WO2022196636A1 - ガスバリアフィルム及びガスバリアフィルムの製造方法 - Google Patents

ガスバリアフィルム及びガスバリアフィルムの製造方法 Download PDF

Info

Publication number
WO2022196636A1
WO2022196636A1 PCT/JP2022/011320 JP2022011320W WO2022196636A1 WO 2022196636 A1 WO2022196636 A1 WO 2022196636A1 JP 2022011320 W JP2022011320 W JP 2022011320W WO 2022196636 A1 WO2022196636 A1 WO 2022196636A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
film
barrier layer
layer
silicon
Prior art date
Application number
PCT/JP2022/011320
Other languages
English (en)
French (fr)
Inventor
健寛 大橋
智史 永縄
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2023507104A priority Critical patent/JPWO2022196636A1/ja
Publication of WO2022196636A1 publication Critical patent/WO2022196636A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00

Definitions

  • the present invention relates to a gas barrier film and a method for producing a gas barrier film.
  • gas barrier films have been widely used as substrate materials and sealing materials.
  • Gas barrier films are required to have high gas barrier properties that can suppress the permeation of water vapor and oxygen. It is required to improve the durability and to prevent the lightness of the object to be attached from being impaired.
  • a curable composition containing a curable compound is coated on a support, the curable compound contained in the resulting coating layer is cured to form a thin resin layer, and directly or on the resin layer. It is known to form a gas barrier layer composed of an inorganic film or the like via another layer.
  • a substrate is prepared by providing a cured film of an ultraviolet curable acrylate resin composition on a polyethylene terephthalate (PET) film, and a gas barrier layer is formed on the substrate on which the cured film is formed. to obtain a gas barrier film.
  • P PET polyethylene terephthalate
  • gas barrier property the property of suppressing permeation of water vapor and oxygen
  • gas barrier film a film having gas barrier property
  • the gas barrier film is manufactured as a long film and then wound into a roll to form a wound body, which is stored and transported as an intermediate product before being incorporated into the final product such as the electronic device described above. It is often done.
  • an object of the present invention is to provide a gas barrier film that can use a base material with low heat resistance and that scars less.
  • the inventors of the present invention have made intensive studies to solve the above problems. They found that the problem could be solved, and completed the present invention. That is, the present invention provides the following [1] to [7].
  • the base film is a resin film having a glass transition temperature of 100° C. or less
  • the second gas barrier layer is a layer formed from a coating film of a composition containing a silicon-containing polymer compound, In X-ray photoelectron spectroscopy, nitrogen atoms, oxygen atoms and silicon atoms are present in the second gas barrier layer, and oxygen atoms and oxygen atoms represented by [average mol % of oxygen atoms]/[average mol % of nitrogen atoms] The ratio of nitrogen atoms is 1.0 to 6.0, A gas barrier film, wherein the base film is produced without being heated to 110°C or higher.
  • the base film has a polyethylene terephthalate film layer
  • the second gas barrier layer is a layer formed from a coating film of a composition containing a silicon-containing polymer compound, In X-ray photoelectron spectroscopy, nitrogen atoms, oxygen atoms, and silicon atoms are present in the second gas barrier layer, and oxygen atoms and oxygen atoms represented by [average mol % of oxygen atoms]/[average mol % of nitrogen atoms] The ratio of nitrogen atoms is 1.0 to 6.0, A gas barrier film, wherein the base film is produced without being heated to 110°C or higher.
  • the gas barrier film is roll-shaped, The gas barrier film according to the above [1] or [2], wherein the number of scratches having an aspect ratio of 2 or more present on the surface of the second gas barrier layer is 200 or less per 1 m 2 .
  • the base film is not heat-resistant treated.
  • the first gas barrier film according to the embodiment of the present invention has a base film, a first gas barrier layer, and a second gas barrier layer in this order, and the base film has a glass transition temperature (Tg) of 100. ° C. or less, the second gas barrier layer is a layer formed from a coating film of a composition containing a silicon-containing polymer compound, and in X-ray photoelectron spectroscopy, the second gas barrier layer has , nitrogen atoms, oxygen atoms and silicon atoms are present, and the ratio of oxygen atoms represented by [average mol% of oxygen atoms]/[average mol% of nitrogen atoms] is 1.0 to 6.0, and the group The material film is manufactured without being heated to 110° C.
  • Tg glass transition temperature
  • a second gas barrier film according to an embodiment of the present invention has a substrate film, a first gas barrier layer, and a second gas barrier layer in this order, the substrate film has a polyethylene terephthalate film layer, and the The second gas barrier layer is a layer formed from a coating film of a composition containing a silicon-containing polymer compound, and in X-ray photoelectron spectroscopy, nitrogen atoms, oxygen atoms and silicon atoms are present in the second gas barrier layer.
  • the ratio of oxygen atoms represented by [average mol% of oxygen atoms]/[average mol% of nitrogen atoms] is 1.0 to 6.0, and the base film is heated to 110 ° C. or higher It is manufactured without
  • the cause of scar formation is that when the heating temperature of the coating film for forming the gas barrier layer is low, the conversion reaction of the silicon-containing polymer compound such as polysilazane does not proceed sufficiently. Since the surface elastic modulus of is low, it was found that the gas barrier layer was damaged in the subsequent manufacturing process. More specifically, when a long gas barrier film is manufactured by a method such as roll to roll, when the gas barrier film comes into contact with a guide roll, when the gas barrier film is wound, or when the wound gas barrier film is unwound Scratches are generated when the gas barrier films come into contact with each other.
  • the gas barrier layer is the second gas barrier layer, that is, after the first gas barrier layer is provided on the base film, a silicon-containing polymer compound such as polysilazane is applied as the second gas barrier layer.
  • a silicon-containing polymer compound such as polysilazane is applied as the second gas barrier layer.
  • the reason for this is that when the coating film for forming the second gas barrier layer is provided, the penetration of water vapor from the base film side is blocked by the presence of the first gas barrier layer. The conversion reaction of the contained polymer compound does not proceed much. Therefore, it is considered that the hardness of the surface of the coating film is lowered, and the coating is easily scratched due to contact with the guide roll.
  • ultraviolet light means ultraviolet light with a wavelength of more than 200 nm, which is different from vacuum ultraviolet light.
  • ultraviolet rays have a maximum intensity in the region of wavelengths over 200 nm.
  • the silicon-containing polymer compound is polysilazane
  • the present inventors have found that the conversion reaction of the silicon-containing polymer compound such as polysilazane is progressing in the ultraviolet irradiation step of the above manufacturing method, so that the modified layer after the coating film has been subjected to the modification treatment. It was found that the ratio of the specific element was different from the corresponding element ratio of the modified layer when the modification treatment was performed without ultraviolet irradiation.
  • Another example of the treatment for advancing the conversion reaction of the silicon-containing polymer compound is, for example, a steam treatment in which water vapor is sprayed onto the coating film of the composition containing the silicon-containing polymer compound, or about 30 to 60 ° C. storage for a long period of 180 hours or more in an environment of From the viewpoints of easiness of treatment and being able to be carried out in a short period of time, it is preferable to proceed the conversion reaction by irradiating ultraviolet rays.
  • the first gas barrier film and the second gas barrier film even if the drying temperature of the coating film for forming the gas barrier layer is lowered by using the base film with poor heat resistance, the scars can be removed. It is possible to provide a gas barrier film that can prevent the occurrence of Regarding the drying temperature of the coating film, specifically, the first gas barrier film and the second gas barrier film are manufactured without heating the base film to 110° C. or higher. In this way, a gas barrier film in which the base film undergoes little thermal deformation can be obtained by producing the base film without going through a process involving heating to a high temperature.
  • the degree of thermal deformation of a film has conventionally been evaluated by holding it up to a fluorescent lamp and confirming it, as described in the examples below, and it is still common to evaluate it quantitatively and quantify it. not targeted. Moreover, even if we try to quantify the characteristic of thermal deformation of the gas barrier film itself, such external characteristics of thermal deformation depend on the material and thickness of the base film, the drying time of the coating film, and the gas barrier film. It is affected by tension, etc., and changes in various ways. Therefore, measuring the thermal deformation of the gas barrier film under a wide variety of conditions requires an unrealistic number of experiments, etc., which entails an excessive amount of work time and economic expenditure.
  • first gas barrier film and the second gas barrier film are specified by the feature of the manufacturing method that the step of heating at a high temperature is not performed.
  • first and second gas barrier films may be collectively referred to as "gas barrier films according to embodiments of the present invention".
  • FIG. 1 shows an example of a specific configuration of a gas barrier film according to an embodiment of the present invention.
  • a gas barrier film 100 shown in the schematic cross-sectional view of FIG. 1 has a base film 10, a first gas barrier layer 11, and a second gas barrier layer 12 in this order.
  • the base film 10 and the first gas barrier layer 11 may be in direct contact, or another layer may be interposed between the base film 10 and the first gas barrier layer.
  • a primer layer may be provided on the base film 10, and the first gas barrier layer 11 may be formed on the base film 10 via this primer layer. If the substrate film 10 and the first gas barrier layer 11 are in direct contact with each other, the thickness of the gas barrier film 100 can be easily reduced.
  • the adhesion between the base film 10 and the first gas barrier layer 11 can be easily improved.
  • protrusions such as protrusions on the base film 10 are buried in the primer layer, and the surface of the primer layer can be made smoother than the surface of the base film 10 in some cases.
  • the first gas barrier layer 11 and the second gas barrier layer 12 may be in direct contact, or another layer such as a bonding layer may be interposed between the first gas barrier layer 11 and the second gas barrier layer 12.
  • a release sheet or a protective film is provided on at least one of the surface of the base film 10 opposite to the first gas barrier layer 11 and the surface of the second gas barrier layer 12 opposite to the first gas barrier layer 11. may be By providing the release sheet and the protective film, when the gas barrier film 100 is stored or transported in the state of an intermediate product before being used in the final product, the base film 10, the second gas barrier layer 12, and the first The gas barrier layer 11 is protected.
  • the thickness of the gas barrier film can be appropriately determined depending on the intended use of the electronic device.
  • a substantial thickness of the gas barrier film according to the embodiment of the present invention is preferably 1 to 200 ⁇ m, more preferably 5 to 100 ⁇ m, more preferably 15 to 60 ⁇ m from the viewpoint of handleability.
  • substantially thickness means the thickness in the state of use. That is, when the gas barrier film has a release sheet or protective film, the thickness of the release sheet or protective film that is removed during use is not included in the "substantial thickness”.
  • the water vapor transmission rate of the gas barrier film in an atmosphere of 40° C. and a relative humidity of 90% is preferably 5.0 mg/m 2 /day or less, more preferably 3.0 mg/m 2 from the viewpoint of ensuring high gas barrier properties. /day or less, more preferably 2.0 mg/m 2 /day or less.
  • a gas barrier film according to an embodiment of the present invention has a base film, a first gas barrier layer and a second gas barrier layer, and has excellent gas barrier properties by adjusting the formation method and elemental composition of each layer. Moreover, scars on the surface of the second gas barrier layer are reduced, and thermal deformation can be reduced.
  • a resin film having a glass transition temperature (Tg) of 100° C. or less is used as the base film.
  • Tg glass transition temperature
  • PET polyethylene terephthalate
  • These base films are inexpensive and readily available with good light transmittance, but because they have relatively low heat resistance, they are prone to thermal deformation when heated at high temperatures during the formation of the gas barrier layer. There's a problem. As described above, when the heating temperature is lowered, scratches are likely to occur in the gas barrier layer. This problem is less likely to occur because the ratio of oxygen atoms and nitrogen atoms in each layer is set within a specific range.
  • resin films having a Tg of 100°C or less examples include PET films, polybutylene terephthalate (PBT) films, polylactic acid (PLA) films, and the like.
  • the substrate film is preferably treated for easy adhesion, and examples of the easy adhesion treatment include providing an easy adhesion layer, corona treatment, flame treatment, and the like.
  • the base film is not subjected to heat-resistant treatment such as annealing.
  • heat-resistant treatment such as annealing treatment is applied to the base material, the number of steps for that must be increased, resulting in a decrease in productivity.
  • the cost increases more than the base film of Since the first gas barrier film and the second gas barrier film are manufactured without heating the base film to 110° C. or higher, even if the base film is not heat-resistant, It is possible to obtain a gas barrier film without deformation.
  • Primer Layer Examples of the primer layer provided on the base film include those made of a cured product of an energy ray-curable resin.
  • the energy ray curable resin refers to a curable resin composition that undergoes a curing reaction and changes into a cured product when irradiated with an active energy ray such as an ultraviolet ray or an electron beam or heated.
  • the energy ray-curable resin usually contains a polymerizable compound as a main component.
  • the "main component” means a component having a solid content of 50% by mass or more in the energy ray-curable resin.
  • a polymerizable compound is a compound having an energy-polymerizable functional group.
  • energy-polymerizable functional groups include ethylenically unsaturated groups such as (meth)acryloyl groups, vinyl groups, allyl groups, and styryl groups.
  • the energy polymerizable functional group is preferably a (meth)acryloyl group because of its high reactivity.
  • a "(meth)acryloyl group” means an acryloyl group or a methacryloyl group. The same is true for other similar terms such as "(meth)acrylic acid”.
  • Polymerizable compounds having a (meth)acryloyl group include polyfunctional acrylate compounds.
  • a polyfunctional acrylate compound refers to an acrylic acid ester compound or a methacrylic acid ester compound having two or more unsaturated bonds involved in a polymerization reaction.
  • Polyfunctional acrylate compounds include tricyclodecanedimethanol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate.
  • Bifunctional acrylate compounds such as acrylate, ethylene oxide-modified phosphoric acid di(meth)acrylate, di(acryloyloxyethyl)isocyanurate, allylated cyclohexyl di(meth)acrylate; trimethylolpropane tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, propionic acid-modified dipentaerythritol tri(meth)acrylate, pentaerythritol tri(meth)acrylate, propylene oxide-modified trimethylolpropane tri(meth)acryl
  • the energy ray-curable resin may contain an oligomer.
  • oligomers include polyester acrylate oligomers, epoxy acrylate oligomers, urethane acrylate oligomers, polyol acrylate oligomers, and the like.
  • the energy ray-curable resin may contain polymerization initiators such as photopolymerization initiators and thermal polymerization initiators.
  • photopolymerization initiators include ketone photopolymerization initiators such as 2,2-dimethoxy-1,2-diphenylethan-1-one and 1-hydroxy-cyclohexyl-phenylketone; 2,4,6-trimethylbenzoyl- diphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, ethyl (2,4,6-trimethylbenzoyl)-phenylphosphinate, bis(2,6-dimethoxybenzoyl)-2,4, Phosphorus-based photopolymerization initiators such as 4-trimethyl-pentylphosphine oxide; bis( ⁇ 5-2,4-cyclopentadien-1-yl)-bis[2,6-difluoro-3-(1H-pyrrol-1-yl )-phenyl]titanium and other titanocene photopolymerization initiators; oxime ester photopolymerization initiators; benzopheny
  • Thermal polymerization initiators include hydrogen peroxide; peroxodisulfates such as ammonium peroxodisulfate, sodium peroxodisulfate and potassium peroxodisulfate; 2,2′-azobis(2-amidinopropane) dihydrochloride; Azo compounds such as '-azobis(4-cyanovaleric acid), 2,2'-azobisisobutyronitrile, 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile); benzoyl peroxide , lauroyl peroxide, peracetic acid, persuccinic acid, di-t-butyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide and other organic peroxides; These can be used individually by 1 type or in combination of 2 or more types.
  • the energy ray-curable resin contains a polymerization initiator
  • its content is usually in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the polymerizable compound.
  • the energy ray-curable resin may contain a cross-linking agent.
  • cross-linking agents include isocyanate-based cross-linking agents, epoxy-based cross-linking agents, melamine-based cross-linking agents, imine-based cross-linking agents, aziridine-based cross-linking agents, and oxazoline-based cross-linking agents.
  • the isocyanate-based cross-linking agent is not particularly limited, and a compound having two or more isocyanate groups in the molecule is used.
  • aromatic polyisocyanates such as, for example, tolylene diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate; aliphatic polyisocyanates such as hexamethylene diisocyanate; alicyclic polyisocyanates such as isophorone diisocyanate and hydrogenated diphenylmethane diisocyanate; and an adduct that is a reaction product with a low-molecular-weight active hydrogen-containing compound;
  • One of these crosslinking agents may be used alone, or two or more thereof may be used in combination.
  • the energy ray-curable resin contains a cross-linking agent
  • the content thereof is usually 1 to 10 parts by mass, preferably 2 parts by mass, based on 100 parts by mass of the polymerizable compound, from the viewpoint of obtaining the more excellent effects of the present invention. ⁇ 8 parts by mass.
  • the polymerizable compound is a resin (ultraviolet-curable resin) that is cured by ultraviolet irradiation.
  • an ultraviolet curable resin By using an ultraviolet curable resin, the hard coat layer can be efficiently formed.
  • a commercially available product can also be used as the energy ray-curable resin.
  • Commercially available products include "Opstar Z7530”, “Opstar Z7524”, “Opstar TU4086”, and “Opstar Z7537” (manufactured by JSR Corporation).
  • the energy ray-curable resin may further contain an inorganic material.
  • an inorganic material By containing the inorganic material, it is possible to increase the hardness of the primer layer and to suppress curing shrinkage of the energy ray-curable resin.
  • Inorganic compounds that make up inorganic materials include metal oxides, alkyl silicates, and metal fluorides.
  • the energy ray-curable resin may contain other components as long as the effects of the present invention are not impaired.
  • Other components include antistatic agents, stabilizers, antioxidants, plasticizers, lubricants, color pigments, and the like. These contents may be appropriately determined according to the purpose.
  • a gas barrier film according to an embodiment of the present invention has a first gas barrier layer and a second gas barrier layer.
  • the second gas barrier layer is a layer formed from a coating film of a composition containing a silicon compound.
  • nitrogen atoms, oxygen atoms, and silicon atoms are present in the second gas barrier layer, and the oxygen
  • the ratio of atoms to nitrogen atoms is from 1.0 to 6.0. If the above ratio is less than 1.0, the conversion reaction of the silicon-containing polymer compound does not proceed sufficiently, and the second gas barrier layer cannot obtain sufficient hardness. If the above ratio exceeds 6.0, the conversion reaction of the silicon-containing polymer compound proceeds too much, and a sufficient modification effect cannot be obtained when the modification treatment is performed, resulting in a decrease in gas barrier performance.
  • the ratio of oxygen atoms to nitrogen atoms in the second gas barrier layer is preferably 1.0 to 5.5, more preferably 1.0 to 5.2, still more preferably 1.0 to 4.9. is.
  • the second gas barrier layer is provided on the side opposite to the base film of the first gas barrier layer, and is also the outermost layer of the gas barrier film. For this reason, it is exposed to the outside, and is in a state where it is likely to come into contact with guide rolls and the like during the manufacturing process as described above.
  • nitrogen atoms, oxygen atoms and silicon atoms are present in the second gas barrier layer, [average mol % of oxygen atoms] / [average nitrogen atoms mol %] of oxygen atoms and nitrogen atoms is 1.0 to 6.0.
  • the second gas barrier layer is a second gas barrier layer obtained by subjecting a coating film of a composition containing a silicon-containing polymer compound to a modification treatment described later. is preferred.
  • the thickness of the second gas barrier layer is preferably 5 to 1,000 nm, more preferably 10 to 500 nm, even more preferably 15 to 300 nm, and even more preferably 20 to 200 nm, from the viewpoints of scratch prevention and gas barrier properties. Range.
  • one silicon-containing polymer compound may be used alone, or two silicon-containing polymer compounds may be used. More than one species can be used in combination.
  • silicon-containing polymer compounds examples include polysilazane compounds (JP-B-63-16325, JP-A-62-195024, JP-A-63-81122, JP-A-1-138108, JP-A-2- 84437, JP 2-175726, JP 4-63833, JP 5-238827, JP 5-345826, JP 2005-36089, JP 6-122852 Publications, JP-A-6-299118, JP-A-6-306329, JP-A-9-31333, JP-A-10-245436, JP-A-2003-514822, International Publication WO2011/107018, etc.
  • polysilazane compounds JP-B-63-16325, JP-A-62-195024, JP-A-63-81122, JP-A-1-138108, JP-A-2- 84437, JP 2-175726, JP 4-63833, JP 5-238827, JP 5-345826, JP 2005-360
  • polysilazane-based compounds are preferable from the viewpoint of forming a gas barrier layer having excellent gas barrier properties.
  • examples of polysilazane-based compounds include inorganic polysilazane and organic polysilazane.
  • examples of inorganic polysilazanes include perhydropolysilazanes
  • examples of organic polysilazanes include compounds in which some or all of the hydrogen atoms in perhydropolysilazanes are substituted with organic groups such as alkyl groups.
  • inorganic polysilazane is more preferable from the viewpoint of availability and ability to form a gas barrier layer having excellent gas barrier properties.
  • the polysilazane-based compound a commercially available product such as a glass coating agent can be used as it is.
  • Polysilazane-based compounds can be used singly or in combination of two or more.
  • the silicon-containing polymer layer may contain other components in addition to the silicon-containing polymer compound described above, as long as the object of the present invention is not impaired.
  • Other components include curing agents, other polymers, antioxidants, light stabilizers, flame retardants, and the like.
  • the content of the silicon-containing polymer compound in the silicon-containing polymer layer is preferably 50% by mass or more, more preferably 70% by mass or more, from the viewpoint of forming a second gas barrier layer having excellent gas barrier properties. is more preferable.
  • a layer-forming solution containing at least one silicon-containing polymer compound, optionally other components, a solvent, etc. is added to a substrate film or layer by a known method. If desired, a method of coating onto a primer layer formed on a substrate film and appropriately drying the obtained coating film to form a coating film may be used.
  • the second gas barrier layer for example, when using a polysilazane-based compound as described above, heating after coating causes a conversion reaction of polysilazane to form a coating film having gas barrier properties.
  • the thickness of the silicon-containing polymer layer is preferably 5-1,000 nm, more preferably 10-500 nm, even more preferably 15-300 nm, still more preferably 20-200 nm. Even if the thickness of the silicon-containing polymer layer is nano-order, a gas barrier film having sufficient gas barrier performance can be obtained by applying ultraviolet irradiation treatment and subsequent modification treatment.
  • ultraviolet rays with a wavelength of more than 200 nm are used for the ultraviolet irradiation treatment.
  • the ultraviolet rays can be applied using a high-pressure mercury lamp, an electrodeless lamp, a xenon lamp, or the like.
  • the wavelength of ultraviolet rays is preferably 200-400 nm, more preferably 220-380 nm. That is, the maximum intensity of ultraviolet rays is preferably in the wavelength range of 200 to 400 nm, more preferably in the wavelength range of 220 to 380 nm.
  • the irradiation dose is usually in the range of illuminance of 50 to 1,000 mW/cm 2 and light intensity of 50 to 5,000 mJ/cm 2 , preferably 100 to 1,000 mJ/cm 2 .
  • the irradiation time is usually 0.1 to 1,000 seconds, preferably 1 to 500 seconds, more preferably 1 to 100 seconds. In consideration of the heat load of the light irradiation process, irradiation may be performed multiple times in order to satisfy the above-described light amount.
  • the modification treatment is a treatment different from the ultraviolet irradiation described later, and examples include ion implantation and vacuum ultraviolet light irradiation (irradiation with excimer laser, etc.). Among these, ion implantation is preferable because high gas barrier performance can be obtained. In the ion implantation, the amount of ions to be implanted into the polymer layer may be appropriately determined according to the intended use (necessary gas barrier property, transparency, etc.) of the gas barrier laminate to be formed.
  • Ions to be implanted include rare gas ions such as argon, helium, neon, krypton, and xenon; ions such as fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, and sulfur; ions of alkane gases such as methane, ethane, propane, butane, pentane, and hexane; ions of alkene gases such as ethylene, propylene, butene, and pentene; ions of alkadiene gases such as pentadiene and butadiene; Ions of alkyne gases such as methylacetylene; ions of aromatic hydrocarbon gases such as benzene, toluene, xylene, indene, naphthalene and phenanthrene; ions of cycloalkane gases such as cyclopropane and cyclohexane; cyclopentene, Ions of cycloalkene-based gases such as
  • organosilicon compounds include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, and tetra-t-butoxysilane; unsubstituted or substituted alkylalkoxysilanes such as dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, (3,3,3-trifluoropropyl)trimethoxysilane; arylalkoxysilanes such as diphenyldimethoxysilane and phenyltriethoxysilane; disiloxanes such as hexamethyldisiloxane (HMDSO); aminosilanesi
  • At least one selected from the group consisting of hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, and krypton because it can be injected more easily and a gas barrier layer having particularly excellent gas barrier properties can be obtained.
  • Species ions are preferred.
  • the method of implanting ions is not particularly limited, but includes a method of irradiating ions (ion beam) accelerated by an electric field, a method of implanting ions in plasma, and the like. Among them, the latter method of implanting plasma ions is preferable because a gas barrier film can be obtained easily.
  • the plasma ion implantation method includes (I) a method of implanting ions present in a plasma generated using an external electric field into a silicon-containing polymer layer, or (II) a method of implanting ions into the layer without using an external electric field.
  • a method of injecting ions present in a plasma generated only by an electric field by an applied negative high voltage pulse into the silicon-containing polymer layer is preferred.
  • the pressure during ion implantation (pressure during plasma ion implantation) to 0.01 to 1 Pa.
  • the pressure during plasma ion implantation is within this range, ions can be implanted easily, efficiently and uniformly, and the desired gas barrier layer can be efficiently formed.
  • the method (II) does not require a high degree of pressure reduction, the processing operation is simple, and the processing time can be greatly shortened.
  • the entire layer can be treated uniformly, and ions in the plasma can be continuously injected into the silicon-containing polymer layer with high energy when a negative high voltage pulse is applied.
  • a negative high voltage pulse to the layer without requiring any special other means such as a radio frequency (high frequency, hereinafter abbreviated as "RF") or a high frequency power source such as a microwave, High-quality ions can be uniformly implanted into the silicon-containing polymer layer.
  • the pulse width when applying a negative high voltage pulse is preferably 1 to 15 ⁇ sec.
  • the pulse width is within this range, ions can be implanted more easily, efficiently and uniformly.
  • the applied voltage when generating plasma is preferably -50 to -1 kV, more preferably -30 to -1 kV, and particularly preferably -20 to -5 kV. If the ion implantation is performed with an applied voltage of ⁇ 1 kV or less, the ion implantation amount (dose amount) can be prevented from becoming insufficient, and the desired performance can be easily secured. On the other hand, if the ion implantation is performed at a voltage of -50 kV or more, it is easy to prevent the film from being charged during the ion implantation, and it is easy to suppress problems such as coloring of the film.
  • Ion species for plasma ion implantation include those exemplified above as the implanted ions.
  • a plasma ion implanter is used to implant ions in plasma into the silicon-containing polymer layer.
  • a plasma ion implanter specifically, (i) a high-frequency power is applied to a feedthrough for applying a negative high voltage pulse to a silicon-containing polymer layer (hereinafter sometimes referred to as "a layer to be ion-implanted").
  • a device for evenly surrounding the layers to be ion-implanted in a superimposed manner with plasma, attracting, injecting, colliding and depositing ions in the plasma Japanese Patent Application Laid-Open No.
  • a plasma ion implanter that generates plasma using an external electric field such as a high-frequency power source such as microwaves and applies a high voltage pulse to attract and implant ions in the plasma; (iv) using an external electric field;
  • a plasma ion implanter for implanting ions in a plasma generated only by an electric field generated by application of a high voltage pulse instead of a plasma ion implanter is exemplified.
  • the plasma ion implanter of (iii) or (iv) is preferable because the processing operation is simple, the processing time can be greatly shortened, and it is suitable for continuous use.
  • the methods (iii) and (iv) using the plasma ion implantation apparatus include those described in International Publication WO2010/021326.
  • a high-voltage pulse power source is also used as a plasma generation means for generating plasma
  • a special other means such as a high-frequency power source such as RF or microwave is used.
  • Plasma is generated by simply applying a negative high voltage pulse without the need for a high voltage pulse, and ions in the plasma are continuously injected into the silicon-containing polymer layer, and the surface portion modified by ion implantation is formed. It is possible to mass-produce a gas-barrier laminate having a silicon-containing polymer layer, that is, a gas-barrier layer formed thereon.
  • the thickness of the portion into which ions are implanted can be controlled by the type of ions, the applied voltage, and the implantation conditions such as treatment time. However, it is usually 5 to 1,000 nm.
  • implantation of ions can be confirmed by using X-ray photoelectron spectroscopy (XPS) to perform an elemental analysis measurement at around 10 nm from the surface of the silicon-containing polymer layer.
  • XPS X-ray photoelectron spectroscopy
  • the fact that the gas barrier layer has gas barrier properties can be confirmed from the low water vapor permeability of the gas barrier layer.
  • the gas barrier layer has a water vapor permeability of usually 1.0 g/m 2 /day or less, preferably 0.8 g/m 2 /day or less, more preferably 0 at 40° C. and a relative humidity of 90%. 0.5 g/m 2 /day or less, more preferably 0.1 g/m 2 /day or less.
  • the water vapor transmission rate can be measured by a known method.
  • the material of the first gas barrier layer of the gas barrier film is not particularly limited as long as it has gas barrier properties.
  • An example of the first gas barrier layer is, like the second gas barrier layer, a layer formed from a coating film of a composition containing a silicon-containing polymer compound; It is an inorganic film such as silicon oxide formed by a film method.
  • the first gas barrier layer may contain at least one of metal, metal oxide, metal nitride and metal carbide.
  • metal is a concept including metalloids, and metal oxides, nitrides and carbides are preferable, metalloid oxides, nitrides and carbides are more preferable, and oxides and nitrides of silicon are more preferable. and carbide. Oxides, nitrides, and carbides also include composites of these, such as oxynitrides.
  • the inorganic film is not particularly limited, and examples thereof include an inorganic deposition film.
  • inorganic vapor deposition films include vapor deposition films of inorganic compounds and metals.
  • oxides, nitrides and carbides of the above metals, which are raw materials for vapor deposition films of inorganic compounds include inorganic oxides such as silicon oxide, aluminum oxide, magnesium oxide, zinc oxide, indium oxide and tin oxide; silicon nitride, nitride inorganic nitrides such as aluminum and titanium nitride; inorganic carbides; inorganic oxynitrides such as silicon oxynitride; inorganic oxycarbides;
  • the raw material for the vapor deposition film of metal include aluminum, magnesium, zinc, and tin.
  • inorganic deposition films made from metal oxides, metal nitrides, or metals are preferable. Vapor-deposited films are preferred. Also, the inorganic deposition film may be a single layer or multiple layers.
  • the thickness of the inorganic deposition film is preferably 10 to 2,000 nm, more preferably 20 to 1,000 nm, more preferably 30 to 500 nm, still more preferably 40 to 300 nm, from the viewpoint of gas barrier properties and handling properties. be.
  • Examples of the method for forming an inorganic deposition film include PVD (physical vapor deposition) methods such as vacuum deposition, sputtering, and ion plating, thermal CVD (chemical vapor deposition), plasma CVD, optical CVD, and the like. A CVD method is mentioned.
  • the gas barrier layer obtained by modifying the layer containing the silicon-containing polymer compound may be the same as the second gas barrier layer.
  • the thickness of the first gas barrier layer is preferably 10 to 1,500 nm, more preferably 20 to 1,000 nm, even more preferably 30 to 600 nm, still more preferably 40 to 300 nm.
  • the release sheet has a role of protecting the base film when the gas barrier laminate is stored, transported, etc., and is peeled off in a predetermined step.
  • the release sheet is preferably sheet-like or film-like.
  • sheet-like or film-like includes not only a long one but also a short flat plate-like one.
  • the release sheet examples include paper substrates such as glassine paper, coated paper, and fine paper; laminated paper obtained by laminating thermoplastic resins such as polyethylene and polypropylene on these paper substrates; Those subjected to filling treatment with alcohol, acrylic-styrene resin, etc.; plastic films such as polyester films such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, and polyolefin films such as polyethylene and polypropylene; and glass.
  • paper substrates such as glassine paper, coated paper, and fine paper
  • laminated paper obtained by laminating thermoplastic resins such as polyethylene and polypropylene on these paper substrates Those subjected to filling treatment with alcohol, acrylic-styrene resin, etc.
  • plastic films such as polyester films such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, and polyolefin films such as polyethylene and polypropylene
  • glass glass.
  • the release sheet may be a paper substrate or a plastic film having a release agent layer provided thereon.
  • the release agent layer can be formed using a conventionally known release agent such as a silicone release agent, a fluorine release agent, an alkyd release agent, an olefin release agent, and the like.
  • the protective film has a role of protecting the gas barrier layer during storage, transportation, etc. of the gas barrier laminate, and is peeled off in a predetermined step.
  • the protective film is preferably sheet-like or film-like.
  • sheet-like or film-like includes not only a long one but also a short flat plate-like one. Since the protective film is usually attached to the surface of the gas barrier layer after the gas barrier layer is formed, from the viewpoint of preventing the protective film from unintentionally falling off from the gas barrier layer, a pressure-sensitive adhesive layer is formed on the substrate. is preferably provided. In this case, an adhesive layer is provided on the surface of the protective film on the side of the gas barrier layer. Since the protective film has the pressure-sensitive adhesive layer, the protective film adheres to the gas barrier layer in a releasable manner.
  • the substrate of the protective film the same material and thickness as the release sheet can be used.
  • the adhesive layer examples include acrylic adhesives, urethane adhesives, silicone adhesives, rubber adhesives, adhesives containing polyolefin polymers, and adhesives containing polyolefin copolymers.
  • the adhesive etc. to contain are mentioned.
  • the pressure-sensitive adhesive layer contains at least one of a polyolefin polymer and a polyolefin copolymer.
  • polyolefin polymers include polyethylene and polypropylene
  • examples of polyolefin copolymers include ethylene-vinyl acetate copolymers and ethylene-(meth)acrylic acid copolymers.
  • Examples of commercially available protective films containing a polyolefin adhesive that can be used as the protective film ( ⁇ ) examples include Sanitect PAC-3-50THK and Sanitect PAC-2-70 manufactured by San A Kaken Co., Ltd.
  • the gas barrier film according to the embodiment of the present invention is not limited to that shown in FIG. 1, and may have other gas barrier layers in addition to the first gas barrier layer and the second gas barrier layer. .
  • the gas barrier film according to the embodiment of the present invention may be a substrate film, or between the primer layer and the first gas barrier layer on the substrate film, or on the second gas barrier layer, etc., as long as the object of the present invention is not impaired.
  • one layer or two layers or more of other layers may be included. Even when the gas barrier film according to the embodiment of the present invention has another layer on the second gas barrier layer, after the second gas barrier layer is formed, the second gas barrier layer is formed before the other layer is provided. Since the gas barrier film of No.
  • Other layers include, for example, a conductor layer, a shock absorbing layer, an adhesive layer, and the like. Also, the arrangement positions of the other layers are not limited to those described above.
  • Materials constituting the conductor layer include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Specifically, antimony doped tin oxide (ATO); fluorine doped tin oxide (FTO); tin oxide, germanium doped zinc oxide (GZO), zinc oxide, indium oxide, indium tin oxide (ITO). , semiconductive metal oxides such as indium zinc oxide (IZO); metals such as gold, silver, chromium and nickel; mixtures of these metals and conductive metal oxides; inorganic conductive materials such as copper iodide and copper sulfide substances; organic conductive materials such as polyaniline, polythiophene, and polypyrrole;
  • a vapor deposition method a sputtering method, an ion plating method, a thermal CVD method, a plasma CVD method, and the like can be used.
  • the thickness of the conductor layer may be appropriately selected according to its application. It is usually 10 nm to 50 ⁇ m, preferably 20 nm to 20 ⁇ m.
  • the impact-absorbing layer is to protect the gas barrier layer when an impact is applied to the gas barrier layer.
  • Materials for forming the shock absorbing layer are not particularly limited, but examples thereof include acrylic resins, urethane resins, silicone resins, olefin resins, and rubber materials.
  • the method for forming the impact-absorbing layer is not particularly limited.
  • a material for forming the impact-absorbing layer and, if desired, a solution for forming an impact-absorbing layer containing other components such as a solvent are applied onto the layer to be laminated.
  • an impact-absorbing layer may be formed on a release base material, and the obtained film may be transferred and laminated on the layer to be laminated.
  • the thickness of the impact absorbing layer is usually 1-100 ⁇ m, preferably 5-50 ⁇ m.
  • the adhesive layer is a layer used when attaching the gas barrier laminate to an adherend.
  • the material for forming the adhesive layer is not particularly limited, and known adhesives or adhesives such as acrylic, silicone, and rubber, heat sealing materials, and the like can also be used.
  • a hard coat layer or the like may be provided on the surface of the substrate film opposite to the side on which the first gas barrier layer is provided, but the hard coat layer is not provided on the surface. preferably not.
  • a layer made of a cured product of an energy ray-curable resin can be used.
  • the energy ray-curable resin the same one as that used for the primer layer can be used.
  • a base film that does not have a hard coat layer on the surface opposite to the side on which the first gas barrier layer is provided has heat resistance compared to a base film that has a hard coat layer on the surface. inferior to However, since the first gas barrier film and the second gas barrier film are manufactured without heating the base film to 110° C. or higher, even such a base film does not undergo thermal deformation. It is possible to obtain a film.
  • FIG. 2 is a schematic cross-sectional view showing an example of a roll-shaped gas barrier film.
  • a roll - shaped gas barrier film 100A shown in FIG. Then, by pulling out the leading end of the roll-shaped portion 100A- 1 , the pulled-out portion 100A- 2 is formed.
  • the gas barrier film according to this embodiment can suppress the generation of scars. Therefore, the number of scratches having an aspect ratio of 2 or more existing on the surface of the second gas barrier layer can be reduced to 200 or less per 1 m 2 .
  • Scars are mainly caused by contact with guide rolls during the manufacturing process as described above. For this reason, it is considered that the same frequency occurs at any position in the coating direction of the roll-shaped film. Therefore, the number of wounds may be observed at any point randomly selected in the coating direction.
  • the scar caused by the guide roll tends to have a shape extending along the coating direction. Therefore, when only the scar caused by the guide roll is to be more accurately grasped, the aspect ratio of the scar to be observed is preferably 3 or more, more preferably 4 or more.
  • the number of scratches having an aspect ratio of 2 or more present on the surface of the second gas barrier layer is preferably 150 or less, still more preferably 130 or less, and even more preferably 120 or less per 1 m 2 .
  • the roll-shaped portion 100A1 is formed such that the first gas barrier layer 11 and the second gas barrier layer 12 are positioned outside the base film 10. Therefore, it is possible to make it difficult to apply stress to the first gas barrier layer 11 and the second gas barrier layer 12 in the roll-shaped portion 100A1.
  • the roll-shaped portion may be formed such that the first gas barrier layer 11 and the second gas barrier layer 12 are located inside the base film 10 . In this case, it becomes easy to prevent peeling of the second gas barrier layer 12 and the first gas barrier layer 11 due to contact with an external object or the like during storage or transportation of the roll-shaped gas barrier film.
  • a method for producing a gas barrier film according to an embodiment of the present invention has the following steps.
  • an ultraviolet irradiation step of irradiating the coating film with ultraviolet rays After the ultraviolet irradiation step, the coating film is subjected to a modification treatment different from the treatment performed in the ultraviolet irradiation step to perform a second Modification process to obtain gas barrier layer
  • the ultraviolet irradiation step is performed prior to the modification step, thereby forming the second gas barrier layer.
  • the conversion reaction of the silicon-containing polymer compound in can be moderately advanced. Therefore, it is possible to obtain a gas barrier film that is hard and less likely to be scratched.
  • FIG. 3 shows an example of the manufacturing process of the gas barrier laminate according to the embodiment of the present invention.
  • 3(a) to 3(c) show the steps of forming the first gas barrier layer on the base film.
  • FIG. 3(d) shows the coating process
  • FIG. 3(e) corresponds to the heating process
  • FIG. 3(f) corresponds to the ultraviolet irradiation process
  • FIG. 3(g) corresponds to the modification process. handle.
  • each step will be described with reference to the drawings, taking as an example the case where a gas barrier layer obtained by modifying a layer containing a silicon-containing polymer compound is used as the first gas barrier layer.
  • the base film may be used as it is, but preferably a primer layer is formed on the base film to form the base film (reference numeral 10 in FIG. 3(a)).
  • a curable resin composition is used to form a pre-cured primer layer on the base film.
  • the method of applying the curable resin composition onto the base film is not particularly limited, and may be spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, die coating, gravure.
  • a known coating method such as a coating method can be used.
  • the method for drying the obtained coating film is not particularly limited, and conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be used.
  • the drying temperature of the coating film is usually 30 to 150°C, preferably 50 to 120°C.
  • the drying time is usually 1 to 10 minutes, more preferably 2 to 7 minutes.
  • the thickness of the dried coating film is not particularly limited, but since there is almost no difference from the thickness after curing, it may be the same as the thickness of the primer layer described above.
  • the obtained uncured primer layer is cured to form a cured primer layer.
  • a method for curing the primer layer before curing is not particularly limited, and a known method can be employed.
  • a cured primer layer can be obtained by heating. The heating temperature is usually 30-150°C, preferably 50-100°C.
  • a cured primer layer can be obtained by irradiating an electromagnetic wave as an active energy ray.
  • Electromagnetic waves can be applied using a high-pressure mercury lamp, an electrodeless lamp, a xenon lamp, or the like.
  • the wavelength of the electromagnetic wave is preferably in the ultraviolet region of 200-400 nm, more preferably 350-400 nm.
  • the irradiation dose is usually in the range of illuminance of 50 to 1,000 mW/cm 2 and light intensity of 50 to 5,000 mJ/cm 2 , preferably 200 to 5,000 mJ/cm 2 .
  • the irradiation time is usually 0.1 to 1,000 seconds, preferably 1 to 500 seconds, more preferably 10 to 100 seconds. In consideration of the heat load of the light irradiation process, irradiation may be performed multiple times in order to satisfy the above-described light amount.
  • a cured primer layer can also be obtained by irradiating an electron beam as an active energy ray.
  • an electron beam accelerator or the like can be used.
  • the irradiation dose is usually in the range of 10 to 1,000 krad.
  • the irradiation time is usually 0.1 to 1,000 seconds, preferably 1 to 500 seconds, more preferably 10 to 100 seconds.
  • the layer made of the curable resin composition may be cured in an atmosphere of an inert gas such as nitrogen gas, if necessary. Curing in an inert gas atmosphere makes it easier to prevent oxygen, moisture, and the like from interfering with curing.
  • an inert gas such as nitrogen gas
  • first gas barrier layer Formation of first gas barrier layer (coating step) A coating film for forming the first gas barrier layer directly on the base film or on the primer layer provided on the base film using a solution containing the composition containing the silicon compound described above. In other words, the first gas barrier layer (reference numeral 11a in FIG. 3(b)) before curing is formed.
  • a known device such as a spin coater, knife coater, gravure coater, or the like can be used to apply the gas barrier layer-forming solution.
  • the coating film of this composition is dried and cured by heating.
  • the heating and drying method conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be employed.
  • the heating temperature is usually 80-110°C, preferably 90-105°C.
  • the heating time is usually several tens of seconds to several tens of minutes, preferably 60 seconds to 5 minutes, more preferably 90 seconds to 3 minutes.
  • the first gas barrier layer is a layer obtained by modifying a layer containing a silicon-containing polymer compound, the step of forming a layer containing a silicon-containing polymer compound on a resin layer.
  • the first gas barrier layer (reference numeral 11 in FIG. 3(c)) can be formed by a step of modifying the layer containing the silicon-containing polymer compound. The details of the modification process are as described above.
  • the first gas barrier layer tends to allow water vapor to easily enter from the base film side before the modification treatment, and the conversion reaction tends to proceed. Therefore, even if a special step is not provided before the modification treatment during production, when nitrogen atoms, oxygen atoms and silicon atoms are present, [average mol% of oxygen atoms] / [average mol% of nitrogen atoms ] tends to increase the ratio of oxygen atoms and nitrogen atoms.
  • the first gas barrier layer made of an inorganic film is formed by vapor deposition or the like, the formation of the second gas barrier layer usually proceeds without going through the above heating process. Quality processing may be performed.
  • Second gas barrier layer A coating film for forming a second gas barrier layer, in other words, a coating film for forming a second gas barrier layer on the first gas barrier layer formed on the substrate film using a solution containing the above-described silicon compound-containing composition, in other words, before curing A second gas barrier layer (12a in FIG. 3D) is formed.
  • the specific procedure of the coating step is the same as that described in the formation of the first gas barrier layer.
  • the coating film of this composition is dried and cured by heating (reference numeral 12b in FIG. 3(e) indicates the coating film after heating).
  • the specific procedure and processing conditions of the heating step are the same as those described in the formation of the first gas barrier layer. That is, the heating temperature is usually 80-110°C, preferably 90-105°C.
  • the heating time is usually several tens of seconds to several tens of minutes, preferably 60 seconds to 5 minutes, more preferably 90 seconds to 3 minutes.
  • the coating film is irradiated with ultraviolet rays (reference numeral 12c in FIG. 3(f) indicates the coating film after the ultraviolet irradiation).
  • the ultraviolet light used in this step is ultraviolet light with a wavelength of more than 200 nm, which is different from vacuum ultraviolet light.
  • the ultraviolet irradiation step may be started after the heating step, or the ultraviolet irradiation step may be started in the middle of the heating step.
  • the specific procedure of ultraviolet irradiation is as described above.
  • a second gas barrier layer (reference numeral 12 in FIG. 3(g)) is formed by executing the modification step after the ultraviolet irradiation step is completed.
  • the details of the modification process are as described above.
  • the time from the end of the ultraviolet irradiation step to the start of the modification step is preferably 6 to 144 hours, more preferably 12 to 120 hours, still more preferably 15 to 15 hours, from the viewpoint of moderately advancing the conversion reaction of the silicon-containing polymer compound. It can be 108 hours.
  • the gas barrier film is in the form of a roll
  • a roll-shaped film having a layer containing a silicon-containing polymer compound formed on the base film or on the primer layer on the base film is used.
  • a gas barrier film is produced by sequentially subjecting a film to a heating step and an ultraviolet irradiation step while conveying the film in a fixed direction, and performing a modifying step on the layer containing the silicon-containing polymer compound after passing through these steps. is preferred. According to this manufacturing method, a roll-shaped gas barrier film can be continuously manufactured.
  • a protective film is provided on the second gas barrier layer or on the surface of the substrate film opposite to the first gas barrier layer. This step is performed, for example, by arranging the surface of the protective film on which the pressure-sensitive adhesive layer is formed so as to face the surface to be adhered, and sequentially pressing so as not to trap air bubbles.
  • the surface elastic modulus of the coating film for forming the second gas barrier layer, the water vapor transmission rate of each gas barrier film, and the number of scars of each gas barrier film were evaluated, measured, and calculated according to the following procedures.
  • Water vapor transmission rate (WVTR) Water vapor transmission rate (WVTR)
  • the gas barrier films prepared in Examples and Comparative Examples were cut into circular test pieces with an area of 50 cm 2 , and measured using a water vapor transmission rate measuring device (manufactured by MOCON, device name: AQUATRAN2) at 40°C and a relative humidity of 90. % atmosphere and a gas flow rate of 20 sccm, the water vapor transmission rate (g/m 2 /day) was measured.
  • the lower detection limit of the measuring device is 0.05 mg/m 2 /day.
  • Example 1 Preparation of base film with primer layer A PET film (PET50A4360, manufactured by Toyobo Co., Ltd.) with a thickness of 50 ⁇ m, a width of 1,000 mm, and a length of 500 m, which was subjected to double-sided adhesion treatment, was prepared in a roll form. .
  • PET film PET50A4360, manufactured by Toyobo Co., Ltd.
  • an ultraviolet curable acrylate resin composition manufactured by Arakawa Chemical Industries, Ltd., Opstar Z7530
  • the resulting coating film was dried at 70 ° C. with a dryer attached to the coater. Allow to dry for 1 minute.
  • the coating film was irradiated with ultraviolet rays under the conditions of an illuminance of 250 mW/cm 2 and a light amount of 170 mJ/cm 2 to cure the ultraviolet-curable acrylate resin composition.
  • an electrodeless UV lamp system manufactured by Heraeus
  • the coating film was irradiated with ultraviolet rays under the conditions of an illuminance of 250 mW/cm 2 and a light amount of 170 mJ/cm 2 to cure the ultraviolet-curable acrylate resin composition.
  • a primer layer with a thickness of 1,000 nm was formed on one side of the PET film.
  • first gas barrier layer A coating agent (Aquamica NL110, manufactured by Merck Performance Materials Co., Ltd.) containing perhydropolysilazane (PHPS) as a main component is applied on the surface of the primer layer of the obtained base film with a primer layer. -20, solvent: xylene, concentration: 20%) was applied using a die coater. Then, the uncured coating agent layer thus obtained was cured by heating at 100° C. for 2 minutes with a dryer attached to the coater to form a coating film having a thickness of 200 nm. After standing for 12 hours in an atmosphere of 23° C.
  • PHPS perhydropolysilazane
  • Plasma ion implantation was performed on the coating film using a plasma ion implantation apparatus under the following conditions to form a first gas barrier layer.
  • ⁇ Conditions for Plasma Ion Implantation> ⁇ Chamber internal pressure: 0.2 Pa ⁇ Plasma generating gas: Argon ⁇ Gas flow rate: 100sccm ⁇ RF output: 1,000W ⁇ RF frequency: 1,000Hz ⁇ RF pulse width: 50 ⁇ s ⁇ RF delay: 25 ns ⁇ DC voltage: -6 kV ⁇ DC frequency: 1,000Hz ⁇ DC pulse width: 5 ⁇ s ⁇ DC delay: 50 ⁇ s ⁇ Duty ratio: 0.5% ⁇ Processing time: 200 seconds
  • Second gas barrier layer A coating agent containing PHPS as a main component (Aquamica NL110-20, manufactured by Merck Performance Materials, solvent: xylene, concentration: 20%) was applied to the surface of the obtained first gas barrier layer. was applied using a die coater. The obtained uncured coating agent layer was cured by heating at 100° C. for 2 minutes with a dryer attached to the coater to form a coating film having a thickness of 100 nm.
  • a coating agent containing PHPS as a main component (Aquamica NL110-20, manufactured by Merck Performance Materials, solvent: xylene, concentration: 20%) was applied to the surface of the obtained first gas barrier layer. was applied using a die coater. The obtained uncured coating agent layer was cured by heating at 100° C. for 2 minutes with a dryer attached to the coater to form a coating film having a thickness of 100 nm.
  • this coating film has maximum intensity values at 254 nm, 313 nm, and 365 nm under the conditions of illuminance of 70 mW/cm 2 and light intensity of 190 mJ/cm 2 , and 200 nm. It was irradiated with ultraviolet rays that substantially did not contain light of the following wavelengths. Then, after standing for 12 hours in an atmosphere of 23° C. and a relative humidity of 50%, the coating film was subjected to plasma ion implantation using a plasma ion implantation device under the same conditions as those used for forming the first gas barrier layer. A gas barrier layer 2 was formed. Thus, a gas barrier film was obtained.
  • ⁇ Conditions of Plasma Chemical Vapor Deposition> ⁇ Flow rate of hexamethyldisiloxane: 50 sccm ⁇ Flow rate of argon gas: 15 sccm ⁇ Flow rate of oxygen gas: 10 sccm ⁇ Chamber internal pressure: 0.3 Pa ⁇ RF power supply power: 1,000 W ⁇ Film formation time: 120 seconds
  • Example 3 A gas barrier film was obtained in the same manner as in Example 1, except that after irradiating the coating film with ultraviolet rays during the formation of the second gas barrier layer, it was allowed to stand in an atmosphere of 23° C. and a relative humidity of 50% for 96 hours.
  • Example 1 A gas barrier film was obtained in the same manner as in Example 1, except that the coating film was not irradiated with ultraviolet rays during the formation of the second gas barrier layer.
  • Example 2 The coating film was not irradiated with ultraviolet rays during the formation of the second gas barrier layer, and the uncured coating agent layer was heated at 120°C for 2 minutes during the formation of the second gas barrier layer.
  • a gas barrier film was obtained in the same manner as in Example 1 except for the above. In this example, the evaluation result of thermal deformation of the gas barrier film was unsatisfactory, so other evaluations and measurements were not performed.
  • Example 3 A gas barrier film was obtained in the same manner as in Example 1, except that after irradiating the coating film with ultraviolet rays during the formation of the second gas barrier layer, it was allowed to stand in an atmosphere of 23° C. and a relative humidity of 50% for 168 hours. In this example, the number of wounds was not evaluated because sufficient gas barrier performance was not obtained.
  • Table 1 shows the measurement results of the gas barrier films of each example and comparative example.
  • the gas barrier films of Examples 1 to 3 all have an average mol% ratio of oxygen atoms/nitrogen atoms in the second gas barrier layer in the range of 1.0 to 6.0. .
  • the gas barrier property is good and the number of scars is small.
  • the thermal shrinkage rate of the base film is small, and the evaluation of thermal deformation is good.
  • the coating film for forming the second gas barrier layer after ultraviolet irradiation has an appropriate elastic modulus.
  • the average mol % ratio of oxygen atoms/nitrogen atoms in the second gas barrier layer was 1.0 to 1.0 because the second gas barrier layer was not irradiated with ultraviolet rays. It turns out that it is below the range of 6.0. Moreover, although the thermal shrinkage rate of the base film is small and the evaluation of thermal deformation is good, it is found that the number of scars is very large. Moreover, it can be understood that the coating film for forming the second gas barrier layer was not irradiated with ultraviolet rays and had a lower elastic modulus than the coating film of the example in which ultraviolet rays were already irradiated.
  • the heating temperature for forming the first gas barrier layer and the second gas barrier layer was higher than the glass transition temperature of the base film, and no ultraviolet irradiation was performed during the formation of the second gas barrier layer. Therefore, it can be understood that the thermal shrinkage rate of the base film was large and the evaluation of thermal deformation was poor.
  • the standing time from the irradiation of the ultraviolet rays to the modification treatment was prolonged. It can be seen that the average mol % ratio is above the range of 1.0 to 6.0. In other words, it can be understood that the conversion reaction of PHPS has progressed too much, a sufficient modification effect cannot be obtained when the modification treatment is performed, and the gas barrier properties are lower than those of Examples 1-3.
  • Base film 11 First gas barrier layer 11a: First gas barrier layer before curing 12: Second gas barrier layer 12a: Coating film before heating 12b: Coating film after heating 12c: Coating film after UV irradiation 20: Core material 100 : gas barrier film 100A: roll-shaped gas barrier film 100A1: roll-shaped portion 100A2 : drawer portion

Landscapes

  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

ガラス転移温度が100℃以下である樹脂のフィルムである基材フィルム、第1ガスバリア層、及び第2ガスバリア層をこの順に有し、前記第2ガスバリア層は、ケイ素含有高分子化合物を含む組成物の塗膜から形成される層であり、X線光電子分光において、前記第2ガスバリア層には、窒素原子、酸素原子及びケイ素原子が存在し、[酸素原子の平均モル%]/[窒素原子の平均モル%]で表される酸素原子と窒素原子の比率が1.0~6.0であり、前記基材フィルムが、110℃以上に加熱されることなく製造される、ガスバリアフィルム。

Description

ガスバリアフィルム及びガスバリアフィルムの製造方法
 本発明は、ガスバリアフィルム及びガスバリアフィルムの製造方法に関する。
 近年、ガスバリアフィルムは、基板材料や封止材料として広く用いられている。ガスバリアフィルムには、水蒸気や酸素等の透過を抑制できる高いガスバリア性が求められることに加えて、例えば、ガスバリアフィルムが貼付される電子デバイス等の貼付対象物の視認性を損なわないように透光性を高くしたり、貼付対象物の軽量性が損なわれないようにしたりすることが求められる。
 上記観点から、硬化性化合物を含む硬化性組成物を支持体上に塗布し、得られた塗布層に含まれる硬化性化合物を硬化して薄い樹脂層を形成し、この樹脂層上に直接又は他の層を介して無機膜等からなるガスバリア層を形成することが知られている。
 例えば、特許文献1には、ポリエチレンテレフタレート(PET)フィルム上に紫外線硬化型アクリレート樹脂組成物の硬化膜を設けた基材を作製し、この硬化膜が形成された基材上にガスバリア層を形成してガスバリアフィルムを得ることが記載されている。
 以下、水蒸気や酸素の透過を抑制する特性を「ガスバリア性」、ガスバリア性を有するフィルムを「ガスバリアフィルム」という。
 ガスバリアフィルムは、工業的には、長尺なものとして製造された後ロール状に巻かれて巻回体とされ、上述した電子デバイス等の最終製品に組み込まれる前の中間製品として、保管、輸送されることが多い。
国際公開第2019/078069号
 特許文献1に示されるPETフィルムのようなガラス転移温度(Tg)が100℃以下であり耐熱性の乏しい基材に、ガスバリアフィルムを得るためにポリシラザンを含む組成物を塗布する場合、ポリシラザン塗膜の乾燥温度が高いと、PETフィルムが収縮等の変形を起こし種々の不具合が発生する可能性がある。
 上記不具合を回避するために乾燥温度を下げると、本発明者らの検討によれば、最終的に得られるガスバリア層に細かな創痕が発生することが判明している。例えば、有機ELのような有機デバイスは水分の影響を受けやすいため、封止用のガスバリアフィルムには極めて高いガスバリア性能が求められる。そのため、このような細かな創痕が存在することによって、たとえ製造当初の水蒸気透過率には影響がなくても、使用中における信頼性への影響が懸念され、上記有機デバイスの封止等の用途に採用できなくなるという問題が生じ得る。
 本発明は、上記問題を鑑み、耐熱性の低い基材を用いることができ、しかも創痕の発生が少ない、ガスバリアフィルムを提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、基材フィルム上に2つのガスバリア層を形成し、その一方の特定元素の比率を所定の範囲に設定することにより、上記課題を解決し得ることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[7]を提供するものである。
[1]基材フィルム、第1ガスバリア層、及び第2ガスバリア層をこの順に有し、
 前記基材フィルムは、ガラス転移温度が100℃以下の樹脂製フィルムであり、
 前記第2ガスバリア層は、ケイ素含有高分子化合物を含む組成物の塗膜から形成される層であり、
 X線光電子分光において、前記第2ガスバリア層には、窒素原子、酸素原子及びケイ素原子が存在し、[酸素原子の平均モル%]/[窒素原子の平均モル%]で表される酸素原子と窒素原子の比率が1.0~6.0であり、
 前記基材フィルムが、110℃以上に加熱されることなく製造される、ガスバリアフィルム。
[2]基材フィルム、第1ガスバリア層、及び第2ガスバリア層をこの順に有し、
 前記基材フィルムは、ポリエチレンテレフタレートフィルム層を有し、
 前記第2ガスバリア層は、ケイ素含有高分子化合物を含む組成物の塗膜から形成される層であり、
 X線光電子分光において、前記第2ガスバリア層には、窒素原子、酸素原子およびケイ素原子が存在し、[酸素原子の平均モル%]/[窒素原子の平均モル%]で表される酸素原子と窒素原子の比率が1.0~6.0であり、
 前記基材フィルムが、110℃以上に加熱されることなく製造される、ガスバリアフィルム。
[3]前記ガスバリアフィルムがロール状であり、
 前記第2ガスバリア層の表面に存在するアスペクト比2以上の創痕の数が1m当たり200個以下である、上記[1]又は[2]に記載のガスバリアフィルム。
[4]前記第1ガスバリア層は、金属、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれか一つを含む、上記[1]~[3]のいずれか一つに記載のガスバリアフィルム。
[5]前記基材フィルムが、耐熱化処理されていない、上記[1]~[4]のいずれか一つに記載のガスバリアフィルム。
[6]前記基材フィルムの第1ガスバリア層が設けられている側とは逆側の表面上に、ハードコート層が設けられていない、上記[1]~[5]のいずれか一つに記載のガスバリアフィルム。
[7]ケイ素含有高分子化合物を含む組成物を、第1ガスバリア層及び基材フィルムを有する積層体の前記第1ガスバリア層上に塗布して塗膜を形成する塗布工程、
 前記塗膜を加熱する加熱工程、
 前記加熱工程の開始後に、前記塗膜に紫外線を照射する紫外線照射工程、及び、
 前記紫外線照射工程の後に、前記塗膜に前記紫外線照射工程で行う処理とは異なる改質処理を施して第2ガスバリア層を得る改質工程、を含む、ガスバリアフィルムの製造方法。
 本発明によれば、耐熱性の低い基材を用いることができ、しかも創痕の発生が少ない、ガスバリアフィルムを提供することができる。
ガスバリアフィルムの一例を示す断面模式図である。 ロール状のガスバリアフィルムの一例を示す断面模式図である。 ガスバリアフィルムの製造方法の一例を示す説明図である。
 以下、本発明の実施形態(以下、「本実施形態」と称することがある)に係るガスバリアフィルムについて説明する。
1.ガスバリアフィルム
 本発明の実施形態に係る第1のガスバリアフィルムは、基材フィルム、第1ガスバリア層、及び第2ガスバリア層をこの順に有し、前記基材フィルムは、ガラス転移温度(Tg)が100℃以下である樹脂のフィルムであり、前記第2ガスバリア層は、ケイ素含有高分子化合物を含む組成物の塗膜から形成される層であり、X線光電子分光において、前記第2ガスバリア層には、窒素原子、酸素原子及びケイ素原子が存在し、[酸素原子の平均モル%]/[窒素原子平均モル%]で表される酸素原子の比率が1.0~6.0であり、前記基材フィルムが、110℃以上に加熱されることなく製造されるものである。
 本発明の実施形態に係る第2のガスバリアフィルムは、基材フィルム、第1ガスバリア層、及び第2ガスバリア層をこの順に有し、前記基材フィルムは、ポリエチレンテレフタレートフィルム層を有し、前記第2ガスバリア層は、ケイ素含有高分子化合物を含む組成物の塗膜から形成される層であり、X線光電子分光において、前記第2ガスバリア層には、窒素原子、酸素原子およびケイ素原子が存在し、[酸素原子の平均モル%]/[窒素原子の平均モル%]で表される酸素原子の比率が1.0~6.0であり、前記基材フィルムが、110℃以上に加熱されることなく製造されるものである。
 発明者らが鋭意検討した結果、創痕の発生原因は、ガスバリア層形成用の塗膜の加熱温度が低いとポリシラザン等のケイ素含有高分子化合物の転化反応が十分に進行しておらず、塗膜の表面弾性率が低いため、その後の製造工程においてガスバリア層が傷つけられることによって発生することが判明した。より詳しくは、ロールtoロール等の手法により、長尺のガスバリアフィルムを製造する際、ガスバリアフィルムがガイドロールに接触したり、ガスバリアフィルムを巻き取ったり、巻き取ったガスバリアフィルムを繰り出したりする際にガスバリアフィルム同士が接触したりすることにより、創痕が発生する。
 この傾向は、ガスバリア層が第2ガスバリア層である場合、すなわち、基材フィルム上に1層目のガスバリア層を設けた後に、2層目のガスバリア層としてポリシラザン等のケイ素含有高分子化合物の塗膜を設けた場合に顕著である。その理由は、第2ガスバリア層形成用の塗膜を設ける際に、基材フィルム側からの水蒸気の侵入は第1ガスバリア層の存在により遮断されているために、当該塗膜においてポリシラザン等のケイ素含有高分子化合物の転化反応はあまり進行しない。そのため、塗膜の表面の硬度が低くなり、ガイドロールとの接触による擦過傷が付きやすくなるものと考えられる。
 このような知見に基づき、本発明者らは、ポリシラザン等のケイ素含有高分子化合物を含む組成物の塗膜を形成し、更に紫外線を照射した後に、イオン注入処理等の改質処理を行うことで、改質処理工程における創痕の発生が防止されることを見出した。なお、本明細書において、紫外線とは、真空紫外光とは異なる、波長200nm超の紫外線を意味する。具体的には、紫外線は波長200nm超の領域に、強度の最大値を有する。ケイ素含有高分子化合物がポリシラザンである場合には、紫外線は、ポリシラザンの吸収波長である260nm及び320nm付近に強度の極大値を有することが好ましい。
 また、本発明者らは、上記製造方法の紫外線照射工程において、ポリシラザン等のケイ素含有高分子化合物の転化反応が進行しているため、塗膜に改質処理を施した後の改質層の特定元素の比率が、紫外線照射を行わずに改質処理を施した場合の改質層の対応する元素比率と異なっていることを見出した。
 ケイ素含有高分子化合物の転化反応を進行させるための処理の別の例として、例えば、ケイ素含有高分子化合物を含む組成物の塗膜に、水蒸気を噴霧するスチーム処理等や、30~60℃程度の環境に180時間以上の長期間保管することが挙げられる。処理の簡便さや短時間で実行できること等の観点から、紫外線照射により転化反応を進行させることが好ましい。
 上記第1のガスバリアフィルム及び第2のガスバリアフィルムによれば、耐熱性の乏しい基材フィルムを用いていることにより、ガスバリア層を形成するための塗膜の乾燥温度を低くしていても、創痕が発生することを防止することができるガスバリアフィルムを提供することができる。
 塗膜の乾燥温度について、具体的には、上記第1のガスバリアフィルム及び第2のガスバリアフィルムは、基材フィルムが、110℃以上に加熱されることなく製造される。このように、基材フィルムが高温の加熱を伴う工程を経ることなく製造されることにより、基材フィルムの熱変形が小さいガスバリアフィルムを得ることができる。フィルムの熱変形の程度は、後述する実施例に記載するように、蛍光灯にかざして確認をするという評価方法が従来から採用されており、定量的に評価し、数値化することは未だ一般的ではない。また、ガスバリアフィルムの熱変形という特性自体を数値化しようとしても、このような熱変形という外面的な特徴は、基材フィルムを構成する材料や厚さ、塗膜の乾燥時間、ガスバリアフィルムにかかる張力等の影響を受け、様々に変化する。そのため、多種多様な条件においてガスバリアフィルムの熱変形を測定することは、現実的ではない回数の実験等を要し、過大な作業時間と経済的支出を伴う。したがって、上記第1のガスバリアフィルム及び第2のガスバリアフィルムを構造又は特性により直接特定することにつき、不可能又は非実際的であるという事情があった。そこで、上記第1のガスバリアフィルム及び第2のガスバリアフィルムの発明は、高温で加熱する工程を経ないという製造方法上の特徴により特定される。
 以下、第1及び第2のガスバリアフィルムを総称して、「本発明の実施形態に係るガスバリアフィルム」ということがある。
1-1.ガスバリアフィルムの構成例
 本発明の実施形態に係るガスバリアフィルムの具体的な構成の一例を図1に示す。
 図1の模式的な断面図に示されるガスバリアフィルム100は、基材フィルム10、第1ガスバリア層11、及び第2ガスバリア層12をこの順に有する。
 基材フィルム10と第1ガスバリア層11は直接接していてもよいし、基材フィルム10と第1ガスバリア層との間に他の層が介在していてもよい。例えば、プライマー層を基材フィルム10上に設け、このプライマー層を介して第1ガスバリア層11が基材フィルム10上に形成されていてもよい。
 基材フィルム10と第1ガスバリア層11が直接接していれば、ガスバリアフィルム100を薄くしやすくなる。基材フィルム10と第1ガスバリア層11との間にプライマー層を設ければ、基材フィルム10と第1ガスバリア層11との密着性を高めやすくなる。また、プライマー層中に基材フィルム10上の突起等の凸部が埋没し、プライマー層の表面を、基材フィルム10の表面よりも平滑にすることができる場合がある。
 第1ガスバリア層11と第2ガスバリア層12は直接接していてもよいし、第1ガスバリア層11と第2ガスバリア層12との間に接合層等の他の層が介在していてもよい。
 基材フィルム10の第1ガスバリア層11とは反対側の面、及び、第2ガスバリア層12の第1ガスバリア層11とは反対側の面のうち少なくとも一方に、剥離シートや保護フィルムが設けられていてもよい。剥離シートや保護フィルムを設けることにより、ガスバリアフィルム100が、最終製品に用いられる前の中間製品の状態で保管されたり搬送されたりする際に、基材フィルム10や第2ガスバリア層12や第1ガスバリア層11が保護される。
 ガスバリアフィルムの厚さは、目的とする電子デバイスの用途等によって適宜決定することができる。本発明の実施形態に係るガスバリアフィルムの実質的な厚さは、取り扱い性の観点から、好ましくは1~200μm、より好ましくは5~100μm、より好ましくは15~60μmである。
 なお、「実質的な厚さ」とは、使用状態における厚さをいう。すなわち、上記ガスバリアフィルムは、剥離シートや保護フィルムを有している場合、使用時に除去されるこれらの剥離シートや保護フィルムの厚さは「実質的な厚さ」には含まれない。
 ガスバリアフィルムの、40℃、相対湿度90%雰囲気下での水蒸気透過率は、高いガスバリア性を確保する観点から、好ましくは5.0mg/m/day以下、より好ましくは3.0mg/m/day以下、更に好ましくは2.0mg/m/day以下である。
 本発明の実施形態に係るガスバリアフィルムは、基材フィルムと、第1ガスバリア層及び第2ガスバリア層とを有しており、各層の形成方法や元素組成等を調整することにより、ガスバリア性に優れ、しかも、第2ガスバリア層の表面の創痕が低減され、熱変形の小さいものとすることができる。
1-2.基材フィルム
 本発明の実施形態に係る第1のガスバリアフィルムにおいては、基材フィルムとして、ガラス転移温度(Tg)が100℃以下の樹脂製フィルムが用いられる。また、本発明の実施形態に係る第2のガスバリアフィルムにおいては、基材フィルムとして、ポリエチレンテレフタレート(PET)フィルム層を有するものが用いられる。
 これらの基材フィルムは、安価で光透過性も良好なものを容易に入手できるが、比較的耐熱性が低いため、ガスバリア層を形成する際に高温で加熱されると、熱変形しやすいという問題がある。上述したように、加熱温度を下げるとガスバリア層に創痕が生じやすくなるが、本実施形態に係るガスバリアフィルムにおいては、[酸素原子の平均モル%]/[窒素原子の平均モル%]で表される酸素原子と窒素原子の比率を特定範囲としているため、この問題が発生しづらい。
 Tgが100℃以下の樹脂製フィルムとしては、PETフィルム、ポリブチレンテレフタレート(PBT)フィルムフィルム、ポリ乳酸(PLA)フィルム等が挙げられる。基材フィルムは、易接着処理されたものであることが好ましく、易接着処理としては、易接着層を設けることや、コロナ処理、火炎処理等が挙げられる。
 基材フィルムは、アニール処理等の耐熱化処理がされていないものであることが好ましい。アニール処理等の耐熱化処理を基材に施す場合、そのための工程を増やさねばならず、生産性が低下し、また、耐熱化処理済みの基材フィルムを入手しようとした場合には、未処理の基材フィルムよりもコストが増大する問題がある。上記第1のガスバリアフィルム及び第2のガスバリアフィルムは、基材フィルムが、110℃以上に加熱されることなく製造されるため、耐熱化処理が施されていない基材フィルムであっても、熱変形のないガスバリアフィルムを得ることが可能である。
1-3.プライマー層
 基材フィルム上に設けられるプライマー層としては、エネルギー線硬化性樹脂の硬化物からなるものが挙げられる。
 ここで、エネルギー線硬化性樹脂とは、紫外線、電子線等の活性エネルギー線を照射したり、加熱したりすることにより、硬化反応が開始され、硬化物に変化する硬化性樹脂組成物をいう。
 エネルギー線硬化性樹脂は、通常、重合性化合物を主成分とするものである。ここで、「主成分」とは、エネルギー線硬化性樹脂中、固形分として、50質量%以上の成分を意味する。
 重合性化合物は、エネルギー重合性官能基を有する化合物である。エネルギー重合性官能基としては、(メタ)アクリロイル基、ビニル基、アリル基、スチリル基などのエチレン性不飽和基が例示される。これらの中でも、反応性の高さから、エネルギー重合性官能基は(メタ)アクリロイル基が好ましい。なお、本明細書において、「(メタ)アクリロイル基」とは、アクリロイル基又はメタクリロイル基を意味する。「(メタ)アクリル酸」等の他の類似用語も同様である。
 (メタ)アクリロイル基を有する重合性化合物としては、多官能アクリレート系化合物が挙げられる。多官能アクリレート系化合物とは、重合反応に関与する不飽和結合を2以上有する、アクリル酸エステル化合物又はメタクリル酸エステル化合物をいう。
 多官能アクリレート系化合物としては、トリシクロデカンジメタノールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、ジ(アクリロイロキシエチル)イソシアヌレート、アリル化シクロヘキシルジ(メタ)アクリレート等の2官能アクリレート系化合物;
トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(2-アクリロイロキシエチル)イソシアヌレート等の3官能アクリレート系化合物;
ジグリセリンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の4官能アクリレート系化合物;
プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート等の5官能アクリレート系化合物;
ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等の6官能アクリレート系化合物;等が挙げられる。
 これらの中でも、多官能アクリレート系化合物としては、4~6官能アクリレート系化合物が好ましく、6官能アクリレート系化合物がより好ましい。
 これらの多官能アクリレート系化合物は一種単独で、あるいは二種以上を組み合わせて用いることができる。
 エネルギー線硬化性樹脂は、オリゴマーを含んでいてもよい。かかるオリゴマーとしては、ポリエステルアクリレート系オリゴマー、エポキシアクリレート系オリゴマー、ウレタンアクリレート系オリゴマー、ポリオールアクリレート系オリゴマー等が挙げられる。
 エネルギー線硬化性樹脂は、光重合開始剤や熱重合開始剤等の重合開始剤を含んでいてもよい。
 光重合開始剤としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニルケトン等のケトン系光重合開始剤;2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、エチル(2,4,6-トリメチルベンゾイル)-フェニルホスフィネート、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド等のリン系光重合開始剤;ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス[2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル]チタニウム等のチタノセン系光重合開始剤;オキシムエステル系光重合開始剤;ベンゾフェノン、p-クロロベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン等のベンゾフェノン系光重合開始剤;チオキサントン等のチオキサントン系光重合開始剤;トリイソプロパノールアミン等のアミン系光重合開始剤;等が挙げられる。これらは、一種単独で、あるいは二種以上を組み合わせて用いることができる。
 熱重合開始剤としては、過酸化水素;ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム等のペルオキソ二硫酸塩;2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、4,4’-アゾビス(4-シアノバレリン酸)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ系化合物;過酸化ベンゾイル、過酸化ラウロイル、過酢酸、過コハク酸、ジ-t-ブチルパーオキサイド、t-ブチルヒドロパーオキサイド、クメンヒドロパーオキサイドなどの有機過酸化物;等が挙げられる。これらは、一種単独で、あるいは二種以上を組み合わせて用いることができる。
 エネルギー線硬化性樹脂が重合開始剤を含有する場合、その含有量は、重合性化合物100質量部に対して、通常0.01~20質量部の範囲である。
 エネルギー線硬化性樹脂は、架橋剤を含有していてもよい。
 架橋剤としては、イソシアネート系架橋剤、エポキシ系架橋剤、メラミン系架橋剤、イミン系架橋剤、アジリジン系架橋剤、オキサゾリン系架橋剤等が挙げられる。
 イソシアナート系架橋剤としては、特に限定されず、分子中に2以上のイソシアナート基を有する化合物が用いられる。例えば、トリレンジイソシアナート、ジフェニルメタンジイソシアナート、キシリレンジイソシアナート等の芳香族ポリイソシアナート;
ヘキサメチレンジイソシアナート等の脂肪族ポリイソシアナート;
イソホロンジイソシアナート、水素添加ジフェニルメタンジイソシアナート等の脂環式ポリイソシアナート;及び、それらのビウレット体、イソシアヌレート体、さらにはエチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン、ヒマシ油等の低分子活性水素含有化合物との反応物であるアダクト体;等が挙げられる。
 これらの架橋剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 エネルギー線硬化性樹脂が架橋剤を含有する場合、その含有量は、本発明のより優れる効果が得られる観点から、重合性化合物100質量部に対して、通常1~10質量部、好ましくは2~8質量部である。
 エネルギー線硬化性樹脂としては、重合性化合物が、紫外線照射により硬化する樹脂(紫外線硬化性樹脂)であるものが好ましい。紫外線硬化性樹脂を用いることで、ハードコート層を効率よく形成することができる。
 エネルギー線硬化性樹脂として市販品を用いることもできる。市販品としては、「オプスターZ7530」、「オプスターZ7524」、「オプスターTU4086」、「オプスターZ7537」(以上、JSR社製)等が挙げられる。
 エネルギー線硬化性樹脂は、さらに無機材料を含有していてもよい。無機材料を含有することにより、プライマー層の硬度を高めたり、エネルギー線硬化性樹脂の硬化収縮を抑制したりすることができる。
 無機材料を構成する無機化合物としては、金属酸化物、アルキルシリケート、金属フッ化物等が挙げられる。
 また、エネルギー線硬化性樹脂は、本発明の効果を妨げない範囲で、その他の成分を含有してもよい。
 その他の成分としては、帯電防止剤、安定剤、酸化防止剤、可塑剤、滑剤、着色顔料等が挙げられる。これらの含有量は、目的に合わせて適宜決定すればよい。 
1-4.第2ガスバリア層
 本発明の実施形態に係るガスバリアフィルムは第1ガスバリア層と第2ガスバリア層とを有している。
 上記第2ガスバリア層は、ケイ素化合物を含む組成物の塗膜から形成される層である。そして、X線光電子分光において、上記第2ガスバリア層には、窒素原子、酸素原子及びケイ素原子が存在し、[酸素原子の平均モル%]/[窒素原子の平均モル%]で表される酸素原子と窒素原子の比率が1.0~6.0である。
 上記比率が1.0未満であると、ケイ素含有高分子化合物の転化反応が十分進行しておらず、第2ガスバリア層が十分な硬度を得られなくなる。
 上記比率が6.0を超えると、ケイ素含有高分子化合物の転化反応が進行しすぎてしまい、改質処理をした際に十分な改質効果が得られず、ガスバリア性能が低下する。
 第2ガスバリア層の上記酸素原子と窒素原子の比率は、好ましくは1.0~5.5であり、より好ましくは1.0~5.2であり、さらに好ましくは1.0~4.9である。
 第2ガスバリア層は、第1ガスバリア層の基材フィルムとは反対側に設けられ、ガスバリアフィルムの最外層でもある。このため、外方へ露出しており、上述したように製造工程中にガイドロール等に接触しやすい状態にある。しかし、本実施形態に係るガスバリアフィルムでは、X線光電子分光において、上記第2ガスバリア層には、窒素原子、酸素原子及びケイ素原子が存在し、[酸素原子の平均モル%]/[窒素原子平均モル%]で表される酸素原子と窒素原子の平均モル%の比率が1.0~6.0であるため、高い硬度と弾性率を有しており、創痕が発生しにくい。
 薄く、ガスバリア性に優れるガスバリア層を効率よく形成できることから、第2ガスバリア層は、ケイ素含有高分子化合物を含む組成物の塗膜に後述する改質処理を施して得られる第2ガスバリア層であることが好ましい。
 第2ガスバリア層の厚さは、創痕の発生防止及びガスバリア性の観点から、好ましくは5~1,000nm、より好ましくは10~500nm、更に好ましくは15~300nm、より更に好ましくは20~200nmの範囲である。
 ケイ素含有高分子化合物を含む層(以下、「ケイ素含有高分子層」ということがある)に改質処理を施して得られるガスバリア層において、用いるケイ素含有高分子化合物は1種単独で、あるいは2種以上を組合せて用いることができる。
 ケイ素含有高分子化合物としては、ポリシラザン系化合物(特公昭63-16325号公報、特開昭62-195024号公報、特開昭63-81122号公報、特開平1-138108号公報、特開平2-84437号公報、特開平2-175726号公報、特開平4-63833号公報、特開平5-238827号公報、特開平5-345826号公報、特開2005-36089号公報、特開平6-122852号公報、特開平6-299118号公報、特開平6-306329号公報、特開平9-31333号公報、特開平10-245436号公報、特表2003-514822号公報、国際公開WO2011/107018号等参照)、及びポリカルボシラン系化合物(Journal of Materials Science,2569-2576,Vol.13,1978、Organometallics,1336-1344,Vol.10,1991、Journal of Organometallic Chemistry,1-10,Vol.521,1996、特開昭51-126300号公報、特開2001-328991号公報、特開2006-117917号公報、特開2009-286891号公報、特開2010-106100号公報等参照)、ポリシラン系化合物(R.D.Miller、J.Michl;Chemical Review、第89巻、1359頁(1989)、N.Matsumoto;Japanese Journal of Physics、第37巻、5425頁(1998)、特開2008-63586号公報、特開2009-235358号公報等参照)等が挙げられる。
 これらの中でも、優れたガスバリア性を有するガスバリア層を形成できる観点から、ポリシラザン系化合物が好ましい。ポリシラザン系化合物としては、無機ポリシラザンや有機ポリシラザンが挙げられる。無機ポリシラザンとしてはペルヒドロポリシラザン等が挙げられ、有機ポリシラザンとしてはペルヒドロポリシラザンの水素の一部又は全部がアルキル基等の有機基で置換された化合物等が挙げられる。これらの中でも、入手容易性、及び優れたガスバリア性を有するガスバリア層を形成できる観点から、無機ポリシラザンがより好ましい。
 また、ポリシラザン系化合物は、ガラスコーティング剤等として市販されている市販品をそのまま使用することもできる。
 ポリシラザン系化合物は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 ケイ素含有高分子層は、上述したケイ素含有高分子化合物の他に、本発明の目的を阻害しない範囲で他の成分を含んでいてもよい。他の成分としては、硬化剤、他の高分子、老化防止剤、光安定剤、難燃剤等が挙げられる。
 ケイ素含有高分子層中の、ケイ素含有高分子化合物の含有量は、優れたガスバリア性を有する第2ガスバリア層を形成する観点から、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。
 ケイ素含有高分子層を形成する方法としては、例えば、ケイ素含有高分子化合物の少なくとも1種、所望により他の成分、及び溶剤等を含有する層形成用溶液を、公知の方法によって基材フィルム又は所望により基材フィルム上に形成されたプライマー層上に塗布し、得られた塗膜を適度に乾燥して形成する方法が挙げられる。
 上記第2ガスバリア層を形成する際に、例えば、上述したようなポリシラザン系化合物を用いる場合は、塗工後の加熱によってポリシラザンの転化反応が生じ、ガスバリア性を有する塗膜となる。
 ケイ素含有高分子層の厚さは、好ましくは5~1,000nm、より好ましくは10~500nm、更に好ましくは15~300nm、より更に好ましくは20~200nmである。
 ケイ素含有高分子層の厚さがナノオーダーであっても、紫外線照射処理及びその後の改質処理を施すことで、充分なガスバリア性能を有するガスバリアフィルムを得ることができる。
 上述のとおり、紫外線照射処理には、真空紫外光とは異なる、波長200nm超の紫外線を用いる。
 上記紫外線は、高圧水銀ランプ、無電極ランプ、キセノンランプ等を用いて照射することができる。
 紫外線の波長は、200~400nmが好ましく、220~380nmがより好ましい。すなわち、紫外線の強度の最大値が、波長200~400nmの範囲の領域にあることが好ましく、波長220~380nmの範囲の領域にあることがより好ましい。照射量は、通常、照度50~1,000mW/cm、光量50~5,000mJ/cm、好ましくは100~1,000mJ/cmの範囲である。照射時間は、通常、0.1~1,000秒、好ましくは1~500秒、更に好ましくは1~100秒である。光照射工程の熱負荷を考慮して前述の光量を満たすために、複数回照射しても構わない。
 改質処理としては、後述する紫外線照射とは異なる処理であり、例えば、イオン注入、真空紫外光照射(エキシマレーザー等の照射)等が挙げられる。これらの中でも、高いガスバリア性能が得られる点から、イオン注入が好ましい。イオン注入において、高分子層に注入されるイオンの注入量は、形成するガスバリア性積層体の使用目的(必要なガスバリア性、透明性等)等に合わせて適宜決定すればよい。
 注入されるイオンとしては、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガスのイオン;フルオロカーボン、水素、窒素、酸素、二酸化炭素、塩素、フッ素、硫黄等のイオン;
メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等のアルカン系ガス類のイオン;エチレン、プロピレン、ブテン、ペンテン等のアルケン系ガス類のイオン;ペンタジエン、ブタジエン等のアルカジエン系ガス類のイオン;アセチレン、メチルアセチレン等のアルキン系ガス類のイオン;ベンゼン、トルエン、キシレン、インデン、ナフタレン、フェナントレン等の芳香族炭化水素系ガス類のイオン;シクロプロパン、シクロヘキサン等のシクロアルカン系ガス類のイオン;シクロペンテン、シクロヘキセン等のシクロアルケン系ガス類のイオン;
金、銀、銅、白金、ニッケル、パラジウム、クロム、チタン、モリブデン、ニオブ、タンタル、タングステン、アルミニウム等の導電性の金属のイオン;
シラン(SiH)又は有機ケイ素化合物のイオン;等が挙げられる。
 有機ケイ素化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラt-ブトキシシラン等のテトラアルコキシシラン;
ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、(3,3,3-トリフルオロプロピル)トリメトキシシラン等の無置換若しくは置換基を有するアルキルアルコキシシラン;
ジフェニルジメトキシシラン、フェニルトリエトキシシラン等のアリールアルコキシシラン;
ヘキサメチルジシロキサン(HMDSO)等のジシロキサン;
ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、テトラキスジメチルアミノシラン、トリス(ジメチルアミノ)シラン等のアミノシラン;
ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラメチルジシラザン等のシラザン;
テトライソシアナートシラン等のシアナートシラン;
トリエトキシフルオロシラン等のハロゲノシラン;
ジアリルジメチルシラン、アリルトリメチルシラン等のアルケニルシラン;
ジ-t-ブチルシラン、1,3-ジシラブタン、ビス(トリメチルシリル)メタン、テトラメチルシラン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ベンジルトリメチルシラン等の無置換若しくは置換基を有するアルキルシラン;
ビス(トリメチルシリル)アセチレン、トリメチルシリルアセチレン、1-(トリメチルシリル)-1-プロピン等のシリルアルキン;
1,4-ビストリメチルシリル-1,3-ブタジイン、シクロペンタジエニルトリメチルシラン等のシリルアルケン;
フェニルジメチルシラン、フェニルトリメチルシラン等のアリールアルキルシラン;
プロパルギルトリメチルシラン等のアルキニルアルキルシラン;
ビニルトリメチルシラン等のアルケニルアルキルシラン;
ヘキサメチルジシラン等のジシラン;
オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルシクロテトラシロキサン等のシロキサン;
N,O-ビス(トリメチルシリル)アセトアミド;
ビス(トリメチルシリル)カルボジイミド;
等が挙げられる。
 これらのイオンは、1種単独で、あるいは2種以上を組み合わせて用いてもよい。
 中でも、より簡便に注入することができ、特に優れたガスバリア性を有するガスバリア層が得られることから、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン、及びクリプトンからなる群から選ばれる少なくとも1種のイオンが好ましい。
 イオンを注入する方法としては、特に限定されないが、電界により加速されたイオン(イオンビーム)を照射する方法、プラズマ中のイオンを注入する方法等が挙げられる。中でも、簡便にガスバリア性のフィルムが得られることから、後者のプラズマイオンを注入する方法が好ましい。
 プラズマイオン注入法としては、(I)外部電界を用いて発生させたプラズマ中に存在するイオンを、ケイ素含有高分子層に注入する方法、又は(II)外部電界を用いることなく、前記層に印加する負の高電圧パルスによる電界のみで発生させたプラズマ中に存在するイオンを、ケイ素含有高分子層に注入する方法が好ましい。
 前記(I)の方法においては、イオン注入する際の圧力(プラズマイオン注入時の圧力)を0.01~1Paとすることが好ましい。プラズマイオン注入時の圧力がこのような範囲にあるときに、簡便にかつ効率よく均一にイオンを注入することができ、目的のガスバリア層を効率よく形成することができる。
 前記(II)の方法は、減圧度を高くする必要がなく、処理操作が簡便であり、処理時間も大幅に短縮することができる。また、前記層全体にわたって均一に処理することができ、負の高電圧パルス印加時にプラズマ中のイオンを高エネルギーでケイ素含有高分子層に連続的に注入することができる。更に、radio frequency(高周波、以下、「RF」と略す。)や、マイクロ波等の高周波電力源等の特別の他の手段を要することなく、層に負の高電圧パルスを印加するだけで、ケイ素含有高分子層に良質のイオンを均一に注入することができる。
 前記(I)及び(II)のいずれの方法においても、負の高電圧パルスを印加するとき、すなわちイオン注入するときのパルス幅は、1~15μsecであることが好ましい。パルス幅がこのような範囲にあるときに、より簡便にかつ効率よく、均一にイオンを注入することができる。
 また、プラズマを発生させるときの印加電圧は、好ましくは-50~-1kV、より好ましくは-30~-1kV、特に好ましくは-20~-5kVである。印加電圧が-1kV以下の値でイオン注入を行うと、イオン注入量(ドーズ量)が不十分となるのを防ぎ、所望の性能を確保しやすくなる。一方、-50kV以上の値でイオン注入を行うと、イオン注入時にフィルムが帯電することを防止しやすく、またフィルムへの着色等の不具合を抑制しやすくなる。
 プラズマイオン注入するイオン種としては、前記注入されるイオンとして例示したのと同様のものが挙げられる。
 ケイ素含有高分子層にプラズマ中のイオンを注入する際には、プラズマイオン注入装置を用いる。
 プラズマイオン注入装置としては、具体的には、(i)ケイ素含有高分子層(以下、「イオン注入する層」ということがある。)に負の高電圧パルスを印加するフィードスルーに高周波電力を重畳してイオン注入する層の周囲を均等にプラズマで囲み、プラズマ中のイオンを誘引、注入、衝突、堆積させる装置(特開2001-26887号公報)、(ii)チャンバー内にアンテナを設け、高周波電力を与えてプラズマを発生させてイオン注入する層周囲にプラズマが到達後、イオン注入する層に正と負のパルスを交互に印加することで、正のパルスでプラズマ中の電子を誘引衝突させてイオン注入する層を加熱し、パルス定数を制御して温度制御を行いつつ、負のパルスを印加してプラズマ中のイオンを誘引、注入させる装置(特開2001-156013号公報)、(iii)マイクロ波等の高周波電力源等の外部電界を用いてプラズマを発生させ、高電圧パルスを印加してプラズマ中のイオンを誘引、注入させるプラズマイオン注入装置、(iv)外部電界を用いることなく高電圧パルスの印加により発生する電界のみで発生するプラズマ中のイオンを注入するプラズマイオン注入装置等が挙げられる。
 これらの中でも、処理操作が簡便であり、処理時間も大幅に短縮でき、連続使用に適していることから、(iii)又は(iv)のプラズマイオン注入装置を用いるのが好ましい。
 前記(iii)及び(iv)のプラズマイオン注入装置を用いる方法については、国際公開WO2010/021326号公報に記載のものが挙げられる。
 前記(iii)及び(iv)のプラズマイオン注入装置では、プラズマを発生させるプラズマ発生手段を高電圧パルス電源によって兼用しているため、RFやマイクロ波等の高周波電力源等の特別の他の手段を要することなく、負の高電圧パルスを印加するだけで、プラズマを発生させ、ケイ素含有高分子層に連続的にプラズマ中のイオンを注入し、表面部にイオン注入により改質された部分を有するケイ素含有高分子層、すなわちガスバリア層が形成されたガスバリア性積層体を量産することができる。
 イオンが注入される部分の厚さは、イオンの種類や印加電圧、処理時間等の注入条件により制御することができ、ケイ素含有高分子層の厚さ、ガスバリア性積層体の使用目的等に応じて決定すればよいが、通常、5~1,000nmである。
 イオンが注入されたことは、X線光電子分光分析(XPS)を用いてケイ素含有高分子層の表面から10nm付近の元素分析測定を行うことによって確認することができる。
 ガスバリア層がガスバリア性を有していることは、ガスバリア層の水蒸気透過率が小さいことから確認することができる。
 ガスバリア層の、40℃、相対湿度90%雰囲気下における水蒸気透過率は、通常1.0g/m/day以下であり、好ましくは0.8g/m/day以下であり、より好ましくは0.5g/m/day以下であり、更に好ましくは0.1g/m/day以下である。水蒸気透過率は、公知の方法で測定することができる。
1-5.第1ガスバリア層
 上記ガスバリアフィルムが有する第1ガスバリア層は、ガスバリア性を有している限り、材質等は特に限定されない。
 第1ガスバリア層の一例は、第2ガスバリア層と同様、ケイ素含有高分子化合物を含む組成物の塗膜から形成された層であり、他の例は、例えば化学気相成長法等の乾式成膜法により形成された酸化ケイ素等の無機膜である。
 第1ガスバリア層は、金属、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれか一つを含んでいてもよい。
 ここで「金属」は半金属を含む概念であり、金属の酸化物、窒化物及び炭化物が好ましく、半金属の酸化物、窒化物及び炭化物がより好ましく、更に好ましくはケイ素の酸化物、窒化物及び炭化物である。酸化物、窒化物、炭化物はこれらが複合されたもの、例えば酸窒化物等をも含む。
 上記無機膜としては、特に制限されず、例えば、無機蒸着膜が挙げられる。
 無機蒸着膜としては、無機化合物や金属の蒸着膜が挙げられる。
 無機化合物の蒸着膜の原料となる上記の金属の酸化物、窒化物及び炭化物としては、酸化珪素、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ等の無機酸化物;窒化ケイ素、窒化アルミニウム、窒化チタン等の無機窒化物;無機炭化物;酸化窒化ケイ素等の無機酸化窒化物;無機酸化炭化物;無機窒化炭化物;無機酸化窒化炭化物等が挙げられる。
 金属の蒸着膜の原料としては、アルミニウム、マグネシウム、亜鉛、及びスズ等が挙げられる。
 これらは、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中では、ガスバリア性の観点から、金属酸化物、金属窒化物又は金属を原料とする無機蒸着膜が好ましく、更に、透明性の観点から、金属酸化物又は金属窒化物を原料とする無機蒸着膜が好ましい。また、無機蒸着膜は、単層でもよく、多層でもよい。
 無機蒸着膜の厚さは、ガスバリア性と取り扱い性の観点から、好ましくは10~2,000nm、より好ましくは20~1,000nm、より好ましくは30~500nm、更に好ましくは40~300nmの範囲である。
 無機蒸着膜を形成する方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD(物理的蒸着)法や、熱CVD(化学的蒸着)法、プラズマCVD法、光CVD法等のCVD法が挙げられる。
 ケイ素含有高分子化合物を含む層に改質処理を施して得られるガスバリア層としては、第2ガスバリア層と同様のものとすることができる。
 この場合の第1ガスバリア層の厚さは、好ましくは10~1,500nm、より好ましくは20~1,000nm、更に好ましくは30~600nm、より更に好ましくは40~300nmである。
1-6.剥離シート及び保護フィルム
 剥離シートは、ガスバリア性積層体を保存、運搬等する際に、基材フィルムを保護する役割を有し、所定の工程において剥離されるものである。
 剥離シートは、シート状又はフィルム状のものが好ましい。シート状又はフィルム状とは、長尺のものに限らず、短尺の平板状のものも含まれる。
 剥離シートとしては、グラシン紙、コート紙、上質紙等の紙基材;これらの紙基材にポリエチレンやポリプロピレン等の熱可塑性樹脂をラミネートしたラミネート紙;上記紙基材に、セルロース、デンプン、ポリビニルアルコール、アクリル-スチレン樹脂等で目止め処理を行ったもの;あるいはポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルムやポリエチレンやポリプロピレン等のポリオレフィンフィルム等のプラスチックフィルム;ガラス等が挙げられる。
 また、剥離シートとしては、取り扱い易さの点から、紙基材や、プラスチックフィルム上に剥離剤層を設けたものであってもよい。剥離剤層を設ける場合には、シリコーン系剥離剤、フッ素系剥離剤、アルキッド系剥離剤、オレフィン系剥離剤等、従来公知の剥離剤を用いて剥離剤層を形成することができる。
 保護フィルムは、ガスバリア性積層体を保存、運搬等する際に、ガスバリア層を保護する役割を有し、所定の工程において剥離されるものである。
 保護フィルムは、シート状またはフィルム状のものが好ましい。シート状またはフィルム状とは、長尺のものに限らず、短尺の平板状のものも含まれる。
 保護フィルムは、通常、ガスバリア層が形成された後に、ガスバリア層の表面に貼付されるので、ガスバリア層から保護フィルムが意図せず脱落したりしないようにする観点から、基材上に粘着剤層を設けた構成であることが好ましい。この場合、保護フィルムのガスバリア層側の表面に粘着剤層を設ける。保護フィルムが粘着剤層を有するものであることによって、保護フィルムがガスバリア層に対して剥離可能に付着することになる。保護フィルムの基材としては、剥離シートと同じ材質・厚さのものを用いることができる。
 粘着剤層を構成する粘着剤としては、アクリル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤、ゴム系粘着剤、ポリオレフィン系重合体を含む粘着剤、ポリオレフィン系共重合体を含む粘着剤を含む粘着剤等が挙げられる。粘着剤層が、ポリオレフィン系重合体及びポリオレフィン系共重合体の少なくとも一方を含むことがより好ましい。ポリオレフィン系重合体としては、ポリエチレン、ポリプロピレン等が挙げられ、ポリオレフィン系共重合体としては、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体等が挙げられる。
 また、保護フィルム(β)として利用可能な、市販のポリオレフィン系粘着剤を含む保護フィルムとしては、株式会社サンエー化研製サニテクトPAC-3-50THK、サニテクトPAC-2-70等が挙げられる。
1-7.ガスバリアフィルムの他の構成例
 本発明の実施形態に係るガスバリアフィルムは、図1に示すものに限定されず、第1ガスバリア層と第2ガスバリア層に他のガスバリア層を有するものであってもよい。また、本発明の実施形態に係るガスバリアフィルムは、本発明の目的を損ねない範囲で、基材フィルム又は基材フィルム上のプライマー層と第1ガスバリア層との間、又は第2ガスバリア層上等に、他の層が1層又は2層以上含まれるものであってもよい。なお、本発明の実施形態に係るガスバリアフィルムが第2ガスバリア層上に他の層を有する場合であっても、第2ガスバリア層を形成した後、当該他の層が設けられるまでの間に第2のガスバリアフィルムに創痕が発生する可能性があるため、本発明の作用効果はこのような構成のガスバリアフィルムでも得られるものである。
 他の層としては、例えば、導電体層、衝撃吸収層、接着剤層等が挙げられる。また、他の層の配置位置は上記のものに限定されない。
 導電体層を構成する材料としては、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物等が挙げられる。具体的には、アンチモンをドープした酸化スズ(ATO);フッ素をドープした酸化スズ(FTO);酸化スズ、ゲルマニウムをドープした酸化亜鉛(GZO)、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)、酸化亜鉛インジウム(IZO)等の半導電性金属酸化物;金、銀、クロム、ニッケル等の金属;これら金属と導電性金属酸化物との混合物;ヨウ化銅、硫化銅等の無機導電性物質;ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性材料;等が挙げられる。
 導電体層の形成方法としては特に制限はない。例えば、蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、プラズマCVD法等が挙げられる。
 導電体層の厚さはその用途等に応じて適宜選択すればよい。通常10nmから50μm、好ましくは20nmから20μmである。
 衝撃吸収層は、ガスバリア層に衝撃が加わった時に、ガスバリア層を保護するためのものである。衝撃吸収層を形成する素材としては、特に限定されないが、例えば、アクリル系樹脂、ウレタン系樹脂、シリコーン系樹脂、オレフィン系樹脂、ゴム系材料等が挙げられる。
 衝撃吸収層の形成方法としては特に制限はなく、例えば、前記衝撃吸収層を形成する素材、及び、所望により、溶剤等の他の成分を含む衝撃吸収層形成溶液を、積層すべき層上に塗布し、得られた塗膜を乾燥し、必要に応じて加熱等して形成する方法が挙げられる。
 また、別途、剥離基材上に衝撃吸収層を成膜し、得られた膜を、積層すべき層上に転写して積層してもよい。
 衝撃吸収層の厚さは、通常1~100μm、好ましくは5~50μmである。
 接着剤層は、ガスバリア性積層体を被着体に貼付する場合に用いられる層である。接着剤層を形成する材料としては、特に限定されず、アクリル系、シリコーン系、ゴム系等の公知の接着剤または粘着剤、ヒートシール材等を使用することもできる。
 また、基材フィルムの、第1ガスバリア層が設けられている側とは逆側の表面上に、ハードコート層等が設けられていてもよいが、当該表面上にハードコート層は設けられていないことが好ましい。
 ハードコート層としては、エネルギー線硬化性樹脂の硬化物からなる層が挙げられ、エネルギー線硬化性樹脂としては、上述したプライマー層に用いるものと同様のものを使用することができる。
 基材フィルムの、第1ガスバリア層が設けられている側とは逆側の表面上にハードコート層を設けないことにより、高い生産性でガスバリアフィルムを得ることが可能になる。一方で、第1ガスバリア層が設けられている側とは逆側の表面上にハードコート層を有しない基材フィルムは、当該表面上にハードコート層を設けた基材フィルムに比べて耐熱性に劣る。しかしながら、上記第1のガスバリアフィルム及び第2のガスバリアフィルムは、基材フィルムが、110℃以上に加熱されることなく製造されるため、このような基材フィルムであっても熱変形のないガスバリアフィルムを得ることが可能である。
1-8.ロール状のガスバリアフィルム
 本発明の一態様において、上記ガスバリアフィルムがロール状であり、前記第2ガスバリア層の表面に存在するアスペクト比2以上の創痕の数が1m当たり200個以下である。
 図2は、ロール状のガスバリアフィルムの一例を示す断面模式図である。
 図2に示すロール状のガスバリアフィルム100Aは、筒状又は棒状の芯材20に巻き取られたロール状部分100Aを有する。そして、ロール状部分100Aの先端部を引き出すことにより、引き出し部分100Aが形成される。
 上述したように、本実施形態に係るガスバリアフィルムは創痕の発生を抑制することができる。このため、第2ガスバリア層の表面に存在するアスペクト比2以上の創痕の数を1m当たり200個以下とすることができる。
 創痕は、上述したような製造工程中におけるガイドロールとの接触により発生するものが主なものである。このため、ロール状のフィルムの塗工方向におけるいずれの位置であっても同程度の頻度で発生すると考えられる。したがって、創痕数の観察は、塗工方向において無作為に抽出した任意の箇所で行えばよい。
 なお、ガイドロールに起因した創痕は塗工方向に沿って延びる形状となる傾向がある。このため、ガイドロールに起因する創痕のみをより正確に把握する場合は、観察対象の創痕のアスペクト比を好ましくは3以上、より好ましくは4以上とする。
 第2ガスバリア層の表面に存在するアスペクト比2以上の創痕の数は、1m当たりより好ましくは150個以下、更に好ましくは130個以下、更に好ましくは120個以下である。
 図2に示すロール状のガスバリアフィルム100Aにおいては、第1ガスバリア層11及び第2ガスバリア層12が基材フィルム10よりも外側に位置するように、ロール状部分100Aが形成されている。このため、ロール状部分100Aにおいて、第1ガスバリア層11及び第2ガスバリア層12にストレスをかけにくくすることができる。
 第1ガスバリア層11及び第2ガスバリア層12が基材フィルム10よりも内側に位置するように、ロール状部分を形成してもよい。この場合、ロール状のガスバリアフィルムの保管中や輸送中に、第2ガスバリア層12や第1ガスバリア層11が外部の物体の接触等によって剥がれたりすること防止しやすくなる。
2.ガスバリアフィルムの製造方法
 本発明の実施形態に係るガスバリアフィルムの製造方法は以下の各工程を有する。
・ケイ素含有高分子化合物を含む組成物を、第1ガスバリア層及び基材フィルムを有する積層体の前記第1ガスバリア層上に塗布して塗膜を形成する塗布工程
・前記塗膜を加熱する加熱工程
・前記加熱工程の開始後に、前記塗膜に紫外線を照射する紫外線照射工程
・前記紫外線照射工程の後に、前記塗膜に前記紫外線照射工程で行う処理とは異なる改質処理を施して第2ガスバリア層を得る改質工程
 上記ガスバリアフィルムの製造方法は、第2ガスバリア層を形成する際に、第2ガスバリア層形成用の塗膜の加熱開始後、改質工程に先立って紫外線照射工程を行うことにより、第2ガスバリア層におけるケイ素含有高分子化合物の転化反応を適度に進めることができる。このため、硬質で創痕の生じにくいガスバリアフィルムを得ることができる。
 図3に、本発明の実施形態に係るガスバリア性積層体の製造工程の一例を示す。図3(a)~図3(c)は、基材フィルム上に第1ガスバリア層を形成する工程を示す。図3(d)が上記塗布工程を示し、図3(e)が上記加熱工程に対応し、図3(f)が上記紫外線照射工程に対応し、図3(g)が上記改質工程に対応する。以下、図面を適宜参照しながら、第1ガスバリア層に、ケイ素含有高分子化合物を含む層に改質処理を施して得られるガスバリア層を用いる場合を例として、各工程について説明する。
2-1.基材フィルムの準備
 基材フィルムをそのまま用いてもよいが、好ましくは基材フィルム上にプライマー層を形成して基材フィルムとする(図3(a)の符号10)。
 プライマー層を形成するに当たっては、先ず、基材フィルム上に、硬化性樹脂組成物を用いて、硬化前のプライマー層を形成する。
 硬化性樹脂組成物を基材フィルム上に塗工する方法は、特に制限されず、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等の公知の塗布方法を利用することができる。
 得られた塗膜を乾燥する方法は特に制限されず、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法を利用することができる。
 塗膜の乾燥温度は、通常、30~150℃、好ましくは、50~120℃である。乾燥時間は、通常、1~10分、より好ましくは、2~7分である。
 乾燥塗膜の厚さは、特に制限されないが、硬化させた後の厚さとほとんど差はないことから、上述したプライマー層の厚さと同様にすればよい。
 次いで、得られた硬化前のプライマー層を硬化させて硬化済みのプライマー層を形成する。
 硬化前のプライマー層を硬化する方法としては、特に限定されず、公知の方法が採用できる。例えば、熱重合開始剤を含有する硬化性樹脂組成物を用いる場合、加熱によって硬化済みのプライマー層を得ることができる。加熱温度は、通常、30~150℃、好ましくは、50~100℃である。
 また、光重合開始剤を含有する硬化性樹脂組成物を用いる場合、活性エネルギー線としての電磁波を照射することで硬化済みのプライマー層を得ることができる。電磁波は、高圧水銀ランプ、無電極ランプ、キセノンランプ等を用いて照射することができる。
 電磁波の波長は、200~400nmの紫外光領域が好ましく、350~400nmがより好ましい。照射量は、通常、照度50~1,000mW/cm、光量50~5,000mJ/cm、好ましくは200~5,000mJ/cmの範囲である。照射時間は、通常、0.1~1,000秒、好ましくは1~500秒、更に好ましくは10~100秒である。光照射工程の熱負荷を考慮して前述の光量を満たすために、複数回照射しても構わない。
 また、活性エネルギー線としての電子線を照射することで、硬化済みのプライマー層を得ることもできる。電子線を照射する場合は、電子線加速器等を用いることができる。照射量は、通常10~1,000kradの範囲である。照射時間は、通常、0.1~1,000秒、好ましくは1~500秒、更に好ましくは10~100秒である。
 硬化性樹脂組成物からなる層の硬化は、必要に応じて窒素ガスなどの不活性ガス雰囲気下で行ってもよい。不活性ガス雰囲気下で硬化を行うことにより、酸素や水分等が硬化を妨げることを回避しやすくなる。
2-2.第1ガスバリア層の形成
(塗布工程)
 上記基材フィルム上に直接、又は、上記基材フィルムに設けられたプライマー層上に、上述したケイ素化合物を含む組成物を含む溶液等を用いて、第1ガスバリア層を形成するための塗膜、換言すれば、硬化前の第1ガスバリア層(図3(b)の符号11a)を形成する。
 ガスバリア層形成用溶液を塗布する際は、スピンコーター、ナイフコーター、グラビアコーター等の公知の装置を使用することができる。
(加熱工程)
 次に、この組成物の塗膜を加熱することによって乾燥するとともに硬化させる。
 加熱、乾燥方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法が採用できる。加熱温度は、通常、80~110℃であり、好ましくは90~105℃である。加熱時間は、通常、数十秒から数十分であり、好ましくは60秒~5分であり、より好ましくは90秒~3分である。
(改質工程)
 本実施形態では、第1ガスバリア層が、ケイ素含有高分子化合物を含む層に改質処理を施して得られる層であるため、ケイ素含有高分子化合物を含む層を樹脂層上に形成する工程と、該ケイ素含有高分子化合物を含む層に、改質処理を施す工程によって第1ガスバリア層(図3(c)の符号11)を形成することができる。
 改質処理の詳細は上述したとおりである。
 この場合に、第1ガスバリア層は改質処理前において基材フィルム側から水蒸気が侵入しやすく、転化反応が進みやすい傾向がある。そのため、製造の際に改質処理前に特別な工程を設けなくても、窒素原子、酸素原子及びケイ素原子が存在する場合に、[酸素原子の平均モル%]/[窒素原子の平均モル%]で表される酸素原子と窒素原子の比率が上昇する傾向がある。
 なお、蒸着等によって無機膜からなる第1ガスバリア層を形成する場合は、通常、上記の加熱工程を経ることなく第2ガスバリア層の形成に移行するが、第1ガスバリア層の種類によっては、改質処理を行ってもよい。
2-3.第2ガスバリア層の形成
(塗布工程)
 基材フィルム上に形成された第1ガスバリア層上に、上述したケイ素化合物を含む組成物を含む溶液等を用いて、第2ガスバリア層を形成するための塗膜、換言すれば、硬化前の第2ガスバリア層(図3(d)の符号12a)を形成する。
 塗布工程の具体的な手順は、第1ガスバリア層の形成で説明したのと同様である。
(加熱工程)
 次に、この組成物の塗膜を加熱することによって乾燥するとともに硬化する(図3(e)の符号12bが加熱後の塗膜を示す)。
 加熱工程の具体的な手順や処理条件は、第1ガスバリア層の形成で説明したのと同様である。すなわち、加熱温度は、通常、80~110℃であり、好ましくは90~105℃である。加熱時間は、通常、数十秒から数十分であり、好ましくは60秒~5分であり、より好ましくは90秒~3分である。
(紫外線照射工程)
 加熱工程開始後に、上記塗膜に対して紫外線を照射する(図3(f)の符号12cが紫外線照射後の塗膜を示す)。
 本工程で用いる紫外線は、真空紫外光とは異なる、波長200nm超の紫外線である。
 加熱工程の後に紫外線照射工程を開始してもよいし、加熱工程の途中から紫外線照射工程を開始してもよい。
 紫外線照射の具体的手順は上述したとおりである。
(改質工程)
 紫外線照射工程が終了した後に改質工程を実行することにより、第2ガスバリア層(図3(g)の符号12)が形成される。
 改質処理の詳細は上述したとおりである。
 紫外線照射工程の終了から改質工程開始までの時間は、ケイ素含有高分子化合物の転化反応を適度に進める観点から、好ましくは6~144時間、より好ましくは12~120時間、更に好ましくは15~108時間とすることができる。
 ガスバリアフィルムがロール状である場合には、改質処理を施す方法としては、基材フィルム上、又は基材フィルム上のプライマー層上にケイ素含有高分子化合物を含む層が形成されたロール状のフィルムを、一定方向に搬送しながら、加熱工程及び紫外線照射工程に順次供し、これらの工程を経た後のケイ素含有高分子化合物を含む層に対して改質工程を実行してガスバリアフィルムを製造することが好ましい。
 この製造方法によれば、ロール状のガスバリアフィルムを連続的に製造することができる。
2-4.他の工程
 この後、必要に応じて、第2ガスバリア層上や基材フィルムの第1ガスバリア層とは反対側の面に保護フィルムを設ける。この工程は、例えば、保護フィルムの粘着剤層の形成面を貼付対象面に向けて配置し、気泡を取り込まないように順次押圧することで行われる。
 次に、本発明の具体的な実施例を説明するが、本発明は、これらの例によってなんら限定されるものではない。
 後述する実施例及び比較例で作製したガスバリアフィルムに用いられるフィルム基材の熱収縮率、各ガスバリアフィルムの熱変形、各ガスバリアフィルムの第2ガスバリア層の元素比、各ガスバリアフィルムを製造する際の第2ガスバリア層形成用塗膜の表面弾性率、各ガスバリアフィルムの水蒸気透過率、各ガスバリアフィルムの創痕数は、以下の手順で、評価、及び測定・算出した。
[基材フィルムの熱収縮率]
 JIS K7133に基づき、実施例及び比較例で用いたPETフィルムの試験片を準備した。(i)100℃にて2分間加熱、(ii)100℃にて2分間加熱後に紫外線照射、(iii)120℃にて2分間加熱の各条件のうち、各実施例、比較例で行ったのと同じ条件に合わせて、試験片を加熱し、又は試験片に対して加熱及び紫外線照射を行った。加熱前後の試験片の標線間距離の変化をJIS K7133に準拠して測定し、同規格の加熱寸法変化を求め、熱収縮率とした。測定は4回行い、その平均値をとった。
[第2ガスバリア層形成用の塗膜の表面弾性率]
 実施例1~3及び比較例3においては、第1ガスバリア層上に塗工された、紫外線照射後のペルヒドロポリシラザンを主成分とする第2ガスバリア層形成用の塗膜を、プラズマイオン注入を行う前の状態で採取した。比較例1、2においては、第1ガスバリア層上に塗工された、紫外線未照射のペルヒドロポリシラザンを主成分とする第2ガスバリア層形成用の塗膜を、プラズマイオン注入を行う前の状態で採取した。
 各サンプルの塗膜の表面弾性率を、BRUKER社製、「Dimension Icon」を用い、プローブ:RTESPA-525、測定面積:1μm□、押し込み量:10nmの条件にて測定した。
[ガスバリアフィルムの熱変形]
 実施例及び比較例にて作製したロール状のガスバリアフィルムから、ロールの塗工方向において、無作為に選んだ箇所から210×297mmのサイズに裁断し、枚葉サンプルを作製した。サンプルの抽出は、ロールの幅方向(塗工方向に直交する方向)における中央部から採取することで行った。蛍光灯が上部に設置された平面台に、上記の枚葉サンプルを置き、写り込んだ蛍光灯の様子を目視により観察し、下記の基準に従い熱変形の程度を評価した。
G:蛍光灯の見た目に目立った歪みなし
NG:蛍光灯の見た目に目立った歪みあり
[X線光電子分光分析(XPS)による第2ガスバリア層の元素比]
 上記のガスバリアフィルムの熱変形と同様にして得た枚葉サンプルについて、下記の測定装置及び測定条件にて、枚葉サンプルの第2ガスバリア層2の各含有原子のモル比について、厚さ方向における平均(第2ガスバリア層2の厚さ全域における、等間隔での15点平均)を測定し、[酸素原子の平均モル%]/[窒素原子の平均モル%]の値を算出した。
・装置名:PHI Quantera SXM、アルバックファイ社製
・X線ビーム径:100um
・電力値:25W
・電圧:15kV
・取り出し角度:45°
・スパッタリングガス:アルゴン
[水蒸気透過率(WVTR)]
 実施例及び比較例にて作製したガスバリアフィルムを50cmの面積の円形状の試験片に裁断し、水蒸気透過率測定装置(MOCON社製、装置名:AQUATRAN2)を用い、40℃、相対湿度90%雰囲気下にてガス流量20sccmで水蒸気透過率(g/m/day)を測定した。なお、測定装置の検出下限は0.05mg/m/dayである。
[創痕数]
 LED光源(照度:3,500±500lx)を用いた反射光目視検査(検査範囲:100mm×200mm)にて、上記のガスバリアフィルムの熱変形の評価と同様にして得た枚葉サンプルを検査し、検査範囲から検出した創痕数を1m当たりの値に換算することで、ガスバリアフィルムの第2ガスバリア層に発生している1m当たりの創痕数を算出した。なお、観察されたアスペクト比2以上の創痕の具体的なアスペクト比は、いずれも5以上であった。
[実施例1]
(1)プライマー層付きの基材フィルムの作製
 厚さが50μm、幅1,000mm、長さ500mの、両面易接着処理が施されたPETフィルム(東洋紡社製、PET50A4360)をロール形態で準備した。このPETフィルム上に、紫外線硬化型アクリレート樹脂組成物(荒川化学工業社製、オプスターZ7530)を、ダイコーターを用いて塗布し、得られた塗膜を、コーターに付属のドライヤーにて70℃で1分間乾燥させた。その後、無電極UVランプシステム(ヘレウス社製)を用いて、照度250mW/cm、光量170mJ/cmの条件で塗膜に紫外線を照射し、上記紫外線硬化型アクリレート樹脂組成物を硬化させた。こうして、PETフィルムの一方の面に厚さ1,000nmのプライマー層を形成した。
(2)第1ガスバリア層の形成
 得られたプライマー層付きの基材フィルムのプライマー層の面上に、ペルヒドロポリシラザン(PHPS)を主成分とするコーティング剤(メルクパフォーマンスマテリアルズ社製、アクアミカNL110-20、溶媒:キシレン、濃度:20%)を、ダイコーターを用いて塗布した。そして、得られた未硬化のコーティング剤の層をコーターに付属のドライヤーにて100℃で2分間加熱して硬化させることにより、厚さ200nmの塗膜を形成した。
 23℃、相対湿度50%雰囲気下に12時間静置後、プラズマイオン注入装置を用いて、上記塗膜に下記条件にてプラズマイオン注入を行い、第1ガスバリア層を形成した。
<プラズマイオン注入の条件>
・チャンバー内圧:0.2Pa
・プラズマ生成ガス:アルゴン
・ガス流量:100sccm
・RF出力:1,000W
・RF周波数:1,000Hz
・RFパルス幅:50μ秒
・RF delay:25n秒
・DC電圧:-6kV
・DC周波数:1,000Hz
・DCパルス幅:5μ秒
・DC delay:50μ秒
・Duty比:0.5%
・処理時間:200秒
(3)第2ガスバリア層の形成
 得られた第1ガスバリア層の表面に、PHPSを主成分とするコーティング剤(メルクパフォーマンスマテリアルズ社製、アクアミカNL110-20、溶媒:キシレン、濃度:20%)を、ダイコーターを用いて塗布した。得られた未硬化のコーティング剤の層を、コーターに付属のドライヤーにて100℃で2分間加熱して硬化させることにより、厚さ100nmの塗膜を形成した。
 この塗膜に対して、無電極UVランプシステム(ヘレウス社製)を用いて、照度70mW/cm、光量190mJ/cmの条件で、254nm、313nm、365nmに強度の極大値を持ち、200nm以下の波長の光を実質的に含まない紫外線を照射した。
 そして、23℃、相対湿度50%雰囲気下に12時間静置後、プラズマイオン注入装置を用いて、この塗膜に第1ガスバリア層の形成時と同条件にてプラズマイオン注入を行い、第2ガスバリア層2を形成した。このようにしてガスバリアフィルムを得た。
[実施例2]
 上記第1ガスバリア層を形成することに代えて、上記プライマー層の表面にプラズマ化学気相成長法を用いて、以下の条件にて、250nmの酸化ケイ素膜(SiOx膜(x=2.33))を形成することにより、第1ガスバリア層を形成した以外は、実施例1と同様にしてガスバリアフィルムを得た。
<プラズマ化学気相成長法の条件>
・ヘキサメチルジシロキサンの流量:50sccm
・アルゴンガスの流量:15sccm
・酸素ガスの流量:10sccm
・チャンバー内圧:0.3Pa
・RF電源電力:1,000W
・成膜時間:120秒
[実施例3]
 第2ガスバリア層の形成時に塗膜に紫外線を照射した後、23℃、相対湿度50%雰囲気下に96時間静置した以外は、実施例1と同様にしてガスバリアフィルムを得た。
[比較例1]
 第2ガスバリア層の形成時に塗膜に紫外線照射を行わなかったこと以外は、実施例1と同様にしてガスバリアフィルムを得た。
[比較例2]
 第2ガスバリア層の形成時に塗膜に紫外線照射を行わなかったこと、及び、第2ガスバリア層の形成時において、未硬化のコーティング剤の層の加熱を120℃で2分間の条件で行ったこと以外は、実施例1と同様にしてガスバリアフィルムを得た。本例においては、ガスバリアフィルムの熱変形の評価結果が不良であったため、他の評価・測定を行わなかった。
[比較例3]
 第2ガスバリア層の形成時に塗膜に紫外線を照射した後、23℃、相対湿度50%雰囲気下に168時間静置した以外は、実施例1と同様にしてガスバリアフィルムを得た。本例においては、十分なガスバリア性能が得られなかったため、創痕数の評価を行わなかった。
 各実施例及び比較例のガスバリアフィルムの測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、実施例1~3のガスバリアフィルムは、いずれも第2ガスバリア層の酸素原子/窒素原子の平均モル%の比率が1.0~6.0の範囲にある。そして、ガスバリア性が良好であり、創痕数も少ない。また、基材フィルムの熱収縮率が小さく、熱変形の評価が良好である。さらに、紫外線照射後の第2ガスバリア層形成用の塗膜が適度な弾性率を有している。
 これに対して、比較例1のガスバリアフィルムは、第2ガスバリア層の形成時に紫外線照射を行わなかったことにより、第2ガスバリア層の酸素原子/窒素原子の平均モル%の比率が1.0~6.0の範囲を下回っていることが判る。そして、基材フィルムの熱収縮率が小さく、熱変形の評価も良好であるが、創痕数が非常に多いことが判る。また、第2ガスバリア層形成用の塗膜が紫外線照射されておらず、紫外線照射済みの実施例のものに比べて弾性率が小さいことが理解できる。
 また、比較例2のガスバリアフィルムは、第1ガスバリア層及び第2ガスバリア層を形成する際の加熱温度が基材フィルムのガラス転移温度よりも高く、第2ガスバリア層形成時に紫外線照射も行わなかったことにより、基材フィルムの熱収縮率が大きく、熱変形の評価が不良であったことが理解できる。
 また、比較例3のガスバリアフィルムは、第2ガスバリア層の形成において紫外線を照射した後、改質処理を行うまでの静置時間を長くしたことにより、第2ガスバリア層の酸素原子/窒素原子の平均モル%の比率が1.0~6.0の範囲を上回っていることが判る。つまり、PHPSの転化反応が進行しすぎてしまっており、改質処理をした際に十分な改質効果が得られず、実施例1~3よりもガスバリア性が低下していると理解できる。
10:基材フィルム
11:第1ガスバリア層
11a:硬化前の第1ガスバリア層
12:第2ガスバリア層
12a:加熱前の塗膜
12b:加熱後の塗膜
12c:紫外線照射後の塗膜
20:芯材
100:ガスバリアフィルム
100A:ロール状のガスバリアフィルム
100A:ロール状部分
100A:引き出し部分

Claims (7)

  1.  基材フィルム、第1ガスバリア層、及び第2ガスバリア層をこの順に有し、
     前記基材フィルムは、ガラス転移温度が100℃以下の樹脂製フィルムであり、
     前記第2ガスバリア層は、ケイ素含有高分子化合物を含む組成物の塗膜から形成される層であり、
     X線光電子分光において、前記第2ガスバリア層には、窒素原子、酸素原子及びケイ素原子が存在し、[酸素原子の平均モル%]/[窒素原子の平均モル%]で表される酸素原子と窒素原子の比率が1.0~6.0であり、
     前記基材フィルムが、110℃以上に加熱されることなく製造される、ガスバリアフィルム。
  2.  基材フィルム、第1ガスバリア層、及び第2ガスバリア層をこの順に有し、
     前記基材フィルムは、ポリエチレンテレフタレートフィルム層を有し、
     前記第2ガスバリア層は、ケイ素含有高分子化合物を含む組成物の塗膜から形成される層であり、
     X線光電子分光において、前記第2ガスバリア層には、窒素原子、酸素原子およびケイ素原子が存在し、[酸素原子の平均モル%]/[窒素原子の平均モル%]で表される酸素原子と窒素原子の比率が1.0~6.0であり、
     前記基材フィルムが、110℃以上に加熱されることなく製造される、ガスバリアフィルム。
  3.  前記ガスバリアフィルムがロール状であり、
     前記第2ガスバリア層の表面に存在するアスペクト比2以上の創痕の数が1m当たり200個以下である、請求項1又は2に記載のガスバリアフィルム。
  4.  前記第1ガスバリア層は、金属、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれか一つを含む、請求項1~3のいずれか1項に記載のガスバリアフィルム。
  5.  前記基材フィルムが、耐熱化処理されていない、請求項1~4のいずれか1項に記載のガスバリアフィルム。
  6.  前記基材フィルムの第1ガスバリア層が設けられている側とは逆側の表面上に、ハードコート層が設けられていない、請求項1~5のいずれか1項に記載のガスバリアフィルム。
  7.  ケイ素含有高分子化合物を含む組成物を、第1ガスバリア層及び基材フィルムを有する積層体の前記第1ガスバリア層上に塗布して塗膜を形成する塗布工程、
     前記塗膜を加熱する加熱工程、
     前記加熱工程の開始後に、前記塗膜に紫外線を照射する紫外線照射工程、及び、
     前記紫外線照射工程の後に、前記塗膜に前記紫外線照射工程で行う処理とは異なる改質処理を施して第2ガスバリア層を得る改質工程、を含む、ガスバリアフィルムの製造方法。
PCT/JP2022/011320 2021-03-19 2022-03-14 ガスバリアフィルム及びガスバリアフィルムの製造方法 WO2022196636A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023507104A JPWO2022196636A1 (ja) 2021-03-19 2022-03-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-045888 2021-03-19
JP2021045888 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022196636A1 true WO2022196636A1 (ja) 2022-09-22

Family

ID=83320451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011320 WO2022196636A1 (ja) 2021-03-19 2022-03-14 ガスバリアフィルム及びガスバリアフィルムの製造方法

Country Status (3)

Country Link
JP (1) JPWO2022196636A1 (ja)
TW (1) TW202300337A (ja)
WO (1) WO2022196636A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240462A (ja) * 2013-06-12 2014-12-25 コニカミノルタ株式会社 ガスバリアーフィルム、ガスバリアーフィルムの製造方法及びガスバリアーフィルムの製造装置
WO2014208471A1 (ja) * 2013-06-28 2014-12-31 コニカミノルタ株式会社 ガスバリア性フィルムの製造方法
WO2018123724A1 (ja) * 2016-12-28 2018-07-05 コニカミノルタ株式会社 ガスバリアー性フィルム及びガスバリアー性フィルムの製造方法
JP2018118381A (ja) * 2015-06-01 2018-08-02 コニカミノルタ株式会社 ガスバリア性フィルム
JP2018171929A (ja) * 2013-03-29 2018-11-08 リンテック株式会社 ガスバリア性積層体、電子デバイス用部材及び電子デバイス
JP2019209696A (ja) * 2014-06-04 2019-12-12 リンテック株式会社 ガスバリア性積層体及びその製造方法、電子デバイス用部材、並びに電子デバイス
WO2020085751A1 (ko) * 2018-10-26 2020-04-30 주식회사 엘지화학 배리어 필름

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018171929A (ja) * 2013-03-29 2018-11-08 リンテック株式会社 ガスバリア性積層体、電子デバイス用部材及び電子デバイス
JP2014240462A (ja) * 2013-06-12 2014-12-25 コニカミノルタ株式会社 ガスバリアーフィルム、ガスバリアーフィルムの製造方法及びガスバリアーフィルムの製造装置
WO2014208471A1 (ja) * 2013-06-28 2014-12-31 コニカミノルタ株式会社 ガスバリア性フィルムの製造方法
JP2019209696A (ja) * 2014-06-04 2019-12-12 リンテック株式会社 ガスバリア性積層体及びその製造方法、電子デバイス用部材、並びに電子デバイス
JP2018118381A (ja) * 2015-06-01 2018-08-02 コニカミノルタ株式会社 ガスバリア性フィルム
WO2018123724A1 (ja) * 2016-12-28 2018-07-05 コニカミノルタ株式会社 ガスバリアー性フィルム及びガスバリアー性フィルムの製造方法
WO2020085751A1 (ko) * 2018-10-26 2020-04-30 주식회사 엘지화학 배리어 필름

Also Published As

Publication number Publication date
JPWO2022196636A1 (ja) 2022-09-22
TW202300337A (zh) 2023-01-01

Similar Documents

Publication Publication Date Title
EP2832539B1 (en) Gas barrier film laminate, member for electronic device, and electronic device
EP2774755B1 (en) Gas barrier film, method for producing same, gas barrier film laminate, member for electronic devices, and electronic device
KR101688239B1 (ko) 적층체, 이 적층체의 제조 방법, 전자 디바이스 부재 및 전자 디바이스
EP2823961B1 (en) Gas barrier film laminate, adhesive film, and electronic component
KR102352337B1 (ko) 장척의 가스 배리어성 적층체 및 그 제조 방법
US9365922B2 (en) Formed article, method of producing same, electronic device member, and electronic device
CN109153802B (zh) 底漆层形成用固化性组合物、阻气性层合膜和阻气性层合体
JP6485455B2 (ja) ガスバリアーフィルム及びガスバリアーフィルムの製造方法
KR102385016B1 (ko) 가스 배리어성 적층체 및 그 제조 방법, 전자 디바이스용 부재, 그리고 전자 디바이스
EP2620279A1 (en) Formed body, production method thereof, electronic device member and electronic device
CN113226746A (zh) 阻气性层叠体
TW201801918A (zh) 長形的阻氣性積層體
WO2022196636A1 (ja) ガスバリアフィルム及びガスバリアフィルムの製造方法
EP2692522A1 (en) Gas barrier laminated body, method for producing same, member for electronic device, and electronic device
WO2015152076A1 (ja) 長尺のガスバリア性積層体及びその製造方法、電子デバイス用部材、並びに電子デバイス
KR20190135471A (ko) 기능성 필름 및 디바이스
EP3437855B1 (en) Gas barrier laminated body, member for electronic device, and electronic device
WO2021132030A1 (ja) 光学用積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771382

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023507104

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771382

Country of ref document: EP

Kind code of ref document: A1