WO2022196257A1 - 受光素子、光検出装置及び測定装置 - Google Patents

受光素子、光検出装置及び測定装置 Download PDF

Info

Publication number
WO2022196257A1
WO2022196257A1 PCT/JP2022/006973 JP2022006973W WO2022196257A1 WO 2022196257 A1 WO2022196257 A1 WO 2022196257A1 JP 2022006973 W JP2022006973 W JP 2022006973W WO 2022196257 A1 WO2022196257 A1 WO 2022196257A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light receiving
signal
receiving
window
Prior art date
Application number
PCT/JP2022/006973
Other languages
English (en)
French (fr)
Inventor
宙 井上
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021042344A external-priority patent/JP2022142238A/ja
Priority claimed from JP2021042343A external-priority patent/JP2022142237A/ja
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2022196257A1 publication Critical patent/WO2022196257A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors

Definitions

  • the present invention relates to a light receiving element, a photodetector, and a measuring device.
  • Patent Literature 1 describes a distance measurement system that two-dimensionally scans a laser beam.
  • the distance measurement system described in Patent Document 1 measures the X, Y, Z coordinates of a point on the surface of an object based on the irradiation position of the laser light (position of the light emitting element) and the flight time of the laser pulse, A three-dimensional image (point group; point cloud) composed of such points is measured.
  • Patent Document 1 also describes measuring the reflectance of the surface of an object.
  • the distortion of the condensed light spot on the light receiving surface of the light receiving element increases under at least one of the measurement conditions.
  • the element may not be able to receive the reflected light normally.
  • the optical system is configured so that the light-receiving window of the light-receiving element is irradiated with the condensed light spot under all measurement conditions, the optical system becomes large, making it difficult to mount the distance measuring system on a vehicle.
  • the TOF method When measuring the coordinates of the surface of an object using the TOF method, it is common to detect the state of the object (for example, the movement and speed of the object) by comparing the coordinates of points measured at different times. is being done systematically. However, if information other than the coordinates can be obtained, the state of the object can be detected based on that information, and the object can be measured more accurately.
  • the state of the object for example, the movement and speed of the object
  • An object of the present invention is to provide a light receiving element capable of receiving a distorted focused spot.
  • Another object of the present invention is to provide a light receiving element capable of acquiring new information.
  • the present invention provides a first light-receiving section for detecting light irradiated to a first light-receiving window, a second light-receiving section for detecting light irradiated to a second light-receiving window, wherein the second light receiving window is a light receiving element provided around the first light receiving window.
  • the present invention for achieving one of the above objects provides a first light receiving section for outputting a first signal corresponding to the light irradiated to the first light receiving window, and a light receiving section provided around the first light receiving window. a second light-receiving portion that outputs a second signal according to the light irradiated to the second light-receiving window.
  • the light receiving element can receive the distorted focused spot.
  • the light receiving element can acquire new information.
  • FIG. 1 is an explanatory diagram of an example of a measuring device.
  • FIG. 2 is an explanatory diagram of the mounting board 5 viewed from the X direction shown in FIG.
  • FIG. 3A is an explanatory diagram of two-dimensional scanning by the measuring apparatus shown in FIG.
  • FIG. 3B is an explanatory diagram of two-dimensional scanning in a certain frame by the measuring device shown in FIG.
  • FIG. 3C is an explanatory diagram of two-dimensional scanning in multiple channels by the measuring apparatus shown in FIG.
  • FIG. 4A is a top view of the light receiving element 20 of the comparative example. 4B is a cross-sectional view of an example of a light receiving portion of the light receiving element shown in FIG. 1.
  • FIG. 5A is an explanatory diagram of how light is collected by the light-receiving optical system 32 shown in FIG.
  • FIG. 5B is an explanatory diagram of the light receiving window 22 and the focused spot in the light receiving element 20 on the optical axis of the light receiving optical system 32 shown in FIG.
  • FIG. 5C is an explanatory diagram of the light receiving window 22 and the focused spot in the light receiving element 20 at a position off the optical axis of the light receiving optical system 32 shown in FIG.
  • FIG. 6A is an explanatory diagram of an example of the light receiving element of the first embodiment.
  • FIG. 6B is an explanatory diagram of the light receiving windows 22 (the first light receiving window 22A and the second light receiving window 22B) and the focused spots in the light receiving element 20 of the first embodiment.
  • FIG. 6A is an explanatory diagram of an example of the light receiving element of the first embodiment.
  • FIG. 6B is an explanatory diagram of the light receiving windows 22 (the first light receiving window 22A and the second light
  • FIG. 7A is an explanatory diagram of output signals of the light receiving element 20 shown in FIG.
  • FIG. 7B is an explanatory diagram of the output signal of the light receiving element 20 shown in FIG.
  • FIG. 8A is an explanatory diagram of an example of a photodetector using the light receiving element of the first embodiment.
  • FIG. 8B is an explanatory diagram of another example of the photodetector.
  • FIG. 9A is an explanatory diagram of an example of a photodetector using a light receiving element of a modified example.
  • FIG. 9B is an explanatory diagram of the connection between the light receiving element and the conversion unit 51 of the modification.
  • FIG. 9C is an explanatory diagram of the connection between the light receiving element and the conversion unit 51 of the modified example.
  • FIG. 9A is an explanatory diagram of an example of a photodetector using a light receiving element of a modified example.
  • FIG. 9B is an explanatory diagram of the connection between the light receiving element
  • FIG. 10A is an explanatory diagram of an example of the first light receiving window 22A and the second light receiving window 22B.
  • FIG. 10B is an explanatory diagram of an example of the first light receiving window 22A and the second light receiving window 22B.
  • FIG. 10C is an explanatory diagram of an example of the first light receiving window 22A and the second light receiving window 22B.
  • FIG. 10D is an explanatory diagram of an example of the first light receiving window 22A and the second light receiving window 22B.
  • FIG. 10E is an explanatory diagram of an example of the first light receiving window 22A and the second light receiving window 22B.
  • FIG. 10F is an explanatory diagram of an example of the first light receiving window 22A and the second light receiving window 22B.
  • FIG. 11A is an explanatory diagram of another example of the first light receiving window 22A and the second light receiving window 22B.
  • FIG. 11B is an explanatory diagram of another example of the first light receiving window 22A and the second light receiving window 22B.
  • FIG. 11C is an explanatory diagram of another example of the first light receiving window 22A and the second light receiving window 22B.
  • FIG. 11D is an explanatory diagram of another example of the first light receiving window 22A and the second light receiving window 22B.
  • FIG. 12 is an explanatory diagram of an example of a light receiving element array in which a plurality of light receiving elements 20 shown in FIG. 1 are arranged.
  • FIG. 13A is an explanatory diagram when a change occurs in the object 90 shown in FIG. FIG.
  • FIG. 13B is an explanatory diagram of the shift of the focused spot in the light receiving element 20 shown in FIG.
  • FIG. 14A is an explanatory diagram of an example of the light receiving element of the second embodiment.
  • FIG. 14B is an explanatory diagram of the light receiving windows 22 (the first light receiving window 22A and the second light receiving window 22B) and the focused spots in the light receiving element 20 of the second embodiment.
  • FIG. 15 is an explanatory diagram of measurement point A in a certain frame and measurement point A' in another frame, which are to be measured by the controller 40 shown in FIG. 8A.
  • FIG. 16 is an explanatory diagram of another example of the photodetector.
  • FIG. 17A is an explanatory diagram of a signal obtained by superimposing the first signal (voltage) and the second signal (voltage), which is output from the voltage adder 56 shown in FIG.
  • FIG. 17B is an explanatory diagram of a signal obtained by superimposing the first signal (voltage) and the second signal (voltage), which is output from the voltage adder 56 shown in FIG.
  • FIG. 18A is an explanatory diagram of another example of the photodetector.
  • FIG. 18B is an explanatory diagram of an example of a signal in which the first signal (voltage) and the second signal (voltage) are superimposed, which is output from the voltage adder 56 shown in FIG. 18A.
  • FIG. 19A is an explanatory diagram of another example of the photodetector.
  • FIG. 19A is an explanatory diagram of another example of the photodetector.
  • FIG. 19B is an explanatory diagram of an example of a signal obtained by superimposing the first signal (voltage) and the second signal (voltage), which is output from the voltage adder 56 shown in FIG. 19A.
  • FIG. 20 is an explanatory diagram of still another example of the photodetector.
  • FIG. 21A is an explanatory diagram of the first signal and second signal input to the voltage adder 56 shown in FIG. 20 and the signal output from the voltage adder 56.
  • FIG. FIG. 21B is an explanatory diagram of the first signal and second signal input to the voltage adder 56 shown in FIG. 20 and the signal output from the voltage adder 56.
  • FIG. FIG. 22A is an explanatory diagram of an example of a photodetector using a light receiving element of a modified example.
  • FIG. 22B is an explanatory diagram of the connection between the light receiving element shown in FIG. 22A and the conversion unit 51 (transimpedance amplifier).
  • FIG. 22C is an explanatory diagram of another example of connection between the light receiving element shown in FIG. 22A and the conversion unit 51 (transimpedance amplifier).
  • FIG. 23 is an explanatory diagram of an example of a light receiving element array in which a plurality of light receiving elements 20 shown in FIGS. 11A to 11D are arranged.
  • FIG. 1 is an explanatory diagram of an example of a measuring device.
  • each direction is defined as shown in FIG.
  • the direction along the optical axis of the light-receiving optical system 32 or the light-projecting optical system 31, that is, the axis of rotational symmetry of the lens, is defined as the Z direction.
  • the object 90 to be measured by the measuring device 1 is separated from the measuring device 1 in the Z direction.
  • the direction perpendicular to the Z direction and in which the light projecting optical system 31 and the light receiving optical system 32 are arranged is defined as the X direction.
  • a direction perpendicular to the Z direction and the X direction is defined as the Y direction.
  • the measuring device 1 is a device for measuring the surface of the object 90. Specifically, the measuring device 1 emits a laser beam (Tx in FIG. 1) from the light emitting element 10, detects reflected light (Rx in FIG. 1) reflected by the surface of the object 90 with the light receiving element 20, This device calculates the distance to the object 90 based on the detection result.
  • the measuring device 1 includes a light emitting element 10, a light receiving element 20, an optical system 30, and a controller 40.
  • the measuring device 1 also includes a mounting board 5 having a plurality of light emitting elements 10 and a plurality of light receiving elements 20 and a drive device 45 .
  • the light emitting element 10 is an element that converts an electrical signal into an optical signal.
  • the light emitting element 10 is an LD chip (LD: Laser Diode) and emits laser light.
  • the light emitting element 10 emits pulsed light (Tx in FIG. 1) toward the surface of the object 90 .
  • the light-emitting element 10 of this embodiment is composed of an edge-emitting semiconductor laser, is surface-mounted on the mounting substrate 5, and emits laser light parallel to the substrate surface.
  • the light-emitting element 10 is not limited to an edge-emitting semiconductor laser, and the mounting method on the mounting board 5 is not limited to this.
  • the light receiving element 20 is an element that converts an optical signal into an electrical signal.
  • the light receiving element 20 is a PD chip (Photodiode). A detailed configuration of the light receiving element 20 will be described later.
  • the light-receiving element 20 is mounted with its light-receiving surface upright with respect to the substrate surface of the mounting substrate 5 so that reflected light is incident on the light-receiving surface. Note that the mounting method of the light receiving element 20 is not limited to this.
  • the optical system 30 is an optical system for irradiating the object 90 with the light output from the light emitting element 10 and causing the light receiving element 20 to receive the reflected light from the object 90 .
  • the light emitting element 10 and the light receiving element 20 are arranged at conjugate positions with respect to the optical system 30 .
  • the optical system 30 of this embodiment has a light projecting optical system 31 and a light receiving optical system 32 .
  • the light projecting optical system 31 is an optical system for irradiating the object 90 with the light output from the light emitting element 10 .
  • a light-emitting element 10 is arranged in the focal plane of the light-projecting optical system 31 .
  • the light projecting optical system 31 irradiates the object 90 with the laser light emitted from the light emitting element 10 as collimated light. Collimated light is emitted in a predetermined direction (predetermined angle) according to the positional relationship between the light emitting element 10 and the light projecting optical system 31 .
  • the light emitting element 10 irradiates the object 90 with light through the light projecting optical system 31 .
  • the light projecting optical system 31 is composed of a lens group composed of a plurality of (for example, 5 to 7) lenses (in FIG. 1, the lens group of the light projecting optical system 31 is simply shown). is being used).
  • the light-receiving optical system 32 is an optical system for causing the light-receiving element 20 to receive the reflected light from the object 90 .
  • the light-receiving surface of the light-receiving element 20 is arranged within the focal plane of the light-receiving optical system 32 .
  • the light-receiving optical system 32 converges the light reflected by the object 90 onto the light-receiving surface of the predetermined light-receiving element 20 .
  • the light receiving element 20 receives reflected light from the object 90 via the light receiving optical system 32 .
  • the light-receiving optical system 32 is also composed of a lens group composed of a plurality of (for example, 5 to 7) lenses.
  • FIG. 1 simply shows the lens group of the light receiving optical system 32 .
  • the light-projecting optical system 31 and the light-receiving optical system 32 are configured integrally, and their positional relationship is fixed. Specifically, a light projecting lens barrel that constitutes the light projecting optical system 31 and a light receiving lens barrel that constitutes the light receiving optical system 32 are fixed to a common optical frame 33 .
  • the controller 40 is a control unit that controls the measuring device 1 .
  • the controller 40 controls emission of laser light from the light emitting element 10 .
  • the controller 40 calculates the distance to the object 90 based on the output signal of the light receiving element 20 .
  • the controller 40 determines the distance to the object 90 by measuring the time from when the light emitting element 10 projects the pulsed laser beam until the light receiving element 20 receives the reflected light. Measure. That is, the controller 40 controls the light emitting element 10 and the light receiving element 20 to measure the distance to the object 90, that is, the Z coordinate of the surface of the object 90 by the TOF method (time of flight).
  • the controller 40 measures the Z coordinate of the surface of the object 90 while scanning in the XY directions. , the X, Y, Z coordinates of the surface of the object 90 can be measured.
  • the controller 40 has an arithmetic device 41 and a storage device 42 .
  • the computing device 41 is, for example, a computing processing device such as a CPU or a GPU.
  • the storage device 42 is configured by a main storage device and an auxiliary storage device, and stores programs and data. By executing the program stored in the storage device 42 by the arithmetic device 41, the arithmetic device 41 controls the emission of the laser light from the light emitting element 10, and based on the output signal of the light receiving element 20, the object. Calculate the distance to 90.
  • the computing device 41 also calculates the X, Y, and Z coordinates of the surface of the object 90 based on the output signal of the light receiving element 20 .
  • the arithmetic device 41 may store the acquired coordinate data in the storage device 42 or in an external storage device.
  • the data of the X, Y, and Z coordinates of many points on the surface of the object 90 are data representing a three-dimensional image (point group: point cloud) of the surface of the object 90 .
  • the arithmetic device 41 may analyze the object 90 based on the three-dimensional image stored in the storage device 42 by executing the program stored in the storage device 42 .
  • the mounting board 5 is a board on which a plurality of light emitting elements 10 and a plurality of light receiving elements 20 are mounted.
  • a certain light-receiving element 20 is associated with a specific light-emitting element 10 , and the detection position of the certain light-receiving element 20 is conjugate with the light-emitting position of the specific light-emitting element 10 .
  • the light emitting element 10 emits laser light in parallel with the surface of the mounting board 5 , and the light receiving element 20 receives reflected light, which is light incident on the board surface of the mounting board 5 in a direction substantially parallel.
  • the mounting board 5 has five light-emitting elements 10 and five light-receiving elements 20 .
  • the number of light emitting elements 10 and light receiving elements 20 is not limited to this.
  • a plurality of light emitting elements 10 are arranged on the mounting substrate 5 at different positions in the X direction.
  • a plurality of light receiving elements 20 are arranged on the mounting board 5 at different positions in the X direction.
  • the mounting board 5 is provided with a light emitting side curved portion 6 and a light receiving side curved portion 7 .
  • the light-emitting side curved portion 6 is a portion having an arcuate edge.
  • the light-emitting side curved portion 6 is a portion for arranging a plurality of light-emitting elements 10 along the curvature of field of the light projecting optical system 31 .
  • a plurality of light emitting elements 10 are arranged along the arcuate edge of the light emitting side curved portion 6 . Thereby, each light-emitting element 10 is arranged at an appropriate position and angle with respect to the light projecting optical system 31, and the influence of field curvature of the light projecting optical system 31 can be reduced.
  • the light-receiving side curved portion 7 is a portion having an arcuate edge, and is provided at a different position in the X direction from the light-emitting side curved portion 6 .
  • the light-receiving side curved portion 7 is a portion for arranging a plurality of light-receiving elements 20 along the field curvature of the light-receiving optical system 32 .
  • a plurality of light receiving elements 20 are arranged along the arcuate edge of the light receiving side curved portion 7 . Thereby, each light receiving element 20 is arranged at an appropriate position and angle with respect to the light receiving optical system 32, and the influence of field curvature of the light receiving optical system 32 can be reduced.
  • the mounting substrate 5 may not be provided with the light-emitting side curved portion 6 and the light-receiving side curved portion 7 .
  • a plurality of light emitting elements 10 and a plurality of light receiving elements 20 are arranged along the edge of the mounting substrate 5 perpendicular to the Z direction.
  • FIG. 2 is an explanatory diagram of the mounting substrate 5 viewed from the X direction shown in FIG.
  • the light emitting side curved portion 6 and the light receiving side curved portion 7 of the mounting board 5 are omitted, and the light emitting element 10 and the light receiving element 20 are arranged along the edge of the mounting board 5 parallel to the X direction.
  • the inclination of the mounting substrate 5 is emphasized here.
  • the measuring device 1 has a plurality of mounting boards 5 (here, three mounting boards 5).
  • the plurality of mounting boards 5 are arranged at different positions in the Y direction.
  • a plurality of (five in this case) light emitting elements 10 and a plurality of light receiving elements 20 are arranged at different positions in the X direction. Therefore, a light-emitting element array is formed by arranging a plurality of (15 in this case) light-emitting elements 10 in the X and Y directions, and a light-receiving element in which a plurality of light-receiving elements 20 are arranged in the X- and Y-directions. An array is constructed.
  • a plurality of mounting boards 5 are arranged at different angles with respect to the Z direction. Specifically, as shown in FIG. 2, the light emitting element 10 of each mounting board 5 faces the light projecting optical system 31, and the light receiving surface of the light receiving element 20 of each mounting board 5 faces the light receiving optical system. 32, the respective mounting boards 5 are arranged at different angles with respect to the Z direction. As a result, the light-emitting element 10 and the light-receiving element 20 are arranged at appropriate positions and angles with respect to the optical system 30, so that the influence of field curvature of the optical system 30 can be reduced.
  • the light emitting element 10 of each mounting board 5 is arranged so as to emit a laser beam parallel to the board surface of the mounting board 5 .
  • each mounting board 5 is arranged so as to receive light (reflected light) incident on the board surface of the mounting board 5 from a direction substantially parallel thereto. Since a plurality of (here, five) light-emitting elements 10 and a plurality (here, five) of light-receiving elements 20 are mounted on the same substrate, the light-projecting optical system 31 and the light-receiving optical system 32 are separately installed. Therefore, even if the mounting board 5 is tilted with respect to the Z direction (the direction of the optical axis of the optical system 30), the light emitting element 10 and the light receiving element 20 are in a conjugate positional relationship with respect to the optical system 30. can be maintained.
  • the mounting substrate 5 is provided with the light emitting side curved portion 6 and the light receiving side curved portion 7 as in the present embodiment, even if the mounting substrate 5 is tilted, the field curvature of the light projecting optical system 31 is followed. In addition, it is easy to arrange a plurality of light-receiving elements 20 along the curvature of field of the light-receiving optical system 32 .
  • a plurality of mounting boards 5 may be arranged in parallel in the Z direction and arranged in parallel with each other. However, if the mounting boards 5 are arranged parallel to each other, the mounting boards 5 are arranged so that the light-emitting element 10 and the light-receiving element 20 are at appropriate positions and angles with respect to the optical system 30 for each mounting board 5 . The positions and angles of the light emitting element 10 and the light receiving element 20 with respect to are required to be different. On the other hand, in this embodiment, since the mounting substrates 5 have different inclinations, the light emitting element 10 emits a laser beam parallel to the mounting substrate 5 and the light receiving element 20 emits a laser beam parallel to the mounting substrate 5.
  • the plurality of light emitting elements 10 and the plurality of light receiving elements 20 can be arranged at different positions in the X direction and the Y direction at appropriate positions and angles with respect to the optical system 30 with a simple configuration. .
  • a plurality of (here, three) mounting substrates 5 are integrally fixed, and the positional relationship between them is fixed. Specifically, the plurality of mounting boards 5 are fixed to a common board frame 8 . However, if the positional relationship between the plurality of light emitting elements 10 and the plurality of light receiving elements 20 can be fixed, the positional relationship between the plurality of light emitting elements 10 and the plurality of light receiving elements 20 may be fixed by another method. Moreover, the measuring device 1 does not have to include a plurality of mounting substrates 5 .
  • the driving device 45 (see FIG. 1) is a device that relatively moves the optical system 30 and the mounting board 5 (the light emitting element 10 and the light receiving element 20) in the XY directions.
  • the driving device 45 relatively moves the optical system 30 and the mounting board 5 in the XY directions, thereby changing the positional relationship of the light emitting element 10 with respect to the optical system 30 and changing the irradiation angle of the laser light.
  • a laser beam can be scanned.
  • the driving device 45 moves at least one of the optical system 30 and the mounting board 5 (one of the optical system 30 and the mounting board 5, or both the optical system 30 and the mounting board 5).
  • the driving device 45 may move the optical system 30 in the XY directions with respect to the mounting board 5 , may move the optical system 30 in the XY directions with respect to the mounting board 5 , or may move the optical system 30 with respect to the mounting board 5 .
  • at least one of the optical frame 33 and the substrate frame 8 is supported by the housing 3 in the X direction and the Y direction at predetermined resonance frequencies, respectively. 5 are vibrated in the X and Y directions at respective resonance frequencies.
  • the driving device 45 is composed of, for example, a voice coil motor, but is not limited to this.
  • the driving device 45 may be composed of a piezoelectric element.
  • FIG. 3A is an explanatory diagram of two-dimensional scanning by the measuring device 1.
  • FIG. 3A by vibrating at least one of the optical system 30 and the mounting substrate 5 in the X direction and the Y direction at their respective resonance frequencies, the optical system 30 and the mounting substrate 5 (the light emitting element 10 or the light receiving element 20) are in the same position as in the figure.
  • the controller 40 can calculate the position of the light emitting element 10 (or the light receiving element 20) in the XY direction with respect to the optical system 30 based on the time t. That is, the controller 40 can calculate the direction in which the laser light is irradiated based on the time t.
  • controller 40 uses a position detector (not shown) to detect the relative position in the XY direction between the optical frame 33 and the substrate frame 8 instead of calculating the direction in which the laser beam is irradiated based on the time t.
  • the direction in which the laser beam is irradiated may be calculated based on this detection result.
  • FIG. 3B is an explanatory diagram of two-dimensional scanning in a certain frame by the measuring device 1.
  • the controller 40 acquires one frame (one three-dimensional image of the object 90) every predetermined time. For each measurement of one frame (one three-dimensional image), the X, Y, Z coordinates of the surface of the object 90 are measured at a plurality of points on the Lissajous curve. This makes it possible to measure coordinates with increased resolution. Note that the same Lissajous curve may be repeated for each frame. In this case, it is possible to measure the surface of the object 90 at the same position in each frame. On the other hand, the Lissajous curve may shift for each frame. In this case, in the next frame, measurements of the surface of the object 90 are possible so as to interpolate between the points measured in the previous frame.
  • FIG. 3C is an explanatory diagram of two-dimensional scanning in multiple channels by the measuring device 1.
  • FIG. As shown, in this embodiment, two-dimensional scanning is performed in different ranges for each channel. As a result, the surface of the object 90 can be measured over a wide range in the X and Y directions, and a wide FOV (field of view) can be realized.
  • FOV field of view
  • two-dimensional scanning does not have to be performed along the Lissajous curve.
  • two-dimensional scanning may be performed by performing line scanning in the X direction (or Y direction) a plurality of times while shifting in the Y direction (or X direction).
  • only one-dimensional scanning may be performed.
  • scanning may not be performed.
  • the measuring device 1 does not have to be equipped with the driving device 45 .
  • the resolution of the point cloud is lowered compared to the present embodiment.
  • FIG. 4A is a top view of the light receiving element 20 of the comparative example.
  • 4B is a cross-sectional view of an example of a light receiving portion of the light receiving element shown in FIG. 1.
  • FIG. 4A is a top view of the light receiving element 20 of the comparative example.
  • 4B is a cross-sectional view of an example of a light receiving portion of the light receiving element shown in FIG. 1.
  • the light receiving element 20 has a light receiving window 22 for receiving light.
  • the light-receiving window 22 is a light-receiving area provided on the light-receiving surface of the light-receiving element 20 .
  • the light receiving section 21 of the light receiving element 20 has a buffer layer, a light absorption layer, an intermediate layer, a doubling layer and a window layer on the substrate, Further, it has a light receiving area and a guard ring around the periphery of the light receiving area, and has electrodes 23 and 24 on the front and back surfaces of the substrate, respectively.
  • a protective layer is also formed on the light receiving surface of the light receiving element 20 .
  • the light-receiving window 22 corresponds to a region inside an annular electrode 23 (electrode on the light-receiving surface side; electrode on the surface side of the substrate).
  • the diameter of the light receiving window 22 is sometimes called the light receiving diameter. While the size of the light receiving element 20 is several millimeters square (for example, 5 mm square), the light receiving diameter is, for example, 500 ⁇ m. However, the light receiving element 20 and the size of the light receiving diameter are not limited to these.
  • the light-receiving element 20 of the comparative example has one light-receiving window 22 at the center of the chip that constitutes the light-receiving element 20 .
  • the light-receiving window 22 of the light-receiving element 20 of the comparative example is only one provided in the center of the chip.
  • FIG. 5A is an explanatory diagram of how light is collected by the light-receiving optical system 32 shown in FIG.
  • FIG. 5B is an explanatory diagram of the light receiving window 22 and the focused spot in the light receiving element 20 on the optical axis of the light receiving optical system 32 shown in FIG.
  • FIG. 5C is an explanatory diagram of the light receiving window 22 and the focused spot in the light receiving element 20 at a position off the optical axis of the light receiving optical system 32 shown in FIG.
  • a plurality of light-receiving elements 20 are arranged for one light-receiving optical system 32, as shown in FIG. , there is a light receiving element 20 arranged at a position off the optical axis.
  • FIG. 5A only one light-receiving element 20 deviated from the optical axis of the light-receiving optical system 32 is depicted, but there are a plurality of light-receiving elements 20 deviated from the optical axis of the light-receiving optical system 32. , and how the light receiving optical system 32 deviates from the optical axis (described later; see FIG. 12).
  • the focused spot of the reflected light focused by the light-receiving optical system 32 has a substantially circular shape. located in On the other hand, as shown in FIG. 5C, in the light-receiving element 20 located off the optical axis, the focused spot of the reflected light focused by the light-receiving optical system 32 is elliptically distorted.
  • the distortion of the focused spot is not limited to an ellipse, and varies depending on the configuration of the light receiving optical system 32, the angle of light, and the like.
  • the focused spot may be distorted into various shapes such as a circular spot with a tail (comet shape), a band, or a bow. Even if the light-receiving element 20 is provided in the light-receiving-side curved portion 7 described above, the light-receiving element 20 arranged at a position off the optical axis cannot completely eliminate the distortion of the focused spot. , the focused spot is distorted.
  • the light receiving element 20 has one light receiving window 22 as in the comparative example shown in FIG. 4A, if the distortion of the focused spot becomes large as shown in FIG. be. Then, as shown in FIG. 5C, when a part of the condensed light spot deviates from the light receiving window 22, the light energy received by the light receiving element 20 decreases, and as a result, the light receiving element 20 may not be able to detect the reflected light normally.
  • FIG. 6A is an explanatory diagram of an example of the light receiving element of this embodiment.
  • FIG. 6B is an explanatory diagram of the light receiving windows 22 (the first light receiving window 22A and the second light receiving window 22B) and the focused spots in the light receiving element 20 of this embodiment.
  • the light receiving surface of the light receiving element 20 of this embodiment is provided with a first light receiving window 22A and a second light receiving window 22B.
  • a light receiving portion 21 (see FIG. 4B) is provided in each of the first light receiving window 22A and the second light receiving window 22B.
  • the light receiving section 21 having the first light receiving window 22A will be referred to as the "first light receiving section”
  • the light receiving section 21 having the second light receiving window 22B will be referred to as the "second light receiving section”.
  • the light-receiving element 20 of this embodiment has a first light-receiving portion 21A that detects light irradiated to the first light-receiving window 22A, and a second light-receiving portion 21B that detects light irradiated to the second light-receiving window 22B.
  • the first light receiving window 22A and the second light receiving window 22B are called the "main light receiving window” and the "sub light receiving window” respectively, and the first light receiving section 21A and the second light receiving section 21B are respectively called the "main light receiving section. ” and “sub-light receiving portion”.
  • the focused spot of the reflected light focused by the light-receiving optical system 32 may be distorted.
  • the second light-receiving window 22B is irradiated with the condensed light spot.
  • the reflected light can be detected by the second light receiving section 21B.
  • FIG. 7A and 7B are explanatory diagrams of output signals of the light receiving element 20 shown in FIG.
  • the upper graph in each figure shows the current output from the first light receiving section 21A
  • the lower graph shows the current output from the second light receiving section 21B.
  • the current output from the light receiving element 20 may be a plus side current or a minus side current (described later).
  • the signal output from the first light receiving section 21A may be referred to as the first signal
  • the signal output from the second light receiving section 21B may be referred to as the second signal.
  • the first light receiving section 21A outputs a current (first signal) corresponding to the light with which the first light receiving window 22A is irradiated.
  • the second light receiving section 21B outputs a current (second signal) corresponding to the light with which the second light receiving window 22B is irradiated.
  • FIG. 7A is an explanatory diagram of the first signal and the second signal when the focused spot is located inside the first light receiving window 22A.
  • the light emitting element 10 emits pulsed light (Tx in FIG. 1), so that the light receiving element 20 is irradiated with a condensed light spot of the pulsed reflected light (Rx in FIG. 1). .
  • the first light receiving window 22A is irradiated with a sufficient amount of reflected light.
  • a relatively large pulsed current (first signal) is output.
  • the controller 40 can obtain the time t at which the pulsed reflected light is received based on the first signal. That is, the controller 40 can measure the time from when the light-emitting element 10 projects the pulsed laser beam until the light-receiving element 20 receives the reflected light, thereby measuring the distance to the object 90. be able to.
  • FIG. 7B is an explanatory diagram of the first signal and the second signal when part of the focused spot is out of the first light receiving window 22A.
  • the pulsed current of the first signal becomes smaller as shown in the upper graph of FIG. 7B.
  • the second signal becomes a pulsed signal. Since the first light-receiving window 22A and the second light-receiving window 22B are simultaneously irradiated with the pulsed condensed light spots, the pulse timing of the second signal indicates the timing at which the pulsed reflected light is received.
  • the controller 40 can obtain the time t at which the pulsed reflected light is received based on the second signal. That is, even if the current of the first signal is weak and the time t cannot be obtained based on the first signal, the controller 40 emits a pulsed laser beam from the light emitting element 10 based on the second signal. It is possible to measure the time from when the light is projected until the light receiving element 20 receives the reflected light, and the distance to the object 90 can be measured.
  • the light-receiving optical system 32 is designed so that light is mainly focused on the first light-receiving window 22A of the light-receiving element 20 (see FIG. 5B). Therefore, under the main measurement conditions, the amount of light applied to the first light receiving window 22A is relatively large.
  • the purpose of the second light receiving window 22B is to detect a part of the light of the distorted focused spot, so the amount of light irradiated to the second light receiving window 22B is relatively small. Therefore, in this embodiment, the second light receiving section 21B having the second light receiving window 22B is configured to have higher sensitivity than the first light receiving section 21A having the first light receiving window 22A.
  • the second light receiving section 21B is configured to be capable of outputting a high current (see the lower side of FIG. 7B) with respect to the amount of light received. Thereby, in this embodiment, it becomes easy to detect reflected light by the 2nd light-receiving part 21B.
  • the first light receiving section 21A Since the intensity of the reflected light varies depending on the distance from the object 90, the first light receiving section 21A is configured to have a wide dynamic range so that it can output detection signals corresponding to different intensities of light. ing. In general, when the dynamic range is widened, it becomes difficult to output a strong current with a weak amount of received light, resulting in a decrease in sensitivity. On the other hand, the second light receiving section 21B does not need to have a wide dynamic range as long as it can detect a part of the distorted condensed spot. Therefore, it is allowed to configure the second light receiving section 21B so as to have higher sensitivity than the first light receiving section 21A.
  • the light receiving window is relatively large, and when the sensitivity is relatively high, the light receiving window is relatively small. For these reasons, it is generally difficult to configure the light receiving element 20 with both a wide dynamic range and high sensitivity.
  • the first light receiving section 21A and the second light receiving section 21B are configured separately, the first light receiving section 21A has a wide dynamic range and the second light receiving section 21B has a high sensitivity. It is configurable. For this reason, in the present embodiment, the first light receiving portion 21A is configured to be larger than the second light receiving window 22B.
  • the size of the light-receiving window 22 is determined by the diameter (light-receiving diameter) when the light-receiving window 22 is circular, and by the area of the light-receiving window 22 when the light-receiving window 22 is non-circular.
  • a plurality of second light receiving windows 22B are provided. Accordingly, even if the focused spot is distorted in different directions depending on the conditions (even if the focused spot deviates from the first light receiving window 22A in different directions), the second light receiving window 22B can easily detect the reflected light. Although there are two second light receiving windows 22B in this embodiment, the number of second light receiving windows 22B is not limited to two (described later).
  • FIG. 8A is an explanatory diagram of an example of a photodetector using the light receiving element of this embodiment.
  • the aforementioned mounting substrate 5 is provided with a circuit for configuring the photodetector 50 shown in FIG. 8A.
  • the photodetector 50 has the light receiving element 20 and the conversion section 51 described above.
  • the converter 51 is a circuit that converts the signal output from the light receiving element 20 from current to voltage.
  • the photodetector 50 has a converter 51 for each light receiving element 20 .
  • the converter 51 shown in FIG. 8A has a first converter 51A and a second converter 51B.
  • the first conversion section 51A is a circuit that converts the first signal output from the first light receiving section 21A from current to voltage.
  • the second conversion section 51B is a circuit that converts the second signal output from the second light receiving section 21B from current to voltage.
  • the first conversion section 51A and the second conversion section 51B are composed of transimpedance amplifiers (TIAs).
  • the photodetector 50 has an analog-digital conversion circuit 52 (ADC).
  • ADC analog-to-digital conversion circuit 52
  • ADC analog-to-digital conversion circuit 52
  • Each analog-digital conversion circuit 52 converts the voltage (analog signal) output from the first converter 51A or the second converter 51B into a digital signal, and outputs the signal to the controller 40 (arithmetic device 41).
  • the controller 40 (arithmetic device 41) compares the voltage value of at least one of the first signal and the second signal with a threshold to obtain the time t when the pulsed reflected light is received (see FIGS. 7A and 7B). ), the time from when the light emitting element 10 emits a pulsed laser beam to when the light receiving element 20 receives the reflected light is calculated, and the distance to the object 90 is calculated.
  • FIG. 8B is an explanatory diagram of another example of the photodetector.
  • the voltage addition unit 53 adds the voltages output from the first conversion unit 51A and the second conversion unit 51B.
  • the analog-digital conversion circuit 52 converts the voltage (analog signal) output from the voltage adder 53 into a digital signal, and outputs the signal to the controller 40 (arithmetic device 41).
  • the controller 40 obtains the time t at which the pulsed reflected light is received by comparing the sum of the voltages of the first signal and the second signal with the threshold value. Even in this way, it is possible to obtain the time t at which the pulsed reflected light is received based on the first signal and the second signal.
  • FIG. 9A is an explanatory diagram of an example of a photodetector using a light receiving element of a modified example.
  • the light receiving element 20 of the modified example outputs the current I obtained by adding the current I2 of the second light receiving section 21B to the current I1 of the first light receiving section 21A.
  • arrows indicate the direction of the current when the positive current is output. ) may be output.
  • the pulsed current I1 of the first signal becomes smaller as shown in the upper graph of FIG. 7A.
  • a pulsed current I2 is generated as the second signal as shown in the lower graph of FIG. 7B.
  • the light receiving element 20 receives a relatively large pulse from the signal line 25 even if a part of the condensed light spot deviates from the first light receiving window 22A. of current I can be output.
  • 9B and 9C are explanatory diagrams of the connection between the light receiving element of the modified example and the conversion unit 51 (transimpedance amplifier).
  • FIG. 9B shows an example of a light-receiving element of a modified example.
  • the anode of the first light receiving section 21A and the anode of the second light receiving section 21B are connected via the signal line 25 to the conversion section 51 (transimpedance amplifier).
  • a current I obtained by adding the current I1 on the positive side of the first light receiving section 21A and the current I2 on the positive side of the second light receiving section 21B flows through the signal line 25 .
  • the current I on the positive side is output from the light receiving element 20 .
  • FIG. 9C shows another example of the light-receiving element of the modification.
  • the cathode of the first light receiving section 21A and the cathode of the second light receiving section 21B are connected to the conversion section 51 via the signal line 25.
  • a current I obtained by adding the current I1 on the negative side of the first light receiving section 21A and the current I2 on the negative side of the second light receiving section 21B flows through the signal line 25.
  • FIG. That is, in this case, the current I on the minus side is output from the light receiving element 20 . That is, the light receiving element 20 absorbs the current I from the conversion section 51 .
  • the number of signal lines for outputting signals from the light-receiving element 20 can be reduced. Further, by using the light receiving element 20 of the modified example, the number of transimpedance amplifiers (TIA) and analog-digital conversion circuits 52 (ADC) of the photodetector 50 can be reduced.
  • TIA transimpedance amplifiers
  • ADC analog-digital conversion circuits 52
  • FIGS. 10A to 10F are explanatory diagrams of examples of the first light receiving window 22A and the second light receiving window 22B.
  • the light receiving element 20 shown in FIGS. 10A to 10F has a first light receiving window 22A and two second light receiving windows 22B.
  • a first light receiving window 22A is arranged in the center of the light receiving surface of the light receiving element 20, and two second light receiving windows 22B are arranged around the first light receiving window 22A.
  • "around the first light-receiving window 22A" means a range outside the outer circumference of the first light-receiving window 22A and inside the outer edge of the chip provided with the first light-receiving window 22A. .
  • two second light receiving windows 22B are arranged to sandwich the first light receiving window 22A.
  • the condensed light spot can be deviated in a predetermined direction (for example, +Y direction) from the first light receiving window 22A under certain measurement conditions. Distortion: Even if the condensed light spot is distorted in a direction opposite to the first light receiving window 22A (for example, the -Y direction) under different measurement conditions, the reflected light can be easily detected by the second light receiving window 22B. Become.
  • the condensed light spot is distorted in a belt shape, and the condensed light spot is greatly distorted so as to straddle the first light receiving window 22A. Even in such a case, the reflected light can be easily detected by the second light receiving window 22B.
  • the direction in which the two second light receiving windows 22B sandwich the first light receiving window 22A may be either the X direction or the Y direction. A direction crossing the X direction and the Y direction may also be used.
  • the first light receiving window 22A and the two second light receiving windows 22B are arranged on the diagonal line of the rectangular light receiving surface, the first light receiving window 22A and the two second light receiving windows 22A and the two second light receiving windows 22A and 22B are arranged on the narrow space of the light receiving surface. 2 light receiving window 22B can be easily arranged. As a result, it is also possible to reduce the size of the chip of the light receiving element 20 .
  • the two second light receiving windows 22B may not be arranged so as to sandwich the first light receiving window 22A.
  • both of the two second light receiving windows 22B may be arranged in the +Y direction with respect to the first light receiving window 22A.
  • the first light receiving window 22A is arranged in the second direction as shown in FIGS. 10A to 10C. It is desirable to be larger than the light receiving window 22B. However, if there is no problem with dynamic range and sensitivity, the first light receiving window 22A may be smaller than the second light receiving window 22B as shown in FIGS. 10D to 10F. If the second light receiving window 22B is larger than the first light receiving window 22A, the second light receiving window 22B can easily receive the reflected light when the focused spot is largely distorted and deviates from the first light receiving window 22A.
  • FIGS. 11A to 11D are explanatory diagrams of another example of the first light receiving window 22A and the second light receiving window 22B.
  • the two second light-receiving windows 22B are arranged so as to sandwich the first light-receiving window 22A, so reflected light can be easily detected by the second light-receiving windows 22B.
  • the first light receiving window 22A and the two second light receiving windows 22B are arranged on the diagonal lines of the rectangular light receiving surface, the first light receiving window 22A and the two second light receiving windows 22B are arranged on the narrow space of the light receiving surface. It becomes easier to arrange the two light receiving windows. As a result, it is also possible to reduce the size of the chip of the light receiving element 20 . Further, in order to widen the dynamic range of the first light receiving portion 21A and to increase the sensitivity of the second light receiving portion 21B, the first light receiving window 22A is set wider than the second light receiving window 22B as shown in FIGS. 11A and 11B. should also be increased.
  • the first light receiving window 22A may be smaller than the second light receiving window 22B as shown in FIGS. 11C and 11D.
  • the number of the second light receiving windows 22B is not limited to 2 or 4, and may be another number.
  • FIG. 12 is an explanatory diagram of an example of a light receiving element array in which a plurality of light receiving elements 20 shown in FIG. 1 are arranged.
  • the measuring device 1 has a plurality of light receiving elements 20 arranged two-dimensionally in the X direction and the Y direction.
  • the light-receiving elements 20 are shifted with respect to the optical axis of the light-receiving optical system 32 (the center of the circle of the dotted line). There is a need to.
  • the position of a certain light receiving element 20 (first light receiving element) with respect to the optical axis differs from the position of another light receiving element 20 (second light receiving element) with respect to the optical axis. Since the distortion of the condensed light spot differs depending on the position of the light receiving element 20 with respect to the light receiving optical system 32, the light condensed spot incident on each of the two-dimensionally arranged light receiving elements 20 has a different shape.
  • the directions in which the first light receiving windows 22A and the second light receiving windows 22B of the respective light receiving elements 20 are arranged are made different according to the distortion of the focused spot.
  • the direction in which the first light receiving window 22A and the second light receiving window 22B are arranged is, for example, the X direction in a certain light receiving element 20 (first light receiving element), whereas in another light receiving element 20 In (the second light receiving element), the direction in which the first light receiving window 22A and the second light receiving window 22B are arranged is the Y direction (or the direction crossing the X direction and the Y direction). According to this embodiment, it becomes easier for the second light receiving section 21B to detect the reflected light.
  • the direction in which the first light receiving windows 22A and the second light receiving windows 22B of all the light receiving elements 20 of the light receiving element array are aligned may be the same. Further, not all the light receiving elements of the light receiving element array may be the light receiving elements having the first light receiving window 22A and the second light receiving window 22B of the present embodiment, and some of the light receiving elements may be the light receiving elements shown in FIG. 4A. can be
  • the light-receiving element 20 of this embodiment includes the first light-receiving portion 21A that detects the light irradiated to the first light-receiving window 22A, and the second light-receiving portion that detects the light irradiated to the second light-receiving window 22B. 21B, and the second light receiving window 22B is provided around the first light receiving window 22A (see FIG. 6A).
  • the reflected light can be detected by the second light receiving section 21B by irradiating the second light receiving window 22B with the focused spot. (See FIG. 6B).
  • the second light receiving section 21B has higher sensitivity than the first light receiving section 21A. This makes it easier for the second light receiving section 21B to detect the reflected light.
  • the first light receiving window 22A is preferably larger than the second light receiving window 22B. As a result, it is possible to increase the sensitivity of the second light receiving section 21B while widening the dynamic range of the first light receiving section 21A.
  • the number of second light receiving windows 22B may be one.
  • the plurality of second light receiving windows 22B be arranged so as to sandwich the first light receiving window 22A. This makes it easier to detect the reflected light by the second light receiving window 22B.
  • the two second light-receiving windows 22B may not be arranged so as to sandwich the first light-receiving window 22A.
  • the first light receiving window 22A and the plurality of second light receiving windows 22B are arranged on the diagonal lines of the rectangular light receiving surface (see FIGS. 10 and 11). This makes it easier to arrange the first light receiving window 22A and the two second light receiving windows 22B on the narrow space of the light receiving surface.
  • the light receiving element 20 of this embodiment preferably has a signal line 25 that outputs a current obtained by adding the current of the second light receiving section 21B to the current of the first light receiving section 21A (see FIG. 9). As a result, the number of signal lines for outputting signals from the light receiving element 20 can be reduced.
  • the measuring device 1 of the present embodiment includes the light emitting element 10 that irradiates the object 90 with light, the optical system 30, and the light receiving element 20 that receives the reflected light from the object 90. ing.
  • the light-receiving element 20 used in the measuring apparatus 1 includes a first light-receiving section 21A for detecting light irradiated to the first light-receiving window 22A and a second light-receiving section for detecting light irradiated to the second light-receiving window 22B. 21B, and the second light receiving window 22B is provided around the first light receiving window 22A (see FIG. 6A).
  • the reflected light can be detected by the second light receiving section 21B by irradiating the second light receiving window 22B with the focused spot. (See FIG. 6B).
  • the measurement apparatus 1 includes a plurality of light receiving elements, and the position of a certain light receiving element (first light receiving element) with respect to the optical axis of the light receiving optical system 32 and the position of the light receiving optical system 32 A direction in which the first light receiving window 22A and the second light receiving window 22B of a certain light receiving element (first light receiving element) are arranged in a direction different from the position of another second light receiving element (second light receiving element) with respect to the optical axis; It is desirable that the direction in which the first light receiving window 22A and the second light receiving window 22B of another light receiving element (second light receiving element) are arranged is different. This makes it easier for each of the second light receiving portions 21B to detect the reflected light.
  • FIG. 13A is an explanatory diagram when the state of the object 90 shown in FIG. 1 changes. As indicated by the dotted line in FIG. 13A, when the object 90 changes, the reflected light changes. Although FIG. 13A shows how the inclination of the surface of the object 90 changes, changes in the state of the object 90 are not limited to this.
  • FIG. 13B is an explanatory diagram of the shift of the focused spot in the light receiving element 20 shown in FIG.
  • a hatched area in FIG. 13B is a condensed spot of the reflected light condensed by the light receiving optical system 32 .
  • the position and shape of the focused spot may change as shown in FIG. 13B.
  • a change in the position or shape of the condensed spot may be expressed as "shift of the condensed spot".
  • the light receiving windows of all the light receiving elements 20 under all measurement conditions It becomes difficult to make the focused spots incident on the inside of 22 respectively, and the focused spots tend to shift when changes occur in the object 90 under at least one of the measurement conditions.
  • the output signal of the light-receiving element 20 only weakens when the focused spot shifts.
  • FIG. 14A is an explanatory diagram of an example of the light receiving element of this embodiment.
  • FIG. 14B is an explanatory diagram of the light-receiving windows 22 (the first light-receiving window 22A and the second light-receiving window 22B) and the focused spots in the light-receiving element 20 of this embodiment.
  • the light receiving surface of the light receiving element 20 of this embodiment is provided with a first light receiving window 22A and a second light receiving window 22B.
  • a first light receiving portion 21A, which is the light receiving portion 21, is provided in the first light receiving window 22A
  • a second light receiving portion 21B, which is the light receiving portion 21, is provided in the second light receiving window 22B.
  • the first light receiving portion 21A detects the light irradiated to the first light receiving window 22A
  • the second light receiving portion 21B detects the light irradiated to the second light receiving window 22B.
  • the light-receiving element 20 of the present embodiment even if a part of the condensed light spot deviates from the first light-receiving window 22A, the second light-receiving window 22B is irradiated with the condensed light spot. , the reflected light can be detected by the second light receiving section 21B. As already explained, since the focused spot may shift in accordance with the change of the object 90, the light receiving element 20 of the present embodiment can detect the shift of the focused spot based on the output of the second light receiving section 21B. Acquire data (new feature values).
  • the light emitting element 10 emits pulsed light (Tx in FIG. 1), so that the focused spot of the pulsed reflected light (Rx in FIG. 1) is received.
  • the element 20 is irradiated.
  • the first light receiving window 22A is irradiated with a sufficient amount of reflected light.
  • a relatively large pulsed current (first signal) is output.
  • the second light receiving section 21B outputs the signal (second signal) shown in the lower graph of FIG. 7A.
  • the pulsed current of the first signal becomes smaller as shown in the upper graph of FIG. 7B.
  • the second signal becomes a pulsed signal. Since the first light-receiving window 22A and the second light-receiving window 22B are simultaneously irradiated with the pulsed condensed light spot, the pulse timing of the second signal coincides with the timing at which the pulsed reflected light is received.
  • a plurality of second light receiving windows 22B (four in FIG. 14A) are provided. Even if the focused spot shifts in a different direction according to the change of the object 90, since the plurality of second light receiving windows 22B are provided around the first light receiving window 22A, the second light receiving windows 22B reflect light. It becomes easier to detect light. In this embodiment, there are four second light receiving windows 22B, but the number of second light receiving windows 22B is not limited to four.
  • the conversion unit 51 shown in FIG. 8A outputs the first signal (voltage) converted by the first conversion unit 51A and the second signal (voltage) converted by the second conversion unit 51B to separate signal lines. do.
  • An analog-to-digital conversion circuit 52 (ADC) is provided in each of the first conversion section 51A and the second conversion section 51B.
  • Each analog-digital conversion circuit 52 converts the voltage (analog signal) output from the first conversion unit 51A or the second conversion unit 51B into a digital signal, and outputs the voltage value to the controller 40 (arithmetic device 41). .
  • the controller 40 (arithmetic device 41) shown in FIG. 8A receives the first signal (voltage value) output from the first light receiving section 21A and the second signal (voltage value) output from the second light receiving section 21B. will do.
  • the controller 40 (arithmetic device 41) compares the voltage value of at least one of the first signal and the second signal with a threshold to obtain the time t when the pulsed reflected light is received (see FIGS. 7A and 7B). ) to obtain the Z coordinate of the object 90 (the distance to the object 90). Also, the controller 40 acquires the X coordinate and the Y coordinate of the object 90 based on the direction in which the laser beam is irradiated and the distance to the object 90 .
  • the controller 40 acquires the feature amount S other than the coordinates based on the second signal (voltage value) output from the second light receiving section 21B. That is, in the present embodiment, the controller 40 (arithmetic device 41) associates and acquires the X coordinate, Y coordinate, Z coordinate (distance to the object 90) and feature amount S for each measurement point of each frame. It will be.
  • the feature amount S is data acquired based on the second signal.
  • the feature amount S becomes data indicating the shift of the condensed spot.
  • the feature amount S is data that becomes 0 when the second light receiving section 21B does not receive light, and becomes 1 when the second light receiving section 21B receives light.
  • the feature amount S is not limited to binary data, and may be multi-value data.
  • the feature amount S may be the voltage value (multi-value data; second signal) of the second light receiving section 21B, or A ratio of the voltage value may be used.
  • the feature amount S may include N feature amounts S_1 to S_N based on the second signals of the respective second light receiving portions 21B. .
  • N feature quantities S_1 to S_N it becomes possible to acquire information about the shift direction of the focused spot.
  • the controller 40 uses four feature amounts S_1 to S_4 based on the second signals of the four second light receiving portions 21B of the light receiving element 20 shown in FIG. It is possible to obtain S.
  • FIG. 15 is an explanatory diagram of measurement point A in a certain frame and measurement point A' in another frame, which are the measurement targets of the controller 40 shown in FIG. 8A.
  • a point in FIG. 15 indicates a certain point in the point group forming the three-dimensional image.
  • the controller 40 (arithmetic device 41) generates data on the coordinates (x, y, z) at the measurement point A and the feature amount S (feature amount data) based on the output of the light receiving element 20 of a certain channel. are associated with each other.
  • the controller 40 (arithmetic unit 41) outputs data on the coordinates (x', y', z') at the measurement point A' based on the output of the light receiving element 20 of the same channel and the characteristic Quantity S′ (feature quantity data) is acquired in association with the quantity S′.
  • the controller 40 determines that the object 90 has changed (that the object 90 has moved) based on the coordinates (x, y, z) and the coordinates (x', y', z'). is possible. On the other hand, the controller 40 can also determine whether the object 90 has moved based on the feature amount S and the feature amount S'.
  • the object It is possible to detect when a change in 90 has occurred.
  • the feature amount S is 0 (all of the feature amounts S_1 to S_4 are 0) and the feature amount S' is 1 (at least one of the feature amounts S_1 to S_4 is 1)
  • the object It is possible to detect when a change in 90 has occurred.
  • data can be made redundant.
  • the method of using the feature amount S is not limited to detecting changes in the object 90 at the measurement point.
  • the controller 40 may use the feature amount S when clustering each point in the point group. Further, for example, the controller 40 may use the feature amount S of each point when matching the three-dimensional image indicated by the point group.
  • An example of a method for matching three-dimensional images represented by point clouds is as follows. First, training data having point cloud data (three-dimensional image) including the feature amount S and data of the object indicated by the point cloud data is prepared, and the point cloud data including the feature amount S of the training data is input. , the computer (the controller 40 or an external computer) generates a determination model outputting the data of the object of the teacher data by machine learning, and stores the determination model in the storage device 42 .
  • the controller 40 acquires point cloud data including the feature amount S based on the output of the light receiving element 20, as already described. Then, the controller 40 collates the point cloud data including the feature amount S based on the judgment model, and outputs the data of the target object 90 .
  • the point group matching method using the feature amount S is not limited to a matching method based on machine learning, and other matching methods may be used.
  • FIG. 16 is an explanatory diagram of another example of the photodetector.
  • the conversion unit 51 in FIG. 16 has a first conversion unit 51A, a second conversion unit 51B, a delay circuit 54, and a voltage addition unit .
  • the second conversion section 51B shown in FIG. 16 converts the second signal output from the second light receiving section 21B into a voltage with the polarity reversed when converting the current into a voltage.
  • the polarities of the voltage output from the first conversion section 51A and the voltage output from the second light receiving section 21B when light is detected are opposite.
  • the first conversion unit 51A and the second conversion unit 51B may output the voltage after inverting the polarity of the voltage, the first conversion unit 51A is used instead of the second light reception unit 21B.
  • the first signal output from is converted from current to voltage, it may be converted to a voltage with reversed polarity.
  • the delay circuit 54 is a circuit that delays an input signal by a predetermined time and outputs it.
  • the delay circuit 54 delays at least one of the first signal and the second signal.
  • the delay circuit 54 is provided on the side of the second conversion section 51B, and is not provided on the side of the first conversion section 51A.
  • the delay circuit 54 may be provided on the side of the first conversion section 51A, and the delay circuit 54 may not be provided on the side of the second conversion section 51B. It is also possible to provide delay circuits 54 set to different delay times in the first conversion section 51A and the second conversion section 51B, respectively.
  • delay circuits 54 set to different delay times may be provided in the respective second conversion sections 51B. This makes it possible to identify the second conversion unit 51B that has detected the light. That is, it becomes possible to acquire information about the shift direction of the focused spot.
  • the voltage adder 56 is a circuit that adds and outputs a plurality of input signals. As shown in FIG. 16, the voltage adder 56 adds the first signal (voltage) and the second signal (voltage) and outputs the result to a common signal line. The voltage adder 56 outputs a signal obtained by superimposing the first signal (voltage) and the second signal (voltage) to a common signal line.
  • the conversion section 51 has the voltage addition section 56, so that the conversion section 51 is configured to output the first signal and the second signal to a common signal line.
  • the voltage adder 56 outputs a signal obtained by superimposing the first signal (voltage) and the second signal (voltage) to the analog-digital conversion circuit 52 (ADC). For this reason, the analog-digital conversion circuit 52 (ADC) converts the signal obtained by superimposing the first signal (voltage) and the second signal (voltage) into a digital signal, and outputs the voltage value to the controller 40 (arithmetic device 41). to output
  • 17A and 17B are explanatory diagrams of a signal obtained by superimposing the first signal (voltage) and the second signal (voltage), output from the voltage adding section 56 shown in FIG.
  • the controller 40 compares the voltage value of the received signal with the threshold value to find the time t by the plus side pulse based on the first signal, and the Z coordinate of the object 90 (object distance to the object 90).
  • the controller 40 (arithmetic device 41) can obtain the time t from the plus-side pulse based on the first signal by comparing the voltage value of the received signal with the threshold. Thereby, the Z coordinate of the object 90 (distance to the object 90) can be acquired. Also, even if the plus-side pulse based on the first signal cannot be detected, the controller 40 (arithmetic unit 41) can obtain the time t' based on the minus-side pulse based on the second signal.
  • the controller 40 (arithmetic unit 41) obtains the time t' from the minus-side pulse, it obtains the time t at which the pulsed reflected light is received based on the delay time of the delay circuit 54. Furthermore, when both the time t and the time t' can be determined, that is, when the condensed light spot can be applied to both the first light receiving window 22A and the second light receiving window 22B, the controller 40 (computing device 41 ) can identify the second converter 51B that has detected the light based on the difference between time t and time t'. Thereby, the controller 40 can acquire information about the shift direction of the focused spot. Further, the controller 40 can obtain the feature amount S_1 to S_N as the feature amount S. FIG.
  • FIG. 18A is an explanatory diagram of another example of the photodetector.
  • the converter 51 in FIG. 18A has a plurality of second converters 51B.
  • the delay circuits 54 set to different delay times are provided in the respective second conversion units 51B, whereas in the conversion unit 51 shown in FIG. is provided in each of the second converters 51B.
  • FIG. 18B is an explanatory diagram of an example of a signal in which the first signal (voltage) and the second signal (voltage) are superimposed, which is output from the voltage adder 56 shown in FIG. 18A.
  • the controller 40 receives the signal shown in FIG.
  • the controller 40 Since the negative pulse is based on the second signal output from the second light receiving section 21B, and because the delay times of the plurality of delay circuits 54 shown in FIG. 18A are all the same, the controller 40 The time t' can be obtained based on the negative pulse based on the two signals, and the time t at which the pulsed reflected light is received based on the time t' and the delay time (predetermined time) of the delay circuit 54. can be asked for. Thereby, the controller 40 can acquire the Z coordinate of the object 90 , that is, the distance to the object 90 . Also, the controller 40 can acquire the feature amount S based on the negative pulse based on the second signal.
  • FIG. 19A is an explanatory diagram of another example of the photodetector.
  • the second converter 51B inverts the polarity of the voltage and outputs the second signal, whereas in the photodetector 50 shown in FIG. The second converter 51B outputs the second signal without inverting the polarity of the voltage.
  • FIG. 19B is an explanatory diagram of an example of a signal obtained by superimposing the first signal (voltage) and the second signal (voltage), which is output from the voltage adder 56 shown in FIG. 19A.
  • the controller 40 receives the signal shown in FIG. 19B from the photodetector 50. do. Since the first pulse is based on the first signal output from the first light receiving section 21A, the controller 40 can obtain the time t based on the first pulse. Thereby, the controller 40 can acquire the Z coordinate of the object 90 , that is, the distance to the object 90 . Also, since the second pulse is based on the second signal output from the second light receiving section 21B, the controller 40 can obtain the time t' based on the second pulse. That is, the controller 40 can acquire the feature amount S.
  • the controller 40 (arithmetic device 41) detects the light based on the difference between the time t and the time t′. 51B can be specified, information about the shift direction of the focused spot can be obtained, and feature amounts S_1 to S_N can be obtained as feature amounts S.
  • FIG. 51B can be specified, information about the shift direction of the focused spot can be obtained, and feature amounts S_1 to S_N can be obtained as feature amounts S.
  • FIG. 20 is an explanatory diagram of still another example of the photodetector.
  • the delay circuit 54 is provided in the conversion unit 51 shown in FIGS. 16 and 18A, whereas the delay circuit 54 is not provided in the conversion unit 51 shown in FIG. Therefore, the voltage addition unit 56 adds the first signal (voltage) output from the first conversion unit 51A and the second signal (voltage) output from the second conversion unit 51B, and outputs the result to a common signal line. .
  • FIGS. 21A and 21B are explanatory diagrams of the first signal and second signal input to the voltage addition section 56 shown in FIG. 20 and the signal output from the voltage addition section 56.
  • FIG. The left side of FIGS. 21A and 21B shows the first signal (voltage) output by the first converter 51A and the second signal (voltage) output by the second converter 51B.
  • the right side of FIGS. 21A and 21B shows the signal output from the voltage adder 56 shown in FIG. 20, that is, the signal obtained by superimposing the first signal and the second signal.
  • the pulse included in the signal (the signal obtained by superimposing the first signal and the second signal) output from the voltage adder 56 is positive or negative. It comes to show either polarity. That is, under such conditions, even without the delay circuit 54, the pulses of the first signal and the pulses of the second signal do not cancel each other out. Therefore, under the condition that either the first light receiving section 21A or the second light receiving section 21B detects light, the controller 40 receives the signal (the first signal and the second signal) from the light detection device in FIG. The time t can be determined based on the superimposed signal; see FIG. 21A and FIG. 21B right diagram). Thereby, the controller 40 can acquire the Z coordinate of the object 90 , that is, the distance to the object 90 . Also, under such conditions, the controller 40 controls the pulse rate of the signal received from the photodetector in FIG. A feature quantity S can be obtained based on the polarity.
  • FIG. 22A is an explanatory diagram of an example of a photodetector using a light receiving element of a modified example.
  • 22B and 22C are explanatory diagrams of the connection between the light receiving element shown in FIG. 22A and the conversion unit 51 (transimpedance amplifier).
  • the cathode of the first light receiving section 21A is connected to the negative input terminal of the conversion section 51 configured by a differential transimpedance amplifier, and the cathode of the second light receiving section 21B is connected to the conversion It is connected to the positive input terminal of the section 51 .
  • a negative current first signal flows from the negative input terminal of the converting section 51 to the first light receiving section 21A, and as a result, the output of the converting section 51 becomes negative. .
  • a negative current flows from the positive input terminal of the converting section 51 to the second light receiving section 21B, and as a result, the output of the converting section 51 becomes positive. becomes.
  • the direction of current flowing from the first light receiving section 21A and the second light receiving section 21B to the conversion section 51 is positive.
  • the anode of the first light receiving section 21A and the cathode of the second light receiving section 21B are connected to the input terminal of the conversion section 51 via a common signal line.
  • a positive current first signal
  • a negative current second signal
  • the output of the converting portion 51 becomes negative.
  • the controller 40 of FIG. 22A receives the signals (or signals of opposite polarity) shown on the right side of FIGS. 21A and 21B. This allows the controller 40 to determine the time t based on the signal received from the photodetector 50 of FIG. 22A. Thereby, the controller 40 can acquire the Z coordinate of the object 90 , that is, the distance to the object 90 . Also, the controller 40 can acquire the feature amount S based on the signal received from the photodetector 50 of FIG. 22A. According to the photodetector 50 shown in FIG. 22A, the number of transimpedance amplifiers (TIAs) and analog-to-digital conversion circuits 52 (ADC) in the photodetector 50 can be reduced.
  • TIAs transimpedance amplifiers
  • ADC analog-to-digital conversion circuits 52
  • the light receiving element 20 shown in FIGS. 11A to 11D has a first light receiving window 22A and four second light receiving windows 22B.
  • a first light receiving window 22A is arranged in the center of the light receiving surface of the light receiving element 20, and four second light receiving windows 22B are arranged around the first light receiving window 22A.
  • two second light receiving windows 22B are arranged so as to sandwich the first light receiving window 22A.
  • the focused light spot shifts in a predetermined direction (for example, +Y direction) under certain measurement conditions, and the focused light spot shifts in a predetermined direction (for example, the +Y direction) under other measurement conditions. Even if the spot shifts in the opposite direction (for example, the -Y direction), the second light receiving window 22B makes it easier to detect the reflected light.
  • a predetermined direction for example, +Y direction
  • the focused light spot shifts in a predetermined direction (for example, the +Y direction) under other measurement conditions.
  • the second light receiving window 22B makes it easier to detect the reflected light.
  • FIG. 23 is an explanatory diagram of an example of a light receiving element array in which a plurality of light receiving elements 20 shown in FIGS. 11A to 11D are arranged.
  • the measuring device 1 has a plurality of light receiving elements 20 arranged two-dimensionally in the X direction and the Y direction.
  • the light-receiving elements 20 are shifted with respect to the optical axis of the light-receiving optical system 32 (the center of the circle of the dotted line). There is a need to.
  • the position of a certain light receiving element 20 (first light receiving element) with respect to the optical axis differs from the position of another light receiving element 20 (second light receiving element) with respect to the optical axis. Since the direction in which the focused spot shifts differs depending on the position of the light receiving element 20 with respect to the light receiving optical system 32, the focused spot incident on each of the plurality of light receiving elements 20 arranged two-dimensionally shifts in a different direction. Each is different.
  • the directions in which the first light receiving windows 22A and the second light receiving windows 22B of the respective light receiving elements 20 are arranged are made different according to the direction in which the focused spot shifts.
  • the directions in which the first light receiving window 22A and the second light receiving window 22B are arranged are, for example, the X direction and the Y direction.
  • the direction in which the first light receiving window 22A and the second light receiving window 22B are arranged is the direction crossing the X direction and the Y direction. According to this embodiment, it becomes easier for the second light receiving section 21B to detect the reflected light.
  • the direction in which the first light receiving windows 22A and the second light receiving windows 22B of all the light receiving elements 20 of the light receiving element array are aligned may be the same. Further, not all the light receiving elements of the light receiving element array may be the light receiving elements having the first light receiving window 22A and the second light receiving window 22B of the present embodiment, and some of the light receiving elements may be the light receiving elements shown in FIG. 4A. can be Also, the number of second light receiving windows 22B may be different for each light receiving element 20 .
  • the light receiving element 20 of the present embodiment includes the first light receiving portion 21A that outputs the first signal corresponding to the light irradiated to the first light receiving window 22A, and the first light receiving portion 21A provided around the first light receiving portion 21A. and a second light receiving portion 21B that outputs a second signal according to the light irradiated to the second light receiving window 22B (see FIG. 14A).
  • the plurality of second light receiving windows 22B be evenly arranged around the first light receiving window 22A (see FIGS. 11A to 11D). This makes it easy to detect the reflected light by the second light receiving window 22B regardless of which direction the focused spot shifts.
  • a plurality of second light receiving windows 22B may be arranged at non-uniform intervals around the first light receiving window 22A according to the direction in which the focused spot shifts. As shown in FIGS. 11A to 11D, since the light receiving surface of the light receiving element 20 is generally rectangular, the number of the second light receiving windows 22B is set to four, and the four second light receiving windows 22B are the first light receiving windows. It is desirable that they are evenly distributed around the window 22A.
  • the first light receiving window 22A and the plurality of second light receiving windows 22B are arranged on the diagonal lines of the rectangular light receiving surface (see FIGS. 11B and 11D). This makes it easier to arrange the first light receiving window 22A and the four second light receiving windows 22B in the narrow space of the light receiving surface.
  • the photodetector 50 of the present embodiment includes the first light receiving section 21A that outputs the first signal corresponding to the light irradiated to the first light receiving window 22A, and the first light receiving section 21A adjacent to the first light receiving section 21A.
  • a light receiving element 20 having a second light receiving portion 21B for outputting a second signal corresponding to the light irradiated to the second light receiving window 22B; (see FIGS. 8A, 16, 18A, 19A, 20, 22B and 22C). This makes it possible to acquire a new feature amount, which is data relating to the shift of the focused spot, based on the second signal from the second light receiving section 21B (see FIG. 14B).
  • the converter 51 outputs the first signal and the second signal to separate signal lines. This allows the controller 40 to obtain the first signal and the second signal separately.
  • the converter 51 outputs the first signal and the second signal to a common signal line. This makes it possible, for example, to reduce the number of analog-to-digital conversion circuits 52 (ADC).
  • ADC analog-to-digital conversion circuits 52
  • the converter 51 delays at least one of the first signal and the second signal, and transfers the first signal and the second signal to a common signal line. Output. This enables the controller 40 to acquire a new feature amount, which is data relating to the shift of the condensed spot, from the signal obtained by superimposing the first signal and the second signal.
  • the converter 51 converts the first signal and the second signal to a common signal line while inverting the polarity of one of the first signal and the second signal. output to This enables the controller 40 to acquire a new feature amount, which is data relating to the shift of the condensed spot, from the signal obtained by superimposing the first signal and the second signal.
  • the converter 51 inverts the polarity of one of the first signal and the second signal, delays at least one of the first signal and the second signal, and 1 signal and the second signal are output to a common signal line. Thereby, the controller 40 can more reliably obtain the time t at which the pulsed reflected light is received.
  • the measuring apparatus 1 of the present embodiment includes the light emitting element 10 that irradiates the object 90 with light, the optical system 30, the light receiving element 20 that outputs the first signal and the second signal described above, and an arithmetic unit 41 (controller 40).
  • Arithmetic device 41 calculates the distance to the object based on at least one of the first signal and the second signal, and generates data on the distance (Z coordinate) and feature amount data (feature amount S) based on the second signal. are associated with each other (see FIG. 15). This makes it possible to make the data redundant by associating the feature data with the distance data (Z coordinate). For example, by making the data redundant, it is possible to improve the accuracy of data analysis for the point cloud measured by the measuring device 1 .
  • the present invention is not limited to the above embodiments and includes various modifications.
  • the above-described embodiment describes the configuration in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本開示に係る受光素子(20)は、第1受光窓(22A)に照射された光を検出する第1受光部(21A)と、第2受光窓(22B)に照射された光を検出する第2受光部(21B)とを備え、前記第2受光窓(22B)は、前記第1受光窓(22A)の周囲に設けられている。

Description

受光素子、光検出装置及び測定装置
 本発明は、受光素子、光検出装置及び測定装置に関する。
 LiDAR(Light Detection and Ranging)などの距離測定システムでは、パルス状のレーザー光を投光してから反射光を受光するまでの時間を計測することによって、対象物までの距離を測定するTOF方式(Time of flight)が知られている。また、LiDARなどの距離測定システムでは、レーザー光を走査させて広い範囲で計測することも行われている。例えば特許文献1には、レーザー光を2次元走査させる距離測定システムが記載されている。特許文献1記載の距離測定システムでは、レーザー光の照射位置(発光素子の位置)とレーザーパルスの飛行時間とに基づいて、対象物の表面上の点のX,Y,Z座標を測定し、このような点で構成された3次元画像(点群;点クラウド)を測定する。なお、特許文献1記載には、対象物の表面の反射率を測定することも記載されている。
日本国特表2021-500554号公報
 LiDARなどの距離測定システムを車両に搭載する場合には、距離測定システムを構成する発光素子、受光素子及び光学系などを狭い空間に配置する必要がある。また、1つの光学系に対して複数の受光素子を配置する場合には、光学系の光軸に対して受光素子をずらして配置する必要がある。この結果、受光素子の受光面上において反射光の集光スポットの歪みが大きくなり、受光素子が反射光を正常に受光できないおそれがある。特に、近距離から遠距離までの幅広い範囲で測距可能に距離測定システムを構成しようとすると、少なくともいずれかの測定条件下で受光素子の受光面上における集光スポットの歪みが大きくなり、受光素子が反射光を正常に受光できないおそれがある。若しくは、全ての測定条件下で受光素子の受光窓に集光スポットが照射されるように光学系を構成しようとすると、光学系が大型化してしまい、距離測定システムの車載が困難になる。
 また、TOF方式で対象物の表面の座標を測定する場合、異なるタイミングで測定した点の座標を比較することによって、対象物の状態(例えば対象物の動きや速度など)を検知することが一般的に行われている。但し、座標とは別の情報を取得することができれば、その情報に基づいて対象物の状態を検知することが可能になり、対象物をより正確に測定可能になる。
 本発明は、歪んだ集光スポットを受光可能な受光素子を提供することを目的とする。
 また、本発明は、新規な情報を取得可能な受光素子を提供することを目的とする。
 上記目的の一つを達成するための本発明は、第1受光窓に照射された光を検出する第1受光部と、第2受光窓に照射された光を検出する第2受光部と、を備え、前記第2受光窓は、前記第1受光窓の周囲に設けられている、受光素子である。
 また、上記目的の一つを達成するための本発明は、第1受光窓に照射された光に応じた第1信号を出力する第1受光部と、前記第1受光窓の周囲に設けられた第2受光窓に照射された光に応じた第2信号を出力する第2受光部と、を備えている、受光素子である。
 その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。
 本発明によれば、歪んだ集光スポットを受光素子が受光可能になる。
 また、本発明によれば、受光素子が新規な情報を取得可能である。
図1は、測定装置の一例の説明図である。 図2は、図1に示すX方向から見た実装基板5の説明図である。 図3Aは、図1に示す測定装置による2次元走査の説明図である。 図3Bは、図1に示す測定装置による或るフレームにおける2次元走査の説明図である。 図3Cは、図1に示す測定装置による複数チャンネルにおける2次元走査の説明図である。 図4Aは、比較例の受光素子20を上から見た図である。 図4Bは、図1に示す受光素子の受光部の一例の断面図である。 図5Aは、図1に示す受光用光学系32による集光の様子の説明図である。 図5Bは、図1に示す受光用光学系32の光軸上の受光素子20における受光窓22と集光スポットの説明図である。 図5Cは、図1に示す受光用光学系32の光軸から外れた位置の受光素子20における受光窓22と集光スポットの説明図である。 図6Aは、第一実施形態の受光素子の一例の説明図である。 図6Bは、第一実施形態の受光素子20における受光窓22(第1受光窓22A及び第2受光窓22B)と集光スポットの説明図である。 図7Aは、図1に示す受光素子20の出力信号の説明図である。 図7Bは、図1に示す受光素子20の出力信号の説明図である。 図8Aは、第一実施形態の受光素子を用いた光検出装置の一例の説明図である。 図8Bは、光検出装置の別の一例の説明図である。 図9Aは、変形例の受光素子を用いた光検出装置の一例の説明図である。 図9Bは、変形例の受光素子と変換部51との接続の説明図である。 図9Cは、変形例の受光素子と変換部51との接続の説明図である。 図10Aは、第1受光窓22A及び第2受光窓22Bの例の説明図である。 図10Bは、第1受光窓22A及び第2受光窓22Bの例の説明図である。 図10Cは、第1受光窓22A及び第2受光窓22Bの例の説明図である。 図10Dは、第1受光窓22A及び第2受光窓22Bの例の説明図である。 図10Eは、第1受光窓22A及び第2受光窓22Bの例の説明図である。 図10Fは、第1受光窓22A及び第2受光窓22Bの例の説明図である。 図11Aは、第1受光窓22A及び第2受光窓22Bの別の例の説明図である。 図11Bは、第1受光窓22A及び第2受光窓22Bの別の例の説明図である。 図11Cは、第1受光窓22A及び第2受光窓22Bの別の例の説明図である。 図11Dは、第1受光窓22A及び第2受光窓22Bの別の例の説明図である。 図12は、図1に示す複数の受光素子20を配列させた受光素子アレイの一例の説明図である。 図13Aは、図1に示す対象物90に変化が生じた場合の説明図である。 図13Bは、図1に示す受光素子20における集光スポットのシフトの説明図である。 図14Aは、第二実施形態の受光素子の一例の説明図である。 図14Bは、第二実施形態の受光素子20における受光窓22(第1受光窓22A及び第2受光窓22B)と集光スポットの説明図である。 図15は、図8Aに示すコントローラー40の測定対象となる、或るフレームでの測定点Aと、別のフレームでの測定点A’の説明図である。 図16は、光検出装置の別の一例の説明図である。 図17Aは、図16に示す電圧加算部56により出力される、第1信号(電圧)と第2信号(電圧)とを重畳させた信号の説明図である。 図17Bは、図16に示す電圧加算部56により出力される、第1信号(電圧)と第2信号(電圧)とを重畳させた信号の説明図である。 図18Aは、光検出装置の別の一例の説明図である。 図18Bは、図18Aに示す電圧加算部56により出力される、第1信号(電圧)と第2信号(電圧)とを重畳させた信号の一例の説明図である。 図19Aは、光検出装置の別の一例の説明図である。 図19Bは、図19Aに示す電圧加算部56により出力される、第1信号(電圧)と第2信号(電圧)とを重畳させた信号の一例の説明図である。 図20は、光検出装置の更に別の一例の説明図である。 図21Aは、図20に示す電圧加算部56に入力される第1信号及び第2信号、ならびに電圧加算部56から出力される信号の説明図である。 図21Bは、図20に示す電圧加算部56に入力される第1信号及び第2信号、ならびに電圧加算部56から出力される信号の説明図である。 図22Aは、変形例の受光素子を用いた光検出装置の一例の説明図である。 図22Bは、図22Aに示す受光素子と変換部51(トランスインピーダンス・アンプ)との接続の説明図である。 図22Cは、図22Aに示す受光素子と変換部51(トランスインピーダンス・アンプ)との接続の別の例の説明図である。 図23は、図11A~図11Dに示す複数の受光素子20を配列させた受光素子アレイの一例の説明図である。
 以下、本発明を実施するための形態について図面を参照しつつ説明する。なお、以下の説明において、同一の又は類似する構成について共通の符号を付して重複した説明を省略することがある。
[第一実施形態]
 <測定装置について>
 図1は、測定装置の一例の説明図である。
 以下の説明では、図1に示すように各方向を定めている。受光用光学系32若しくは投光用光学系31の光軸、すなわちレンズの回転対称軸に沿った方向をZ方向とする。なお、測定装置1の測定対象となる対象物90は、測定装置1に対してZ方向に離れていることになる。また、Z方向に垂直な方向であって、投光用光学系31と受光用光学系32の並ぶ方向をX方向とする。また、Z方向及びX方向に垂直な方向をY方向とする。
 測定装置1は、対象物90の表面を測定するための装置である。具体的には、測定装置1は、発光素子10からレーザー光(図1のTx)を射出し、対象物90の表面で反射した反射光(図1のRx)を受光素子20によって検出し、検出結果に基づいて、対象物90までの距離を算出する装置である。測定装置1は、発光素子10と、受光素子20と、光学系30と、コントローラー40とを備える。また、測定装置1は、複数の発光素子10と複数の受光素子20を有する実装基板5と、駆動装置45を備えている。
 発光素子10は、電気信号を光信号に変換する素子である。例えば、発光素子10は、LDチップ(LD:Laser Diode)であり、レーザー光を射出する。本実施形態では、発光素子10は、対象物90の表面に向かってパルス光(図1のTx)を射出する。本実施形態の発光素子10は、端面発光半導体レーザーで構成されており、実装基板5に表面実装されており、基板面に平行にレーザー光を射出する。なお、発光素子10は、端面発光半導体レーザーに限られるものではなく、実装基板5への実装方法もこれに限られるものではない。
 受光素子20は、光信号を電気信号に変換する素子である。例えば、受光素子20は、PDチップ(Photodiode)である。受光素子20の詳しい構成については後述する。受光素子20は、受光面に反射光が入射されるように、実装基板5の基板面に対して受光面を立てた状態で実装されている。なお、受光素子20の実装方法はこれに限られるものではない。
 光学系30は、発光素子10から出力される光を対象物90に向かって照射するとともに、対象物90からの反射光を受光素子20に受光させるための光学系である。発光素子10と受光素子20は、光学系30に対して共役の位置に配置されている。本実施形態の光学系30は、投光用光学系31と、受光用光学系32とを有する。
 投光用光学系31は、発光素子10から出力される光を対象物90に向かって照射するための光学系である。投光用光学系31の焦点面内に発光素子10が配置されている。投光用光学系31は、発光素子10から射出されたレーザー光をコリメート光として対象物90に照射する。発光素子10と投光用光学系31との位置関係に応じた所定の方向(所定の角度)にコリメート光が照射される。発光素子10は投光用光学系31を介して対象物90に光を照射する。投光用光学系31は、複数枚(例えば5~7枚)のレンズで構成されたレンズ群によってそれぞれ構成されている(図1では、投光用光学系31のレンズ群が簡易的に示されている)。
 受光用光学系32は、対象物90からの反射光を受光素子20に受光させるための光学系である。受光用光学系32の焦点面内に受光素子20の受光面が配置されている。受光用光学系32は、対象物90の反射光を所定の受光素子20の受光面に集光する。受光素子20は受光用光学系32を介して対象物90からの反射光を受光する。受光用光学系32も、投光用光学系31と同様に、複数枚(例えば5~7枚)のレンズで構成されたレンズ群によってそれぞれ構成されている。図1では、受光用光学系32のレンズ群が簡易的に示されている。
 投光用光学系31と受光用光学系32は、一体的に構成されており、互いの位置関係が固定されている。具体的には、投光用光学系31を構成する投光用鏡筒と、受光用光学系32を構成する受光用鏡筒とが共通の光学用フレーム33に固定されている。
 コントローラー40は、測定装置1の制御を司る制御部である。コントローラー40は、発光素子10からのレーザー光の射出を制御する。また、コントローラー40は、受光素子20の出力信号に基づいて、対象物90までの距離を算出する。具体的には、コントローラー40は、発光素子10からパルス状のレーザー光を投光してから、受光素子20が反射光を受光するまでの時間を計測することによって、対象物90までの距離を測定する。すなわち、コントローラー40は、発光素子10及び受光素子20を制御することによって、TOF方式(Time of flight)により対象物90までの距離、すなわち対象物90の表面のZ座標を測定する。また、所定の方向にレーザー光が照射され、所定の方向の反射光を受光することを利用して、コントローラー40は、XY方向に走査しながら対象物90の表面のZ座標を測定することによって、対象物90の表面のX,Y,Z座標を測定可能である。
 コントローラー40は、演算装置41と、記憶装置42とを有する。演算装置41は、例えばCPU、GPUなどの演算処理装置である。記憶装置42は、主記憶装置と補助記憶装置とにより構成され、プログラムやデータを記憶する装置である。記憶装置42に記憶されているプログラムを演算装置41が実行することにより、演算装置41は、発光素子10からのレーザー光の射出を制御するとともに、受光素子20の出力信号に基づいて、対象物90までの距離を算出する。また、演算装置41は、受光素子20の出力信号に基づいて、対象物90の表面のX,Y,Z座標を算出する。演算装置41は、取得した座標データを記憶装置42に記憶しても良いし、外部の記憶装置に記憶しても良い。対象物90の表面上の多数の点のX,Y,Z座標のデータは、対象物90の表面の3次元画像(点群:点クラウド)を示すデータである。演算装置41は、記憶装置42に記憶されているプログラムを演算装置41が実行することにより、記憶装置42に記憶された3次元画像に基づいて、対象物90の解析を行っても良い。
 実装基板5は、複数の発光素子10と、複数の受光素子20とを実装した基板である。或る受光素子20は特定の発光素子10に対応付けられており、或る受光素子20の検出位置は、特定の発光素子10の発光位置と共役である。本実施形態では、発光素子10と受光素子20との対が複数あり、複数のチャンネルで対象物90の表面を測定可能である。なお、発光素子10は、実装基板5の基板面に平行にレーザー光を射出し、受光素子20は、実装基板5の基板面にほぼ平行な方向から入射する光である反射光を受光する。
 図1に示すように、実装基板5は、5個の発光素子10と、5個の受光素子20とを有する。但し、発光素子10や受光素子20の数は、これに限られるものではない。実装基板5には、複数の発光素子10がX方向の異なる位置に配置されている。また、実装基板5には、複数の受光素子20がX方向の異なる位置に配置されている。
 図1に示すように、実装基板5には、発光側湾曲部6と、受光側湾曲部7とが設けられている。
 発光側湾曲部6は、円弧状の縁を有する部位である。発光側湾曲部6は、投光用光学系31の像面湾曲に沿うように複数の発光素子10を配置するための部位である。発光側湾曲部6の円弧状の縁に沿って複数の発光素子10が配置されている。これにより、それぞれの発光素子10は、投光用光学系31に対して、適切な位置及び角度に配置され、投光用光学系31の像面湾曲の影響を軽減できる。
 受光側湾曲部7は、円弧状の縁を有する部位であり、発光側湾曲部6とはX方向の異なる位置に設けられている。受光側湾曲部7は、受光用光学系32の像面湾曲に沿うように複数の受光素子20を配置するための部位である。受光側湾曲部7の円弧状の縁に沿って、複数の受光素子20が配置されている。これにより、それぞれの受光素子20は、受光用光学系32に対して、適切な位置及び角度に配置され、受光用光学系32の像面湾曲の影響を軽減できる。
 但し、実装基板5に発光側湾曲部6や受光側湾曲部7が設けられていなくても良い。この場合、実装基板5のZ方向に垂直な縁に沿って、複数の発光素子10や複数の受光素子20が配列される。
 図2は、図1に示すX方向から見た実装基板5の説明図である。ここでは説明のため、実装基板5の発光側湾曲部6や受光側湾曲部7を省略し、実装基板5のX方向に平行な縁に沿って発光素子10及び受光素子20が配置されているものとする。なお、ここでは説明のため、実装基板5の傾きが強調されて図示されている。
 図2に示すように、測定装置1は、複数枚の実装基板5(ここでは3枚の実装基板5)を有している。複数枚の実装基板5は、Y方向の異なる位置に配置されている。各実装基板5には、図1に示すように、X方向の異なる位置に複数(ここでは5個)の発光素子10及び複数の受光素子20が配置されている。このため、X方向及びY方向に複数(ここでは15個)の発光素子10を配列させた発光素子アレイが構成されるとともに、X方向及びY方向に複数の受光素子20を配列させた受光素子アレイが構成される。ここでは、5×3の15チャンネル(X方向に5チャンネル、Y方向に3チャンネル)で対象物90の表面を測定する。
 複数枚の実装基板5は、Z方向に対して異なる角度で配置されている。具体的には、図2に示すように、各実装基板5の発光素子10が投光用光学系31を向くように、また、各実装基板5の受光素子20の受光面が受光用光学系32を向くように、それぞれの実装基板5が、Z方向に対して異なる角度で配置されている。これにより、発光素子10及び受光素子20が光学系30に対してそれぞれ適切な位置及び角度に配置されるため、光学系30の像面湾曲の影響を軽減できる。各実装基板5の発光素子10は、その実装基板5の基板面に平行にレーザー光を射出するように配置されている。また、各実装基板5の受光素子20は、その実装基板5の基板面にほぼ平行な方向から入射する光(反射光)を受光するように配置されている。複数(ここでは5個)の発光素子10及び複数(ここでは5個)の受光素子20が同じ基板に実装されているため、また、投光用光学系31と受光用光学系32がそれぞれ別に設けられているため、実装基板5をZ方向(光学系30の光軸の方向)に対して傾けても、それぞれの発光素子10と受光素子20とを光学系30に対して共役の位置関係に維持することができる。なお、本実施形態のように実装基板5に発光側湾曲部6及び受光側湾曲部7が設けられていれば、実装基板5を傾けても、投光用光学系31の像面湾曲に沿うように複数の発行素子を配置させ易く、また、受光用光学系32の像面湾曲に沿うように複数の受光素子20を配置させ易い。
 なお、複数の実装基板5をZ方向に平行に配置し、互いに平行に配置しても良い。但し、仮に各実装基板5を互いに平行に配置した場合には、実装基板5ごとに、発光素子10及び受光素子20が光学系30に対して適切な位置及び角度になるように、実装基板5に対する発光素子10及び受光素子20の位置及び角度を異ならせる必要がある。これに対し、本実施形態では、実装基板5の傾きを異ならせるため、いずれの実装基板5においても、発光素子10が実装基板5に平行にレーザー光を射出し、受光素子20が実装基板5にほぼ平行な方向から入射する光(反射光)を受光するように構成することができる。このため、本実施形態では、複数の発光素子10及び複数の受光素子20を、X方向及びY方向の異なる位置に、簡易な構成で、光学系30に対して適切な位置及び角度に配置できる。
 複数(ここでは3枚)の実装基板5は、一体的に固定されており、互いの位置関係が固定されている。具体的には、複数の実装基板5は、共通の基板用フレーム8に固定されている。但し、複数の発光素子10及び複数の受光素子20の位置関係を固定できれば、他の方法で複数の発光素子10及び複数の受光素子20の位置関係を固定しても良い。また、測定装置1が複数の実装基板5を備えていなくても良い。
 駆動装置45(図1参照)は、光学系30と実装基板5(発光素子10及び受光素子20)とをXY方向に相対移動させる装置である。駆動装置45が光学系30と実装基板5とをXY方向に相対移動させることによって、光学系30に対する発光素子10の位置関係を変化させ、レーザー光の照射される角度を変化させ、これにより、レーザー光を走査させることができる。
 駆動装置45は、光学系30と実装基板5の少なくとも一方(光学系30と実装基板5の一方、又は光学系30と実装基板5の両方)を移動させる。なお、駆動装置45は、光学系30を実装基板5に対してXY方向に移動させても良いし、実装基板5に対して光学系30をXY方向に移動させても良いし、光学系30をX方向(又はY方向)に移動させつつ実装基板5をY方向(又はX方向)に移動させても良い。本実施形態では、光学用フレーム33と基板用フレーム8の少なくとも一方がX方向及びY方向にそれぞれ所定の共振周波数で筐体3に支持されており、駆動装置45は、光学系30と実装基板5の少なくとも一方をX方向及びY方向にそれぞれの共振周波数で振動させている。駆動装置45は、例えばボイスコイルモータで構成されるが、これに限られるものではない。例えば、駆動装置45は、圧電素子によって構成されても良い。
 図3Aは、測定装置1による2次元走査の説明図である。本実施形態では、光学系30と実装基板5の少なくとも一方をX方向及びY方向にそれぞれの共振周波数で振動させることによって、光学系30と実装基板5(発光素子10又は受光素子20)が図3Aに示すようにリサージュ曲線に沿ってXY方向に相対的に変位する。リサージュ曲線は、X=Asin(at+δ),Y=Bsin(bt)のグラフとなる。ここで、a及びbは、それぞれX方向及びY方向の周波数であり、tは時間であり、δは位相差である。既に説明した通り、光学用フレーム33と基板用フレーム8の少なくとも一方がX方向及びY方向にそれぞれ所定の共振周波数で支持されているため、a及びbは既知の値となる。また、駆動装置45が所定の振幅で光学用フレーム33又は基板用フレーム8を共振させることによってA,Bは既知の値となり、駆動装置45によるX方向及びY方向の駆動タイミングに基づいてδは既知の値となる。このため、コントローラー40は、時間tに基づいて、光学系30に対する発光素子10(若しくは受光素子20)のXY方向の位置を算出可能である。つまり、コントローラー40は、時間tに基づいて、レーザー光が照射される方向を算出可能である。なお、コントローラー40は、時間tに基づいて、レーザー光が照射される方向を算出する代わりに、不図示の位置検出器によって光学用フレーム33と基板用フレーム8とのXY方向の相対位置を検出し、この検出結果に基づいてレーザー光が照射される方向を算出しても良い。
 図3Bは、測定装置1による或るフレームにおける2次元走査の説明図である。コントローラー40は、所定時間毎に、1枚のフレーム(対象物90の1枚の3次元画像)を取得する。1枚のフレーム(1枚の3次元画像)の測定ごとに、リサージュ曲線上の複数の点において対象物90の表面のX,Y,Z座標を測定する。これにより、解像度を高めて座標を測定可能である。なお、フレーム毎に同じリサージュ曲線が反復されても良い。この場合、各フレームにおいて、同じ位置で対象物90の表面の測定が可能になる。一方、フレーム毎にリサージュ曲線がシフトしても良い。この場合、次のフレームにおいて、前のフレームで測定した点群の間を補間するように、対象物90の表面の測定が可能になる。
 図3Cは、測定装置1による複数チャンネルにおける2次元走査の説明図である。図示するように、本実施形態では、チャンネル毎に異なる範囲で2次元走査が行われる。これにより、X方向及びY方向の広い範囲において、対象物90の表面の測定が可能になり、広いFOV(field of view)を実現できる。
 なお、2次元走査がリサージュ曲線に沿って行われなくても良い。例えば、X方向(又はY方向)のライン走査をY方向(又はX方向)にずらして複数回行うことによって、2次元走査が行われても良い。また、2次元走査ではなく、1次元走査が行われるだけでも良い。また、走査が行われなくても良い。走査を行わない場合には、測定装置1は駆動装置45を備えていなくても良い。但し、走査を行わない場合には、本実施形態と比べて、点群の解像度が低下する。
 <受光素子について>
 まず比較例の受光素子について説明した後、本実施形態の受光素子について説明する。
 図4Aは、比較例の受光素子20を上から見た図である。図4Bは、図1に示す受光素子の受光部の一例の断面図である。
 受光素子20は、光を受光する受光窓22を有する。受光窓22は、受光素子20の受光面に設けられた受光領域である。例えば受光素子20がアバランシェフォトダイオード(APD:Avalanche Photodiode)の場合、受光素子20の受光部21は、基板上にバッファ層、光吸収層、中間層、倍増層及び窓層を有しており、更に受光領域と受光領域の外周部のガードリングとを有しており、基板表面及び裏面にそれぞれ電極23及び電極24を有している。後述の第1受光部21A及び第2受光部21Bも同様である。また、受光素子20の受光面には保護層も形成される。ここでは、受光窓22は、環状の電極23(受光面側の電極;基板表面側の電極)の内側の領域に相当する。受光窓22の直径のことを受光径と呼ぶことがある。受光素子20の大きさが数ミリ角(例えば5mm角)であるのに対し、受光径は例えば500μmである。但し、受光素子20や受光径の大きさは、これに限られるものではない。
 図4Aに示すように、比較例の受光素子20は、受光素子20を構成するチップの中央に受光窓22が1つ設けられている。比較例の受光素子20の受光窓22は、チップの中央に設けられた1つのみである。
 図5Aは、図1に示す受光用光学系32による集光の様子の説明図である。図5Bは、図1に示す受光用光学系32の光軸上の受光素子20における受光窓22と集光スポットの説明図である。図5Cは、図1に示す受光用光学系32の光軸から外れた位置の受光素子20における受光窓22と集光スポットの説明図である。
 1つの受光用光学系32に対して複数の受光素子20が配置されるため、図5Aに示すように、受光用光学系32に対して、光軸上に配置される受光素子20とは別に、光軸から外れた位置に配置される受光素子20が存在する。図5Aでは、受光用光学系32の光軸から外れた受光素子20が1つだけ描かれているが、受光用光学系32の光軸から外れた受光素子20は複数存在しており、更に、受光用光学系32の光軸に対する外れ方も互いに異なっている(後述;図12参照)。
 図5Bに示すように、光軸上に配置された受光素子20では、受光用光学系32によって集光された反射光の集光スポットは、ほぼ円形状になっており、受光窓22の内部に位置している。一方、図5Cに示すように、光軸から外れた位置に配置された受光素子20では、受光用光学系32によって集光された反射光の集光スポットは、楕円状に歪んでいる。集光スポットの歪み方は、楕円に限られるものではなく、受光用光学系32の構成や光の角度などの影響によって異なる。例えば、集光スポットは、円形スポットから尾を引く形状(彗星形状)や、帯状や弓なり状などの様々な形状に歪むことがある。前述の受光側湾曲部7に受光素子20が設けられた場合であっても、光軸から外れた位置に配置された受光素子20では、集光スポットの歪みを完全に除去することはできず、集光スポットは歪んでしまう。
 図4Aに示す比較例のように受光素子20の受光窓22が1つの場合、図5Cに示すように集光スポットの歪みが大きくなると、集光スポットの一部が受光窓22から外れるおそれがある。そして、図5Cに示すように、集光スポットの一部が受光窓22から外れると、受光素子20が受光する光エネルギーが低下し、この結果、受光素子20が反射光を正常に検出できないおそれがある。
 図6Aは、本実施形態の受光素子の一例の説明図である。図6Bは、本実施形態の受光素子20における受光窓22(第1受光窓22A及び第2受光窓22B)と集光スポットの説明図である。
 図6Aに示すように、本実施形態の受光素子20の受光面には、第1受光窓22Aと、第2受光窓22Bとが設けられている。第1受光窓22Aと第2受光窓22Bには、それぞれ、受光部21(図4B参照)が設けられている。以下の説明では、第1受光窓22Aを有する受光部21のことを「第1受光部」と呼び、第2受光窓22Bを有する受光部21のことを「第2受光部」と呼ぶ。本実施形態の受光素子20は、第1受光窓22Aに照射された光を検出する第1受光部21Aと、第2受光窓22Bに照射された光を検出する第2受光部21Bとを有する。なお、第1受光窓22A及び第2受光窓22Bのことをそれぞれ「メイン受光窓」及び「サブ受光窓」と呼び、第1受光部21A及び第2受光部21Bのことをそれぞれ「メイン受光部」及び「サブ受光部」と呼んでも良い。
 既に説明した通り、光軸から外れた位置に配置された受光素子20では、受光用光学系32によって集光された反射光の集光スポットが歪むことがある。本実施形態の受光素子20によれば、図6Bに示すように、仮に集光スポットの一部が第1受光窓22Aから外れても、集光スポットが第2受光窓22Bに照射されることによって、第2受光部21Bによって反射光を検出することが可能になる。
 図7A及び図7Bは、図1に示す受光素子20の出力信号の説明図である。それぞれの図の上側のグラフは、第1受光部21Aから出力される電流を示しており、下側のグラフは、第2受光部21Bから出力される電流を示している。なお、受光素子20から出力される電流は、プラス側の電流になる場合もあるし、マイナス側の電流になる場合もある(後述)。以下の説明では、第1受光部21Aから出力された信号のことを第1信号と呼び、第2受光部21Bから出力された信号のことを第2信号と呼ぶことがある。第1受光部21Aは、第1受光窓22Aに照射された光に応じた電流(第1信号)を出力することになる。また、第2受光部21Bは、第2受光窓22Bに照射された光に応じた電流(第2信号)を出力する。
 図7Aは、集光スポットが第1受光窓22Aの内部に位置する場合の第1信号及び第2信号の説明図である。
 既に説明した通り、本実施形態では、発光素子10はパルス光(図1のTx)を射出するため、パルス状の反射光(図1のRx)の集光スポットが受光素子20に照射される。集光スポットが第1受光窓22Aの内部に位置する場合には、第1受光窓22Aに十分な光量の反射光が照射されるため、第1受光部21Aは、図7Aの上側のグラフに示すように、比較的大きなパルス状の電流(第1信号)を出力する。この場合には、コントローラー40は、第1信号に基づいて、パルス状の反射光を受光した時間tを求めることができる。つまり、コントローラー40は、発光素子10からパルス状のレーザー光を投光してから、受光素子20が反射光を受光するまでの時間を計測することができ、対象物90までの距離を測定することができる。
 図7Bは、集光スポットの一部が第1受光窓22Aから外れた場合の第1信号及び第2信号の説明図である。
 集光スポットの一部が第1受光窓22Aから外れると(図6B参照)、図7Bの上側のグラフに示すように、第1信号のパルス状の電流は小さくなる。一方、パルス状の反射光の集光スポットが第2受光窓22Bに照射されると、第2信号は、パルス状の信号となる。第1受光窓22Aと第2受光窓22Bには同時にパルス状の集光スポットが照射されるため、第2信号のパルスのタイミングは、パルス状の反射光を受光したタイミングを示している。このため、コントローラー40は、第2信号に基づいて、パルス状の反射光を受光した時間tを求めることが可能である。つまり、仮に第1信号の電流が弱いために第1信号に基づいて時間tを求めることができなくても、コントローラー40は、第2信号に基づいて、発光素子10からパルス状のレーザー光を投光してから、受光素子20が反射光を受光するまでの時間を計測することができ、対象物90までの距離を測定することができる。
 ところで、受光用光学系32は、主に受光素子20の第1受光窓22Aに光が集光するように(図5B参照)、設計されている。このため、主な測定条件下では、第1受光窓22Aに照射される光量は、比較的多い。これに対し、第2受光窓22Bは、歪んだ集光スポットの一部の光を検出することが目的であるため、第2受光窓22Bに照射される光量は、比較的少ない。そこで、本実施形態では、第2受光窓22Bを有する第2受光部21Bは、第1受光窓22Aを有する第1受光部21Aよりも、感度が高くなるように構成されている。つまり、第2受光部21Bは、受光量に対して高い電流(図7B下側参照)を出力可能に構成されている。これにより、本実施形態では、第2受光部21Bによって反射光を検出し易くなる。
 なお、対象物90との距離に応じて反射光の強度が異なるため、第1受光部21Aは、異なる強度の光量に応じた検出信号を出力できるように、ダイナミックレンジが広くなるように構成されている。一般的に、ダイナミックレンジが広くなると、弱い受光量で強い電流を出力し難くなるため、感度が低くなる。一方、第2受光部21Bは、歪んだ集光スポットの一部の光を検出できれば良いため、ダイナミックレンジは広くなくても良い。このため、第2受光部21Bを第1受光部21Aよりも感度が高くなるように構成することが許容されている。
 また、一般的に、ダイナミックレンジを比較的広く構成する場合には、受光窓が比較的大きく構成され、感度を比較的高く構成する場合には、受光窓が比較的小さく構成される。このような理由から、広いダイナミックレンジと高い感度を両立させて受光素子20を構成することは一般的には困難である。但し、本実施形態では、第1受光部21Aと第2受光部21Bとを分けて構成しているため、第1受光部21Aはダイナミックレンジを広く構成し、第2受光部21Bは感度を高く構成することが可能である。このような理由から、本実施形態では、第1受光部21Aは第2受光窓22Bよりも大きく構成されている。これにより、第1受光部21Aの出力する第1信号のダイナミックレンジを広くしつつ、第2受光部21Bの出力する第2信号の電流を高めることができる。なお、受光窓22の大きさは、受光窓22が円形の場合には直径(受光径)によって定められ、受光窓22が非円形の場合には受光窓22の面積によって定められる。
 本実施形態では、第2受光窓22Bが複数(図6Aでは2つ)設けられている。これにより、集光スポットが条件に応じて異なる方向に歪んでも(集光スポットが第1受光窓22Aから異なる方向に外れても)、第2受光窓22Bによって反射光を検出し易くなる。なお、本実施形態では、第2受光窓22Bが2つであるが、第2受光窓22Bの数は2つに限られるものではない(後述)。
 図8Aは、本実施形態の受光素子を用いた光検出装置の一例の説明図である。例えば、前述の実装基板5には、図8Aに示す光検出装置50を構成するための回路が設けられている。
 光検出装置50は、上記の受光素子20と、変換部51とを有する。変換部51は、受光素子20から出力される信号を電流から電圧に変換する回路である。光検出装置50は、受光素子20毎に変換部51を有する。図8Aに示す変換部51は、第1変換部51Aと、第2変換部51Bとを有する。第1変換部51Aは、第1受光部21Aから出力される第1信号を電流から電圧に変換する回路である。第2変換部51Bは、第2受光部21Bから出力される第2信号を電流から電圧に変換する回路である。第1変換部51A及び第2変換部51Bは、トランスインピーダンス・アンプ(TIA)で構成される。
 光検出装置50は、アナログ-デジタル変換回路52(ADC)を有する。ここでは、第1変換部51A及び第2変換部51Bのそれぞれにアナログ-デジタル変換回路52(ADC)が設けられている。それぞれのアナログ-デジタル変換回路52は、第1変換部51A又は第2変換部51Bから出力される電圧(アナログ信号)をデジタル信号に変換し、コントローラー40(演算装置41)に信号を出力する。コントローラー40(演算装置41)は、第1信号及び第2信号の少なくとも一方の電圧値と閾値とを比較することによって、パルス状の反射光を受光した時間tを求め(図7A及び図7B参照)、発光素子10からパルス状のレーザー光を投光してから、受光素子20が反射光を受光するまでの時間を算出し、対象物90までの距離を算出する。
 図8Bは、光検出装置の別の一例の説明図である。ここでは、変換部51は、第1変換部51A及び第2変換部51Bから出力される電圧を電圧加算部53で加算する。アナログ-デジタル変換回路52は、電圧加算部53から出力される電圧(アナログ信号)をデジタル信号に変換し、コントローラー40(演算装置41)に信号を出力する。コントローラー40は、第1信号及び第2信号の電圧を加算した値と閾値とを比較することによって、パルス状の反射光を受光した時間tを求める。このようにしても、第1信号と第2信号に基づいて、パルス状の反射光を受光した時間tを求めることが可能である。
 図9Aは、変形例の受光素子を用いた光検出装置の一例の説明図である。
 変形例の受光素子20は、第1受光部21Aの電流Iに第2受光部21Bの電流Iを加えた電流Iを出力する。図9Aには、プラス側の電流が出力される場合の電流の向きが矢印で示されているが、後述するように、マイナス側の電流(図9A中の矢印とは逆側の向きの電流)が出力される場合もある。
 既に説明したように、集光スポットの一部が第1受光窓22Aから外れると(図6B参照)、図7Aの上側のグラフに示すように、第1信号のパルス状の電流I1は小さくなる。但し、パルス状の反射光の集光スポットが第2受光窓22Bに照射されると、図7Bの下側のグラフに示すように、第2信号としてパルス状の電流Iが生成される。第1信号のパルスと及び第2信号のパルスは同じタイミングになるため、集光スポットの一部が第1受光窓22Aから外れても、受光素子20は、信号線25から比較的大きいパルス状の電流Iを出力できる。
 図9B及び図9Cは、変形例の受光素子と変換部51(トランスインピーダンス・アンプ)との接続の説明図である。
 図9Bには、変形例の受光素子の一例が示されている。ここでは、第1受光部21Aのアノードと、第2受光部21Bのアノードとが信号線25を介して変換部51(トランスインピーダンス・アンプ)に接続されている。この構成の場合、第1受光部21Aのプラス側の電流Iに第2受光部21Bのプラス側の電流Iを加えた電流Iが信号線25に流れる。この場合、受光素子20からプラス側の電流Iが出力される。
 図9Cには、変形例の受光素子の別の一例が示されている。ここでは、第1受光部21Aのカソードと、第2受光部21Bのカソードとが信号線25を介して変換部51に接続されている。この構成の場合、第1受光部21Aのマイナス側の電流Iに第2受光部21Bのマイナス側の電流Iを加えた電流Iが信号線25に流れる。つまり、この場合、受光素子20からマイナス側の電流Iが出力される。すなわち、受光素子20は変換部51から電流Iを吸い込む。
 図9A~図9Cに示す変形例の受光素子20を用いることによって、受光素子20から信号を出力する信号線を減らすことができる。また、変形例の受光素子20を用いることによって、光検出装置50のトランスインピーダンス・アンプ(TIA)やアナログ-デジタル変換回路52(ADC)の数を減らすことができる。
 図10A~図10Fは、第1受光窓22A及び第2受光窓22Bの例の説明図である。
 図10A~図10Fに示す受光素子20は、第1受光窓22Aと、2つの第2受光窓22Bとを有する。受光素子20の受光面の中央に第1受光窓22Aが配置されており、その第1受光窓22Aの周囲に2つの第2受光窓22Bが配置されている。なお、「第1受光窓22Aの周囲」とは、第1受光窓22Aの外周よりも外側であり、且つ、その第1受光窓22Aが設けられたチップの外縁よりも内側の範囲を意味する。図10A~図10Fでは、2つの第2受光窓22Bが第1受光窓22Aを挟むように配置されている。第1受光窓22Aを挟むように複数の第2受光窓22Bを配置することによって、ある測定条件下では集光スポットが第1受光窓22Aに対して所定方向(例えば+Y方向)に外れるように歪み、別の測定条件下では集光スポットが第1受光窓22Aに対して逆方向(例えば-Y方向)に外れるように歪むような場合でも、第2受光窓22Bによって反射光を検出し易くなる。若しくは、第1受光窓22Aを挟むように複数の第2受光窓22Bを配置することによって、集光スポットが帯状に歪むことによって集光スポットが第1受光窓22Aを跨がるように大きく歪むような場合でも、第2受光窓22Bによって反射光を検出し易くなる。
 なお、図10A~図10C(若しくは図10D~図10F)に示すように、2つの第2受光窓22Bが第1受光窓22Aを挟む方向は、X方向でも良いし、Y方向でも良いし、X方向及びY方向と交差する方向でも良い。また、図10Cに示すように、矩形の受光面の対角線上に第1受光窓22A及び2つの第2受光窓22Bを配置すると、受光面の狭いスペース上に第1受光窓22A及び2つの第2受光窓22Bを配置させ易くなる。この結果、受光素子20のチップの小型化を図ることも可能である。なお、2つの第2受光窓22Bが第1受光窓22Aを挟むように配置されていなくても良い。例えば、2つの第2受光窓22Bの両方が、第1受光窓22Aに対して+Y方向に配置されていても良い。
 既に説明したように、第1受光部21Aのダイナミックレンジを広くし、第2受光部21Bの感度を高くするためには、図10A~図10Cに示すように、第1受光窓22Aが第2受光窓22Bよりも大きいことが望ましい。但し、ダイナミックレンジや感度に問題が無ければ、図10D~図10Fに示すように、第1受光窓22Aが第2受光窓22Bよりも小さくても良い。なお、第2受光窓22Bが第1受光窓22Aよりも大きければ、集光スポットが大きく歪んで第1受光窓22Aから外れたときに、第2受光窓22Bで反射光を受光し易くなる。
 図11A~図11Dは、第1受光窓22A及び第2受光窓22Bの別の例の説明図である。図11A~図11Dに示す受光素子20においても、2つの第2受光窓22Bが第1受光窓22Aを挟むように配置されているため、第2受光窓22Bによって反射光を検出し易くなる。なお、図11A~図11Dに示すように、4つの第2受光窓22Bは、第1受光窓22Aの周囲に均等に配置されることが望ましい。また、図11B及び図11Dに示すように、矩形の受光面の対角線上に第1受光窓22A及び2つの第2受光窓22Bを配置すると、受光面の狭いスペース上に第1受光窓22A及び2つの受光窓を配置させ易くなる。この結果、受光素子20のチップの小型化を図ることも可能である。また、第1受光部21Aのダイナミックレンジを広くし、第2受光部21Bの感度を高くするためには、図11A及び図11Bに示すように、第1受光窓22Aを第2受光窓22Bよりも大きくすることが望ましい。但し、ダイナミックレンジや感度に問題が無ければ、図11C及び図11Dに示すように、第1受光窓22Aが第2受光窓22Bよりも小さくても良い。なお、第2受光窓22Bの数は、2又は4に限られるものではなく、他の数でも良い。
 図12は、図1に示す複数の受光素子20を配列させた受光素子アレイの一例の説明図である。
 既に説明した通り、測定装置1は、X方向及びY方向に2次元配列させた複数の受光素子20を有する。受光用光学系32(図12中の点線)に対して複数の受光素子20を配置する場合、受光用光学系32の光軸(点線の円の中心)に対して受光素子20をずらして配置する必要がある。この結果、或る受光素子20(第1受光素子)の光軸に対する位置と、別の受光素子20(第2受光素子)の光軸に対する位置が異なる。集光スポットの歪み方は、受光用光学系32に対する受光素子20の位置に応じて異なるため、2次元配列させた複数の受光素子20のそれぞれに入射する集光スポットは異なる形状になる。
 そこで、図に示すように、本実施形態では、集光スポットの歪み方に応じて、それぞれの受光素子20の第1受光窓22Aと第2受光窓22Bの並ぶ方向を異ならせている。この結果、本実施形態では、或る受光素子20(第1受光素子)では、第1受光窓22Aと第2受光窓22Bの並ぶ方向が例えばX方向であるのに対し、別の受光素子20(第2受光素子)では、第1受光窓22Aと第2受光窓22Bの並ぶ方向がY方向(若しくは、X方向及びY方向に交差する方向)である。本実施形態によれば、第2受光部21Bが反射光を検出し易くなる。
 なお、受光素子アレイの全ての受光素子20の第1受光窓22Aと第2受光窓22Bの並ぶ方向が同じでも良い。また、受光素子アレイの全ての受光素子が本実施形態の第1受光窓22A及び第2受光窓22Bを有する受光素子でなくても良く、一部の受光素子が図4Aに示す受光素子であっても良い。
 上記の通り、本実施形態の受光素子20は、第1受光窓22Aに照射された光を検出する第1受光部21Aと、第2受光窓22Bに照射された光を検出する第2受光部21Bとを備え、第2受光窓22Bは、第1受光窓22Aの周囲に設けられている(図6A参照)。これにより、仮に集光スポットの一部が第1受光窓22Aから外れても、集光スポットが第2受光窓22Bに照射されることによって、第2受光部21Bによって反射光を検出することが可能になる(図6B参照)。
 また、本実施形態では、第2受光部21Bは、第1受光部21Aよりも感度が高いことが望ましい。これにより、第2受光部21Bによって反射光を検出し易くなる。
 また、本実施形態では、第1受光窓22Aは、第2受光窓22Bよりも大きいことが望ましい。これにより、第1受光部21Aのダイナミックレンジを広くしつつ、第2受光部21Bの感度を高くすることの両立が可能になる。
 また、本実施形態では、複数の第2受光窓22Bが第1受光窓22Aの周囲に設けられていることが望ましい(図10、図11参照)。これにより、第2受光窓22Bによって反射光を検出し易くなる。但し、第2受光窓22Bの数が1つでも良い。
 また、本実施形態では、複数の第2受光窓22Bが第1受光窓22Aを挟むように配置されていることが望ましい。これにより、第2受光窓22Bによって反射光を検出し易くなる。但し、2つの第2受光窓22Bが第1受光窓22Aを挟むように配置されていなくても良い。
 また、本実施形態では、矩形状の受光面の対角線上に第1受光窓22A及び複数の第2受光窓22Bが配置されている(図10、図11参照)。これにより、受光面の狭いスペース上に第1受光窓22A及び2つの第2受光窓22Bを配置させ易くなる。
 また、本実施形態の受光素子20は、第1受光部21Aの電流に第2受光部21Bの電流を加えた電流を出力する信号線25を有することが望ましい(図9参照)。これにより、受光素子20から信号を出力する信号線を減らすことができる。
 また、上記の通り、本実施形態の測定装置1は、対象物90に光を照射する発光素子10と、光学系30と、対象物90からの反射光を受光する受光素子20と、を備えている。そして、測定装置1に用いられる受光素子20は、第1受光窓22Aに照射された光を検出する第1受光部21Aと、第2受光窓22Bに照射された光を検出する第2受光部21Bとを備え、第2受光窓22Bは、第1受光窓22Aの周囲に設けられている(図6A参照)。これにより、仮に集光スポットの一部が第1受光窓22Aから外れても、集光スポットが第2受光窓22Bに照射されることによって、第2受光部21Bによって反射光を検出することが可能になる(図6B参照)。
 また、本実施形態では、測定装置1は、複数の受光素子を備えており、受光用光学系32の光軸に対する或る受光素子(第1受光素子)の位置と、受光用光学系32の光軸に対する別の第2受光素子(第2受光素子)の位置とが異なっており、或る受光素子(第1受光素子)の第1受光窓22Aと第2受光窓22Bの並ぶ方向と、別の受光素子(第2受光素子)の第1受光窓22Aと第2受光窓22Bの並ぶ方向とが異なっていることが望ましい。これにより、それぞれの第2受光部21Bが反射光を検出し易くなる。
[第二実施形態]
 次に、第二実施形態について説明する。以下で説明する内容以外は第一実施の形態と同様である。
 図13Aは、図1に示す対象物90の状態に変化が生じた場合の説明図である。図13A中の点線に示すように、対象物90に変化が生じると、反射光に変化が生じる。なお、図13A中には、対象物90の表面の傾きが変化する様子が示されているが、対象物90の状態の変化は、これに限られるものではない。
 図13Bは、図1に示す受光素子20における集光スポットのシフトの説明図である。図13B中のハッチングの領域は、受光用光学系32によって集光された反射光の集光スポットである。図13Aに示すように反射光に変化が生じると、図13Bに示すように、集光スポットの位置や形状が変化することがある。以下の説明では、集光スポットの位置や形状が変化することを「集光スポットがシフトする」と表現することがある。例えば、受光用光学系32に対して複数の受光素子20を2次元配置させつつ受光用光学系32の小型化を図った場合には、全ての測定条件下で全ての受光素子20の受光窓22の内側にそれぞれ集光スポットを入射させることは困難になり、少なくともいずれかの測定条件下で対象物90に変化が生じた時に集光スポットがシフトし易くなる。比較例の受光素子20の場合、図13Bに示すように、集光スポットがシフトすると、受光素子20の出力信号が弱まるだけである。
 図14Aは、本実施形態の受光素子の一例の説明図である。図14Bは、本実施形態の受光素子20における受光窓22(第1受光窓22A及び第2受光窓22B)と集光スポットの説明図である。
 図14Aに示すように、本実施形態の受光素子20の受光面には、第1受光窓22Aと、第2受光窓22Bとが設けられている。第1受光窓22Aには、受光部21である第1受光部21Aが設けられ、第2受光窓22Bには、受光部21である第2受光部21Bが設けられている。第1受光部21Aは、第1受光窓22Aに照射された光を検出し、第2受光部21Bは、第2受光窓22Bに照射された光を検出する。
 本実施形態の受光素子20によれば、図14Bに示すように、仮に集光スポットの一部が第1受光窓22Aから外れても、集光スポットが第2受光窓22Bに照射されることによって、第2受光部21Bによって反射光を検出することが可能になる。既に説明した通り、対象物90の変化に応じて集光スポットがシフトすることがあるため、本実施形態の受光素子20は、第2受光部21Bの出力に基づいて、集光スポットのシフトに関するデータ(新たな特徴量)を取得する。
 再び図7A及び図7Bを参照して、既に説明した通り、発光素子10はパルス光(図1のTx)を射出するため、パルス状の反射光(図1のRx)の集光スポットが受光素子20に照射される。集光スポットが第1受光窓22Aの内部に位置する場合には、第1受光窓22Aに十分な光量の反射光が照射されるため、第1受光部21Aは、図7Aの上側のグラフに示すように、比較的大きなパルス状の電流(第1信号)を出力する。一方、第2受光部21Bは、第2受光窓22Bに光が照射されないため、図7Aの下側のグラフに示す信号(第2信号)を出力する。
 集光スポットの一部が第1受光窓22Aから外れると(図14B参照)、図7Bの上側のグラフに示すように、第1信号のパルス状の電流は小さくなる。一方、パルス状の反射光の集光スポットが第2受光窓22Bに照射されると、第2信号は、パルス状の信号となる。第1受光窓22Aと第2受光窓22Bには同時にパルス状の集光スポットが照射されるため、第2信号のパルスのタイミングは、パルス状の反射光を受光したタイミングとなる。
 本実施形態では、第2受光窓22Bが複数(図14Aでは4つ)設けられている。仮に対象物90の変化に応じて集光スポットが異なる方向にシフトしても、複数の第2受光窓22Bが第1受光窓22Aの周囲に設けられているため、第2受光窓22Bが反射光を検出し易くなる。なお、本実施形態では、第2受光窓22Bが4つであるが、第2受光窓22Bの数は4つに限られるものではない。
 再び図8Aを参照して、ここでは、簡略化のため、第2受光窓22Bを2個にして図示している。図8Aに示す変換部51は、第1変換部51Aで変換された第1信号(電圧)と、第2変換部51Bで変換された第2信号(電圧)とをそれぞれ別の信号線に出力する。
 第1変換部51A及び第2変換部51Bのそれぞれにアナログ-デジタル変換回路52(ADC)が設けられている。それぞれのアナログ-デジタル変換回路52は、第1変換部51A又は第2変換部51Bから出力される電圧(アナログ信号)をデジタル信号に変換し、コントローラー40(演算装置41)に電圧値を出力する。
 図8Aに示すコントローラー40(演算装置41)は、第1受光部21Aから出力された第1信号(電圧値)と、第2受光部21Bから出力された第2信号(電圧値)とを受信することになる。コントローラー40(演算装置41)は、第1信号及び第2信号の少なくとも一方の電圧値と閾値とを比較することによって、パルス状の反射光を受光した時間tを求め(図7A及び図7B参照)、対象物90のZ座標(対象物90までの距離)を取得する。また、コントローラー40は、レーザー光が照射された方向と、対象物90までの距離とに基づいて、対象物90のX座標及びY座標を取得する。加えて、本実施形態では、コントローラー40は、第2受光部21Bから出力された第2信号(電圧値)に基づいて、座標とは別の特徴量Sを取得する。つまり、本実施形態では、コントローラー40(演算装置41)は、各フレームの測定点毎に、X座標、Y座標、Z座標(対象物90までの距離)及び特徴量Sを対応付けて取得することになる。
 特徴量Sは、第2信号に基づいて取得されるデータである。特徴量Sは、集光スポットのシフトを示すデータとなる。例えば、特徴量Sは、第2受光部21Bが光を受光しない場合に0となり、第2受光部21Bが光を受光した場合に1となるデータである。但し、特徴量Sは、2値データに限られるものではなく、多値データでも良い。例えば、特徴量Sは、第2受光部21Bの電圧値(多値データ;第2信号)でも良いし、第1受光部21A及び第2受光部21Bの電圧値の合計に対する第2受光部の電圧値の割合でも良い。
 なお、受光素子20がN個の第2受光部21Bを有する場合には、特徴量Sは、それぞれの第2受光部21Bの第2信号に基づくN個の特徴量S_1~S_Nを含んでも良い。なお、N個の特徴量S_1~S_Nを取得することによって、集光スポットのシフト方向に関する情報を取得可能になる。例えば、コントローラー40(演算装置41)は、図14Aに示す受光素子20の4個の第2受光部21Bのそれぞれの第2信号に基づいて、4つの特徴量S_1~S_4で構成された特徴量Sを取得することが可能である。
 図15は、図8Aに示すコントローラー40の測定対象となる、或るフレームでの測定点Aと、別のフレームでの測定点A’の説明図である。図15中の点は、3次元画像を構成する点群のうちの或る点を示している。ここでは、コントローラー40(演算装置41)は、或るチャンネルの受光素子20の出力に基づいて、測定点Aにおける座標(x、y、z)に関するデータと、特徴量S(特徴量データ)とを対応付けて取得する。次に、コントローラー40(演算装置41)は、別のフレームにおいて、同じチャンネルの受光素子20の出力に基づいて、測定点A’における座標(x’、y’、z’)に関するデータと、特徴量S’(特徴量データ)とを対応付けて取得する。
 コントローラー40は、座標(x、y、z)及び座標(x’、y’、z’)に基づいて、対象物90に変化が生じたこと(対象物90が移動したこと)を判別することが可能である。一方、コントローラー40は、特徴量S及び特徴量S’に基づいても、対象物90が移動したかどうかを判別することが可能である。例えば、コントローラー40は、特徴量Sが0(特徴量S_1~S_4の全てが0)であり、特徴量S’が1(特徴量S_1~S_4の少なくともいずれかが1)であれば、対象物90に変化が生じたことを検出することが可能である。このように、本実施形態では、特徴量Sを取得することによって、データを冗長化させることができる。
 特徴量Sの利用方法は、測定点における対象物90の変化の検出に限られるものではない。例えば、コントローラー40は、点群内の各点をクラスタリングする際に、特徴量Sを利用しても良い。また、例えば、コントローラー40は、点群の示す3次元画像を照合する際に、各点の特徴量Sを利用しても良い。点群の示す3次元画像を照合する方法の一例は、次の通りである。まず、特徴量Sを含む点群データ(3次元画像)と、その点群データの示す対象物のデータとを有する教師データを用意し、教師データの特徴量Sを含む点群データを入力とし、教師データの対象物のデータを出力とする判定モデルをコンピューター(コントローラー40又は外部のコンピューター)によって機械学習により生成し、判定モデルを記憶装置42に記憶する。次に、コントローラー40は、既に説明したように、受光素子20の出力に基づいて特徴量Sを含む点群データを取得する。そして、コントローラー40は、判定モデルに基づいて特徴量Sを含む点群データを照合し、対象物90のデータを出力する。なお、特徴量Sを用いた点群の照合方法は、機械学習による照合方法に限られるものではなく、他の照合方法でも良い。
 <変形例1>
 図16は、光検出装置の別の一例の説明図である。図16中の変換部51は、第1変換部51Aと、第2変換部51Bと、遅延回路54と、電圧加算部56とを有する。
 図16に示す第2変換部51Bは、第2受光部21Bから出力される第2信号を電流から電圧に変換する際に、極性を反転させた電圧に変換する。光を検出した時に第1変換部51Aから出力される電圧と、第2受光部21Bから出力される電圧との極性は逆になる。なお、第1変換部51A及び第2変換部51Bの一方が電圧の極性を反転させて出力すれば良いので、第2受光部21Bの代わりに、第1変換部51Aが、第1受光部21Aから出力される第1信号を電流から電圧に変換する際に、極性を反転させた電圧に変換しても良い。
 遅延回路54は、入力信号を所定時間遅延させて出力する回路である。遅延回路54は、第1信号と第2信号の少なくとも一方を遅延させる。ここでは、遅延回路54は、第2変換部51Bの側に設けられており、第1変換部51Aの側には設けられていない。但し、第1変換部51Aの側に遅延回路54を設け、第2変換部51Bの側に遅延回路54を設けなくても良い。なお、異なる遅延時間に設定された遅延回路54を第1変換部51A及び第2変換部51Bにそれぞれ設けることも可能である。
 図16に示すように、変換部51が複数の第2変換部51Bを有する場合、異なる遅延時間に設定された遅延回路54をそれぞれの第2変換部51Bに設けても良い。これにより、光を検出した第2変換部51Bを特定することが可能になる。すなわち、集光スポットのシフト方向に関する情報を取得可能になる。
 電圧加算部56は、複数の入力信号を加算して出力する回路である。図16に示すように、電圧加算部56は、第1信号(電圧)と第2信号(電圧)とを加算して共通の信号線に出力する。電圧加算部56は、第1信号(電圧)と第2信号(電圧)とを重畳させた信号を共通の信号線に出力する。本実施形態では、変換部51が電圧加算部56を有することによって、変換部51は、第1信号と第2信号とを共通の信号線に出力するように構成されている。
 電圧加算部56は、第1信号(電圧)と第2信号(電圧)とを重畳させた信号をアナログ-デジタル変換回路52(ADC)に出力する。このため、アナログ-デジタル変換回路52(ADC)は、第1信号(電圧)と第2信号(電圧)とを重畳させた信号をデジタル信号に変換し、コントローラー40(演算装置41)に電圧値を出力する。
 図17A及び図17Bは、図16に示す電圧加算部56により出力される、第1信号(電圧)と第2信号(電圧)とを重畳させた信号の説明図である。
 図7Aに示す第1信号及び第2信号が変換部51に入力された場合、第1信号(電圧)と第2信号(電圧)とを重畳させた信号は、図17Aに示すようになる。この場合、コントローラー40(演算装置41)は、受信した信号の電圧値と閾値とを比較することによって、第1信号に基づくプラス側のパルスによって時間tを求め、対象物90のZ座標(対象物90までの距離)を取得する。
 図7Bに示す第1信号及び第2信号が変換部51に入力された場合、第1信号(電圧)と第2信号(電圧)とを重畳させた信号は、図17Bに示すようになる。この場合、コントローラー40(演算装置41)は、受信した信号の電圧値と閾値とを比較することによって、第1信号に基づくプラス側のパルスによって時間tを求めることができる。これにより、対象物90のZ座標(対象物90までの距離)を取得することができる。また、仮に第1信号に基づくプラス側のパルスを検出できなくても、コントローラー40(演算装置41)は、第2信号に基づくマイナス側のパルスによって時間t’を求めることができる。コントローラー40(演算装置41)は、マイナス側のパルスによって時間t’を求めた場合には、遅延回路54の遅延時間に基づいて、パルス状の反射光を受光した時間tを求める。更に、時間tと時間t’の両方を求めることができる場合には、すなわち第1受光窓22A及び第2受光窓22Bの両方に集光スポットが照射できる場合には、コントローラー40(演算装置41)は、時間tと時間t’との差に基づいて、光を検出した第2変換部51Bを特定することが可能である。これにより、コントローラー40は、集光スポットのシフト方向に関する情報を取得可能である。また、コントローラー40は、特徴量Sとして特徴量S_1~特徴量S_Nを取得可能である。
 図18Aは、光検出装置の別の一例の説明図である。図18A中の変換部51は、複数の第2変換部51Bを有する。前述の図16に示す変換部51では、異なる遅延時間に設定された遅延回路54がそれぞれの第2変換部51Bに設けられていたのに対し、図18Aに示す変換部51では、同じ遅延時間に設定された遅延回路54がそれぞれの第2変換部51Bに設けられている。
 図18Bは、図18Aに示す電圧加算部56により出力される、第1信号(電圧)と第2信号(電圧)とを重畳させた信号の一例の説明図である。第1受光窓22Aに集光スポットが照射されない場合、コントローラー40は、図18Bに示す信号を光検出装置50から受信する。マイナス側のパルスは第2受光部21Bから出力された第2信号に基づくものであるため、また、図18Aに示す複数の遅延回路54の遅延時間は全て同じであるため、コントローラー40は、第2信号に基づくマイナス側のパルスに基づいて時間t’を求めることができ、また、時間t’と遅延回路54の遅延時間(所定時間)とに基づいてパルス状の反射光を受光した時間tを求めることができる。これにより、コントローラー40は、対象物90のZ座標、すなわち対象物90までの距離を取得することができる。また、コントローラー40は、第2信号に基づくマイナス側のパルスに基づいて、特徴量Sを取得することができる。
 図19Aは、光検出装置の別の一例の説明図である。前述の図16及び図18に示す光検出装置50では、第2変換部51Bが電圧の極性を反転させて第2信号を出力しているのに対し、図19Aに示す光検出装置50では、第2変換部51Bは、電圧の極性を反転させずに、第2信号を出力する。
 図19Bは、図19Aに示す電圧加算部56により出力される、第1信号(電圧)と第2信号(電圧)とを重畳させた信号の一例の説明図である。集光スポットがシフトして第2受光窓22Bに光が照射された時にも第1受光窓22Aに光が照射されていれば、コントローラー40は、図19Bに示す信号を光検出装置50から受信する。最初のパルスは第1受光部21Aから出力された第1信号に基づくものであるため、コントローラー40は、最初のパルスに基づいて時間tを求めることができる。これにより、コントローラー40は、対象物90のZ座標、すなわち対象物90までの距離を取得することができる。また、2番目のパルスは第2受光部21Bから出力された第2信号に基づくものであるため、コントローラー40は、2番目のパルスに基づいて時間t’を求めることができる。すなわち、コントローラー40は、特徴量Sを取得することができる。なお、図19Aの複数の遅延回路54の遅延時間がそれぞれ異なっていれば、コントローラー40(演算装置41)は、時間tと時間t’との差に基づいて、光を検出した第2変換部51Bを特定することが可能であるため、集光スポットのシフト方向に関する情報を取得可能となり、特徴量Sとして特徴量S_1~特徴量S_Nを取得可能である。
 図20は、光検出装置の更に別の一例の説明図である。前述の図16及び図18Aに示す変換部51には遅延回路54が設けられているのに対し、図20に示す変換部51には遅延回路54が設けられていない。このため、電圧加算部56は、第1変換部51Aが出力する第1信号(電圧)と第2変換部51Bが出力する第2信号(電圧)とを加算して共通の信号線に出力する。
 図21A及び図21Bは、図20に示す電圧加算部56に入力される第1信号及び第2信号、ならびに電圧加算部56から出力される信号の説明図である。図21A及び図21B中の左側には、第1変換部51Aが出力する第1信号(電圧)と、第2変換部51Bが出力する第2信号(電圧)とが示されている。図21A及び図21B中の右側には、図20に示す電圧加算部56から出力される信号、すなわち第1信号及び第2信号を重畳させた信号が示されている。
 ところで、第1受光部21Aの第1受光窓22Aの周縁の感度が低い場合、集光スポットの一部が第1受光窓22Aの内側に照射されている状態から集光スポットが僅かにシフトしても、第1受光部21Aが出力する第1信号のパルスの強度が急激に変化することがある(図21A及び図21Bの第1信号参照)。また、第2受光部21Bの感度が高く設定されている場合には、集光スポットが僅かにシフトしても、第2受光部21Bが出力する第2信号のパルスの強度が急激に変化することがある(図21A及び図21Bの第2信号参照)。この結果、図21A及び図21Bの右側に示すように、電圧加算部56から出力される信号(第1信号及び第2信号を重畳させた信号)に含まれるパルスは、プラス側又はマイナス側のいずれか一方の極性を示すようになる。つまり、このような条件下では、遅延回路54が無くても、第1信号のパルスと第2信号のパルスが打ち消し合う状態にはならない。このため、第1受光部21A又は第2受光部21Bの一方が光を検出するような条件下では、コントローラー40は、図20の光検出装置から受信した信号(第1信号及び第2信号を重畳させた信号;図21A及び図21B右図参照)に基づいて、時間tを求めることができる。これにより、コントローラー40は、対象物90のZ座標、すなわち対象物90までの距離を取得することができる。また、このような条件下では、コントローラー40は、図20の光検出装置から受信した信号、すなわち第1信号及び第2信号を重畳させた信号(図21A及び図21B右図参照)のパルスの極性に基づいて、特徴量Sを取得することができる。
 <変形例2>
 図22Aは、変形例の受光素子を用いた光検出装置の一例の説明図である。図22B及び図22Cは、図22Aに示す受光素子と変換部51(トランスインピーダンス・アンプ)との接続の説明図である。
 前述の図21A及び図21Bの左側に示すように、集光スポットが僅かにシフトしても、第1受光部21Aが出力する第1信号のパルスの強度が急激に変化するとともに、第2受光部21Bが出力する第2信号のパルスの強度が急激に変化することが起こり得る。このように、第1受光部21A又は第2受光部21Bの一方が光を検出するような条件下では、図22Aに示す構成を採用することが可能である。
 図22Bに示す例では、第1受光部21Aのカソードが、差動型トランスインピーダンス・アンプで構成された変換部51のマイナス入力端子に接続されており、第2受光部21Bのカソードが、変換部51のプラス入力端子に接続されている。第1受光部21Aが光を検出すると、変換部51のマイナス入力端子から、第1受光部21Aへとマイナスの電流(第1信号)が流れ、この結果、変換部51の出力がマイナスとなる。一方、第2受光部21Bが光を検出すると、変換部51のプラス入力端子から、第2受光部21Bへとマイナスの電流(第2信号)が流れ、この結果、変換部51の出力がプラスとなる。なお、ここでは、第1受光部21A及び第2受光部21Bから、変換部51へ流れる電流の向きをプラスとしている。
 図22Cに示す別の例では、第1受光部21Aのアノードと、第2受光部21Bのカソードとが共通の信号線を介して変換部51の入力端子に接続されている。第1受光部21Aが光を検出すると、第1受光部21Aから、変換部51にプラスの電流(第1信号)が流れ、この結果、変換部51の出力がプラスとなる。一方、第2受光部21Bが光を検出すると、変換部51から、第2受光部21Bにマイナスの電流(第2信号)が流れ、この結果、変換部51の出力がマイナスとなる。
 図22B及び図22Cのいずれの場合においても、図22Aのコントローラー40は、図21A及び図21Bの右側に示す信号(若しくは逆極性の信号)を受信する。これにより、コントローラー40は、図22Aの光検出装置50から受信した信号に基づいて、時間tを求めることができる。これにより、コントローラー40は、対象物90のZ座標、すなわち対象物90までの距離を取得することができる。また、コントローラー40は、図22Aの光検出装置50から受信した信号に基づいて、特徴量Sを取得することができる。図22Aに示す光検出装置50によれば、光検出装置50のトランスインピーダンス・アンプ(TIA)やアナログ-デジタル変換回路52(ADC)の数を減らすことができる。
 <変形例3>
 図11A~図11Dに示す受光素子20は、第1受光窓22Aと、4つの第2受光窓22Bとを有する。受光素子20の受光面の中央に第1受光窓22Aが配置されており、その第1受光窓22Aの周囲に4つの第2受光窓22Bが配置されている。図11A~図11Dに示す受光素子20では、2つの第2受光窓22Bが第1受光窓22Aを挟むように配置されている。第1受光窓22Aを挟むように複数の第2受光窓22Bを配置することによって、ある測定条件下では集光スポットが所定方向(例えば+Y方向)にシフトし、別の測定条件下では集光スポットが逆方向(例えば-Y方向)にシフトするような場合でも、第2受光窓22Bによって反射光を検出し易くなる。
 図23は、図11A~図11Dに示す複数の受光素子20を配列させた受光素子アレイの一例の説明図である。
 既に説明した通り、測定装置1は、X方向及びY方向に2次元配列させた複数の受光素子20を有する。受光用光学系32(図23中の点線)に対して複数の受光素子20を配置する場合、受光用光学系32の光軸(点線の円の中心)に対して受光素子20をずらして配置する必要がある。この結果、或る受光素子20(第1受光素子)の光軸に対する位置と、別の受光素子20(第2受光素子)の光軸に対する位置が異なる。集光スポットがシフトする方向は、受光用光学系32に対する受光素子20の位置に応じて異なるため、2次元配列させた複数の受光素子20のそれぞれに入射する集光スポットは、シフトする方向がそれぞれ異なる。
 そこで、図に示すように、本実施形態では、集光スポットがシフトする方向に応じて、それぞれの受光素子20の第1受光窓22Aと第2受光窓22Bの並ぶ方向を異ならせている。この結果、本実施形態では、或る受光素子20(第1受光素子)では、第1受光窓22Aと第2受光窓22Bの並ぶ方向が例えばX方向及びY方向であるのに対し、別の受光素子20(第2受光素子)では、第1受光窓22Aと第2受光窓22Bの並ぶ方向がX方向及びY方向に交差する方向である。本実施形態によれば、第2受光部21Bが反射光を検出し易くなる。
 なお、受光素子アレイの全ての受光素子20の第1受光窓22Aと第2受光窓22Bの並ぶ方向が同じでも良い。また、受光素子アレイの全ての受光素子が本実施形態の第1受光窓22A及び第2受光窓22Bを有する受光素子でなくても良く、一部の受光素子が図4Aに示す受光素子であっても良い。また、受光素子20ごとに第2受光窓22Bの数が異なっていても良い。
 <小括>
 上記の通り、本実施形態の受光素子20は、第1受光窓22Aに照射された光に応じた第1信号を出力する第1受光部21Aと、第1受光部21Aの周囲に設けられた第2受光窓22Bに照射された光に応じた第2信号を出力する第2受光部21Bとを備えている(図14A参照)。これにより、第2受光部21Bの第2信号に基づいて、集光スポットのシフトに関するデータ(新たな特徴量)を取得することが可能となる(図14B参照)。
 また、本実施形態では、複数の第2受光窓22Bが第1受光窓22Aの周囲に均等に配置されていることが望ましい(図11A~図11D参照)。これにより、集光スポットがどの方向にシフトしても、第2受光窓22Bによって反射光を検出し易くなる。但し、集光スポットのシフトする方向に応じて、第1受光窓22Aの周囲に非均等な間隔で複数の第2受光窓22Bが配置されても良い。なお、図11A~図11Dに示すように、通常、受光素子20の受光面が矩形であるため、第2受光窓22Bの数を4つにして、4つの第2受光窓22Bが第1受光窓22Aの周囲に均等に配置されていることが望ましい。
 また、本実施形態では、矩形状の受光面の対角線上に第1受光窓22A及び複数の第2受光窓22Bが配置されている(図11B及び図11D参照)。これにより、受光面の狭いスペース上に第1受光窓22A及び4つの第2受光窓22Bを配置させ易くなる。
 また、上記の通り、本実施形態の光検出装置50は、第1受光窓22Aに照射された光に応じた第1信号を出力する第1受光部21Aと、第1受光部21Aに隣接する第2受光窓22Bに照射された光に応じた第2信号を出力する第2受光部21Bとを有する受光素子20と、第1信号を電流から電圧に変換するとともに第2信号を電流から電圧に変換する変換部51を備えている(図8A、図16、図18A、図19A、図20、図22B及び図22C参照)。これにより、第2受光部21Bの第2信号に基づいて、集光スポットのシフトに関するデータである新たな特徴量を取得することが可能となる(図14B参照)。
 図8Aに示す光検出装置50では、変換部51は、第1信号と第2信号とをそれぞれ別の信号線に出力する。これにより、コントローラー40が第1信号と第2信号とを別々に取得することが可能になる。
 図16、図18A、図19A、図20、図22Aに示す光検出装置50では、変換部51は、第1信号と第2信号とを共通の信号線に出力する。これにより、例えばアナログ-デジタル変換回路52(ADC)の数を減らすことが可能になる。
 図16、図18A及び図19Aに示す光検出装置50では、変換部51は、第1信号と第2信号の少なくとも一方を遅延させつつ、第1信号と第2信号とを共通の信号線に出力する。これにより、コントローラー40は、第1信号と第2信号とを重畳させた信号から、集光スポットのシフトに関するデータである新たな特徴量を取得することが可能となる。
 図16、図18A、図20に示す光検出装置50では、変換部51は、第1信号と第2信号の一方の極性を反転させつつ、第1信号と第2信号とを共通の信号線に出力する。これにより、コントローラー40は、第1信号と第2信号とを重畳させた信号から、集光スポットのシフトに関するデータである新たな特徴量を取得することが可能となる。
 図16、図18Aに示す光検出装置50では、変換部51は、第1信号と第2信号の一方の極性を反転させるとともに、第1信号と第2信号の少なくとも一方を遅延させつつ、第1信号と第2信号とを共通の信号線に出力する。これにより、コントローラー40は、より確実に、パルス状の反射光を受光した時間tを求めることができる。
 また、上記の通り、本実施形態の測定装置1は、対象物90に光を照射する発光素子10と、光学系30と、上述の第1信号及び第2信号を出力する受光素子20と、演算装置41(コントローラー40)とを備えている。演算装置41は、第1信号及び第2信号の少なくとも一方に基づいて対象物までの距離を算出し、距離に関するデータ(Z座標)と、第2信号に基づく特徴量データ(特徴量S)とを対応付けて取得する(図15参照)。これにより、距離に関するデータ(Z座標)に特徴量データを対応付けることによってデータを冗長化させることができる。例えば、データを冗長化させることによって、測定装置1によって測定された点群に対するデータ解析の精度を高めることが可能になる。
 以上、本発明の実施形態につき詳述したが、本発明は上記の実施形態に限定されるものではなく、様々な変形例が含まれる。また、上記の実施形態は本発明を分かりやすく説明するために構成を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記の実施形態の構成の一部について、他の構成に追加、削除、置換することが可能である。
 本出願は、2021年3月16日出願の日本特許出願2021-042343号及び2021年3月16日出願の日本特許出願2021-042344号に基づくものであり、その内容はここに参照として取り込まれる。
 
 

Claims (19)

  1.  第1受光窓に照射された光を検出する第1受光部と、
     第2受光窓に照射された光を検出する第2受光部と、
    を備え、
     前記第2受光窓は、前記第1受光窓の周囲に設けられている、受光素子。
  2.  前記第2受光部は、前記第1受光部よりも感度が高い、請求項1に記載の受光素子。
  3.  前記第1受光窓は、前記第2受光窓よりも大きい、請求項1又は2に記載の受光素子。
  4.  前記第2受光部を複数備え、
     複数の前記第2受光窓が前記第1受光窓の周囲に設けられている、請求項1~3のいずれか一項に記載の受光素子。
  5.  複数の前記第2受光窓が前記第1受光窓を挟むように配置されている、請求項4に記載の受光素子。
  6.  矩形状の受光面の対角線上に前記第1受光窓及び複数の前記第2受光窓が配置されている、請求項4又は5に記載の受光素子。
  7.  前記第1受光部の電流に前記第2受光部の電流を加えた電流を出力する信号線を有する、請求項1~6のいずれか一項に記載の受光素子。
  8.  第1受光窓に照射された光に応じた第1信号を出力する第1受光部と、
     前記第1受光窓の周囲に設けられた第2受光窓に照射された光に応じた第2信号を出力する第2受光部と、を備えている、受光素子。
  9.  前記第2受光部を複数備え、
     複数の前記第2受光窓が前記第1受光窓の周囲に均等に配置されている、請求項8に記載の受光素子。
  10.  前記第2受光部を4つ備え、
     4つの前記第2受光窓が前記第1受光窓の周囲に均等に配置されている、請求項9に記載の受光素子。
  11.  矩形状の受光面の対角線上に前記第1受光窓及び複数の前記第2受光窓が配置されている、請求項10に記載の受光素子。
  12.  第1受光窓に照射された光に応じた第1信号を出力する第1受光部と、前記第1受光窓の周囲に設けられた第2受光窓に照射された光に応じた第2信号を出力する第2受光部と、を有する受光素子と、
     前記第1信号を電流から電圧に変換するとともに、前記第2信号を電流から電圧に変換する変換部と、を備えている、光検出装置。
  13.  前記変換部は、前記第1信号と前記第2信号とをそれぞれ別の信号線に出力する、請求項12に記載の光検出装置。
  14.  前記変換部は、前記第1信号と前記第2信号の少なくとも一方を遅延させつつ、前記第1信号と第2信号とを共通の信号線に出力する、請求項12に記載の光検出装置。
  15.  前記変換部は、前記第1信号と前記第2信号の一方の極性を反転させつつ、前記第1信号と第2信号とを共通の信号線に出力する、請求項12に記載の光検出装置。
  16.  前記変換部は、前記第1信号と前記第2信号の一方の極性を反転させるとともに、前記第1信号と前記第2信号の少なくとも一方を遅延させつつ、前記第1信号と第2信号とを共通の信号線に出力する、請求項12に記載の光検出装置。
  17.  対象物に光を照射する発光素子と、
     光学系と、
     前記光学系を介して前記対象物からの反射光を受光する受光素子と、
    を備え、
     前記受光素子は、
        第1受光窓に照射された光を検出する第1受光部と、
        第2受光窓に照射された光を検出する第2受光部と
    を備え、
     前記第2受光窓は、前記第1受光窓の周囲に設けられている、測定装置。
  18.  第1受光素子及び第2受光素子を含む複数の前記受光素子を備えており、
     前記光学系の光軸に対する前記第1受光素子の位置と、前記光軸に対する前記第2受光素子の位置とが異なっており、
     前記第1受光素子の第1受光窓と前記第2受光窓の並ぶ方向と、前記第2受光素子の第1受光窓と前記第2受光窓の並ぶ方向とが異なる、請求項17に記載の測定装置。
  19.  対象物に光を照射する発光素子と、
     光学系と、
     第1受光窓に照射された光に応じた第1信号を出力する第1受光部と、前記第1受光窓の周囲に設けられた第2受光窓に照射された光に応じた第2信号を出力する第2受光部と、を有し、前記光学系を介して前記対象物からの反射光を受光する受光素子と、
     前記第1信号及び前記第2信号の少なくとも一方に基づいて前記対象物までの距離を算出し、前記距離に関するデータと、前記第2信号に基づく特徴量データとを対応付けて取得する演算装置と、を備えている測定装置。
     
PCT/JP2022/006973 2021-03-16 2022-02-21 受光素子、光検出装置及び測定装置 WO2022196257A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021042344A JP2022142238A (ja) 2021-03-16 2021-03-16 受光素子、光検出装置及び測定装置
JP2021042343A JP2022142237A (ja) 2021-03-16 2021-03-16 受光素子及び測定装置
JP2021-042344 2021-03-16
JP2021-042343 2021-03-16

Publications (1)

Publication Number Publication Date
WO2022196257A1 true WO2022196257A1 (ja) 2022-09-22

Family

ID=83321240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006973 WO2022196257A1 (ja) 2021-03-16 2022-02-21 受光素子、光検出装置及び測定装置

Country Status (1)

Country Link
WO (1) WO2022196257A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102013A (en) * 1979-01-26 1980-08-04 Sharp Corp Sun tracking unit
JPH04216405A (ja) * 1990-12-14 1992-08-06 Nippondenso Co Ltd 日射検出装置
JP2001174325A (ja) * 1999-12-15 2001-06-29 Denso Corp 光センサ
JP2002057312A (ja) * 2000-08-08 2002-02-22 Denso Corp 光検出センサおよびその製造方法
JP2012103126A (ja) * 2010-11-10 2012-05-31 Denso Corp 光センサ装置
WO2018003343A1 (ja) * 2016-06-28 2018-01-04 株式会社デンソー 光センサ
JP2020013985A (ja) * 2018-07-19 2020-01-23 三星電子株式会社Samsung Electronics Co.,Ltd. ToF基盤の3Dイメージセンサ、及びそのイメージセンサを具備した電子装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102013A (en) * 1979-01-26 1980-08-04 Sharp Corp Sun tracking unit
JPH04216405A (ja) * 1990-12-14 1992-08-06 Nippondenso Co Ltd 日射検出装置
JP2001174325A (ja) * 1999-12-15 2001-06-29 Denso Corp 光センサ
JP2002057312A (ja) * 2000-08-08 2002-02-22 Denso Corp 光検出センサおよびその製造方法
JP2012103126A (ja) * 2010-11-10 2012-05-31 Denso Corp 光センサ装置
WO2018003343A1 (ja) * 2016-06-28 2018-01-04 株式会社デンソー 光センサ
JP2020013985A (ja) * 2018-07-19 2020-01-23 三星電子株式会社Samsung Electronics Co.,Ltd. ToF基盤の3Dイメージセンサ、及びそのイメージセンサを具備した電子装置

Similar Documents

Publication Publication Date Title
JP6935007B2 (ja) Lidar送光器および受光器の共有導波路
US9285266B2 (en) Object detector including a light source with light emitting region of a first size in a first direction and a second size in a second direction
US10048376B2 (en) Distance measuring device and photodetector
US8138488B2 (en) System and method for performing optical navigation using scattered light
WO2020009011A1 (ja) 光測距装置
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
JP2018004426A (ja) 物体検出装置、センシング装置及び移動体装置
US11808855B2 (en) Optical device, range sensor using optical device, and mobile object
US20200225331A1 (en) Light detection and ranging device
CN113933811B (zh) 激光雷达的探测方法、激光雷达以及计算机存储介质
WO2017221909A1 (ja) 距離測定装置
US11668801B2 (en) LIDAR system
JP2010133828A (ja) レーダ装置
JP7423485B2 (ja) 距離計測装置
JPH11326040A (ja) 広発散光学系を有するセンサ―と検出装置
WO2022196257A1 (ja) 受光素子、光検出装置及び測定装置
JP2022142238A (ja) 受光素子、光検出装置及び測定装置
JP2022142237A (ja) 受光素子及び測定装置
US20220155442A1 (en) Light detection device, lidar device including the same, and method of measuring distance
JP5595360B2 (ja) 光学式変位測定装置
CN113820689B (zh) 接收器、激光测距设备及点云图像生成方法
WO2022196360A1 (ja) 受光素子及び測定装置
CN111751828A (zh) 激光雷达系统
JP2011095103A (ja) 距離測定装置
CN114556151A (zh) 测距装置、测距方法和可移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771016

Country of ref document: EP

Kind code of ref document: A1