WO2023231865A1 - 感知终端的选择方法、装置及通信设备 - Google Patents

感知终端的选择方法、装置及通信设备 Download PDF

Info

Publication number
WO2023231865A1
WO2023231865A1 PCT/CN2023/096060 CN2023096060W WO2023231865A1 WO 2023231865 A1 WO2023231865 A1 WO 2023231865A1 CN 2023096060 W CN2023096060 W CN 2023096060W WO 2023231865 A1 WO2023231865 A1 WO 2023231865A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
terminal
condition
base station
requirements
Prior art date
Application number
PCT/CN2023/096060
Other languages
English (en)
French (fr)
Inventor
袁雁南
姜大洁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023231865A1 publication Critical patent/WO2023231865A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • the present application belongs to the field of wireless communication technology, and specifically relates to a sensing terminal selection method, device and communication equipment.
  • the 5th Generation, 5G positioning scenario there is a clear user equipment (User Equipment, UE, also called terminal) identification (Identity, ID), so the location management function (Location Management Function , LMF) can directly interact with the UE based on the UE ID.
  • UE User Equipment
  • ID Terminal Identification
  • LMF Location Management Function
  • Embodiments of the present application provide a sensing terminal selection method, device and communication equipment, which can solve the problem of how to select sensing terminals in sensing services.
  • the first aspect provides a sensing terminal selection method, including:
  • the first device determines a first condition for selecting a sensing terminal, where the first condition includes: a geographical location requirement for the sensing terminal to participate in sensing, and/or a measurement quantity numerical requirement corresponding to the geographical location requirement.
  • the second aspect provides a sensing terminal selection method, including:
  • the terminal receives a sensing request, and the sensing request includes a first condition.
  • the first condition includes: a geographical location requirement for the sensing terminal to participate in sensing, and/or a measurement quantity numerical requirement corresponding to the geographical location requirement;
  • the terminal determines whether it can participate in sensing according to the first condition
  • the terminal If it can participate in sensing, the terminal sends a sensing response.
  • the third aspect provides a sensing terminal selection method, including:
  • the base station obtains a first condition, which includes: a geographical location requirement for the sensing terminal to participate in sensing, and/or a measurement quantity numerical requirement corresponding to the geographical location requirement;
  • the base station performs at least one of the following:
  • a selection device for sensing terminals including:
  • a first determination module configured to determine a first condition for selecting a sensing terminal, where the first condition includes: a geographical location requirement for the sensing terminal to participate in sensing, and/or a measurement quantity numerical requirement corresponding to the geographical location requirement.
  • a selection device for sensing terminals including:
  • a receiving module configured to receive a sensing request, where the sensing request includes a first condition, and the first condition includes: a geographical location requirement for the sensing terminal to participate in sensing, and/or a measurement value corresponding to the geographical location requirement. Require;
  • a first determination module configured to determine whether it is possible to participate in perception according to the first condition
  • a sending module configured to send a sensing response if the terminal can participate in sensing.
  • the sixth aspect provides a selection device for sensing terminals, including:
  • a receiving module configured to obtain a first condition, where the first condition includes: a geographical location requirement for the sensing terminal to participate in sensing, and/or a measurement quantity numerical requirement corresponding to the geographical location requirement;
  • the first determination module is used to perform at least one of the following:
  • a communication device in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following is implemented: The steps of the method described in the first aspect, the second aspect or the third aspect.
  • a network side device including a processor and a communication interface, wherein The processor is configured to determine a first condition for selecting a sensing terminal, where the first condition includes: a geographical location requirement for the sensing terminal to participate in sensing, and/or a measurement quantity numerical requirement corresponding to the geographical location requirement.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to receive a sensing request, the sensing request includes a first condition, and the first condition includes: the sensing terminal participates in sensing The geographical location requirement, and/or the measurement quantity numerical requirement corresponding to the geographical location requirement; the processor is used to determine whether it can participate in sensing according to the first condition; the communication interface is also used to determine if it can participate in sensing , sending a sensing response.
  • a network side device including a processor and a communication interface, wherein the processor is configured to obtain a first condition, where the first condition includes: a geographical location requirement for a sensing terminal to participate in sensing, and/or , a measurement quantity numerical requirement corresponding to the geographical location requirement; determining a list of candidate sensing terminals according to the first condition; the communication interface is also used to send a sensing response, and the sensing response includes the list of candidate sensing terminals.
  • a communication system including: a sensing function node and a terminal.
  • the sensing function node can be used to perform the steps of the method described in the first aspect
  • the terminal can be used to perform the steps of the method described in the second aspect. steps of the method described.
  • a communication system including: a sensing function node and a base station.
  • the sensing function node can be used to perform the steps of the method described in the first aspect
  • the base station can be used to perform the steps of the method described in the third aspect. steps of the method described.
  • a communication system including: a base station and a terminal.
  • the base station can be used to perform the steps of the method described in the first aspect
  • the terminal can be used to perform the steps of the method described in the second aspect. step.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the implementation of the first aspect, the second aspect or the third aspect is implemented. steps of the method described.
  • a chip in a fifteenth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the first aspect and the second aspect. aspect or the method described in the third aspect.
  • a computer program/program product is provided, the computer program/program product
  • the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the steps of the method described in the first aspect, the second aspect or the third aspect.
  • the first device determines the first condition for selecting the sensing terminal, and the first condition is related to the geographical location requirement for the sensing terminal to participate in sensing, and/or is related to the measurement quantity numerical requirement corresponding to the geographical location requirement. , so that the terminal that meets the condition can be determined according to the first condition, which solves the problem that the network side cannot know the terminal suitable for sensing in the sensing area.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is one of the schematic flow charts of the sensing terminal selection method according to the embodiment of the present application.
  • Figure 3 is a schematic diagram of the TDOA positioning principle
  • Figure 4 is a schematic diagram of the RTT positioning principle
  • Figure 5 is a schematic diagram of the angle-based positioning principle
  • Figure 6 is a schematic flowchart 2 of the sensing terminal selection method according to the embodiment of the present application.
  • Figure 7 is a schematic flowchart 3 of the sensing terminal selection method according to the embodiment of the present application.
  • Figure 8 is a schematic flowchart of a sensing terminal selection method according to Embodiment 1 of the present application.
  • Figure 9 is a schematic flowchart of a sensing terminal selection method according to Embodiment 2 of the present application.
  • Figure 10 is a schematic flowchart of a sensing terminal selection method according to Embodiment 3 of the present application.
  • Figure 11 is a schematic flowchart of a sensing terminal selection method according to Embodiment 4 of the present application.
  • Figure 12 is one of the structural schematic diagrams of the selection device of the sensing terminal according to the embodiment of the present application.
  • Figure 13 is a second structural schematic diagram of a sensing terminal selection device according to an embodiment of the present application.
  • Figure 14 is the third structural schematic diagram of the selection device of the sensing terminal according to the embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Figure 16 is a schematic diagram of the hardware structure of a terminal according to an embodiment of the present application.
  • Figure 17 is one of the schematic diagrams of the hardware structure of the network side device according to the embodiment of the present application.
  • Figure 18 is the second schematic diagram of the hardware structure of the network side device according to the embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • Mobile Internet Device MID
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • Wearable Device vehicle equipment
  • VUE Vehicle User Equipment
  • PUE Pedestrian User Equipment
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • PC personal computers
  • Terminal-side equipment such as teller machines or self-service machines
  • wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets etc.), smart wristbands, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless access network unit.
  • Access network equipment may include base stations, Wireless Local Area Network (WLAN) access points or Wireless Fidelity (WiFi) nodes, etc.
  • the base station may be called Node B, Evolved Node B (eNB), Access point, Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home Evolved B node, Transmission Reception Point (TRP) or some other suitable terminology in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in this article In the application embodiment, the base station in the NR system is only introduced as an example, and the specific type of the base station is not limited.
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Service Discovery function (Edge Application Server Discovery Function, EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), centralized network configuration ( Centralized network configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application functions (Application Function, AF) etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • Integration of communication and perception means realizing the integrated design of communication and perception functions in the same system through spectrum sharing and hardware sharing. While transmitting information, the system can sense orientation, distance, speed and other information, and detect target devices or events. , tracking, identification, communication system and perception system complement each other to achieve overall performance improvement and bring a better service experience.
  • Sensing capability refers to one or more devices with sensing capabilities that can perceive the orientation, distance, speed and other information of target objects through the sending and receiving of wireless signals, or detect, track, and detect target objects, events or environments, etc. Recognition, imaging, etc.
  • small base stations with high-frequency and large-bandwidth capabilities such as millimeter waves and terahertz in 6G networks
  • the resolution of perception will be significantly improved compared to centimeter waves, allowing 6G networks to provide more refined perception services.
  • Typical sensing functions and application scenarios are shown in Table 1.
  • sensing such as intelligent transportation and high-precision maps are usually expressed in terms of sensing range, distance resolution, angle resolution, speed resolution and delay; flight intrusion detection sensing is usually expressed in terms of sensing range, distance resolution, angle resolution, speed resolution and delay. It is expressed in terms of coverage height, perception accuracy, and perception delay; respiratory monitoring is expressed in terms of perception distance, perception real-timeness, perception resolution, and perception accuracy; indoor intrusion detection is expressed in terms of perception distance, perception real-timeness, detection probability, and false alarm probability.
  • Gesture/posture recognition is expressed in terms of perceived distance, perceived real-time, and perceived accuracy.
  • a service request based on a static area uses a certain coordinate system to represent the geographical location of the content that needs to be sensed;
  • a service request based on a dynamic area represents M meters around a certain UE that needs to be sensed.
  • a continuous sensing service request for a dynamic target using a detected and continuously tracked target to represent the sensing target that needs to sense the content.
  • the positioning methods currently supported by 5G include Downlink Time Difference of Arrival (DL-TDOA) method, Uplink Time Difference of Arrival (UL-TDOA), Multi-Cell Round Trip Time (Multi-RTT), Downlink Angle of departure (Uplink angle-of-departure, DL-AOD) and angle of arrival (Uplink angle-of-arrival, UL-AOA), NR enhanced cell identification (enhancement cell ID, E-CID) positioning method.
  • DL-TDOA Downlink Time Difference of Arrival
  • UL-TDOA Uplink Time Difference of Arrival
  • Multi-RTT Multi-Cell Round Trip Time
  • Downlink Angle of departure Uplink angle-of-departure
  • UL-AOA Uplink angle-of-arrival
  • NR enhanced cell identification enhanced cell ID, E-CID
  • UE ID In relevant 5G positioning scenarios, there is a clear UE ID, so the LMF and the base station can accurately find the UE based on the UE ID and interact. Whether UE is required to participate in sensing and which UEs are suitable for participation usually need to be determined by combining multiple pieces of information (such as UE location, UE sensing authorization information, UE sensing capability information, etc.). For sensing service requests in the following three situations, if UE participation is required, how the network function selects the appropriate sensing terminal during the process of sensing service initiation and continuous sensing is a problem that needs to be solved:
  • Situation 1 Service request based on static area, such as using a coordinate system to represent the geographical location area where the content needs to be sensed;
  • Scenario 2 Service request based on dynamic area, for example, M meters around a certain UE represent the geographical location range where the content needs to be sensed;
  • Scenario 3 Continuous sensing service request for a dynamic target, such as a detected and continuously tracked target representing a sensing target that requires sensing content.
  • the location information of the UE is the location information of the UE. How can the network It is a problem that needs to be solved to know which UEs are in certain locations in the sensing area that are suitable for transmitting or receiving sensing signals. In addition to location information, selecting a UE also needs to consider the UE's sensing capabilities, UE orientation, UE's motion state (stationary or moving speed), and the UE's willingness to participate in sensing. If the system broadcast message is sent to the UE, there may be two potential problems: first, it will result in more broadcast content, and second, the UE may not be accurate enough to judge whether multiple sensing conditions are met (for example, it is difficult to obtain accurate information when the UE is in an indoor environment).
  • This embodiment of the present application provides a method for selecting a sensing terminal, including:
  • Step 21 The first device determines the first condition for selecting the sensing terminal.
  • the first condition includes: the geographical location requirement for the sensing terminal to participate in sensing, and/or the measurement quantity numerical requirement corresponding to the geographical location requirement.
  • the first device may be a sensing function node or a base station, which will be described in detail in the following embodiments.
  • the first device determines the first condition for selecting the sensing terminal, and the first condition is related to the geographical location requirement for the sensing terminal to participate in sensing, and/or is related to the measurement quantity numerical requirement corresponding to the geographical location requirement. , so that the terminal that meets the condition can be determined according to the first condition, which solves the problem that the network side cannot know the terminal suitable for sensing in the sensing area.
  • the first condition for determining the selection of the sensing terminal by the first device includes: the first device determines whether the terminal is required to participate in sensing; if it is determined that the terminal is required to participate in sensing, the first device determines The first condition for selecting a sensing terminal.
  • the first device determines whether the terminal is required to participate in sensing including: the first device determines based on at least one of the received first sensing request and the sensing capability information of the network function. Whether the terminal is required to participate in sensing;
  • the first sensing request includes at least one of the following:
  • Perception target area refers to the location area where the sensing object may exist, or the location area that requires imaging or three-dimensional reconstruction;
  • Sensing object type Classify sensing objects according to their possible motion characteristics. Each sensing object type contains information such as the motion speed, motion acceleration, and typical radar cross section (RCS) of typical sensing objects.
  • RCS radar cross section
  • Sensing target object When one or more sensing target objects are sensed, the identification information of the sensing object is provided.
  • Potential identification methods include: feature identification on the distance, speed, angle spectrum, or UE ID identification based on the network;
  • QoS Quality of Service
  • sensing resolution further including: ranging resolution, angle measurement resolution, speed measurement resolution rate, imaging resolution
  • sensing accuracy which may further include: at least one of ranging accuracy, angle measurement accuracy, speed measurement accuracy, positioning accuracy, etc.
  • sensing range which may further include: ranging At least one of range, speed measurement range, angle measurement range, imaging range, etc.
  • sensing delay the time interval from the sensing signal sent to the sensing result obtained, or the time interval from the sensing demand initiation to the sensing result obtained
  • Perception update rate the time interval between two consecutive sensing operations and obtaining the sensing results
  • detection probability the probability of being correctly detected when the sensing object exists
  • false alarm probability error when the sensing object does not exist
  • the sensing capability information of the network function includes at least one of the following: sensing range of the base station, sensing range of the AMF, information on sensing services supported by the base station, and information on sensing services supported by the AMF.
  • the requirement for the terminal to participate in sensing includes at least one of the following: the terminal is required to send a sensing signal, the terminal is required to receive the sensing signal and perform sensing measurement, the terminal is required to send sensing auxiliary information, and the terminal is required to perform sensing measurement. The results are processed.
  • the numerical requirements of the measurement quantity include at least one of the following:
  • the uplink received signal strength measurement value requirement is the receiving bandwidth power of the base station, including thermal noise and noise generated by the receiver within the bandwidth defined by the receiver pulse forming filter.
  • the reference point of measurement is the antenna port, and RSS is the average power of all signals (including pilot signals, data signals, interference signals and/or noise signals, etc.) received within a certain period of time (such as one symbol).
  • the downlink received signal strength measurement value requirement is the receiving bandwidth power of the terminal, included in the receiver pulse Thermal noise and receiver-generated noise are generated within the bandwidth defined by the filter.
  • the reference point of measurement is the antenna port, and RSS is the average power of all signals (including pilot signals, data signals, interference signals and/or noise signals, etc.) received within a certain period of time (such as one symbol).
  • This parameter is the ratio of the strength of the useful signal received by the terminal or base station to the strength of the received noise.
  • This parameter is the average value of the reference signal power over the measurement band.
  • RSRP is the average of the signal power received on all resources carrying the reference signal within a certain period of time (such as one symbol).
  • This parameter is the ratio of RSRP and RSS.
  • RSRQ N ⁇ RSRP/RSS, where N represents the resource block (RB) in the RSS measurement bandwidth. quantity.
  • This parameter is the complex result of the channel response.
  • Uplink and/or downlink reference signal time difference Reference Signal Time Difference, RSTD
  • This parameter is the time difference between the received signal arriving at multiple TRPs.
  • RTT Round Trip Time
  • This parameter measures the angle and is usually used in multi-antenna systems to measure the angle of arrival of the beam.
  • This parameter measures the angle and is usually used in multi-antenna systems to measure the departure angle of the beam.
  • the geographical location requirement is a geographical location coordinate value requirement based on a certain coordinate system, for example, with O as the origin coordinate value (X, Y, Z), any one of X, Y or Z
  • O the origin coordinate value (X, Y, Z)
  • any one of X, Y or Z The directional deviation is less than 0.5m, or the coordinate value expressed by longitude, latitude and altitude is required.
  • the measurement value requirements include the measurement value requirements of the terminal for downlink signals of one or more base stations, and/or the measurement value requirements of one or more base stations for the terminal's uplink signals.
  • the measurement value requirements for the downlink signal are: the UE's received signal strength for cell 1, cell 2 and cell 3 is -60dbm, -70dbm, -80dbm respectively, with a deviation value of less than 3dbm; conversely for the uplink, it is the pair of cell1, cell2 and cell3.
  • Measurement value requirements for UE uplink signal reception strength are: the UE's received signal strength for cell 1, cell 2 and cell 3 is -60dbm, -70dbm, -80dbm respectively, with a deviation value of less than 3dbm; conversely for the uplink, it is the pair of cell1, cell2 and cell3.
  • the measurement value requirements include measurement value requirements for signals of one or more beams.
  • the above measurement quantity requirements are determined based on the positioning method used. The following is a brief introduction to related positioning methods.
  • the positioning methods currently supported by 5G include Downlink Time Difference of Arrival (DL-TDOA) method, Uplink Time Difference of Arrival (UL-TDOA), Multi-Cell Round Trip Time (Multi-RTT), Downlink Angle of departure (Uplink angle-of-departure, DL-AOD) and angle of arrival (Uplink angle-of-arrival, UL-AOA), NR enhanced cell identification (enhancement cell ID, E-CID) positioning method.
  • DL-TDOA Downlink Time Difference of Arrival
  • UL-TDOA Uplink Time Difference of Arrival
  • Multi-RTT Multi-Cell Round Trip Time
  • Downlink Angle of departure Uplink angle-of-departure
  • UL-AOA Uplink angle-of-arrival
  • NR enhanced cell identification enhanced cell ID, E-CID
  • the UE obtains the relative arrival time of the downlink (DownLink, DL) positioning reference signal (Positioning Reference Signal, PRS) of multiple TRPs (eNB1, eNB2 and eNB3), that is, the reference signal time difference (Reference Signal Time Difference, RSTD), and then the UE or LMF solves the geographical coordinates of the UE according to the appropriate position solving algorithm.
  • DownLink, DL positioning reference signal
  • PRS Positioning Reference Signal
  • RSTD Reference Signal Time Difference
  • R i is the distance from the i-th TRP to the UE
  • N is the number of TRPs
  • c is the speed of light
  • t i -t 1 is the arrival time difference between the i-th TRP and the first TRP.
  • the arrival time difference of two TRPs can determine the UE on a hyperbola.
  • 3 TRPs can limit the UE to an area.
  • the UE can measure and report the RSTD of up to 256 TRPs.
  • LMF estimates the UE position based on the UL-RTOA measurement results of the UE's uplink positioning reference signal (SRS for positioning) measured at different TRPs and other configuration information, without the need for the UE to participate in positioning measurement and calculations.
  • the positioning principle is the same as DL-TDOA.
  • the quality of the uplink signal cannot be guaranteed due to the low transmit power of the UE reference signal. Therefore, the UE cannot guarantee that surrounding base stations can correctly parse its uplink reference signals, which limits the number of nodes participating in positioning, resulting in a decrease in location accuracy.
  • the RTT positioning method has been used in E-CID technology to estimate the distance between the base station and the UE.
  • a single RTT is extended to the RTT of multiple cells and UEs, that is, Multi-RTT.
  • Multi-RTT compared to TDOA-based positioning technology is that it does not require strict synchronization between base stations, that is, it is not affected by synchronization errors between TRPs. Multi-RTT accuracy is mainly limited by uplink coverage.
  • Downlink angle-of-departure (DL-AOD) and uplink angle-of-arrival (UL-AOA) are both angle-based positioning methods.
  • the principle is to use the measurement angles of at least two base stations to estimate the UE position. Since the base station usually has many more antennas than the UE, and the angle measurement accuracy is higher, NR chooses to measure the angle on the base station side, that is, it introduces the downlink angle of departure DL-AOD positioning technology and the uplink angle of arrival UL-AOA positioning technology.
  • DL-AoD determines the DL departure angle based on the DL PRS-RSRP measured by the UE and PRS beam information (such as beam direction), and further determines the UE position.
  • UL-AoA is based on the UL-AoA measured by the next generation base station (the next Generation Node B, gNB) to further determine the UE location.
  • the first device determines the first condition for selecting the sensing terminal.
  • the first device determines the geographical location requirements for the sensing terminal to participate in sensing
  • the first device determines a measurement quantity value requirement corresponding to the geographical location requirement.
  • the geographical location requirements include at least one of the following:
  • the sensing method is that the base station sends sensing signals, and when the terminal receives the sensing signals and performs sensing measurements, the terminal needs to participate in the perceived geographical location;
  • base station A (if the sensing target area requires the cooperation of multiple base stations, this can be extended to the case of multiple base stations) sends a sensing signal for receiving the sensing signal and the measured location area of the UE.
  • the sensing method is that the terminal sends sensing signals, and when the base station receives the sensing signals and performs sensing measurements, the terminal needs to participate in sensing the geographical location;
  • base station A (if the sensing target area requires the cooperation of multiple base stations, this can be extended to the case of multiple base stations) receives the sensing signal and measures the location area of the UE that sends the sensing signal.
  • the sensing method is that the terminal itself sends sensing signals, and when it receives the sensing signals and performs sensing measurements, the terminal needs to participate in the perceived geographical location;
  • the sensing method is that the terminal sends a sensing signal, and when other terminals receive the sensing signal and perform sensing measurements, the terminal needs to participate in the perceived geographical location.
  • the first device determines the geographical location requirement based on the sensing target area in the first sensing request information and the sensing range of the base station.
  • the first device may determine the measurement quantity numerical requirements corresponding to the geographical location requirements based on the radio frequency fingerprint database.
  • the radio frequency fingerprint database may be used to determine the measurement quantity numerical requirements corresponding to the geographical location requirements.
  • the radio frequency fingerprint database is used in the radio frequency fingerprint positioning method.
  • the radio frequency fingerprint positioning method has become a commonly used indoor positioning method due to its good positioning performance, high accuracy, and easy reuse of existing hardware for radio frequency measurement quantities (such as received signal power, signal-to-noise ratio, etc.)
  • Radio frequency fingerprint positioning methods are generally divided into two stages: offline stage and online stage.
  • a fingerprint database is constructed consisting of sampling point coordinates and received signal characteristics.
  • There is a one-to-one correspondence between the location coordinates and the received signal characteristics in cellular networks, it is usually constructed through the measurement quantities and location information reported by UEs in the network for a long time.
  • the matching algorithm is used to match the real-time signal characteristics with the fingerprints in the fingerprint database. Once the matching fingerprint is found, the coordinates of the sampling point corresponding to the matching fingerprint are considered to be the mobile user's. Location.
  • machine learning algorithms can also be used to learn the relationship function between location coordinates and signal features in the fingerprint database.
  • real-time signal features are brought into the relationship function to obtain mobile user coordinate estimates.
  • radio frequency fingerprint positioning method the radio signal characteristic value used to mark a certain location
  • radio frequency fingerprint positioning method the fingerprint positioning method using radio frequency signals
  • the basic principle of the radio frequency fingerprint positioning method is based on the correspondence between the two-dimensional or three-dimensional position space and the n-dimensional fingerprint signal space.
  • the first device is a sensing function node; after the first device determines the first condition for selecting a sensing terminal, it further includes: the sensing function node sends a second sensing request to the base station, The second sensing request includes the first condition and an identification of a second device for receiving a sensing response, and is broadcast by the base station.
  • the sensing function node needs to send the first condition, since it is not clear which terminals are sensing terminals, it usually needs to send the first condition to one or more base stations based on the determined first condition. That is, the second sensing request message is a non-UE associated message, or a global message.
  • the message uses the same method, but the Next Generation Application Protocol (NGAP) message that carries the message (i.e., the protocol stack message between the core network and the base station) It is a non-UE associated message, that is, it does not carry the UE NGAP ID assigned by the base station (that is, the RAN UE NGAP ID); if the protocol stack between the sensing function and the base station does not require AMF forwarding, then the message can be sent directly by the sensing function to the corresponding base station. After receiving the first condition, the base station sends the first condition through broadcast instead of sending it to the designated terminal.
  • NGAP Next Generation Application Protocol
  • a base station is determined to send the first condition.
  • the measurement quantity value requirements it is usually the measurement value requirements of multiple base stations, so for The measured values of a certain base station can be sent to that base station if required.
  • the second device and the first device may be the same device or different devices.
  • the sensing function node sends a second sensing request to the base station Also includes:
  • the sensing function node receives a sensing response sent by the terminal in response to the second sensing request
  • the sensing function node determines the sensing terminal according to the sensing response.
  • the sensing response includes at least one of the following:
  • the identifier is an identifier identifiable by the second device. If the second device has a core network awareness function, the identifier can be the core network identifier of the UE, such as a Subscription Permanent Identifier (SUPI), etc.; the second device is a base station. , then the identifier can be Radio Network Temporary Identity (RNTI) (Cell RNTI, C-RNTI), Inactive RNTI (Inactive RNTI, I-RNTI)), RAN-UE -NGAP-ID etc. If the terminal is in idle state, it needs to report the above identification. If it is connected too, it is not needed.
  • RNTI Radio Network Temporary Identity
  • measured received signal strength values for multiple TRPs For example, measured received signal strength values for multiple TRPs.
  • the auxiliary information includes at least one of the following: the orientation of the terminal, the speed of the terminal, and the length of time for the terminal to maintain the current motion state (ie, maintain the current position, orientation, and /or the time during which the motion state such as speed remains unchanged), the location information of the terminal within the preset time in the future, and other terminal identifiers recommended by the terminal, wherein the recommended other terminal identifiers are when the sensing mode is inter-terminal transceiver When sensing a signal, the identification of other terminals sensed in cooperation with the terminal.
  • the sensing function node may receive sensing responses from multiple terminals.
  • the sensing function node can query the terminal's sensing capabilities and authorization information based on the terminal identification information, obtain which sensing services the terminal is authorized to support, and thereby determine the sensing terminal.
  • the sensing function node can obtain the geographic location information of the terminal based on the measurement results in the sensing response to assist in determining the terminal; or initiate a positioning process for the terminal based on the UE ID to obtain the geographic location information of the terminal; or based on other information provided by the terminal. Auxiliary information to determine the sensing terminal.
  • the first device is a sensing function node; after determining the first condition for selecting a sensing terminal, the first device further includes:
  • the sensing function node sends a second sensing request to the base station, the second sensing request includes the first condition, and the base station determines a list of candidate sensing terminals according to the second sensing request.
  • the second sensing request further includes an indication of the number of candidate sensing terminals and/or an identification of the second device used to receive the sensing response.
  • the sensing function node sends the second sensing request to the base station, it further includes:
  • the sensing function node receives a sensing response sent by the base station in response to the second sensing request
  • the sensing function node determines the sensing terminal according to the sensing response.
  • the sensing response includes at least one of the following:
  • the list of candidate sensing terminals includes an identifier of at least one terminal.
  • the measured received signal strength values of multiple TRPs For example, the measured received signal strength values of multiple TRPs.
  • the auxiliary information includes communication load information of the candidate terminal. For example, the number of RBs for UE uplink/downlink communication, UE uplink/downlink throughput, etc.
  • the first device is a base station; after the first device determines the first condition for selecting the sensing terminal, it further includes:
  • the base station determines a list of candidate sensing terminals according to the first condition.
  • the base station determines the list of candidate sensing terminals according to the first condition, it further includes:
  • the base station sends a third sensing request to the terminals in the candidate sensing terminal list, where the third sensing request is used to request the terminal to participate in sensing;
  • the base station receives a sensing response from the terminal to the third sensing request, where the sensing response indicates whether the terminal agrees to participate in sensing;
  • the base station determines a list of target candidate sensing terminals based on the sensing response.
  • the third sensing request includes sensing information
  • the sensing information includes at least one of the following: cost information for participating in sensing and estimated sensing duration.
  • the base station determines candidate sensing based on the first condition.
  • the terminal list includes:
  • the base station determines a list of candidate sensing terminals based on the first condition
  • the base station sends a fourth sensing request to the terminal, and the fourth sensing request includes the first condition
  • the base station receives a sensing response from the terminal to the fourth sensing request.
  • the sensing response includes at least one of the following: an identification of the terminal, indication information indicating that the terminal is willing to participate in sensing, and information that satisfies the The measurement quantity value of the first condition and the auxiliary information of the auxiliary selection sensing terminal;
  • the base station determines a list of candidate sensing terminals based on the sensing response
  • the base station determines candidate sensing terminals based on the measurement value requirements for the uplink signal in the first condition;
  • the base station sends a fourth sensing request to the terminal, where the fourth sensing request includes the first condition
  • the base station receives a sensing response from the terminal to the fourth sensing request.
  • the sensing response includes at least one of the following: an identification of the terminal, indication information indicating that the terminal is willing to participate in sensing, and information that satisfies the The measurement quantity value of the first condition and the auxiliary information of the auxiliary selection sensing terminal;
  • the base station determines a list of candidate sensing terminals based on the sensing response and the candidate sensing terminals determined by itself.
  • the method further includes: the base station determines a sensing terminal based on the list of candidate sensing terminals.
  • the base station further includes: the base station sends the candidate sensing terminal list to the sensing function node, and the sensing function node determines the candidate sensing terminal list according to the first condition.
  • the candidate sensing terminal list determines the sensing terminal.
  • This embodiment of the present application also provides a method for selecting a sensing terminal, including:
  • Step 61 The terminal receives a sensing request.
  • the sensing request includes a first condition.
  • the first condition includes: a geographical location requirement for the sensing terminal to participate in sensing, and/or, and the geographical location requirement. Corresponding measurement quantity numerical requirements;
  • Step 62 The terminal determines whether it can participate in sensing according to the first condition
  • Step 63 If it can participate in sensing, the terminal sends a sensing response.
  • the terminal receives the first condition for selecting the sensing terminal, determines whether the condition is met based on the first condition, and reports it to the network side, which solves the problem that the network side cannot know the terminals suitable for sensing in the sensing area.
  • the numerical requirements of the measurement quantity include at least one of the following:
  • the first condition is the numerical requirement of the UE side for the measurement amount of the downlink signal.
  • the measurement value requirements include measurement value requirements for downlink signals of one or more base stations.
  • the measurement value requirements include measurement value requirements for signals of one or more beams.
  • the sensing request also includes the identification of the second device for receiving the sensing response and/or an indication of the number of candidate sensing terminals; the terminal sending the sensing response includes: The terminal sends a sensing response to the second device for receiving the sensing response.
  • the terminal receiving the sensing request includes: the terminal receiving the sensing request sent by the base station, and the sensing request is sent through a paging message or a system message of the cell or a dedicated radio resource control (Radio Resource Control). Control, RRC) message carried.
  • RRC Radio Resource Control
  • the terminal determines whether it can participate in sensing according to the first condition, including:
  • the terminal determines whether the first condition is met based on the currently completed downlink signal measurement results
  • the terminal measures the downlink signal according to the first condition, and determines whether the first condition is met according to the measurement result.
  • the terminal determines whether it can participate in sensing according to the first condition, including:
  • the terminal is determined to be able to participate in sensing
  • the terminal determines whether it can participate in sensing according to its own situation.
  • the sensing request also includes sensing information, and the sensing information includes at least one of the following: cost information for participating in sensing, and estimated sensing duration;
  • the terminal determining whether it can participate in sensing according to its own situation includes: the terminal determines whether it can participate in sensing according to the sensing information. That is, a terminal that meets the first condition can have a certain degree of autonomy and can determine whether to send a sensing response message based on its own situation, such as sensing cost information, power conditions, etc. For example, when the terminal's power is low or the sensing fee is lower than a certain threshold, the terminal may decide not to send a sensing response message even if the first condition is met.
  • the sensing response may be an RRC message, such as a UE assistance information message, similar to MDT indicating the Internet Protocol (Internet Protocol, IP) address of the target recipient of the message.
  • RRC message such as a UE assistance information message, similar to MDT indicating the Internet Protocol (Internet Protocol, IP) address of the target recipient of the message.
  • IP Internet Protocol
  • the sensing response includes at least one of the following:
  • the identifier of the terminal is an identifier that can be recognized by the second device.
  • the auxiliary information may include: the orientation and speed of the terminal and/or the length of time to maintain the current motion state (ie, the time to maintain the current position, orientation, speed and other motion states unchanged), etc. If the future location of the terminal is known or predictable, the terminal can provide location information within a certain period of time in the future. When the terminal supports inter-terminal transceiver sensing, if the terminal recommends other sensing terminals that can cooperate with it, the terminal may provide an identifier for recommending other sensing terminals.
  • the terminal before the terminal sends a sensing response, it further includes: if the The terminal is in an idle state or a deactivated state.
  • the terminal initiates an RRC connection establishment request or an RRC connection recovery request to enter the connected state.
  • the reason why the terminal initiates an RRC connection establishment request or an RRC connection recovery request is to respond to the sensing request.
  • 5G RRC has three states: idle state, inactive state, and connected state:
  • the UE In the idle state, the UE does not establish an RRC connection with the base station, and the base station does not have the RRC context of the UE. From the perspective of the core network, the RAN side is also disconnected from the core network. In order to reduce power consumption, the UE is in a sleep state most of the time and therefore cannot perform data transmission. The UE can wake up periodically to receive paging messages from the network (if any). When the UE receives the paging message sent to itself, or the UE has uplink data to send, the UE initiates a random access process and establishes RRC connection, thus transitioning from idle state to connected state. A UE in the Idle state resides in a serving cell. As the UE moves, the serving cell where it resides is changed through a cell reselection mechanism.
  • connections are established between the UE and the base station, and between the base station and the core network.
  • the base station saves the RRC context for the UE.
  • the UE can transmit uplink and downlink data with the base station.
  • mobility can be controlled by the network side, that is, the UE provides neighbor cell measurements to the network, and the network commands the device to perform handover.
  • the RRC connection between the UE and the base station is released, and the last serving base station saves the UE's RRC context and maintains the UE connection with the core network.
  • the Inactive state is transparent to the core network, that is, from the perspective of the core network, the UE is still connected.
  • the base station puts the UE into the inactive state, it will configure a radio notification area (RAN-based Notification Area, RNA) area for the UE.
  • RNA Radio notification area
  • the UE can move between cells in the RNA area without notifying the network. Therefore, when the network needs the UE When entering the connected state, all cells in the RNA area page the UE.
  • the transition from the deactivated state to the connected state is very fast and does not require core network signaling.
  • the UE is allowed to sleep in a similar manner to the idle state and is processed through cell reselection. Mobility. Therefore, the inactive state can be viewed as a mix of idle and connected states.
  • the above-mentioned RRC state is the state between the UE and the base station.
  • CM state connection management state
  • AMF core network
  • CM-IDLE connection management state
  • CM-CONNECTED connection management state
  • NAS non-access stratum
  • This embodiment of the present application also provides a method for selecting a sensing terminal, including:
  • Step 71 The base station obtains the first condition, which includes: the geographical location requirement for the sensing terminal to participate in sensing, and/or the measurement quantity numerical requirement corresponding to the geographical location requirement;
  • Step 72 The base station performs at least one of the following:
  • the candidate sensing terminal list may be formed by a UE network identifier (such as RAN-UE-NGAP ID, etc.).
  • the base station obtains the first condition and determines candidate sensing terminals based on the first condition, or broadcasts the first condition and the terminal determines whether to participate in sensing, which solves the problem that the network side cannot know the sensing terminals suitable for sensing in the sensing area. Terminal problem.
  • the base station obtaining the first condition includes: the base station receives a sensing request, the sensing request includes the first condition, optionally, the sensing request is sent by a sensing function node send.
  • the base station obtaining the first condition includes: the base station receives a sensing request, and determines the first condition according to the sensing request.
  • the sensing request is sent by a sensing function node. .
  • the numerical requirements of the measurement quantity include at least one of the following:
  • the measurement value requirements include measurement value requirements for downlink signals of one or more base stations, and/or measurement value requirements for uplink signals of one or more base stations for sensing terminals.
  • the measurement value requirements include measurement value requirements for signals of one or more beams.
  • the sensing request also includes: an indication of the number of candidate sensing terminals. If the number of terminals that meet the first condition is large, the base station can select the number of candidate sensing terminals according to the first condition. Select better candidate sensing terminals to form a list of candidate sensing terminals.
  • the sensing response further includes at least one of the following:
  • the following is an example of the selection method of the sensing terminal in this application based on specific application scenarios.
  • Embodiment 1 A method for selecting a sensing terminal between a base station-assisted core network sensing function and a UE
  • the sensing function node determines the first condition, and the UE determines whether to participate in sensing based on downlink measurement according to the first condition, and sends a sensing response to the SF, and the SF determines the sensing terminal based on the sensing response.
  • SF is one of the core network network functions.
  • the first device is the SF
  • the second device and the first device are the same SF.
  • the sensing terminal selection method includes the following steps:
  • Step 1 The sensing function node receives the sensing request, and determines the first condition for selecting the sensing terminal according to the sensing request; the sensing request includes but is not limited to one or more of the following information:
  • Perception target area refers to the location area where the sensing object may exist, or the location area that requires imaging or three-dimensional reconstruction;
  • Sensing object type Classify sensing objects according to their possible motion characteristics. Each sensing object type contains information such as motion speed, motion acceleration, typical RCS and other information of typical sensing objects.
  • Sensing target object When one or more sensing target objects are sensed, the identification information of the sensing object is provided.
  • Potential identification methods include: feature identification on the distance, speed, angle spectrum, or UE ID identification based on the network;
  • Performance indicators for sensing the sensing target area or sensing object including at least one of the following: sensing resolution (which may further include: at least one of ranging resolution, angle measurement resolution, speed measurement resolution, and imaging resolution) one item), etc., perception accuracy (which may further include: at least one of ranging accuracy, angle measurement accuracy, speed measurement accuracy, positioning accuracy, etc.), perception range (which may further include: distance measurement range, speed measurement range, angle measurement range) , imaging range, etc.), sensing delay (the time interval from sending the sensing signal to obtaining the sensing result, or the time interval from initiating the sensing demand to obtaining the sensing result), sensing update rate (two consecutive The time interval between performing sensing and obtaining sensing results), detection probability (the probability of being correctly detected when the sensing object exists), and false alarm probability (the probability of incorrectly detecting the sensing target when the sensing object does not exist).
  • sensing resolution which may further include: at least one of ranging resolution, angle measurement resolution, speed measurement resolution, and imaging resolution
  • perception accuracy which may further include
  • Step 2 SF uses the received sensing request and the sensing capability information of the network function (such as the sensing range of the base station, the sensing range of the AMF, information on the sensing services supported by the base station and/or information on the sensing services supported by the AMF, etc. ) determines whether the UE is required to participate in sensing, where UE participation in sensing includes the UE sending sensing signals, the UE receiving sensing signals and performing sensing measurements, the UE sending sensing auxiliary information (such as data from the UE camera or other sensors), and the UE processing the sensing measurement results. one or more of them. If UE participation is required, determine the first condition for selecting the sensing terminal.
  • the sensing capability information of the network function such as the sensing range of the base station, the sensing range of the AMF, information on the sensing services supported by the base station and/or information on the sensing services supported by the AMF, etc.
  • One way to determine the first condition is for the SF to determine the geographical location requirements for the sensing terminal to participate in sensing based on the sensing target area and the sensing range of the base station:
  • Base station A (if the sensing target area requires the cooperation of multiple base stations, this can be extended to the case of multiple base stations) sends a sensing signal to receive the sensing signal and the measured location area of the UE.
  • Base station A (if the sensing target area requires the cooperation of multiple base stations, this can be extended to the case of multiple base stations) receives the sensing signal and measures the location area of the UE that sends the sensing signal.
  • the SF obtains the UE measurement volume and measurement value requirements corresponding to the above geographical location requirements based on the radio frequency fingerprint database.
  • the measurement value requirements are: cell1's DL RSRP is in the range of -70dbm to -75dbm, and cell2's DL RSRP is in the range of -100dbm to -105dbm. range, the DL RSRP of cell3 is in the range of -89dbm to -92dbm. If it is a multi-antenna system, the above measurement quantity and measurement quantity data can be further expressed as the measurement of the beam M of the cell.
  • the first condition for selecting the sensing terminal in this embodiment includes one or more of the following (in this embodiment, the UE determines whether the first condition is met, so the first condition is on the UE side.
  • Numerical requirements for measurement quantities of downlink signals :
  • Downlink received signal strength (Received Signal Strength, RSS) measurement value requirement This parameter is the UE received wideband power, including thermal noise and noise generated by the receiver within the bandwidth defined by the receiver pulse forming filter.
  • the reference point of measurement is the antenna port, and RSS is the average power of all signals (including pilot signals, data signals, interference signals and/or noise signals, etc.) received within a certain period of time (such as one symbol).
  • this parameter is the ratio of the strength of the useful signal received by the UE to the strength of the received noise.
  • this parameter is the average value of the reference signal power in the measurement frequency band.
  • RSRP is the average of the signal power received on all resources carrying the reference signal within a certain period of time (such as one symbol).
  • This parameter is the ratio of RSRP and RSS.
  • RSRQ N ⁇ RSRP/RSS, where N represents the number of RBs in the RSS measurement bandwidth.
  • this parameter is the time difference between the received signal arriving at multiple TRPs.
  • This parameter measures the angle. It is usually used in multi-antenna systems to measure the arrival angle or departure angle of the beam.
  • the above-mentioned signal may further be measured on the signal on each beam.
  • Step 3 The sensing function sends a second sensing request (ie, the sensing UE selection request in the figure) to the confirmation one or more base stations.
  • the second sensing request message is a non-UE associated message, or a global message. If the sensing function and the inter-base station protocol stack are forwarded through the AMF, then the message uses the same method, but the NGAP message carrying the message (that is, the protocol stack message between the core network and the base station) is non-UE associated.
  • the message does not carry the UE NGAP ID assigned by the base station (that is, the RAN UE NGAP ID); if the protocol stack between the sensing function and the base station does not require AMF forwarding, then the message can be sent directly to the corresponding base station by the sensing function.
  • Step 4 The base station broadcasts the first condition on the corresponding cell according to the received first condition.
  • the first condition may also include an SF identifier, which is used to trigger terminals that meet the first condition and are willing to participate in sensing. Send a sensing response message.
  • the SF identifier is the SF that receives the UE sensing response message.
  • the broadcast sending of the first condition may be sending the first condition through a paging message, or may be sending the first condition through system information of the cell. Terminals in the idle state and deactivated state will monitor paging messages and system information changes, thereby receiving the paging message or obtaining the first condition for system information.
  • the first condition may be sent only to UEs in the idle state and deactivated state, or may be sent to UEs in all states. For the latter, there are two sending methods for connected UEs:
  • Method 1 The first condition can be carried in a dedicated RRC message and sent to the UE.
  • Method 2 The paging message uses a dedicated RNTI.
  • the connected UE also listens to this dedicated RNTI, thereby receiving the paging message and obtaining the first condition.
  • the base station can also send sensing information to the terminal.
  • the sensing information includes cost information (such as how much traffic or phone charges can be obtained by participating in the sensing task, etc.), the estimated sensing duration, etc., and the terminal Based on this information, the willingness to participate in the perception task can be assessed.
  • Step 5 The terminal can determine whether it meets the first condition based on the currently completed downlink signal measurement. Or the terminal measures the downlink signal according to the received first condition, and determines whether the first condition is met according to the measurement result. If satisfied, then determine whether to respond to the SF to send a sensing response message. Possible methods include:
  • Method 1 A terminal that meets the first condition always responds to SF to send a sensing response message.
  • Method 2 A terminal that meets the first condition can have a certain degree of autonomy and can determine whether to send a sensing response message based on its own situation, such as sensing cost information, power conditions, etc. For example, when the end When the terminal's power is low or the sensing fee is lower than a certain threshold, the terminal may decide not to send a sensing response message even if the first condition is met.
  • Step 6 The terminal sends a sensing response message to the SF indicated in the first condition (in this embodiment, the same SF as the SF that sends the first condition) to indicate that the terminal is willing to participate in the sensing service.
  • the sensing response message may be an RRC message, such as a UE assistance information message, similar to MDT indicating the IP address of the target recipient of the message.
  • the sensing response message should include the UE identifier, which is an identifier identifiable by the SF, such as the UE's core network identifier SUPI, Globally Unique Temporary Identifier (GUTI), etc.
  • the terminal when the UE is in the idle state or the deactivated state, the terminal first initiates an RRC connection establishment or RRC connection recovery process to enter the connected state.
  • the establishment reason or recovery reason may indicate a response to the sense request.
  • the sensing response message may include the following information to assist the SF in further selecting the terminal:
  • Measurement results that meet the first condition such as measured received signal strength values of multiple TRPs
  • the SF may receive sensing response messages from multiple terminals.
  • the SF can query the sensing capabilities and authorization information of the UE according to the UE identification information, obtain which sensing services the UE is authorized to support, and thereby determine the sensing terminal.
  • the SF can obtain the UE's location information based on the measurement results in the sensing response message to assist in determining the UE; or initiate a positioning process for the UE based on the UE ID to obtain the UE's location information; or determine based on other auxiliary information provided by the UE. sensing terminal.
  • SF determines the geographical location requirements for sensing terminals to participate in sensing, it involves geographical location requirements under multiple sensing methods, so the sensing response received by SF also involves the sensing responses of terminals determined under multiple geographical location requirements. In this step, SF also needs to determine the sensing mode and thereby select the sensing terminal corresponding to the sensing mode.
  • Step 8 SF determines the sensing mode (base station transmits and UE receives, base station receives and UE transmits, and UE transmits (sent, UE spontaneously and self-received) and sensing configuration information are sent to the UE and the base station.
  • Step 9 Assuming that the sensing mode is the base station sending and receiving the UE, the base station sends the sensing signal, and the terminal receives the sensing signal and measures it.
  • Step 10 The UE sends the sensing measurement result to the SF.
  • Step 11 SF obtains the sensing result based on the sensing measurement result, and determines whether to trigger a sensing response to a third party or core network function (such as AMF). For example, when the sensing result does not meet the requirements, it can continue to receive more sensing measurement results. , when the sensing result meets the requirements, it is triggered to send a sensing response to a third party or core network function (such as AMF), and the sensing response carries the sensing result.
  • a third party or core network function such as AMF
  • Embodiment 2 A method for selecting sensing terminals with core network sensing functions and base station collaboration
  • the SF determines the first condition
  • the base station determines the candidate sensing terminal list based on the first condition and the uplink and/or downlink measurement results
  • the SF determines the sensing terminal according to the candidate sensing terminal list.
  • This embodiment is more suitable for connected UEs. .
  • SF is one of the core network network functions
  • the first device is the SF
  • the second device and the first device are the same SF.
  • the sensing terminal selection method includes the following steps:
  • Step 1 The sensing function node receives the sensing request, and determines the first condition for selecting the sensing terminal according to the sensing request; the sensing request includes but is not limited to one or more of the following information:
  • Perception target area refers to the location area where the sensing object may exist, or the location area that requires imaging or three-dimensional reconstruction;
  • Sensing object type Classify sensing objects according to their possible motion characteristics. Each sensing object type contains information such as motion speed, motion acceleration, typical RCS and other information of typical sensing objects.
  • Sensing target object When one or more sensing target objects are sensed, the identification information of the sensing object is provided.
  • Potential identification methods include: feature identification on the distance, speed, angle spectrum, or UE ID identification based on the network;
  • Performance indicators for sensing the sensing target area or sensing object including at least one of the following: sensing resolution (which may further include: at least one of ranging resolution, angle measurement resolution, speed measurement resolution, and imaging resolution) (one item), etc., sensing accuracy (which may further include: at least one of ranging accuracy, angle measurement accuracy, speed measurement accuracy, positioning accuracy, etc.), sensing range (which may further include: At least one of the ranging range, speed measuring range, angle measuring range, imaging range, etc.), sensing delay (the time interval from sending the sensing signal to obtaining the sensing result, or the time interval from the initiation of sensing demand to obtaining the sensing result) ), sensing update rate (the time interval between two consecutive sensing operations and obtaining sensing results), detection probability (the probability of being correctly detected when the sensing object exists), false alarm probability (when the sensing object does not exist) (lower probability of incorrectly detecting the perceived target).
  • sensing resolution which may further include: at least one of ranging resolution, angle measurement resolution, speed measurement resolution, and
  • Step 2 SF uses the received sensing request and the sensing capability information of the network function (such as the sensing range of the base station, the sensing range of the AMF, information on the sensing services supported by the base station and/or information on the sensing services supported by the AMF, etc. ) determines whether the UE is required to participate in sensing, where UE participation in sensing includes the UE sending sensing signals, the UE receiving sensing signals and performing sensing measurements, the UE sending sensing auxiliary information (such as data from the UE camera or other sensors), and the UE processing the sensing measurement results. one or more of them. If UE participation is required, determine the first condition for selecting the sensing terminal.
  • the sensing capability information of the network function such as the sensing range of the base station, the sensing range of the AMF, information on the sensing services supported by the base station and/or information on the sensing services supported by the AMF, etc.
  • One way to determine the first condition is for the SF to determine the geographical location requirements for the sensing terminal to participate in sensing based on the sensing target area and the sensing range of the base station:
  • Base station A (if the sensing target area requires the cooperation of multiple base stations, this can be extended to the case of multiple base stations) sends a sensing signal to receive the sensing signal and the measured location area of the UE.
  • Base station A (if the sensing target area requires the cooperation of multiple base stations, this can be extended to the case of multiple base stations) receives the sensing signal and measures the location area of the UE that sends the sensing signal.
  • the SF obtains the UE measurement volume and measurement value requirements corresponding to the above geographical location requirements based on the radio frequency fingerprint database.
  • the measurement value requirements are: cell1's DL RSRP is in the range of -70dbm to -75dbm, and cell2's DL RSRP is in the range of -100dbm to -105dbm. range, the DL RSRP of cell3 is in the range of -89dbm to -92dbm. If it is a multi-antenna system, the above measurement quantity and measurement quantity data can be further expressed as measurements of the beam M from the UE.
  • the first condition for selecting the sensing terminal in this embodiment includes one or more of the following (in this embodiment, the base station determines whether the UE meets the first condition, because the base station can The signal is measured, so the first condition can be completely based on the uplink measurement results. At the same time, the UE can also report the downlink measurement results to the base station, so the first condition can be the numerical requirements of the uplink and/or downlink measurement results):
  • the channel impulse response refers to the UE uplink channel impulse response measurement value on the base station side
  • Uplink and/or downlink received signal strength (Received Signal Strength, RSS) measurement requirements This parameter is the base station and/or UE received wideband power, including thermal noise and receiver generation within the bandwidth defined by the receiver pulse forming filter. noise.
  • the reference point of measurement is the antenna port, and RSS is the average power of all signals (including pilot signals, data signals, interference signals and/or noise signals, etc.) received within a certain period of time (such as one symbol).
  • this parameter is the ratio of the strength of the useful signal received by the base station and/or UE to the strength of the received noise.
  • this parameter is the average value of the reference signal power in the measurement frequency band.
  • RSRP is the average of the signal power received on all resources carrying the reference signal within a certain period of time (such as one symbol).
  • This parameter is the ratio of RSRP and RSS.
  • RSRQ N ⁇ RSRP/RSS, where N represents the RSS measurement bandwidth.
  • this parameter is the time difference between the received signal arriving at multiple TRPs.
  • This parameter is a measurement of angle. It is usually used in multi-antenna systems to measure the arrival angle or departure angle of the beam;
  • Candidate sensing terminal number indication indicates the maximum number of candidate sensing terminals required to avoid excessive measurement and data interaction.
  • the above-mentioned signal may further be measured on the signal on each beam.
  • Step 3 The sensing function sends a second sensing request (ie, the sensing UE selection request in the figure) to the determined one or more base stations.
  • the second sensing request message is a non-UE associated message, or a global message. if If the sensing function and the protocol stack between base stations are forwarded by the AMF, then the message uses the same method, but the NGAP message carrying the message (that is, the protocol stack message between the core network and the base station) is a non-UE associated message.
  • the message can be sent directly to the corresponding base station by the sensing function.
  • Step 4 The base station determines which UEs meet the first condition based on the received first condition, as well as the uplink signal measurement results on the base station side and/or the downlink measurement results reported by the UEs. Optionally, if there are a large number of UEs that meet the condition, the base station selects better candidate sensing terminals based on the indication of the number of candidate sensing terminals in the first condition to form a candidate sensing terminal list.
  • Step 5 The base station sends a sensing response message to the SF.
  • the sensing response message includes a list of candidate sensing terminals, for example, the list of candidate sensing terminals is formed through the UE network identification (RAN-UE-NGAP ID, etc.).
  • the sensing response message may also include the following information to assist the SF in further selecting the terminal: measurement results that meet the first condition, such as measured received signal strength values of multiple TRPs.
  • the base station can measure the UE's uplink signal.
  • the base station can instruct the UE to measure and report the downlink signal.
  • Step 6 Based on the received candidate sensing terminal list, the SF queries the sensing capabilities and authorization information of the UE according to the UE identification information, obtains which sensing services the UE is authorized to support, and thereby determines the sensing terminal.
  • the SF can obtain the location information of the UE based on the measurement results in the sensing response message to assist in determining the UE; or initiate a positioning process for the UE based on the UE ID to obtain the location information of the UE.
  • SF determines the geographical location requirements for sensing terminals to participate in sensing, it involves geographical location requirements under multiple sensing methods, so the sensing response received by SF also involves the sensing responses of terminals determined under multiple geographical location requirements. In this step, SF also needs to determine the sensing mode and thereby select the sensing terminal corresponding to the sensing mode.
  • Step 7 SF sends the determined sensing mode (base station transmits to UE and receives, base station receives and receives from UE, transmits between UEs, UE spontaneously receives) and sensing configuration information to the UE and the base station.
  • the sensing mode is that the base station sends and receives the UE
  • the base station sends the sensing signal
  • the terminal receives the sensing signal and measures it.
  • the UE sends the sensing measurement results to the SF.
  • Step 8 SF obtains the sensing result based on the sensing measurement result and determines whether to trigger a notification to the third party Or the core network function (such as AMF) sends a sensing response. For example, when the sensing results do not meet the requirements, you can continue to receive more sensing measurement results. When the sensing results meet the requirements, trigger a response to a third party or core network function (such as AMF). ) sends a sensing response, which carries the sensing result.
  • the core network function such as AMF
  • Embodiment 3 A method for selecting sensing terminals between base stations and UEs
  • the base station determines the first condition and broadcasts it to the UE.
  • the UE determines whether to participate in sensing based on the first condition and downlink measurement, and sends a sensing response to the base station.
  • the base station determines the sensing terminal based on the sensing response.
  • the first device is a base station.
  • the base station determines the first condition for selecting the sensing terminal based on the sensing request sent by the core network function (such as SF), and sends it to the UE.
  • the UE determines whether the conditions are met based on downlink measurements. If it is met and is willing to participate, it sends a sensing response to the base station.
  • the normal core network network functions can only query the UE subscription and authorization information, for base station testing, if the UE sends a sensing response to the base station, it means that the UE agrees to participate in sensing.
  • the base station determines the sensing terminal and sensing configuration information in combination with uplink measurement and other information.
  • the sensing terminal selection method includes the following steps:
  • Step 1 The sensing function node receives the sensing request, and determines the first condition for selecting the sensing terminal according to the sensing request; the sensing request includes but is not limited to one or more of the following information:
  • Perception target area refers to the location area where the sensing object may exist, or the location area that requires imaging or three-dimensional reconstruction;
  • Sensing object type Classify sensing objects according to their possible motion characteristics. Each sensing object type contains information such as motion speed, motion acceleration, typical RCS and other information of typical sensing objects.
  • Sensing target object When one or more sensing target objects are sensed, the identification information of the sensing object is provided.
  • Potential identification methods include: feature identification on the distance, speed, angle spectrum, or UE ID identification based on the network;
  • Perception QoS Performance indicators for sensing the sensing target area or sensing object, including at least one of the following: sensing resolution (which may further include: at least one of ranging resolution, angle measurement resolution, speed measurement resolution, and imaging resolution) one item), etc., perception accuracy (which may further include: at least one of ranging accuracy, angle measurement accuracy, speed measurement accuracy, positioning accuracy, etc.), perception range (which may further include: distance measurement range, speed measurement range, angle measurement range) , imaging range, etc.), when sensing Delay (the time interval from when the sensing signal is sent to when the sensing result is obtained, or the time interval from when the sensing demand is initiated to when the sensing result is obtained), sensing update rate (the time interval between two consecutive sensing executions and the sensing result is obtained), detection probability (the probability of being correctly detected when the perceived object exists), false alarm probability (the probability of incorrectly detecting the perceived target when the perceived object does not exist).
  • sensing resolution which may further include: at least one of ranging resolution, angle measurement resolution, speed measurement resolution,
  • Step 2 SF uses the received sensing request and the sensing capability information of the network function (such as the sensing range of the base station, the sensing range of the AMF, information on the sensing services supported by the base station and/or information on the sensing services supported by the AMF, etc. ) determines the sensing base station.
  • the SF also determines whether the UE is required to participate in sensing.
  • the base station can also determine whether the UE is required to participate in sensing.
  • Step 3 The SF sends a sensing request to one or more base stations determined above.
  • the sensing request message is a non-UE associated message, which is used to instruct the base station to complete sensing, and the selection of sensing terminals is determined by the base station.
  • Step 4 The base station determines whether the UE is required to participate in sensing according to the received sensing request (such as sensing target area, sensing QoS, etc.).
  • the UE participating in sensing includes the UE sending sensing signals, the UE receiving sensing signals and performing sensing measurements, and the UE sending sensing signals.
  • One or more of the auxiliary information (such as data from the UE camera or other sensors) and the processing of the sensing measurement results by the UE. If UE participation is required, determine the first condition for selecting the sensing terminal.
  • One method of determining the first condition is for the base station to determine the geographical location requirements for the sensing terminal to participate in sensing according to the sensing target area:
  • Base station A (if the sensing target area requires the cooperation of multiple base stations, this can be extended to the case of multiple base stations) sends a sensing signal to receive the sensing signal and the measured location area of the UE.
  • Base station A (if the sensing target area requires the cooperation of multiple base stations, this can be extended to the case of multiple base stations) receives the sensing signal and measures the location area of the UE that sends the sensing signal.
  • the base station Based on the radio frequency fingerprint database, the base station obtains the UE measurement volume and measurement value requirements corresponding to the above geographical location requirements.
  • the measurement value requirements are: cell1's DL RSRP is in the range of -70dbm to -75dbm, and cell2's DL RSRP is in the range of -100dbm to -105dbm. range, the DL RSRP of cell3 is in the range of -89dbm to -92dbm. If it is a multi-antenna system, the above measurement quantity and measurement quantity data can be further expressed as the measurement of the beam M of the cell.
  • the first condition for selecting the sensing terminal in this embodiment includes one or more of the following:
  • the channel impulse response refers to the UE uplink channel impulse response measurement value on the base station side.
  • Uplink and/or downlink received signal strength (Received Signal Strength, RSS) measurement value requirements this parameter is the UE received wideband power, including thermal noise and receiver-generated noise within the bandwidth defined by the receiver pulse forming filter.
  • the reference point of measurement is the antenna port, and RSS is the average power of all signals (including pilot signals, data signals, interference signals and/or noise signals, etc.) received within a certain period of time (such as one symbol).
  • the channel impulse response refers to the UE uplink channel impulse response measurement value on the base station side
  • this parameter is the base station and/or UE received wideband power, including thermal noise and receiver-generated noise within the bandwidth defined by the receiver pulse forming filter.
  • the reference point of measurement is the antenna port, and RSS is the average power of all signals (including pilot signals, data signals, interference signals and/or noise signals, etc.) received within a certain period of time (such as one symbol).
  • this parameter is the ratio of the strength of the useful signal received by the base station and/or UE to the strength of the received noise.
  • this parameter is the average value of the reference signal power in the measurement frequency band.
  • RSRP is the average of the signal power received on all resources carrying the reference signal within a certain period of time (such as one symbol).
  • Uplink and/or downlink reference signal reception quality (RSRQ) measurement value requirements This parameter is the ratio of RSRP and RSS.
  • RSRQ Uplink and/or downlink reference signal reception quality
  • this parameter is the time difference between the received signal arriving at multiple TRPs.
  • This parameter is a measurement of angle. It is usually used in multi-antenna systems to measure the arrival angle or departure angle of the beam;
  • Candidate sensing terminal number indication indicates the maximum number of candidate sensing terminals required to avoid Avoid excessive measurements and data interaction.
  • the above-mentioned signal may further be measured on the signal on each beam.
  • the base station determines the candidate UE based on known information on the base station side (such as uplink measurement results).
  • UE subscription and authorization information can be queried. Therefore, for base station testing, a sensing request message should also be sent to the UE.
  • the sensing request message includes sensing content, sensing duration, sensing cost and other information.
  • the UE will The above information is used to determine whether the UE is willing to participate. If the UE sends a sensing response to the base station, it means that the UE agrees to participate in sensing.
  • Step 5 If the information on the base station side cannot determine the UE that meets the first condition, the base station broadcasts the first condition on the corresponding cell to trigger the terminal that meets the first condition and is willing to participate in sensing to send a sensing response message. Further, the base station can broadcast and send on the designated beam of the corresponding cell according to the determined area, preventing all UEs within the coverage of the cell from receiving the broadcast information, and saving cell broadcast overhead and UE detection overhead.
  • the broadcast sending of the first condition may be sending the first condition through a paging message, or may be sending the first condition through system information of the cell. Terminals in the idle state and deactivated state will monitor paging messages and system information changes, thereby receiving the paging message or obtaining the first condition for system information.
  • the first condition may be sent only to UEs in the idle state and deactivated state, or may be sent to UEs in all states. For the latter, there are two sending methods for connected UEs:
  • Method 1 The first condition can be carried in a dedicated RRC message and sent to the UE.
  • Method 2 The paging message uses a dedicated RNTI.
  • the connected UE also listens to this dedicated RNTI, thereby receiving the paging message and obtaining the first condition.
  • the base station can also send sensing information to the terminal.
  • the sensing information includes cost information (such as how much traffic or phone charges can be obtained by participating in the sensing task, etc.), the estimated sensing duration, etc., and the terminal Based on this information, the willingness to participate in the perception task can be assessed.
  • Step 6 The terminal can determine whether it meets the first condition based on the currently completed downlink signal measurement. Or the terminal measures the downlink signal according to the received first condition, and determines whether the first condition is met according to the measurement result. If satisfied, it is then determined whether to respond to the base station to send a sensing response message. Possible methods include:
  • Method 1 A terminal that meets the first condition always responds to the base station to send a sensing response message.
  • Method 2 A terminal that meets the first condition can have a certain degree of autonomy and can determine whether to send a sensing response message based on its own situation, such as sensing cost information, power conditions, etc. For example, when the terminal's power is low or the sensing fee is lower than a certain threshold, the terminal may decide not to send a sensing response message even if the first condition is met.
  • Step 7 The terminal sends a sensing response message to the base station.
  • Step 8 The base station determines the sensing terminal and sensing configuration information based on the received sensing response message and base station side information.
  • Step 9 The base station sends the sensing signal, and the terminal receives the sensing signal and measures it.
  • the terminal sends a sensing signal, and the base station receives and measures it.
  • Step 10 The base station and/or UE sends the sensing measurement results to the SF.
  • Step 11 SF obtains the sensing result based on the sensing measurement result, and determines whether to trigger a sensing response to a third party or core network function (such as AMF). For example, when the sensing result does not meet the requirements, it can continue to receive more sensing measurement results. , when the sensing result meets the requirements, it is triggered to send a sensing response to a third party or core network function (such as AMF), and the sensing response carries the sensing result.
  • a third party or core network function such as AMF
  • Embodiment 4 A sensing terminal selection method based on collaboration between core network network functions, base stations and UEs
  • the base station determines the first condition, determines the candidate sensing terminal list based on the downlink and/or uplink measurement results, and the SF determines the sensing terminal based on the candidate sensing terminal list.
  • the first device is a base station, and the base station determines the first condition for selecting the sensing terminal according to the sensing request sent by the core network function (such as SF). According to the determined first condition, if the base station can determine the candidate sensing terminal list according to the base station side information, then send the candidate sensing terminal list to the SF. If the base station cannot determine the candidate sensing terminal list, then the base station sends the first condition to the UE, and the base station side determines the candidate sensing terminal list according to the received sensing response information of the UE and/or the base station side information. For other steps, please refer to Embodiments 1 and 2 and will not be repeated here.
  • the core network function such as SF
  • the above method in this embodiment is applicable to 5.5G or 6G communication systems, or other communication systems in the future.
  • the execution subject may be a sensing terminal selection device.
  • the selection device of the sensing terminal performs the selection method of the sensing terminal as an example to illustrate the selection device of the sensing terminal provided by the embodiment of the present application.
  • the selection device 120 of the terminal includes:
  • the first determination module 121 is used to determine the first condition for selecting a sensing terminal, where the first condition includes: a geographical location requirement for the sensing terminal to participate in sensing, and/or a measurement quantity numerical requirement corresponding to the geographical location requirement.
  • the selection device of the sensing terminal determines the first condition for selecting the sensing terminal.
  • the first condition is related to the geographical location requirement of the sensing terminal to participate in sensing, and/or the measurement value corresponding to the geographical location requirement.
  • the requirements are related, so that the terminal that meets the condition can be determined according to the first condition, which solves the problem that the network side cannot know the terminal that is suitable for sensing in the sensing area.
  • the first determination module 121 is used to determine whether a terminal is required to participate in sensing; if it is determined that a terminal is required to participate in sensing, the first device determines a first condition for selecting a sensing terminal.
  • the first determination module 121 is configured to determine whether the terminal is required to participate in sensing according to at least one of the received first sensing request and sensing capability information of the network function;
  • the first sensing request includes at least one of the following: sensing target area, sensing object type, sensing target object, and sensing QoS;
  • the sensing capability information of the network function includes at least one of the following: sensing range of the base station, sensing range of the AMF, information on sensing services supported by the base station, and information on sensing services supported by the AMF.
  • the requirement for the terminal to participate in sensing includes at least one of the following: the terminal is required to send a sensing signal, the terminal is required to receive the sensing signal and perform sensing measurements, the terminal is required to send sensing auxiliary information, and the terminal is required to process the sensing measurement results.
  • the numerical requirements of the measured quantity include at least one of the following:
  • the measurement value requirements include the measurement value requirements of the terminal for downlink signals of one or more base stations, and/or the measurement value requirements of one or more base stations for the terminal's uplink signals.
  • the measurement value requirements include measurement value requirements for signals of one or more beams.
  • the first determination module 121 is used to determine the geographical location requirements for the sensing terminal to participate in sensing; and determine the measurement quantity numerical requirements corresponding to the geographical location requirements.
  • the geographical location requirements include at least one of the following:
  • the sensing method is that the base station sends sensing signals, and when the terminal receives the sensing signals and performs sensing measurements, the terminal needs to participate in the perceived geographical location;
  • the sensing method is that the terminal sends sensing signals, and when the base station receives the sensing signals and performs sensing measurements, the terminal needs to participate in sensing the geographical location;
  • the sensing method is that the terminal itself sends sensing signals. When it receives the sensing signals and performs sensing measurements, the terminal needs to participate in the perceived geographical location;
  • the sensing method is that the terminal sends a sensing signal, and when other terminals receive the sensing signal and perform sensing measurements, the terminal needs to participate in the perceived geographical location.
  • the sensing terminal selecting device 120 is a sensing function node; the sensing terminal selecting device 120 further includes:
  • a first sending module configured to send a second sensing request to the base station, where the second sensing request includes the first condition and an identification of a second device for receiving a sensing response, and the base station broadcasts the second sensing request. Sensing requests.
  • the sensing terminal selection device 120 further includes:
  • a first receiving module configured to receive a sensing response sent by the terminal in response to the second sensing request;
  • the sensing response includes at least one of the following: an identification of the terminal, indication information indicating that the terminal is willing to participate in sensing , the measured quantity value that satisfies the first condition, and auxiliary information to assist in selecting the sensing terminal;
  • the second determination module is used to determine the sensing terminal according to the sensing response.
  • the auxiliary information includes at least one of the following: the orientation of the terminal, the speed of the terminal, the length of time the terminal maintains the current motion state, the location information of the terminal within a preset time in the future, the Other terminal identifiers recommended by the terminal, wherein the recommended other terminal identifiers Identification is the identification of other terminals cooperating with the terminal for sensing when the sensing mode is to send and receive sensing signals between terminals.
  • the sensing terminal selecting device 120 is a sensing function node; the sensing terminal selecting device 120 further includes:
  • the second sending module is configured to send a second sensing request to the base station, where the second sensing request includes the first condition.
  • the second sensing request also includes an indication of the number of candidate sensing terminals and/or an identification of the second device used to receive the sensing response.
  • the sensing terminal selection device 120 further includes:
  • a second receiving module configured to receive a sensing response sent by the base station in response to the second sensing request, where the sensing response includes at least one of the following: a list of candidate sensing terminals, a measurement quantity value that satisfies the first condition , assist in selecting auxiliary information of the sensing terminal;
  • the third determination module is used to determine the sensing terminal according to the sensing response.
  • the auxiliary information includes communication load information of the candidate terminal.
  • the sensing terminal selecting device 120 is a base station; the sensing terminal selecting device 120 further includes:
  • a fourth determination module configured to determine a list of candidate sensing terminals according to the first condition.
  • the sensing terminal selection device 120 further includes:
  • a third sending module configured to send a third sensing request to terminals in the candidate sensing terminal list, where the third sensing request is used to request the terminal to participate in sensing;
  • a third receiving module configured to receive a sensing response from the terminal to the third sensing request, where the sensing response indicates whether the terminal agrees to participate in sensing;
  • the fifth determination module is configured to determine a list of target candidate sensing terminals according to the sensing response.
  • the third sensing request includes sensing information, and the sensing information includes at least one of the following: cost information for participating in sensing and estimated sensing duration.
  • the fourth determination module is configured to determine a list of candidate sensing terminals according to the first condition if the first condition includes measurement magnitude requirements of the uplink signal;
  • the fourth determination module is used to determine whether the measured value of the downlink signal is included in the first condition. request, send a fourth sensing request to the terminal, the fourth sensing request includes the first condition; receive a sensing response from the terminal to the fourth sensing request, the sensing response includes at least one of the following: The identification of the terminal, indication information indicating that the terminal is willing to participate in sensing, a measurement value that satisfies the first condition, and auxiliary information to assist in selecting a sensing terminal; determining a list of candidate sensing terminals based on the sensing response;
  • the fourth determination module is configured to determine candidate sensing terminals according to the measurement value requirements of the uplink signal in the first condition if the first condition includes measurement value requirements of uplink signals and downlink signals; to the terminal Send a fourth sensing request, where the fourth sensing request includes the first condition; receive a sensing response from the terminal to the fourth sensing request, where the sensing response includes at least one of the following: Identification, indication information indicating that the terminal is willing to participate in sensing, measurement quantity values that meet the first condition, and auxiliary information to assist in selecting sensing terminals; determining candidates based on the sensing response and the candidate sensing terminals determined by itself. Perception terminal list.
  • the sensing terminal selection device 120 further includes:
  • a sixth determination module is configured for the base station to determine sensing terminals according to the candidate sensing terminal list.
  • the sensing terminal selection device 120 further includes:
  • the fourth sending module is configured to send the candidate sensing terminal list to the sensing function node.
  • the selection device for sensing terminals in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the sensing terminal selection device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 2 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • the selecting device 130 for sensing terminals includes:
  • the receiving module 131 is configured to receive a sensing request, where the sensing request includes a first condition.
  • the first condition includes: a geographical location requirement for the sensing terminal to participate in sensing, and/or a measurement quantity corresponding to the geographical location requirement. numerical requirements;
  • the first determination module 132 is used to determine whether it is possible to participate in perception according to the first condition
  • the sending module 133 is used to send the sensing response if the terminal can participate in sensing.
  • the selection device of the sensing terminal receives the first condition for selecting the sensing terminal, determines whether the condition is met according to the first condition, and reports it to the network side, which solves the problem that the network side cannot know the terminals suitable for sensing in the sensing area. The problem.
  • the numerical requirements of the measured quantity include at least one of the following:
  • the measurement value requirements include measurement value requirements for downlink signals of one or more base stations.
  • the measurement value requirements include measurement value requirements for signals of one or more beams.
  • the sensing request also includes the identification of the second device for receiving the sensing response, and/or an indication of the number of candidate sensing terminals; the sending module 133 is configured to send the sensing request to the sensing device for receiving the sensing response.
  • the second device that senses the response sends the sense response.
  • the receiving module 131 is configured to receive a sensing request sent by the base station, where the sensing request is carried through a paging message or a system message of the cell or a dedicated RRC message.
  • the first determination module 132 is configured to determine whether the first condition is met based on the currently completed downlink signal measurement results; or, based on the first condition, measure the downlink signal, and determine The result determines whether the first condition is met.
  • the first determination module 132 is configured to determine whether the user can participate in sensing if the first condition is satisfied; or, if the first condition is satisfied, determine whether the user can participate in sensing according to the own situation.
  • the sensing request also includes sensing information, which includes at least one of the following: cost information for participating in sensing, estimated sensing duration; the first determination module 132 is configured to information to determine whether it can participate in perception.
  • the sensing response includes at least one of the following:
  • the sensing terminal selection device 130 further includes:
  • the connection module is used to initiate an RRC connection establishment request or an RRC connection recovery request to enter the connected state if the terminal is in an idle state or a deactivated state.
  • the reason for initiating the RRC connection establishment request or the RRC connection recovery request is to respond to the sensing request.
  • the selection device for sensing terminals in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the sensing terminal selection device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 6 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • the selecting device 140 for sensing terminals includes:
  • the receiving module 141 is configured to obtain the first condition, which includes: the geographical location requirement of the sensing terminal to participate in sensing, and/or the measurement quantity numerical requirement corresponding to the geographical location requirement;
  • Execution module 142 used to execute at least one of the following:
  • the candidate sensing terminal list may be formed by a UE network identifier (such as RAN-UE-NGAP ID, etc.).
  • the sensing terminal selection device 140 obtains the first condition, and determines the candidate sensing terminal according to the first condition, or broadcasts the first condition, and the terminal determines whether to participate in sensing, which solves the problem that the network side cannot know the sensing area. Problems within suitable perceptual terminals.
  • the numerical requirements of the measured quantity include at least one of the following:
  • the measurement quantity value requirements include measurement value requirements for downlink signals of one or more base stations, and/or measurement value requirements of uplink signals of one or more base stations for sensing terminals.
  • the measurement value requirements include measurement value requirements for signals of one or more beams.
  • the sensing response also includes at least one of the following:
  • the selection device for sensing terminals in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the sensing terminal selection device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 7 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 150, which includes a processor 151 and a memory 152.
  • the memory 152 stores programs or instructions that can be run on the processor 151, for example.
  • the communication device 150 is a first device
  • the program or instruction is executed by the processor 151
  • each step of the sensing terminal selection method embodiment executed by the first device is implemented, and the same technical effect can be achieved.
  • the communication device 150 is a terminal
  • the program or instruction is executed by the processor 151
  • each step of the terminal-sensing selection method embodiment executed on the terminal side is implemented, and the same technical effect can be achieved.
  • the communication device 150 is a base station
  • the program or instruction is executed by the processor 151
  • each step of the sensing terminal selection method embodiment executed by the base station side is implemented, and the same technical effect can be achieved. To avoid duplication, it will not be repeated here. Repeat.
  • Embodiments of the present application also provide a terminal, including a processor and a communication interface.
  • the communication interface is used to receive a sensing request.
  • the sensing request includes a first condition.
  • the first condition includes: geographical location requirements for the sensing terminal to participate in sensing. , and/or, numerical requirements for measurement quantities corresponding to the geographical location requirements;
  • the processor is configured to determine whether it can participate in sensing according to the first condition;
  • the communication interface is also used to send a sensing response if it can participate in sensing.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 16 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 160 includes but is not limited to: a radio frequency unit 161, a network module 162, an audio output unit 163, an input unit 164, a sensor 165, a display unit 166, a user input unit 167, an interface unit 168, a memory 169, a processor 1610, etc. At least some parts.
  • the terminal 160 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1610 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 16 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 164 may include a graphics processing unit (Graphics Processing Unit, GPU) 1641 and a microphone 1642.
  • the GPU 1641 is responsible for the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the image data obtained from still pictures or videos is processed.
  • the display unit 166 may include a display panel 1661, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 167 includes a touch panel 1671 and at least one of other input devices 1672 .
  • Touch panel 1671 is also called a touch screen.
  • the touch panel 1671 may include two parts: a touch detection device and a touch controller.
  • Other input devices 1672 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 161 after receiving downlink data from the network side device, the radio frequency unit 161 can transmit it to the processor 1610 for processing; in addition, the radio frequency unit 161 can send uplink data to the network side device.
  • the radio frequency unit 161 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 169 may be used to store software programs or instructions as well as various data.
  • the memory 169 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 169 may include volatile memory or nonvolatile memory, or memory 169 may include both volatile and nonvolatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory Synchronous DRAM, SDRAM
  • Double data rate synchronous dynamic random access memory Double Data Rate SDRAM, DDRSDRAM
  • Enhanced SDRAM, ESDRAM synchronous link dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • the processor 1610 may include one or more processing units; optionally, the processor 1610 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 1610.
  • the radio frequency unit 161 is configured to receive a sensing request, where the sensing request includes a first condition, and the first condition includes: a geographical location requirement for the sensing terminal to participate in sensing, and/or a location corresponding to the geographical location requirement. Measurement quantity numerical requirements;
  • Processor 1610 configured to determine whether it is possible to participate in perception according to the first condition
  • the radio frequency unit 161 is also used to send a sensing response if it can participate in sensing.
  • the terminal receives the first condition for selecting the sensing terminal, determines whether the condition is met based on the first condition, and reports it to the network side, which solves the problem that the network side cannot know the conditions in the sensing area. Suitable for perceptual terminal problems.
  • the numerical requirements of the measured quantity include at least one of the following:
  • the measurement value requirements include measurement value requirements for downlink signals of one or more base stations.
  • the measurement value requirements include measurement value requirements for signals of one or more beams.
  • the sensing request also includes the identification of the second device for receiving the sensing response, and/or an indication of the number of candidate sensing terminals; the radio frequency unit 161 is configured to provide the sensing response to the sensing response.
  • the second device that senses the response sends the sense response.
  • the radio frequency unit 161 is configured to receive a sensing request sent by the base station, where the sensing request is carried through a paging message or a system message of the cell or a dedicated RRC message.
  • the processor 1610 is configured to determine whether the first condition is met based on the currently completed downlink signal measurement results; or, based on the first condition, measure the downlink signal, and determine based on the measurement results. Whether the first condition is met.
  • the processor 1610 is configured to determine whether it can participate in sensing if the first condition is met; or, if the first condition is met, determine whether it can participate in sensing according to its own situation.
  • the sensing request also includes sensing information, which includes at least one of the following: cost information for participating in sensing, and estimated sensing duration; the processor 1610 is configured to, according to the sensing information, Determine if you can participate in perception.
  • the sensing response includes at least one of the following:
  • the processor 1610 is configured to initiate an RRC connection establishment request or an RRC connection recovery request to enter the connected state if the terminal is in an idle state or a deactivated state.
  • the terminal initiates an RRC connection establishment request or an RRC connection request.
  • the reason for the recovery request is to respond to the sensing request.
  • Embodiments of the present application also provide a base station, including a processor and a communication interface.
  • the processor is configured to obtain a first condition.
  • the first condition includes: a geographical location requirement for a sensing terminal to participate in sensing, and/or, and the geographical location. Require corresponding measurement quantity numerical requirements; perform at least one of the following:
  • the embodiment of the base station corresponds to the method embodiment of the above-mentioned base station.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to the embodiment of the base station and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 170 includes: an antenna 171 , a radio frequency device 172 , a baseband device 173 , a processor 174 and a memory 175 .
  • the antenna 171 is connected to the radio frequency device 172 .
  • the radio frequency device 172 receives information through the antenna 171 and sends the received information to the baseband device 173 for processing.
  • the baseband device 173 processes the information to be sent and sends it to the radio frequency device 172.
  • the radio frequency device 172 processes the received information and then sends it out through the antenna 171.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 173, which includes a baseband processor.
  • the baseband device 173 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 176, which is, for example, a Common Public Radio Interface (CPRI).
  • CPRI Common Public Radio Interface
  • the network side device 170 in the embodiment of the present application also includes: instructions or programs stored in the memory 175 and executable on the processor 174.
  • the processor 174 calls the instructions in the memory 175.
  • the OR program executes the method of executing each module shown in Figure 14 and achieves the same technical effect. To avoid repetition, it will not be described in detail here.
  • the embodiment of the present application also provides a network side device.
  • the network side device 180 includes: a processor 181 , a network interface 182 and a memory 183 .
  • the network interface 182 is, for example, CPRI.
  • the network side device 180 in the embodiment of the present application also includes: instructions or programs stored in the memory 183 and executable on the processor 181.
  • the processor 181 calls the instructions or programs in the memory 183 to execute the various operations shown in Figure 12. The method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above-mentioned sensing terminal selection method embodiment is implemented, and can To achieve the same technical effect, to avoid repetition, we will not repeat them here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above method for selecting a sensing terminal.
  • Each process in the example can achieve the same technical effect. To avoid repetition, we will not repeat it here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above sensing terminal selection method.
  • the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above sensing terminal selection method.
  • Embodiments of the present application also provide a communication system, including: a sensing function node and a terminal.
  • the sensing function node can be used to perform the steps of the sensing terminal selection method performed by the first device.
  • the terminal can be used to perform the above.
  • the terminal performs the steps of sensing the selection method of the terminal.
  • the embodiment of the present application also provides a communication system, including: sensing function node and base station, so
  • the sensing function node may be configured to perform the steps of the sensing terminal selection method performed by the first device, and the base station may be configured to perform the sensing terminal selection method steps performed by the base station.
  • Embodiments of the present application also provide a communication system, including: a base station and a terminal.
  • the base station can be used to perform the steps of the sensing terminal selection method performed by the first device.
  • the terminal can be used to perform the sensing performed by the terminal. Steps for terminal selection method.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种感知终端的选择方法、装置及通信设备,属于无线通信技术领域,本申请实施例的感知终端的选择方法包括:第一设备确定选择感知终端的第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求。

Description

感知终端的选择方法、装置及通信设备
相关申请的交叉引用
本申请主张在2022年5月30日在中国提交的中国专利申请号No.202210602525.7的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于无线通信技术领域,具体涉及一种感知终端的选择方法、装置及通信设备。
背景技术
在相关第五代移动通信(the 5th Generation,5G)定位场景下,具有明确的用户设备(User Equipment,UE,也称为终端)标识(Identity,ID),因此定位管理功能(Location Management Function,LMF)可基于UE ID与UE直接交互。但是对于感知业务,涉及由哪个网络功能选择UE,以及选择哪些UE进行感知的问题。
发明内容
本申请实施例提供一种感知终端的选择方法、装置及通信设备,能够解决在感知业务中如何选择感知终端的问题。
第一方面,提供了一种感知终端的选择方法,包括:
第一设备确定选择感知终端的第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求。
第二方面,提供了一种感知终端的选择方法,包括:
终端接收感知请求,所述感知请求中包含第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求;
所述终端根据所述第一条件确定是否能够参与感知;
若能够参与感知,所述终端发送感知响应。
第三方面,提供了一种感知终端的选择方法,包括:
基站获取第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求;
所述基站执行以下至少一项:
根据所述第一条件确定候选感知终端列表;发送感知响应,所述感知响应中包括所述候选感知终端列表;
广播所述第一条件。
第四方面,提供了一种感知终端的选择装置,包括:
第一确定模块,用于确定选择感知终端的第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求。
第五方面,提供了一种感知终端的选择装置,包括:
接收模块,用于接收感知请求,所述感知请求中包含第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求;
第一确定模块,用于根据所述第一条件确定是否能够参与感知;
发送模块,用于若能够参与感知,所述终端发送感知响应。
第六方面,提供了一种感知终端的选择装置,包括:
接收模块,用于获取第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求;
第一确定模块,用于执行以下至少一项:
根据所述第一条件确定候选感知终端列表;发送感知响应,所述感知响应中包括所述候选感知终端列表;
广播所述第一条件。
第七方面,提供了一种通信设备,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面、第二方面或第三方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所 述处理器用于确定选择感知终端的第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求。
第九方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于接收感知请求,所述感知请求中包含第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求;所述处理器用于根据所述第一条件确定是否能够参与感知;所述通信接口还用于若能够参与感知,发送感知响应。
第十方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述处理器用于获取第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求;根据所述第一条件确定候选感知终端列表;所述通信接口还用于发送感知响应,所述感知响应中包括所述候选感知终端列表。
第十一方面,提供了一种通信系统,包括:感知功能节点及终端,所述感知功能节点可用于执行如第一方面所述的方法的步骤,所述终端可用于执行如第二方面所述的方法的步骤。
第十二方面,提供了一种通信系统,包括:感知功能节点及基站,所述感知功能节点可用于执行如第一方面所述的方法的步骤,所述基站可用于执行如第三方面所述的方法的步骤。
第十三方面,提供了一种通信系统,包括:基站及终端,所述基站可用于执行如第一方面所述的方法的步骤,所述终端可用于执行如第二方面所述的方法的步骤。
第十四方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面、第二方面或第三方面所述的方法的步骤。
第十五方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面、第二方面或第三方面所述的方法。
第十六方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产 品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面、第二方面或第三方面所述的方法的步骤。
在本申请实施例中,第一设备确定选择感知终端的第一条件,该第一条件与感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求相关,从而可以根据第一条件确定满足条件的终端,解决了网络侧无法知道感知区域内的适合感知的终端的问题。
附图说明
图1为本申请实施例可应用的一种无线通信系统的框图;
图2为本申请实施例的感知终端的选择方法的流程示意图之一;
图3为TDOA定位原理示意图;
图4为RTT定位原理示意图;
图5为基于角度的定位原理示意图;
图6为本申请实施例的感知终端的选择方法的流程示意图之二;
图7为本申请实施例的感知终端的选择方法的流程示意图之三;
图8为本申请实施例一的感知终端的选择方法的流程示意图;
图9为本申请实施例二的感知终端的选择方法的流程示意图;
图10为本申请实施例三的感知终端的选择方法的流程示意图;
图11为本申请实施例四的感知终端的选择方法的流程示意图;
图12为本申请实施例的感知终端的选择装置的结构示意图之一;
图13为本申请实施例的感知终端的选择装置的结构示意图之二;
图14为本申请实施例的感知终端的选择装置的结构示意图之三;
图15为本申请实施例的通信设备的结构示意图;
图16为本申请实施例的终端的硬件结构示意图;
图17为本申请实施例的网络侧设备的硬件结构示意图之一;
图18为本申请实施例的网络侧设备的硬件结构示意图之二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行 清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle  User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或无线网络通信技术(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能 (Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的感知终端的选择方法、装置及通信设备进行详细地说明。
为了便于更好地理解本申请实施例,下面先介绍相关的一些技术点。
1)通信感知一体化
通信感知一体化即在同一系统中通过频谱共享与硬件共享,实现通信、感知功能一体化设计,系统在进行信息传递的同时,能够感知方位、距离、速度等信息,对目标设备或事件进行检测、跟踪、识别,通信系统与感知系统相辅相成,实现整体性能上的提升并带来更好的服务体验。
未来移动通信系统例如超5代移动通信(Beyond 5G,B5G)系统或6G系统除了具备通信能力外,还将具备感知能力。感知能力,即具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。未来随着毫米波、太赫兹等具备高频段大带宽能力的小基站在6G网络的部署,感知的分辨率相比厘米波将明显提升,从而使得6G网络能够提供更精细的感知服务。典型的感知功能与应用场景如表1所示。
表1
上述感知业务的服务质量要求的表述各不相同,例如智能交通、高精地图等感知通常以感知范围、距离分辨率、角度分辨率、速度分辨率和时延等来表达;飞行入侵检测感知通常以覆盖高度、感知精度、感知时延来表达;呼吸监测以感知距离、感知实时性、感知分辨率和感知精度来表达;室内入侵检测以感知距离、感知实时性、检测概率和虚警概率来表达;手势/姿态识别以感知距离、感知实时性、感知精度来表达。
上述感知业务的服务请求方式各不相同,例如基于静态区域的服务请求,以某个坐标系表示需感知内容的地理位置区域;基于动态区域的服务请求,以某个UE周围M米表示需要感知内容的地理位置范围;某个动态目标的连续感知服务请求,以某个已检测和持续位置追踪的目标表示需要感知内容的感知目标。
目前5G支持的定位方法包括下行到达时间差(Downlink Time Difference Of Arrival,DL-TDOA)方法,上行到达时间差(UL-TDOA),多小区往返时间(Multi-Cell Round Trip Time,Multi-RTT),下行离开角(Uplink angle-of-departure,DL-AOD)和上行到达角(Uplink angle-of-arrival,UL-AOA),NR加强小区标识(enhancement cell ID,E-CID)定位方法。
在相关5G定位场景下,具有明确的UE ID,因此LMF和基站可基于UE ID准确找到该UE,及进行交互。在感知中是不是需要UE参与,以及哪些UE适合参与通常需要结合多个信息(如UE位置、UE感知授权信息、UE感知能力信息等)确定。对于如下三种情况下的感知业务请求,如果需要UE参与,感知业务发起和持续感知的过程中网络功能如何选择选择合适的感知终端是需要解决的问题:
情况一:基于静态区域的服务请求,如以某个坐标系表示需感知内容的地理位置区域;
情况二:基于动态区域的服务请求,如以某个UE周围M米表示需要感知内容的地理位置范围;
情况三:某个动态目标的连续感知服务请求,如以某个已检测且持续追踪位置的目标表示需要感知内容的感知目标。
进一步地,选择合适UE的重要因素之一是UE的位置信息,网络如何能 够知道感知区域的某些适合感知信号发送或接收的位置有哪些UE是需要解决的问题。除位置信息外,选择UE还需要考虑UE的感知能力、UE朝向、UE的运动状态(静止或运动速度)UE参与感知的意愿等。如果通过系统广播消息发送给UE,那么可能存在两个潜在问题:一是导致广播内容较多,二是UE自行判断是否满足多个感知条件可能会不够准确(例如UE处于室内环境时难以获得准确的全球定位系统(Global Positioning System,GPS)定位信息,可能导致位置判断不准确)。其次,有些感知测量量到感知结果的计算过程中需要UE地理位置信息作为感知测量量的标签数据。因此,当需要UE参与上述感知场景时,网络如何高效地知道感知相关区域内有哪些支持感知的UE以及UE的位置信息是需要解决的问题。
请参考图2,本申请实施例提供一种感知终端的选择方法,包括:
步骤21:第一设备确定选择感知终端的第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求。
所述第一设备可以为感知功能节点,也可以为基站,下面实施例中将详细描述。
在本申请实施例中,第一设备确定选择感知终端的第一条件,该第一条件与感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求相关,从而可以根据第一条件确定满足条件的终端,解决了网络侧无法知道感知区域内的适合感知的终端的问题。
本申请实施例中,可选的,所述第一设备确定选择感知终端的第一条件包括:所述第一设备确定是否需要终端参与感知;若确定需要终端参与感知,所述第一设备确定选择感知终端的第一条件。
本申请实施例中,可选的,所述第一设备确定是否需要终端参与感知包括:所述第一设备根据接收到的第一感知请求和网络功能的感知能力信息中的至少一项,确定是否需要终端参与感知;
所述第一感知请求包括以下至少一项:
感知目标区域:是指感知对象可能存在的位置区域,或者,需要进行成像或三维重构的位置区域;
感知对象类型:针对感知对象可能的运动特性对感知对象进行分类,每个感知对象类型中包含了典型感知对象的运动速度、运动加速度、典型雷达散射截面(Radar Cross section,RCS)等信息。
感知目标对象:当对某一个或多个感知目标对象进行感知时提供感知对象的标识信息,潜在的标识方式包括:距离、速度、角度谱上的特征标识或者基于网络可识别的UE ID标识;
感知服务质量(Quality of Service,QoS):对感知目标区域或感知对象进行感知的性能指标,包括以下至少一项:感知分辨率(进一步可包括:测距分辨率、测角分辨率、测速分辨率、成像分辨率中的至少一项)等,感知精度(进一步可包括:测距精度、测角精度、测速精度、定位精度等中的至少一项),感知范围(进一步可包括:测距范围、测速范围、测角范围、成像范围等中的至少一项),感知时延(从感知信号发送到获得感知结果的时间间隔,或,从感知需求发起到获取感知结果的时间间隔),感知更新速率(相邻两次执行感知并获得感知结果的时间间隔),检测概率(在感知对象存在的情况下被正确检测出来的概率),虚警概率(在感知对象不存在的情况下错误检测出感知目标的概率)。
所述网络功能的感知能力信息包括以下至少一项:基站的感知范围、AMF的感知范围、基站所支持的感知业务的信息、AMF所支持的感知业务的信息。
本申请实施例中,可选的,所述需要终端参与感知包括以下至少一项:需要终端发送感知信号、需要终端接收感知信号并进行感知测量、需要终端发送感知辅助信息、需要终端对感知测量结果进行处理。
本申请实施例中,可选的,所述测量量数值要求包括以下至少一项:
1)上行和/或下行接收信号强度(Received Signal Strength,RSS)测量值要求;
其中,上行接收信号强度测量值要求是基站的接收带宽功率,包括在接收机脉冲形成滤波器定义的带宽内的热噪声和接收机产生的噪声。测量的参考点为天线端口,RSS是某个时间内(如一个符号)接收到的所有信号(包括导频信号、数据信号、干扰信号和/或噪声信号等)功率的平均值。
下行接收信号强度测量值要求是终端的接收带宽功率,包括在接收机脉 冲形成滤波器定义的带宽内的热噪声和接收机产生的噪声。测量的参考点为天线端口,RSS是某个时间内(如一个符号)接收到的所有信号(包括导频信号、数据信号、干扰信号和/或噪声信号等)功率的平均值。
2)信噪比(Signal to Noise Ratio,SNR)要求;
该参数终端或基站接收到的有用信号的强度与接收到的噪声强度的比值。
3)上行和/或下行参考信号接收功率(Reference Signal Received Power,RSRP)测量值要求;
该参数是在测量频带上参考信号功率的平均值。RSRP是某个时间内(如一个符号)承载参考信号的所有资源上接收到的信号功率的平均值。
4)上行和/或下行参考信号接收质量(Reference Signal Received Quality,RSRQ)测量值要求;
该参数是RSRP和RSS的比值,当RSRP和RSS测量带宽不同时,需要通过一个系数来调整,如RSRQ=N×RSRP/RSS,其中N表示RSS测量带宽中的资源块(Resource block,RB)数量。
5)信道冲击响应(Channel Impulse Response,CIR)测量值要求;
该参数是信道响应的复数结果。
6)上行和/或下行参考信号时间差(Reference Signal Time Difference,RSTD)测量值要求;
该参数是接收信号到达多个TRP的时间差。
7)基站与终端之间的往返时间(Round Trip Time,RTT)测量值要求;
假设节点1发送信号的时间是t0,节点2接收该信号的时间是t1,节点2发送信号的时间是t2,节点1接收该信号的时间是t3,RTT=t1-t0+t3-t2=(t3-t0)+(t1-t2)。
8)上行到达角(Angle-of-Arrival,AoA)测量值要求;
该参数是对角度进行测量,通常在多天线系统中应用,对波束的到达角进行测量。
9)下行离开角测量值要求。
该参数是对角度进行测量,通常在多天线系统中应用,对波束的离开角进行测量。
本申请实施例中,可选的,所述地理位置要求是基于某一坐标系的地理位置坐标值要求,例如以O为原点坐标值(X,Y,Z),X、Y或Z任一方向偏差小于0.5m,或者,通过经度、维度和高度表示的坐标值要求。
本申请实施例中,可选的,所述测量量数值要求包括终端对一个或多个基站的下行信号的测量数值要求,和/或,一个或多个基站对终端的上行信号的测量数值要求。例如下行信号的测量数值要求为:UE对小区(cell)1,cell2和cell3的接收信号强度分别为-60dbm,-70dbm,-80dbm,偏差值小于3dbm;上行反之,是cell1,cell2和cell3对UE上行信号接收强度的测量数值要求。
本申请实施例中,可选的,在多天线系统中,所述测量量数值要求包括一个或多个波束的信号的测量数值要求。
上述测量量要求是依据采用的定位方法确定。下面对相关的定位方法进行简单介绍。
目前5G支持的定位方法包括下行到达时间差(Downlink Time Difference Of Arrival,DL-TDOA)方法,上行到达时间差(UL-TDOA),多小区往返时间(Multi-Cell Round Trip Time,Multi-RTT),下行离开角(Uplink angle-of-departure,DL-AOD)和上行到达角(Uplink angle-of-arrival,UL-AOA),NR加强小区标识(enhancement cell ID,E-CID)定位方法。
2a)下行到达时间差方法(DL-TDOA)
如图3所示,UE获得多个TRP(eNB1、eNB2和eNB3)的下行(DownLink,DL)定位参考信号(Positioning Reference Signal,PRS)的相对到达时间,即参考信号时间差(Reference Signal Time Difference,RSTD),之后UE或LMF根据适当的位置求解算法解出UE的地理坐标。通过DL-TDOA测量,可得到方程组:
Ri,1=c(ti-t1)=Ri-R1
其中,Ri为第i个TRP到UE的距离;
(xi,yi)为第i个TRP的坐标,(x0,y0)为UE的坐标;
N为TRP的个数,c为光速,ti-t1为第i个TRP与第1个TRP间的到达时间差。
2个TRP的到达时间差(到达时间差(Time Difference Of Arrival,TDOA)或RSTD)可以把UE确定在一条双曲线上。3个TRP就可以把UE限定在一个区域内。NR中,UE最多可以测量和上报256个TRP的RSTD。
2b)UL-TDOA定位方法
在UL-TDOA定位方法中,LMF基于在不同TRP处测量UE的上行定位参考信号(SRS for positioning)的UL-RTOA测量结果以及其他配置信息来估计UE位置,无需UE参与定位测量与运算。其定位原理与DL-TDOA相同,上行信号的质量由于UE参考信号较低的发射功率得不到保证。因此UE无法保证周边的基站都可以正确解析其上行参考信号,对参与定位的节点数目造成了限制,从而导致位置精度的下降。
2c)多小区往返时间(Multi-Cell Round Trip Time,Multi-RTT)方法
LTE中,E-CID技术中用于估计基站与UE的距离已采用RTT定位方法。NR中将单个RTT扩展到了多个小区和UE的RTT,即Multi-RTT。利用多个基站与UE之间的RTT测量结果联合估计UE位置。如图4所示,RTT=(t3-t0)+(t1-t2)。
Multi-RTT相比于基于TDOA的定位技术优势在于不需要基站之间严格的同步,即不受TRP之间同步误差的影响。Multi-RTT精度主要受到上行覆盖的限制。
2d)基于角度的定位方法
下行离开角(Uplink angle-of-departure,DL-AOD)和上行到达角(Uplink angle-of-arrival,UL-AOA)都属于基于角度的定位方法,请参考图5,基于角度的定位技术的原理就是利用至少2个基站的测量角度来估计UE位置。由于基站通常具有比UE多很多的天线数量,角度测量精度更高,因此NR选择了在基站侧测量角度,即引入了下行离开角DL-AOD定位技术和上行到达角UL-AOA定位技术。DL-AoD基于UE测量的DL PRS-RSRP以及PRS波束信息(如波束方向)确定DL离开角,进一步确定UE位置。UL-AoA基于下一代基站(the next Generation Node B,gNB)测量的UL-AoA,进一步确定UE位置。
本申请实施例中,可选的,所述第一设备确定选择感知终端的第一条件 包括:
所述第一设备确定感知终端参与感知的地理位置要求;
所述第一设备确定与所述地理位置要求对应的测量量数值要求。
本申请实施例中,可选的,所述地理位置要求包括以下至少一项:
1)感知方式为基站发送感知信号,终端接收感知信号并进行感知测量时,需终端参与感知的地理位置;
例如基站A(如果感知目标区域需有多个基站协作完成,此处可扩展为多个基站的情况)发送感知信号,用于接收感知信号和测量的UE的位置区域。
2)感知方式为终端发送感知信号,基站接收感知信号并进行感知测量时,需终端参与感知的地理位置;
例如,基站A(如果感知目标区域需有多个基站协作完成,此处可扩展为多个基站的情况)接收感知信号和测量,用于发送感知信号的UE的位置区域。
3)感知方式为终端自身发送感知信号,自身接收感知信号并进行感知测量时,需终端参与感知的地理位置;
4)感知方式为终端发送感知信号,其他终端接收感知信号并进行感知测量时,需终端参与感知的地理位置。
本申请实施例中,可选的,所述第一设备根据第一感知请求信息中的感知目标区域和基站的感知范围,确定所述地理位置要求。
本申请实施例中,可选的,所述第一设备可以根据射频指纹数据库,确定与所述地理位置要求对应的测量量数值要求。当然,也不排除采用其他方式确定与所述地理位置要求对应的测量量数值要求。
射频指纹数据库应用于射频指纹定位方法中,射频指纹定位方法因定位性能好、精度高,以及射频测量量(如接收信号功率、信噪比等)易于复用现有硬件实现,成为室内定位常用的方法之一。射频指纹定位方法一般分为两个阶段:离线阶段和在线阶段。离线阶段构建一个由采样点坐标与接收信号特征组成的指纹数据库,位置坐标与接收信号特征存在一一对应的关系(在蜂窝网络中通常通过网络中长时间UE上报的测量量和位置信息来构建,如 最小化路测(Minimization of Drive Tests,MDT)或运营商自有应用程序(Application,APP)信息或人工实测)。在线阶段根据用户在某一位置处收到的事实信号特征,利用匹配算法将实时信号特征与指纹库中的指纹进行匹配,找到匹配指纹后即认为匹配指纹对应的采样点坐标就是该移动用户的位置。离线阶段也可以通过机器学习算法学习指纹库中位置坐标与信号特征之间的关系函数,在线阶段将实时信号特征带入关系函数即可得到移动用户坐标估计。其中,用来标记某位置的无线电信号特征值称为射频指纹或无线指纹,利用射频信号进行指纹定位方法称为射频指纹定位方法。射频指纹定位方法的基本原理是基于二维或三维位置空间和n维指纹信号空间的对应关系。
本申请实施例中,可选的,所述第一设备为感知功能节点;所述第一设备确定选择感知终端的第一条件之后还包括:所述感知功能节点向基站发送第二感知请求,所述第二感知请求中包括所述第一条件和用于接收感知响应的第二设备的标识,由所述基站广播所述第二感知请求。所述感知功能节点在需要发送第一条件时,由于还不清楚哪些终端为感知终端,因而通常需要根据所确定的第一条件,将第一条件发送给一个或多个基站。即,该第二感知请求消息是一个非UE关联(non-UE associated)的消息,或者说是一个全局(global)的消息。如果感知功能与基站间协议栈经AMF转发,那么该消息使用相同的方式,但是承载该消息的下一代应用协议(NG Application Protocol,NGAP)消息(即核心网与基站之间的协议栈消息)是非UE关联(non-UE associated)的消息,即不携带基站分配的UE NGAP ID(即RAN UE NGAP ID);如果感知功能与基站间协议栈无需AMF转发,那么该消息可以由感知功能直接发送给对应的基站。基站接收到第一条件之后,通过广播方式发送第一条件,而不是发送给指定的终端。可选的,当发送的是地理位置信息与基站覆盖范围有关系,确定一个基站来发送第一条件,当发送的是测量量数值要求时,通常是对多个基站的测量数值要求,因此对某一基站测量值有要求则可以发送给该基站。
本申请实施例中,所述第二设备与所述第一设备可以是同一设备,也可以是不同的设备。
本申请实施例中,可选的,所述感知功能节点向基站发送第二感知请求 之后还包括:
所述感知功能节点接收终端发送的针对所述第二感知请求的感知响应;
所述感知功能节点根据所述感知响应,确定感知终端。
其中,所述感知响应中包括以下至少一项:
1)所述终端的标识;
该标识是第二设备可识别的标识,如第二设备是核心网感知功能,那么该标识可以是UE的核心网标识,如签约永久标识(Subscription Permanent Identifier,SUPI)等;第二设备是基站,那么该标识可以是无线网络临时标识(Radio Network Temporary Identity,RNTI)(小区无线网络临时标识(Cell RNTI,C-RNTI),非激活态RNTI(Inactive RNTI,I-RNTI)),RAN-UE-NGAP-ID等。如果终端是空闲态,则需要上报上述标识。如果是连接太,则不需要。
2)指示所述终端有意愿参与感知的指示信息;
3)满足所述第一条件的测量量数值;
例如,所测量的多个TRP的接收信号强度值。
4)辅助选择感知终端的辅助信息;
本申请实施例中,可选的,所述辅助信息包括以下至少一项:所述终端的朝向、所述终端的速度、所述终端保持当前运动状态的时间长度(即保持当前位置、朝向和/或速度等运动状态不变的时间)、所述终端未来预设时间内的位置信息、所述终端推荐的其他终端标识,其中,所述推荐的其他终端标识为当感知方式为终端间收发感知信号时,与所述终端配合感知的其他终端的标识。
感知功能节点可能接收到多个终端的感知响应,感知功能节点可以根据终端标识信息,查询终端的感知能力和授权信息,获得终端授权支持哪些感知业务,从而确定感知终端。
可选的,感知功能节点可根据感知响应中的测量结果获得终端的地理位置信息,用于辅助确定终端;或者基于UE ID对终端发起定位流程获得终端的地理位置信息;或者基于终端提供的其他辅助信息来确定感知终端。
本申请的一些实施例中,可选的,所述第一设备为感知功能节点;所述第一设备确定选择感知终端的第一条件之后还包括:
所述感知功能节点向基站发送第二感知请求,所述第二感知请求中包括所述第一条件,由基站根据所述第二感知请求确定候选感知终端列表。
本申请实施例中,可选的,所述第二感知请求中还包括候选感知终端数量指示和/或用于接收感知响应的第二设备的标识。本申请实施例中,可选的,所述感知功能节点向基站发送第二感知请求之后还包括:
所述感知功能节点接收所述基站发送的针对所述第二感知请求的感知响应;
所述感知功能节点根据所述感知响应,确定感知终端。
其中,所述感知响应中包括以下至少一项:
1)候选感知终端列表;
所述候选感知终端列表中包括至少一个终端的标识。
2)满足所述第一条件的测量量数值;
例如所测量的多个TRP的接收信号强度值。
3)辅助选择感知终端的辅助信息。
本申请实施例中,可选的,所述辅助信息包括候选终端的通信负载信息。例如UE上行/下行通信RB数,UE上行/下行吞吐量等。
本申请调度一些实施例中,可选的,所述第一设备为基站;所述第一设备确定选择感知终端的第一条件之后还包括:
所述基站根据所述第一条件确定候选感知终端列表。
本申请实施例中,可选的,所述基站根据所述第一条件确定候选感知终端列表之后还包括:
所述基站向所述候选感知终端列表中的终端发送第三感知请求,所述第三感知请求用于请求终端参与感知;
所述基站接收所述终端对所述第三感知请求的感知响应,所述感知响应中指示所述终端是否同意参与感知;
所述基站根据所述感知响应,确定目标候选感知终端列表。
本申请实施例中,可选的,所述第三感知请求中包括感知信息,所述感知信息包括以下至少一项:参与感知的费用信息和预估的感知持续时长。
本申请实施例中,可选的,所述基站根据所述第一条件,确定候选感知 终端列表包括:
若所述第一条件中包括上行信号的测量量值要求,所述基站根据所述第一条件,确定候选感知终端列表;
或者
若所述第一条件中包括下行信号的测量量值要求,所述基站向终端发送第四感知请求,所述第四感知请求中包括所述第一条件;
所述基站接收所述终端对所述第四感知请求的感知响应,所述感知响应中包括以下至少一项:所述终端的标识、指示所述终端有意愿参与感知的指示信息、满足所述第一条件的测量量数值、辅助选择感知终端的辅助信息;
所述基站根据所述感知响应,确定候选感知终端列表;
或者
若所述第一条件中包括上行信号和下行信号的测量量值要求,所述基站根据所述第一条件中的上行信号的测量值要求,确定候选感知终端;
所述基站向终端发送第四感知请求,所述第四感知请求中包括所述第一条件;
所述基站接收所述终端对所述第四感知请求的感知响应,所述感知响应中包括以下至少一项:所述终端的标识、指示所述终端有意愿参与感知的指示信息、满足所述第一条件的测量量数值、辅助选择感知终端的辅助信息;
所述基站根据所述感知响应和自身确定的所述候选感知终端,确定候选感知终端列表。
本申请的一些实施例中,可选的,所述基站根据所述第一条件确定候选感知终端列表之后还包括:所述基站根据所述候选感知终端列表,确定感知终端。
本申请的一些实施例中,可选的,所述基站根据所述第一条件确定候选感知终端列表之后还包括:所述基站向感知功能节点发送所述候选感知终端列表,由感知功能节点根据候选感知终端列表确定感知终端。
请参考图6,本申请实施例还提供一种感知终端的选择方法,包括:
步骤61:终端接收感知请求,所述感知请求中包含第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求 对应的测量量数值要求;
步骤62:所述终端根据所述第一条件确定是否能够参与感知;
步骤63:若能够参与感知,所述终端发送感知响应。
在本申请实施例中,终端接收选择感知终端的第一条件,根据第一条件确定是否满足条件,并上报到网络侧,解决了网络侧无法知道感知区域内的适合感知的终端的问题。
本申请实施例中,可选的,所述测量量数值要求包括以下至少一项:
下行接收信号强度测量值要求;
信噪比要求;
下行参考信号接收功率测量值要求;
下行参考信号接收质量测量值要求;
下行参考信号时间差测量值要求;
下行离开角测量值要求。
本实施例中,由UE自行决定是否满足第一条件,因而第一条件是UE侧对下行信号的测量量的数值要求。
本申请实施例中,可选的,所述测量量数值要求包括一个或多个基站的下行信号的测量数值要求。
本申请实施例中,可选的,所述测量量数值要求包括一个或多个波束的信号的测量数值要求。
本申请实施例中,可选的,所述感知请求中还包括用于接收所述感知响应的第二设备的标识,和/或候选感知终端数量指示;所述终端发送感知响应包括:所述终端向所述用于接收所述感知响应的第二设备发送感知响应。
本申请实施例中,可选的,所述终端接收感知请求包括:所述终端接收基站发送的感知请求,所述感知请求通过寻呼消息或小区的系统消息或专用的无线资源控制(Radio Resource Control,RRC)消息携带。
本申请实施例中,可选的,所述终端根据所述第一条件确定是否能够参与感知包括:
所述终端根据当前已完成的下行信号测量结果确定是否满足所述第一条件;
或者
所述终端根据所述第一条件,对下行信号进行测量,并根据测量结果确定是否满足第一条件。
本申请实施例中,可选的,所述终端根据所述第一条件确定是否能够参与感知包括:
若满足所述第一条件,所述终端确定能够参与感知;
或者
若满足所述第一条件,所述终端根据自身情况确定是否能够参与感知。
本申请实施例中,可选的,所述感知请求还包括感知信息,所述感知信息包括以下至少一项:参与感知的费用信息,预估的感知持续时长;
所述终端根据自身情况确定是否能够参与感知包括:所述终端根据所述感知信息,确定是否能够参与感知。即,满足第一条件的终端可以有一定的自主权,可以根据自己的情况,比如感知费用信息、电量情况等确定是否发送感知响应消息。比如当终端的电量低时或者感知费用低于某个门限值,即使满足第一条件,终端也可以决定不发送感知响应消息。
本申请实施例中,感知响应可以是一个RRC消息,比如UE辅助信息消息,类似MDT指示该消息的目标接收方的互联网协议(Internet Protocol,IP)地址。
本申请实施例中,可选的,所述感知响应中包括以下至少一项:
所述终端的标识;所述标识为第二设备可以识别的标识。
指示所述终端有意愿参与感知的指示信息;
满足所述第一条件的测量量数值;
辅助选择感知终端的辅助信息。
所述辅助信息可以包括:所述终端的朝向,速度和/或保持当前运动状态的时间长度(即保持当前位置、朝向、速度等运动状态不变的时间)等。如果所述终端未来位置已知或可预测,那么所述终端可提供未来某一段时间内的位置信息。当所述终端支持终端间收发感知时,如果所述终端有推荐可与其配合进行其他感知终端,那么所述终端可提供推荐其他感知终端的标识。
本申请实施例中,可选的,所述终端发送感知响应之前还包括:若所述 终端处于空闲态或去激活态,所述终端发起RRC连接建立请求或RRC连接恢复请求以进入连接态,所述终端发起RRC连接建立请求或RRC连接恢复请求的原因为响应感知请求。
下面对相关的RRC状态的定义以及RRC状态之间的转换进行解释说明。
5G的RRC有三种状态:空闲(idle)态、去激活(inactive)态、连接(connected)态:
在idle态,UE与基站没有建立RRC连接,基站没有该UE的RRC上下文。从核心网的角度来看,RAN侧与核心网的连接也断开。为了减少耗电,UE在大部分时间处于休眠状态,因此无法进行数据传输。UE可周期性地唤醒以从网络接收寻呼消息(如果有的话),当UE收到发给自己的寻呼消息后,或者UE有上行数据需要发送,则UE发起随机接入过程并建立RRC连接,从而从idle态转入connected态。Idle态的UE驻留在一个服务小区,随着UE的移动,通过小区重选机制来更换驻留的服务小区。
在connected态,UE与基站之间、基站与核心网之间建立了连接。基站为该UE保存了RRC上下文。UE可以与基站之间传输上下行数据。在连接态,移动性可由网络侧控制,即UE向网络提供邻小区测量,网络命令设备进行切换(handover)。
在LTE中,仅支持空闲态和连接态。然而,由于在一些智能手机中常常存在小数据包的频繁传输,如果按照LTE方式,会存在大量的空闲态到连接态的转换。这些转换增加了信令负载和信令延时。因此,为了减少信令负载和等待时间,在NR中引入了inactive(非激活态)状态。
在inactive态,UE与基站之间的RRC连接被释放,最后一个服务基站保存了UE的RRC上下文,并维持与核心网的UE连接。Inactive态对核心网是透明的,也就是说,从核心网的角度来看,UE仍处于连接状态。在基站使UE进入inactive态时,会给UE配置一个无线通知区域(RAN-based Notification Area,RNA)区域,UE可以在RNA区域内的小区之间移动而不用通知网络,因此,当网络需要UE进入connected态时,在RNA区域内的所有小区寻呼该UE。从去激活态转换到连接态的速度很快,且不需要核心网信令。同时,允许UE以空闲态类似的方式休眠,并且通过小区重选来处理 移动性。因此,inactive态可以被视为空闲和连接状态的混合。
上述的RRC状态是UE与基站之间的状态。UE与核心网(AMF)之间有连接管理状态(CM state),包括:CM-IDLE和CM-CONNECTED两种状态,UE处于CM-IDLE态时,是没有该终端的N2和N3连接的,在空口,对应的UE状态是idle态。处于CM-CONNECTED状态的UE和对应的AMF之间建立了非接入层(Non-access stratum,NAS)信令连接,在空口,对应的UE状态是connected或inactive态。
请参考图7,本申请实施例还提供一种感知终端的选择方法,包括:
步骤71:基站获取第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求;
步骤72:所述基站执行以下至少一项:
根据所述第一条件确定候选感知终端列表,发送感知响应,所述感知响应中包括所述候选感知终端列表;
广播所述第一条件。
本申请实施例中,可选的,所述候选感知终端列表可以通过UE网络标识(如RAN-UE-NGAP ID等)形成。
在本申请实施例中,基站获取第一条件,并根据第一条件确定候选感知终端,或者,广播第一条件,由终端确定是否参与感知,解决了网络侧无法知道感知区域内的适合感知的终端的问题。
本申请实施例中,可选的,所述基站获取第一条件包括:所述基站接收感知请求,所述感知请求中包括所述第一条件,可选的,所述感知请求由感知功能节点发送。
本申请的另外一些实施例中,可选的,所述基站获取第一条件包括:所述基站接收感知请求,根据感知请求确定第一条件,可选的,所述感知请求由感知功能节点发送。
本申请实施例中,可选的,所述测量量数值要求包括以下至少一项:
上行和/或下行接收信号强度测量值要求;
信噪比要求;
上行和/或下行参考信号接收功率测量值要求;
上行和/或下行参考信号接收质量测量值要求;
信道冲击响应测量值要求;
上行和/或下行参考信号时间差测量值要求;
基站和终端之间的往返时间测量值要求;
上行到达角测量值要求;
下行离开角测量值要求。
本申请实施例中,可选的,所述测量量数值要求包括一个或多个基站的下行信号的测量数值要求,和/或,一个或多个基站对感知终端的上行信号的测量数值要求。
本申请实施例中,可选的,所述测量量数值要求包括一个或多个波束的信号的测量数值要求。
本申请实施例中,可选的,所述感知请求还包括:候选感知终端数量指示,如果满足第一条件的终端的数量较多,基站可以根据第一条件中的候选感知终端数量指示,从中选择更优的候选感知终端,组成候选感知终端列表。
本申请实施例中,可选的,所述感知响应中还包括以下至少一项:
满足所述第一条件的测量量数值;
辅助选择感知终端的辅助信息。
下面结合具体应用场景,对本申请的感知终端的选择方法进行举例说明。
实施例1:一种基站辅助的核心网感知功能与UE间的感知终端的选择方法
本实施例中,由感知功能节点(Sensation Function,SF)确定第一条件,并UE根据第一条件基于下行测量确定是否参与感知,并向SF发送感知响应,SF根据感知响应确定感知终端。
本实施例假设SF为核心网网络功能之一,上述实施例中的第一设备是SF,第二设备与第一设备为同一SF。
请参考图8,本申请实施例的感知终端的选择方法包括以下步骤:
步骤1:感知功能节点接收感知请求,并根据感知请求确定选择感知终端的第一条件;感知请求中包括但不限于如下信息中的一项或多项:
感知目标区域:是指感知对象可能存在的位置区域,或者,需要进行成像或三维重构的位置区域;
感知对象类型:针对感知对象可能的运动特性对感知对象进行分类,每个感知对象类型中包含了典型感知对象的运动速度、运动加速度、典型RCS等信息。
感知目标对象:当对某一个或多个感知目标对象进行感知时提供感知对象的标识信息,潜在的标识方式包括:距离、速度、角度谱上的特征标识或者基于网络可识别的UE ID标识;
感知QoS:对感知目标区域或感知对象进行感知的性能指标,包括以下至少一项:感知分辨率(进一步可包括:测距分辨率、测角分辨率、测速分辨率、成像分辨率中的至少一项)等,感知精度(进一步可包括:测距精度、测角精度、测速精度、定位精度等中的至少一项),感知范围(进一步可包括:测距范围、测速范围、测角范围、成像范围等中的至少一项),感知时延(从感知信号发送到获得感知结果的时间间隔,或,从感知需求发起到获取感知结果的时间间隔),感知更新速率(相邻两次执行感知并获得感知结果的时间间隔),检测概率(在感知对象存在的情况下被正确检测出来的概率),虚警概率(在感知对象不存在的情况下错误检测出感知目标的概率)。
步骤2:SF根据所接收到的感知请求和网络功能的感知能力信息(如基站的感知范围、AMF的感知范围、基站所支持的感知业务的信息和/或AMF所支持的感知业务的信息等)确定是否需要UE参与感知,其中UE参与感知包括UE发送感知信号、UE接收感知信号和进行感知测量、UE发送感知辅助信息(如UE摄像头或其他传感器的数据)、UE对感知测量结果进行处理中的一种或多种。如果需要UE参与,那么确定选择感知终端的第一条件。
一种确定所述第一条件的方法是SF根据感知目标区域和基站的感知范围确定感知终端参与感知的地理位置要求:
a)基站A(如果感知目标区域需有多个基站协作完成,此处可扩展为多个基站的情况)发送感知信号,用于接收感知信号和测量的UE的位置区域。
b)基站A(如果感知目标区域需有多个基站协作完成,此处可扩展为多个基站的情况)接收感知信号和测量,用于发送感知信号的UE的位置区域。
c)UE自发自收感知的位置区域。
d)UE间收发的位置区域。
SF基于射频指纹数据库获得上述地理位置要求对应的UE测量量和测量量数值要求,例如测量量数值要求为:cell1的DL RSRP在-70dbm到-75dbm区间,cell2的DL RSRP在-100dbm到-105dbm区间,cell3的DL RSRP在-89dbm到-92dbm区间。如果是多天线系统上述测量量和测量量数据可进一步表示为对cell的波束M的测量。
考虑到不同的定位方法,本实施例中所述选择感知终端的第一条件包括如下一项或多项(本实施例中,由UE自行决定是否满足第一条件,因而第一条件是UE侧对下行信号的测量量的数值要求):
下行接收信号强度(Received Signal Strength,RSS)测量值要求,该参数是UE接收宽带功率,包括在接收机脉冲形成滤波器定义的带宽内的热噪声和接收机产生的噪声。测量的参考点为天线端口,RSS是某个时间内(如一个符号)接收到的所有信号(包括导频信号、数据信号、干扰信号和/或噪声信号等)功率的平均值。
SNR,该参数是UE接收到的有用信号的强度与接收到的噪声强度的比值。
下行RSRP测量值要求,该参数是在测量频带上参考信号功率的平均值。RSRP是某个时间内(如一个符号)承载参考信号的所有资源上接收到的信号功率的平均值。
下行RSRQ测量值要求,该参数是RSRP和RSS的比值,当RSRP和RSS测量带宽不同时需要通过一个系数来调整,如RSRQ=N×RSRP/RSS,其中N表示RSS测量带宽中的RB数量。
下行RSTD测量值要求,该参数是接收信号到达多个TRP的时间差。
DL-AOD测量值要求,该参数是对角度进行测量,通常在多天线系统中应用,对波束的到达角或离开角进行测量。
需要说明的是,在多天线系统中上述信号进一步地可以是对每个波束上的信号进行测量。
步骤3:感知功能发送第二感知请求(即图中的感知UE选择请求)给确 定的一个或多个基站。需要说明的是,该第二感知请求消息是一个非UE关联(non-UE associated)的消息,或者说是一个全局(global)的消息。如果感知功能与基站间协议栈经AMF转发,那么该消息使用相同的方式,但是承载该消息的NGAP消息(即核心网与基站之间的协议栈消息)是非UE关联(non-UE associated)的消息,即不携带基站分配的UE NGAP ID(即RAN UE NGAP ID);如果感知功能与基站间协议栈无需AMF转发,那么该消息可以由感知功能直接发送给对应的基站。
步骤4:基站根据所收到的第一条件,在相应的小区上广播发送第一条件,所述第一条件中还可以包括SF标识,用于触发满足第一条件且有意愿参与感知的终端发送感知响应消息。其中SF标识是接收UE感知响应消息的SF。
所述广播发送第一条件可以是通过寻呼消息发送第一条件,也可以是通过小区的系统信息发送第一条件。空闲态和去激活态的终端会监视寻呼消息和系统信息改变,从而接收寻呼消息或系统信息获取到第一条件。
第一条件可以是只发送给空闲态和去激活态的UE,也可以是发送给所有状态的UE。对于后者,对于连接态的UE,有两种发送方法:
方法1:第一条件可以被携带在专用RRC消息中发送给UE。
方法2:寻呼消息使用一个专用的RNTI,连接态的UE也监听这个专用的RNTI,从而接收到寻呼消息得到第一条件。
可选的,除了发送第一条件外,基站还可以向终端发送感知信息,比如,感知信息包括费用信息(如参与感知任务可获得多少流量或话费等),预估的感知持续时长等,终端可以基于这些信息评估是否有意愿加入该感知任务。
步骤5:终端可根据当前已完成的下行信号测量确定自己是否满足第一条件。或者终端根据所接收到的第一条件对所述下行信号进行测量,根据测量结果确定是否满足第一条件。如果满足,然后确定是否响应SF以发送感知响应消息。可能的方法包括:
方法1:满足第一条件的终端总是响应SF以发送感知响应消息。
方法2:满足第一条件的终端可以有一定的自主权,可以根据自己的情况,比如感知费用信息、电量情况等确定是否发送感知响应消息。比如当终 端的电量低时或者感知费用低于某个门限值,即使满足第一条件,终端也可以决定不发送感知响应消息。
步骤6:终端向第一条件中所指示的SF(本实施例中,与发送第一条件的SF是同一个SF)发送感知响应消息,用于指示该终端有意愿参与该感知业务。感知响应消息可以是一个RRC消息,比如UE辅助信息消息,类似MDT指示该消息的目标接收方的IP地址。所述感知响应消息应包括UE标识,该标识是SF可识别的标识,如UE的核心网标识SUPI,全球唯一临时标识(Globally Unique Temporary Identifier,GUTI)等。
需要说明的是,当UE处于空闲态或去激活态时,终端先发起RRC连接建立或RRC连接恢复过程进入连接态。建立原因或恢复原因可以指示是响应感知请求。
可选的,感知响应消息可以包括以下信息,用于辅助SF进一步选择终端:
满足所述第一条件的测量结果,例如所测量的多个TRP的接收信号强度值;
UE朝向,UE速度,UE保持当前运动状态的时间长度(即保持当前位置、朝向、速度等运动状态不变的时间)等。如果UE未来位置已知或可预测,那么UE可提供未来某一段时间内的位置信息。当该UE支持UE间收发感知时,如果该UE有推荐可与其配合进行感知的UE,那么UE可提供推荐UE标识。
步骤7:SF可能接收到多个终端的感知响应消息,SF可以根据UE标识信息查询UE的感知能力和授权信息,获得UE授权支持哪些感知业务,从而确定感知终端。可选的,SF可根据感知响应消息中的测量结果获得UE的位置信息,用于辅助确定UE;或者基于UE ID对UE发起定位流程获得UE位置信息;或者基于UE提供的其他辅助信息来确定感知终端。
由于SF确定感知终端参与感知的地理位置要求时,涉及多种感知方式下的地理位置要求,因而SF收到的感知响应也涉及多种地理位置要求下确定的终端的感知响应,本步骤中,SF还需要确定感知方式,并从而选择与感知方式对应的感知终端。
步骤8:SF将确定的感知方式(基站发UE收,基站收UE发,UE间发 送,UE自发自收)和感知配置信息,发送给UE和基站。
步骤9:假设感知方式为基站发UE收,则基站发送感知信号,终端接收感知信号并测量。
步骤10:UE向SF发送感知测量结果。
步骤11:SF基于感知测量结果得到感知结果,并确定是否触发向第三方或核心网功能(如AMF)发送感知响应,比如,当感知结果不满足要求时,可以继续接收更多的感知测量结果,当感知结果满足需求时,触发向第三方或核心网功能(如AMF)发送感知响应,该感知响应携带感知结果。
实施例2:一种核心网感知功能和基站协同的感知终端的选择方法
本实施例中,SF确定第一条件,基站基于第一条件和上行和/或下行测量结果,确定候选感知终端列表,SF根据候选感知终端列表确定感知终端,本实施例更适用于连接态UE。
本实施例假设SF为核心网网络功能之一,第一设备是SF,第二设备与第一设备为相同的SF。
请参考图9,本申请实施例的感知终端的选择方法包括以下步骤:
步骤1:感知功能节点接收感知请求,并根据感知请求确定选择感知终端的第一条件;感知请求中包括但不限于如下信息中的一项或多项:
感知目标区域:是指感知对象可能存在的位置区域,或者,需要进行成像或三维重构的位置区域;
感知对象类型:针对感知对象可能的运动特性对感知对象进行分类,每个感知对象类型中包含了典型感知对象的运动速度、运动加速度、典型RCS等信息。
感知目标对象:当对某一个或多个感知目标对象进行感知时提供感知对象的标识信息,潜在的标识方式包括:距离、速度、角度谱上的特征标识或者基于网络可识别的UE ID标识;
感知QoS:对感知目标区域或感知对象进行感知的性能指标,包括以下至少一项:感知分辨率(进一步可包括:测距分辨率、测角分辨率、测速分辨率、成像分辨率中的至少一项)等,感知精度(进一步可包括:测距精度、测角精度、测速精度、定位精度等中的至少一项),感知范围(进一步可包括: 测距范围、测速范围、测角范围、成像范围等中的至少一项),感知时延(从感知信号发送到获得感知结果的时间间隔,或,从感知需求发起到获取感知结果的时间间隔),感知更新速率(相邻两次执行感知并获得感知结果的时间间隔),检测概率(在感知对象存在的情况下被正确检测出来的概率),虚警概率(在感知对象不存在的情况下错误检测出感知目标的概率)。
步骤2:SF根据所接收到的感知请求和网络功能的感知能力信息(如基站的感知范围、AMF的感知范围、基站所支持的感知业务的信息和/或AMF所支持的感知业务的信息等)确定是否需要UE参与感知,其中UE参与感知包括UE发送感知信号、UE接收感知信号和进行感知测量、UE发送感知辅助信息(如UE摄像头或其他传感器的数据)、UE对感知测量结果进行处理中的一种或多种。如果需要UE参与,那么确定选择感知终端的第一条件。
一种确定所述第一条件的方法是SF根据感知目标区域和基站的感知范围确定感知终端参与感知的地理位置要求:
a)基站A(如果感知目标区域需有多个基站协作完成,此处可扩展为多个基站的情况)发送感知信号,用于接收感知信号和测量的UE的位置区域。
b)基站A(如果感知目标区域需有多个基站协作完成,此处可扩展为多个基站的情况)接收感知信号和测量,用于发送感知信号的UE的位置区域。
c)UE自发自收感知的位置区域。
d)UE间收发的位置区域。
SF基于射频指纹数据库获得上述地理位置要求对应的UE测量量和测量量数值要求,例如测量量数值要求为:cell1的DL RSRP在-70dbm到-75dbm区间,cell2的DL RSRP在-100dbm到-105dbm区间,cell3的DL RSRP在-89dbm到-92dbm区间。如果是多天线系统上述测量量和测量量数据可进一步表示为对来自UE的波束M的测量。
考虑到不同的定位方法,本实施例中所述选择感知终端的第一条件包括如下一项或多项(本实施例中,由基站决定UE是否满足第一条件,因基站可对UE的上行信号做测量,故第一条件可以是完全基于上行测量结果。同时UE也可以上报下行测量结果给基站,所以第一条件可以是上行和/或下行测量结果的数值要求):
CIR测量值要求,该参数是信道响应的复数结果。考虑空口传输开销,一般该信道冲击响应指基站侧的UE上行信道冲击响应测量值;
上行和/或下行接收信号强度(Received Signal Strength,RSS)测量值要求,该参数是基站和/或UE接收宽带功率,包括在接收机脉冲形成滤波器定义的带宽内的热噪声和接收机产生的噪声。测量的参考点为天线端口,RSS是某个时间内(如一个符号)接收到的所有信号(包括导频信号、数据信号、干扰信号和/或噪声信号等)功率的平均值。
SNR,该参数是基站和/或UE接收到的有用信号的强度与接收到的噪声强度的比值。
上行和/或下行RSRP测量值要求,该参数是在测量频带上参考信号功率的平均值。RSRP是某个时间内(如一个符号)承载参考信号的所有资源上接收到的信号功率的平均值。
上行和/或下行RSRQ测量值要求,该参数是RSRP和RSS的比值,当RSRP和RSS测量带宽不同时需要通过一个系数来调整,如RSRQ=N×RSRP/RSS,其中N表示RSS测量带宽中的RB数量。
上行和/或下行RSTD测量值要求,该参数是接收信号到达多个TRP的时间差。
UL-AoA和/或DL-AoD测量值要求,该参数是对角度进行测量,通常在多天线系统中应用,对波束的到达角或离开角进行测量;
UE和基站间的RTT测量值要求,假设节点1发送信号的时间是t0,节点2接收该信号的时间是t1,节点2发送信号的时间是t2,节点1接收该信号的时间是t3,RTT=t1-t0+t3-t2=(t3-t0)+(t1-t2);
候选感知终端数量指示,指示所需的候选感知终端的最大数量,从而避免过多测量和数据交互。
需要说明的是,在多天线系统中上述信号进一步地可以是对每个波束上的信号进行测量。
步骤3:感知功能发送第二感知请求(即图中的感知UE选择请求)给确定的一个或多个基站。需要说明的是,该第二感知请求消息是一个非UE关联(non-UE associated)的消息,或者说是一个全局(global)的消息。如果 感知功能与基站间协议栈经AMF转发,那么该消息使用相同的方式,但是承载该消息的NGAP消息(即核心网与基站之间的协议栈消息)是非UE关联(non-UE associated)的消息,即不携带基站分配的UE NGAP ID(即RAN UE NGAP ID);如果感知功能与基站间协议栈无需AMF转发,那么该消息可以由感知功能直接发送给对应的基站。
步骤4:基站根据所收到的第一条件,以及基站侧的上行信号测量结果和/或UE上报的下行测量结果确定哪些UE满足第一条件。可选的,如果满足条件UE数量较多,基站根据第一条件中候选感知终端数量指示,从中选择更优的候选感知终端,组成候选感知终端列表。
步骤5:基站向SF发送感知响应消息,感知响应消息包括候选感知终端列表,例如通过UE网络标识(RAN-UE-NGAP ID等)形成候选感知终端列表。可选的,感知响应消息还可以包括以下信息,用于辅助SF进一步选择终端:满足所述第一条件的测量结果,例如所测量的多个TRP的接收信号强度值。
需要说明的是,本实施例更适合于处于连接态的UE,基站侧可以对UE上行信号进行测量,可选的,基站可指示UE对下行信号进行测量和上报。
步骤6:SF根据所收到的候选感知终端列表,根据UE标识信息查询UE的感知能力和授权信息,获得UE授权支持哪些感知业务,从而确定感知终端。可选的,SF可根据感知响应消息中的测量结果获得UE的位置信息,用于辅助确定UE;或者基于UE ID对UE发起定位流程获得UE位置信息。
由于SF确定感知终端参与感知的地理位置要求时,涉及多种感知方式下的地理位置要求,因而SF收到的感知响应也涉及多种地理位置要求下确定的终端的感知响应,本步骤中,SF还需要确定感知方式,并从而选择与感知方式对应的感知终端。
步骤7:SF将确定的感知方式(基站发UE收,基站收UE发,UE间发送,UE自发自收)和感知配置信息,发送给UE和基站。假设感知方式为基站发UE收,则基站发送感知信号,终端接收感知信号并测量。UE向SF发送感知测量结果。
步骤8:SF基于感知测量结果得到感知结果,并确定是否触发向第三方 或核心网功能(如AMF)发送感知响应,比如,当感知结果不满足要求时,可以继续接收更多的感知测量结果,当感知结果满足需求时,触发向第三方或核心网功能(如AMF)发送感知响应,该感知响应携带感知结果。
实施例3:一种基站与UE间的感知终端的选择方法
本实施例中,由基站确定第一条件,并广播给UE,UE基于第一条件和下行测量确定是否参与感知,并向基站发送感知响应,基站根据感知响应确定感知终端。
本实施例中,第一设备是基站,基站根据核心网功能(如SF)发送的感知请求等,确定选择感知终端的第一条件,发送给UE。UE基于下行测量判断是否满足条件,如果满足且愿意参加,发送感知响应给基站。考虑通常核心网网络功能才能查询UE签约和授权信息,因此对于基站测而言,如果UE发送感知响应给基站则表示UE同意参与感知。可选的,基站结合上行测量等信息确定感知终端和感知配置信息。
请参考图10,本申请实施例的感知终端的选择方法包括以下步骤:
步骤1:感知功能节点接收感知请求,并根据感知请求确定选择感知终端的第一条件;感知请求中包括但不限于如下信息中的一项或多项:
感知目标区域:是指感知对象可能存在的位置区域,或者,需要进行成像或三维重构的位置区域;
感知对象类型:针对感知对象可能的运动特性对感知对象进行分类,每个感知对象类型中包含了典型感知对象的运动速度、运动加速度、典型RCS等信息。
感知目标对象:当对某一个或多个感知目标对象进行感知时提供感知对象的标识信息,潜在的标识方式包括:距离、速度、角度谱上的特征标识或者基于网络可识别的UE ID标识;
感知QoS:对感知目标区域或感知对象进行感知的性能指标,包括以下至少一项:感知分辨率(进一步可包括:测距分辨率、测角分辨率、测速分辨率、成像分辨率中的至少一项)等,感知精度(进一步可包括:测距精度、测角精度、测速精度、定位精度等中的至少一项),感知范围(进一步可包括:测距范围、测速范围、测角范围、成像范围等中的至少一项),感知时 延(从感知信号发送到获得感知结果的时间间隔,或,从感知需求发起到获取感知结果的时间间隔),感知更新速率(相邻两次执行感知并获得感知结果的时间间隔),检测概率(在感知对象存在的情况下被正确检测出来的概率),虚警概率(在感知对象不存在的情况下错误检测出感知目标的概率)。
步骤2:SF根据所接收到的感知请求和网络功能的感知能力信息(如基站的感知范围、AMF的感知范围、基站所支持的感知业务的信息和/或AMF所支持的感知业务的信息等)确定感知基站,可选的,SF还确定是否需要UE参与感知,当然,也可以由基站确定是否需要UE参与感知。
步骤3:SF发送感知请求给前述确定的一个或多个基站。需要说明的是,该感知请求消息是一个非UE关联(non-UE associated)的消息,用于指示基站完成感知,选择哪些感知终端由基站确定。
步骤4:基站根据所接收到的感知请求(如感知目标区域、感知QoS等)确定是否需要UE参与感知,其中UE参与感知包括UE发送感知信号、UE接收感知信号和进行感知测量、UE发送感知辅助信息(如UE摄像头或其他传感器的数据)、UE对感知测量结果进行处理中的一种或多种。如果需要UE参与,那么确定选择感知终端的第一条件。
一种确定所述第一条件的方法是基站根据感知目标区域确定感知终端参与感知的地理位置要求:
a)基站A(如果感知目标区域需有多个基站协作完成,此处可扩展为多个基站的情况)发送感知信号,用于接收感知信号和测量的UE的位置区域。
b)基站A(如果感知目标区域需有多个基站协作完成,此处可扩展为多个基站的情况)接收感知信号和测量,用于发送感知信号的UE的位置区域。
基站基于射频指纹数据库获得上述地理位置要求对应的UE测量量和测量量数值要求,例如测量量数值要求为:cell1的DL RSRP在-70dbm到-75dbm区间,cell2的DL RSRP在-100dbm到-105dbm区间,cell3的DL RSRP在-89dbm到-92dbm区间。如果是多天线系统上述测量量和测量量数据可进一步表示为对cell的波束M的测量。
考虑到不同的定位方法,本实施例中所述选择感知终端的第一条件包括如下一项或多项:
CIR测量值要求,该参数是信道响应的复数结果。考虑空口传输开销,一般该信道冲击响应指基站侧的UE上行信道冲击响应测量值。
上行和/或下行接收信号强度(Received Signal Strength,RSS)测量值要求,该参数是UE接收宽带功率,包括在接收机脉冲形成滤波器定义的带宽内的热噪声和接收机产生的噪声。测量的参考点为天线端口,RSS是某个时间内(如一个符号)接收到的所有信号(包括导频信号、数据信号、干扰信号和/或噪声信号等)功率的平均值。
CIR测量值要求,该参数是信道响应的复数结果。考虑空口传输开销,一般该信道冲击响应指基站侧的UE上行信道冲击响应测量值;
上行和/或下行RSS测量值要求,该参数是基站和/或UE接收宽带功率,包括在接收机脉冲形成滤波器定义的带宽内的热噪声和接收机产生的噪声。测量的参考点为天线端口,RSS是某个时间内(如一个符号)接收到的所有信号(包括导频信号、数据信号、干扰信号和/或噪声信号等)功率的平均值。
SNR,该参数是基站和/或UE接收到的有用信号的强度与接收到的噪声强度的比值。
上行和/或下行RSRP测量值要求,该参数是在测量频带上参考信号功率的平均值。RSRP是某个时间内(如一个符号)承载参考信号的所有资源上接收到的信号功率的平均值。
上行和/或下行参考信号接收质量(RSRQ)测量值要求,该参数是RSRP和RSS的比值,当RSRP和RSS测量带宽不同时需要通过一个系数来调整,如RSRQ=N×RSRP/RSS,其中N表示RSS测量带宽中的RB数量。
上行和/或下行RSTD测量值要求,该参数是接收信号到达多个TRP的时间差。
DL-AoA和/或DL-AoD测量值要求,该参数是对角度进行测量,通常在多天线系统中应用,对波束的到达角或离开角进行测量;
UE和基站间的RTT测量值要求,假设节点1发送信号的时间是t0,节点2接收该信号的时间是t1,节点2发送信号的时间是t2,节点1接收该信号的时间是t3,RTT=t1-t0+t3-t2=(t3-t0)+(t1-t2);
候选感知终端数量指示,指示所需的候选感知终端的最大数量,从而避 免过多测量和数据交互。
需要说明的是,在多天线系统中上述信号进一步地可以是对每个波束上的信号进行测量。
根据所确定的第一条件,如果基站基于基站侧已知信息(如上行测量结果)确定了候选UE。考虑通常核心网网络功能才能查询UE签约和授权信息,因此对于基站测而言,还应发送感知请求消息给UE,所述感知请求消息包括感知内容、感知时长、感知费用等信息,UE根据所述信息判断是否愿意参与,如果UE发送感知响应给基站则表示UE同意参与感知。
步骤5:如果基站侧的信息无法确定满足第一条件的UE,那么基站在相应的小区上广播发送第一条件,用于触发满足第一条件且有意愿参与感知的终端发送感知响应消息。进一步地,基站可以根据所确定区域在相应小区的指定波束上广播发送,避免小区覆盖范围内的UE都接收到该广播信息,节省小区广播开销和UE检测开销。
所述广播发送第一条件可以是通过寻呼消息发送第一条件,也可以是通过小区的系统信息发送第一条件。空闲态和去激活态的终端会监视寻呼消息和系统信息改变,从而接收寻呼消息或系统信息获取到第一条件。
第一条件可以是只发送给空闲态和去激活态的UE,也可以是发送给所有状态的UE。对于后者,对于连接态的UE,有两种发送方法:
方法1:第一条件可以被携带在专用RRC消息中发送给UE。
方法2:寻呼消息使用一个专用的RNTI,连接态的UE也监听这个专用的RNTI,从而接收到寻呼消息得到第一条件。
可选的,除了发送第一条件外,基站还可以向终端发送感知信息,比如,感知信息包括费用信息(如参与感知任务可获得多少流量或话费等),预估的感知持续时长等,终端可以基于这些信息评估是否有意愿加入该感知任务。
步骤6:终端可根据当前已完成的下行信号测量确定自己是否满足第一条件。或者终端根据所接收到的第一条件对所述下行信号进行测量,根据测量结果确定是否满足第一条件。如果满足,然后确定是否响应基站以发送感知响应消息。可能的方法包括:
方法1:满足第一条件的终端总是响应基站以发送感知响应消息。
方法2:满足第一条件的终端可以有一定的自主权,可以根据自己的情况,比如感知费用信息、电量情况等确定是否发送感知响应消息。比如当终端的电量低时或者感知费用低于某个门限值,即使满足第一条件,终端也可以决定不发送感知响应消息。
步骤7:终端向基站发送感知响应消息。
步骤8:基站根据所接收到的感知响应消息和基站侧信息确定感知终端和感知配置信息。
步骤9:基站发送感知信号,终端接收感知信号并测量。或者,终端发送感知信号,基站接收并测量。
步骤10:基站和/或UE向SF发送感知测量结果。
步骤11:SF基于感知测量结果得到感知结果,并确定是否触发向第三方或核心网功能(如AMF)发送感知响应,比如,当感知结果不满足要求时,可以继续接收更多的感知测量结果,当感知结果满足需求时,触发向第三方或核心网功能(如AMF)发送感知响应,该感知响应携带感知结果。
实施例4:一种核心网网络功能、基站和UE协同的感知终端选择方法
请参考图11,本实施例中,基站确定第一条件,基于下行和/或上行测量结果确定候选感知终端列表,SF根据候选感知终端列表确定感知终端。
本实施例中,第一设备是基站,基站根据核心网功能(如SF)发送的感知请求,确定选择感知终端的第一条件。根据所确定的第一条件,如果基站根据基站侧信息可确定候选感知终端列表,那么发送候选感知终端列表给SF。如果基站无法确定候选感知终端列表,那么发送第一条件给UE,基站侧根据所收到的UE的感知响应信息和/或基站侧信息确定候选感知终端列表。其他步骤可以参考实施例1和2,在此不再重复描述。
本实施例的上述方法适用于适用于5.5G或6G通信系统,或者未来的其他通信系统。
本申请实施例提供的感知终端的选择方法,执行主体可以为感知终端的选择装置。本申请实施例中以感知终端的选择装置执行感知终端的选择方法为例,说明本申请实施例提供的感知终端的选择装置。
请参考图12,本申请实施例还提供一种感知终端的选择装置120,该感 知终端的选择装置120包括:
第一确定模块121,用于确定选择感知终端的第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求。
在本申请实施例中,感知终端的选择装置确定选择感知终端的第一条件,该第一条件与感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求相关,从而可以根据第一条件确定满足条件的终端,解决了网络侧无法知道感知区域内的适合感知的终端的问题。
可选的,所述第一确定模块121,用于确定是否需要终端参与感知;若确定需要终端参与感知,所述第一设备确定选择感知终端的第一条件。
可选的,所述第一确定模块121,用于根据接收到的第一感知请求和网络功能的感知能力信息中的至少一项,确定是否需要终端参与感知;
所述第一感知请求包括以下至少一项:感知目标区域、感知对象类型、感知目标对象和感知QoS;
所述网络功能的感知能力信息包括以下至少一项:基站的感知范围、AMF的感知范围、基站所支持的感知业务的信息、AMF所支持的感知业务的信息。
可选的,所述需要终端参与感知包括以下至少一项:需要终端发送感知信号、需要终端接收感知信号并进行感知测量、需要终端发送感知辅助信息、需要终端对感知测量结果进行处理。
可选的,所述测量量数值要求包括以下至少一项:
上行和/或下行接收信号强度测量值要求;
信噪比要求;
上行和/或下行参考信号接收功率测量值要求;
上行和/或下行参考信号接收质量测量值要求;
信道冲击响应测量值要求;
上行和/或下行参考信号时间差测量值要求;
基站与终端之间的往返时间测量值要求;
上行到达角测量值要求;
下行离开角测量值要求。
可选的,所述测量量数值要求包括终端对一个或多个基站的下行信号的测量数值要求,和/或,一个或多个基站对终端的上行信号的测量数值要求。
可选的,所述测量量数值要求包括一个或多个波束的信号的测量数值要求。
可选的,所述第一确定模块121,用于确定感知终端参与感知的地理位置要求;确定与所述地理位置要求对应的测量量数值要求。
可选的,所述地理位置要求包括以下至少一项:
感知方式为基站发送感知信号,终端接收感知信号并进行感知测量时,需终端参与感知的地理位置;
感知方式为终端发送感知信号,基站接收感知信号并进行感知测量时,需终端参与感知的地理位置;
感知方式为终端自身发送感知信号,自身接收感知信号并进行感知测量时,需终端参与感知的地理位置;
感知方式为终端发送感知信号,其他终端接收感知信号并进行感知测量时,需终端参与感知的地理位置。
可选的,所述感知终端的选择装置120为感知功能节点;所述感知终端的选择装置120还包括:
第一发送模块,用于向基站发送第二感知请求,所述第二感知请求中包括所述第一条件和用于接收感知响应的第二设备的标识,由所述基站广播所述第二感知请求。
可选的,所述感知终端的选择装置120还包括:
第一接收模块,用于接收终端发送的针对所述第二感知请求的感知响应;所述感知响应中包括以下至少一项:所述终端的标识、指示所述终端有意愿参与感知的指示信息、满足所述第一条件的测量量数值、辅助选择感知终端的辅助信息;
第二确定模块,用于根据所述感知响应,确定感知终端。
可选的,所述辅助信息包括以下至少一项:所述终端的朝向、所述终端的速度、所述终端保持当前运动状态的时间长度、所述终端未来预设时间内的位置信息、所述终端推荐的其他终端标识,其中,所述推荐的其他终端标 识为当感知方式为终端间收发感知信号时,与所述终端配合感知的其他终端的标识。
可选的,所述感知终端的选择装置120为感知功能节点;所述感知终端的选择装置120还包括:
第二发送模块,用于向基站发送第二感知请求,所述第二感知请求中包括所述第一条件。
可选的,所述第二感知请求中还包括候选感知终端数量指示和/或用于接收感知响应的第二设备的标识。
可选的,所述感知终端的选择装置120还包括:
第二接收模块,用于接收所述基站发送的针对所述第二感知请求的感知响应,所述感知响应中包括以下至少一项:候选感知终端列表、满足所述第一条件的测量量数值、辅助选择感知终端的辅助信息;
第三确定模块,用于根据所述感知响应,确定感知终端。
可选的,所述辅助信息包括候选终端的通信负载信息。
可选的,所述感知终端的选择装置120为基站;所述感知终端的选择装置120还包括:
第四确定模块,用于根据所述第一条件确定候选感知终端列表。
可选的,所述感知终端的选择装置120还包括:
第三发送模块,用于向所述候选感知终端列表中的终端发送第三感知请求,所述第三感知请求用于请求终端参与感知;
第三接收模块,用于接收所述终端对所述第三感知请求的感知响应,所述感知响应中指示所述终端是否同意参与感知;
第五确定模块,用于根据所述感知响应,确定目标候选感知终端列表。
可选的,所述第三感知请求中包括感知信息,所述感知信息包括以下至少一项:参与感知的费用信息和预估的感知持续时长。
可选的,所述第四确定模块,用于若所述第一条件中包括上行信号的测量量值要求,根据所述第一条件,确定候选感知终端列表;
或者
所述第四确定模块,用于若所述第一条件中包括下行信号的测量量值要 求,向终端发送第四感知请求,所述第四感知请求中包括所述第一条件;接收所述终端对所述第四感知请求的感知响应,所述感知响应中包括以下至少一项:所述终端的标识、指示所述终端有意愿参与感知的指示信息、满足所述第一条件的测量量数值、辅助选择感知终端的辅助信息;根据所述感知响应,确定候选感知终端列表;
或者
所述第四确定模块,用于若所述第一条件中包括上行信号和下行信号的测量量值要求,根据所述第一条件中的上行信号的测量值要求,确定候选感知终端;向终端发送第四感知请求,所述第四感知请求中包括所述第一条件;接收所述终端对所述第四感知请求的感知响应,所述感知响应中包括以下至少一项:所述终端的标识、指示所述终端有意愿参与感知的指示信息、满足所述第一条件的测量量数值、辅助选择感知终端的辅助信息;根据所述感知响应和自身确定的所述候选感知终端,确定候选感知终端列表。
可选的,所述感知终端的选择装置120还包括:
第六确定模块,用于所述基站根据所述候选感知终端列表,确定感知终端。
可选的,所述感知终端的选择装置120还包括:
第四发送模块,用于向感知功能节点发送所述候选感知终端列表。
本申请实施例中的感知终端的选择装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。
本申请实施例提供的感知终端的选择装置能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
请参考图13,本申请实施例还提供一种感知终端的选择装置130,该感知终端的选择装置130包括:
接收模块131,用于接收感知请求,所述感知请求中包含第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求;
第一确定模块132,用于根据所述第一条件确定是否能够参与感知;
发送模块133,用于若能够参与感知,所述终端发送感知响应。
在本申请实施例中,感知终端的选择装置接收选择感知终端的第一条件,根据第一条件确定是否满足条件,并上报到网络侧,解决了网络侧无法知道感知区域内的适合感知的终端的问题。
可选的,所述测量量数值要求包括以下至少一项:
下行接收信号强度测量值要求;
信噪比要求;
下行参考信号接收功率测量值要求;
下行参考信号接收质量测量值要求;
下行参考信号时间差测量值要求;
下行离开角测量值要求。
可选的,所述测量量数值要求包括一个或多个基站的下行信号的测量数值要求。
可选的,所述测量量数值要求包括一个或多个波束的信号的测量数值要求。
可选的,所述感知请求中还包括用于接收所述感知响应的第二设备的标识,和/或候选感知终端数量指示;所述发送模块133,用于向所述用于接收所述感知响应的第二设备发送感知响应。
可选的,所述接收模块131,用于接收基站发送的感知请求,所述感知请求通过寻呼消息或小区的系统消息或专用的RRC消息携带。
可选的,所述第一确定模块132,用于根据当前已完成的下行信号测量结果确定是否满足所述第一条件;或者,根据所述第一条件,对下行信号进行测量,并根据测量结果确定是否满足第一条件。
可选的,所述第一确定模块132,用于若满足所述第一条件,确定能够参与感知;或者,若满足所述第一条件,根据自身情况确定是否能够参与感知。
可选的,所述感知请求还包括感知信息,所述感知信息包括以下至少一项:参与感知的费用信息,预估的感知持续时长;所述第一确定模块132,用于根据所述感知信息,确定是否能够参与感知。
可选的,所述感知响应中包括以下至少一项:
所述终端的标识;
指示所述终端有意愿参与感知的指示信息;
满足所述第一条件的测量量数值;
辅助选择感知终端的辅助信息。
可选的,所述感知终端的选择装置130还包括:
连接模块,用于若所述终端处于空闲态或去激活态,端发起RRC连接建立请求或RRC连接恢复请求以进入连接态,发起RRC连接建立请求或RRC连接恢复请求的原因为响应感知请求。
本申请实施例中的感知终端的选择装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的感知终端的选择装置能够实现图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
请参考图14,本申请实施例还提供一种感知终端的选择装置140,该感知终端的选择装置140包括:
接收模块141,用于获取第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求;
执行模块142,用于执行以下至少一项:
根据所述第一条件确定候选感知终端列表;发送感知响应,所述感知响应中包括所述候选感知终端列表;
广播所述第一条件。
本申请实施例中,可选的,所述候选感知终端列表可以通过UE网络标识(如RAN-UE-NGAP ID等)形成。
在本申请实施例中,感知终端的选择装置140获取第一条件,并根据第一条件确定候选感知终端,或者,广播第一条件,由终端确定是否参与感知,解决了网络侧无法知道感知区域内的适合感知的终端的问题。
可选的,所述测量量数值要求包括以下至少一项:
上行和/或下行接收信号强度测量值要求;
信噪比要求;
上行和/或下行参考信号接收功率测量值要求;
上行和/或下行参考信号接收质量测量值要求;
信道冲击响应测量值要求;
上行和/或下行参考信号时间差测量值要求;
基站和终端之间的往返时间测量值要求;
上行到达角测量值要求;
下行离开角测量值要求。
可选的,所述测量量数值要求包括一个或多个基站的下行信号的测量数值要求,和/或,一个或多个基站对感知终端的上行信号的测量数值要求。
可选的,所述测量量数值要求包括一个或多个波束的信号的测量数值要求。
可选的,所述感知响应中还包括以下至少一项:
满足所述第一条件的测量量数值;
辅助选择感知终端的辅助信息。
本申请实施例中的感知终端的选择装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。
本申请实施例提供的感知终端的选择装置能够实现图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图15所示,本申请实施例还提供一种通信设备150,包括处理器151和存储器152,存储器152上存储有可在所述处理器151上运行的程序或指令,例如,该通信设备150为第一设备时,该程序或指令被处理器151执行时实现上述第一设备执行的感知终端的选择方法实施例的各个步骤,且能达到相同的技术效果。该通信设备150为终端时,该程序或指令被处理器151执行时实现上述终端侧执行的感知终端的选择方法实施例的各个步骤,且能达到相同的技术效果。该通信设备150为基站时,该程序或指令被处理器151执行时实现上述基站侧执行的感知终端的选择方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,通信接口用于接收感知请求,所述感知请求中包含第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求;处理器用于根据所述第一条件确定是否能够参与感知;通信接口还用于若能够参与感知,发送感知响应。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图16为实现本申请实施例的一种终端的硬件结构示意图。
该终端160包括但不限于:射频单元161、网络模块162、音频输出单元163、输入单元164、传感器165、显示单元166、用户输入单元167、接口单元168、存储器169以及处理器1610等中的至少部分部件。
本领域技术人员可以理解,终端160还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图16中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元164可以包括图形处理单元(Graphics Processing Unit,GPU)1641和麦克风1642,GPU1641对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元166可包括显示面板1661,可以采用液晶显示器、有机发光二极管等形式来配置显示面板1661。用户输入单元167包括触控面板1671以及其他输入设备1672中的至少一种。触控面板1671,也称为触摸屏。触控面板1671可包括触摸检测装置和触摸控制器两个部分。其他输入设备1672可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元161接收来自网络侧设备的下行数据后,可以传输给处理器1610进行处理;另外,射频单元161可以向网络侧设备发送上行数据。通常,射频单元161包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器169可用于存储软件程序或指令以及各种数据。存储器169可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器169可以包括易失性存储器或非易失性存储器,或者,存储器169可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器169包括但不限于这些和任意其它适合类型的存储器。
处理器1610可包括一个或多个处理单元;可选的,处理器1610集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1610中。
其中,射频单元161,用于接收感知请求,所述感知请求中包含第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求;
处理器1610,用于根据所述第一条件确定是否能够参与感知;
射频单元161,还用于若能够参与感知,发送感知响应。
在本申请实施例中,终端接收选择感知终端的第一条件,根据第一条件确定是否满足条件,并上报到网络侧,解决了网络侧无法知道感知区域内的 适合感知的终端的问题。
可选的,所述测量量数值要求包括以下至少一项:
下行接收信号强度测量值要求;
信噪比要求;
下行参考信号接收功率测量值要求;
下行参考信号接收质量测量值要求;
下行参考信号时间差测量值要求;
下行离开角测量值要求。
可选的,所述测量量数值要求包括一个或多个基站的下行信号的测量数值要求。
可选的,所述测量量数值要求包括一个或多个波束的信号的测量数值要求。
可选的,所述感知请求中还包括用于接收所述感知响应的第二设备的标识,和/或候选感知终端数量指示;所述射频单元161,用于向所述用于接收所述感知响应的第二设备发送感知响应。
可选的,所述射频单元161,用于接收基站发送的感知请求,所述感知请求通过寻呼消息或小区的系统消息或专用的RRC消息携带。
可选的,所述处理器1610,用于根据当前已完成的下行信号测量结果确定是否满足所述第一条件;或者,根据所述第一条件,对下行信号进行测量,并根据测量结果确定是否满足第一条件。
可选的,所述处理器1610,用于若满足所述第一条件,确定能够参与感知;或者,若满足所述第一条件,根据自身情况确定是否能够参与感知。
可选的,所述感知请求还包括感知信息,所述感知信息包括以下至少一项:参与感知的费用信息,预估的感知持续时长;所述处理器1610,用于根据所述感知信息,确定是否能够参与感知。
可选的,所述感知响应中包括以下至少一项:
所述终端的标识;
指示所述终端有意愿参与感知的指示信息;
满足所述第一条件的测量量数值;
辅助选择感知终端的辅助信息。
可选的,所述处理器1610,用于若所述终端处于空闲态或去激活态,发起RRC连接建立请求或RRC连接恢复请求以进入连接态,所述终端发起RRC连接建立请求或RRC连接恢复请求的原因为响应感知请求。
本申请实施例还提供一种基站,包括处理器和通信接口,处理器用于获取第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求;执行以下至少一项:
根据所述第一条件确定候选感知终端列表,发送感知响应,所述感知响应中包括所述候选感知终端列表;
广播所述第一条件。
该基站的实施例与上述基站的方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该基站的实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图17所示,该网络侧设备170包括:天线171、射频装置172、基带装置173、处理器174和存储器175。天线171与射频装置172连接。在上行方向上,射频装置172通过天线171接收信息,将接收的信息发送给基带装置173进行处理。在下行方向上,基带装置173对要发送的信息进行处理,并发送给射频装置172,射频装置172对收到的信息进行处理后经过天线171发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置173中实现,该基带装置173包括基带处理器。
基带装置173例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图17所示,其中一个芯片例如为基带处理器,通过总线接口与存储器175连接,以调用存储器175中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口176,该接口例如为通用公共无线接口(Common Public Radio Interface,CPRI)。
具体地,本申请实施例的网络侧设备170还包括:存储在存储器175上并可在处理器174上运行的指令或程序,处理器174调用存储器175中的指 令或程序执行图14所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图18所示,该网络侧设备180包括:处理器181、网络接口182和存储器183。其中,网络接口182例如为CPRI。
具体地,本申请实施例的网络侧设备180还包括:存储在存储器183上并可在处理器181上运行的指令或程序,处理器181调用存储器183中的指令或程序执行图12所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述感知终端的选择方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述感知终端的选择方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述感知终端的选择方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:感知功能节点及终端,所述感知功能节点可用于执行如上述第一设备执行的感知终端的选择方法的步骤,所述终端可用于执行上述终端执行的感知终端的选择方法的步骤。
本申请实施例还提供了一种通信系统,包括:感知功能节点及基站,所 述感知功能节点可用于执行如上述第一设备执行的感知终端的选择方法的步骤,所述基站可用于执行上述基站执行的感知终端的选择方法的步骤。
本申请实施例还提供了一种通信系统,包括:基站及终端,所述基站可用于执行如上述第一设备执行的感知终端的选择方法的步骤,所述终端可用于执行上述终端执行的感知终端的选择方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (41)

  1. 一种感知终端的选择方法,包括:
    第一设备确定选择感知终端的第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求。
  2. 根据权利要求1所述的方法,其中,所述第一设备确定选择感知终端的第一条件包括:
    所述第一设备确定是否需要终端参与感知;
    若确定需要终端参与感知,所述第一设备确定选择感知终端的第一条件。
  3. 根据权利要求2所述的方法,其中,所述第一设备确定是否需要终端参与感知包括:
    所述第一设备根据接收到的第一感知请求和网络功能的感知能力信息中的至少一项,确定是否需要终端参与感知;
    所述第一感知请求包括以下至少一项:感知目标区域、感知对象类型、感知目标对象和感知服务质量QoS;
    所述网络功能的感知能力信息包括以下至少一项:基站的感知范围、移动管理功能AMF的感知范围、基站所支持的感知业务的信息、AMF所支持的感知业务的信息。
  4. 根据权利要求2所述的方法,其中,所述需要终端参与感知包括以下至少一项:需要终端发送感知信号、需要终端接收感知信号并进行感知测量、需要终端发送感知辅助信息、需要终端对感知测量结果进行处理。
  5. 根据权利要求1所述的方法,其中,所述测量量数值要求包括以下至少一项:
    上行和/或下行接收信号强度测量值要求;
    信噪比要求;
    上行和/或下行参考信号接收功率测量值要求;
    上行和/或下行参考信号接收质量测量值要求;
    信道冲击响应测量值要求;
    上行和/或下行参考信号时间差测量值要求;
    基站与终端之间的往返时间测量值要求;
    上行到达角测量值要求;
    下行离开角测量值要求。
  6. 根据权利要求5所述的方法,其中,所述测量量数值要求包括终端对一个或多个基站的下行信号的测量数值要求,和/或,一个或多个基站对终端的上行信号的测量数值要求。
  7. 根据权利要求5所述的方法,其中,所述测量量数值要求包括一个或多个波束的信号的测量数值要求。
  8. 根据权利要求1所述的方法,其中,所述地理位置要求包括以下至少一项:
    感知方式为基站发送感知信号,终端接收感知信号并进行感知测量时,需终端参与感知的地理位置;
    感知方式为终端发送感知信号,基站接收感知信号并进行感知测量时,需终端参与感知的地理位置;
    感知方式为终端自身发送感知信号,自身接收感知信号并进行感知测量时,需终端参与感知的地理位置;
    感知方式为终端发送感知信号,其他终端接收感知信号并进行感知测量时,需终端参与感知的地理位置。
  9. 根据权利要求1所述的方法,其中,所述第一设备为感知功能节点;所述第一设备确定选择感知终端的第一条件之后还包括:
    所述感知功能节点向基站发送第二感知请求,所述第二感知请求中包括所述第一条件和用于接收感知响应的第二设备的标识,由所述基站广播所述第二感知请求。
  10. 根据权利要求9所述的方法,其中,所述感知功能节点向基站发送第二感知请求之后还包括:
    所述感知功能节点接收终端发送的针对所述第二感知请求的感知响应;所述感知响应中包括以下至少一项:所述终端的标识、指示所述终端有意愿参与感知的指示信息、满足所述第一条件的测量量数值、辅助选择感知终端 的辅助信息;
    所述感知功能节点根据所述感知响应,确定感知终端。
  11. 根据权利要求10所述的方法,其中,所述辅助信息包括以下至少一项:所述终端的朝向、所述终端的速度、所述终端保持当前运动状态的时间长度、所述终端未来预设时间内的位置信息、所述终端推荐的其他终端标识,其中,所述推荐的其他终端标识为当感知方式为终端间收发感知信号时,与所述终端配合感知的其他终端的标识。
  12. 根据权利要求1所述的方法,其中,所述第一设备为感知功能节点;所述第一设备确定选择感知终端的第一条件之后还包括:
    所述感知功能节点向基站发送第二感知请求,所述第二感知请求中包括所述第一条件。
  13. 根据权利要求12所述的方法,其中,所述第二感知请求中还包括以下至少一项:用于接收感知响应的第二设备的标识和候选感知终端数量指示。
  14. 根据权利要求12所述的方法,其中,所述感知功能节点向基站发送第二感知请求之后还包括:
    所述感知功能节点接收所述基站发送的针对所述第二感知请求的感知响应,所述感知响应中包括以下至少一项:候选感知终端列表、满足所述第一条件的测量量数值、辅助选择感知终端的辅助信息;
    所述感知功能节点根据所述感知响应,确定感知终端。
  15. 根据权利要求14所述的方法,其中,所述辅助信息包括候选终端的通信负载信息。
  16. 根据权利要求1所述的方法,其中,所述第一设备为基站;所述第一设备确定选择感知终端的第一条件之后还包括:
    所述基站根据所述第一条件确定候选感知终端列表。
  17. 根据权利要求16所述的方法,其中,所述基站根据所述第一条件确定候选感知终端列表之后还包括:
    所述基站向所述候选感知终端列表中的终端发送第三感知请求,所述第三感知请求用于请求终端参与感知;
    所述基站接收所述终端对所述第三感知请求的感知响应,所述感知响应 中指示所述终端是否同意参与感知;
    所述基站根据所述感知响应,确定目标感知终端列表。
  18. 根据权利要求17所述的方法,其中,所述第三感知请求中包括感知信息,所述感知信息包括以下至少一项:参与感知的费用信息和预估的感知持续时长。
  19. 根据权利要求16所述的方法,其中,所述基站根据所述第一条件,确定候选感知终端列表包括:
    若所述第一条件中包括上行信号的测量量值要求,所述基站根据所述第一条件,确定候选感知终端列表;
    或者
    若所述第一条件中包括下行信号的测量量值要求,所述基站向终端发送第四感知请求,所述第四感知请求中包括所述第一条件;
    所述基站接收所述终端对所述第四感知请求的感知响应,所述感知响应中包括以下至少一项:所述终端的标识、指示所述终端有意愿参与感知的指示信息、满足所述第一条件的测量量数值、辅助选择感知终端的辅助信息;
    所述基站根据所述感知响应,确定候选感知终端列表;
    或者
    若所述第一条件中包括上行信号和下行信号的测量量值要求,所述基站根据所述第一条件中的上行信号的测量值要求,确定候选感知终端;
    所述基站向终端发送第四感知请求,所述第四感知请求中包括所述第一条件;
    所述基站接收所述终端对所述第四感知请求的感知响应,所述感知响应中包括以下至少一项:所述终端的标识、指示所述终端有意愿参与感知的指示信息、满足所述第一条件的测量量数值、辅助选择感知终端的辅助信息;
    所述基站根据所述感知响应和自身确定的所述候选感知终端,确定候选感知终端列表。
  20. 根据权利要求16所述的方法,其中,所述基站根据所述第一条件确定候选感知终端列表之后还包括:
    所述基站向感知功能节点发送所述候选感知终端列表。
  21. 一种感知终端的选择方法,包括:
    终端接收感知请求,所述感知请求中包含第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求;
    所述终端根据所述第一条件确定是否能够参与感知;
    若能够参与感知,所述终端发送感知响应。
  22. 根据权利要求21所述的方法,其中,所述测量量数值要求包括以下至少一项:
    下行接收信号强度测量值要求;
    信噪比要求;
    下行参考信号接收功率测量值要求;
    下行参考信号接收质量测量值要求;
    下行参考信号时间差测量值要求;
    下行离开角测量值要求。
  23. 根据权利要求22所述的方法,其中,所述测量量数值要求包括一个或多个基站的下行信号的测量数值要求。
  24. 根据权利要求22所述的方法,其中,所述测量量数值要求包括一个或多个波束的信号的测量数值要求。
  25. 根据权利要求21所述的方法,其中,所述感知请求中还包括用于接收所述感知响应的第二设备的标识和/或候选感知终端数量指示;
    所述终端发送感知响应包括:所述终端向所述用于接收所述感知响应的第二设备发送感知响应。
  26. 根据权利要求21所述的方法,其中,所述终端接收感知请求包括:
    所述终端接收基站发送的感知请求,所述感知请求通过寻呼消息或小区的系统消息或专用的无线资源控制RRC消息携带。
  27. 根据权利要求21所述的方法,其中,所述终端根据所述第一条件确定是否能够参与感知包括:
    所述终端根据当前已完成的下行信号测量结果确定是否满足所述第一条件;
    或者
    所述终端根据所述第一条件,对下行信号进行测量,并根据测量结果确定是否满足第一条件。
  28. 根据权利要求21所述的方法,其中,所述终端根据所述第一条件确定是否能够参与感知包括:
    若满足所述第一条件,所述终端确定能够参与感知;
    或者
    若满足所述第一条件,所述终端根据自身情况确定是否能够参与感知。
  29. 根据权利要求28所述的方法,其中,所述感知请求还包括感知信息,所述感知信息包括以下至少一项:参与感知的费用信息,预估的感知持续时长;
    所述终端根据自身情况确定是否能够参与感知包括:所述终端根据所述感知信息,确定是否能够参与感知。
  30. 根据权利要求21所述的方法,其中,所述感知响应中包括以下至少一项:
    所述终端的标识;
    指示所述终端有意愿参与感知的指示信息;
    满足所述第一条件的测量量数值;
    辅助选择感知终端的辅助信息。
  31. 根据权利要求21所述的方法,其中,所述终端发送感知响应之前还包括:
    若所述终端处于空闲态或去激活态,所述终端发起RRC连接建立请求或RRC连接恢复请求以进入连接态,所述终端发起RRC连接建立请求或RRC连接恢复请求的原因为响应感知请求。
  32. 一种感知终端的选择方法,包括:
    基站获取第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求;
    所述基站执行以下至少一项:
    根据所述第一条件确定候选感知终端列表,发送感知响应,所述感知响 应中包括所述候选感知终端列表;
    广播所述第一条件。
  33. 根据权利要求32所述的方法,其中,所述测量量数值要求包括以下至少一项:
    上行和/或下行接收信号强度测量值要求;
    信噪比要求;
    上行和/或下行参考信号接收功率测量值要求;
    上行和/或下行参考信号接收质量测量值要求;
    信道冲击响应测量值要求;
    上行和/或下行参考信号时间差测量值要求;
    基站和终端之间的往返时间测量值要求;
    上行到达角测量值要求;
    下行离开角测量值要求。
  34. 根据权利要求33所述的方法,其中,所述测量量数值要求包括一个或多个基站的下行信号的测量数值要求,和/或,一个或多个基站对感知终端的上行信号的测量数值要求。
  35. 根据权利要求33所述的方法,其中,所述测量量数值要求包括一个或多个波束的信号的测量数值要求。
  36. 根据权利要求32所述的方法,其中,所述感知响应中还包括以下至少一项:
    满足所述第一条件的测量量数值;
    辅助选择感知终端的辅助信息。
  37. 一种感知终端的选择装置,包括:
    第一确定模块,用于确定选择感知终端的第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求。
  38. 一种感知终端的选择装置,包括:
    接收模块,用于接收感知请求,所述感知请求中包含第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要 求对应的测量量数值要求;
    第一确定模块,用于根据所述第一条件确定是否能够参与感知;
    发送模块,用于若能够参与感知,所述终端发送感知响应。
  39. 一种感知终端的选择装置,包括:
    接收模块,用于获取第一条件,所述第一条件包括:感知终端参与感知的地理位置要求,和/或,与所述地理位置要求对应的测量量数值要求;
    执行模块,用于执行以下至少一项:
    根据所述第一条件确定候选感知终端列表;发送感知响应,所述感知响应中包括所述候选感知终端列表;
    广播所述第一条件。
  40. 一种通信设备,包括处理器和存储器,其中,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至20任一项所述的感知终端的选择方法的步骤;或者,所述程序或指令被所述处理器执行时实现如权利要求21至31任一项所述的感知终端的选择方法的步骤;或者,所述程序或指令被所述处理器执行时实现如权利要求32至36任一项所述的感知终端的选择方法的步骤。
  41. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至20任一项所述的感知终端的选择方法的步骤,或者,所述程序或指令被处理器执行时实现如权利要求21至31任一项所述的感知终端的选择方法的步骤,或者,所述程序或指令被处理器执行时实现如权利要求32至36任一项所述的感知终端的选择方法的步骤。
PCT/CN2023/096060 2022-05-30 2023-05-24 感知终端的选择方法、装置及通信设备 WO2023231865A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210602525.7A CN117202085A (zh) 2022-05-30 2022-05-30 感知终端的选择方法、装置及通信设备
CN202210602525.7 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023231865A1 true WO2023231865A1 (zh) 2023-12-07

Family

ID=88983768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096060 WO2023231865A1 (zh) 2022-05-30 2023-05-24 感知终端的选择方法、装置及通信设备

Country Status (2)

Country Link
CN (1) CN117202085A (zh)
WO (1) WO2023231865A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106534239A (zh) * 2015-09-11 2017-03-22 上海交通大学 一种获取感知数据的方法和装置
CN107656241A (zh) * 2017-09-28 2018-02-02 北京知势技术服务有限公司 基于参与式感知的搜索方法、搜索服务器及感知节点
US20180176103A1 (en) * 2016-01-29 2018-06-21 State Grid Jiangsu Electric Power Company Nanjing Power Supply Company Cooperative coverage method of information perception for distributed network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106534239A (zh) * 2015-09-11 2017-03-22 上海交通大学 一种获取感知数据的方法和装置
US20180176103A1 (en) * 2016-01-29 2018-06-21 State Grid Jiangsu Electric Power Company Nanjing Power Supply Company Cooperative coverage method of information perception for distributed network
CN107656241A (zh) * 2017-09-28 2018-02-02 北京知势技术服务有限公司 基于参与式感知的搜索方法、搜索服务器及感知节点

Also Published As

Publication number Publication date
CN117202085A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
KR101842565B1 (ko) 관리되지 않는 네트워크에서의 액세스 포인트 위치 탐색 기법
RU2632475C1 (ru) Инициированное точкой доступа позиционирование по времени распространения
US11523252B2 (en) Positioning method, terminal, and server
US9404997B2 (en) Communication station and method for time-of-flight positioning using cooperating stations
WO2022022138A1 (zh) 通信方法以及相关联的通信装置、介质和芯片
CN114339899B (zh) 网络切换方法、装置和设备
WO2023093894A1 (zh) 感知业务实现方法、装置、网络侧设备及终端
WO2023231865A1 (zh) 感知终端的选择方法、装置及通信设备
KR20130068445A (ko) 단말이 위치정보를 획득하는 방법 및 네트워크 노드가 위치정보를 단말에 제공해주는 방법
WO2022063319A1 (zh) 定位测量的方法、装置、设备及可读存储介质
WO2023098810A1 (zh) 定位方法、装置、终端及通信设备
WO2023179617A1 (zh) 定位方法、装置、终端及网络侧设备
WO2024051545A1 (zh) 测量信息发送方法、接收方法及通信设备
WO2023061458A1 (zh) 定位方法、终端及网络侧设备
WO2024051543A1 (zh) 信息处理方法、装置及通信设备
WO2023231868A1 (zh) 感知方式切换方法、装置、通信设备及存储介质
WO2023231846A1 (zh) 感知方式切换处理方法、装置、通信设备及可读存储介质
WO2023231842A1 (zh) 感知方式切换方法、装置、终端及网络侧设备
WO2023193684A1 (zh) 验证终端位置的方法、终端及网络侧设备
WO2022152265A1 (zh) 定位方法、装置、设备及存储介质
WO2023231844A1 (zh) 感知测量方法、装置、设备、终端和存储介质
WO2023236979A1 (zh) 定位模型的选择方法、终端及网络侧设备
WO2023231870A1 (zh) 通信方法、装置、终端、网络侧设备及核心网设备
US20240179769A1 (en) Node selection method, terminal, and network side device
WO2024032460A1 (zh) 数据收集方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815049

Country of ref document: EP

Kind code of ref document: A1