WO2022198791A1 - 一种用于涂料印染粘合剂的改性明胶及其制备方法与应用 - Google Patents

一种用于涂料印染粘合剂的改性明胶及其制备方法与应用 Download PDF

Info

Publication number
WO2022198791A1
WO2022198791A1 PCT/CN2021/097453 CN2021097453W WO2022198791A1 WO 2022198791 A1 WO2022198791 A1 WO 2022198791A1 CN 2021097453 W CN2021097453 W CN 2021097453W WO 2022198791 A1 WO2022198791 A1 WO 2022198791A1
Authority
WO
WIPO (PCT)
Prior art keywords
gelatin
pdms
modified
dyeing
coating
Prior art date
Application number
PCT/CN2021/097453
Other languages
English (en)
French (fr)
Inventor
李天铎
许静
马慧君
班青
Original Assignee
齐鲁工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 齐鲁工业大学 filed Critical 齐鲁工业大学
Publication of WO2022198791A1 publication Critical patent/WO2022198791A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H1/00Macromolecular products derived from proteins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/52General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing synthetic macromolecular substances
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/52General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing synthetic macromolecular substances
    • D06P1/5264Macromolecular compounds obtained otherwise than by reactions involving only unsaturated carbon-to-carbon bonds
    • D06P1/5292Macromolecular compounds obtained otherwise than by reactions involving only unsaturated carbon-to-carbon bonds containing Si-atoms

Definitions

  • the invention belongs to the application field of gelatin, and relates to a modified gelatin used for a paint printing and dyeing adhesive and a preparation method and application thereof.
  • Paint dyeing has the advantages of wide fiber adaptability, complete chromatogram, convenient color matching, low water consumption, energy saving and consumption reduction, so it is widely respected in the dyeing and finishing industry. Unlike dyes, coatings have no affinity with fiber fabrics, and adhesives are required to fix the coatings on the surface of the fabrics. Therefore, the preparation technology of adhesives is one of the key technologies for developing coating dyeing.
  • the adhesives used for pigment printing are basically oil/water emulsions of polymers. Under certain process conditions, the adhesives are treated on the surface of the fabric, and the adhesives will form a film to fix the paint on the fabric.
  • Gelatin is an extremely important protein-based biomass material, which has been widely used in various fields, especially in food, medicine and chemical industry. At the same time, gelatin is also a high-value adhesive raw material.
  • Gelatin has a long history as an adhesive. Gelatin has the advantages of short curing time of the adhesive layer, good adhesion to wood, high bonding strength, simple glue adjustment, and no need to add other additives.
  • the gelatin adhesive alone has the disadvantages of high viscosity, not easy to brush and level, poor stability, large viscosity changes with the environment, and extremely hydrophilic gelatin, which leads to low film fastness. Therefore, when gelatin is used as a binder, it needs to be modified.
  • the molecular structure of gelatin mainly contains amino group (-NH 2 ), carboxyl group (-COOH), hydroxyl group (-OH), mercapto group (-SH), etc. The existence of these groups provides the possibility for gelatin modification.
  • Chinese patent document CN106833455A (201710079034.8) provides a method for preparing a modified gelatin-acrylic resin adhesive.
  • potassium persulfate is used to initiate, polymerize and complete the reaction to obtain a solid content of 45% and a viscosity of 45%. It is a yellow transparent adherend of 200 to 300 mPa ⁇ s.
  • the viscosity of gelatin is preferably lower than 100mPa ⁇ s, and because of the high modification temperature of this patent, the gelatin structure is easily destroyed, and the problem of denaturation or gelation is easy to occur.
  • Chinese patent document CN106192473A discloses a polylysine-gelatin composite coating dyeing adhesive, which belongs to the field of printing and dyeing.
  • the coating dyeing adhesive is mixed by polylysine and gelatin in a weight ratio of 1:150-170
  • the preparation method is as follows: the polylysine alcohol preparation and the gelatin are mixed according to the weight ratio and then stirred under ultraviolet light for 20-30 hours; after the irradiation is completed, the mixture is placed in a refrigerator for 24-36 hours and left to stand at a low temperature, and the mixture is placed in a refrigerator for 24-36 hours.
  • the composite coating dyeing binder of the present invention and the coating are mixed and applied to the textile according to the weight ratio of 1:3 to 5, which can significantly improve the dyeing color depth of the coating and improve the rubbing fastness of the dyed fabric. and washing fastness, with little effect on the fabric handle.
  • the composite material of polylysine and gelatin in this patent is cross-linked by ultraviolet light, polylysine has strong hygroscopicity, and the modified gelatin has no hydrophobicity; Salts, phosphates, copper ions, etc. may combine with it to reduce the activity.
  • the present invention provides a modified gelatin for paint printing and dyeing adhesive, and a preparation method and application thereof.
  • a modified gelatin used for paint printing and dyeing adhesives, using epoxy polysiloxane (PDMS-E) emulsion droplets to modify the gelatin the average particle size of the epoxy polysiloxane emulsion droplets is 500 ⁇ 750nm, the mass ratio of gelatin and PDMS-E is 1:0.75-0.80; the viscosity of the modified gelatin is 1.10-1.12mPa s, the conversion rate of primary amino groups of gelatin is 11-13% (molar percentage), PDMS- The consumption of epoxy groups in E is 22-24% (mol%).
  • the secondary structure content of modified gelatin is: ⁇ -sheet is 30-31%; random coil is 26.2-27.5%; ⁇ -helical structure is 21.4-23.5%; ⁇ -turn is 19.8-20.2%.
  • the molecular weight (Mw) of the gelatin is 1.40 ⁇ 10 5 g/mol, the Mw/Mn is 1.43, and the content of primary amino groups in the gelatin is 4.95 ⁇ 10 -4 g mol -1 .
  • the microscopic morphology of the modified gelatin is a uniformly distributed shell-core structure.
  • the invention adopts grafted PDMS-E emulsion drop to modify gelatin, which can not only retain the main properties of the gelatin parent main chain, but also the modified polymer can obtain new properties from the grafted side chain.
  • Treating the surface of a fabric with the modified gelatin of the present invention forms a film that holds the coating on the fabric.
  • anionic surfactants makes the polymer strong in adhesion, and at the same time endows the material with properties such as hydrophobicity, heat resistance, and flexibility.
  • Unreacted primary amino groups can form hydrogen bonds with other polar compounds added to the fabric, and unreacted epoxy groups may open rings to generate hydroxyl groups, which will further form hydrogen bonds, making the paint and fabric more tightly bound .
  • the present invention also provides a preparation method of the above-mentioned modified gelatin, comprising the following steps:
  • n 6 to 14;
  • PDMS-E as the dispersed phase was passed through the pores of the SPG membrane emulsifier under nitrogen pressure and added to deionized water containing sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate (SDBS) and glacial acetic acid , forming PDMS-E oil-in-water emulsion;
  • SDS sodium dodecyl sulfate
  • SDBS sodium dodecylbenzenesulfonate
  • glacial acetic acid forming PDMS-E oil-in-water emulsion
  • the specific method of step (1) is as follows: firstly, dissolving C 4 H 9 Li in benzene, adding D 3 dissolved in benzene under the condition of reducing pressure and passing argon, and after reacting for a period of time, adding THF to continue After reacting for a period of time, C 2 H 7 ClSi was injected to stop the reaction; then the product was filtered, distilled under reduced pressure, and purified to obtain PDMS-H.
  • the molar ratio of D 3 /C 4 H 9 Li/C 2 H 7 ClSi is 1.9-2.1:3.9-4.1:1.
  • the volume of C 4 H 9 Li is 2.3-2.5 times that of benzene; the volume of THF is 4.8-5.2 times that of benzene.
  • the reaction is performed for 28-32 min; after adding THF, the reaction is continued for 7.5-8.5 h.
  • step (2) is as follows: pass argon gas into the AGE, add chloroplatinic acid after 25-35 minutes; raise the temperature to 78-82° C., add PDMS-H dropwise, and after the dropwise addition is completed, raise the temperature At 108-112°C, after the reaction for 5.5-6.5 h, the product was purified by distillation under reduced pressure to obtain the product epoxy polysiloxane (PDMS-E).
  • PDMS-E product epoxy polysiloxane
  • the mass ratio of AGE to chloroplatinic acid is 1:0.011-0.012.
  • the molar ratio of PDMS-H to AGE is 1.5-1.7:1.
  • the SDS/SDBS ratio (w/w) is 0.43-0.54, and the total concentration of surfactant in deionized water is between 0.35-0.40 wt%.
  • the average pore size of the SPG membrane is 0.5 ⁇ 0.1 ⁇ m.
  • the concentration of glacial acetic acid in deionized water is 2-3 mol/L.
  • the mass fraction of PDMS-E in the oil-in-water emulsion is 0.95-1.05%.
  • the concrete method of step (4) is:
  • a gelatin solution Dissolve the gelatin in distilled water to prepare a gelatin solution. After 2.5-3.5 hours, heat the gelatin solution to 49-51 °C to ensure complete dissolution of the gelatin; then, use sodium hydroxide solution to adjust the pH of the gelatin solution to 10.0 ⁇ 0.2 Then, the PDMS-E emulsion prepared in step (3) was added to the gelatin solution at a rate of 19-21 mL ⁇ min -1 , and stirred at 49-51° C., and the reaction continued for 5-6 hours.
  • the concentration of the sodium hydroxide solution in step (4) is 1.8-2.2 mol L -1 .
  • the mass percentage of gelatin in the gelatin solution in step (4) is 4.95-5.05wt%.
  • the present invention also provides the use of the above-mentioned modified gelatin in paint printing and dyeing.
  • the present invention provides the application of the above modified gelatin as a binder in paint printing and dyeing.
  • a modified printing and dyeing coating containing the above-mentioned modified gelatin comprises modified gelatin and coating, and the mass ratio of the modified gelatin and coating is 1:1.5-2.
  • the coating is a conventional dyeing coating in the textile field, including one or more of hydroxyethyl acrylate, sodium hydroxymethyl cellulose, polymethyl vinyl ether, and acrylonitrile.
  • the above-mentioned printing and dyeing paint is coated on the textile according to the coating amount of 0.03-0.035 g/cm 2 ; the base material of the textile is white blank pure cotton fabric.
  • the dyed coating also includes pigments, auxiliary agents, and the like.
  • the pigments are commonly used in the field of printing and dyeing.
  • the auxiliary agents include one or more of antioxidants, polymerization inhibitors, and defoaming agents.
  • antioxidants are all conventional products in the field of textile printing and dyeing.
  • antioxidant 1010 chemical name: tetrakis [beta-(3,5-di-tert-butyl 4-hydroxyphenyl)propionic acid] pentaerythritol ester
  • antioxidant 168 chemical name: tris(2,4-di-tert-tertiary) Butylphenyl) phosphite
  • antioxidant 1076 chemical name: n-octadecyl ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl) propionate, etc.
  • Polymerization inhibitors include polyphenol-based polymerization inhibitors, quinone-based polymerization inhibitors, aromatic amine-based polymerization inhibitors and other common polymerization inhibitors, such as hydroquinone, p-tert-butylcatechol, p-toluidine, and the like.
  • the defoamer is a silicone defoamer, and the active ingredients are polysiloxane and silicone resin, such as silicone defoamer DF-933NS.
  • a textile fabric with good color fastness contains 0.03-0.035g/cm 2 of the above-mentioned printing and dyeing coating; its glass transition temperature Tg is 129°C and 187.6°C.
  • the thermal decomposition temperature of the textile fabric is 273.8°C.
  • the base material of the textile is white blank pure cotton fabric.
  • the color fastness of the textiles tested according to the commonly used standard GB/T3920 for color fastness to rubbing is 4 to 5, and the color fastness to wet ironing tested according to GB/T3921-2008 "Color fastness to soaping of textiles"
  • the color fastness is 4, and the color fastness to perspiration tested according to the test method for color fastness to perspiration of textiles (GB/T 3922-1995) is 4.
  • the modification temperature of the modified gelatin of the present invention is 50 °C, and the conditions are mild, compared with the prior art (other methods reaction temperature is more than 60 degrees), this modification method can ensure that the gelatin structure is complete, and is not easy to denature or coagulate. glue changes.
  • the emulsion of the present invention has good stability. With the increase of the reaction time, the emulsion particles can keep dispersed evenly, the particle size will not increase continuously with the reaction time, and the phenomenon of aggregation and demulsification caused by long-term storage can be avoided.
  • the emulsion with good stability can maintain uniform dispersion and uniform structure, and the modified gelatin has uniform properties when used, and there will be no uneven coating.
  • the modified material used in the present invention uses PDMS-E latex particles without toxic pollution and will not cause harm to human health;
  • the gelatin/PDMS-E latex particle polymer (modified gelatin) prepared by the present invention has a uniform and stable shape, which changes the defect that gelatin is perishable; the presence of anionic surfactants (SDS, SDBS) makes the polymer strong in adhesion At the same time, PDMS-E endows the material with properties such as hydrophobicity, heat resistance, and flexibility.
  • the present invention uses latex particles with a particle size of 500 to 750 nm to obtain modified gelatin with a viscosity of 1.10 to 1.12 mPas.
  • the viscosity is suitable. Problems with uneven coating and thick adhesive coating due to excessive viscosity.
  • the modified gelatin of the present invention increases the heat resistance, flexibility and hydrophobicity of the fabric as a binder for paint printing and dyeing, and it is easier to closely combine the paint and the fabric during the printing and dyeing process.
  • Fig. 1 is embodiment 1 monodisperse latex particle optical microscope picture and particle size distribution figure
  • Fig. 2 is embodiment 2 monodisperse latex particle optical microscope picture and particle size distribution figure
  • Fig. 3 is comparative example 4 monodisperse latex particle optical microscope picture and particle size distribution figure
  • Fig. 4 is comparative example 5 monodisperse latex particle optical microscope picture and particle size distribution figure
  • Fig. 5 is the microscopic topography of the modified gelatin of embodiment 1;
  • Fig. 6 is the microscopic topography figure of the modified gelatin of comparative example 1;
  • Fig. 7 is the thermogravimetric analysis diagram of blank sample and embodiment 1;
  • FIG. 8 is the DSC analysis chart of the blank sample and Example 1.
  • SDS sodium dodecyl sulfate
  • SDBS sodium dodecylbenzenesulfonate
  • AGE allyl glycidyl ether
  • glacial acetic acid was purchased from Alfa Aesar, Shanghai, China, SDS and SDBS need to be recrystallized from ethanol before use.
  • Hexamethylcyclotrisiloxane ( D3 ), n - butyllithium ( C4H9Li ) and chlorodimethylsilane ( C2H7ClSi ) were purchased from Sigma Aldrich.
  • Benzene and tetrahydrofuran (THF) were purchased from China National Pharmaceutical Group Corporation (Beijing).
  • the molecular formula of chloroplatinic acid is H 14 Cl 6 O 6 Pt, the molecular weight is 517.9096, dark yellow transparent liquid, purchased from Jinan Platinum Source Chemical Co., Ltd.
  • the SPG porous glass membrane with a pore size specification of 0.5 ⁇ m was purchased from China National Pharmaceutical Group Corporation.
  • Pigskin type A gelatin was purchased from China National Pharmaceutical Group Corporation and used after dialysis.
  • the molecular weight (M w ) of gelatin determined by gel permeation chromatography was about 1.40 ⁇ 10 5 g mol ⁇ 1 , and the M w / Mn was 1.43.
  • the primary amino group content in gelatin was determined by the Van-Slyke method at 50°C, and the result was 4.95 ⁇ 10 -4 g mol -1 .
  • the Van-Slyke method is a professional method for determining the amino group content in amino acids or protein molecules. The method is to determine the content of primary amino groups in amino acids or proteins by reacting nitrous acid with primary amino groups in amino acids or proteins. The error of primary amino group content in gelatin determined by this method is less than 1%.
  • the physical size and polymer dispersion index (PDI) of the emulsion droplets were measured with a laser particle size analyzer (Zetasizer 2000, Malvern Instruments, UK). The instrument is based on the Mie scattering theory and converts the diffraction spectrum into a particle size distribution curve. First, carefully place the emulsion into a color matching test tube. Then, place the tube into a ZetaSizer 2000 laser particle analyzer and measure PDI or electrophoretic mobility.
  • the viscosity of the samples in the reaction solution at different times was measured with a Ubbelohde viscometer, and the thermostatic bath was adjusted to 50°C.
  • the Ubullet viscometer was placed vertically in the constant temperature bath, and 15 mL of the sample to be tested was added to the viscometer, except for the capillary tube.
  • the remaining two tubes are sealed, and the liquid level is pumped to the upper scale line of the glass ball at the upper end of the capillary tube through the air suction device, and the gas pumping equipment is removed at the same time, and the time required for the liquid level to flow down from the upper scale line to the lower scale line is recorded to calculate the viscosity. .
  • the Raman spectra of the reaction samples in the reaction solution at different times were recorded with a Raman spectrometer.
  • the Raman spectral data were measured using an inVia type (Renishaw, UK) laser confocal Raman spectrometer.
  • the optical microscope mode was used to focus on the surface of the capillary and adjust The stage was focused to the particle surface, and Raman spectral data were obtained using a 633 nm laser light source.
  • the Zeta potential of the reaction samples in the reaction solution at different times was measured with a Zetasizer Nano ZS90 (Malvern, UK) laser particle size analyzer, and the samples were drawn with a syringe and slowly injected into the Zeta potential cuvette. The specific Zeta potential value can be measured. The experimental results need to be repeated 3 times.
  • TEM transmission electron microscopy
  • the synthetic method of epoxy polysiloxane (PDMS-E) used in the embodiment of the present invention is as follows:
  • a modified gelatin for papermaking reinforcing agent, preparation method :
  • PDMS-E was used as the dispersed phase to pass through the pores of the SPG membrane (the average pore size of the SPG membrane was 0.5 ⁇ m) under nitrogen pressure, and then added to deionized water (the concentration of glacial acetic acid was 2 mol/L) containing SDS, SDBS and glacial acetic acid.
  • the rotational speed of the stirring magnet was 1300 rpm to form the PDMS-E oil-in-water emulsion (the mass percentage of PDMS-E in the oil-in-water emulsion was 1%).
  • the SDS/SDBS ratio (w/w) was 0.54 and the total concentration of surfactant in deionized water was 0.4 wt%.
  • the average particle size of the epoxy polysiloxane obtained in Example 1 is 678 ⁇ 65nm (as shown in Figure 1). It can be seen from the TEM picture that the structure of the modified gelatin has a core-shell structure (as shown in Figure 6). , the shape of the core-shell structure is regular and uniform, and the shell layer is easy to be adsorbed on the textile material.
  • the conversion rate of primary amino groups in gelatin was 12.5% (mol%), and the consumption of epoxy groups in PDMS-E was 23.24% (mol%).
  • a modified gelatin for papermaking reinforcing agent, preparation method :
  • PDMS-E was used as the dispersed phase, passed through the pores of the SPG membrane under nitrogen pressure (the average pore diameter of the SPG membrane was 0.5 ⁇ m), added to deionized water (acetic acid concentration of 2 mol/L) containing SDS, SDBS and glacial acetic acid, and stirred.
  • deionized water acetic acid concentration of 2 mol/L
  • the rotating speed of the magneton was 1300 rpm to form the PDMS-E oil-in-water emulsion (the mass percentage of PDMS-E in the oil-in-water emulsion was 1%).
  • the SDS/SDBS ratio (w/w) was 0.43 and the total concentration of surfactant in deionized water was 0.4 wt%.
  • the average particle size of the monodisperse epoxy polysiloxane obtained in Example 2 is 571 ⁇ 70 nm, and the core-shell structure also appears in the modified gelatin particle structure, and the conversion rate of primary amino groups in the gelatin is 11.25% (mol%).
  • the consumption of epoxy groups in -E was 22.12% (mol%).
  • a kind of modified gelatin, the preparation method is:
  • the TEM morphology of the modified gelatin is aggregated small particles (Fig. 7), and the conversion rate of primary amino groups in the gelatin is 7.5% (mol%).
  • the average particle size and dispersion index (PDI) are used to describe the size of the prepared latex particles.
  • the results show that the PDI of the emulsion particles obtained in the examples of the present invention are all less than 0.1, indicating that the emulsion particles are uniformly distributed in the solution.
  • the particle size variation coefficient (CV) was less than 21%, also indicating that the particle size distribution was sufficiently narrow. It is illustrated that the monodisperse PDME-S latex particles obtained in the present invention are suitable for modifying gelatin to obtain modified gelatin with stable performance.
  • ⁇ -sheet is a regular secondary structure, which is conducive to the extension of the polypeptide molecular chain, thereby promoting the exposure of primary amino groups.
  • the formation of the ⁇ -sheet structure makes the primary amino groups of gelatin fully exposed on the surface of latex particles.
  • the gelatin spreads evenly in the latex particles, which promotes the chemical grafting reaction between the latex particles and the gelatin, so the increase of the ⁇ -sheet structure may reduce the viscosity of the emulsion.
  • the secondary structure of gelatin modified by latex particles with different particle sizes is different, and the influence on its performance is also different.
  • the modified gelatin prepared in Examples 1 and 2 and Comparative Examples 1 and 2 was used as an adhesive and applied to textiles.
  • the modified gelatin and coating are uniformly coated on the surface of the textile, and in actual use, the surface of the textile is selected to be fully or partially coated as required.
  • the coating amount of the modified gelatin on the textile surface is 0.03-0.035 g/cm 2 .
  • a modified printing and dyeing coating and a method for using the same comprising the following steps: the mass ratio of modified gelatin and coating in the modified printing and dyeing coating is 1:1.5.
  • the fabric is white blank pure cotton fabric.
  • the modified gelatin is the gelatin obtained in Example 1.
  • the coating includes:
  • Pigment 8304 navy blue 0.4g/L, 8601 green 0.3g/L;
  • the modified printing and dyeing paint was coated on the surface of the white blank pure cotton fabric, dried at 120°C, and the coating amount was 0.03 g/cm 2 .
  • a modified printing and dyeing coating and a method for using the same comprising the following steps: the mass ratio of modified gelatin and coating in the modified printing and dyeing coating is 1:2.
  • the fabric is white blank pure cotton fabric.
  • the modified gelatin is the gelatin obtained in Example 1.
  • the coating includes:
  • Pigment 8304 navy blue 0.4g/L, 8601 green 0.3g/L;
  • the modified printing and dyeing paint was coated on the surface of the white blank pure cotton fabric, and the coating amount was 0.03 g/cm 2 .
  • a modified printing and dyeing coating and a method for using the same comprising the following steps: the mass ratio of modified gelatin and coating in the modified printing and dyeing coating is 1:1.5.
  • the fabric is white blank pure cotton fabric.
  • the modified gelatin is the gelatin obtained in Example 2.
  • the coating includes:
  • Pigment 8304 navy blue 0.4g/L, 8601 green 0.3g/L;
  • the modified printing and dyeing paint was coated on the surface of the white blank pure cotton fabric, and the coating amount was 0.035g/cm 2 .
  • a modified printing and dyeing coating and a method for using the same comprising the following steps: the mass ratio of modified gelatin and coating in the modified printing and dyeing coating is 1:1.
  • the fabric is white blank pure cotton fabric.
  • the modified gelatin is the gelatin obtained in Example 1.
  • the coating includes:
  • Pigment 8304 navy blue 0.4g/L, 8601 green 0.3g/L;
  • the modified printing and dyeing paint was coated on the surface of the white blank pure cotton fabric, and the coating amount was 0.03 g/cm 2 .
  • a modified printing and dyeing coating and a method for using the same comprising the following steps: the mass ratio of modified gelatin and coating in the modified printing and dyeing coating is 1:2.5.
  • the fabric is white blank pure cotton fabric.
  • the modified gelatin is the gelatin obtained in Example 1.
  • the coating includes:
  • Pigment 8304 navy blue 0.4g/L, 8601 green 0.3g/L;
  • the modified printing and dyeing paint was coated on the surface of the white blank pure cotton fabric, and the coating amount was 0.03 g/cm 2 .
  • a modified printing and dyeing coating and a method for using the same comprising the following steps: the mass ratio of modified gelatin and coating in the modified printing and dyeing coating is 1:1.5.
  • the fabric is white blank pure cotton fabric.
  • the modified gelatin is the gelatin obtained in Comparative Example 1.
  • the coating includes:
  • Pigment 8304 navy blue 0.4g/L, 8601 green 0.3g/L;
  • the modified printing and dyeing paint was coated on the surface of the white blank pure cotton fabric, and the coating amount was 0.03 g/cm 2 .
  • a modified printing and dyeing coating and a method for using the same comprising the following steps: the mass ratio of modified gelatin and coating in the modified printing and dyeing coating is 1:1.5.
  • the fabric is white blank pure cotton fabric.
  • the modified gelatin is the gelatin obtained in Comparative Example 2.
  • the coating includes:
  • Pigment 8304 navy blue 0.4g/L, 8601 green 0.3g/L;
  • the modified printing and dyeing paint was coated on the surface of the white blank pure cotton fabric, and the coating amount was 0.03 g/cm 2 .
  • Table 3 is the effect of different modified gelatin as adhesive:
  • Comparative Example 6 3 4 3 Blank sample (gelatin only) 1-2 1-2 1-2 1-2
  • the color fastness of the textiles dyed with the modified gelatin adhesive is good. Compared with the blank sample, the color fastness to washing, the color fastness to wet ironing, and the color fastness to perspiration are significantly improved. When the modified gelatin and printing and dyeing coatings are in a certain mass ratio, the color fastness is good.
  • Fig. 7 is blank sample (a) is the thermogravimetric analysis result of the textile sample using only gelatin as the coating, and sample (b) is the thermogravimetric analysis result of the textile sample using the modified gelatin of Example 1 as the coating;
  • the fabric selected for the sample is pure white cotton fabric.
  • the TG results show that the blank sample has two weight loss at 46.5 °C and 264.5 °C, while the modified material has only one weight loss at 273.8 °C, which shows that the thermal stability of the material after the modification of the emulsion coating has been improved.
  • FIG. 8 DSC analysis of blank sample (a), sample (b).
  • the results show that the Tg of the blank sample is 215.7 °C, while the Tg of the modified sample has two, 129 °C and 187.6 °C, indicating that the sample coated with the emulsion coating has a microphase separation structure, and the modified sample has a microphase separation structure.
  • the significant decrease in Tg indicates that the relative mobility of the polymer molecular chains increases at low temperature, which means that the flexibility of the modified material increases to a certain extent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

涉及明胶应用领域,具体涉及一种用于涂料印染粘合剂的改性明胶及其制备方法与应用,所述改性明胶是使用环氧聚硅氧烷(PDMS-E)乳液滴对明胶进行改性,所述环氧聚硅氧烷乳液滴的平均粒径为500~750nm,明胶和PDMS-E的质量比1:0.75~0.80;所述改性明胶的粘度为1.10~1.12mPa•s,明胶的伯氨基转化率为11~13%(摩尔百分比),PDMS-E中环氧基团消耗量为22~24%(摩尔百分比)。所述改性明胶作为涂料印染粘合剂在织物与涂料之间起到承接的作用,克服了明胶粘度过大导致的涂布不均匀及粘合剂涂层过厚的问题;且增加了织物的耐热性、柔韧性以及耐色牢度。

Description

一种用于涂料印染粘合剂的改性明胶及其制备方法与应用 技术领域
本发明属于明胶应用领域,涉及一种用于涂料印染粘合剂的改性明胶及其制备方法与应用。
背景技术
涂料染色具有纤维适应面广、色谱齐全、拼色方便、用水量小、节能降耗等优点,因而在染整工业上广受推崇。和染料不同,涂料与纤维织物没有亲合力,需要粘合剂将涂料固着于织物表面,因此粘合剂的制备技术是发展涂料染色的关键技术之一。目前用于涂料印花的粘合剂基本都是聚合物的油/水型乳液,在一定的工艺条件下,将粘合剂处理到织物表面,粘合剂会形成薄膜将涂料固着在织物上。明胶是一类极为重要的蛋白类生物质材料,现已普遍应用于各个领域,尤其是食品、医药和化工方面,同时,明胶也是一种价值很高的粘合剂原材料。
明胶作为粘合剂已经有较为久远的历史,明胶具有胶层凝固时间短,对木材等附着力好,胶接强度大,调胶简单,不需要加其他助剂等优点。但是,单独的明胶粘合剂具有粘度大,不容易刷胶和流平,稳定性差,粘性随环境变化较大,且明胶亲水性极强从而导致其成膜牢度低等不足。因此,当明胶作为粘合剂使用时,需要对其进行改性。明胶分子结构中主要含有氨基(-NH 2)、羧基(-COOH)、羟基(-OH)、巯基(-SH)等,这些基团的存在为明胶改性提供了可能。
中国专利文献CN106833455A(201710079034.8)提供一种改性明胶-丙烯酸树脂粘合剂制备方法,在温度75℃~90℃,采用过硫酸钾引发,聚合及完成反应得到一种固含量为45%,粘度为200~300mPa·s的黄色透明的粘合体。但是,应用于涂料染色粘合剂时,明胶的粘度最好低于100mPa·s,且该专利由于改性温度较高,还存在明胶结构易被破坏,易发生变性或凝胶的问题。
中国专利文献CN106192473A(201610674824.6)公开了一种聚赖氨酸-明胶复合涂料染色粘合剂,属于印染领域,该涂料染色粘合剂由聚赖氨酸与明胶按照重量比1:150~170混合制成,其制备方法为将聚赖氨酸酒精制剂与明胶按照重量比混合后在紫外光照下搅拌20~30 小时;照射结束后将混合物放入冰箱中24~36小时低温静置,从冰箱取出后立即采用高温烘干即可;将本发明复合涂料染色粘合剂与涂料按照重量比1:3~5混合施加于纺织品上,可以明显提高涂料染色色深,提高染色织物的耐摩擦牢度和耐洗牢度,对织物手感影响小。但是,该专利中聚赖氨酸与明胶的复合材料是通过紫外光照发生交联,聚赖氨酸吸湿性强,该改性明胶不具有疏水性;且在使用过程遇酸性多糖类、盐酸盐类、磷酸盐类、铜离子等可能会与其发生结合而使活性降低。
发明内容
为了解决明胶用于涂料印染用粘合剂时存在的明胶粘度大、不稳定、使用困难等问题,本发明提供一种用于涂料印染粘合剂的改性明胶及其制备方法与应用。
为了实现上述目的,本发明采用以下技术方案:
一种用于涂料印染粘合剂的改性明胶,使用环氧聚硅氧烷(PDMS-E)乳液滴对明胶进行改性,所述环氧聚硅氧烷乳液滴的平均粒径为500~750nm,明胶和PDMS-E的质量比1:0.75~0.80;所述改性明胶的粘度为1.10~1.12mPa·s,明胶的伯氨基转化率为11~13%(摩尔百分比),PDMS-E中环氧基团消耗量为22~24%(摩尔百分比)。
改性明胶二级结构含量为:β-折叠为30~31%;无规卷曲为26.2~27.5%;α-螺旋结构为21.4~23.5%;β-转角为19.8~20.2%。
优选的,明胶的分子量(Mw)为1.40×10 5g/mol,Mw/Mn为1.43,明胶中伯氨基含量为4.95×10 -4g mol -1。所述改性明胶的微观形貌为均匀分布的壳核结构。
本发明采用接枝PDMS-E乳液滴改性明胶,不仅可保留明胶母体主链的主要性能,而且改性后的聚合物还能从接枝侧链中获得新的性能。使用本发明改性明胶处理织物表面,会形成薄膜将涂料固着在织物上。阴离子表面活性剂的存在使聚合物粘附能力强,同时赋予了材料疏水性、耐热性、柔韧性等性能。未反应的伯氨基可与织物中添加的其他极性化合物之间形成氢键,未反应的环氧基团可能会开环,生成羟基,进一步会形成氢键,从而使涂料与织物结合更紧密。
本发明还提供一种上述改性明胶的制备方法,包括以下步骤:
(1)合成单Si-H封端聚硅氧烷(PDMS-H):以六甲基环三硅氧烷(D 3)为单体、正丁 基锂(C 4H 9Li)为引发剂、苯为溶剂、四氢呋喃(THF)为促进剂、二甲基一氢硅氯烷(C 2H 7ClSi)为封端剂,用活性阴离子聚合技术合成PDMS-H;
反应方程式:
Figure PCTCN2021097453-appb-000001
n为6~14;
(2)环氧聚硅氧烷(PDMS-E)的制备:在催化剂氯铂酸作用下,烯丙基缩水甘油醚(AGE)与PDMS-H发生硅氢加成反应,得到环氧聚硅氧烷(PDMS-E);
反应方程式为:
Figure PCTCN2021097453-appb-000002
(3)单分散PDMS-E乳胶粒的制备:
PDMS-E作为分散相,在氮气压力下通过SPG膜乳化器膜孔,加入到含有十二烷基硫酸钠(SDS)、十二烷基苯磺酸钠(SDBS)和冰醋酸的去离子水中,形成PDMS-E水包油乳液;
(4)单分散PDMS-E乳胶粒与明胶反应对明胶进行改性:将明胶溶液,调节pH至10.0±0.2,将步骤(3)制备的PDMS-E乳液滴加到明胶溶液中搅拌,即得单分散PDMS-E乳胶粒改性明胶。
优选的,步骤(1)的具体方法为:首先将C 4H 9Li溶于苯中,在减压通氩的条件下,加入溶解在苯中的D 3,反应一段时间后,加入THF继续反应一段时间,然后注入C 2H 7ClSi后停止反应;随后对产物进行过滤、减压蒸馏,纯化得到PDMS-H。
进一步优选的,D 3/C 4H 9Li/C 2H 7ClSi的摩尔比为1.9~2.1:3.9~4.1:1。
进一步优选的,C 4H 9Li的体积是苯的2.3~2.5倍;THF的体积为苯的4.8~5.2倍。
进一步优选的,加入D 3后反应28~32min;加入THF后继续反应7.5~8.5h。
优选的,步骤(2)的具体方法为:往AGE中通入氩气,25~35分钟后,加入氯铂酸;升温至78~82℃,滴加PDMS-H,滴加完毕后,升温至108~112℃,反应5.5~6.5h后,将产物通过减压蒸馏纯化,得到产物环氧聚硅氧烷(PDMS-E)。
进一步优选的,AGE和氯铂酸的质量比为1:0.011~0.012。
进一步优选的,PDMS-H与AGE的摩尔比为1.5~1.7:1。
优选的,步骤(3)中,SDS/SDBS比值(w/w)为0.43~0.54,去离子水中表面活性剂的总浓度在0.35~0.40wt%之间。
优选的,步骤(3)中,SPG膜的平均孔径为0.5±0.1μm。
优选的,步骤(3)中,去离子水中冰醋酸浓度为2~3mol/L。
优选的,步骤(3)中,水包油乳液中PDMS-E的质量分数为0.95~1.05%。
优选的,步骤(4)的具体方法为:
将明胶溶解在蒸馏水中制备明胶溶液,2.5~3.5h后,将明胶溶液加热至49~51℃,以确保明胶完全溶解;随后,使用氢氧化钠溶液将明胶溶液的pH值调整至10.0±0.2;然后,将步骤(3)制备的PDMS-E乳液以19~21mL·min -1的速率添加到明胶溶液中,并在49~51℃下搅拌,反应持续5~6小时。
进一步优选的,步骤(4)中所述氢氧化钠溶液的浓度为1.8~2.2mol L -1
进一步优选的,步骤(4)中明胶溶液中明胶的质量百分数为4.95~5.05wt%。
本发明还提供上述改性明胶在涂料印染中的用途。
优选的,本发明提供上述改性明胶作为粘合剂在涂料印染中的应用。
一种含有上述改性明胶的改性印染涂料,包括改性明胶和涂料,所述改性明胶和涂料的质量比为1:1.5~2。
优选的,所述涂料为纺织领域常规染色涂料,包括丙烯酸羟乙酯、羟甲基纤维素钠、聚甲基乙烯基醚、丙烯腈中的一种或几种。
上述改性印染涂料的使用方法,上述印染涂料按照为0.03~0.035g/cm 2的涂覆量涂覆在纺织品上;所述纺织品的基材为白坯纯棉织物。
所述染色涂料还包括颜料和助剂等。
所述颜料为印染领域常用颜料。
所述助剂包括抗氧化剂、阻聚剂、消泡剂中的一种或几种。
所述抗氧化剂、阻聚剂、消泡剂均为纺织印染领域常规产品。比如抗氧剂1010,化学名称:四[β-(3,5-二叔丁基4-羟基苯基)丙酸]季戊四醇酯;抗氧剂168,化学名称:三(2,4-二叔丁基苯基)亚磷酸酯;抗氧剂1076,化学名称:β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯等。
阻聚剂包括多元酚类阻聚剂、醌类阻聚剂、芳胺类阻聚剂等常用阻聚剂,比如对苯二酚,对叔丁基邻苯二酚、对甲苯胺等。消泡剂为有机硅消泡剂,活性成分为聚硅氧烷、硅树脂,比如有机硅消泡剂DF-933NS。
一种色牢度良好的纺织物,含有0.03~0.035g/cm 2的上述印染涂料;其玻璃转化温度Tg为129℃和187.6℃。优选的,所述纺织物的热分解温度为273.8℃。
优选的,所述纺织品的基材为白坯纯棉织物。
优选的,按照摩擦色牢度测试常用标准GB/T3920测试的纺织物的耐色牢度为4~5,按照GB/T3921-2008《纺织品色牢度耐皂洗色牢度》测试的耐湿烫色牢度为4,按照纺织品耐汗渍色牢度试验方法(GB/T 3922-1995)测试的耐汗渍色牢度为4。
本发明具有以下技术效果:
1、本发明改性明胶的改性温度为50℃,条件温和,与现有技术相比(其他方法反应温度在60度以上),本改性方法能够保证明胶结构完整,不易发生变性或凝胶变化。
2、本发明的乳液稳定性好,随反应时间的增长,乳液粒子能保持分散均匀,粒径不会随反应时间而不断增大,可以避免长时间放置产生的聚集和破乳现象。稳定性好的乳液能维持分散均匀,结构均一,改性后的明胶在使用时性状均匀,不会出现涂布不均匀的现象。
3、本发明使用的改性材料使用材料PDMS-E乳胶粒无毒性污染,不会对人体健康产生危害;
4、本发明制备的明胶/PDMS-E乳胶粒聚合物(改性明胶)形态均匀稳定,改变了明胶易变质的缺点;阴离子表面活性剂(SDS、SDBS)的存在使聚合物粘附能力强,同时PDMS-E赋予了材料疏水性、耐热性、柔韧性等性能。
5、本发明使用粒径为500~750nm乳胶粒,得到粘度为1.10~1.12mPas的改性明胶,该粘度适合,作为涂料印染粘合剂在织物与涂料之间起到承接的作用,不会由于粘度过大导致的涂布不均匀及粘合剂涂层过厚的问题。且本发明改性明胶作为涂料印染用粘合剂增加了织物的耐热性、柔韧性、疏水性,在印染过程中,更易将涂料与织物紧密结合。
附图说明
图1是实施例1单分散乳胶粒光学显微镜图片及粒径分布图;
图2是实施例2单分散乳胶粒光学显微镜图片及粒径分布图;
图3是对比例4单分散乳胶粒光学显微镜图片及粒径分布图;
图4是对比例5单分散乳胶粒光学显微镜图片及粒径分布图;
图5是实施例1的改性明胶的微观形貌图;
图6是对比例1的改性明胶的微观形貌图;
图7是空白样品与实施例1的热重分析图;
图8是空白样品与实施例1的DSC分析图。
具体实施方式
下面结合附图和实施例对本发明进一步解释和说明。
十二烷基硫酸钠(SDS),十二烷基苯磺酸钠(SDBS),烯丙基缩水甘油醚(AGE)和冰醋酸均购自中国上海阿法埃莎(Alfa Aesar)公司,SDS和SDBS使用前需要用乙醇重结晶。六甲基环三硅氧烷(D 3)、正丁基锂(C 4H 9Li)和氯二甲基硅烷(C 2H 7ClSi)购自Sigma Aldrich公司。苯和四氢呋喃(THF)购自中国医药集团公司(北京)。氯铂酸分子式为H 14Cl 6O 6Pt,分子量是517.9096,深黄色透明液体,购自济南铂源化学有限公司。孔径规格为0.5μm的SPG多孔玻璃膜购自中国医药集团公司。猪皮A型明胶购自中国医药集团公司,经透析后使用。
通过凝胶渗透色谱法测定的明胶的分子量(M w)约为1.40×10 5g mol -1,M w/M n为1.43。通过Van-Slyke法在50℃下测定明胶中伯氨基含量,结果为4.95×10 -4g mol -1。Van-Slyke法是 一种测定氨基酸或蛋白质分子中氨基含量的专业方法。该方法是通过亚硝酸与氨基酸或蛋白质中的伯氨基发生反应,从而测定氨基酸或蛋白质中的伯氨基含量。使用该方法测定的明胶中伯氨基含量误差小于1%。
用激光粒度分析仪(Zetasizer 2000,英国Malvern仪器公司)测量乳液液滴的物理尺寸和聚合物分散指数(PDI)。该仪器以Mie散射理论为基础,将衍射谱转换成粒径分布曲线。首先,将乳剂小心地放入配色试管中。然后,将该管放入ZetaSizer 2000激光粒子仪中,测量PDI或电泳迁移率。
用乌式粘度计测量了不同时间的反应液中样品的粘度,将恒温槽调至50℃,乌式粘度计竖直放置于恒温槽中,取15mL待测样品加入粘度计中,除毛细管外其余两管密封,通过抽气装置将液面抽至毛细管上端玻璃球的上刻度线处,同时撤去抽气设备,记录液面自上刻度线流下至下刻度线所需要的时间从而计算出粘度。
用拉曼光谱仪记录了不同时间反应液中反应样品的拉曼光谱,拉曼光谱数据使用inVia型(Renishaw,英国)激光共聚焦拉曼光谱仪测得,首先使用光学显微镜模式聚焦在毛细管表面,调节载物台聚焦到粒子表面,使用633nm激光光源得到拉曼光谱数据。
用Zetasizer Nano ZS90型(Malvern,英国)激光粒度仪测定了不同时间反应液中反应样品的Zeta电位,用注射器吸取样品缓注入Zeta电位的比色皿中,注意不要有气泡,放入仪器的样品槽,即可测得具体Zeta电位数值。实验结果需重复测定3次。
用透射电镜(TEM)对PDMS-E胶乳粒子的形貌进行了表征。首先,制备TEM样品。明胶和乳剂的混合物在50℃下稀释约20倍。滴状混合物滴在铜网上。过量液体用滤纸吸收,在室温条件下用氮气干燥。用JEM-2100测量TEM图像。
环氧基团消耗量采用拉曼光谱法检测,858cm -1峰表示环氧基团。
本发明实施例所用环氧聚硅氧烷(PDMS-E)的合成方法如下:
(1)合成单Si-H封端聚硅氧烷(PDMS-H):
首先将10mL的苯加入烧瓶中,然后加入24mL的C 4H 9Li,经过3~5次抽真空通入氩气的操作后,45.99克的D3溶于40mL苯中,逐滴加入烧瓶中。反应30min后,加入50mL的四氢呋喃(THF)后继续反应8h。随后,11mL的C 2H 7ClSi被注入烧瓶以终止反应。所得产 物PDMS-H经过过滤、减压蒸馏等方式进行纯化,得到45.44g产物,得率为56.11%。D 3/C 4H 9Li/C 2H 7ClSi的摩尔比约为2:4:1。
(2)环氧聚硅氧烷(PDMS-E)的制备:8.51gAGE加入烧瓶中,向烧瓶中通入氩气,30分钟后,加入40μL的氯铂酸(氯铂酸的质量0.097g)。保持通入氩气的条件下,将反应温度升高至80℃,开始以1~2d/s速度添加与AGE摩尔比为1.6:1的PDMS-H,滴加完毕后,继续将反应温度升至至110℃,继续反应6h后,结束反应。通过减压蒸馏等手段纯化得到产物环氧聚硅氧烷(PDMS-E),得率为84.32%。
实施例1
一种用于造纸增强剂的改性明胶,制备方法:
(1)单分散PDMS-E乳胶粒的制备:
PDMS-E作为分散相,在氮气压力下通过SPG膜孔(SPG膜的平均孔径为0.5μm),加入到含有SDS、SDBS和冰醋酸的去离子水(冰醋酸浓度为2mol/L)中,搅拌磁子的转速为1300rpm形成PDMS-E水包油乳液(水包油乳液中PDMS-E质量百分数为1%)。SDS/SDBS比值(w/w)为0.54,去离子水中表面活性剂的总浓度为0.4wt%。
(2)单分散PDMS-E乳胶粒与明胶反应对明胶进行改性:
将明胶溶解在蒸馏水中(5wt%)制备储备溶液,3h后,将明胶溶液加热至50℃,以确保明胶完全溶解。随后,使用氢氧化钠溶液(NaOH,2.0mol/L)将明胶溶液的pH值调整为10.0±0.2。然后,将上述制备的PDMS-E乳胶粒以20mL/min的速率添加到明胶溶液中,并在50℃下搅拌,反应持续5小时。PDMS-E和明胶的质量比0.757:1。得到粘度为1.10mPa·s的单分散PDMS-E乳胶粒改性明胶。
实施例1所得环氧聚硅氧烷的平均粒径为678±65nm(图1所示),通过TEM图片可以看出,改性明胶的结构出现了核-壳结构(如图6所示),核-壳结构形状规则分布均匀,壳层便于吸附在纺织材料上。
明胶中伯氨基转化率为12.5%(摩尔百分比),PDMS-E中环氧基团消耗量为23.24%(摩尔百分比)。
光学显微镜下的改性明胶粒径和TEM下的改性明胶的粒径存在一定差别,原因在于:光 学显微镜下的乳胶粒是在乳液中检测的,其粒径大小与实际粒径结果一致,而TEM图中的改性明胶粒子在测试时经过滴涂在铜网(碳支持膜)上等处理和水分干燥等处理,会发生一定塌陷和萎缩。所以TEM图中的改性明胶的尺寸相比乳胶粒的粒径偏小,且TEM图片中某些乳胶粒的形状不是明显的球状也是这个原因,因此TEM图片仅是为了观察微观结构,而不用于反映实际应用状态下的改性明胶粒径的大小。
实施例2
一种用于造纸增强剂的改性明胶,制备方法:
(1)单分散PDMS-E乳胶粒的制备:
PDMS-E作为分散相,在氮气压力下通过SPG膜孔(SPG膜的平均孔径为0.5μm),加入到含有SDS、SDBS和冰醋酸的去离子水(醋酸浓度为2mol/L)中,搅拌磁子的转速为1300rpm形成PDMS-E水包油乳液(水包油乳液中PDMS-E的质量百分含量为1%)。SDS/SDBS比值(w/w)为0.43,去离子水中表面活性剂的总浓度为0.4wt%。
(2)单分散PDMS-E乳胶粒与明胶反应对明胶进行改性:
将明胶溶解在蒸馏水中(5wt%)制备储备溶液,3h后,将明胶溶液加热至50℃,以确保明胶完全溶解。随后,使用氢氧化钠溶液(NaOH,2.0mol/L)将每个制备的明胶溶液的pH值调整为10.0±0.2。然后,将上述制备的PDMS-E乳液以20mL/min的速率添加到明胶溶液中,并在50℃下搅拌,反应持续5小时。PDMS-E乳液中的PDMS-E和明胶的质量比0.757:1。得到粘度为1.12mPa·s的单分散PDMS-E乳胶粒改性明胶。
实施例2所得单分散环氧聚硅氧烷的平均粒径为571±70nm,改性明胶颗粒结构中也出现了核-壳结构,明胶中伯氨基转化率为11.25%(摩尔百分比),PDMS-E中环氧基团消耗量为22.12%(摩尔百分比)。
对比例1
一种改性明胶,制备方法为:
其他同实施例1,不同之处在于,SPG膜的平均孔径为0.5μm;改变SDS:SDBS=0.25,表面活性剂总浓度为0.3%,得到平均粒径为366±70nm的单分散PDMS-E乳胶粒改性明胶。改性明胶的TEM形貌为聚集小颗粒(附图7),明胶中伯氨基转化率为7.5%(摩尔百分比)。
对比例2
其他同实施例1,不同之处在于,SPG膜的平均孔径为0.7μm;改变SDS:SDBS=0.67,去离子水中表面活性剂的总浓度为0.5wt%。得到平均粒径为955±70nm的单分散PDMS-E乳胶粒改性明胶。改性明胶的粘度为1.057mPa·s,明胶中伯氨基转化率为13.73%(摩尔百分比),PDMS-E中环氧基团消耗量为27.27%(摩尔百分比)。
1.实施例1~2和对比例1~2所得单分散PDME-S乳胶粒的粒径分布情况
用平均粒径和分散指数(PDI)来描述制备的乳胶颗粒的大小,结果表明,本发明实施例所得乳液颗粒的PDI均小于0.1,说明乳液颗粒在溶液中分布均匀。粒径变异系数(CV)小于21%,也表明了粒径的分布足够狭窄。说明本发明所得单分散PDME-S乳胶粒适用于对明胶进行改性,得到性能稳定的改性明胶。
2.实施例和对比例的改性明胶的微观形貌图
明胶与PDMS-E胶乳粒子的反应受多种因素的影响,其形态变化也非常复杂。通过TEM图像(附图5、6)可直观的观察出小于400nm的小粒径尺度的乳胶粒改性明胶部分出现聚集。而在中等粒径(500~750nm)的改性明胶乳液中发现了单分散的规则的核-壳结构。较大尺寸的单分散乳胶粒改性明胶有助于降低粘度。这可能是由于明胶在乳胶粒表面发生亲核攻击时,可以得到有序的胶体聚集体;而对于较小的液滴,同时会发生液滴的崩塌、亲核攻击和络合物的形成。从而导致不同粒径的单分散乳胶粒对明胶改性的性能影响不同。
3.实施例和对比例的改性明胶的二级结构含量
表1
Figure PCTCN2021097453-appb-000003
β-折叠是一种规则的二级结构,有利于多肽分子链的伸展,从而促进伯氨基的展露, β-sheet结构的形成使明胶伯氨基在乳胶粒表面充分暴露。明胶在乳胶粒均匀展开,促进乳胶粒与明胶的化学接枝反应,所以β-sheet结构增多可能会使乳液粘度减小。不同粒径的乳胶粒改性的明胶二级结构不同,对于其性能的影响也不相同。
4.将改性明胶作为作为粘合剂应用于印染领域
以下工艺及添加剂除非特殊说明外,均为本领域常规手段或普通市售产品。性能测试按照GB/T3921-2008《纺织品色牢度耐皂洗色牢度》、摩擦色牢度测试常用标准:GB/T3920、纺织品耐汗渍色牢度试验方法(GB/T 3922-1995)进行检测。
应用方法:
将实施例1、2及对比例1、2制得的改性明胶作为粘合剂应用在纺织品上。为了说明涂覆改性明胶对于纺织品材料性能的影响,改性明胶和涂料均匀涂覆在纺织品表面,实际使用时根据需要选择在纺织品的表面全部或者部分涂覆。改性明胶在纺织品表面的涂覆量为0.03~0.035g/cm 2
实施例3
一种改性印染涂料及其使用方法,包括以下步骤:所述改性印染涂料中改性明胶和涂料的质量比为1:1.5。织物为白坯纯棉织物。所述改性明胶为实施例1所得明胶。
所述涂料包括:
丙烯酸羟乙酯10g/L,羟甲基纤维素钠4.1g/L;
颜料:8304藏青0.4g/L,8601绿0.3g/L;
助剂:消泡剂0.2g/L。
将改性印染涂料涂覆于白坯纯棉织物表面,120℃烘干,涂覆量为0.03g/cm 2
实施例4
一种改性印染涂料及其使用方法,包括以下步骤:所述改性印染涂料中改性明胶和涂料的质量比为1:2。织物为白坯纯棉织物。所述改性明胶为实施例1所得明胶。
所述涂料包括:
丙烯酸羟乙酯10g/L,羟甲基纤维素钠4.1g/L;
颜料:8304藏青0.4g/L,8601绿0.3g/L;
助剂:消泡剂0.2g/L。
将改性印染涂料涂覆于白坯纯棉织物表面,涂覆量为0.03g/cm 2
实施例5
一种改性印染涂料及其使用方法,包括以下步骤:所述改性印染涂料中改性明胶和涂料的质量比为1:1.5。织物为白坯纯棉织物。所述改性明胶为实施例2所得明胶。
所述涂料包括:
丙烯酸羟乙酯10g/L,羟甲基纤维素钠4.1g/L;
颜料:8304藏青0.4g/L,8601绿0.3g/L;
助剂:消泡剂0.2g/L。
将改性印染涂料涂覆于白坯纯棉织物表面,涂覆量为0.035g/cm 2
对比例3
一种改性印染涂料及其使用方法,包括以下步骤:所述改性印染涂料中改性明胶和涂料的质量比为1:1。织物为白坯纯棉织物。所述改性明胶为实施例1所得明胶。
所述涂料包括:
丙烯酸羟乙酯10g/L,羟甲基纤维素钠4.1g/L;。
颜料:8304藏青0.4g/L,8601绿0.3g/L;
助剂:消泡剂0.2g/L。
将改性印染涂料涂覆于白坯纯棉织物表面,涂覆量为0.03g/cm 2
对比例4
一种改性印染涂料及其使用方法,包括以下步骤:所述改性印染涂料中改性明胶和涂料的质量比为1:2.5。织物为白坯纯棉织物。所述改性明胶为实施例1所得明胶。
所述涂料包括:
丙烯酸羟乙酯10g/L,羟甲基纤维素钠4.1g/L;
颜料:8304藏青0.4g/L,8601绿0.3g/L;
助剂:消泡剂0.2g/L。
将改性印染涂料涂覆于白坯纯棉织物表面,涂覆量为0.03g/cm 2
对比例5
一种改性印染涂料及其使用方法,包括以下步骤:所述改性印染涂料中改性明胶和涂料的质量比为1:1.5。织物为白坯纯棉织物。所述改性明胶为对比例1所得明胶。
所述涂料包括:
丙烯酸羟乙酯10g/L,羟甲基纤维素钠4.1g/L;
颜料:8304藏青0.4g/L,8601绿0.3g/L;
助剂:消泡剂0.2g/L。
将改性印染涂料涂覆于白坯纯棉织物表面,涂覆量为0.03g/cm 2
对比例6
一种改性印染涂料及其使用方法,包括以下步骤:所述改性印染涂料中改性明胶和涂料的质量比为1:1.5。织物为白坯纯棉织物。所述改性明胶为对比例2所得明胶。
所述涂料包括:
丙烯酸羟乙酯10g/L,羟甲基纤维素钠4.1g/L;
颜料:8304藏青0.4g/L,8601绿0.3g/L;
助剂:消泡剂0.2g/L。
将改性印染涂料涂覆于白坯纯棉织物表面,涂覆量为0.03g/cm 2
表3为不同改性明胶作为粘合剂的效果:
表3
样品 耐洗色牢度 耐湿烫色牢度 耐汗渍色牢度
实施例3 5 4 4
实施例4 4-5 4 4
实施例5 4 4 4
对比例3 3 3 2
对比例4 3 2 2
对比例5 2 2 2
对比例6 3 4 3
空白样品(仅明胶) 1-2 1-2 1-2
使用改性明胶粘合剂后染色的纺织物色牢度良好,与空白样品相比,耐洗色牢度、耐湿烫色牢度、耐汗渍色牢度,均有明显的提高。当改性明胶和印染涂料在一定的质量比值下,色牢度良好。
图7为空白样品(a)为仅使用明胶作为涂层的纺织物样品的热重分析结果,样品(b)为使用实施例1改性明胶为涂层的纺织物样品的热重分析结果;样品选择的纺织物为白坯纯棉织物。
TG结果表明,空白样品在46.5℃和264.5℃出现了两个失重,而涂层改性后的材料只出现了273.8℃一个失重,这说明了经过乳液涂层改性后,材料的热稳定性得到了改善。
图8空白样品(a)、样品(b)的DSC分析。结果表面,空白样品的Tg是215.7℃,而改性后样品的Tg有两个,129℃和187.6℃,说明了涂布了乳液涂层的样品中有微相分离结构,且改性后的Tg明显减小,说明低温下聚合物分子链的相对运动能力增加,意味着改性后材料的柔韧性在一定程度上增加。

Claims (10)

  1. 一种用于涂料印染粘合剂的改性明胶,其特征在于,使用环氧聚硅氧烷(PDMS-E)乳液滴对明胶进行改性,所述环氧聚硅氧烷乳液滴的平均粒径为500~750nm,明胶和PDMS-E的质量比1:0.75~0.80;所述改性明胶的粘度为1.10~1.12mPa·s,明胶的伯氨基转化率为11~13%(摩尔百分比),PDMS-E中环氧基团消耗量为22~24%(摩尔百分比)。
  2. 根据权利要求1所述的改性明胶,其特征在于,所述改性明胶二级结构含量为:β-折叠为30~31%;无规卷曲为26.2~27.5%;α-螺旋结构为21.4~23.5%;β-转角为19.8~20.2%。
  3. 权利要求1或2所述改性明胶的制备方法,其特征在于,包括以下步骤:
    (1)合成单Si-H封端聚硅氧烷(PDMS-H):以六甲基环三硅氧烷(D 3)为单体、正丁基锂(C 4H 9Li)为引发剂、苯为溶剂、四氢呋喃(THF)为促进剂、二甲基一氢硅氯烷(C 2H 7ClSi)为封端剂,用活性阴离子聚合技术合成PDMS-H;
    反应方程式:
    Figure PCTCN2021097453-appb-100001
    n为6~14;
    (2)环氧聚硅氧烷(PDMS-E)的制备:在催化剂氯铂酸作用下,烯丙基缩水甘油醚(AGE)与PDMS-H发生硅氢加成反应,得到环氧聚硅氧烷(PDMS-E);
    反应方程式为:
    Figure PCTCN2021097453-appb-100002
    (3)单分散PDMS-E乳胶粒的制备:
    PDMS-E作为分散相,在氮气压力下通过SPG膜乳化器膜孔,加入到含有十二烷基硫酸钠(SDS)、十二烷基苯磺酸钠(SDBS)和冰醋酸的去离子水中,形成PDMS-E水包油乳液;
    (4)单分散PDMS-E乳胶粒与明胶反应对明胶进行改性:将明胶溶液,调节pH至10.0±0.2,将步骤(3)制备的PDMS-E乳液滴加到明胶溶液中搅拌,即得单分散PDMS-E乳胶粒改性明胶。
  4. 根据权利要求3所述的制备方法,其特征在于,步骤(1)的具体方法为:首先将C 4H 9Li溶于苯中,在减压通氩的条件下,加入溶解在苯中的D 3,反应一段时间后,加入THF继续反应一段时间,然后注入C 2H 7ClSi后停止反应;随后对产物进行过滤、减压蒸馏,纯化得到PDMS-H;
    进一步优选的,D 3/C 4H 9Li/C 2H 7ClSi的摩尔比为1.9~2.1:3.9~4.1:1;
    进一步优选的,C 4H 9Li的体积是苯的2.3~2.5倍;THF的体积为苯的4.8~5.2倍;
    进一步优选的,加入D 3后反应28~32min;加入THF后继续反应7.5~8.5h;
    优选的,步骤(2)的具体方法为:往AGE中通入氩气,25~35分钟后,加入氯铂酸;升温至78~82℃,滴加PDMS-H,滴加完毕后,升温至108~112℃,反应5.5~6.5h后,将产物通过减压蒸馏纯化,得到产物环氧聚硅氧烷(PDMS-E);
    进一步优选的,AGE和氯铂酸的质量比为1:0.011~0.012;
    进一步优选的,PDMS-H与AGE的摩尔比为1.5~1.7:1。
  5. 根据权利要求3所述的制备方法,其特征在于,步骤(3)中,SDS/SDBS比值(w/w)为0.43~0.54,去离子水中表面活性剂的总浓度在0.35~0.40wt%之间;
    优选的,步骤(3)中,SPG膜的平均孔径为0.5±0.1μm;
    优选的,步骤(3)中,去离子水中冰醋酸浓度为2~3mol/L;
    优选的,步骤(3)中,水包油乳液中PDMS-E的质量分数为0.95~1.05%。
  6. 根据权利要求3所述的制备方法,其特征在于,步骤(4)的具体方法为:
    将明胶溶解在蒸馏水中制备明胶溶液,2.5~3.5h后,将明胶溶液加热至49~51℃,以确保明胶完全溶解;随后,使用氢氧化钠溶液将明胶溶液的pH值调整至10.0±0.2;然后,将步骤(3)制备的PDMS-E乳液以19~21mL·min -1的速率添加到明胶溶液中,并在49~51℃下 搅拌,反应持续5~6小时;
    优选的,步骤(4)中所述氢氧化钠溶液的浓度为1.8~2.2mol L -1
    优选的,步骤(4)中明胶溶液中明胶的质量百分数为4.95~5.05wt%。
  7. 权利要求1或2所述改性明胶或权利要求3~6任一项所述方法制备的改性明胶作为粘合剂在涂料印染中的用途。
  8. 一种含有权利要求1或2所述改性明胶或权利要求3~6任一项所述方法制备的改性明胶的印染涂料,其特征在于,包括改性明胶和涂料,所述改性明胶和涂料的质量比为1:1.5~2;
    优选的,所述涂料为纺织领域常规染色涂料,包括丙烯酸羟乙酯、羟甲基纤维素钠、聚甲基乙烯基醚、丙烯腈中的一种或几种;所述涂料还包括颜料和助剂。
  9. 权利要求8所述改性印染涂料的使用方法,其特征在于,所述印染涂料按照0.03~0.035g/cm 2的涂覆量涂覆在纺织品上;
    优选的,所述纺织品的基材为白坯纯棉织物。
  10. 一种色牢度良好的纺织物,其特征在于,含有0.03~0.035g/cm 2的权利要求8所述印染涂料;其玻璃转化温度Tg为129℃和187.6℃。
    优选的,所述纺织品的基材为白坯纯棉织物。
    优选的,按照摩擦色牢度测试常用标准GB/T3920测试的纺织物的耐色牢度为4~5,按照GB/T3921-2008《纺织品色牢度耐皂洗色牢度》测试的耐湿烫色牢度为4,按照纺织品耐汗渍色牢度试验方法(GB/T 3922-1995)测试的耐汗渍色牢度为4。
PCT/CN2021/097453 2021-03-26 2021-05-31 一种用于涂料印染粘合剂的改性明胶及其制备方法与应用 WO2022198791A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110325823.1A CN115124720B (zh) 2021-03-26 2021-03-26 一种用于涂料印染粘合剂的改性明胶及其制备方法与应用
CN202110325823.1 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022198791A1 true WO2022198791A1 (zh) 2022-09-29

Family

ID=83374114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097453 WO2022198791A1 (zh) 2021-03-26 2021-05-31 一种用于涂料印染粘合剂的改性明胶及其制备方法与应用

Country Status (2)

Country Link
CN (2) CN115124721B (zh)
WO (1) WO2022198791A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116790224A (zh) * 2023-06-09 2023-09-22 西南林业大学 一种高性能明胶基木材胶粘剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103103765A (zh) * 2013-01-14 2013-05-15 山东轻工业学院 自乳化型耐湿擦皮革顶层涂饰剂及其制备方法
CN105384944A (zh) * 2015-12-22 2016-03-09 齐鲁工业大学 溶剂沉淀法制备单环氧封端聚硅氧烷改性明胶双亲膜
CN106192473A (zh) * 2016-08-16 2016-12-07 朱玲 一种聚赖氨酸‑明胶复合涂料染色粘合剂

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928367B (zh) * 2010-08-24 2012-06-20 华南理工大学 一种环保型丙烯酸酯涂料印花粘合剂乳液及制备方法
CN103087631B (zh) * 2013-01-14 2014-01-01 山东轻工业学院 一种环氧聚硅氧烷改性明胶皮革涂饰剂及其制备方法
CN105419350B (zh) * 2015-12-22 2018-06-08 齐鲁工业大学 基底调节法制备单环氧封端聚硅氧烷改性明胶梯度膜
CN105399973B (zh) * 2015-12-22 2019-02-15 齐鲁工业大学 冷冻干燥法制备单环氧封端聚硅氧烷改性明胶梯度膜
CN105566661B (zh) * 2015-12-22 2019-03-22 齐鲁工业大学 一种pH调节法制备单环氧封端聚硅氧烷改性明胶梯度膜
CN105567081B (zh) * 2015-12-22 2018-08-17 齐鲁工业大学 混合缩水甘油与单环氧封端聚硅氧烷制备改性明胶梯度膜
CN105542204B (zh) * 2015-12-22 2019-03-22 齐鲁工业大学 一种单环氧封端聚硅氧烷改性明胶双亲膜的制备方法
CN108219162A (zh) * 2018-03-05 2018-06-29 齐鲁工业大学 一种显著提高皮革抗撕裂强度的复鞣剂及其制备方法
CN108314755B (zh) * 2018-03-06 2021-03-12 中山大学 一种环保型涂料印花粘合剂用乳液及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103103765A (zh) * 2013-01-14 2013-05-15 山东轻工业学院 自乳化型耐湿擦皮革顶层涂饰剂及其制备方法
CN105384944A (zh) * 2015-12-22 2016-03-09 齐鲁工业大学 溶剂沉淀法制备单环氧封端聚硅氧烷改性明胶双亲膜
CN106192473A (zh) * 2016-08-16 2016-12-07 朱玲 一种聚赖氨酸‑明胶复合涂料染色粘合剂

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MA HUIJUN, HUA YUAI, HOU ZHAOSHENG, GAO FENG, ZHANG XIAO, SHAO MINGXIA, MA TIANGE, LIU MINGXIA, LI TIANDUO, XU JING: "Adsorption–Reaction Processes Between Gelatin and PDMS-E Emulsion Droplets", ACS OMEGA, ACS PUBLICATIONS, US, vol. 6, no. 21, 1 June 2021 (2021-06-01), US , pages 13915 - 13925, XP055971020, ISSN: 2470-1343, DOI: 10.1021/acsomega.1c01789 *
XU JING; LI TIAN-DUO; JIANG QING-WEI; QIAO CONG-DE; CHENG JIN-YONG: "Microstructure transformation of PDMS-E grafted gelatin polymers induced by SDS and SDBS", COLLOIDS AND SURFACES B: BIOINTERFACES, ELSEVIER AMSTERDAM, NL, vol. 103, 3 November 2012 (2012-11-03), NL , pages 375 - 380, XP028971390, ISSN: 0927-7765, DOI: 10.1016/j.colsurfb.2012.10.048 *
ZHU CONG, XU JING, HOU ZHAOSHENG, LIU SUQING, LI TIANDUO: "Scale Effect on the Interface Reaction between PDMS-E Emulsion Droplets and Gelatin", LANGMUIR, AMERICAN CHEMICAL SOCIETY, US, vol. 33, no. 38, 26 September 2017 (2017-09-26), US , pages 9926 - 9933, XP055971018, ISSN: 0743-7463, DOI: 10.1021/acs.langmuir.7b02532 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116790224A (zh) * 2023-06-09 2023-09-22 西南林业大学 一种高性能明胶基木材胶粘剂及其制备方法
CN116790224B (zh) * 2023-06-09 2024-01-12 西南林业大学 一种高性能明胶基木材胶粘剂及其制备方法

Also Published As

Publication number Publication date
CN115124721B (zh) 2023-09-19
CN115124720B (zh) 2023-07-07
CN115124721A (zh) 2022-09-30
CN115124720A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
Wu et al. Adsorption of dyes on nanosize modified silica particles
WO2022198791A1 (zh) 一种用于涂料印染粘合剂的改性明胶及其制备方法与应用
CN109629240B (zh) 一种含颜色织物涂层剂的制备方法及应用
CN112552442B (zh) 一种有机硅改性聚合物/颜料复合胶乳及其制备方法
WO2019205809A1 (zh) 纳米级水性窄分子量分布丙烯酸共聚酯及其制备方法
CN108409901A (zh) 一种纳米复合水凝胶及其制备方法
CN108654409B (zh) 一种高分子胶束纳滤膜的制备及其应用
CN112708083A (zh) 一种共聚丙烯酰胺复合微球及其制备方法和应用
CN108299579A (zh) 一种石墨烯/纳米二氧化硅/聚苯乙烯杂化材料及其制备方法和应用
Lei et al. Preparation of Poly (Ionic Liquid) Microbeads by Evaporation‐Assisted Phase Separation
CN115125761B (zh) 一种用于造纸增强剂的改性明胶及其制备方法与应用
CN109824832A (zh) 一种超支化彩色大分子乳化剂的制备方法及其应用
CN108864801A (zh) 一种耐盐高悬浮涂料用增稠剂的制备方法
WO2022198792A1 (zh) 用于纸张耐火阻燃涂层的改性明胶及其制备方法与应用
CN114716627A (zh) 一种用于室外无纺布的高分子uv吸收剂及其制备方法
CN115612140B (zh) 一种用于有机胺检测的荧光水性聚氨酯薄膜的制备方法
CN117659739B (zh) 一种高荧光强度高稳定性纳米荧光乳胶颜料及其制备方法
CN113088132B (zh) 一种光学变色油墨及其制备方法
CN112175415B (zh) 一种非水溶性色料分散稳定剂及其制备方法
CN114716685B (zh) 聚羧酸类分散剂及其制备方法、聚羧酸盐类分散剂、应用
CN116396641B (zh) 一种水性阳离子色浆及其制备方法与应用
CN116876242B (zh) 一种长效型椭圆印花机用硅胶及其制备方法和应用
CN113047061B (zh) 一种超低粘度彩色颜料及其制备方法与应用
CN116640505A (zh) 一种功能性可光固化皮革涂饰剂体系及其制备方法和应用
KR100763952B1 (ko) 전자종이 컬러 구현 다색 나노입자 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE