地磁强度信息、移动距离信息、旋转角度信息、朝向信息、位置信息、相对距离信息。
可选的,所述环境信息包括如下至少一项:
环境温度信息、光照强度信息、空气压力信息、湿度信息。
可选的,所述第一感知测量结果包括感知测量量的结果,所述感知测量量包括如下至 少一项:
信号相关的测量量、信道相关的测量量、时域相关的测量量、频域相关的测量量、空间相关的测量量、环境相关的测量量、目标对象相关的测量量。
可选的,所述第一传感器测量结果用于辅助感知测量,包括如下至少一项:
所述第一传感器测量结果用于所述第二设备获取感知结果;
所述第一传感器测量结果用于所述第二设备调整所述无线信号的配置。
可选的,射频单元1101还用于:
接收所述第二设备发送的配置信息,所述配置信息包括所述无线信号调整后的配置。
可选的,所述第一信息还包括如下至少一项:
第一指示信息、第二指示信息、第三指示信息;
其中,所述第一指示信息用于指示所述第一信息是否包括所述第一传感器测量结果;
所述第二指示信息用于指示所述第一传感器测量结果的相关信息;
所述第三指示信息用于指示所述第一感知测量结果对应的感知性能指标。
可选的,所述第一传感器测量结果的相关信息包括如下至少一项:
所述第一传感器测量结果的类型、所述第一传感器测量结果对应的传感器类型、所述第一传感器测量结果的时间戳、所述第一传感器测量结果对应的坐标系关系。
可选的,所述第一设备向第二设备发送第一信息之前,射频单元1101还用于:
向所述第二设备发送第二信息,所述第二信息包括如下至少一项:
所述第一设备支持的传感器类型、所述第一设备支持的第一传感器测量结果的类型、所述第一设备的传感器的使用情况、所述第一设备的设备参数信息。
可选的所述设备参数信息包括如下至少一项:
电量信息、温度信息。
可选的,所述向第二设备发送第一信息,包括:
在满足第一条件的情况下,向第二设备发送第一信息;
其中,所述第一条件包括如下至少一项:
所述第二设备触发所述第一设备发送所述第一传感器测量结果;
到达所述第一传感器测量结果的上报周期;
发生预设事件。
可选的,所述发生预设事件包括如下至少一项:
所述第一设备进入预设区域;
到达预设时间;
预设测量信号的测量结果满足第一门限条件;
所述第一设备的移动距离满足第二门限条件;
所述第一设备的朝向变化满足第三门限条件;
所述第一设备的运动速度满足第四门限条件;
所述第一设备检测的环境变化信息满足第五门限条件;
所述第一设备发起目标感知业务;
所述第一设备发起目标通信业务;
处于使用状态的传感器的测量结果与指示测量结果关联,所述指示测量结果为所述第二设备指示所述第一设备反馈的测量结果。
可选的,射频单元1101还用于:
在不满足所述第一条件的情况下,向第二设备发送第三信息,所述第三信息包括如下至少一项:
第二感知测量结果;
是否包含传感器测量结果的指示信息;
所述第二感知测量结果对应的感知性能指标的指示信息;
其中,所述第二感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果。
可选的,所述第一设备向第二设备发送第一信息之前,射频单元1101还用于:
接收所述第二设备发送的第四信息,所述第四信息用于指示所述第一设备向所述第二设备发送所述第一信息。
可选的,所述第四信息包括如下至少一项:
无线信号的配置信息、感知测量量、是否发送所述第一传感器测量结果的指示信息、期望的传感器类型、期望的第一传感器测量结果类型、所述第一信息的发送周期、所述第一传感器测量结果的发送条件。
可选的,所述无线信号的配置信息包括如下至少一项:
信号配置标识、信号类型、波形、子载波间隔、保护间隔、带宽、频域间隔、时域持续时间、时域间隔。
可选的,射频单元1101还用于:
接收所述第二设备发送的第五信息,所述第五信息包括如下至少一项:
第三感知测量结果、第二传感器测量结果;
所述第三感知测量结果和第二传感器测量结果为第三设备执行测量得到的感知测量结果和传感器测量结果。
可选的,射频单元1101还用于:
向所述第二设备发送请求消息,所述请求消息用于请求所述第五信息。
上述第一设备可以提高感知性能。
本申请实施例还提供一种通信设备,该通信设备为第二设备,包括处理器和通信接口,所述通信接口用于接收第一设备发送的第一信息,所述第一信息包括:第一感知测量结果和第一传感器测量结果;其中,所述第一感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量 得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。该第二设备实施例与上述第二设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该第二设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种通信设备,该通信设备为第二设备。如图12所示,该通信设备1200包括:天线1201、射频装置1202、基带装置1203、处理器1204和存储器1205。天线1201与射频装置1202连接。在上行方向上,射频装置1202通过天线1201接收信息,将接收的信息发送给基带装置1203进行处理。在下行方向上,基带装置1203对要发送的信息进行处理,并发送给射频装置1202,射频装置1202对收到的信息进行处理后经过天线1201发送出去。
以上实施例中通信设备执行的方法可以在基带装置1203中实现,该基带装置1203包括基带处理器。
基带装置1203例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图12所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1205连接,以调用存储器1205中的程序,执行以上方法实施例中所示的网络设备操作。
该通信设备还可以包括网络接口1206,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的通信设备1200还包括:存储在存储器1205上并可在处理器1204上运行的指令或程序,处理器1204调用存储器1205中的指令或程序执行图9所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
需要说明的是,该实施例是以第二设备为接入网设备进行举例说明。
其中,射频装置1202,用于接收第一设备发送的第一信息,所述第一信息包括:
第一感知测量结果和第一传感器测量结果;
其中,所述第一感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。
可选的,所述传感器包括如下至少一项:
加速度传感器、陀螺仪、磁力传感器、旋转矢量传感器、定位传感器、压力传感器、温度传感器、湿度传感器、光传感器。
可选的,所述第一传感器测量结果包括如下至少一项:
运动信息、位置相关信息、环境信息、设备参数信息。
可选的,所述运动信息包括如下至少一项:
加速度信息、速度信息、旋转速率信息。
可选的,所述位置相关信息包括如下至少一项:
地磁强度信息、移动距离信息、旋转角度信息、朝向信息、位置信息、相对距离信息。
可选的,所述环境信息包括如下至少一项:
环境温度信息、光照强度信息、空气压力信息、湿度信息。
可选的,所述第一感知测量结果包括感知测量量的结果,所述感知测量量包括如下至少一项:
信号相关的测量量、信道相关的测量量、时域相关的测量量、频域相关的测量量、空间相关的测量量、环境相关的测量量、目标对象相关的测量量。
可选的,处理器1204用于如下至少一项:
基于所述第一感知测量结果和所述第一传感器测量结果,获取感知结果;
基于所述第一感知测量结果和所述第一传感器测量结果中的至少一项,调整所述无线信号的配置。
可选的,射频装置1202还用于:
向所述第一设备发送配置信息,所述配置信息包括所述无线信号调整后的配置。
可选的,所述第一信息还包括如下至少一项:
第一指示信息、第二指示信息、第三指示信息;
其中,所述第一指示信息用于指示所述第一信息是否包括所述第一传感器测量结果;
所述第二指示信息用于指示所述第一传感器测量结果的相关信息;
所述第三指示信息用于指示所述第一感知测量结果对应的感知性能指标。
可选的,所述第一传感器测量结果的相关信息包括如下至少一项:
所述第一传感器测量结果的类型、所述第一传感器测量结果对应的传感器类型、所述第一传感器测量结果的时间戳、所述第一传感器测量结果对应的坐标系关系。
可选的,所述第二设备接收第一设备发送的第一信息之前,射频装置1202还用于:
接收所述第一设备发送的第二信息,所述第二信息包括如下至少一项:
所述第一设备支持的传感器类型、所述第一设备支持的第一传感器测量结果的类型、所述第一设备的传感器的使用情况、所述第一设备的设备参数信息。
可选的,所述设备参数信息包括:
电量信息、温度信息。
可选的,所述接收第一设备发送的第一信息,包括:
在满足第一条件的情况下,接收第一设备发送的第一信息;
其中,所述第一条件包括如下至少一项:
所述第二设备触发所述第一设备发送所述第一传感器测量结果;
到达所述第一传感器测量结果的上报周期;
发生预设事件。
可选的,射频装置1202还用于:
在不满足所述第一条件的情况下,接收所述第一设备发送的第三信息,所述第三信息包括如下至少一项:
第二感知测量结果;
是否包含传感器测量结果的指示信息;
所述第二感知测量结果对应的感知性能指标的指示信息;
其中,所述第二感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果。
可选的,所述第二设备接收第一设备发送的第一信息之前,射频装置1202还用于:
所述第二设备向所述第一设备发送的第四信息,所述第四信息用于指示所述第一设备向所述第二设备发送所述第一信息。
可选的,所述第四信息包括如下至少一项:
无线信号的配置信息、感知测量量、是否发送所述第一传感器测量结果的指示信息、期望的传感器类型、期望的第一传感器测量结果类型、所述第一信息的发送周期、所述第一传感器测量结果的发送条件。
可选的,所述无线信号的配置信息包括如下至少一项:
信号配置标识、信号类型、波形、子载波间隔、保护间隔、带宽、频域间隔、时域持续时间、时域间隔。
可选的,射频装置1202还用于:
向所述第一设备发送第五信息,所述第五信息包括如下至少一项:
第三感知测量结果、第二传感器测量结果;
所述第三感知测量结果和第二传感器测量结果为第三设备执行测量得到的感知测量结果和传感器测量结果。
可选的,射频装置1202还用于:
接收所述第一设备发送的请求消息,所述请求消息用于请求所述第五信息。
上述第二设备可以提高感知性能。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述测量信息发送方法或测量信息接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述测量信息发送方法或测量信息接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述测量信息发 送方法或测量信息接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种测量信息传递系统,包括:第一设备及第二设备,所述第一设备可用于执行如本申请实施例提供的测量信息发送方法的步骤,所述第二设备可用于执行如本申请实施例提供的测量信息接收方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (46)

  1. 一种测量信息发送方法,包括:
    第一设备向第二设备发送第一信息,所述第一信息包括:
    第一感知测量结果和第一传感器测量结果;
    其中,所述第一感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。
  2. 如权利要求1所述的方法,其中,所述传感器包括如下至少一项:
    加速度传感器、陀螺仪、磁力传感器、旋转矢量传感器、定位传感器、压力传感器、温度传感器、湿度传感器、光传感器。
  3. 如权利要求1所述的方法,其中,所述第一传感器测量结果包括如下至少一项:
    运动信息、位置相关信息、环境信息、设备参数信息。
  4. 如权利要求3所述的方法,其中,所述运动信息包括如下至少一项:
    加速度信息、速度信息、旋转速率信息。
  5. 如权利要求3所述的方法,其中,所述位置相关信息包括如下至少一项:
    地磁强度信息、移动距离信息、旋转角度信息、朝向信息、位置信息、相对距离信息。
  6. 如权利要求3所述的方法,其中,所述环境信息包括如下至少一项:
    环境温度信息、光照强度信息、空气压力信息、湿度信息。
  7. 如权利要求1至6中任一项所述的方法,其中,所述第一感知测量结果包括感知测量量的结果,所述感知测量量包括如下至少一项:
    信号相关的测量量、信道相关的测量量、时域相关的测量量、频域相关的测量量、空间相关的测量量、环境相关的测量量、目标对象相关的测量量。
  8. 如权利要求1至6中任一项所述的方法,其中,所述第一传感器测量结果用于辅助感知测量,包括如下至少一项:
    所述第一传感器测量结果用于所述第二设备获取感知结果;
    所述第一传感器测量结果用于所述第二设备调整所述无线信号的配置。
  9. 如权利要求8所述的方法,所述方法还包括:
    所述第一设备接收所述第二设备发送的配置信息,所述配置信息包括所述无线信号调整后的配置。
  10. 如权利要求1至6中任一项所述的方法,其中,所述第一信息还包括如下至少一项:
    第一指示信息、第二指示信息、第三指示信息;
    其中,所述第一指示信息用于指示所述第一信息是否包括所述第一传感器测量结果;
    所述第二指示信息用于指示所述第一传感器测量结果的相关信息;
    所述第三指示信息用于指示所述第一感知测量结果对应的感知性能指标。
  11. 如权利要求10所述的方法,其中,所述第一传感器测量结果的相关信息包括如下至少一项:
    所述第一传感器测量结果的类型、所述第一传感器测量结果对应的传感器类型、所述第一传感器测量结果的时间戳、所述第一传感器测量结果对应的坐标系关系。
  12. 如权利要求1至6中任一项所述的方法,其中,所述第一设备向第二设备发送第一信息之前,所述方法还包括:
    所述第一设备向所述第二设备发送第二信息,所述第二信息包括如下至少一项:
    所述第一设备支持的传感器类型、所述第一设备支持的第一传感器测量结果的类型、所述第一设备的传感器的使用情况、所述第一设备的设备参数信息。
  13. 如权利要求12所述的方法,其中,所述设备参数信息包括如下至少一项:
    电量信息、温度信息。
  14. 如权利要求1至6中任一项所述的方法,其中,所述第一设备向第二设备发送第一信息,包括:
    在满足第一条件的情况下,所述第一设备向第二设备发送第一信息;
    其中,所述第一条件包括如下至少一项:
    所述第二设备触发所述第一设备发送所述第一传感器测量结果;
    到达所述第一传感器测量结果的上报周期;
    发生预设事件。
  15. 如权利要求14所述的方法,其中,所述发生预设事件包括如下至少一项:
    所述第一设备进入预设区域;
    到达预设时间;
    预设测量信号的测量结果满足第一门限条件;
    所述第一设备的移动距离满足第二门限条件;
    所述第一设备的朝向变化满足第三门限条件;
    所述第一设备的运动速度满足第四门限条件;
    所述第一设备检测的环境变化信息满足第五门限条件;
    所述第一设备发起目标感知业务;
    所述第一设备发起目标通信业务;
    处于使用状态的传感器的测量结果与指示测量结果关联,所述指示测量结果为所述第二设备指示所述第一设备反馈的测量结果。
  16. 如权利要求15所述的方法,所述方法还包括:
    在不满足所述第一条件的情况下,所述第一设备向第二设备发送第三信息,所述第三信息包括如下至少一项:
    第二感知测量结果;
    是否包含传感器测量结果的指示信息;
    所述第二感知测量结果对应的感知性能指标的指示信息;
    其中,所述第二感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果。
  17. 如权利要求1至6中任一项所述的方法,其中,所述第一设备向第二设备发送第一信息之前,所述方法还包括:
    所述第一设备接收所述第二设备发送的第四信息,所述第四信息用于指示所述第一设备向所述第二设备发送所述第一信息。
  18. 如权利要求17所述的方法,其中,所述第四信息包括如下至少一项:
    所述无线信号的配置信息、感知测量量、是否发送所述第一传感器测量结果的指示信息、期望的传感器类型、期望的第一传感器测量结果类型、所述第一信息的发送周期、所述第一传感器测量结果的发送条件。
  19. 如权利要求18所述的方法,其中,所述无线信号的配置信息包括如下至少一项:
    信号配置标识、信号类型、波形、子载波间隔、保护间隔、带宽、频域间隔、时域持续时间、时域间隔。
  20. 如权利要求1至6中任一项所述的方法,所述方法还包括:
    所述第一设备接收所述第二设备发送的第五信息,所述第五信息包括如下至少一项:
    第三感知测量结果、第二传感器测量结果;
    所述第三感知测量结果和第二传感器测量结果为第三设备执行测量得到的感知测量结果和传感器测量结果。
  21. 如权利要求20所述的方法,所述方法还包括:
    所述第一设备向所述第二设备发送请求消息,所述请求消息用于请求所述第五信息。
  22. 一种测量信息接收方法,包括:
    第二设备接收第一设备发送的第一信息,所述第一信息包括:
    第一感知测量结果和第一传感器测量结果;
    其中,所述第一感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。
  23. 如权利要求22所述的方法,其中,所述传感器包括如下至少一项:
    加速度传感器、陀螺仪、磁力传感器、旋转矢量传感器、定位传感器、压力传感器、温度传感器、湿度传感器、光传感器。
  24. 如权利要求22所述的方法,其中,所述第一传感器测量结果包括如下至少一项:
    运动信息、位置相关信息、环境信息、设备参数信息。
  25. 如权利要求24所述的方法,其中,所述运动信息包括如下至少一项:
    加速度信息、速度信息、旋转速率信息。
  26. 如权利要求24所述的方法,其中,所述位置相关信息包括如下至少一项:
    地磁强度信息、移动距离信息、旋转角度信息、朝向信息、位置信息、相对距离信息。
  27. 如权利要求24所述的方法,其中,所述环境信息包括如下至少一项:
    环境温度信息、光照强度信息、空气压力信息、湿度信息。
  28. 如权利要求22至27中任一项所述的方法,其中,所述第一感知测量结果包括感知测量量的结果,所述感知测量量包括如下至少一项:
    信号相关的测量量、信道相关的测量量、时域相关的测量量、频域相关的测量量、空间相关的测量量、环境相关的测量量、目标对象相关的测量量。
  29. 如权利要求22至27中任一项所述的方法,其中,所述方法还包括如下至少一项:
    所述第二设备基于所述第一感知测量结果和所述第一传感器测量结果,获取感知结果;
    所述第二设备基于所述第一感知测量结果和所述第一传感器测量结果中的至少一项,调整所述无线信号的配置。
  30. 如权利要求29所述的方法,所述方法还包括:
    所述第二设备向所述第一设备发送配置信息,所述配置信息包括所述无线信号调整后的配置。
  31. 如权利要求22至27中任一项所述的方法,其中,所述第一信息还包括如下至少一项:
    第一指示信息、第二指示信息、第三指示信息;
    其中,所述第一指示信息用于指示所述第一信息是否包括所述第一传感器测量结果;
    所述第二指示信息用于指示所述第一传感器测量结果的相关信息;
    所述第三指示信息用于指示所述第一感知测量结果对应的感知性能指标。
  32. 如权利要求31所述的方法,其中,所述第一传感器测量结果的相关信息包括如下至少一项:
    所述第一传感器测量结果的类型、所述第一传感器测量结果对应的传感器类型、所述第一传感器测量结果的时间戳、所述第一传感器测量结果对应的坐标系关系。
  33. 如权利要求22至27中任一项所述的方法,其中,所述第二设备接收第一设备发送的第一信息之前,所述方法还包括:
    所述第二设备接收所述第一设备发送的第二信息,所述第二信息包括如下至少一项:
    所述第一设备支持的传感器类型、所述第一设备支持的第一传感器测量结果的类型、所述第一设备的传感器的使用情况、所述第一设备的设备参数信息。
  34. 如权利要求33所述的方法,其中,所述设备参数信息包括:
    电量信息、温度信息。
  35. 如权利要求22至27中任一项所述的方法,其中,所述第二设备接收第一设备发送的第一信息,包括:
    在满足第一条件的情况下,所述第二设备接收第一设备发送的第一信息;
    其中,所述第一条件包括如下至少一项:
    所述第二设备触发所述第一设备发送所述第一传感器测量结果;
    到达所述第一传感器测量结果的上报周期;
    发生预设事件。
  36. 如权利要求35所述的方法,所述方法还包括:
    在不满足所述第一条件的情况下,所述第二设备接收所述第一设备发送的第三信息,所述第三信息包括如下至少一项:
    第二感知测量结果;
    是否包含传感器测量结果的指示信息;
    所述第二感知测量结果对应的感知性能指标的指示信息;
    其中,所述第二感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果。
  37. 如权利要求22至27中任一项所述的方法,其中,所述第二设备接收第一设备发送的第一信息之前,所述方法还包括:
    所述第二设备向所述第一设备发送的第四信息,所述第四信息用于指示所述第一设备向所述第二设备发送所述第一信息。
  38. 如权利要求37所述的方法,其中,所述第四信息包括如下至少一项:
    所述无线信号的配置信息、感知测量量、是否发送所述第一传感器测量结果的指示信息、期望的传感器类型、期望的第一传感器测量结果类型、所述第一信息的发送周期、所述第一传感器测量结果的发送条件。
  39. 如权利要求38所述的方法,其中,所述无线信号的配置信息包括如下至少一项:
    信号配置标识、信号类型、波形、子载波间隔、保护间隔、带宽、频域间隔、时域持续时间、时域间隔。
  40. 如权利要求22至27中任一项所述的方法,所述方法还包括:
    所述第二设备向所述第一设备发送第五信息,所述第五信息包括如下至少一项:
    第三感知测量结果、第二传感器测量结果;
    所述第三感知测量结果和第二传感器测量结果为第三设备执行测量得到的感知测量结果和传感器测量结果。
  41. 如权利要求40所述的方法,所述方法还包括:
    所述第二设备接收所述第一设备发送的请求消息,所述请求消息用于请求所述第五信息。
  42. 一种测量信息发送装置,包括:
    第一发送模块,用于向第二设备发送第一信息,所述第一信息包括:
    第一感知测量结果和第一传感器测量结果;
    其中,所述第一感知测量结果为所述装置对应的第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。
  43. 一种测量信息接收装置,包括:
    第一接收模块,用于接收第一设备发送的第一信息,所述第一信息包括:
    第一感知测量结果和第一传感器测量结果;
    其中,所述第一感知测量结果为所述第一设备基于无线信号进行感知测量得到的测量结果,所述第一传感器测量结果为所述第一设备基于传感器进行测量得到的测量结果,且所述第一传感器测量结果用于辅助感知测量。
  44. 一种通信设备,所述通信设备为第一设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至21任一项所述的测量信息发送方法的步骤。
  45. 一种通信设备,所述通信设备为第二设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求22至41任一项所述的测量信息接收方法的步骤。
  46. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至21任一项所述的测量信息发送方法的步骤,或者实现如权利要求22至41任一项所述的测量信息接收方法的步骤。
PCT/CN2023/115667 2022-09-05 2023-08-30 测量信息发送方法、接收方法及通信设备 WO2024051545A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211079793.1A CN117692921A (zh) 2022-09-05 2022-09-05 测量信息发送方法、接收方法及通信设备
CN202211079793.1 2022-09-05

Publications (1)

Publication Number Publication Date
WO2024051545A1 true WO2024051545A1 (zh) 2024-03-14

Family

ID=90128823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115667 WO2024051545A1 (zh) 2022-09-05 2023-08-30 测量信息发送方法、接收方法及通信设备

Country Status (2)

Country Link
CN (1) CN117692921A (zh)
WO (1) WO2024051545A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105554837A (zh) * 2016-01-08 2016-05-04 中国矿业大学 一种井下工作面无线传感器网络智能感知节点及感知方法
CN109343148A (zh) * 2018-10-25 2019-02-15 广州源贸易有限公司 海洋气象信息智能感知与自动发布系统
US10334412B1 (en) * 2018-01-09 2019-06-25 Boaz Kenane Autonomous vehicle assistance systems
CN110247717A (zh) * 2018-03-07 2019-09-17 索尼公司 用于无线通信的电子设备、方法和计算机可读存储介质
CN113124897A (zh) * 2019-12-31 2021-07-16 大唐高鸿数据网络技术股份有限公司 一种传感器性能检测方法、装置及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105554837A (zh) * 2016-01-08 2016-05-04 中国矿业大学 一种井下工作面无线传感器网络智能感知节点及感知方法
US10334412B1 (en) * 2018-01-09 2019-06-25 Boaz Kenane Autonomous vehicle assistance systems
CN110247717A (zh) * 2018-03-07 2019-09-17 索尼公司 用于无线通信的电子设备、方法和计算机可读存储介质
CN109343148A (zh) * 2018-10-25 2019-02-15 广州源贸易有限公司 海洋气象信息智能感知与自动发布系统
CN113124897A (zh) * 2019-12-31 2021-07-16 大唐高鸿数据网络技术股份有限公司 一种传感器性能检测方法、装置及终端

Also Published As

Publication number Publication date
CN117692921A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
US20240155394A1 (en) Sensing method and apparatus, terminal, and network device
WO2023274029A1 (zh) 通信感知方法、装置及网络设备
WO2024051545A1 (zh) 测量信息发送方法、接收方法及通信设备
WO2023231844A1 (zh) 感知测量方法、装置、设备、终端和存储介质
WO2024061065A1 (zh) 前导码发送方法、终端及存储介质
WO2023185910A1 (zh) 信息指示方法、接收方法、装置、设备和存储介质
WO2023231865A1 (zh) 感知终端的选择方法、装置及通信设备
WO2024051543A1 (zh) 信息处理方法、装置及通信设备
WO2023231870A1 (zh) 通信方法、装置、终端、网络侧设备及核心网设备
EP4376469A1 (en) Sensing signal measurement method and apparatus, network device, and terminal
WO2023226826A1 (zh) 感知方法、装置及通信设备
WO2023231867A1 (zh) 感知方式切换方法、装置及通信设备
WO2023179617A1 (zh) 定位方法、装置、终端及网络侧设备
WO2023231868A1 (zh) 感知方式切换方法、装置、通信设备及存储介质
WO2024078378A1 (zh) 多普勒测量方法、装置及通信设备
WO2024032460A1 (zh) 数据收集方法、装置及通信设备
WO2024099153A1 (zh) 信息传输方法、装置及通信设备
WO2024099125A1 (zh) 测量信息反馈方法、接收方法及通信设备
WO2023231839A1 (zh) 感知数据传输方式的协商方法、装置及通信设备
WO2023174342A1 (zh) 感知处理方法、装置、通信设备及可读存储介质
WO2024027664A1 (zh) 载波相位定位方法、装置、设备及介质
WO2024061067A1 (zh) 链路监测方法、装置及终端
WO2024099152A1 (zh) 信息传输方法、装置及通信设备
WO2023231846A1 (zh) 感知方式切换处理方法、装置、通信设备及可读存储介质
WO2023231919A1 (zh) 无线感知条件切换方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862240

Country of ref document: EP

Kind code of ref document: A1