WO2022198405A1 - 量子点发光器件、其驱动方法及显示基板 - Google Patents

量子点发光器件、其驱动方法及显示基板 Download PDF

Info

Publication number
WO2022198405A1
WO2022198405A1 PCT/CN2021/082156 CN2021082156W WO2022198405A1 WO 2022198405 A1 WO2022198405 A1 WO 2022198405A1 CN 2021082156 W CN2021082156 W CN 2021082156W WO 2022198405 A1 WO2022198405 A1 WO 2022198405A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
dot light
layer
emitting device
emitting layer
Prior art date
Application number
PCT/CN2021/082156
Other languages
English (en)
French (fr)
Inventor
王铁石
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to DE112021002113.3T priority Critical patent/DE112021002113T5/de
Priority to CN202180000540.8A priority patent/CN115398662A/zh
Priority to PCT/CN2021/082156 priority patent/WO2022198405A1/zh
Priority to US17/770,153 priority patent/US20240147747A1/en
Publication of WO2022198405A1 publication Critical patent/WO2022198405A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a quantum dot light-emitting device, a driving method thereof, and a display substrate.
  • Quantum dots are solution-processable semiconductor nanocrystals. Quantum dot light-emitting devices prepared by using them as light-emitting layers have the advantages of high color gamut, self-luminescence, fast response speed, and low lighting voltage, and are expected to become the next-generation display technology.
  • Embodiments of the present disclosure provide a quantum dot light-emitting device, including:
  • a second electrode arranged opposite to the first electrode
  • a common electrode located between the first electrode and the second electrode
  • a first quantum dot light-emitting layer located between the first electrode and the common electrode;
  • a second quantum dot light-emitting layer located between the second electrode and the common electrode;
  • a first auxiliary function layer located between the first electrode and the first quantum dot light-emitting layer
  • a second auxiliary functional layer located between the first quantum dot light-emitting layer and the common electrode
  • a third auxiliary functional layer located between the second quantum dot light-emitting layer and the common electrode;
  • the fourth auxiliary function layer is located between the second electrode and the second quantum dot light-emitting layer.
  • the first electrode, the first auxiliary function layer, the first quantum dot light-emitting layer, and the second auxiliary function are sequentially stacked and arranged
  • the layer and the common electrode constitute one of a positive light-emitting structure and an inverted light-emitting structure
  • the common electrode, the third auxiliary function layer, the second quantum dot light-emitting layer, the fourth auxiliary function layer and the second electrode are sequentially stacked to form Another one of the upright light emitting structure and the inverted light emitting structure.
  • the first quantum dot light-emitting layer and the second quantum dot light-emitting layer include quantum dot materials of the same color.
  • the first quantum dot light-emitting layer and the second quantum dot light-emitting layer include quantum dot materials of different colors.
  • the second electrode is located on the light-emitting side of the quantum dot light-emitting device, and the light-emitting wavelength of the first quantum dot light-emitting layer is greater than the emission wavelength of the second quantum dot light-emitting layer.
  • the second auxiliary functional layer and the third auxiliary functional layer are both electron transport layers.
  • the first auxiliary functional layer includes a hole injection layer in direct contact with the first electrode, and a hole injection layer in direct contact with the first electrode. a hole transport layer in direct contact with the quantum dot light-emitting layer;
  • the fourth auxiliary function layer includes a hole injection layer in direct contact with the second electrode, and a hole transport layer in direct contact with the second quantum dot light-emitting layer.
  • both the second auxiliary functional layer and the third auxiliary functional layer include a hole injection layer and a hole transport layer, The hole injection layer is located between the common electrode and the hole transport layer.
  • both the first auxiliary function layer and the fourth auxiliary function layer include an electron transport layer.
  • an embodiment of the present disclosure further provides a display substrate, comprising: a plurality of the quantum dot light-emitting devices provided by the embodiments of the present disclosure.
  • the first quantum dot light-emitting layer and the second quantum dot light-emitting layer of each quantum dot light-emitting device include quantum dots of the same color Material.
  • the display substrate has a plurality of pixels, and each pixel includes a first quantum dot light-emitting device and a second quantum dot light-emitting device arranged adjacently. device and a third quantum dot light-emitting device;
  • the first quantum dot light-emitting layer and the second quantum dot light-emitting layer of the first quantum dot light-emitting device include red quantum dot materials
  • the first quantum dot light-emitting layer and the second quantum dot light-emitting layer of the second quantum dot light-emitting device comprise green quantum dot materials
  • the first quantum dot light emitting layer and the second quantum dot light emitting layer of the third quantum dot light emitting device include blue quantum dot materials.
  • the display substrate has a plurality of pixels, and each pixel includes a first quantum dot light-emitting device and a second quantum dot light-emitting device arranged adjacently.
  • a device and a third quantum dot light-emitting device, wherein the first quantum dot light-emitting layer and the second quantum dot light-emitting layer of at least one of the first quantum dot light-emitting device, the second quantum dot light-emitting device, and the third quantum dot light-emitting device include: Quantum dot materials in different colors.
  • the two first quantum dot light-emitting layers and The two second quantum dot light-emitting layers comprise quantum dot materials of three different colors in total.
  • the first quantum dot light-emitting layer of the first quantum dot light-emitting device includes a red quantum dot material
  • the first quantum dot light-emitting device the second quantum dot light-emitting layer includes green quantum dot material
  • the first quantum dot light-emitting layer of the second quantum dot light-emitting device includes green quantum dot material, and the second quantum dot light-emitting layer of the second quantum dot light-emitting device includes blue quantum dot material;
  • the first quantum dot light emitting layer of the third quantum dot light emitting device includes red quantum dot material
  • the second quantum dot light emitting layer of the third quantum dot light emitting device includes blue quantum dot material
  • the first quantum dot light-emitting layer and the second quantum dot light-emitting layer of the first quantum dot light-emitting device both include blue quantum dot materials ;
  • the first quantum dot light-emitting layer of the second quantum dot light-emitting device includes green quantum dot material, and the second quantum dot light-emitting layer of the second quantum dot light-emitting device includes blue quantum dot material;
  • the first quantum dot light emitting layer of the third quantum dot light emitting device includes red quantum dot material
  • the second quantum dot light emitting layer of the third quantum dot light emitting device includes blue quantum dot material
  • an embodiment of the present disclosure also provides a method for driving the above quantum dot light-emitting device, including:
  • positive and negative voltages of a specific frequency are applied to the first electrode and the second electrode to control the first quantum dot light-emitting layer and the second quantum dot light-emitting layer to emit light alternately;
  • a voltage of the same polarity is alternately applied to the first electrode and the second electrode, and a voltage of the other polarity is applied to the common electrode to control the first quantum dot light-emitting layer and the The second quantum dot light-emitting layer alternately emits light.
  • the above-mentioned driving method provided by the embodiment of the present disclosure further includes:
  • a voltage of the same polarity is applied to the first electrode and the second electrode, and a voltage of the other polarity is applied to the common electrode, so as to control the first quantum dot light-emitting layer and the second electrode.
  • the second quantum dot light-emitting layer emits light simultaneously.
  • FIG. 1 is a schematic structural diagram of a quantum dot light-emitting device provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a specific structure of a quantum dot light-emitting device provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of another specific structure of the quantum dot light-emitting device provided by the embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of an energy level of a quantum dot light-emitting device provided in an embodiment of the present disclosure
  • FIG. 5 is another energy level schematic diagram of the quantum dot light-emitting device provided by the embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a method for driving a quantum dot light-emitting device according to an embodiment of the present disclosure
  • Fig. 7 is a working schematic diagram of the first working mode in the driving method of the quantum dot light-emitting device provided by the embodiment of the present disclosure
  • FIG. 8 is another working schematic diagram of the first working mode in the driving method of the quantum dot light-emitting device provided by the embodiment of the present disclosure.
  • FIG. 9 is a schematic working diagram of the second working mode in the driving method of the quantum dot light-emitting device provided by the embodiment of the present disclosure.
  • FIG. 10 is another working schematic diagram of the second working mode in the driving method of the quantum dot light-emitting device provided by the embodiment of the present disclosure.
  • FIG. 11 is a schematic working diagram of a third working mode in the driving method of the quantum dot light-emitting device provided by the embodiment of the present disclosure.
  • FIG. 12 is another working schematic diagram of the third working mode in the driving method of the quantum dot light-emitting device provided by the embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 14 is another schematic structural diagram of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 15 is another schematic structural diagram of a display substrate provided by an embodiment of the present disclosure.
  • Fig. 16 is the luminescence spectrum diagram of the first quantum dot light-emitting layer in the structure shown in Fig. 2;
  • FIG. 17 is an emission spectrum diagram of the second quantum dot light-emitting layer in the structure shown in FIG. 2 .
  • the traditional quantum dot light emitting (QLED) device structure includes a hole injection layer (HI), a hole transport layer (HT), a quantum dot light emitting layer (QD) and an electron transport layer (ET).
  • HI hole injection layer
  • HT hole transport layer
  • QD quantum dot light emitting layer
  • ET electron transport layer
  • the efficiency of QLED devices has been greatly improved, reaching the level of mass production.
  • the lifespan of QLED devices has become the main problem limiting the development of QLED devices.
  • Studies have shown that the short lifespan of QLED devices is mainly due to the aging and failure of the films caused by charge accumulation at the interface between the films.
  • due to the solution processing characteristics of quantum dots their processing technology is limited, and the display patterning of QLED devices is mainly realized by inkjet printing technology. Limited by the accuracy of current inkjet printing technology, it is difficult to increase the pixel density of quantum dot display panels, and the pixel resolution is below 200ppi.
  • embodiments of the present disclosure provide a laminated structure of a quantum dot light-emitting device, a corresponding driving method of the quantum dot light-emitting device, and a display substrate.
  • the present disclosure will be further described in detail below with reference to the accompanying drawings. Obviously, the described embodiments are only a part of the embodiments of the present disclosure, but not all of the embodiments. Based on the embodiments in the present disclosure, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present disclosure.
  • a quantum dot light-emitting device provided by an embodiment of the present disclosure, as shown in FIG. 1 , includes:
  • the second electrode 2 is arranged opposite to the first electrode 1;
  • the common electrode 3 is located between the first electrode 1 and the second electrode 2;
  • the first quantum dot light-emitting layer 4 is located between the first electrode 1 and the common electrode 3;
  • the second quantum dot light-emitting layer 5 is located between the second electrode 2 and the common electrode 3;
  • the first auxiliary function layer 6 is located between the first electrode 1 and the first quantum dot light-emitting layer 4;
  • the second auxiliary function layer 7 is located between the first quantum dot light-emitting layer 4 and the common electrode 3;
  • the third auxiliary functional layer 8 is located between the second quantum dot light-emitting layer 5 and the common electrode 3;
  • the fourth auxiliary function layer 9 is located between the second electrode 2 and the second quantum dot light-emitting layer 5 .
  • the first electrode 1 , the first auxiliary function layer 6 , the first quantum dot light-emitting layer 4 , the second auxiliary function layer 5 and the common electrode are sequentially stacked.
  • 3 constitutes one of a positive light-emitting structure and an inverted light-emitting structure
  • the common electrode 3 the third auxiliary function layer 8, the second quantum dot light-emitting layer 5, the fourth auxiliary function layer 9 and the second electrode 2 are stacked in sequence. Another one of the upright light emitting structure and the inverted light emitting structure.
  • the quantum dot light-emitting device provided by the embodiment of the present disclosure has a laminated structure, and the laminated structure can simplify the quantum dot light-emitting device with an upright light-emitting structure and an inverted light-emitting structure.
  • Layer common electrodes are stacked and placed.
  • the upright light-emitting structure and the inverted light-emitting structure work alternately, the carrier recombination region of the stacked structure can be changed, the charge accumulation in the quantum dot light-emitting device can be released, and the quantum dot light-emitting device can be solved.
  • the problem of charge accumulation in QDs can improve the lifetime of quantum dot light-emitting devices.
  • the first quantum dot light-emitting layer 4 and the second quantum dot light-emitting layer 5 may include quantum dot materials of the same color. That is, in the laminated structure of the quantum dot light-emitting device, when two identical quantum dot light-emitting layers are used, the lifetime can be increased by more than two times on the original basis.
  • the stacked structure can be used for a pixel of a color due to the short service life of the material itself to improve the light-emitting life of the pixel.
  • the first quantum dot light-emitting layer 4 and the second quantum dot light-emitting layer 5 may include quantum dot materials of different colors. That is, in the stacked structure of the quantum dot light-emitting device, when two different quantum dot light-emitting layers are used and applied to the pixel arrangement of the display substrate, the pixel density can be effectively increased, thereby improving the pixel resolution.
  • the first electrode of the layer settings is made on the substrate substrate 1, No. 1, No. 1, No. 1
  • the light-emitting wavelength of the first quantum dot light-emitting layer 4 needs to be set to be greater than the light-emitting wavelength of the second quantum dot light-emitting layer 5 .
  • the blue quantum dots should be placed in the second quantum dot light-emitting layer 5, and the red quantum dots should be placed in the first quantum dot light-emitting layer 5.
  • the quantum dot light-emitting layer 4 prevents the photoluminescence of the upper layer red quantum dots from being caused when the bottom layer blue quantum dots work.
  • the first electrode 1 , the first auxiliary function layer 6 , the first quantum dot light-emitting layer 4 , and the second auxiliary function layer 5 may be stacked in sequence. and the common electrode 3 to form an upright light-emitting structure, and an inverted light-emitting structure is formed by the common electrode 3 , the third auxiliary function layer 8 , the second quantum dot light-emitting layer 5 , the fourth auxiliary function layer 9 and the second electrode 2 , which are stacked in sequence.
  • the second auxiliary function layer 7 and the third auxiliary function layer 8 may both be electron transport layers ET.
  • FIG. 2 the second auxiliary function layer 7 and the third auxiliary function layer 8 may both be electron transport layers ET.
  • the first auxiliary functional layer 6 may include a hole injection layer HI in direct contact with the first electrode 1, and a hole transport layer HT in direct contact with the first quantum dot light-emitting layer 4; corresponding to Ground, the fourth auxiliary function layer 9 may include a hole injection layer HI in direct contact with the second electrode 2 , and a hole transport layer HT in direct contact with the second quantum dot light-emitting layer 5 .
  • the layer 5 and the common electrode 3 constitute an inverted light-emitting structure
  • the common electrode 3, the third auxiliary function layer 8, the second quantum dot light-emitting layer 5, the fourth auxiliary function layer 9 and the second electrode 2 are stacked in sequence to form an upright light-emitting structure. structure. Specifically, as shown in FIG.
  • both the second auxiliary functional layer 7 and the third auxiliary functional layer 8 may include a hole injection layer HI and a hole transport layer HT, and the hole injection layer HI is located at the common electrode 3 and the hole transport layer. between layers HT.
  • the first auxiliary function layer 6 and the fourth auxiliary function layer 9 may both include an electron transport layer ET.
  • the second auxiliary function layer 7 and the third auxiliary function may be the same or different.
  • the common electrode 3 can separate the film layers with different materials to ensure the normal operation of the light emitting structures on both sides .
  • the second auxiliary function layer 7 and the third auxiliary function layer 8 are in direct contact with the common electrode 3
  • the film layer is the electron transport layer ET.
  • the first quantum dot light-emitting layer 4 is made of QD1 material
  • the second quantum dot light-emitting layer 5 is made of QD2 material.
  • QD1 can be, for example, red quantum dot material RQD
  • QD2 can be, for example, green quantum dot material.
  • materials can be selected according to the HUMO and LUMO energy levels of the materials, so as to reduce the barrier of carrier injection into the first (second) quantum dot layer, so that the current carrying capacity of quantum dot light-emitting devices can be reduced. Sub-injection is more balanced.
  • two materials can be selected from zinc oxide, magnesium zinc oxide, and aluminum oxide zinc.
  • the second auxiliary function layer 7 and the third auxiliary function layer 8 are in direct contact with the common electrode 3
  • the film layer is the hole injection layer HI.
  • the first quantum dot light-emitting layer 4 is made of QD1 material
  • the second quantum dot light-emitting layer 5 is made of QD2 material.
  • QD1 can be, for example, red quantum dot material RQD
  • QD2 can be, for example, green quantum dot material.
  • materials can be selected according to the HUMO and LUMO energy levels of the materials, so as to reduce the barrier of carrier injection into the first (second) quantum dot layer, so that the current carrying capacity of quantum dot light-emitting devices can be reduced. Sub-injection is more balanced.
  • different materials are selected for the hole injection layer HI contained in the second auxiliary functional layer 7 and the third auxiliary functional layer 8, it can be adjusted from the doping material in PEDOT:PSS.
  • the HUMO energy levels of the red quantum dot material and the green quantum dot material in Fig. 4 and Fig. 5 are -6.4 eV and -6.6 eV, respectively.
  • the energy level difference between the two should be less than 1eV, to ensure that the injection of holes from the HT layer into the QD layer has a small energy level barrier.
  • HT -5.8eV
  • QD -6.4eV
  • the injection of holes from the HI layer into the QD has a gentle energy level barrier, which is conducive to the injection of holes; when selecting the ET material of the hole transport layer, it should be selected.
  • the material with deeper HUMO energy level has a HUMO energy level difference of more than 1eV with QD.
  • This ET material has stronger hole blocking ability, so that holes are confined in the QD layer, which is conducive to the radiative recombination of holes and electrons and reduces leakage. current; at the same time, the LUMO energy level of ET should be greater than that of QD and the energy level difference between the two should be less than 1eV, which reduces the barrier of electron injection from ET to QD; the LUMO energy level of HT should be greater than that of QD and the two The energy level difference of HT is greater than 1eV, which has a strong ability to block electrons, confines electrons in the QD layer, which is conducive to the radiative recombination of electrons and holes in the QD layer and reduces leakage current; as shown in Figure 2, the LUMO energy level of the HT material is - 2.2eV, the LUMO energy level difference with QD is greater than 2eV, and has a strong ability to block electrons.
  • the material of the common electrode 3 can be selected but not limited to electrode materials such as thin silver, thin aluminum, silver nanoparticles, silver nanorods, ITO, IGZO, etc. by evaporation.
  • the above-mentioned quantum dot light-emitting devices provided in the embodiments of the present disclosure are suitable for quantum dot light-emitting materials of any color
  • the quantum dot light-emitting materials may include but are not limited to: CdS, CdSe, ZnSe, InP, PbS, CsPbCl3, CsPbBr3, CsPhI3, CdS /ZnS, CdSe/ZnS, InP/ZnS, PbS/ZnS, CsPbCl3/ZnS, CsPbBr3/ZnS, CsPhI3/ZnS and other quantum dot materials.
  • a structure made of the following materials can be designed: ITO/PEDOT:PSS/TFB/RQD/ZnO/Ag/ZnO/GQD/TFB/PEDOT:PSS/Al , the device fabrication process is as follows:
  • a red quantum dot layer was deposited by spin coating on the TFB film layer, and annealed at 100° C. for 15 minutes to form a flat RQD layer.
  • Electron transport material ZnO nanoparticles were spin-coated on the surface of the RQD, and annealed at 100 °C for 15 min.
  • Electron transport material ZnO nanoparticles were deposited by spin coating on the thin silver surface, and annealed at 100°C for 15min.
  • Green quantum dot GQDs were spin-coated and deposited on the surface of ZnO nanoparticles, and annealed at 100 °C for 15 min.
  • PEDOT:PSS was deposited on the surface of the TFB by spin coating, and annealed at 120 °C for 15 min.
  • a structure made of the following materials can be designed: ITO/ZnO/RQD/TFB/PEDOT:PSS/Ag/PEDOT:PSS/TFB/GQD/ZnO/Al , the device fabrication process is as follows:
  • a red quantum dot layer was deposited by spin coating on the ZnO film layer, and annealed at 100° C. for 15 minutes to form a flat RQD layer.
  • PEDOT:PSS was deposited on the surface of TFB, and the surface morphology of HI was improved by heating at 120°C for 15min.
  • the hole injection layer PEDOT:PSS was deposited on the thin silver surface by spin coating, and the surface morphology of HI was improved by heating at 120°C for 15min.
  • the green quantum dot layer was deposited by spin coating on the TFB film layer, and annealed at 100° C. for 15 minutes to form a flat GQD layer.
  • Electron transport material ZnO nanoparticles were deposited on the surface of GQDs by spin coating, and annealed at 100 °C for 15 min.
  • an embodiment of the present disclosure also provides a method for driving the above quantum dot light-emitting device, as shown in FIG. 6 , which may include the following steps:
  • the upper side can be considered to apply a forward voltage (that is, the first electrode 1 is loaded with a positive voltage, and the second electrode 2 is loaded with a positive voltage).
  • negative voltage the red quantum dot QD1 of the first quantum dot light-emitting layer emits light, and its luminescence spectrum is shown in Figure 16;
  • the lower side can be considered to apply a reverse voltage (that is, the first electrode 1 is loaded with a negative voltage, and the second electrode 2 is loaded with a negative voltage).
  • positive voltage the green quantum dot QD2 of the second quantum dot light-emitting layer emits light, and its emission spectrum is shown in FIG. 17 .
  • the arrow on the left is the flow direction of holes
  • the arrow on the right is the flow direction of electrons
  • the hole-electron pair at the interface of the double arrow is separated.
  • the release principle of the accumulated charge in the first working mode is as follows: when the red light quantum dot is working, the electrons are many electrons, and the accumulation of electrons will occur at the interface between ET and QD1, causing the quenching of excitons and reducing the device efficiency; Due to the accumulation of charges, electrochemical reactions of ligands on the surface of QD1 or ET materials can be induced, reducing the device lifetime.
  • the current direction is switched to make the second quantum dot light-emitting layer work, and the electrons accumulated at the interface between QD1 and ET will quickly flow to QD2, and the charges will be released.
  • the holes are multiples, and the holes flow from HI to QD2, which will accumulate holes at the interface between HT and QD2, switch the current direction, and make the first quantum dot light-emitting layer work.
  • the flow direction of holes is changed from QD2 to HI, and the accumulated holes are released. This reciprocating and alternating operation can effectively reduce the performance degradation of the device caused by charge accumulation.
  • the upper side can be considered as applying a forward voltage (that is, the first electrode 1 is loaded with a positive voltage, and the second electrode 2 is loaded with a positive voltage). Negative voltage), the green quantum dot QD2 of the second quantum dot light-emitting layer emits light; the lower side can be considered to apply a reverse voltage (that is, the first electrode 1 is loaded with a negative voltage, and the second electrode 2 is loaded with a positive voltage), and the first quantum dot light-emitting layer The red quantum dot QD1 emits light.
  • the arrow on the left is the flow direction of holes
  • the arrow on the right is the flow direction of electrons
  • the hole-electron pair at the interface of the double arrow is separated.
  • the release principle of the accumulated charge in the first working mode is as follows: when the red light quantum dot is working, the holes are many electrons, and the accumulation of holes will occur at the interface between HT and QD1, causing the quenching of excitons and reducing the device efficiency. At the same time, due to the accumulation of charges, the electrochemical reaction of ligands on the surface of QD1 or HT materials will be caused, which will reduce the life of the device.
  • the current direction is switched to make the second quantum dot light-emitting layer work, and the holes accumulated at the interface between QD1 and HT will quickly flow to QD2, and the accumulated holes will get freed.
  • the electrons are many, and the electrons flow from the ET to the QD2, which will generate the accumulation of holes at the interface between the ET and the QD2, switch the direction of the current, and make the first quantum dot light-emitting layer work.
  • the change of the flow direction is from QD2 to ET, and the accumulated charge is released, so the reciprocating and alternating work can effectively reduce the performance degradation of the device caused by the charge accumulation.
  • the upper side can be considered to be connected to the lower side circuit (that is, the first electrode 1 is loaded with a positive voltage, and the common electrode 3 is loaded with a positive voltage). Negative voltage), the red quantum dots QD1 of the first quantum dot light-emitting layer emit light; the lower side can be considered that the lower side circuit is turned on (that is, the second electrode 2 is loaded with a positive voltage, and the common electrode 3 is loaded with a negative voltage), and the second quantum dot light-emitting layer The green quantum dot QD2 emits light.
  • the lower side circuit that is, the first electrode 1 is loaded with a positive voltage, and the common electrode 3 is loaded with a positive voltage.
  • the arrow on the left side is the flow direction of holes, and the arrow on the right side is the flow direction of electrons.
  • the release principle of the accumulated charge in the second working mode is as follows: when the red light quantum dot is working, the electrons are many electrons, and the accumulation of electrons will occur at the interface between ET and QD1, causing the quenching of excitons and reducing the device efficiency; Due to the accumulation of charges, electrochemical reactions of ligands on the surface of QD1 or ET materials can be induced, reducing the device lifetime.
  • the current direction is switched to make the second quantum dot light-emitting layer work, and the electrons accumulated at the interface between QD1 and ET will quickly flow to QD2, and the charges will be released.
  • the electrons are many, and the electrons flow from ET to QD2, which will generate electron accumulation at the interface between ET and QD2, switch the direction of the current, make the first quantum dot light-emitting layer work, and the flow of electrons
  • the change flows from the QD2 to the ET, and the accumulated charge is released, and the reciprocating operation can effectively reduce the performance degradation of the device caused by the charge accumulation.
  • the upper side can be considered as conducting the upper circuit (that is, the second electrode 2 is loaded with a negative voltage, and the common electrode 3 is loaded with a negative voltage). positive voltage), the green quantum dots QD2 of the second quantum dot light-emitting layer emit light; the lower side can be considered to be turned on (that is, the first electrode 1 is loaded with a negative voltage, and the common electrode 3 is loaded with a positive voltage), and the first quantum dot light-emitting layer The red quantum dot QD1 emits light.
  • the green quantum dots QD2 of the second quantum dot light-emitting layer emit light
  • the lower side can be considered to be turned on (that is, the first electrode 1 is loaded with a negative voltage, and the common electrode 3 is loaded with a positive voltage)
  • the first quantum dot light-emitting layer The red quantum dot QD1 emits light.
  • the arrow on the left side is the flow direction of holes, and the arrow on the right side is the flow direction of electrons.
  • the discharge principle of the accumulated charge in the second working mode is similar to that in FIG. 9 , and will not be described in detail here.
  • any voltage can be stopped to the first electrode 1 on the lower side, that is, a floating setting, or a reverse voltage can be applied to the first electrode 1. Ensure that the lower side circuit is cut off.
  • the upper second electrode 2 can be stopped from applying any voltage, that is, floating, or a reverse voltage can be applied to the second electrode 2 to ensure that the upper circuit is turned off.
  • the voltage of the same polarity is applied to the first electrode and the second electrode, and the voltage of the other polarity is applied to the common electrode, and the first quantum dot light-emitting layer and the second quantum dot light-emitting layer are controlled at the same time glow.
  • the first electrode 1 and the second electrode 2 are loaded with a positive voltage at the same time, the common electrode 3 is loaded with a negative voltage, and the first quantum The red quantum dots QD1 of the point light-emitting layer emit light and the green quantum dots QD2 of the second quantum dot light-emitting layer emit light simultaneously.
  • the structures shown in FIG. 3 and FIG. 5 as an example, as shown in the working principle diagram shown in FIG.
  • the first electrode 1 and the second electrode 2 are loaded with a negative voltage at the same time
  • the common electrode 3 is loaded with a positive voltage
  • the first quantum dot light-emitting layer is The red quantum dot QD1 emits light and the green quantum dot QD2 of the second quantum dot light-emitting layer emits light simultaneously.
  • the upright and inverted light-emitting devices work at the same time, and the entire quantum dot light-emitting device can emit different composite light according to the light-emitting color and intensity of the two quantum dot light-emitting layers, which can be applied to the pixel design of the display substrate. Improve the color of the substrate and make the display screen more delicate.
  • an embodiment of the present disclosure provides a display substrate, as shown in FIG. 13 to FIG. 15 , including: a plurality of the above quantum dot light-emitting devices provided by the embodiments of the present disclosure.
  • the first quantum dot light-emitting layer and the second quantum dot light-emitting layer of each quantum dot light-emitting device include quantum dot materials of the same color.
  • the first quantum dot light-emitting layer and the second quantum dot light-emitting layer of each quantum dot light-emitting device include quantum dot materials of the same color
  • the first quantum dot light-emitting layer and the second quantum dot light-emitting layer are matched with the above driving method to make the first quantum dot light-emitting layer and the second quantum dot light-emitting layer. Alternate work can greatly improve the service life of the display substrate.
  • the display substrate has a plurality of pixels, and each pixel includes a first quantum dot light-emitting device, a second quantum dot light-emitting device and a the third quantum dot light-emitting device;
  • the first quantum dot light-emitting layer and the second quantum dot light-emitting layer of the first quantum dot light-emitting device comprise red quantum dot material RQD;
  • the first quantum dot light-emitting layer and the second quantum dot light-emitting layer of the second quantum dot light-emitting device include green quantum dot material BQD;
  • the first quantum dot light emitting layer and the second quantum dot light emitting layer of the third quantum dot light emitting device include blue quantum dot material GQD.
  • the display substrate has a plurality of pixels, and each pixel includes a first quantum dot light-emitting device, a first quantum dot light-emitting device, a second Two quantum dot light emitting devices and third quantum dot light emitting devices, the first quantum dot light emitting layer and the second quantum dot light emitting layer of at least one of the first quantum dot light emitting device, the second quantum dot light emitting device and the third quantum dot light emitting device
  • the layers may include quantum dot materials of different colors.
  • the two first quantum dot light-emitting layers and the two second quantum dot light-emitting layers include a total of three Quantum dot materials of different colors can meet the needs of pixel display.
  • the first quantum dot light-emitting layer and the second quantum dot light-emitting layer of each quantum dot light-emitting device include quantum dot materials of different colors
  • the first quantum dot light-emitting layer and the second quantum dot light-emitting layer are matched with the above driving method to make the first quantum dot light-emitting layer and the second quantum dot light-emitting layer.
  • the point light-emitting layers work alternately, which can improve the pixel density of the display substrate.
  • the two first quantum dot light-emitting layers and the two second quantum dot light-emitting layers share the same Including three quantum dot materials of different colors, in this way, the adjacent three quantum dot light-emitting devices have two groups of quantum dot materials of three different colors, which can form two virtual pixels, so that the resolution of display pixels is relative to the physical one. The pixel resolution is doubled.
  • three adjacent quantum dot light-emitting devices may constitute a pixel (ie, a physical pixel), and a pixel includes the first quantum dot light-emitting device, a second quantum dot light-emitting device and a third quantum dot light-emitting device;
  • the first quantum dot light-emitting layer of the first quantum dot light-emitting device includes red quantum dot material RQD, and the second quantum dot light-emitting layer of the first quantum dot light-emitting device includes green quantum dot material GQD;
  • the first quantum dot light-emitting layer of the second quantum dot light-emitting device includes green quantum dot material GQD, and the second quantum dot light-emitting layer of the second quantum dot light-emitting device includes blue quantum dot material BQD;
  • the first quantum dot light emitting layer of the third quantum dot light emitting device includes red quantum dot material RQD
  • the second quantum dot light emitting layer of the third quantum dot light emitting device includes blue quantum dot material BQD.
  • the first quantum dot light-emitting layer and the second quantum dot light-emitting layer of some quantum dot light-emitting devices include quantum dot materials of different colors
  • the first quantum dot light-emitting layer and the second quantum dot light-emitting layer of another quantum dot light-emitting device comprise quantum dot materials of the same color.
  • the first quantum dot light-emitting layer and the second quantum dot light-emitting layer may include quantum dot materials of the same color, such as blue quantum dot material BQD.
  • both the first quantum dot light-emitting layer and the second quantum dot light-emitting layer of the first quantum dot light-emitting device may include blue quantum dot material; the first quantum dot light-emitting layer of the second quantum dot light-emitting device may include green quantum dot material , the second quantum dot light-emitting layer of the second quantum dot light-emitting device includes blue quantum dot material; the first quantum dot light-emitting layer of the third quantum dot light-emitting device includes red quantum dot material, and the second quantum dot light-emitting device of the third quantum dot light-emitting device The point light-emitting layer includes blue quantum dot material.
  • the display substrate may be a conventional display product, and specifically may be: a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, a navigator, etc.
  • a product or part that displays functionality may be: a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, a navigator, etc.

Abstract

本公开提供了一种量子点发光器件、其驱动方法及显示基板,其中,量子点发光器件具有叠层结构,该叠层结构可以简化一个正置发光结构和一个倒置发光结构的量子点发光器件,正置发光结构和倒置发光结构通过一层共用电极进行叠层放置。配合通过调整电极的驱动方式,使正置发光结构和倒置发光结构交替工作,可以改变该叠层结构的载流子复合区,释放量子点发光器件中的电荷积累,解决量子点发光器件中电荷积累的问题可以提高量子点发光器件的寿命。

Description

量子点发光器件、其驱动方法及显示基板 技术领域
本公开涉及显示技术领域,尤指一种量子点发光器件、其驱动方法及显示基板。
背景技术
量子点是一种溶液可加工的半导体纳米晶,利用其作为发光层制备的量子点发光器件具有色域高、自发光、响应速度快、起亮电压低等优点,有望成为下一代显示技术。
发明内容
本公开实施例提供了一种量子点发光器件,包括:
第一电极;
第二电极,与所述第一电极相对设置;
共用电极,位于所述第一电极和所述第二电极之间;
第一量子点发光层,位于所述第一电极和所述共用电极之间;
第二量子点发光层,位于所述第二电极和所述共用电极之间;
第一辅助功能层,位于所述第一电极与所述第一量子点发光层之间;
第二辅助功能层,位于所述第一量子点发光层与所述共用电极之间;
第三辅助功能层,位于所述第二量子点发光层与所述共用电极之间;
第四辅助功能层,位于所述第二电极与所述第二量子点发光层之间。
在一种可能的实现方式中,在本公开实施例提供的上述量子点发光器件中,依次层叠设置的所述第一电极、第一辅助功能层、第一量子点发光层、第二辅助功能层和共用电极构成正置发光结构和倒置发光结构中的一种,依次层叠设置的所述共用电极、第三辅助功能层、第二量子点发光层、第四辅助功能层和第二电极构成正置发光结构和倒置发光结构中的另一种。
在一种可能的实现方式中,在本公开实施例提供的上述量子点发光器件中,所述第一量子点发光层和所述第二量子点发光层包括相同颜色的量子点材料。
在一种可能的实现方式中,在本公开实施例提供的上述量子点发光器件中,所述第一量子点发光层和所述第二量子点发光层包括不同颜色的量子点材料。
在一种可能的实现方式中,在本公开实施例提供的上述量子点发光器件中,所述第二电极位于所述量子点发光器件的出光侧,所述第一量子点发光层的发光波长大于所述第二量子点发光层的发光波长。
在一种可能的实现方式中,在本公开实施例提供的上述量子点发光器件中,所述第二辅助功能层和所述第三辅助功能层中与所述共用电极直接接触的两个膜层的材料不同。
在一种可能的实现方式中,在本公开实施例提供的上述量子点发光器件中,所述第二辅助功能层和所述第三辅助功能层均为电子传输层。
在一种可能的实现方式中,在本公开实施例提供的上述量子点发光器件中,所述第一辅助功能层包括与所述第一电极直接接触的空穴注入层,以及与所述第一量子点发光层直接接触的空穴传输层;
所述第四辅助功能层包括与所述第二电极直接接触的空穴注入层,以及与所述第二量子点发光层直接接触的空穴传输层。
在一种可能的实现方式中,在本公开实施例提供的上述量子点发光器件中,所述第二辅助功能层和所述第三辅助功能层均包括空穴注入层和空穴传输层,所述空穴注入层位于所述共用电极与所述空穴传输层之间。
在一种可能的实现方式中,在本公开实施例提供的上述量子点发光器件中,所述第一辅助功能层和所述第四辅助功能层均包括电子传输层。
另一方面,本公开实施例还提供了一种显示基板,包括:多个本公开实施例提供的上述量子点发光器件。
在一种可能的实现方式中,在本公开实施例提供的上述显示基板中,每 个所述量子点发光器件的第一量子点发光层和第二量子点发光层均包括相同颜色的量子点材料。
在一种可能的实现方式中,在本公开实施例提供的上述显示基板中,所述显示基板具有多个像素,每个像素包括相邻设置的第一量子点发光器件、第二量子点发光器件和第三量子点发光器件;
所述第一量子点发光器件的第一量子点发光层和第二量子点发光层包括红色量子点材料;
所述第二量子点发光器件的第一量子点发光层和第二量子点发光层包括绿色量子点材料;
所述第三量子点发光器件的第一量子点发光层和第二量子点发光层包括蓝色量子点材料。
在一种可能的实现方式中,在本公开实施例提供的上述显示基板中,所述显示基板具有多个像素,每个像素包括相邻设置的第一量子点发光器件、第二量子点发光器件和第三量子点发光器件,所述第一量子点发光器件、第二量子点发光器件和第三量子点发光器件中的至少一个的第一量子点发光层和第二量子点发光层包括不同颜色的量子点材料。
在一种可能的实现方式中,在本公开实施例提供的上述显示基板中,相邻的第二量子点发光器件和第三量子点发光器件中,两个所述第一量子点发光层和两个所述第二量子点发光层共包括三种不同颜色的量子点材料。
在一种可能的实现方式中,在本公开实施例提供的上述显示基板中,所述第一量子点发光器件的第一量子点发光层包括红色量子点材料,所述第一量子点发光器件的第二量子点发光层包括绿色量子点材料;
所述第二量子点发光器件的第一量子点发光层包括绿色量子点材料,所述第二量子点发光器件的第二量子点发光层包括蓝色量子点材料;
所述第三量子点发光器件的第一量子点发光层包括红色量子点材料,所述第三量子点发光器件的第二量子点发光层包括蓝色量子点材料。
在一种可能的实现方式中,在本公开实施例提供的上述显示基板中,所 述第一量子点发光器件的第一量子点发光层和第二量子点发光层均包括蓝色量子点材料;
所述第二量子点发光器件的第一量子点发光层包括绿色量子点材料,所述第二量子点发光器件的第二量子点发光层包括蓝色量子点材料;
所述第三量子点发光器件的第一量子点发光层包括红色量子点材料,所述第三量子点发光器件的第二量子点发光层包括蓝色量子点材料。
另一方面,本公开实施例还提供了一种上述量子点发光器件的驱动方法,包括:
在第一工作模式下,对所述第一电极和所述第二电极施加特定频率的正负电压,控制所述第一量子点发光层和所述第二量子点发光层交替发光;
在第二工作模式下,对所述第一电极和所述第二电极交替施加相同极性的电压,对所述共用电极施加另一极性的电压,控制所述第一量子点发光层和所述第二量子点发光层交替发光。
在一种可能的实现方式中,在本公开实施例提供的上述驱动方法中,还包括:
在第三工作模式下,对所述第一电极和所述第二电极施加相同极性的电压,对所述共用电极施加另一极性的电压,控制所述第一量子点发光层和所述第二量子点发光层同时发光。
附图说明
图1为本公开实施例提供的量子点发光器件的结构示意图;
图2为本公开实施例提供的量子点发光器件的一种具体结构示意图;
图3为本公开实施例提供的量子点发光器件的另一种具体结构示意图;
图4为本公开实施例提供的量子点发光器件的一种能级示意图;
图5为本公开实施例提供的量子点发光器件的另一种能级示意图;
图6为本公开实施例提供的量子点发光器件的驱动方法的流程示意图;
图7为本公开实施例提供的量子点发光器件的驱动方法中第一种工作模 式的一种工作示意图;
图8为本公开实施例提供的量子点发光器件的驱动方法中第一种工作模式的另一种工作示意图;
图9为本公开实施例提供的量子点发光器件的驱动方法中第二种工作模式的一种工作示意图;
图10为本公开实施例提供的量子点发光器件的驱动方法中第二种工作模式的另一种工作示意图;
图11为本公开实施例提供的量子点发光器件的驱动方法中第三种工作模式的一种工作示意图;
图12为本公开实施例提供的量子点发光器件的驱动方法中第三种工作模式的另一种工作示意图;
图13为本公开实施例提供的显示基板的一种结构示意图;
图14为本公开实施例提供的显示基板的另一种结构示意图;
图15为本公开实施例提供的显示基板的另一种结构示意图;
图16为图2所示结构中第一量子点发光层的发光光谱图;
图17为图2所示结构中第二量子点发光层的发光光谱图。
具体实施方式
传统的量子点发光(QLED)器件结构包括空穴注入层(HI)、空穴传输层(HT)、量子点发光层(QD)和电子传输层(ET)。目前,QLED器件的效率得到大幅提升,达到量产水平,然而,QLED器件的寿命问题,成为限制QLED器件发展的主要问题。研究表明,QLED器件的寿命较短,主要是因为膜层之间界面的电荷积累引起的膜层老化和失效。同时,由于量子点的溶液加工特性,限制其加工工艺,主要通过喷墨打印技术,实现QLED器件的显示图案化。受目前喷墨打印技术精度的限制,量子点显示面板的像素密度难以提高,像素分辨率在200ppi以下。
为解决以上问题,本公开实施例提供了一种量子点发光器件的叠层结构, 对应的量子点发光器件的驱动方法及显示基板。为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
附图中各部件的形状和大小不反映真实比例,目的只是示意说明本公开内容。
本公开实施例提供的一种量子点发光器件,如图1所示,包括:
第一电极1;
第二电极2,与第一电极1相对设置;
共用电极3,位于第一电极1和第二电极2之间;
第一量子点发光层4,位于第一电极1和共用电极3之间;
第二量子点发光层5,位于第二电极2和共用电极3之间;
第一辅助功能层6,位于第一电极1与第一量子点发光层4之间;
第二辅助功能层7,位于第一量子点发光层4与共用电极3之间;
第三辅助功能层8,位于第二量子点发光层5与共用电极3之间;
第四辅助功能层9,位于第二电极2与第二量子点发光层5之间。
具体地,在本公开实施例提供的上述量子点发光器件中,依次层叠设置的第一电极1、第一辅助功能层6、第一量子点发光层4、第二辅助功能层5和共用电极3构成正置发光结构和倒置发光结构中的一种,依次层叠设置的共用电极3、第三辅助功能层8、第二量子点发光层5、第四辅助功能层9和第二电极2构成正置发光结构和倒置发光结构中的另一种。
具体地,本公开实施例提供的量子点发光器件具有叠层结构,该叠层结构可以简化一个正置发光结构和一个倒置发光结构的量子点发光器件,正置发光结构和倒置发光结构通过一层共用电极进行叠层放置。并且,配合通过调整电极的驱动方式,使正置发光结构和倒置发光结构交替工作,可以改变该叠层结构的载流子复合区,释放量子点发光器件中的电荷积累,解决量子 点发光器件中电荷积累的问题可以提高量子点发光器件的寿命。
可选地,在本公开一些实施例提供的量子点发光器件中,第一量子点发光层4和第二量子点发光层5可以包括相同颜色的量子点材料。即在量子点发光器件的叠层结构中,使用两层相同的量子点发光层时,可以使其寿命在原有基础上提升两倍以上。在多个不同颜色的量子点发光器件作为像素组成显示基板时,例如可以针对由于材料本身的使用寿命较短颜色的像素,使用该叠层结构,提高该像素的发光寿命。
或者,可选地,在本公开另一些实施例提供的量子点发光器件中,第一量子点发光层4和第二量子点发光层5可以包括不同颜色的量子点材料。即在量子点发光器件的叠层结构中,使用两层不同的量子点发光层时,应用到显示基板的像素排布中,可以有效提高像素密度,从而提升像素分辨率。
可选地,在本公开一些实施例提供的量子点发光器件中,如图1所示,量子点发光器件在制作过程中,可以在衬底基板上依次制作层叠设置的第一电极1、第一辅助功能层6、第一量子点发光层4、第二辅助功能层7、共用电极3、第三辅助功能层7、第二量子点发光层5、第四辅助功能层9和第二电极2,其中,第二电极2可以位于量子点发光器件的出光侧,即可以认为第一量子点发光层4位于第二量子点发光层5的下层。在第一量子点发光层4的发光颜色和第二量子点发光层5的发光颜色不同时,为了避免下层的第一量子点发光层4工作时,引起上层的第二量子点发光层5光致发光,则需要将第一量子点发光层4的发光波长设置为大于第二量子点发光层5的发光波长。例如,当需要第一量子点发光层4和第二量子点发光层5分别发出蓝光和红光时,应将蓝色量子点置于第二量子点发光层5,红色量子点置于第一量子点发光层4,防止底层蓝色量子点工作时,引起上层红色量子点的光致发光的问题。
可选地,在本公开一些实施例提供的量子点发光器件中,可以由依次层叠设置的第一电极1、第一辅助功能层6、第一量子点发光层4、第二辅助功能层5和共用电极3构成正置发光结构,由依次层叠设置的共用电极3、第三 辅助功能层8、第二量子点发光层5、第四辅助功能层9和第二电极2构成倒置发光结构。具体地,如图2所示,第二辅助功能层7和第三辅助功能层8可以均为电子传输层ET。对应地,如图2所示,第一辅助功能层6可以包括与第一电极1直接接触的空穴注入层HI,以及与第一量子点发光层4直接接触的空穴传输层HT;对应地,第四辅助功能层9可以包括与第二电极2直接接触的空穴注入层HI,以及与第二量子点发光层5直接接触的空穴传输层HT。
或者,可选地,在本公开一些实施例提供的量子点发光器件中,可以由依次层叠设置的第一电极1、第一辅助功能层6、第一量子点发光层4、第二辅助功能层5和共用电极3构成倒置发光结构,由依次层叠设置的共用电极3、第三辅助功能层8、第二量子点发光层5、第四辅助功能层9和第二电极2构成正置发光结构。具体地,如图3所示,第二辅助功能层7和第三辅助功能层8均可以包括空穴注入层HI和空穴传输层HT,空穴注入层HI位于共用电极3与空穴传输层HT之间。对应地,如图3所示,第一辅助功能层6和第四辅助功能层9可以均包括电子传输层ET。
可选地,在本公开一些实施例提供的量子点发光器件中,根据选择的第一量子点发光层和第二量子点发光层的材料能级,第二辅助功能层7和第三辅助功能层8中与共用电极3直接接触的两个膜层的材料可以相同或不同。当第二辅助功能层7和第三辅助功能层8中与共用电极3直接接触的两个膜层的材料不同时,共用电极3可以分离材料不同的膜层,保证两侧发光结构的正常工作。
具体地,在如图2所示的正置发光结构在共用电极下方,倒置发光结构在共用电极上方的结构中,第二辅助功能层7和第三辅助功能层8中与共用电极3直接接触的膜层为电子传输层ET。如图4所示,采用QD1材料制作第一量子点发光层4,采用QD2材料制作第二量子点发光层5,QD1例如可以为红色量子点材料RQD,QD2例如可以为绿色量子点材料。在量子点发光器件的开发过程中,可以根据材料的HUMO和LUMO能级进行材料的选择,降低载流子注入第一(第二)量子点层的势垒,使量子点发光器件的载流子 注入更加平衡。第二辅助功能层7和第三辅助功能层8包含的电子传输层ET选择不同材料时,可以从氧化锌、氧化镁锌、氧化铝锌中选择两种。
具体地,在如图3所示的倒置发光结构在共用电极下方,正置发光结构在共用电极上方的结构中,第二辅助功能层7和第三辅助功能层8中与共用电极3直接接触的膜层为空穴注入层HI。如图5所示,采用QD1材料制作第一量子点发光层4,采用QD2材料制作第二量子点发光层5,QD1例如可以为红色量子点材料RQD,QD2例如可以为绿色量子点材料。在量子点发光器件的开发过程中,可以根据材料的HUMO和LUMO能级进行材料的选择,降低载流子注入第一(第二)量子点层的势垒,使量子点发光器件的载流子注入更加平衡。第二辅助功能层7和第三辅助功能层8包含的空穴注入层HI选择不同材料时,可以从PEDOT:PSS中的掺杂材料进行调整。
具体地,例如图4和图5中红色量子点材料和绿色量子点材料的HUMO能级分别为-6.4eV和-6.6eV,在选择空穴传输层HT材料时,应选择HUMO能级大于量子点材料,同时两者的能级差应小于1eV,保证空穴从HT层注入QD层具有较小的能级势垒;同理,进行空穴注入层HI材料的选择,选择HI(-5.2eV)、HT(-5.8eV)、QD(-6.4eV),空穴从HI层注入QD具有平缓的能级势垒,有利于空穴的注入;选择空穴传输层ET材料时,应选择具有较深HUMO能级的材料,与QD的HUMO能级差大于1eV,这种ET材料具有更强的挡空穴能力,使空穴限制在QD层,有利于空穴与电子的辐射复合,降低漏电流;同时,ET的LUMO能级应大于QD的LUMO能级且两者的能级差小于1eV,降低电子从ET注入QD的势垒;HT的LUMO能级应大于QD的LUMO能级且两者的能级差大于1eV,具有较强的挡电子能力,将电子限制在QD层,有利于电子和空穴在QD层辐射复合,降低漏电流;如图2中,HT材料的LUMO能级为-2.2eV,与QD的LUMO能级差大于2eV,具有很强的挡电子能力。
具体地,在本公开实施例提供的上述量子点发光器件中,共用电极3的材料可以选择但不限于蒸镀薄银、薄铝、银纳米颗粒、银纳米棒、ITO、IGZO 等电极材料。
具体地,本公开实施例提供的上述量子点发光器件适用于任何颜色的量子点发光材料,量子点发光材料可以包括不限于:CdS、CdSe、ZnSe、InP、PbS、CsPbCl3、CsPbBr3、CsPhI3、CdS/ZnS、CdSe/ZnS、InP/ZnS、PbS/ZnS、CsPbCl3/ZnS、CsPbBr3/ZnS、CsPhI3/ZnS等量子点材料。
具体地,以图2和图4所示的结构为例,可以设计采用如下材料制作的结构:ITO/PEDOT:PSS/TFB/RQD/ZnO/Ag/ZnO/GQD/TFB/PEDOT:PSS/Al,器件制备过程如下:
1、用无水乙醇和去离子水,超声清洗ITO玻璃基片各15min后烘干,再用紫外灯照射处理基片10min,提高ITO的表面功函数。
2、经过上述处理后,在基片ITO上旋涂沉积空穴注入层PEDOT:PSS,并通过加热120℃退火15min改善HI表面形态。
3、在HI层表面旋涂空穴传输层材料TFB,并在120℃下退火处理15min,去除溶剂。
4、在TFB膜层上旋涂沉积红色量子点层,并在100℃下退火处理15min,使其形成平坦的RQD层。
5、在RQD表面旋涂沉积电子传输材料ZnO纳米粒子,并在100℃下退火处理15min。
6、在ZnO纳米粒子的表面蒸镀15-20nm的薄银。
7、在薄银表面旋涂沉积电子传输材料ZnO纳米粒子,并在100℃下退火处理15min。
8、在ZnO纳米粒子表面旋涂沉积绿色量子点GQD,并在100℃下退火处理15min。
9、在GQD层表面旋涂空穴传输层材料TFB,并在120℃下退火处理15min。
10、在TFB表面旋涂沉积空穴注入层PEDOT:PSS,并在120℃退火15min。
11、真空蒸镀Al电极。
12、用玻璃盖板进行封装,完成器件的制备。
具体地,以图3和图5所示的结构为例,可以设计采用如下材料制作的结构:ITO/ZnO/RQD/TFB/PEDOT:PSS/Ag/PEDOT:PSS/TFB/GQD/ZnO/Al,器件制备过程如下:
1、用无水乙醇和去离子水,超声清洗ITO玻璃基片各15min后烘干,再用紫外灯照射处理基片10min,提高ITO的表面功函数。
2、经过上述处理后,在基片ITO上旋涂沉积电子传输材料ZnO纳米粒子,并在100℃下退火处理15min。
3、在ZnO膜层上旋涂沉积红色量子点层,并在100℃下退火处理15min,使其形成平坦的RQD层。
4、在RQD层表面旋涂空穴传输层材料TFB,并在120℃下退火处理15min,去除溶剂。
5、在TFB表面沉积空穴注入层PEDOT:PSS,并通过加热120℃退火15min改善HI表面形态。
6、在HI层表面蒸镀15-20nm的薄银。
7、在薄银表面旋涂沉积空穴注入层PEDOT:PSS,并通过加热120℃退火15min改善HI表面形态。
8、在HI层表面旋涂空穴传输层材料TFB,并在120℃下退火处理15min,去除溶剂。
9、在TFB膜层上旋涂沉积绿色量子点层,并在100℃下退火处理15min,使其形成平坦的GQD层。
10、在GQD表面旋涂沉积电子传输材料ZnO纳米粒子,并在100℃下退火处理15min。
11、真空蒸镀Al电极。
12、用玻璃盖板进行封装,完成器件的制备。
基于同一发明构思,本公开实施例还提供了一种上述量子点发光器件的驱动方法,如图6所示,可以包括以下步骤:
S1、在第一工作模式下,对第一电极和第二电极施加特定频率的正负电 压,控制第一量子点发光层和第二量子点发光层交替发光。
具体地,以图2和图4所示的结构为例,如图7所示的工作原理图,其中上侧可以认为施加正向电压(即第一电极1加载正电压,第二电极2加载负电压),第一量子点发光层的红色量子点QD1发光,其发光光谱图如图16所示;下侧可以认为施加反向电压(即第一电极1加载负电压,第二电极2加载正电压),第二量子点发光层的绿色量子点QD2发光,其发光光谱图如图17所示。图7中,左侧箭头为空穴流向,右侧箭头为电子流向,双向箭头界面处的空穴电子对分离。在第一工作模式下的积累电荷的释放原理为:当红光量子点工作时,电子为多子,在ET与QD1的界面处会产生电子的积累,引起激子的淬灭,降低器件效率;同时由于电荷的积累会引起QD1或ET材料表面配体的电化学反应,降低器件寿命。而在上述第一工作模式下,当第一量子点发光层工作后,切换电流方向,使第二量子点发光层工作,在QD1和ET界面积累的电子会迅速流向QD2,电荷得到释放。同理,当第二量子点发光层工作时,空穴为多子,空穴从HI流向QD2,会在HT与QD2界面产生空穴的积累,切换电流方向,使第一量子点发光层工作,空穴的流向改变由QD2流向HI,积累空穴得到释放,如此往复交替工作,能够有效降低电荷积累引起的器件性能下降。
具体地,以图3和图5所示的结构为例,如图8所示的工作原理图,其中上侧可以认为施加正向电压(即第一电极1加载正电压,第二电极2加载负电压),第二量子点发光层的绿色量子点QD2发光;下侧可以认为施加反向电压(即第一电极1加载负电压,第二电极2加载正电压),第一量子点发光层的红色量子点QD1发光。图8中,左侧箭头为空穴流向,右侧箭头为电子流向,双向箭头界面处的空穴电子对分离。在第一工作模式下的积累电荷的释放原理为:当红光量子点工作时,空穴为多子,在HT与QD1的界面处会产生空穴的积累,引起激子的淬灭,降低器件效率;同时由于电荷的积累会引起QD1或HT材料表面配体的电化学反应,降低器件寿命。而在上述第一工作模式下,当第一量子点发光层工作后,切换电流方向,使第二量子点 发光层工作,在QD1和HT界面积累的空穴会迅速流向QD2,积累空穴得到释放。同理,当第二量子点发光层工作时,电子为多子,电子从ET流向QD2,会在ET与QD2界面产生空穴的积累,切换电流方向,使第一量子点发光层工作,电子的流向改变由QD2流向ET,积累电荷得到释放,如此往复交替工作,能够有效降低电荷积累引起的器件性能下降。
S2、在第二工作模式下,对第一电极和第二电极交替施加相同极性的电压,对共用电极施加另一极性的电压,控制第一量子点发光层和第二量子点发光层交替发光。
具体地,以图2和图4所示的结构为例,如图9所示的工作原理图,其中上侧可以认为下侧电路导通(即第一电极1加载正电压,共用电极3加载负电压),第一量子点发光层的红色量子点QD1发光;下侧可以认为下侧电路导通(即第二电极2加载正电压,共用电极3加载负电压),第二量子点发光层的绿色量子点QD2发光。图9中,左侧箭头为空穴流向,右侧箭头为电子流向。在第二工作模式下的积累电荷的释放原理为:当红光量子点工作时,电子为多子,在ET与QD1的界面处会产生电子的积累,引起激子的淬灭,降低器件效率;同时由于电荷的积累会引起QD1或ET材料表面配体的电化学反应,降低器件寿命。而在上述第二工作模式下,当第一量子点发光层工作后,切换电流方向,使第二量子点发光层工作,在QD1和ET界面积累的电子会迅速流向QD2,电荷得到释放。当第二量子点发光层工作时同理,电子为多子,电子从ET流向QD2,会在ET与QD2界面产生电子的积累,切换电流方向,使第一量子点发光层工作,电子的流向改变由QD2流向ET,积累电荷得到释放,如此往复交替工作,能够有效降低电荷积累引起的器件性能下降。
具体地,以图3和图5所示的结构为例,如图10所示的工作原理图,其中上侧可以认为上侧电路导通(即第二电极2加载负电压,共用电极3加载正电压),第二量子点发光层的绿色量子点QD2发光;下侧可以认为下侧电路导通(即第一电极1加载负电压,共用电极3加载正电压),第一量子点发 光层的红色量子点QD1发光。图10中,左侧箭头为空穴流向,右侧箭头为电子流向。在第二工作模式下的积累电荷的释放原理为与图9类似,在此不作详述。
指着注意的是,在第二工作模式下,当上侧电路导通时,可以对下侧的第一电极1停止加载任何电压即浮空设置,或者可以对第一电极1加载反向电压保证下侧电路截止。在第二工作模式下,当下侧电路导通时,可以对上侧的第二电极2停止加载任何电压即浮空设置,或者可以对第二电极2加载反向电压保证上侧电路截止。
可选地,在本公开一些实施例提供的驱动方法中,如图4所示,还可以包括以下步骤:
S3、在第三工作模式下,对第一电极和第二电极施加相同极性的电压,对共用电极施加另一极性的电压,控制第一量子点发光层和第二量子点发光层同时发光。
具体地,以图2和图4所示的结构为例,如图11所示的工作原理图,第一电极1和第二电极2同时加载正电压,共用电极3加载负电压,第一量子点发光层的红色量子点QD1发光和第二量子点发光层的绿色量子点QD2同时发光。以图3和图5所示的结构为例,如图12所示的工作原理图,第一电极1和第二电极2同时加载负电压,共用电极3加载正电压,第一量子点发光层的红色量子点QD1发光和第二量子点发光层的绿色量子点QD2同时发光。上下侧电路同时导通时,正置和倒置发光器件同时工作,能够根据两个量子点发光层的发光颜色和强度,使整个量子点发光器件发出不同的复合光,应用于显示基板像素设计能够提升基板的色彩度,使显示画面更加细腻。
基于同一发明构思,本公开实施例提供了一种显示基板,如图13至图15所示,包括:多个本公开实施例提供的上述量子点发光器件。
可选地,在本公开一些实施例提供的显示基板中,如图13所示,每个量子点发光器件的第一量子点发光层和第二量子点发光层均包括相同颜色的量子点材料。在每个量子点发光器件的第一量子点发光层和第二量子点发光层 均包括相同颜色的量子点材料时,配合上述驱动方法,使第一量子点发光层和第二量子点发光层交替工作,可以大幅提升显示基板的使用寿命。
具体地,在本公开一些实施例提供的显示基板中,如图13所示,显示基板具有多个像素,每个像素包括相邻设置的第一量子点发光器件、第二量子点发光器件和第三量子点发光器件;
第一量子点发光器件的第一量子点发光层和第二量子点发光层包括红色量子点材料RQD;
第二量子点发光器件的第一量子点发光层和第二量子点发光层包括绿色量子点材料BQD;
第三量子点发光器件的第一量子点发光层和第二量子点发光层包括蓝色量子点材料GQD。
或者,可选地,在本公开一些实施例提供的显示基板中,如图14和图15所示,显示基板具有多个像素,每个像素包括相邻设置的第一量子点发光器件、第二量子点发光器件和第三量子点发光器件,第一量子点发光器件、第二量子点发光器件和第三量子点发光器件中的至少一个的第一量子点发光层和第二量子点发光层可以包括不同颜色的量子点材料。
具体地,相邻的第二量子点发光器件和第三量子点发光器件中,如图14和图15所示,两个第一量子点发光层和两个第二量子点发光层共包括三种不同颜色的量子点材料,这样可以满足像素显示需求。
具体地,在每个量子点发光器件的第一量子点发光层和第二量子点发光层均包括不同颜色的量子点材料时,配合上述驱动方法,使第一量子点发光层和第二量子点发光层交替工作,可以提高显示基板的像素密度。
具体地,在本公开一些实施例提供的显示基板中,如图14所示,相邻的两个量子点发光器件中,两个第一量子点发光层和两个第二量子点发光层共包括三种不同颜色的量子点材料,这样,相邻的三个量子点发光器件共具有两组三种不同颜色的量子点材料,可以构成两个虚拟像素,实现显示像素的分辨率相对于物理像素的分辨率翻倍。
具体地,在本公开一些实施例提供的显示基板中,如图14所示,相邻的三个量子点发光器件可以构成一像素(即物理像素),一个像素包括第一量子点发光器件、第二量子点发光器件和第三量子点发光器件;
第一量子点发光器件的第一量子点发光层包括红色量子点材料RQD,第一量子点发光器件的第二量子点发光层包括绿色量子点材料GQD;
第二量子点发光器件的第一量子点发光层包括绿色量子点材料GQD,第二量子点发光器件的第二量子点发光层包括蓝色量子点材料BQD;
第三量子点发光器件的第一量子点发光层包括红色量子点材料RQD,第三量子点发光器件的第二量子点发光层包括蓝色量子点材料BQD。
或者,可选地,在本公开一些实施例提供的显示基板中,如图15所示,部分量子点发光器件的第一量子点发光层和第二量子点发光层包括不同颜色的量子点材料,另一部分量子点发光器件的第一量子点发光层和第二量子点发光层包括相同颜色的量子点材料。具体可以针对发光寿命较低的量子点材料,设置为第一量子点发光层和第二量子点发光层包括相同颜色的量子点材料,例如蓝色量子点材料BQD。具体地,第一量子点发光器件的第一量子点发光层和第二量子点发光层均可以包括蓝色量子点材料;第二量子点发光器件的第一量子点发光层包括绿色量子点材料,第二量子点发光器件的第二量子点发光层包括蓝色量子点材料;第三量子点发光器件的第一量子点发光层包括红色量子点材料,第三量子点发光器件的第二量子点发光层包括蓝色量子点材料。
可选地,在本公开一些实施例提供的显示基板中,显示基板可以为常规的显示产品,具体可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (19)

  1. 一种量子点发光器件,其中,包括:
    第一电极;
    第二电极,与所述第一电极相对设置;
    共用电极,位于所述第一电极和所述第二电极之间;
    第一量子点发光层,位于所述第一电极和所述共用电极之间;
    第二量子点发光层,位于所述第二电极和所述共用电极之间;
    第一辅助功能层,位于所述第一电极与所述第一量子点发光层之间;
    第二辅助功能层,位于所述第一量子点发光层与所述共用电极之间;
    第三辅助功能层,位于所述第二量子点发光层与所述共用电极之间;
    第四辅助功能层,位于所述第二电极与所述第二量子点发光层之间。
  2. 如权利要求1所述的量子点发光器件,其中,其中,依次层叠设置的所述第一电极、第一辅助功能层、第一量子点发光层、第二辅助功能层和共用电极构成正置发光结构和倒置发光结构中的一种,依次层叠设置的所述共用电极、第三辅助功能层、第二量子点发光层、第四辅助功能层和第二电极构成正置发光结构和倒置发光结构中的另一种。
  3. 如权利要求1所述的量子点发光器件,其中,所述第一量子点发光层和所述第二量子点发光层包括相同颜色的量子点材料。
  4. 如权利要求1所述的量子点发光器件,其中,所述第一量子点发光层和所述第二量子点发光层包括不同颜色的量子点材料。
  5. 如权利要求4所述的量子点发光器件,其中,所述第二电极位于所述量子点发光器件的出光侧,所述第一量子点发光层的发光波长大于所述第二量子点发光层的发光波长。
  6. 如权利要求1所述的量子点发光器件,其中,所述第二辅助功能层和所述第三辅助功能层中与所述共用电极直接接触的两个膜层的材料不同。
  7. 如权利要求1-6任一项所述的量子点发光器件,其中,所述第二辅助 功能层和所述第三辅助功能层均为电子传输层。
  8. 如权利要求7所述的量子点发光器件,其中,所述第一辅助功能层包括与所述第一电极直接接触的空穴注入层,以及与所述第一量子点发光层直接接触的空穴传输层;
    所述第四辅助功能层包括与所述第二电极直接接触的空穴注入层,以及与所述第二量子点发光层直接接触的空穴传输层。
  9. 如权利要求1-6任一项所述的量子点发光器件,其中,所述第二辅助功能层和所述第三辅助功能层均包括空穴注入层和空穴传输层,所述空穴注入层位于所述共用电极与所述空穴传输层之间。
  10. 如权利要求9所述的量子点发光器件,其中,所述第一辅助功能层和所述第四辅助功能层均包括电子传输层。
  11. 一种显示基板,其中,包括:多个如权利要求1-10任一项所述的量子点发光器件。
  12. 如权利要求11所述的显示基板,其中,每个所述量子点发光器件的第一量子点发光层和第二量子点发光层均包括相同颜色的量子点材料。
  13. 如权利要求12所述的显示基板,其中,所述显示基板具有多个像素,每个像素包括相邻设置的第一量子点发光器件、第二量子点发光器件和第三量子点发光器件;
    所述第一量子点发光器件的第一量子点发光层和第二量子点发光层包括红色量子点材料;
    所述第二量子点发光器件的第一量子点发光层和第二量子点发光层包括绿色量子点材料;
    所述第三量子点发光器件的第一量子点发光层和第二量子点发光层包括蓝色量子点材料。
  14. 如权利要求11所述的显示基板,其中,所述显示基板具有多个像素,每个像素包括相邻设置的第一量子点发光器件、第二量子点发光器件和第三量子点发光器件,所述第一量子点发光器件、第二量子点发光器件和第三量 子点发光器件中的至少一个的第一量子点发光层和第二量子点发光层包括不同颜色的量子点材料。
  15. 如权利要求14所述的显示基板,其中,相邻的第二量子点发光器件和第三量子点发光器件中,两个所述第一量子点发光层和两个所述第二量子点发光层共包括三种不同颜色的量子点材料。
  16. 如权利要求15所述的显示基板,其中,所述第一量子点发光器件的第一量子点发光层包括红色量子点材料,所述第一量子点发光器件的第二量子点发光层包括绿色量子点材料;
    所述第二量子点发光器件的第一量子点发光层包括绿色量子点材料,所述第二量子点发光器件的第二量子点发光层包括蓝色量子点材料;
    所述第三量子点发光器件的第一量子点发光层包括红色量子点材料,所述第三量子点发光器件的第二量子点发光层包括蓝色量子点材料。
  17. 如权利要求15所述的显示基板,其中,所述第一量子点发光器件的第一量子点发光层和第二量子点发光层均包括蓝色量子点材料;
    所述第二量子点发光器件的第一量子点发光层包括绿色量子点材料,所述第二量子点发光器件的第二量子点发光层包括蓝色量子点材料;
    所述第三量子点发光器件的第一量子点发光层包括红色量子点材料,所述第三量子点发光器件的第二量子点发光层包括蓝色量子点材料。
  18. 一种如权利要求1-10任一项所述的量子点发光器件的驱动方法,其中,包括:
    在第一工作模式下,对所述第一电极和所述第二电极施加特定频率的正负电压,控制所述第一量子点发光层和所述第二量子点发光层交替发光;
    在第二工作模式下,对所述第一电极和所述第二电极交替施加相同极性的电压,对所述共用电极施加另一极性的电压,控制所述第一量子点发光层和所述第二量子点发光层交替发光。
  19. 如权利要求18所述的驱动方法,其中,还包括:
    在第三工作模式下,对所述第一电极和所述第二电极施加相同极性的电 压,对所述共用电极施加另一极性的电压,控制所述第一量子点发光层和所述第二量子点发光层同时发光。
PCT/CN2021/082156 2021-03-22 2021-03-22 量子点发光器件、其驱动方法及显示基板 WO2022198405A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021002113.3T DE112021002113T5 (de) 2021-03-22 2021-03-22 Quantumpunkt-lichtemittierende vorrichtung, verfahren zum betreiben davon und anzeigesubstrat
CN202180000540.8A CN115398662A (zh) 2021-03-22 2021-03-22 量子点发光器件、其驱动方法及显示基板
PCT/CN2021/082156 WO2022198405A1 (zh) 2021-03-22 2021-03-22 量子点发光器件、其驱动方法及显示基板
US17/770,153 US20240147747A1 (en) 2021-03-22 2021-03-22 Quantum dot light-emitting device and driving method thereof, and display substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/082156 WO2022198405A1 (zh) 2021-03-22 2021-03-22 量子点发光器件、其驱动方法及显示基板

Publications (1)

Publication Number Publication Date
WO2022198405A1 true WO2022198405A1 (zh) 2022-09-29

Family

ID=83395044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082156 WO2022198405A1 (zh) 2021-03-22 2021-03-22 量子点发光器件、其驱动方法及显示基板

Country Status (4)

Country Link
US (1) US20240147747A1 (zh)
CN (1) CN115398662A (zh)
DE (1) DE112021002113T5 (zh)
WO (1) WO2022198405A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160093678A1 (en) * 2014-09-30 2016-03-31 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Device, Electronic Device, and Lighting Device
CN106611826A (zh) * 2016-12-27 2017-05-03 深圳市华星光电技术有限公司 量子点彩膜显示面板及其制作方法
CN111048674A (zh) * 2019-11-26 2020-04-21 深圳市华星光电半导体显示技术有限公司 发光器件的制备方法
CN111816778A (zh) * 2019-04-12 2020-10-23 三星显示有限公司 发光器件及包括其的显示装置
CN111816782A (zh) * 2020-09-01 2020-10-23 合肥福纳科技有限公司 一种量子点发光二极管及其制备方法和双向交替发光系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160093678A1 (en) * 2014-09-30 2016-03-31 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Device, Electronic Device, and Lighting Device
CN106611826A (zh) * 2016-12-27 2017-05-03 深圳市华星光电技术有限公司 量子点彩膜显示面板及其制作方法
CN111816778A (zh) * 2019-04-12 2020-10-23 三星显示有限公司 发光器件及包括其的显示装置
CN111048674A (zh) * 2019-11-26 2020-04-21 深圳市华星光电半导体显示技术有限公司 发光器件的制备方法
CN111816782A (zh) * 2020-09-01 2020-10-23 合肥福纳科技有限公司 一种量子点发光二极管及其制备方法和双向交替发光系统

Also Published As

Publication number Publication date
US20240147747A1 (en) 2024-05-02
DE112021002113T5 (de) 2023-03-09
CN115398662A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
US10225907B2 (en) Light emitting device having at least two quantum dot light emitting layers and fabricating method thereof
US10566390B2 (en) Series connected quantum dot light-emitting device, panel and display device
WO2020030042A1 (zh) Oled显示基板及其制作方法、显示装置
US20160028035A1 (en) Display panel and display device
WO2010109877A1 (ja) 有機電界発光装置,有機電界発光装置の製造方法,画像表示装置,及び画像表示装置の製造方法
TW200803004A (en) Organic light emitting transistor element and its manufacturing method
CN102214794A (zh) 有机发光二极管装置
JP5910496B2 (ja) 有機エレクトロルミネッセンス素子
CN111554819A (zh) 发光器件及其发光颜色调节方法、显示装置
CN106920827A (zh) 一种发光二极管、阵列基板、发光器件及显示装置
TW200541385A (en) Printing of organic electronic devices
TWI575725B (zh) 包含金屬氧化物的陽極及具有該陽極之有機發光裝置
TW201349618A (zh) 有機電致發光單元、製造有機電致發光單元之方法,及電子裝置
WO2020134161A1 (zh) 一种量子点发光二极管及其制备方法
CN110896096A (zh) 一种显示面板及其制备方法
US20210217982A1 (en) Display panel and display panel manufacturing method
JP2004119201A (ja) 有機el表示装置
WO2021129183A1 (zh) 发光器件及其制作方法
WO2022198405A1 (zh) 量子点发光器件、其驱动方法及显示基板
CN111244298B (zh) 一种发光器件及显示器
CN111883675A (zh) 混合型电致发光器件及其制备方法和显示装置
CN113707702B (zh) 一种显示基板及其制备方法、显示装置
US20240049585A1 (en) Method of manufacturing display device
JP5817393B2 (ja) 有機el素子及びその製造方法
WO2023206319A1 (zh) 发光器件及其制作方法、显示基板和显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17770153

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932038

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/01/2024)