WO2019205809A1 - 纳米级水性窄分子量分布丙烯酸共聚酯及其制备方法 - Google Patents

纳米级水性窄分子量分布丙烯酸共聚酯及其制备方法 Download PDF

Info

Publication number
WO2019205809A1
WO2019205809A1 PCT/CN2019/076911 CN2019076911W WO2019205809A1 WO 2019205809 A1 WO2019205809 A1 WO 2019205809A1 CN 2019076911 W CN2019076911 W CN 2019076911W WO 2019205809 A1 WO2019205809 A1 WO 2019205809A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous
weight distribution
molecular weight
copolyester
narrow molecular
Prior art date
Application number
PCT/CN2019/076911
Other languages
English (en)
French (fr)
Inventor
张元�
张毅君
Original Assignee
上海先科化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海先科化工有限公司 filed Critical 上海先科化工有限公司
Priority to EP19793477.1A priority Critical patent/EP3670549B1/en
Publication of WO2019205809A1 publication Critical patent/WO2019205809A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/30Emulsion polymerisation with the aid of emulsifying agents non-ionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/023Emulsion inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D11/107Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate

Definitions

  • the invention belongs to the technical field of chemical industry, and particularly relates to a nanometer water-based narrow molecular weight distribution acrylic copolyester and a preparation method thereof.
  • the first object of the present invention is to provide a nano-scale water-based narrow molecular weight distribution acrylic copolyester, which does not need to add an organic auxiliary agent in the production and subsequent application process, and can realize zero VOC emission and has a remarkable environmental protection effect.
  • the raw material for synthesizing the acrylic copolyester comprises a base monomer: methyl methacrylate, methacrylic acid and butyl acrylate, and the basic monomer passes through a pure water system
  • the action of the emulsifier and the initiator polymerizes into the nano-scale aqueous narrow molecular weight distribution acrylic copolyester, comprising the following preparation steps:
  • the nano-scale aqueous narrow molecular weight distribution acrylic copolyester is in a block homopolymerization form, and the block homopolymerization refers to an ordered homopolymerization polymerization of the acrylic acid copolyester.
  • the raw materials for preparing the nano-sized aqueous narrow molecular weight distribution acrylic copolyester are:
  • the initiator is a water-soluble radical initiator commonly used in the synthesis of acrylate resins in the art, and may be, for example, selected from the group consisting of persulfates: ammonium persulfate, potassium persulfate, and the like.
  • the corresponding functions can be added to the nano-sized aqueous narrow molecular weight distribution acrylic copolyester as needed.
  • the function is achieved by adding a functional monomer to the starting material, which may be a heterocyclic ester or a long carbon chain ester. That is, the raw material of the nano-scale aqueous narrow molecular weight distribution acrylic copolyester further comprises a functional monomer: a heterocyclic ester or a long carbon chain ester.
  • the heterocyclic ester when the raw material contains a functional monomer heterocyclic ester or a long carbon chain ester, the heterocyclic ester has a mass percentage of less than 5%, and the long carbon chain ester has a mass percentage of less than 5%.
  • heterocyclic ester is selected from one or more of isobornyl acrylate and isobornyl methacrylate
  • long-chain ester is selected from the group consisting of phosphoric acid phosphate, lauryl acrylate, One or more of octadecyl acrylate.
  • the nano-sized aqueous narrow molecular weight distribution acrylic copolyester has a D50 particle size of 40 to 65 nm and a polydispersity index PDI (Mw/Mn) of ⁇ 1.05.
  • the nanoscale aqueous narrow molecular weight distribution acrylic copolyester has a solids content of > 30% by weight.
  • the solid content ranges from 30 to 40% by weight. Preferably, the solids content ranges from 33.65 to 35.35 wt%.
  • the viscosity ranges from 10 to 50 cps, preferably, the viscosity ranges from 10 to 11.5 cps.
  • a second object of the present invention is to provide a method for preparing the above nano-sized aqueous narrow molecular weight distribution acrylic copolyester, comprising the following steps:
  • the reactor is stirred and maintained at a reaction temperature of 70 to 85 ° C, and then the aqueous solution of the initiator prepared in the step B) and the mixed monomer solution prepared in the step C) are simultaneously added to the reactor. After the addition is completed, the stirring is stopped.
  • the reaction system is matured for a suitable period of time, then cooled, adjusted to a desired value, and filtered to obtain a nano-sized aqueous narrow molecular weight distribution acrylic copolyester;
  • the base monomer in the step C) comprises methyl methacrylate, methacrylic acid and butyl acrylate.
  • the appropriate amount of water is a formula amount of 70 to 90% by mass of water
  • the part of the formula amount of the emulsifier is an emulsifier having a formulation amount of 45 to 55% by mass.
  • the ripening is suitably carried out for 2 ⁇ 0.5 hours.
  • the adjusting the pH to a desired value means adjusting the pH to 5-8.
  • nano-scale aqueous narrow molecular weight distribution acrylic copolyester is used to prepare a pure aqueous ink.
  • the nano-scale water-based narrow molecular weight distribution acrylic copolyester of the invention is completely dispersed in a pure water system and stably exists in water as a dispersion medium, and has a nanometer-wide narrow bandwidth uniform distribution characteristic.
  • the D50 has a particle size of 40 to 65 nm, has a nanometer size, has structural consistency, a polydispersity index PDI (Mw/Mn) of ⁇ 1.05, a narrow particle size distribution band, and exhibits a normal molecular weight distribution characteristic. Therefore, the production process of the nano-scale aqueous narrow molecular weight distribution acrylic copolyester of the present invention does not involve VOC emissions, and has excellent environmental protection effects.
  • the viscosity is low, and the solid content is >30% by weight, so that the acrylic acid copolyester of the invention can be used in the downstream application process, for example, to produce an aqueous ink, without adding an organic solvent or an auxiliary agent to lower the viscosity of the application system, or by adding an organic solvent or The same effect of the additive. Therefore, its downstream application process can achieve zero emissions of VOC.
  • the nano-sized water-based narrow molecular weight distribution acrylic copolyester is directly polymerized and dispersed in a pure water system, and has the characteristics of being stably present in water, but not completely hydrophilic after dehydration. This has good waterproof properties.
  • the acrylic copolyester of the present invention adopts the above-mentioned polymerization mode, and avoids the defect of the viscous resin which is prepared by the electric double layer (emulsification) or the hydrated ion (hydrophilic) theory due to moisture absorption. Since the resin is directly dispersed in water, instead of being emulsified and dispersed in the late stage and dissolved and swelled by the hydrophilic group, it does not absorb water, is not sticky, and has high water repellency.
  • the functionalized modified acrylic copolyester still retains the characteristics of nanometer narrow bandwidth average molecular weight distribution.
  • the functional group imparts oil, weather resistance, acid and alkali resistance/chemical corrosion resistance, salt spray resistance, and ultraviolet resistance. After functional group loading and polymerization, it can meet the special requirements of different use occasions, without adding organic solvents or additives (VOC related substances), and has an extremely wide range of applications.
  • VOC related substances organic solvents or additives
  • Figure 5 is a FTIR spectrum of the nanoscale aqueous narrow molecular weight distribution acrylic copolyester C301590 of Example 5.
  • FIG. 6 is a molecular weight distribution diagram of the nano-sized aqueous narrow molecular weight distribution acrylic copolymer C30 of Example 1.
  • Example 7 is a molecular weight distribution diagram of the nano-sized aqueous narrow molecular weight distribution acrylic copolymer C30 of Example 2.
  • Figure 8 is a graph showing the molecular weight distribution of the nano-sized aqueous narrow molecular weight distribution acrylic copolymer C30 of Example 3.
  • Fig. 10 is a molecular weight distribution diagram of the nano-sized aqueous narrow molecular weight distribution acrylic copolymer C301590 of Example 5.
  • Figure 11 is a DCS spectrum of the nanoscale aqueous narrow molecular weight distribution acrylic copolymer C30 of Example 1.
  • Figure 12 is a DCS spectrum of the nanoscale aqueous narrow molecular weight distribution acrylic copolyester C30 of Example 2.
  • Figure 14 is a DCS spectrum of the nanoscale aqueous narrow molecular weight distribution acrylic copolyester C30IB-I of Example 4.
  • Figure 16 is a particle size distribution diagram of the pure aqueous ink of the present invention.
  • Figure 17 is a particle size distribution diagram of an American Color Inc aqueous ink paste.
  • Figure 18 is a pure aqueous ink test sample of Example 10 tested using the grid method.
  • Figure 19 is a diagram showing the effect of boiling test of the pure aqueous ink of Example 10.
  • the preparation method of the nanometer aqueous narrow molecular weight distribution acrylic copolyester of the invention is as follows:
  • the reactor is stirred and maintained at a reaction temperature of 80 ° C, and then the aqueous solution of the initiator prepared in the step B) and the mixed monomer solution prepared in the step C) are simultaneously added to the reactor, and the feeding time is controlled to be 90 ⁇ 5 minutes. After the completion of the addition, the stirring was stopped, the reaction system was aged for 2 hours, then cooled to room temperature, the pH was adjusted to 6, and filtered to obtain a nano-sized aqueous narrow molecular weight distribution acrylic copolyester.
  • the pH of the desired acrylic copolyester varies depending on the downstream product.
  • the pH described in step D) may vary depending on the actual application requirements of the subsequent acrylic copolyester, i.e., the pH is adjusted to the desired value, and the pH is typically adjusted to the range of 5-8.
  • the reactor is stirred and maintained at a reaction temperature of 85 ° C, and then the aqueous solution of the initiator prepared in the step B) and the mixed monomer liquid prepared in the step C) are simultaneously added to the reactor, and the feeding time is controlled to be 90 ⁇ 5 minutes. After the completion of the addition, the stirring was stopped, the reaction system was aged for 1.5 hours, then cooled to room temperature, the pH was adjusted to 5, and filtered to obtain a nano-sized aqueous narrow molecular weight distribution acrylic copolyester.
  • the preparation method of the nanometer aqueous narrow molecular weight distribution acrylic copolyester of the invention is as follows:
  • the reactor is stirred and maintained at a reaction temperature of 80 ° C, and then the aqueous solution of the initiator prepared in the step B) and the mixed monomer solution prepared in the step C) are simultaneously added to the reactor, and the feeding time is controlled to be 90 ⁇ 5 minutes. After the completion of the addition, the stirring was stopped, the reaction system was aged for 2 hours, then cooled to room temperature, the pH was adjusted to 6, and filtered to obtain a nano-sized aqueous narrow molecular weight distribution acrylic copolyester.
  • nano-scale aqueous narrow-molecular-weight distribution acrylic copolyester prepared in Examples 1-5 was tested by infrared spectroscopy, and the infrared spectrum was as shown in FIG. 1 to FIG.
  • the nano-scale aqueous narrow molecular weight distribution acrylic copolyesters C30IB-I and C301590 further comprise a functional segment, and combined with an infrared spectrum, it is presumed that the functional segment has the following structural formula:
  • Functional groups on the functional segment include heterocyclic groups or long carbon chain ester groups.
  • Example 7 particle size and polydispersity index PDI analysis
  • the acrylic acid copolyester prepared in Examples 1-5 has a D50 of 40-65 mm and a PdI (Dw/Dn) of 0.043-0.058, which exhibits a normal molecular weight distribution. It is a homogeneous nano-narrowband polymer.
  • the polydispersity index PDI (Mw/Mn) of the GPC test in the micro-nano material and the dispersion index PdI tested by the particle size tester (Dw/Dn)
  • b 4*a ⁇ 2+1.
  • b is the PDI (Mw/Mn) dispersion index of GPC
  • a is PdI (Dw/Dn) of the Malvern dynamic light scattering particle size analyzer.
  • the corresponding polydispersity index PDI (Mw/Mn) was calculated to be 1.007 to 1.01, and the polydispersity index PDI (Mw/Mn) was ⁇ 1.01. Less than the critical value of the single-dispersion system specified in the literature is 1.05.
  • the acrylic copolymer of the present invention has a polydispersity index PDI (Mw/Mn) of ⁇ 1.05, and therefore, is a nano-sized ( ⁇ 100 nm) monodisperse material having a nanometer size and a particle size distribution thereof.
  • the band is narrow and exhibits a normal molecular weight distribution characteristic, and is a nano-scale aqueous narrow molecular weight distribution acrylic copolyester.
  • the acrylic copolymers C30, C30IB-I, and C301590 prepared in Examples 1-5 were separately analyzed by differential scanning calorimetry.
  • DSC conditions scan rate 10.00 ° C / min, sample quality: 18 mg ground to powder, without any added additives.
  • Test atmosphere nitrogen, flow rate (mL/min): 66.
  • the DSC spectrum is shown in Figure 11-15.
  • acrylic copolyesters C30IB-I and C301590 with functional groups have similar thermodynamic properties to the acrylic copolyester C30.
  • Solid content test parameters sample number: 4g, oven drying temperature: 120 ° C, constant temperature drying time: 120 minutes / time, repeated to no weight loss.
  • the acrylic copolyester of the invention can achieve the practical effect of adding organic solvent or auxiliary agent to other acrylate resin without adding other organic solvent or auxiliary agent to reduce the viscosity of the application system in the downstream application process. . Since it is not necessary to use an organic solvent or an auxiliary agent, the VOC content of the application system can be significantly reduced. At the same time, due to its low viscosity characteristics at a higher solid content, it also brings great convenience to the subsequent processing of the acrylic copolyester of the present invention.
  • the nano-scale aqueous narrow molecular weight distribution acrylic copolyester of the present invention has excellent properties
  • the acrylic acid copolyester prepared in Examples 1-5 is applied to prepare the aqueous ink by the following Examples 10-14, respectively.
  • the properties of the prepared pure aqueous ink were examined.
  • the wetting agent YM-313, the antifungal agent lxe and the ammonia water are all commercially available products, and the concentration of the commercially available ammonia water is 25%.
  • the commercially available product was diluted 1:10 with water to prepare a wetting agent (YM-313) aqueous solution, an anti-mold agent (lxe) aqueous solution and an aqueous ammonia diluent, and then used to prepare a pure aqueous binder.
  • Example 10 was prepared from Example 1
  • C30 in Example 11 was prepared from Example 2
  • C30 in Example 12 was prepared from Example 3
  • C30IB-I in Example 12 was prepared from Example 4
  • C30 in Example 13 was prepared from Example 1
  • C30 in Example 14 was prepared from Example 1
  • C301590 in Example 14 was prepared from Example 5.
  • a formula of pure water-based binder is added to the vessel, and the stirring is started, and the rotation speed is controlled at 50 to 80 rpm. Then, a formula amount of pure water-based color paste is added, stirred uniformly, and then a formula amount of a fatty alcohol defoaming agent is added, and the mixture is uniformly stirred to obtain the pure water-based ink of the present invention.
  • the particle size of the pure aqueous ink prepared by the formulation and process of the present invention has a smaller particle size than the existing aqueous ink paste.
  • the pure aqueous ink of the present invention has good surface gloss after film formation.
  • Example 16 VOC detection of pure aqueous ink
  • the pure aqueous ink prepared in Examples 10-14 was subjected to VOC detection. After the international authoritative testing and certification organization SGS according to the HJ/T371-2007 standard test, all the indicators of the test indicators ND, in line with national environmental protection and EU RoHS and SVHC REACH regulations.
  • aqueous inks are used on the samples and placed at room temperature, usually taking more than 90 seconds to dry naturally.
  • the pure aqueous ink prepared in Examples 10-14 was used for the sample, dried naturally at normal temperature, and dried in no more than 60 seconds.
  • the pure aqueous inks prepared in Examples 10-14 were shown to have a faster drying rate.
  • a commercially available aqueous ink is used on the sample, and after the sample is immersed at room temperature, the color bubble phenomenon usually occurs within 48 hours.
  • the pure aqueous inks prepared in Examples 10-14 were used for the samples. The sample was soaked in a warm water bath for more than one week. The water sample was observed to be colorless, and the sample showed no significant change. It is indicated that the pure aqueous ink of the present invention has good water resistance.
  • the pure aqueous inks prepared in Examples 10-14 were subjected to a printing sample pressure test. The results show that the pure water-based ink of the invention does not cause back-sticking and color shedding due to factors such as moisture regain. It is indicated that the pure aqueous ink of the present invention has good anti-back tack.
  • Adhesion tests were performed on the pure aqueous inks prepared in Examples 10-14 using the grid method.
  • the test sample of Example 10 is shown in FIG.
  • the experimental results show that the pure water-based ink after drying has strong adhesion, and the color test by tape does not fade.
  • the HGQ (1mm) cross-cut tester (ISO2409-1974) has a 0-level test result (ie, the edge of the cut is completely smooth). There is no one square off).
  • the pure aqueous inks prepared in Examples 10-14 were shown to have excellent adhesion.
  • Example 10-14 The pure aqueous inks prepared in Examples 10-14 were used for printing, and the printed samples were tested by boiling water at 100 ° C for 30 minutes. After cooling, compared with the unboiled sample, it was found that there was no significant change between the two.
  • the boiled test effect of Example 10 is shown in Fig. 19.
  • the boiled test effect of the other examples was comparable to that of Example 10, and the test tape was tested for no peeling.
  • the pure aqueous ink of the present invention has excellent water boiling resistance and can be applied to food packaging printing which requires heat sterilization.
  • the pure water-based ink of the present invention and the film such as PET have great tensile resilience after printing, and can be completely recovered by the tensile rebound of the printing material. Therefore, it has a good strain.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

本发明公开了一种纳米级水性窄分子量分布丙烯酸共聚酯,合成所述丙烯酸共聚酯的原料包括基础单体:甲基丙烯酸甲酯、甲基丙烯酸和丙烯酸丁酯,所述基础单体在纯水体系中通过乳化剂和引发剂的作用聚合成所述纳米级水性窄分子量分布丙烯酸共聚酯;所述纳米级水性窄分子量分布丙烯酸共聚酯的D50粒径为40~65nm,多分散指数PDI(Mw/Mn)<1.05。还提供了上述丙烯酸共聚酯的制备方法。本发明的纳米级水性窄分子量分布丙烯酸共聚酯,完全以水为分散介质,直接于纯水体系中聚合并稳定存在,具有纳米级窄带宽均分布特征;具备低粘度、高固含量的特性。且不吸水、不回粘、防水能力强。还能够进行功能化修饰。

Description

纳米级水性窄分子量分布丙烯酸共聚酯及其制备方法 技术领域
本发明属于化工技术领域,具体涉及一种纳米级水性窄分子量分布丙烯酸共聚酯及其制备方法。
背景技术
为减少使用VOC物质,目前国际国内树脂相关产业主要采用水性树脂如聚氨酯、环氧树脂、水溶性丙烯酸等为原材料,并采用树脂改性或成盐、细粒径乳化法等制备工艺。然而,聚氨酯,环氧树脂等水剂型树脂的聚合方式注定了其只能进行水性化改性。而在水剂型树脂的改性制备过程中,虽然可以减少使用VOC物质,减少有毒有害物质的使用,但仍无法做到彻底摆脱挥发性有机物。因此,现有的水性树脂的生产过程中涉及VOC排放,对环境安全产生威胁。
传统基本工业材料树脂的固含量低,粘度大,生产和应用现有的丙烯酸酯树脂制备含树脂的产品的过程中均需要添加大量有机助剂(含有VOC的物质)来完善其使用功能,例如降低体系粘度。由此造成大量的VOC危害,对环境治理带来困难。另外,国内水性树脂业为了满足丙烯酸酯树脂的性能(如附着力等)要求,往往采用羟基丙烯酰胺交联的方法,而这一传统的方式,已被欧盟国家禁止使用。
因此,迫切需要研发一种新型的丙烯酸酯树脂,以克服现有技术中的技术缺陷。
发明内容
本发明的第一个目的在于提一种纳米级水性窄分子量分布丙烯酸共聚酯,本身的生产和后续的应用过程中均无需添加有机助剂,能够实现VOC零排放,具有显著的环保效应。
为实现上述目的,本发明采用如下技术方案:
纳米级水性窄分子量分布丙烯酸共聚酯,合成所述丙烯酸共聚酯的原料包括基础单体:甲基丙烯酸甲酯、甲基丙烯酸和丙烯酸丁酯,所述基础单体在纯水体系中通过乳化剂和引发剂的作用聚合成所述纳米级水性窄分子量分布丙烯酸共聚酯,包括如下制备步骤:
A)部分配方量的乳化剂与水形成乳化剂水溶液;
B)配方量的引发剂与水形成引发剂水溶液;
C)配方量的基础单体与剩余的配方量的乳化剂形成混合单体液;
D)将步骤B)制备的引发剂水溶液和步骤C)制备的混合单体液同时加入步骤A)的乳化剂水溶液内进行反应,得到纳米级水性窄分子量分布丙烯酸共聚酯。
本发明中,所述纳米级水性窄分子量分布丙烯酸共聚酯为嵌段均聚形式,所述的嵌段均聚指的是聚合成所述丙烯酸共聚酯的有序均整聚合。
根据本发明,以质量百分比计,制备所述纳米级水性窄分子量分布丙烯酸共聚酯的原料包括:
Figure PCTCN2019076911-appb-000001
根据本发明,所述乳化剂为本领域合成丙烯酸酯树脂常用的乳化剂,例如可以选自十二烷基硫酸钠、十八烷基硫酸钠、AES、NP-10。
所述引发剂为本领域合成丙烯酸酯树脂常用的水溶性自由基引发剂,例如可以选自过硫酸盐:过硫酸铵、过硫酸钾等。
根据本发明,可根据需要为所述的纳米级水性窄分子量分布丙烯酸共聚酯增加相应的功能。所述的功能通过在原料中增添功能性单体来实现,所述的功能性单体可以为杂环酯类或长碳链酯类。即:所述纳米级水性窄分子量分布丙烯酸共聚酯的原料还包含功能性单体:杂环酯类或长碳链酯类。
根据本发明,当原料含有功能性单体杂环酯类或长碳链酯类时,所述杂环酯类的质量百分比小于5%,所述长碳链酯类的质量百分比小于5%。
进一步地,所述杂环酯类选自丙烯酸异冰片酯、甲基丙烯酸异冰片酯中的一种或几种,所述长碳链酯类选自丙烯酸磷酸酯、丙烯酸十二烷基酯、丙烯酸十八烷基酯中的一种或几种。
根据本发明,所述纳米级水性窄分子量分布丙烯酸共聚酯的D50粒径为40~65nm,多分散指数PDI(Mw/Mn)<1.05。
根据本发明,所述纳米级水性窄分子量分布丙烯酸共聚酯的固含量>30wt%。
固含量范围为30~40wt%。优选地,固含量范围为33.65-35.35wt%。粘度范围为10~50cps,优选地,粘度范围为10~11.5cps。
本发明的第二个目的在于提供上述纳米级水性窄分子量分布丙烯酸共聚酯的制备方法,包括如下制备步骤:
A)在反应器内用适量的水溶解部分配方量的乳化剂,搅拌至乳化剂完全溶解,形成乳化剂水溶液,然后加热至70~85℃,并保持恒温;
B)容器中加入剩余的配方量的水,然后加入配方量的引发剂,搅拌至引发剂完全溶解,得到引发剂水溶液;
C)将配方量的单体分别加入容器中,搅拌均匀,并加入剩余的配方量的乳化剂,缓慢搅拌直至单体完全溶解,得到混合单体液;
D)反应器开启搅拌并保持70~85℃的反应温度,然后往反应器中同时加入步骤B)制备得到的引发剂水溶液和步骤C)制备得到的混合单体液,加料完成后,停止搅拌,反应体系熟化适当的时间,然后经冷却,调节pH至所需值,过滤,得到纳米级水性窄分子量分布丙烯酸共聚酯;
其中,所述步骤C)中的所述基础单体包括甲基丙烯酸甲酯、甲基丙烯酸和丙烯酸丁酯。
根据本发明,所述步骤A)中,所述适量的水为配方量70~90%质量的水,所述部分配方量的乳化剂为配方量45~55%质量的乳化剂。
根据本发明,所述步骤C)中,所述熟化适当的时间为2±0.5小时。
根据本发明,所述步骤D)中,所述调节pH至所需值是指调节pH值至5~8。
本发明的第三个目的在于提供上述纳米级水性窄分子量分布丙烯酸共聚酯作为水性树脂的应用。
进一步地,所述的纳米级水性窄分子量分布丙烯酸共聚酯用于制备纯水性油墨。
与现有技术相比,本发明的技术方案具有如下有益效果:
(一)、本发明的纳米级水性窄分子量分布丙烯酸共聚酯,完全以水为分散介质,直接于纯水体系中聚合并稳定存在,具有纳米级窄带宽均分布特征。具体而言,D50粒径为40~65nm,具有纳米级尺寸,具有结构一致性,多分散指数PDI(Mw/Mn) <1.05,粒径分布带窄,且呈现正态分子量分布特征。因此,本发明的纳米级水性窄分子量分布丙烯酸共聚酯本身的生产过程不涉及VOC排放,具有优异的环保效果。
(二)、具备低粘度、高固含量的特性。粘度低,固含量>30wt%,使得本发明的丙烯酸共聚酯在下游应用过程中,例如生产水性油墨,无需添加有机溶剂或助剂降低应用体系的粘度,也可达到与添加了有机溶剂或助剂相同的效果。因此,其下游应用过程可实现VOC的零排放。
(三)、不吸水、不回粘、防水能力强。具体而言:纳米级水性窄分子量分布丙烯酸共聚酯直接聚合分散于纯水体系,具备在水中稳定存在,但脱水后彻底不亲水的特性。由此具备了良好的防水性能。本发明的丙烯酸共聚酯采用上述聚合方式,避免了采用双电层(乳化)或水合离子(亲水)理论制备的丙烯酸酯树脂因吸潮引起回粘的缺陷。由于树脂直接分散于水,而非后期乳化分散和利用亲水基团溶解溶胀,因此不吸水、不回粘、防水能力强。
(四)、能够进行功能化修饰。进行了功能化修饰后的丙烯酸共聚酯依然完全保持纳米级窄带宽均分子量分布的特征。
功能团赋予其防油、耐候性、耐酸碱/化学腐蚀、耐盐雾、抗紫外线等特性。经功能团加载聚合后可满足不同使用场合的特殊要求,无需增加有机溶剂或助剂(VOC相关物质),具有极其广泛的应用领域。
附图说明
图1是实施例1的纳米级水性窄分子量分布丙烯酸共聚酯C30的FTIR图谱。
图2是实施例2的纳米级水性窄分子量分布丙烯酸共聚酯C30的FTIR图谱。
图3是实施例3的纳米级水性窄分子量分布丙烯酸共聚酯C30的FTIR图谱。
图4是实施例4的纳米级水性窄分子量分布丙烯酸共聚酯C30IB-I的FTIR图谱。
图5是实施例5的纳米级水性窄分子量分布丙烯酸共聚酯C301590的FTIR图谱。
图6是实施例1的纳米级水性窄分子量分布丙烯酸共聚酯C30的分子量分布图。
图7是实施例2的纳米级水性窄分子量分布丙烯酸共聚酯C30的分子量分布图。
图8是实施例3的纳米级水性窄分子量分布丙烯酸共聚酯C30的分子量分布图。
图9是实施例4的纳米级水性窄分子量分布丙烯酸共聚酯C30IB-I的分子量分布图。
图10是实施例5的纳米级水性窄分子量分布丙烯酸共聚酯C301590的分子量分 布图。
图11是实施例1的纳米级水性窄分子量分布丙烯酸共聚酯C30的DCS图谱。
图12是实施例2的纳米级水性窄分子量分布丙烯酸共聚酯C30的DCS图谱。
图13是实施例3的纳米级水性窄分子量分布丙烯酸共聚酯C30的DCS图谱。
图14是实施例4的纳米级水性窄分子量分布丙烯酸共聚酯C30IB-I的DCS图谱。
图15是实施例5的纳米级水性窄分子量分布丙烯酸共聚酯C301590的DCS图谱。
图16是本发明的纯水性油墨的粒径分布图。
图17是American Color Inc水性油墨色浆的粒径分布图。
图18是采用画格法测试的实施例10的纯水性油墨测试样板。
图19是实施例10纯水性油墨的水煮测试效果图。
具体实施方式
以下结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围。
下列实施例中,涉及的原料均为市售产品。
实施例1-5的配方如表1所示。
表1 实施例1-5的配方
Figure PCTCN2019076911-appb-000002
实施例1、纳米级水性窄分子量分布丙烯酸共聚酯C30的制备
本发明的纳米级水性窄分子量分布丙烯酸共聚酯的制备方法如下:
A)在反应器内用配方量90%质量的超纯水溶解配方量50%质量的乳化剂十二烷 基硫酸钠,搅拌至十二烷基硫酸钠完全溶解,形成乳化剂水溶液,然后加热至80℃,并保持恒温。
B)容器中加入剩余的配方量的水,然后加入配方量的引发剂过硫酸铵,搅拌至过硫酸铵完全溶解,得到引发剂水溶液。
C)将配方量的基础单体甲基丙烯酸甲酯、甲基丙烯酸和丙烯酸丁酯分别加入容器中,搅拌均匀,除去阻聚剂,并加入剩余的配方量50%质量的乳化剂,缓慢搅拌直至乳化剂和基础单体完全溶解,得到经过相界调整的混合单体液。
D)反应器开启搅拌并保持80℃的反应温度,然后往反应器中同时加入步骤B)制备得到的引发剂水溶液和步骤C)制备得到的混合单体液,控制加料时间为90±5分钟,加料完成后,停止搅拌,反应体系熟化2小时,然后冷却至室温,调节pH至6,过滤,得到纳米级水性窄分子量分布丙烯酸共聚酯。
由于丙烯酸共聚酯作为原料应用于下游产品,根据下游产品的不同,所需的丙烯酸共聚酯的pH值也不同。步骤D)中所述的pH值可根据后续丙烯酸共聚酯的实际应用需求而变化,即调节pH值至所需值,通常调节pH值至5~8范围。
实施例2、纳米级水性窄分子量分布丙烯酸共聚酯C30的制备
A)在反应器内用配方量80%质量的超纯水溶解配方量45%质量的乳化剂十八烷基硫酸钠,搅拌至十八烷基硫酸钠完全溶解,形成乳化剂水溶液,然后加热至70℃,并保持恒温。
B)容器中加入剩余的配方量的水,然后加入配方量的引发剂过硫酸钾,搅拌至过硫酸钾完全溶解,得到引发剂水溶液;
C)将配方量的基础单体甲基丙烯酸甲酯、甲基丙烯酸和丙烯酸丁酯分别加入容器中,搅拌均匀,除去阻聚剂,并加入剩余的配方量55%质量的乳化剂,缓慢搅拌直至乳化剂和基础单体完全溶解,得到混合单体液;
D)反应器开启搅拌并保持70℃的反应温度,然后往反应器中同时加入步骤B)制备得到的引发剂水溶液和步骤C)制备得到的混合单体液,控制加料时间为90±5分钟,加料完成后,停止搅拌,反应体系熟化2.5小时,然后冷却至室温,调节pH至8,过滤,得到纳米级水性窄分子量分布丙烯酸共聚酯。
实施例3、纳米级水性窄分子量分布丙烯酸共聚酯C30的制备
A)在反应器内用配方量70%质量的超纯水溶解配方量55%质量的乳化剂NP-10,搅拌至NP-10完全溶解,形成乳化剂水溶液,然后加热至85℃,并保持恒温。
B)容器中加入剩余的配方量的水,然后加入配方量的引发剂过硫酸铵,搅拌至过硫酸铵完全溶解,得到引发剂水溶液;
C)将配方量的基础单体甲基丙烯酸甲酯、甲基丙烯酸和丙烯酸丁酯分别加入容器中,搅拌均匀,除去阻聚剂,并加入剩余的配方量45%质量的乳化剂,缓慢搅拌直至乳化剂和基础单体完全溶解,得到混合单体液;
D)反应器开启搅拌并保持85℃的反应温度,然后往反应器中同时加入步骤B)制备得到的引发剂水溶液和步骤C)制备得到的混合单体液,控制加料时间为90±5分钟,加料完成后,停止搅拌,反应体系熟化1.5小时,然后冷却至室温,调节pH至5,过滤,得到纳米级水性窄分子量分布丙烯酸共聚酯。
实施例4、纳米级水性窄分子量分布丙烯酸共聚酯C30IB-I的制备
本发明的纳米级水性窄分子量分布丙烯酸共聚酯的制备方法如下:
A)在反应器内用配方量90%质量的超纯水溶解配方量50%质量的乳化剂十二烷基硫酸钠,搅拌至十二烷基硫酸钠完全溶解,形成乳化剂水溶液,然后加热至80℃,并保持恒温。
B)容器中加入剩余的配方量的水,然后加入配方量的引发剂过硫酸胺,搅拌至过硫酸胺完全溶解,得到引发剂水溶液。
C)将配方量的基础单体甲基丙烯酸甲酯、甲基丙烯酸、丙烯酸丁酯和丙烯酸异冰片酯分别加入容器中,搅拌均匀,除去阻聚剂,并加入剩余的配方量50%质量的乳化剂,缓慢搅拌直至乳化剂和基础单体完全溶解,得到混合单体液。
D)反应器开启搅拌并保持80℃的反应温度,然后往反应器中同时加入步骤B)制备得到的引发剂水溶液和步骤C)制备得到的混合单体液,控制加料时间为90±5分钟,加料完成后,停止搅拌,反应体系熟化2小时,然后冷却至室温,调节pH至6,过滤,得到纳米级水性窄分子量分布丙烯酸共聚酯。
实施例5、纳米级水性窄分子量分布丙烯酸共聚酯C301590的制备
本发明的纳米级水性窄分子量分布丙烯酸共聚酯的制备方法如下:
A)在反应器内用配方量90%质量的超纯水溶解配方量50%质量的乳化剂十二烷 基硫酸钠,搅拌至十二烷基硫酸钠完全溶解,形成乳化剂水溶液,然后加热至80℃,并保持恒温。
B)容器中加入剩余的配方量的水,然后加入配方量的引发剂过硫酸铵,搅拌至过硫酸铵完全溶解,得到引发剂水溶液。
C)将配方量的基础单体甲基丙烯酸甲酯、甲基丙烯酸、丙烯酸丁酯和丙烯酸磷酸酯分别加入容器中,搅拌均匀,除去阻聚剂,并加入剩余的配方量50%质量的乳化剂,缓慢搅拌直至乳化剂和基础单体完全溶解,得到混合单体液。
D)反应器开启搅拌并保持80℃的反应温度,然后往反应器中同时加入步骤B)制备得到的引发剂水溶液和步骤C)制备得到的混合单体液,控制加料时间为90±5分钟,加料完成后,停止搅拌,反应体系熟化2小时,然后冷却至室温,调节pH至6,过滤,得到纳米级水性窄分子量分布丙烯酸共聚酯。
实施例6、红外色谱法(FTIR)测试及分析
分别对实施例1-5制备得到的纳米级水性窄分子量分布丙烯酸共聚酯进行红外光谱测试,红外光谱谱图如图1至图5所示。
由图1-3可知,实施例1-3制备的C30的红外光谱谱图几乎相同。由图1-5可知,C30、C30IB-I、C301590的红外光谱谱图十分相似。通过上海华谊检验检测有限公司检测,结果为:C30、C30IB-I、C301590均为丙烯酸酯树脂。
所述纳米级水性窄分子量分布丙烯酸共聚酯C30包括主链段,结合红外光谱谱图,推定所述主链段具有如下所示的结构式:
Figure PCTCN2019076911-appb-000003
所述的纳米级水性窄分子量分布丙烯酸共聚酯C30IB-I、C301590还包括功能链段,结合红外光谱谱图,推定所述功能链段具有如下所示的结构式:
Figure PCTCN2019076911-appb-000004
所述功能链段上的功能性基团包括杂环基团或长碳链酯类基团。
实施例7、粒径及多分散指数PDI分析
采用马尔文激光粒径仪及zeta电位分析仪ZEN3600分别测试样品的D50粒径及分散指数PdI(Dw/Dn),其中Dw、Dn分别为重均、数均粒子直径。结果如表2和图6-10所示。
表2 纳米级水性窄分子量分布丙烯酸共聚酯的粒径测试数据
Figure PCTCN2019076911-appb-000005
结合表2的数据和图6-10可知,实施例1-5制备的丙烯酸共聚酯的D50在40~65mm之间,PdI(Dw/Dn)在0.043~0.058范围,呈现正态分子量分布,属于均一的纳米窄带聚合物。
依据马尔文动态光散射粒度测试仪相关介绍及根据有关文献查阅所得结论:在微纳米材料中凝胶色谱GPC测试的多分散指数PDI(Mw/Mn),与粒度测试仪所测试的分散指数PdI(Dw/Dn)存在如下计算公式:b=4*a^2+1。式中b为GPC的PDI(Mw/Mn)分散指数,a为马尔文动态光散射粒度仪的PdI(Dw/Dn)。
经计算,对应的多分散指数PDI(Mw/Mn)为1.007~1.01,多分散指数PDI(Mw/Mn)<1.01。小于文献规定的区分单分散体系的临界值1.05。
综上所述,本发明的丙烯酸共聚酯的多分散指数PDI(Mw/Mn)<1.05,因此,为纳米尺寸(﹤100nm)的单分散性材料,具有纳米级尺寸,且其粒径分布带窄,呈现正态分子量分布特征,为纳米级水性窄分子量分布丙烯酸共聚酯。
实施例8、差示扫描量热法(DSC)测试
通过差示扫描量热法分别对实施例1-5制备的丙烯酸共聚酯C30、C30IB-I、C301590进行分析。DSC条件:扫描速率10.00℃/min,样品质量:18mg研磨至粉状,无任何添加助剂。测试气氛:氮气,流量(mL/min):66。DSC图谱如图11-15所示。
结果显示C30的玻璃化转变温度为38℃,C30IB-I和C301590的玻璃化转变温度为36℃。由图11-15可知,C30、C30IB-I、C301590的DSC曲线具有一致性。
因此,具有功能性基团的丙烯酸共聚酯C30IB-I和C301590与丙烯酸共聚酯C30同样具备相似的材料热力学性质。
实施例9、固含量和粘度
分别检测实施例1-5制备的丙烯酸共聚酯C30、C30IB-I、C301590的粘度和固含量,并以市售的水溶性丙烯酸酯树脂(型号,HMP-3212)为对照。采用NDJ-1转子粘度计进行测试。结果如表3所示。
固含量测试参数:取样数量:4g,烘箱干燥温度:120℃,恒温干燥时间:120分钟后/次,重复至不减重。
表3 C30、C30IB-I、C301590的粘度和固含量测试结果
Figure PCTCN2019076911-appb-000006
由表3的数据可知,实施例1-5制备的样品的粘度范围为:10~11.5cps,固含量范围为:33.46~35.35wt%。而具有与实施例1-5固含量相当的市售产品的粘度为2500cps,明显高于本实施例1-5制备的丙烯酸共聚酯的粘度。由此可见,本发明的丙烯酸共聚酯具有低粘度、高固含量的特性。
由于低粘度的特定,使得本发明的丙烯酸共聚酯在下游应用过程中无需添加其它有机溶剂或助剂来降低应用体系的粘度,就能达到其他丙烯酸酯树脂添加有机溶剂或助剂的实际效果。由于无需是使用有机溶剂或助剂,因此可显著降低应用体系的VOC含量。同时,由于其在较高的固含量时仍然保持低粘度的特性,也为本发明的丙烯酸共聚酯的后续加工处理带来了极大的便利。
通过上述实施例,证明本发明的纳米级水性窄分子量分布丙烯酸共聚酯具有优异的性能,下面分别通过实施例10-14将实施例1-5制备的丙烯酸共聚酯应用于制备水性油墨,考察制备得到的纯水性油墨的各项性能。
实施例10-14、纯水性油墨的制备
实施例10-14的纯水性油墨配方,如表4所示。
表4 纯水性油墨配方
Figure PCTCN2019076911-appb-000007
Figure PCTCN2019076911-appb-000008
其中,润湿剂YM-313、防霉剂lxe和氨水均为市售产品,市售氨水的浓度为25%。将市售产品用水以1:10稀释,制备成润湿剂(YM-313)水溶液,防霉剂(lxe)水溶液和氨水稀释液,然后用于配制纯水性连接料。
实施例10中的C30由实施例1制备,实施例11中的C30由实施例2制备,实施例12中的C30由实施例3制备,实施例12中的C30IB-I由实施例4制备,实施例13中的C30由实施例1制备,实施例14中的中的C30由实施例1制备,实施例14中的C301590由实施例5制备。
纯水性油墨的制备方法
(1)、制备纯水性色浆
在容器内加入配方量的去离子水,开启搅拌,控制转速为50~80rpm,加入配方量的硅酸锂镁,搅拌至完全溶解,然后加入配方量的LAS,搅拌至完全溶解,再加入配方量的有机颜料永固黄,以分散盘分散均匀,得到纯水性色浆,备用。
(2)、制备纯水性连接料,包括如下步骤:
a)将配方量的润湿剂(YM-313)水溶液和防霉剂(lxe)水溶液加入容器内并开启搅拌,控制转速为50~80rpm。
b)加入配方量的纯水性树脂C30和/或C30IB-I,搅拌均匀,然后滴加配方量的氨水稀释液以调整体系的pH至4.5~7.5,继续搅拌15分钟,使之混合均匀,然后加入配方量的碳酸丙烯酯,继续搅拌15分钟使之混合均匀。
c)加入配方量的氧化聚丙烯蜡乳液E-810和E-668H,搅拌30分钟使之混合均匀,得到纯水性连接料,备用。
(3)、制备纯水性油墨
在容器内加入配方量的纯水性连接料,开启搅拌,控制转速为50~80rpm。然后加入配方量的纯水性色浆,搅拌均匀,再加入配方量的脂肪醇消泡剂,搅拌均匀,即得本发明的纯水性油墨。
以下通过实施例15-17对实施例10-14制备得到的纯水性油墨进行性能评价。
实施例15、粒径分析
对实施例10-14制备的纯水性油墨和American Color Inc水性油墨色浆进行粒径测量。实施例10制备的纯水性油墨的粒径分布图如图16所示,实施例11-14制备的纯水性油墨的粒径分布图与图16几乎相同。American Color Inc水性油墨色浆的粒径分布图如图17所示。
由图16和图17对比可知,按本发明的配方和工艺制备的纯水性油墨的粒径比现有的水性油墨色浆具有更加小的粒径。本发明的纯水性油墨成膜后表面光泽性好。
实施例16、纯水性油墨的VOC检测
对实施例10-14制备得到的纯水性油墨进行VOC检测。经过国际权威检测认证机构SGS按HJ/T371-2007标准检测,检测指标项全部ND,符合国家环保及欧盟RoHS及SVHC REACH法规的要求。
实施例17、干燥速率测试
根据GB/T13217.5-2008《液体油墨初干性检验方法》对实施例10-14制备的纯水性油墨进行初干性实验。结果显示:实施例10-14制备的纯水性油墨的初干性均达到QB/T 1046-2012《凹版塑料薄膜表印油墨》中的要求。
将市售的水性油墨用于试样上,常温下放置,通常需要90秒以上才能自然干燥。而将实施例10-14制备的纯水性油墨用于试样上,常温自然干燥,不超过60秒即干燥。说明实施例10-14制备的纯水性油墨干燥速率更快。
实施例18、耐水性测试
市售的水性油墨用于试样上,试样经过常温浸泡后,通常不超过48小时即出现掉色气泡现象。而将实施例10-14制备的纯水性油墨用于试样上。试样经常温水浴浸泡一周以上,取水样观察无色,试样无明显变化。说明本发明的纯水性油墨具有良好的耐水性。
实施例19、回粘性测试
对实施例10-14制备的纯水性油墨进行印刷样张压力试验。结果表明:本发明的纯水性油墨不会因回潮等因素产生回粘、颜色脱落现象。说明本发明的纯水性油墨具有良好的抗回粘性。
实施例20、附着力测试
采用GB/T13217.7《液体油墨附着牢度检验方法》对实施例10-14制备的纯水性油墨在PET薄膜上的附着牢度进行测试。
结果显示:胶带揭下部分小于2%。附着度已达到QB/T 1046-2012《凹版塑料薄膜表印油墨》中的要求。
采用画格法对实施例10-14制备的纯水性油墨进行附着力测试。其中,实施例10的测试样板如图18所示。实验结果显示,干燥后的纯水性油墨具备极强的附着力,经胶带测试不掉色,HGQ(1mm)划格仪(ISO2409-1974)测试结果为0级,(即切割的边缘是完全平滑的,没有一个方格脱落)。说明实施例10-14制备的纯水性油墨具有优异的附着力。
实施例21、耐水煮性能
将实施例10-14制备的纯水性油墨用于印刷,印刷样张采用100℃沸水30分钟水煮进行试验。冷却后与未水煮样张对比,发现二者无明显变化。实施例10的水煮测试效果图19所示,其他实施例的水煮测试效果与实施例10相当,采用专用测试胶带测试无脱落现象。
因此,本发明的纯水性油墨具有优异的耐水煮性能,可应用于需要经过加热的杀菌消毒的食品包装印刷。
另外,本发明的纯水性油墨与PET等膜材印刷后具有极大的拉伸回弹应变性,可完全随着印染材料的拉伸回弹而恢复。因此,具有良好的应变力。
以上对本发明的具体实施例进行了详细描述,但其只作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对该发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (13)

  1. 纳米级水性窄分子量分布丙烯酸共聚酯,其特征在于,合成所述丙烯酸共聚酯的原料包括基础单体:甲基丙烯酸甲酯、甲基丙烯酸和丙烯酸丁酯;所述基础单体在纯水体系中通过乳化剂和引发剂的作用聚合成所述纳米级水性窄分子量分布丙烯酸共聚酯,包括如下制备步骤:
    A)部分配方量的乳化剂与水形成乳化剂水溶液;
    B)配方量的引发剂与水形成引发剂水溶液;
    C)配方量的基础单体与剩余的配方量的乳化剂形成混合单体液;
    D)将步骤B)制备的引发剂水溶液和步骤C)制备的混合单体液同时加入步骤A)的乳化剂水溶液内进行反应,得到纳米级水性窄分子量分布丙烯酸共聚酯。
  2. 根据权利要求1所述的纳米级水性窄分子量分布丙烯酸共聚酯,其特征在于,以质量百分比计,制备所述纳米级水性窄分子量分布丙烯酸共聚酯的原料包括:
    Figure PCTCN2019076911-appb-100001
  3. 根据权利要求1所述的的纳米级水性窄分子量分布丙烯酸共聚酯,其特征在于,所述纳米级水性窄分子量分布丙烯酸共聚酯的原料还包含功能性单体:杂环酯类或长碳链酯类。
  4. 根据权利要求3所述的的纳米级水性窄分子量分布丙烯酸共聚酯,其特征在于,所述杂环酯类的质量百分比小于5%,所述长碳链酯类的质量百分比小于5%。
  5. 根据权利要求4所述的纳米级水性窄分子量分布丙烯酸共聚酯,其特征在于,所述杂环酯类选自丙烯酸异冰片酯、甲基丙烯酸异冰片酯中的一种或几种,所述长碳链酯类选自丙烯酸磷酸酯、丙烯酸十二烷基酯、丙烯酸十八烷基酯中的一种或几种。
  6. 根据权利要求1-5中任一项所述纳米级水性窄分子量分布丙烯酸共聚酯,其特征在于,所述纳米级水性窄分子量分布丙烯酸共聚酯的D50粒径为40~65nm,多分散指数PDI(Mw/Mn)<1.05。
  7. 根据权利要求1-5中任一项所述纳米级水性窄分子量分布丙烯酸共聚酯,其特征在于,所述纳米级水性窄分子量分布丙烯酸共聚酯的固含量>30wt%。
  8. 一种纳米级水性窄分子量分布丙烯酸共聚酯的制备方法,其特征在于,包括如下制备步骤:
    A)在反应器内用适量的水溶解部分配方量的乳化剂,搅拌至乳化剂完全溶解,形成乳化剂水溶液,然后加热至70~85℃,并保持恒温;
    B)容器中加入剩余的配方量的水,然后加入配方量的引发剂,搅拌至引发剂完全溶解,得到引发剂水溶液;
    C)将配方量的基础单体分别加入容器中,搅拌均匀,并加入剩余的配方量的乳化剂,缓慢搅拌直至单体完全溶解,得到混合单体液;
    D)反应器开启搅拌并保持70~85℃的反应温度,然后往反应器中同时加入步骤B)制备得到的引发剂水溶液和步骤C)制备得到的混合单体液,加料完成后,停止搅拌,反应体系熟化适当的时间,然后经冷却,调节pH至所需值,过滤,得到纳米级水性窄分子量分布丙烯酸共聚酯;
    其中,所述步骤C)中的所述基础单体包括甲基丙烯酸甲酯、甲基丙烯酸和丙烯酸丁酯。
  9. 根据权利要求8所述的制备方法,其特征在于,所述步骤A)中,所述适量的水为配方量70~90%质量的水,所述部分配方量的乳化剂为配方量45~55%质量的乳化剂。
  10. 根据权利要求8所述的制备方法,其特征在于,所述步骤C)中,所述熟化适当的时间为2±0.5小时。
  11. 根据权利要求7所述的制备方法,其特征在于,所述步骤D)中,所述调节pH至所需值是指调节pH值至5~8。
  12. 权利要求1-7中任一项所述的纳米级水性窄分子量分布丙烯酸共聚酯作为水性树脂的应用。
  13. 权利要求12所述的纳米级水性窄分子量分布丙烯酸共聚酯的应用,其特征在于,用于制备纯水性油墨。
PCT/CN2019/076911 2018-04-28 2019-03-05 纳米级水性窄分子量分布丙烯酸共聚酯及其制备方法 WO2019205809A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19793477.1A EP3670549B1 (en) 2018-04-28 2019-03-05 Nanoscale water-based narrow-molecular-weight distribution acrylic copolyester and preparation therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810400560.4A CN108559018B (zh) 2018-04-28 2018-04-28 纳米级水性窄分子量分布丙烯酸共聚酯及其制备方法
CN201810400560.4 2018-04-28

Publications (1)

Publication Number Publication Date
WO2019205809A1 true WO2019205809A1 (zh) 2019-10-31

Family

ID=63537178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076911 WO2019205809A1 (zh) 2018-04-28 2019-03-05 纳米级水性窄分子量分布丙烯酸共聚酯及其制备方法

Country Status (3)

Country Link
EP (1) EP3670549B1 (zh)
CN (1) CN108559018B (zh)
WO (1) WO2019205809A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108559018B (zh) * 2018-04-28 2019-03-22 上海先科化工有限公司 纳米级水性窄分子量分布丙烯酸共聚酯及其制备方法
CN110437368B (zh) * 2019-09-19 2021-05-14 杭州海维特化工科技有限公司 一种细粒径乳液树脂及其制备方法
CN111171663B (zh) * 2020-02-10 2022-02-25 东营山大石油科技有限公司 一种纳米级纯水性金属防腐涂料及其制备方法与应用
CN111319388A (zh) * 2020-03-27 2020-06-23 上海紫江喷铝环保材料有限公司 一种深纹浮雕纳米窄分子量转移材料及其制备方法
CN114920871B (zh) * 2022-06-13 2023-09-19 万华化学集团股份有限公司 一种光学级聚甲基丙烯酸甲酯树脂及其用途
CN115710446B (zh) * 2022-12-09 2024-03-22 宁波云涂科技有限公司 一种光伏建筑玻璃炫彩喷涂材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003192981A (ja) * 2001-12-27 2003-07-09 Asahi Kasei Corp 塗装用アクリル系エマルジョン
CN105694772A (zh) * 2014-11-26 2016-06-22 邢国爱 耐黄变的丙烯酸酯乳液压敏胶
CN108559018A (zh) * 2018-04-28 2018-09-21 上海先科化工有限公司 纳米级水性窄分子量分布丙烯酸共聚酯及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039500A (en) * 1975-10-22 1977-08-02 Union Carbide Corporation Process for controlling molecular weight distribution of latex polymers
GB0123572D0 (en) * 2001-10-02 2001-11-21 Avecia Bv Polymer compositions
CN103554341B (zh) * 2013-10-30 2016-03-02 华南理工大学 核壳结构的低温自交联丙烯酸酯乳液及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003192981A (ja) * 2001-12-27 2003-07-09 Asahi Kasei Corp 塗装用アクリル系エマルジョン
CN105694772A (zh) * 2014-11-26 2016-06-22 邢国爱 耐黄变的丙烯酸酯乳液压敏胶
CN108559018A (zh) * 2018-04-28 2018-09-21 上海先科化工有限公司 纳米级水性窄分子量分布丙烯酸共聚酯及其制备方法

Also Published As

Publication number Publication date
EP3670549C0 (en) 2023-07-12
CN108559018A (zh) 2018-09-21
CN108559018B (zh) 2019-03-22
EP3670549B1 (en) 2023-07-12
EP3670549A1 (en) 2020-06-24
EP3670549A4 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
WO2019205809A1 (zh) 纳米级水性窄分子量分布丙烯酸共聚酯及其制备方法
CH635114A5 (fr) Copolymere hydrosoluble dispersant pour pigments.
CA3032277C (en) Ambient self-crosslinkable latex
US10604593B2 (en) Aqueous emulsion, adhesive composition, and aqueous emulsion manufacturing method
RU2007132743A (ru) Улучшенная композиция для покрытия
BR102015029083A2 (pt) extensor orgânico de partícula grande
CN109593400B (zh) 纳米级水性窄分子量分布丙烯酸共聚酯的应用
CN114181607A (zh) 一种水性聚氨酯防水涂料及其冷法制备工艺
CN110540615B (zh) 一种苯乙烯丙烯酸酯乳液及其制备方法和应用
BR112015004735B1 (pt) polímero de múltiplos estágios, método para preparar um polímero de múltiplos estágios, e, composição de revestimento
EP1732997B2 (de) Beschichtungsmassen auf basis emissionsarmer bindemittel
JP6272882B2 (ja) 水性コーティング用界面活性剤
CN1256395C (zh) 水性油墨粘接剂组合物
KR20190020726A (ko) 개선된 액체 얼룩 반발성을 갖는 코팅 조성물
WO2023185922A1 (zh) 一种耐高温水性光油、其制备方法及用途
CN111285953B (zh) 一种丙烯酸乳液及其制备方法
US10934398B2 (en) Method for obtaining a colloidal dispersion, colloidal dispersion and use thereof
CN106752347A (zh) 适用于医疗包装材料的印刷油墨
DE2760406C2 (zh)
CN107531974B (zh) 水性分散体及其用途
TWI706974B (zh) 嵌段共聚物、分散劑、顏料分散組合物、染料分散組合物以及金屬氧化物分散組合物
CN114014989A (zh) 一种羟基丙烯酸水分散体、其制备方法及其应用
EP3398988B1 (en) Method for obtaining a colloidal dispersion, colloidal dispersion and use thereof
CN115232260B (zh) 一种凹印油墨用水性环氧改性的丙烯酸酯乳液及其制备方法
CN112534021A (zh) 减振材料用树脂组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019793477

Country of ref document: EP

Effective date: 20200317

NENP Non-entry into the national phase

Ref country code: DE