WO2022196176A1 - 非水電解液、電気化学デバイス前駆体、電気化学デバイス、及び電気化学デバイスの製造方法 - Google Patents
非水電解液、電気化学デバイス前駆体、電気化学デバイス、及び電気化学デバイスの製造方法 Download PDFInfo
- Publication number
- WO2022196176A1 WO2022196176A1 PCT/JP2022/004642 JP2022004642W WO2022196176A1 WO 2022196176 A1 WO2022196176 A1 WO 2022196176A1 JP 2022004642 W JP2022004642 W JP 2022004642W WO 2022196176 A1 WO2022196176 A1 WO 2022196176A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- formula
- electrochemical device
- carbon atoms
- positive electrode
- Prior art date
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 75
- 239000002243 precursor Substances 0.000 title claims description 59
- 238000004519 manufacturing process Methods 0.000 title description 14
- -1 sulfone compound Chemical class 0.000 claims abstract description 204
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 35
- 125000002947 alkylene group Chemical group 0.000 claims abstract description 14
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 8
- 125000004432 carbon atom Chemical group C* 0.000 claims description 75
- 239000008151 electrolyte solution Substances 0.000 claims description 36
- 229910052731 fluorine Inorganic materials 0.000 claims description 26
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 23
- 229910001416 lithium ion Inorganic materials 0.000 claims description 23
- 239000007774 positive electrode material Substances 0.000 claims description 23
- 229910003002 lithium salt Inorganic materials 0.000 claims description 22
- 238000007600 charging Methods 0.000 claims description 20
- 229910052744 lithium Inorganic materials 0.000 claims description 20
- 238000007599 discharging Methods 0.000 claims description 13
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 12
- 125000003118 aryl group Chemical group 0.000 claims description 11
- 238000009831 deintercalation Methods 0.000 claims description 11
- 238000009830 intercalation Methods 0.000 claims description 11
- 125000000732 arylene group Chemical group 0.000 claims description 10
- 125000001424 substituent group Chemical group 0.000 claims description 10
- 125000005842 heteroatom Chemical group 0.000 claims description 9
- 150000001875 compounds Chemical group 0.000 claims description 8
- IGILRSKEFZLPKG-UHFFFAOYSA-M lithium;difluorophosphinate Chemical compound [Li+].[O-]P(F)(F)=O IGILRSKEFZLPKG-UHFFFAOYSA-M 0.000 claims description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 6
- 229910052783 alkali metal Inorganic materials 0.000 claims description 5
- 150000001340 alkali metals Chemical class 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 5
- 125000005843 halogen group Chemical group 0.000 claims description 5
- 230000007704 transition Effects 0.000 claims description 5
- 229910052795 boron group element Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910052800 carbon group element Inorganic materials 0.000 claims description 4
- SXWUDUINABFBMK-UHFFFAOYSA-L dilithium;fluoro-dioxido-oxo-$l^{5}-phosphane Chemical compound [Li+].[Li+].[O-]P([O-])(F)=O SXWUDUINABFBMK-UHFFFAOYSA-L 0.000 claims description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 4
- 125000001153 fluoro group Chemical group F* 0.000 claims description 4
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 4
- 230000000737 periodic effect Effects 0.000 claims description 4
- 229910052696 pnictogen Inorganic materials 0.000 claims description 4
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 4
- 229910014733 LiNiaCobMncO2 Inorganic materials 0.000 claims description 3
- 125000004450 alkenylene group Chemical group 0.000 claims description 3
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 claims description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 3
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 abstract 2
- 125000006590 (C2-C6) alkenylene group Chemical group 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 68
- 239000010410 layer Substances 0.000 description 55
- 208000028659 discharge Diseases 0.000 description 46
- 238000000034 method Methods 0.000 description 37
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 22
- 239000003125 aqueous solvent Substances 0.000 description 22
- 239000011737 fluorine Substances 0.000 description 22
- 238000003860 storage Methods 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 21
- 229910052782 aluminium Inorganic materials 0.000 description 20
- 239000000463 material Substances 0.000 description 18
- 239000002002 slurry Substances 0.000 description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 17
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 17
- 238000002360 preparation method Methods 0.000 description 17
- 230000007423 decrease Effects 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- 239000003792 electrolyte Substances 0.000 description 14
- 230000014759 maintenance of location Effects 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 14
- 238000000354 decomposition reaction Methods 0.000 description 13
- 239000011230 binding agent Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 159000000002 lithium salts Chemical class 0.000 description 11
- 150000005678 chain carbonates Chemical class 0.000 description 10
- 150000005676 cyclic carbonates Chemical class 0.000 description 10
- 239000007773 negative electrode material Substances 0.000 description 10
- 230000032683 aging Effects 0.000 description 9
- 239000003575 carbonaceous material Substances 0.000 description 9
- 238000001035 drying Methods 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 9
- 229910013870 LiPF 6 Inorganic materials 0.000 description 8
- 150000002430 hydrocarbons Chemical group 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 7
- 125000003342 alkenyl group Chemical group 0.000 description 7
- 229940021013 electrolyte solution Drugs 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 7
- 239000010439 graphite Substances 0.000 description 7
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 6
- 239000007770 graphite material Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000006229 carbon black Substances 0.000 description 5
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 150000002170 ethers Chemical class 0.000 description 5
- 229940052303 ethers for general anesthesia Drugs 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 230000004308 accommodation Effects 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 229910021383 artificial graphite Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 150000004292 cyclic ethers Chemical class 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 125000000457 gamma-lactone group Chemical group 0.000 description 3
- WDAXFOBOLVPGLV-UHFFFAOYSA-N isobutyric acid ethyl ester Natural products CCOC(=O)C(C)C WDAXFOBOLVPGLV-UHFFFAOYSA-N 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000002931 mesocarbon microbead Substances 0.000 description 3
- 229910021382 natural graphite Inorganic materials 0.000 description 3
- 150000002825 nitriles Chemical class 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002562 thickening agent Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 239000011135 tin Substances 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- DSMUTQTWFHVVGQ-UHFFFAOYSA-N 4,5-difluoro-1,3-dioxolan-2-one Chemical compound FC1OC(=O)OC1F DSMUTQTWFHVVGQ-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 239000002194 amorphous carbon material Substances 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- OBNCKNCVKJNDBV-UHFFFAOYSA-N butanoic acid ethyl ester Natural products CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 description 2
- JHRWWRDRBPCWTF-OLQVQODUSA-N captafol Chemical compound C1C=CC[C@H]2C(=O)N(SC(Cl)(Cl)C(Cl)Cl)C(=O)[C@H]21 JHRWWRDRBPCWTF-OLQVQODUSA-N 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- KLKFAASOGCDTDT-UHFFFAOYSA-N ethoxymethoxyethane Chemical compound CCOCOCC KLKFAASOGCDTDT-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- QKBJDEGZZJWPJA-UHFFFAOYSA-N ethyl propyl carbonate Chemical compound [CH2]COC(=O)OCCC QKBJDEGZZJWPJA-UHFFFAOYSA-N 0.000 description 2
- 238000012854 evaluation process Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 125000004991 fluoroalkenyl group Chemical group 0.000 description 2
- 125000003709 fluoroalkyl group Chemical group 0.000 description 2
- 239000006232 furnace black Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 150000003951 lactams Chemical class 0.000 description 2
- 239000005001 laminate film Substances 0.000 description 2
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- BHIWKHZACMWKOJ-UHFFFAOYSA-N methyl isobutyrate Chemical compound COC(=O)C(C)C BHIWKHZACMWKOJ-UHFFFAOYSA-N 0.000 description 2
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- ZHOFTZAKGRZBSL-UHFFFAOYSA-N 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-heptadecafluoro-8-methoxyoctane Chemical compound COC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F ZHOFTZAKGRZBSL-UHFFFAOYSA-N 0.000 description 1
- JOROOXPAFHWVRW-UHFFFAOYSA-N 1,1,1,2,3,3-hexafluoro-3-(2,2,3,3,3-pentafluoropropoxy)propane Chemical compound FC(F)(F)C(F)C(F)(F)OCC(F)(F)C(F)(F)F JOROOXPAFHWVRW-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- VDFVNEFVBPFDSB-UHFFFAOYSA-N 1,3-dioxane Chemical compound C1COCOC1 VDFVNEFVBPFDSB-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- GDXHBFHOEYVPED-UHFFFAOYSA-N 1-(2-butoxyethoxy)butane Chemical compound CCCCOCCOCCCC GDXHBFHOEYVPED-UHFFFAOYSA-N 0.000 description 1
- HNAGHMKIPMKKBB-UHFFFAOYSA-N 1-benzylpyrrolidine-3-carboxamide Chemical compound C1C(C(=O)N)CCN1CC1=CC=CC=C1 HNAGHMKIPMKKBB-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000006021 1-methyl-2-propenyl group Chemical group 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- ZOWSJJBOQDKOHI-UHFFFAOYSA-N 2,2,2-trifluoroethyl acetate Chemical compound CC(=O)OCC(F)(F)F ZOWSJJBOQDKOHI-UHFFFAOYSA-N 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- QKPVEISEHYYHRH-UHFFFAOYSA-N 2-methoxyacetonitrile Chemical compound COCC#N QKPVEISEHYYHRH-UHFFFAOYSA-N 0.000 description 1
- 125000006020 2-methyl-1-propenyl group Chemical group 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- OOWFYDWAMOKVSF-UHFFFAOYSA-N 3-methoxypropanenitrile Chemical compound COCCC#N OOWFYDWAMOKVSF-UHFFFAOYSA-N 0.000 description 1
- VWIIJDNADIEEDB-UHFFFAOYSA-N 3-methyl-1,3-oxazolidin-2-one Chemical compound CN1CCOC1=O VWIIJDNADIEEDB-UHFFFAOYSA-N 0.000 description 1
- GKZFQPGIDVGTLZ-UHFFFAOYSA-N 4-(trifluoromethyl)-1,3-dioxolan-2-one Chemical compound FC(F)(F)C1COC(=O)O1 GKZFQPGIDVGTLZ-UHFFFAOYSA-N 0.000 description 1
- SBUOHGKIOVRDKY-UHFFFAOYSA-N 4-methyl-1,3-dioxolane Chemical compound CC1COCO1 SBUOHGKIOVRDKY-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 239000006245 Carbon black Super-P Substances 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- JGFBQFKZKSSODQ-UHFFFAOYSA-N Isothiocyanatocyclopropane Chemical compound S=C=NC1CC1 JGFBQFKZKSSODQ-UHFFFAOYSA-N 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013825 LiNi0.33Co0.33Mn0.33O2 Inorganic materials 0.000 description 1
- 229910002991 LiNi0.5Co0.2Mn0.3O2 Inorganic materials 0.000 description 1
- 229910012742 LiNi0.5Co0.3Mn0.2O2 Inorganic materials 0.000 description 1
- 229910011328 LiNi0.6Co0.2Mn0.2O2 Inorganic materials 0.000 description 1
- 229910002995 LiNi0.8Co0.15Al0.05O2 Inorganic materials 0.000 description 1
- 229910015872 LiNi0.8Co0.1Mn0.1O2 Inorganic materials 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 229910016722 Ni0.5Co0.2Mn0.3 Inorganic materials 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- DGIDDDIFEQSDJB-UHFFFAOYSA-J [Cl-].[Cl-].[Cl-].[Cl-].[Li+].[Li+].[Li+].[Li+] Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Li+].[Li+].[Li+].[Li+] DGIDDDIFEQSDJB-UHFFFAOYSA-J 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- PWLNAUNEAKQYLH-UHFFFAOYSA-N butyric acid octyl ester Natural products CCCCCCCCOC(=O)CCC PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 1
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 238000007723 die pressing method Methods 0.000 description 1
- 229960004132 diethyl ether Drugs 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- GZKHDVAKKLTJPO-UHFFFAOYSA-N ethyl 2,2-difluoroacetate Chemical compound CCOC(=O)C(F)F GZKHDVAKKLTJPO-UHFFFAOYSA-N 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- ZTOMUSMDRMJOTH-UHFFFAOYSA-N glutaronitrile Chemical compound N#CCCCC#N ZTOMUSMDRMJOTH-UHFFFAOYSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 101150004907 litaf gene Proteins 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011302 mesophase pitch Substances 0.000 description 1
- GBPVMEKUJUKTBA-UHFFFAOYSA-N methyl 2,2,2-trifluoroethyl carbonate Chemical compound COC(=O)OCC(F)(F)F GBPVMEKUJUKTBA-UHFFFAOYSA-N 0.000 description 1
- CSSYKHYGURSRAZ-UHFFFAOYSA-N methyl 2,2-difluoroacetate Chemical compound COC(=O)C(F)F CSSYKHYGURSRAZ-UHFFFAOYSA-N 0.000 description 1
- PMGBATZKLCISOD-UHFFFAOYSA-N methyl 3,3,3-trifluoropropanoate Chemical compound COC(=O)CC(F)(F)F PMGBATZKLCISOD-UHFFFAOYSA-N 0.000 description 1
- YSEQYIDUBUJABL-UHFFFAOYSA-N methyl 4,4-dimethylpentanoate Chemical compound COC(=O)CCC(C)(C)C YSEQYIDUBUJABL-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- NCKZHFSVCRZQGH-UHFFFAOYSA-N methylsulfinylmethane;phosphoric acid Chemical compound CS(C)=O.OP(O)(O)=O NCKZHFSVCRZQGH-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- UUIQMZJEGPQKFD-UHFFFAOYSA-N n-butyric acid methyl ester Natural products CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- MCSAJNNLRCFZED-UHFFFAOYSA-N nitroethane Chemical compound CC[N+]([O-])=O MCSAJNNLRCFZED-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- 125000005003 perfluorobutyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- 125000005004 perfluoroethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000005005 perfluorohexyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- 125000005008 perfluoropentyl group Chemical group FC(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)* 0.000 description 1
- 125000005009 perfluoropropyl group Chemical group FC(C(C(F)(F)F)(F)F)(F)* 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000003012 phosphoric acid amides Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000007767 slide coating Methods 0.000 description 1
- 238000007764 slot die coating Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- ARUIMKUOHIINGI-UHFFFAOYSA-N trifluoro(methylsulfonyl)methane Chemical compound CS(=O)(=O)C(F)(F)F ARUIMKUOHIINGI-UHFFFAOYSA-N 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
Definitions
- the present disclosure relates to a non-aqueous electrolyte, an electrochemical device precursor, an electrochemical device, and a method for manufacturing an electrochemical device.
- Lithium-ion secondary batteries are attracting attention as batteries with high energy density.
- Patent Literature 1 discloses a non-aqueous electrolyte for lithium ion secondary batteries.
- the non-aqueous electrolytic solution specifically disclosed in Patent Document 1 consists of a non-aqueous solvent and a lithium salt.
- Non-aqueous solvents consist of (trifluoromethyl)methylsulfone (CF 3 CH 3 SO 2 ), ethylmethyl carbonate, and ethylene carbonate.
- Lithium salts consist of LiPF 6 and LiN(FSO 2 ) 2 .
- Patent Document 1 International Publication No. 2020/063882
- the lithium-ion secondary battery using the non-aqueous electrolyte disclosed in Patent Document 1 may have a reduced capacity and an increased DC resistance when charged or discharged in a high-temperature environment. .
- the present disclosure provides a non-aqueous electrolytic solution, an electrochemical device precursor, an electrochemical device precursor, and an electrochemical device that can suppress a decrease in capacity and an increase in DC resistance even when the electrochemical device is stored for a long time in a high-temperature environment.
- An object of the present invention is to provide a method for manufacturing a chemical device and an electrochemical device.
- the means for solving the above problems include the following embodiments.
- a cyclic sulfone compound (II) represented by the following general formula (II); contains The content of the chain sulfone compound (I) is 0.01% by mass to 10% by mass with respect to the total amount of the nonaqueous electrolyte.
- R 11 and R 12 each independently represent an alkyl group having 1 to 6 carbon atoms or a fluorinated alkyl group having 1 to 6 carbon atoms.
- R 21 is an alkylene group having 3 to 6 carbon atoms, an alkenylene group having 2 to 6 carbon atoms, or a group represented by formula (ii-1), * indicates the binding position,
- R 22 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a group represented by formula (ii-2),
- R 23 is an alkyl group having 1 to 2 carbon atoms or a group represented by formula (ii-2).
- ⁇ 2> The nonaqueous electrolytic solution according to ⁇ 1>, wherein R 11 is a fluorinated alkyl group having 1 to 6 carbon atoms.
- R 21 is a group represented by formula (ii-1);
- ⁇ 4> The non-aqueous electrolytic solution according to any one of ⁇ 1> to ⁇ 3>, containing a cyclic carbonate compound (III) having an unsaturated bond represented by the following formula (III).
- R 31 and R 32 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group.
- R 41 and R 42 each independently represent a fluorine atom, a trifluoromethyl group or a pentafluoroethyl group.
- ⁇ 6> The non-aqueous electrolytic solution according to any one of ⁇ 1> to ⁇ 5>, containing a cyclic dicarbonyl compound (V) represented by the following formula (V).
- M is an alkali metal
- Y is a transition element, a group 13 element, a group 14 element, or a group 15 element of the periodic table
- b is an integer from 1 to 3
- m is an integer from 1 to 4
- n is an integer from 0 to 8, q is 0 or 1
- R 51 is an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a halogenated arylene group having 6 to 20 carbon atoms (these groups are The structure may contain a substituent or a heteroatom, and when q is 1 and m is 2 to 4, each of m R 51 may be bonded.
- R 52 is a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or
- ⁇ 7> The nonaqueous electrolysis according to any one of ⁇ 1> to ⁇ 6>, containing at least one compound (VI) selected from the group consisting of lithium monofluorophosphate and lithium difluorophosphate.
- liquid. ⁇ 8> a case; a positive electrode, a negative electrode, a separator, and an electrolytic solution housed in the case; with the positive electrode is a positive electrode capable of intercalating and deintercalating lithium ions; the negative electrode is a negative electrode capable of intercalating and deintercalating lithium ions;
- An electrochemical device precursor wherein the electrolytic solution is the non-aqueous electrolytic solution according to any one of ⁇ 1> to ⁇ 7>.
- a non-aqueous electrolyte an electrochemical device precursor, an electrochemical device, which can suppress a decrease in capacity and an increase in direct current resistance even when the electrochemical device is stored for a long time in a high-temperature environment, and methods of manufacturing electrochemical devices are provided.
- FIG. 1 is a cross-sectional view of an electrochemical device precursor according to embodiments of the present disclosure
- a numerical range represented by “to” means a range including the numerical values before and after “to” as lower and upper limits.
- the amount of each component in the composition refers to the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. means In this specification, the term “process” is not only an independent process, but also includes the term if the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. be
- Non-aqueous electrolyte The non-aqueous electrolytic solution according to this embodiment will be described.
- the non-aqueous electrolyte is suitably used as an electrolyte for electrochemical devices.
- Electrochemical devices include lithium ion secondary batteries. Details of the electrochemical device will be described later with reference to FIG.
- the non-aqueous electrolyte contains a chain sulfone compound (I) represented by the following general formula (I) and a cyclic sulfone compound (II) represented by the following general formula (II).
- the content of the chain sulfone compound (I) is 0.01% by mass to 10% by mass with respect to the total amount of the non-aqueous electrolyte. Details of each of the chain sulfone compound (I) and the cyclic sulfone compound (II) will be described later.
- the non-aqueous electrolyte contains a chain sulfone compound (I) and a cyclic sulfone compound (II), and the content of the chain sulfone compound (I) is 0.01 with respect to the total amount of the non-aqueous electrolyte. Since it is in the range of 10% by mass to 10% by mass, even if the electrochemical device is stored in a high-temperature environment for a long period of time, a decrease in capacity and an increase in DC resistance are suppressed. It is presumed that the reason why the decrease in capacity and the increase in DC resistance are suppressed even when the electrochemical device is stored for a long period of time in a high-temperature environment is mainly for the following reasons.
- SEI film solid electrolyte interphase film
- charge and discharge a solid electrolyte interphase film
- SEI film solid electrolyte interphase film
- a battery reaction indicates a reaction in which lithium ions move in and out (intercalate) between a positive electrode and a negative electrode.
- the side reaction includes a reductive decomposition reaction of the non-aqueous electrolyte by the negative electrode, an oxidative decomposition reaction of the non-aqueous electrolyte by the positive electrode, elution of the metal element in the positive electrode active material, and the like.
- the SEI film is difficult to thicken even in charge-discharge cycles after being stored in a high-temperature environment. Therefore, lithium ions in the non-aqueous electrolyte are less likely to be consumed.
- the non-aqueous electrolytic solution according to the present embodiment can suppress a decrease in capacity and an increase in DC resistance even when an electrochemical device is stored for a long period of time in a high-temperature environment.
- the non-aqueous electrolyte contains a chain sulfone compound (I) represented by the following formula (I).
- R 11 and R 12 each independently represent an alkyl group having 1 to 6 carbon atoms or a fluorinated alkyl group having 1 to 6 carbon atoms.
- the hydrocarbon group having 1 to 6 carbon atoms represented by R 11 and R 12 may be a linear hydrocarbon group or a hydrocarbon group having a branched and/or cyclic structure. may be In formula (I), examples of the hydrocarbon group having 1 to 6 carbon atoms represented by R 11 and R 12 include alkyl groups having 1 to 6 carbon atoms and alkenyl groups having 1 to 6 carbon atoms.
- alkyl groups having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, 1-ethylpropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, 2 -methylbutyl group, 3,3-dimethylbutyl group, n-pentyl group, isopentyl group, neopentyl group, 1-methylpentyl group, n-hexyl group, isohexyl group, sec-hexyl group, tert-hexyl group and the like. .
- alkenyl groups having 1 to 6 carbon atoms include vinyl, 1-propenyl, allyl, 1-butenyl, 2-butenyl, 3-butenyl, pentenyl, hexenyl, isopropenyl, and 2-methyl.
- the hydrocarbon group having 1 to 6 carbon atoms represented by R 11 and R 12 is preferably an alkyl group, an alkenyl group, or an alkynyl group, more preferably an alkyl group or an alkenyl group, and an alkyl group. is particularly preferred.
- the number of carbon atoms in the hydrocarbon group having 1 to 6 carbon atoms represented by R 11 and R 12 is preferably 1 to 3, more preferably 1 or 2, and still more preferably 1.
- the fluorohydrocarbon group having 1 to 6 carbon atoms represented by R 11 and R 12 may be a linear fluorohydrocarbon group, or may have a branched and/or cyclic structure. may be a fluorinated hydrocarbon group having
- the fluorohydrocarbon group having 1 to 6 carbon atoms represented by R 11 and R 12 includes a fluoroalkyl group having 1 to 6 carbon atoms, a fluoroalkenyl group having 1 to 6 carbon atoms, and the like. mentioned.
- fluoroalkyl group having 1 to 6 carbon atoms examples include fluoromethyl group, difluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2-tetrafluoroethyl group, per fluoroethyl group, 2,2,3,3-tetrafluoropropyl group, perfluoropropyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroisopropyl group, perfluoroisobutyl group and the like.
- the fluoroalkenyl groups having 1 to 6 carbon atoms include 2-fluoroethenyl group, 2,2-difluoroethenyl group, 2-fluoro-2-propenyl group, 3,3-difluoro-2-propenyl group, 2, 3-difluoro-2-propenyl group, 3,3-difluoro-2-methyl-2-propenyl group, 3-fluoro-2-butenyl group, perfluorovinyl group, perfluoropropenyl group, perfluorobutenyl group and the like mentioned.
- the fluorinated hydrocarbon group having 1 to 6 carbon atoms represented by R 11 and R 12 is preferably a fluorinated alkyl group, a fluorinated alkenyl group, or a fluorinated alkynyl group. or fluorinated alkenyl groups are more preferred, and fluorinated alkyl groups are particularly preferred.
- the number of carbon atoms in the fluorohydrocarbon group having 1 to 6 carbon atoms represented by R 11 and R 12 is preferably 1 to 3, more preferably 1 or 2, and still more preferably 1.
- R 11 preferably represents a fluorinated alkyl group having 1 to 6 carbon atoms.
- chain sulfone compounds (I) include compounds represented by the following formulas (I-1) to (I-2).
- the upper limit of the content of the chain sulfone compound (I) is 0.01% by mass to 10% by mass, preferably 0.1% by mass to 5% by mass, and more preferably It is 0.3% by mass to 3% by mass.
- the content of the chain sulfone compound (I) is within the above range, it is possible to suppress the increase in the thickness of the SEI film while suppressing the decomposition of the non-aqueous solvent on the positive electrode or the negative electrode. Non-aqueous solvents will be described later.
- an SEI film having a thickness capable of suppressing decomposition of the non-aqueous solvent in the non-aqueous electrolyte is formed. As a result, the properties of the electrochemical device after high temperature storage are improved.
- the non-aqueous electrolyte contains a cyclic sulfone compound (II) represented by the following formula (II).
- R 21 is an alkylene group having 3 to 6 carbon atoms, an alkenylene group having 2 to 6 carbon atoms, or a group represented by formula (ii-1); * indicates the binding position,
- R 22 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a group represented by formula (ii-2),
- R 23 is an alkyl group having 1 to 2 carbon atoms or a group represented by formula (ii-2).
- R 21 is preferably a group represented by formula (ii-1).
- the number of carbon atoms in the alkyl group having 1 to 2 carbon atoms represented by R 22 and R 23 is more preferably 1.
- R 21 is a group represented by formula (ii-1), At least one of R 22 and R 23 is preferably a group represented by formula (ii-2).
- cyclic sulfone compound (II) examples include compounds represented by the following formulas (II-1) to (II-2).
- the content of the cyclic sulfone compound (II) is preferably 0.10% by mass to 10.0% by mass, more preferably 0.20% by mass to 5.0% by mass, and further It is preferably 0.30% by mass to 3.0% by mass.
- the content of the cyclic sulfone compound (II) is within the above range, it is possible to suppress an increase in the thickness of the SEI film while suppressing the decomposition of the non-aqueous solvent on the positive electrode or the negative electrode.
- an SEI film having a thickness capable of suppressing decomposition of the non-aqueous solvent in the non-aqueous electrolyte is formed. As a result, the properties of the electrochemical device after high temperature storage are improved.
- the non-aqueous electrolyte preferably contains a cyclic carbonate compound (III) having an unsaturated bond represented by the following formula (III).
- R31 and R32 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group.
- the non-aqueous electrolyte further contains the cyclic carbonate compound (III), so that the electrochemical device can be used in a high-temperature environment. Even if it is stored for a long period of time at , it is possible to further suppress a decrease in capacity and an increase in direct current resistance. This effect is presumed to be due to the following reasons.
- the cyclic carbonate compound (III) is reductively decomposed by the negative electrode before the non-aqueous electrolyte is reductively decomposed on the negative electrode even in charge-discharge cycles after being stored in a high-temperature environment, and easily forms an SEI film. . This suppresses decomposition of the non-aqueous electrolyte at the negative electrode. As a result, the increase in DC resistance of the electrochemical device is further suppressed.
- cyclic carbonate compounds (III) include compounds represented by the following formulas (III-1) to (III-7).
- the content of the cyclic carbonate compound (III) is preferably 0.10% by mass to 10.0% by mass with respect to the total amount of the nonaqueous electrolyte. %, more preferably 0.20 mass % to 5.0 mass %, still more preferably 0.30 mass % to 3.0 mass %.
- the content of the cyclic carbonate compound (III) is within the above range, it is possible to suppress the increase in the thickness of the SEI film while suppressing the decomposition of the non-aqueous solvent on the positive electrode or the negative electrode. As a result, the properties of the electrochemical device after high temperature storage are improved.
- the non-aqueous electrolyte preferably contains a sulfonimide lithium salt compound (IV) represented by the following formula (IV).
- R41 and R42 each independently represent a fluorine atom, a trifluoromethyl group or a pentafluoroethyl group.
- the non-aqueous electrolyte further contains the sulfonimide lithium salt compound (IV), so that the electrochemical device can be used in a high-temperature environment. Even if it is stored under low temperature for a long period of time, it is possible to further suppress the decrease in capacity and the increase in direct current resistance. This effect is presumed to be due to the following reasons.
- the sulfonimide lithium salt compound (IV) is oxidatively decomposed by the positive electrode before the non-aqueous electrolyte is reductively decomposed on the negative electrode, and tends to form an SEI film. This suppresses decomposition of the non-aqueous electrolyte at the positive electrode. As a result, even if the electrochemical device is stored at high temperatures for a long period of time, an increase in DC resistance of the electrochemical device is further suppressed.
- sulfonimide lithium salt compound (IV) as an additive include compounds represented by the following formulas (IV-1) to (IV-3).
- the content of the sulfonimide lithium salt compound (IV) is preferably 0.10% by mass to 10% by mass relative to the total amount of the nonaqueous electrolyte. 0 mass %, more preferably 0.20 mass % to 5.0 mass %, and still more preferably 0.30 mass % to 3.0 mass %. If the content of the sulfonimide lithium salt compound (IV) is within the above range, the electrochemical device can operate without the SEI membrane impairing the conductivity of lithium cations. Furthermore, the battery characteristics of the electrochemical device are improved as the SEI membrane includes a sulfonimide-based structure.
- the SEI membrane contains a sufficient amount of a structure mainly composed of sulfonimide. This facilitates formation of a thermally and chemically stable polymer structure. Therefore, at high temperatures, elution of components of the SEI film and deterioration of the SEI film, which impair the durability of the SEI film, are less likely to occur. As a result, the durability of the SEI film is improved. Furthermore, the increase in DC resistance of the electrochemical device can be suppressed even after long-term storage in a high-temperature environment.
- the non-aqueous electrolyte preferably contains a cyclic dicarbonyl compound (V) represented by the following formula (V).
- M is an alkali metal
- Y is a transition element, a group 13 element, a group 14 element, or a group 15 element of the periodic table
- b is an integer from 1 to 3
- m is an integer from 1 to 4
- n is an integer from 0 to 8, q is 0 or 1
- R 51 is an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a halogenated arylene group having 6 to 20 carbon atoms (these groups are The structure may contain a substituent or a heteroatom, and when q is 1 and m is 2 to 4, each of m R 51 may be bonded.
- R 52 is a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or
- the electrochemical device can be A decrease in capacity and an increase in DC resistance are further suppressed. This effect is presumed to be due to the following reasons. Since the non-aqueous electrolyte contains the cyclic dicarbonyl compound (V) in addition to the chain sulfone compound (I) and the cyclic sulfone compound (II), the SEI membrane contains the above-mentioned reaction products, etc. may contain a bond derived from the cyclic dicarbonyl compound (V).
- M is an alkali metal.
- Alkali metals include lithium, sodium, potassium and the like. Among them, M is preferably lithium.
- Y is a transition element, a group 13 element, a group 14 element, or a group 15 element of the periodic table. Y is preferably Al, B, V, Ti, Si, Zr, Ge, Sn, Cu, Y, Zn, Ga, Nb, Ta, Bi, P, As, Sc, Hf or Sb; , B or P are more preferred.
- Y is Al, B or P, synthesis of the anion compound is relatively easy, and production costs can be reduced.
- b represents the valence of the anion and the number of cations.
- b is an integer of 1 to 3, preferably 1; When b is 3 or less, the salt of the anion compound is easily dissolved in the mixed organic solvent.
- Each of m and n is a value related to the number of ligands. Each of m and n depends on the type of M. m is an integer of 1-4. n is an integer from 0 to 8; q is 0 or 1; When q is 0, the chelate ring is a five-membered ring, and when q is 1, the chelate ring is a six-membered ring.
- R 51 represents an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a halogenated arylene group having 6 to 20 carbon atoms.
- These alkylene groups, halogenated alkylene groups, arylene groups or halogenated arylene groups may contain substituents and heteroatoms in their structures. Specifically, these groups may contain substituents instead of hydrogen atoms.
- substituents include halogen atoms, chain or cyclic alkyl groups, aryl groups, alkenyl groups, alkoxy groups, aryloxy groups, sulfonyl groups, amino groups, cyano groups, carbonyl groups, acyl groups, amide groups, or hydroxyl groups. be done. A structure in which a nitrogen atom, a sulfur atom, or an oxygen atom is introduced in place of the carbon atoms of these groups may also be used. When q is 1 and m is 2 to 4, each of m R 51 may be bonded. Examples of such may include ligands such as ethylenediaminetetraacetic acid.
- R 52 represents a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogenated aryl group having 6 to 20 carbon atoms. Similar to R 51 , these alkyl groups, halogenated alkyl groups, aryl groups or halogenated aryl groups may contain substituents and heteroatoms in their structures, and when n is 2 to 8, n R 52 of may be combined to form a ring. R 52 is preferably an electron-withdrawing group, particularly preferably a fluorine atom.
- Q 1 and Q 2 each independently represent O or S; That is, the ligand will be attached to Y through these heteroatoms.
- cyclic dicarbonyl compound (V) examples include compounds represented by the following formulas (V-1) to (V-2).
- the content of the cyclic dicarbonyl compound (V) is preferably 0.01% by mass to 10% by mass with respect to the total amount of the non-aqueous electrolyte, More preferably 0.05% by mass to 5.0% by mass, still more preferably 0.10% by mass to 3.0% by mass, and particularly preferably 0.10% by mass to 2.0% by mass. If the content of the cyclic dicarbonyl compound (V) is within the above range, the electrochemical device can operate without the SEI film impairing the conductivity of lithium cations. Furthermore, the cell characteristics of the electrochemical device are improved as the SEI film contains the cyclic dicarbonyl structure.
- the SEI film contains a sufficient amount of structures mainly composed of cyclic dicarbonyl. This facilitates the formation of thermally and chemically stable inorganic salts or polymeric structures. Therefore, at high temperatures, elution of components of the SEI film and deterioration of the SEI film, which impair the durability of the SEI film, are less likely to occur. As a result, the durability of the SEI film and the high temperature post-storage properties of the electrochemical device are improved.
- Lithium fluorophosphate compound (VI) contains at least one compound selected from the group consisting of lithium monofluorophosphate and lithium difluorophosphate (hereinafter sometimes referred to as "lithium fluorophosphate compound (VI)"). is preferred. Lithium difluorophosphate is represented by the following formula (VI-1), and lithium monofluorophosphate is represented by the following formula (VI-2).
- the non-aqueous electrolyte of the present disclosure contains the lithium fluorophosphate compound (VI), so that charging and discharging after storage in a high temperature environment Also in cycles, the decrease in the capacity of the electrochemical device and the increase in DC resistance are further suppressed.
- V lithium fluorophosphate compound
- the content of the lithium fluorophosphate compound (VI) is preferably 0.001% by mass to 5% by mass relative to the total amount of the nonaqueous electrolyte. % by mass, more preferably 0.01% by mass to 3% by mass, and even more preferably 0.1% by mass to 2% by mass. If the content of the lithium fluorophosphate compound (VI) is within the above range, the solubility of the lithium fluorophosphate compound (VI) in non-aqueous solvents can be ensured. If the content of the lithium fluorophosphate compound (VI) is within the above range, the DC resistance of the electrochemical device can be further lowered.
- a non-aqueous electrolyte generally contains a non-aqueous solvent.
- the non-aqueous solvent various known solvents can be appropriately selected. Only one type of non-aqueous solvent may be used, or two or more types may be used.
- Non-aqueous solvents include, for example, cyclic carbonates, fluorine-containing cyclic carbonates, chain carbonates, fluorine-containing chain carbonates, aliphatic carboxylic acid esters, fluorine-containing aliphatic carboxylic acid esters, and ⁇ -lactones. , fluorine-containing ⁇ -lactones, cyclic ethers, fluorine-containing cyclic ethers, chain ethers, fluorine-containing chain ethers, nitriles, amides, lactams, nitromethane, nitroethane, sulfolane, trimethyl phosphate, dimethyl sulfoxide , dimethyl sulfoxide phosphate, and the like.
- Examples of cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC).
- Examples of fluorine-containing cyclic carbonates include fluoroethylene carbonate (FEC), difluoroethylene carbonate (DFEC), trifluoropropylene carbonate, and the like.
- Examples of chain carbonates include dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), dipropyl carbonate (DPC), and the like. is mentioned.
- Examples of fluorine-containing chain carbonates include methyl 2,2,2-trifluoroethyl carbonate.
- aliphatic carboxylic acid esters examples include methyl formate, methyl acetate, methyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethylbutyrate, ethyl formate, ethyl acetate, ethyl propionate, ethyl butyrate, ethyl isobutyrate, trimethyl ethyl butyrate, and the like.
- fluorine-containing aliphatic carboxylic acid esters examples include methyl difluoroacetate, methyl 3,3,3-trifluoropropionate, ethyl difluoroacetate, and 2,2,2-trifluoroethyl acetate.
- Examples of ⁇ -lactones include ⁇ -butyrolactone, ⁇ -valerolactone, and the like.
- Cyclic ethers include, for example, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, and the like.
- Examples of chain ethers include 1,2-ethoxyethane (DEE), ethoxymethoxyethane (EME), diethyl ether, 1,2-dimethoxyethane, 1,2-dibutoxyethane, and the like.
- fluorine - containing chain ethers examples include HCF2CF2CH2OCF2CF2H , CF3CF2CH2OCF2CF2H , HCF2CF2CH2OCF2CFHCF3 , CF3CF2 _ _ CH2OCF2CFHCF3 , C6F13OCH3 , C6F13OC2H5 , C8F17OCH3 , C8F17OC2H5 , CF3CFHCF2CH ( CH3 ) OCF2 _ _ _ _ _ _ CFHCF3 , HCF2CF2OCH ( C2H5 ) 2 , HCF2CF2OC4H9 , HCF2CF2OCH2CH ( C2H5 ) 2 , HCF2CF2OCH2CH ( CH3 _ ) 2 and the like.
- Nitriles include, for example, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile, and the like.
- Amides include, for example, N,N-dimethylformamide.
- lactams include N-methylpyrrolidinone, N-methyloxazolidinone, N,N'-dimethylimidazolidinone, and the like.
- the non-aqueous solvent preferably contains at least one selected from the group consisting of cyclic carbonates, fluorine-containing cyclic carbonates, chain carbonates, and fluorine-containing chain carbonates.
- the total ratio of cyclic carbonates, fluorine-containing cyclic carbonates, chain carbonates, and fluorine-containing chain carbonates is preferably 50% by mass to 100% by mass, based on the total amount of the non-aqueous solvent, More preferably 60% by mass to 100% by mass, still more preferably 80% by mass to 100% by mass.
- the non-aqueous solvent preferably contains at least one selected from the group consisting of cyclic carbonates and chain carbonates.
- the total proportion of cyclic carbonates and chain carbonates in the nonaqueous solvent is preferably 50% by mass to 100% by mass, more preferably 60% by mass to the total amount of the nonaqueous solvent. 100% by mass, more preferably 80% to 100% by mass.
- the content of the nonaqueous solvent is preferably 60% by mass to 99% by mass, more preferably 70% by mass to 97% by mass, and still more preferably 70% by mass to 90% by mass, based on the total amount of the nonaqueous electrolyte. be.
- the intrinsic viscosity of the non-aqueous solvent is preferably 10.0 mPa ⁇ s or less at 25°C from the viewpoint of further improving the dissociation of the electrolyte and the mobility of ions.
- a non-aqueous electrolyte generally contains an electrolyte.
- the electrolyte preferably contains at least one of a fluorine-containing lithium salt (hereinafter sometimes referred to as a "fluorine-containing lithium salt”) and a fluorine-free lithium salt.
- a fluorine-containing lithium salt hereinafter sometimes referred to as a "fluorine-containing lithium salt”
- fluorine-free lithium salt a fluorine-free lithium salt
- fluorine-containing lithium salts include inorganic acid anion salts and organic acid anion salts.
- inorganic acid anion salts include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium hexafluorotantalate ( LiTaF 6 ), and the like.
- organic acid anion salts include lithium trifluoromethanesulfonate (LiCF 3 SO 3 ). Among them, LiPF 6 is particularly preferable as the fluorine-containing lithium salt.
- Lithium salts containing no fluorine include lithium perchlorate (LiClO 4 ), lithium tetrachloride aluminumate (LiAlCl 4 ), lithium decachlorodecaborate (Li 2 B 10 Cl 10 ), and the like.
- the content of the fluorine-containing lithium salt is preferably 50% by mass to 100% by mass, more preferably 60% by mass to 100% by mass, and still more preferably 80% by mass to 100% by mass.
- the fluorine-containing lithium salt contains lithium hexafluorophosphate (LiPF 6 )
- the content of lithium hexafluorophosphate (LiPF 6 ) is preferably 50% by mass to 100% by mass with respect to the total amount of the electrolyte. , More preferably 60% by mass to 100% by mass, still more preferably 80% by mass to 100% by mass.
- the concentration of the electrolyte in the non-aqueous electrolyte is preferably 0.1 mol/L to 3 mol/L, more preferably 0.5 mol/L to 2 mol/L.
- the concentration of lithium hexafluorophosphate (LiPF 6 ) in the non-aqueous electrolyte is preferably 0.1 mol/L to 3 mol/L, More preferably 0.5 mol/L to 2 mol/L.
- the non-aqueous electrolyte may contain other components as needed.
- Electrochemical device precursor Next, electrochemical device precursors according to embodiments of the present disclosure will be described.
- the electrochemical device precursor according to this embodiment includes a case, a positive electrode, a negative electrode, a separator, and an electrolytic solution.
- the case accommodates a positive electrode, a negative electrode, a separator, and an electrolytic solution.
- the positive electrode is capable of intercalating and deintercalating lithium ions.
- the negative electrode is capable of intercalating and deintercalating lithium ions.
- the separator separates the positive electrode and the negative electrode.
- the electrolytic solution is the non-aqueous electrolytic solution according to this embodiment.
- An electrochemical device precursor indicates an electrochemical device before being subjected to charging and discharging. That is, in the electrochemical device precursor, the negative electrode does not contain an SEI film and the positive electrode does not contain an SEI film.
- the shape and the like of the case are not particularly limited, and are appropriately selected according to the use of the electrochemical device precursor according to the present embodiment.
- Examples of the case include a case including a laminate film, a case including a battery can and a battery can lid, and the like.
- the positive electrode preferably contains at least one positive electrode active material.
- the positive electrode active material is capable of intercalating and deintercalating lithium ions.
- the positive electrode according to this embodiment includes a positive electrode current collector and a positive electrode mixture layer.
- the positive electrode mixture layer is provided on at least part of the surface of the positive electrode current collector.
- Examples of materials for the positive electrode current collector include metals and alloys. Specifically, examples of materials for the positive electrode current collector include aluminum, nickel, stainless steel (SUS), and copper. Among them, the material of the positive electrode current collector is preferably aluminum from the viewpoint of the balance between high conductivity and cost.
- “aluminum” means pure aluminum or an aluminum alloy.
- Aluminum foil is preferable as the positive electrode current collector. The material of the aluminum foil is not particularly limited, and examples thereof include A1085 material and A3003 material.
- the positive electrode mixture layer contains a positive electrode active material and a binder.
- the positive electrode active material is not particularly limited as long as it is capable of intercalating and deintercalating lithium ions, and can be appropriately adjusted according to the application of the electrochemical device precursor.
- positive electrode active materials include first oxides and second oxides.
- the first oxide contains lithium (Li) and nickel (Ni) as constituent metal elements.
- the second oxide contains Li, Ni, and at least one of metal elements other than Li and Ni as constituent metal elements.
- metal elements other than Li and Ni include transition metal elements and typical metal elements.
- the second oxide preferably contains a metal element other than Li and Ni in a proportion equal to or lower than that of Ni in terms of the number of atoms.
- Metal elements other than Li and Ni are, for example, Co, Mn, Al, Cr, Fe, V, Mg, Ca, Na, Ti, Zr, Nb, Mo, W, Cu, Zn, Ga, In, Sn, La and Ce. These positive electrode active materials may be used singly or in combination.
- the positive electrode active material preferably contains a lithium-containing composite oxide (hereinafter sometimes referred to as "NCM”) represented by the following formula (X).
- NCM lithium-containing composite oxide
- the lithium-containing composite oxide (X) has advantages of high energy density per unit volume and excellent thermal stability.
- a, b and c are each independently greater than 0 and less than 1, and the sum of a, b and c is 0.99 to 1.00.
- NCM include LiNi0.33Co0.33Mn0.33O2 , LiNi0.5Co0.3Mn0.2O2 , LiNi0.5Co0.2Mn0.3O _ 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 and the like.
- the positive electrode active material may contain a lithium-containing composite oxide (hereinafter sometimes referred to as "NCA”) represented by the following formula (Y).
- NCA lithium-containing composite oxide
- t 0.95 to 1.15
- x is 0 to 0.3
- y is 0.1 to 0.2
- the sum of x and y is less than 0.5.
- NCA LiNi 0.8 Co 0.15 Al 0.05 O 2 and the like.
- the positive electrode in the electrochemical device precursor according to the present embodiment includes a positive electrode current collector and a positive electrode mixture layer containing a positive electrode active material and a binder
- the content of the positive electrode active material in the positive electrode mixture layer is preferably 10% by mass to 99.9% by mass, more preferably 30% by mass to 99% by mass, still more preferably 50% by mass to 99% by mass, particularly preferably 70% by mass, based on the total amount of the positive electrode mixture layer. % to 99% by mass.
- binders include polyvinyl acetate, polymethyl methacrylate, nitrocellulose, fluororesins, and rubber particles.
- fluororesins include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), vinylidene fluoride-hexafluoropropylene copolymer, and the like.
- Rubber particles include styrene-butadiene rubber particles, acrylonitrile rubber particles, and the like.
- the binder is preferably a fluororesin.
- a binder can be used individually by 1 type, and can be used in combination of 2 or more types as needed.
- the content of the binder in the positive electrode mixture layer is It is preferably 0.1% by mass to 4% by mass.
- the adhesiveness of the positive electrode mixture layer to the positive electrode current collector and the binding property between the positive electrode active materials are further improved.
- the amount of the positive electrode active material in the positive electrode mixture layer can be increased, thereby further improving the capacity.
- the positive electrode mixture layer according to this embodiment preferably contains a conductive aid.
- a known conductive aid can be used as the material of the conductive aid.
- a conductive carbon material is preferable as the known conductive aid.
- Carbon materials having conductivity include graphite, carbon black, conductive carbon fiber, fullerene, and the like. These can be used alone or in combination of two or more.
- Examples of conductive carbon fibers include carbon nanotubes, carbon nanofibers, and carbon fibers.
- Examples of graphite include artificial graphite and natural graphite. Examples of natural graphite include flaky graphite, massive graphite, earthy graphite, and the like.
- the material of the conductive aid may be a commercially available product.
- Examples of commercially available carbon black include Toka Black #4300, #4400, #4500, #5500 (Furnace Black manufactured by Tokai Carbon Co., Ltd.), Printex L (Furnace Black manufactured by Degussa), Raven7000, 5750. , 5250, 5000 ULTRA III, 5000 ULTRA, etc., Conductex SC ULTRA, Conductex 975 ULTRA, etc., PUER BLACK 100, 115, 205, etc.
- the positive electrode mixture layer according to this embodiment may contain other components.
- Other ingredients include thickeners, surfactants, dispersants, wetting agents, antifoaming agents, and the like.
- the negative electrode contains at least one negative electrode active material.
- the negative electrode active material is capable of intercalating and deintercalating lithium ions.
- the negative electrode according to this embodiment more preferably includes a negative electrode current collector and a negative electrode mixture layer.
- the negative electrode mixture layer is provided on at least part of the surface of the negative electrode current collector.
- the material of the negative electrode current collector is not particularly limited and can be arbitrarily known, and examples thereof include metals and alloys.
- examples of materials for the negative electrode current collector include aluminum, nickel, stainless steel (SUS), nickel-plated steel, and copper.
- SUS stainless steel
- nickel-plated steel nickel-plated steel
- copper copper is preferable as the material for the negative electrode current collector from the viewpoint of workability.
- a copper foil is preferable as the negative electrode current collector.
- the negative electrode mixture layer according to this embodiment contains a negative electrode active material and a binder.
- the negative electrode active material is not particularly limited as long as it can absorb and release lithium ions.
- the negative electrode active material is, for example, a lithium metal, a lithium-containing alloy, a metal or alloy that can be alloyed with lithium, an oxide that can be doped and dedoped with lithium ions, a transition material that can be doped and dedoped with lithium ions. It is preferably at least one selected from the group consisting of metal nitrides and carbon materials capable of doping and dedoping lithium ions.
- the negative electrode active material is preferably a carbon material capable of doping and dedoping lithium ions (hereinafter referred to as “carbon material”).
- Examples of carbon materials include carbon black, activated carbon, graphite materials, and amorphous carbon materials. These carbon materials may be used singly or in combination of two or more.
- the form of the carbon material is not particularly limited, and examples thereof include fibrous, spherical, and flaky forms.
- the particle size of the carbon material is not particularly limited, and is preferably 5 ⁇ m to 50 ⁇ m, more preferably 20 ⁇ m to 30 ⁇ m.
- Examples of amorphous carbon materials include hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1500° C. or lower, and mesophase pitch carbon fibers (MCF).
- Graphite materials include natural graphite and artificial graphite.
- Artificial graphite includes graphitized MCMB, graphitized MCF, and the like.
- the graphite material may contain boron.
- the graphite material may be coated with metal or amorphous carbon. Gold, platinum, silver, copper, tin and the like can be used as the material of the metal that coats the graphite material.
- the graphite material may be a mixture of amorphous carbon and graphite.
- the negative electrode mixture layer according to this embodiment preferably contains a conductive aid.
- the conductive aid include conductive aids similar to the conductive aids exemplified as the conductive aid that can be contained in the positive electrode mixture layer.
- the negative electrode mixture layer according to the present embodiment may contain other components in addition to the components described above.
- Other ingredients include thickeners, surfactants, dispersants, wetting agents, antifoaming agents, and the like.
- separators include porous resin flat plates.
- the material of the porous resin flat plate include resin, nonwoven fabric containing this resin, and the like.
- resins include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polyester, cellulose, and polyamide.
- the separator is preferably a porous resin sheet having a single-layer or multi-layer structure.
- the material of the porous resin sheet is mainly composed of one or more polyolefin resins.
- the thickness of the separator is preferably 5 ⁇ m to 30 ⁇ m.
- a separator is preferably placed between the positive and negative electrodes.
- FIG. 1 is a cross-sectional view of an electrochemical device precursor 1 according to an embodiment of the present disclosure.
- the electrochemical device precursor 1 is of laminated type. As shown in FIG. 1 , the electrochemical device precursor 1 includes a battery element 10 , a positive electrode lead 21 , a negative electrode lead 22 , and an exterior body 30 . The battery element 10 is enclosed inside the exterior body 30 . The exterior body 30 is made of a laminate film. A positive electrode lead 21 and a negative electrode lead 22 are attached to the battery element 10 . Each of the positive electrode lead 21 and the negative electrode lead 22 is led out in opposite directions from the inside of the exterior body 30 toward the outside.
- the battery element 10 is formed by laminating a positive electrode 11, a separator 13, and a negative electrode 12.
- the positive electrode 11 is formed by forming positive electrode mixture layers 11B on both main surfaces of a positive electrode current collector 11A.
- the negative electrode 12 is formed by forming negative electrode mixture layers 12B on both main surfaces of a negative electrode current collector 12A.
- a non-aqueous electrolytic solution according to the present embodiment is injected into the exterior body 30 of the electrochemical device precursor 1 .
- the non-aqueous electrolyte according to this embodiment permeates the positive electrode mixture layer 11B, the separator 13, and the negative electrode mixture layer 12B.
- one unit cell layer 14 is formed by the adjacent positive electrode mixture layer 11B, separator 13, and negative electrode mixture layer 12B.
- the positive electrode 11 has a positive electrode mixture layer 11B formed on one main surface of a positive electrode current collector 11A
- the negative electrode 12 has a negative electrode mixture layer 12B formed on one main surface of a negative electrode current collector 12A. may be formed.
- the electrochemical device precursor 1 is of a laminated type in the present embodiment, the present disclosure is not limited to this, and the electrochemical device precursor 1 may be of a wound type, for example.
- the wound type is formed by stacking a positive electrode, a separator, a negative electrode, and a separator in this order and winding them in layers.
- a wound type includes a cylindrical shape or a square shape.
- each of the positive electrode lead 21 and the negative electrode lead 22 protrudes from the interior of the exterior body 30 toward the outside is opposite to the exterior body 30.
- the disclosure is not so limited.
- the positive electrode lead and the negative electrode lead may protrude from the inside of the package 30 toward the outside in the same direction with respect to the package 30 .
- Examples include an electrochemical device in which an SEI film is formed by charging and discharging.
- An electrochemical device is obtained by charging and discharging an electrochemical device precursor.
- the electrochemical device according to this embodiment includes a case, a positive electrode, a negative electrode, a separator, and an electrolytic solution.
- a positive electrode, a negative electrode, a separator, and an electrolytic solution are housed in a case.
- the positive electrode is capable of intercalating and deintercalating lithium ions.
- the negative electrode is capable of intercalating and deintercalating lithium ions.
- the electrolytic solution is the non-aqueous electrolytic solution according to this embodiment.
- the negative electrode includes an SEI film.
- the positive electrode includes an SEI film.
- the electrochemical device according to this embodiment differs from the electrochemical device precursor according to this embodiment mainly in the first point that the negative electrode includes the SEI film and the second point that the positive electrode includes the SEI film. That is, the electrochemical device according to this embodiment is the same as the electrochemical device precursor according to this embodiment except for the first and second points. Therefore, the description of the constituent members of the electrochemical device of this embodiment other than the first and second points will be omitted below.
- the negative electrode includes an SEI film includes a first negative electrode type and a second negative electrode type when the negative electrode includes a negative electrode current collector and a negative electrode mixture layer.
- the first negative electrode form indicates a form in which an SEI film is formed on at least a portion of the surface of the negative electrode mixture layer.
- the second negative electrode form indicates a form in which an SEI film is formed on the surface of the negative electrode active material, which is the constituent material of the negative electrode mixture layer.
- the positive electrode includes an SEI film includes the first positive electrode configuration and the second positive electrode configuration when the positive electrode includes a positive current collector and a positive electrode mixture layer.
- the first positive electrode form indicates a form in which an SEI film is formed on at least a portion of the surface of the positive electrode mixture layer.
- the second positive electrode form indicates a form in which an SEI film is formed on the surface of the positive electrode active material, which is the constituent material of the positive electrode mixture layer.
- the SEI membrane includes, for example, a decomposition product of the chain sulfone compound (I), a decomposition product of the cyclic sulfone compound (II), a reaction product of the chain sulfone compound (I) or the cyclic sulfone compound (II) and an electrolyte, and the At least one selected from the group consisting of decomposition products of reactants.
- the component of the SEI film of the positive electrode and the component of the SEI film of the negative electrode may be the same or different.
- the thickness of the SEI film of the positive electrode and the thickness of the SEI film of the negative electrode may be the same or different.
- the method for manufacturing an electrochemical device precursor includes a first preparation process, a second preparation process, a third preparation process, a housing process, and an injection process.
- the accommodation process and the injection process are performed in this order.
- Each of the first preparation process, the second preparation process, and the third preparation process is performed before the accommodation process.
- a positive electrode is prepared.
- the method for preparing the positive electrode include a method of applying a positive electrode mixture slurry to the surface of the positive electrode current collector and drying the slurry.
- the positive electrode mixture slurry contains a positive electrode active material and a binder.
- An organic solvent is preferable as the solvent contained in the positive electrode mixture slurry.
- Organic solvents include N-methyl-2-pyrrolidone (NMP) and the like.
- the method of applying the positive electrode mixture slurry is not particularly limited, and examples thereof include slot die coating, slide coating, curtain coating, and gravure coating.
- the method for drying the positive electrode mixture slurry is not particularly limited, and includes drying with warm air, hot air, or low humidity air; vacuum drying; drying with infrared (for example, far-infrared) irradiation; and the like.
- the drying time is not particularly limited and is preferably 1 minute to 30 minutes.
- the drying temperature is not particularly limited, and is preferably 40°C to 80°C. It is preferable that the positive electrode current collector is coated with the positive electrode mixture slurry and the dried product is subjected to a pressure treatment. This reduces the porosity of the positive electrode active material layer. Examples of the method of pressure treatment include die pressing and roll pressing.
- a negative electrode is prepared in a 2nd preparation process.
- a method of preparing the negative electrode for example, a method of applying a negative electrode mixture slurry to the surface of the negative electrode current collector and drying the slurry can be used.
- the negative electrode mixture slurry contains a negative electrode active material and a binder.
- the solvent contained in the negative electrode mixture slurry include water and a liquid medium compatible with water. When the solvent contained in the negative electrode mixture slurry contains a liquid medium that is compatible with water, it is possible to improve the coatability onto the negative electrode current collector.
- Liquid media compatible with water include alcohols, glycols, cellosolves, aminoalcohols, amines, ketones, carboxylic acid amides, phosphoric acid amides, sulfoxides, carboxylic acid esters, and phosphate esters. , ethers, nitriles and the like.
- the application method, drying method, and pressure treatment of the negative electrode mixture slurry include the same methods as those exemplified as the application method, drying method, and pressure treatment of the positive electrode mixture slurry.
- a non-aqueous electrolyte is prepared.
- a method for preparing a non-aqueous electrolyte includes, for example, a step of dissolving an electrolyte in a non-aqueous solvent to obtain a solution; and mixing to obtain a non-aqueous electrolyte.
- the positive electrode, the negative electrode, and the separator are housed in the case.
- a battery element is produced with a positive electrode, a negative electrode, and a separator.
- the positive current collector of the positive electrode and the positive electrode lead are electrically connected
- the negative electrode current collector of the negative electrode and the negative electrode lead are electrically connected.
- the battery element is housed in the case and fixed.
- a method for electrically connecting the positive electrode current collector and the positive electrode lead is not particularly limited, and examples thereof include ultrasonic welding and resistance welding.
- a method for electrically connecting the negative electrode current collector and the negative electrode lead is not particularly limited, and examples thereof include ultrasonic welding and resistance welding.
- the state in which the positive electrode, the negative electrode, and the separator are accommodated in the case will be referred to as the "assembly".
- the non-aqueous electrolyte according to this embodiment is injected into the assembly. This allows the non-aqueous electrolyte to permeate the positive electrode mixture layer, the separator, and the negative electrode mixture layer. As a result, an electrochemical device precursor is obtained.
- the method for manufacturing an electrochemical device includes a fourth preparation step and an aging step.
- a 4th preparation process and an aging process are performed in this order.
- an electrochemical device precursor is prepared.
- the method of preparing the electrochemical device precursor is the same as the method described in the method of manufacturing the electrochemical device precursor.
- the electrochemical device precursor is charged and discharged.
- An SEI film is thus formed. That is, an electrochemical device is obtained.
- the Aging treatment may be performed in an environment of 25°C to 70°C.
- the aging process may include a first charge phase, a first hold phase, a second charge phase, a second hold phase, and a charge/discharge phase.
- the electrochemical device precursor In the first charging phase, the electrochemical device precursor is charged under an environment of 25°C to 70°C. In the first holding phase, the electrochemical device precursor after the first charging phase is held in an environment of 25°C to 70°C. In the second charging phase, the electrochemical device precursor after the first holding phase is charged in an environment of 25°C to 70°C. In the second holding phase, the electrochemical device precursor after the second charging phase is held in an environment of 25°C to 70°C. In the charging/discharging phase, the electrochemical device precursor after the second holding phase is subjected to a combination of charging and discharging one or more times under an environment of 25°C to 70°C.
- Example 1 A non-aqueous electrolyte was obtained as follows.
- LiPF 6 (electrolyte) was dissolved in the obtained mixed solvent so that the concentration in the finally obtained non-aqueous electrolyte solution was 1 mol/liter to obtain an electrolyte solution.
- the obtained electrolytic solution is referred to as the "basic electrolytic solution”.
- the content of the linear sulfone compound (I-1) and the cyclic sulfone compound (II-1) as additives with respect to the total amount of the finally obtained non-aqueous electrolyte is the content shown in Table 1 ( % by mass) was added to the basic electrolytic solution. A non-aqueous electrolyte was thus obtained.
- the chain sulfone compound (I-1) is represented by the following formula (I-1).
- the cyclic sulfone compound (II-1) is represented by the following formula (II-1).
- a positive electrode was prepared as follows. Li (Ni 0.5 Co 0.2 Mn 0.3 O 2 ) (94% by mass) as a positive electrode active material, carbon black (3% by mass) as a conductive aid, and polyvinylidene fluoride (PVDF) as a binder (3% by weight) was added to obtain a mixture. The resulting mixture was dispersed in an N-methylpyrrolidone solvent to obtain a positive electrode mixture slurry. A 20 ⁇ m thick aluminum foil was prepared as a positive electrode current collector. The resulting positive electrode mixture slurry was applied onto an aluminum foil (positive electrode current collector), dried, and then rolled with a press to obtain a positive electrode raw sheet.
- Li Ni 0.5 Co 0.2 Mn 0.3 O 2
- carbon black 3% by mass
- PVDF polyvinylidene fluoride
- a 20 ⁇ m thick aluminum foil was prepared as a positive electrode current collector.
- the resulting positive electrode mixture slurry was applied onto an aluminum foil (positive electrode current collector), dried,
- This positive electrode material has a region where a positive electrode active material layer (hereinafter referred to as a “positive electrode material layer”) is formed and a region where a positive electrode material layer is not formed (hereinafter referred to as a “non-tab adhesive layer”). (referred to as "coating part").
- the uncoated portion for tab bonding is an uncoated portion that serves as a margin.
- the obtained positive electrode raw fabric was slit to obtain a positive electrode.
- the positive electrode has a positive electrode mixture layer and an uncoated portion for tab adhesion.
- the size of the positive electrode mixture layer was 29 mm wide and 40 mm long.
- the size of the uncoated portion for tab bonding was 5 mm wide and 11 mm long.
- a negative electrode was prepared as follows. Graphite (96% by mass) as a negative electrode active material, carbon black (1% by mass) as a conductive agent, 1% by mass of solid content of carboxymethylcellulose sodium dispersed in pure water as a thickener, and pure Styrene-butadiene rubber (SBR) dispersed in water was mixed at a solid content of 2% by mass to obtain a negative electrode mixture slurry.
- a copper foil having a thickness of 10 ⁇ m was prepared as a negative electrode current collector. The resulting negative electrode mixture slurry was applied onto a copper foil (negative electrode current collector), dried, and then rolled with a pressing machine to obtain a negative electrode raw sheet.
- This negative electrode raw sheet includes a region where a negative electrode active material mixture layer (hereinafter referred to as a “negative electrode mixture layer”) is formed and a region where a negative electrode mixture layer is not formed (hereinafter referred to as a “tab adhesion blank”). (referred to as "coating part").
- the uncoated portion for tab bonding is an uncoated portion that serves as a margin.
- the obtained negative electrode raw fabric was slit to obtain a negative electrode.
- the negative electrode has a negative electrode mixture layer and an uncoated portion for tab adhesion.
- the size of the negative electrode mixture layer was 30 mm wide and 41 mm long.
- the size of the uncoated portion for tab bonding was 5 mm wide and 11 mm long.
- a porous polypropylene film was prepared as a separator.
- a positive electrode, a negative electrode, and a separator were laminated in such a manner that the coated surface of the negative electrode was in contact with the separator and the coated surface of the positive electrode was in contact with the separator to obtain a laminate.
- an aluminum positive electrode tab (positive electrode lead) was bonded to the uncoated portion for tab bonding of the positive electrode of the obtained laminate by an ultrasonic bonding machine.
- a negative electrode tab (negative electrode lead) made of nickel was bonded to the uncoated portion for tab bonding of the negative electrode of the obtained laminate by an ultrasonic bonding machine.
- the laminated body in which the positive electrode tab and the negative electrode tab were joined was sandwiched between a pair of laminated films (cases) in which both sides of aluminum were coated with a resin layer, and then heat-sealed on three sides to obtain a laminate (assembly). At this time, the positive electrode tab and the negative electrode tab protruded from one of the three sealed sides of the laminate that was in contact with the unsealed opening.
- Examples 2 to 8, Comparative Examples 1 to 7 A chain sulfone compound (I-1), a cyclic sulfone compound (II-1), a cyclic sulfone compound (C-1), a cyclic sulfone compound (C-2), and a cyclic sulfone compound (C -3), vinylene carbonate (III-1), lithium bis(fluorosulfonyl)imide (IV-1), cyclic dicarbonyl compound (V-2), and lithium difluorophosphate (VI-1) , In the same manner as in Example 1, except that it was added to the basic electrolyte so that the content with respect to the total amount of the finally obtained non-aqueous electrolyte was the content (% by mass) shown in Table 1.
- the chain sulfone compound (I-1) is represented by the following formula (I-1).
- the cyclic sulfone compound (II-1) is represented by the following formula (II-1).
- the cyclic sulfone compound (C-1) is represented by the following formula (C-1).
- the cyclic sulfone compound (C-2) is represented by the following formula (C-2).
- the cyclic sulfone compound (C-3) is represented by the following formula (C-3).
- Vinylene carbonate (III-1) is represented by the following formula (III-1).
- Lithium bis(fluorosulfonyl)imide (IV-1) is represented by the following formula (IV-1).
- the cyclic dicarbonyl compound (V-2) is represented by the following formula (V-2).
- Lithium difluorophosphate (VI-1) is represented by the following formula (VI-1).
- the obtained aluminum laminate type battery was subjected to the following aging treatment to obtain a first battery.
- the obtained first battery was subjected to the following initial charge/discharge treatment to obtain a second battery.
- the obtained second battery was subjected to the following DC resistance evaluation treatment to obtain a third battery.
- the obtained third battery was subjected to high-temperature storage treatment to obtain a fourth battery.
- the obtained fourth battery was subjected to the following late charge/discharge treatment to obtain a fifth battery.
- the resistance after high temperature storage and the capacity retention rate were each measured by the following measurement method. These measurement results are shown in Table 1.
- An aluminum laminate type battery (electrochemical device battery precursor) was subjected to the following aging treatment to obtain a first battery.
- An aluminum laminate type battery (electrochemical device battery precursor) is charged at a temperature range of 25° C. to 70° C. with a final voltage of 1.5 V to 3.5 V, and then rested for 5 hours to 50 hours. rice field.
- the battery precursor was charged in a temperature range of 25° C. to 70° C. with a final voltage range of 3.5 V to 4.2 V, and held for 5 hours to 50 hours.
- the battery precursor was charged to 4.2V and then discharged to 2.5V under a temperature range of 25°C to 70°C.
- a first battery was obtained.
- the first battery was subjected to the following initial charge/discharge treatment to obtain a second battery.
- the first battery was held in a temperature environment of 25° C. for 12 hours.
- the first battery was charged at a charge rate of 0.2C to 4.2V (SOC (State Of Charge) 100%) by constant current and constant voltage charge (0.2C-CCCV), then rested for 30 minutes, and then the discharge rate Constant current discharge (0.2C-CC) was performed at 0.2C to 2.5V. This was repeated for 3 cycles to stabilize the first battery.
- the second battery was subjected to the following DC resistance evaluation treatment to obtain a third battery.
- the second battery was CCCV charged to 3.7 V at a charge rate of 0.2 C in a temperature environment of 25°C.
- CCCV charging means charging with a constant current constant voltage (Constant Current Constant Voltage).
- the second battery was allowed to stand in a temperature environment of ⁇ 10° C. for 3 hours or more to sufficiently cool the battery. Thereafter, in a temperature environment of ⁇ 10° C., CC10s discharge was performed at a discharge rate of 0.1C, and CC10s charge was performed at a charge rate of 0.1C.
- CC10s discharge means discharging for 10 seconds at a constant current (Constant Current).
- CC10s charging means charging for 10 seconds at a constant current.
- the second battery was subjected to CC10s discharge at a discharge rate of 0.2C and CC20s charge at a charge rate of 0.1C.
- the second battery was subjected to CC10s discharge at a discharge rate of 0.4C and CC40s charge at a charge rate of 0.1C.
- the second battery was discharged at a discharge rate of 0.6C for CC10s and charged at a charge rate of 0.1C for CC60s. A third battery was thus obtained.
- the third battery was subjected to the following high-temperature storage treatment to obtain a fourth battery.
- the third battery was constant current charged to 4.2 V at a charge rate of 0.2 C in a temperature environment of 25°C. Then, the third battery in the charged state was allowed to stand in an atmosphere of 60° C. for 28 days. Thus, a fourth battery was obtained.
- the fourth battery was subjected to the following late charge/discharge treatment to obtain a fifth battery.
- the fourth battery was subjected to heat dissipation in a temperature environment of 25° C., first discharge, first charge, and second discharge.
- the first discharge indicates constant current discharge (1C-CC) to 2.5V at a discharge rate of 1C.
- the first charge indicates constant current constant voltage charge (0.2C-CCCV) up to 4.2V at a charge rate of 0.2C.
- the second discharge indicates constant current discharge (1C-CC) to 2.5V at a discharge rate of 1C.
- DC resistance was measured by the following method.
- the fifth battery was subjected to the same DC resistance evaluation process as the DC resistance evaluation process described above.
- Each current value corresponding to 1C to 0.6C), and the DC resistance ( ⁇ ) of the fifth battery was obtained.
- Capacity retention rate [relative value; %] (Capacity retention rate/Capacity retention rate of Comparative Example 1) x 100... (X2)
- the capacity retention rate is the discharge capacity (mAh/g) of the fourth battery obtained when performing the second discharge in the above-described late charge-discharge treatment, and the first discharge capacity in the above-described initial charge-discharge treatment. It is divided by the discharge capacity (mAh/g) obtained at the last discharge of the battery.
- the relative value of the discharge capacity of the fourth battery after the high-temperature storage test corresponds to the discharge capacity reduction rate (%) due to storage (hereinafter also simply referred to as "capacity reduction rate").
- the reduction rate here is expressed as 100% when there is no increase or decrease, when it decreases as less than 100%, and when it increases as more than 100%.
- each additive indicates the content [% by mass] of each additive with respect to the total amount of the non-aqueous electrolyte.
- - means that the corresponding component is not contained.
- the non-aqueous electrolyte of Comparative Example 2 contained the cyclic sulfone compound (II-1) alone. Therefore, the electrochemical device of Comparative Example 2 has a resistance after high-temperature storage of 109% compared to the electrochemical device using the non-aqueous electrolytic solution of Comparative Example 1 containing the chain sulfone compound (I-1) alone. , the capacity retention rate was 97%. In other words, it was found that even when the electrochemical device of Comparative Example 2 was stored for a long period of time in a high-temperature environment, the decrease in the capacity of the electrochemical device and the increase in DC resistance were not suppressed.
- the non-aqueous electrolyte solutions of Comparative Examples 3 to 5 contain the cyclic sulfone compound (C-1), the cyclic sulfone compound (C-2), or the cyclic sulfone compound (C-3), and the cyclic sulfone compound (II ) did not contain. Therefore, the electrochemical devices of Comparative Examples 3 to 5 had a capacity retention rate of 100% or less compared to the electrochemical device of Comparative Example 1. That is, it was found that the electrochemical devices of Comparative Examples 3 to 5 were not prevented from decreasing in capacity even when stored for a long period of time in a high-temperature environment.
- the non-aqueous electrolyte solutions of Comparative Examples 6 and 7 contained the chain sulfone compound (I-1) alone, and the content of the chain sulfone compound (I-1) was the same as that of the chain sulfone compound of Comparative Example 1. It was 20 times or more the content of the sulfone compound (I-1). Therefore, the electrochemical devices of Comparative Examples 6 and 7 had a resistance after high-temperature storage of 220% or more and a capacity retention rate of 65% or less compared to the electrochemical device using the non-aqueous electrolyte of Comparative Example 1. there were.
- the electrochemical devices of Comparative Examples 6 and 7 were not prevented from decreasing in capacity and increasing in direct current resistance even when stored for a long period of time in a high-temperature environment.
- the non-aqueous electrolyte solutions of Examples 1 to 8 contain a chain sulfone compound (I-1) and a cyclic sulfone compound (II-1). Therefore, the electrochemical devices of Examples 1 to 8 had a resistance after high-temperature storage of 94% or less and a capacity retention rate of 101% or more compared to the electrochemical device of Comparative Example 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
Abstract
Description
下記一般式(II)で表される環状スルホン化合物(II)と、
を含有し、
前記鎖状スルホン化合物(I)の含有量は、非水電解液の全量に対し、0.01質量%~10質量%である、非水電解液。
*は、結合位置を示し、
式(ii-1)中、R22は、水素原子、炭素数1~6のアルキル基、又は式(ii-2)で表される基であり、
R23は、炭素数1~2のアルキル基、又は式(ii-2)で表される基である。〕
<3> 前記R21は前記式(ii-1)で表される基であり、
前記R22及び前記R23の少なくとも一方は、前記式(ii-2)で表される基である、前記<1>又は<2>に記載の非水電解液。
<4> 下記式(III)で表される不飽和結合を有する環状炭酸エステル化合物(III)を含有する、前記<1>~<3>のいずれか1つに記載の非水電解液。
Mは、アルカリ金属であり、
Yは、遷移元素、周期律表の13族元素、14族元素、又は15族元素であり、
bは、1~3の整数であり、
mは、1~4の整数であり、
nは、0~8の整数であり、
qは、0又は1であり、
R51は、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基、又は炭素数6~20のハロゲン化アリーレン基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、qが1でmが2~4の場合にはm個のR51はそれぞれが結合していてもよい。)であり、
R52は、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、又は炭素数6~20のハロゲン化アリール基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、nが2~8の場合はn個のR52はそれぞれが結合して環を形成していてもよい。)であり、
Q1、及びQ2は、それぞれ独立に、酸素原子、又は炭素原子である。〕
<8> ケースと、
前記ケースに収容された、正極、負極、セパレータ、及び電解液と、
を備え、
前記正極が、リチウムイオンを吸蔵及び放出可能な正極であり、
前記負極が、リチウムイオンを吸蔵及び放出可能な負極であり、
前記電解液が、前記<1>~<7>のいずれか1つに記載の非水電解液である、電気化学デバイス前駆体。
<9> 前記正極が、正極活物質として、下記式(X)で表されるリチウム含有複合酸化物を含む、前記<8>に記載の電気化学デバイス前駆体。
LiNiaCobMncO2 … 式(X)
〔式(X)中、a、b及びcは、それぞれ独立に、0超1未満であり、かつ、a、b及びcの合計は、0.99~1.00である。〕
<10> 前記<8>に記載の電気化学デバイス前駆体を準備する工程と、
前記電気化学デバイス前駆体に対して、充電及び放電を施す工程とを含む、電気化学デバイスの製造方法。
<11> 前記<8>又は<9>に記載の電気化学デバイス前駆体に対して、充電及び放電を施して得られた電気化学デバイス。
本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
本明細書において、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
本実施形態に係る非水電解液について説明する。
鎖状スルホン化合物(I)及び環状スルホン化合物(II)の各々の詳細については、後述する。
電気化学デバイスが高温環境下で長期に保存されても、容量の低下及び直流抵抗の増加が抑制されるのは、主として、以下の理由によると推測される。
本開示の電気化学デバイスを充電又は放電(以下、「充放電」という。)すると、負極の表面及び正極の表面には固体電解質界面層(SEI:Solid Electrolyte Interphase)膜(以下、「SEI膜」という。)が形成されると考えられる。
以下、負極のSEI膜と、正極のSEI膜とを区別しない場合、負極のSEI膜、及び正極のSEI膜を単に「SEI膜」という場合がある。
SEI膜は、主として、非水電解液中のリチウムイオンと、電気化学デバイスの充放電によって分解された非水電解液の分解物とによって形成されると考えられる。
SEI膜が形成されると、電気化学デバイスが高温環境下で長期に保存されても、電気化学デバイスの充放電サイクルにおいて、本来の電池反応ではない副反応は進行しにくくなると考えられる。電池反応は、正極と負極にリチウムイオンが出入り(インターカレート)する反応を示す。副反応は、負極による非水電解液の還元分解反応、正極による非水電解液の酸化分解反応、正極活物質中の金属元素の溶出等を含む。
本実施形態に係る非水電解液を用いた電気化学デバイスでは、高温環境下で保存された後の充放電サイクルにおいても、SEI膜は厚膜化しにくい。そのため、非水電解液中のリチウムイオンは消費されにくい。
以上の理由により、本実施形態に係る非水電解液は、電気化学デバイスが高温環境下で長期に保存されても、容量の低下及び直流抵抗の増加を抑制することができる。
非水電解液は、下記式(I)で表される鎖状スルホン化合物(I)を含有する。
式(I)中、R11及びR12で表される炭素数1~6の炭化水素基としては、炭素数1~6のアルキル基、炭素数1~6のアルケニル基等が挙げられる。炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、1-エチルプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、2-メチルブチル基、3,3-ジメチルブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、1-メチルペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基等が挙げられる。炭素数1~6のアルケニル基としては、ビニル基、1-プロペニル基、アリル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、ペンテニル基、ヘキセニル基、イソプロペニル基、2-メチル-2-プロペニル基、1-メチル-2-プロペニル基、2-メチル-1-プロペニル基等が挙げられる。
式(I)中、R11及びR12で表される炭素数1~6の炭化水素基としては、アルキル基、アルケニル基、又はアルキニル基が好ましく、アルキル基又はアルケニル基がより好ましく、アルキル基が特に好ましい。
式(I)中、R11及びR12で表される炭素数1~6の炭化水素基の炭素数としては、1~3が好ましく、1又は2がより好ましく、1が更に好ましい。
式(I)中、R11及びR12で表される炭素数1~6のフッ化炭化水素基としては、炭素数1~6のフルオロアルキル基、炭素数1~6のフルオロアルケニル基等が挙げられる。炭素数1~6のフルオロアルキル基としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、1,1,2,2-テトラフルオロエチル基、パーフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロイソプロピル基、パーフルオロイソブチル基等が挙げられる。炭素数1~6のフルオロアルケニル基としては、2-フルオロエテニル基、2,2-ジフルオロエテニル基、2-フルオロ-2-プロペニル基、3,3-ジフルオロ-2-プロペニル基、2,3-ジフルオロ-2-プロペニル基、3,3-ジフルオロ-2-メチル-2-プロペニル基、3-フルオロ-2-ブテニル基、パーフルオロビニル基、パーフルオロプロペニル基、パーフルオロブテニル基等が挙げられる。
式(I)中、R11及びR12で表される炭素数1~6のフッ化炭化水素基としては、フッ化アルキル基、フッ化アルケニル基、又はフッ化アルキニル基が好ましく、フッ化アルキル基又はフッ化アルケニル基がより好ましく、フッ化アルキル基が特に好ましい。
式(I)中、R11及びR12で表される炭素数1~6のフッ化炭化水素基の炭素数としては、1~3が好ましく、1又は2がより好ましく、1が更に好ましい。
非水電解液は、下記式(II)で表される環状スルホン化合物(II)を含有する。
*は、結合位置を示し、
式(ii-1)中、R22は、水素原子、炭素数1~6のアルキル基、又は式(ii-2)で表される基であり、
R23は、炭素数1~2のアルキル基、又は式(ii-2)で表される基である。
式(II)中、R22及びR23で表される炭素数1~2のアルキル基の炭素数としては、1が更に好ましい。
R22及びR23の少なくとも一方は、式(ii-2)で表される基であることが好ましい。これにより、電気化学デバイスが高温環境下で長期に保存されても、容量の低下及び直流抵抗の増加をより抑制することができる。
非水電解液は、下記式(III)で表される不飽和結合を有する環状炭酸エステル化合物(III)を含有することが好ましい。
この効果は、以下の理由によると推測される。
環状炭酸エステル化合物(III)は、高温環境下で保存された後の充放電サイクルにおいても、負極上で非水電解液が還元分解する前に、負極によって還元分解され、SEI膜を形成しやすい。これにより、負極での非水電解液の分解は抑制される。その結果、電気化学デバイスの直流抵抗の増加は、より抑制される。
非水電解液は、下記式(IV)で表されるスルホンイミドリチウム塩化合物(IV)を含有することが好ましい。
この効果は、以下の理由によると推測される。
スルホンイミドリチウム塩化合物(IV)は、電気化学デバイスが高温環境下で保存された後、負極上で非水電解液が還元分解する前に、正極によって酸化分解され、SEI膜を形成しやすい。これにより、正極での非水電解液の分解は抑制される。その結果、電気化学デバイスが高温長期保存されても、電気化学デバイスの直流抵抗の増加は、より抑制される。
非水電解液は、下記式(V)で表される環状ジカルボニル化合物(V)を含有することが好ましい。
Mは、アルカリ金属であり、
Yは、遷移元素、周期律表の13族元素、14族元素、又は15族元素であり、
bは、1~3の整数であり、
mは、1~4の整数であり、
nは、0~8の整数であり、
qは、0又は1であり、
R51は、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基、又は炭素数6~20のハロゲン化アリーレン基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、qが1でmが2~4の場合にはm個のR51はそれぞれが結合していてもよい。)であり、
R52は、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、又は炭素数6~20のハロゲン化アリール基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、nが2~8の場合はn個のR52はそれぞれが結合して環を形成していてもよい。)であり、
Q1、及びQ2は、それぞれ独立に、酸素原子、又は炭素原子である。
この効果は、以下の理由によると推測される。
非水電解液は、鎖状スルホン化合物(I)及び環状スルホン化合物(II)に加えて、環状ジカルボニル化合物(V)を含むことにより、SEI膜は、その内部に、上述した反応生成物等に加えて、環状ジカルボニル化合物(V)由来の結合を含み得る。これにより、熱的及び化学的に安定な高分子構造は、形成されやすくなる。そのため、高温下において、SEI膜の耐久性を損なうSEI膜の成分の溶出、及びSEI膜の変質などは、起こりにくい。その結果、高温環境下で長期に保存された後の充放電サイクルにおいても、電気化学デバイスの容量の低下及び直流抵抗の増加は、より抑制される。
Yは、遷移元素、周期律表の13族元素、14族元素、又は15族元素である。Yとしては、Al、B、V、Ti、Si、Zr、Ge、Sn、Cu、Y、Zn、Ga、Nb、Ta、Bi、P、As、Sc、Hf又はSbであることが好ましく、Al、B又はPであることがより好ましい。YがAl、B又はPの場合、アニオン化合物の合成が比較的容易になり、製造コストを抑えることができる。
bは、アニオンの価数及びカチオンの個数を表す。bは、1~3の整数であり、1であることが好ましい。bが3以下であれば、アニオン化合物の塩が混合有機溶媒に溶解しやすい。
m及びnの各々は、配位子の数に関係する値である。m及びnの各々は、Mの種類によって決まる。mは、1~4の整数である。nは、0~8の整数である。
qは、0又は1である。qが0の場合、キレートリングが五員環となり、qが1の場合、キレートリングが六員環となる。
R51は、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基、又は炭素数6~20のハロゲン化アリーレン基を表す。これらのアルキレン基、ハロゲン化アルキレン基、アリーレン基又はハロゲン化アリーレン基は、その構造中に置換基、ヘテロ原子を含んでいてもよい。具体的には、これらの基の水素原子の代わりに、置換基を含んでもよい。置換基としては、ハロゲン原子、鎖状又は環状のアルキル基、アリール基、アルケニル基、アルコキシ基、アリーロキシ基、スルホニル基、アミノ基、シアノ基、カルボニル基、アシル基、アミド基、又は水酸基が挙げられる。これらの基の炭素元素の代わりに、窒素原子、硫黄原子、又は酸素原子が導入された構造であってもよい。qが1でmが2~4である場合、m個のR51はそれぞれが結合していてもよい。そのような例としては、エチレンジアミン四酢酸のような配位子を挙げることができる。
R52は、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン化アリール基を表す。これらのアルキル基、ハロゲン化アルキル基、アリール基又はハロゲン化アリール基は、R51と同様に、その構造中に置換基、ヘテロ原子を含んでいてもよく、nが2~8のときにはn個のR52は、それぞれ結合して環を形成してもよい。R52としては、電子吸引性の基が好ましく、特にフッ素原子が好ましい。
Q1、及びQ2は、それぞれ独立に、O、又はSを表す。つまり、配位子はこれらヘテロ原子を介してYに結合することになる。
非水電解液は、モノフルオロリン酸リチウム及びジフルオロリン酸リチウムからなる群より選ばれる少なくとも1種の化合物(以下、「フルオロリン酸リチウム化合物(VI)」という場合がある。)を含有することが好ましい。
ジフルオロリン酸リチウムは、下記式(VI-1)で表され、モノフルオロリン酸リチウムは、下記式(VI-2)で表される。
非水電解液は、一般的に、非水溶媒を含有する。非水溶媒としては種々公知のものを適宜選択することができる。非水溶媒は1種のみであってもよく、2種以上であってもよい。
含フッ素環状カーボネート類としては、例えば、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、トリフルオロプロピレンカーボネート、などが挙げられる。
鎖状カーボネート類としては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート(MPC)、エチルプロピルカーボネート(EPC)、ジプロピルカーボネート(DPC)、などが挙げられる。
含フッ素鎖状カーボネート類としては、例えば、メチル2,2,2-トリフルオロエチルカーボネート、などが挙げられる。
脂肪族カルボン酸エステル類としては、例えば、ギ酸メチル、酢酸メチル、プロピオン酸メチル、酪酸メチル、イソ酪酸メチル、トリメチル酪酸メチル、ギ酸エチル、酢酸エチル、プロピオン酸エチル、酪酸エチル、イソ酪酸エチル、トリメチル酪酸エチル、などが挙げられる。
含フッ素脂肪族カルボン酸エステル類としては、例えば、ジフルオロ酢酸メチル、3,3,3-トリフルオロプロピオン酸メチル、ジフルオロ酢酸エチル、酢酸2,2,2-トリフルオロエチル、などが挙げられる。
γ-ラクトン類としては、例えば、γ-ブチロラクトン、γ-バレロラクトン、などが挙げられる。
環状エーテル類としては、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、などが挙げられる。
鎖状エーテル類としては、例えば、1,2-エトキシエタン(DEE)、エトキシメトキシエタン(EME)、ジエチルエーテル、1,2-ジメトキシエタン、1,2-ジブトキシエタン、などが挙げられる。
含フッ素鎖状エーテル類としては、例えば、HCF2CF2CH2OCF2CF2H、CF3CF2CH2OCF2CF2H、HCF2CF2CH2OCF2CFHCF3、CF3CF2CH2OCF2CFHCF3、C6F13OCH3、C6F13OC2H5、C8F17OCH3、C8F17OC2H5、CF3CFHCF2CH(CH3)OCF2CFHCF3、HCF2CF2OCH(C2H5)2、HCF2CF2OC4H9、HCF2CF2OCH2CH(C2H5)2、HCF2CF2OCH2CH(CH3)2、などが挙げられる。
ニトリル類としては、例えば、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピオニトリル、などが挙げられる。
アミド類としては、例えば、N,N-ジメチルホルムアミド、などが挙げられる。
ラクタム類としては、例えば、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N'-ジメチルイミダゾリジノン、などが挙げられる。
非水電解液は、一般的に、電解質を含有する。
無機酸陰イオン塩としては、例えば、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化ヒ酸リチウム(LiAsF6)、六フッ化タンタル酸リチウム(LiTaF6)、などが挙げられる。
有機酸陰イオン塩としては、例えば、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)などが挙げられる。中でも、含フッ素リチウム塩としては、LiPF6が特に好ましい。
フッ素を含まないリチウム塩としては、過塩素酸リチウム(LiClO4)、四塩化アルミニウム酸リチウム(LiAlCl4)、リチウムデカクロロデカホウ素酸(Li2B10Cl10)などが挙げられる。
非水電解液は、必要に応じて、その他の成分を含有してもよい。
次に、本開示の実施形態に係る電気化学デバイス前駆体について、説明する。
ケースの形状などは、特に限定はなく、本実施形態に係る電気化学デバイス前駆体の用途などに応じて、適宜選択される。ケースとしては、ラミネートフィルムを含むケース、電池缶と電池缶蓋とからなるケースなどが挙げられる。
正極は、正極活物質を少なくとも1種含むことが好ましい。正極活物質は、リチウムイオンの吸蔵及び放出が可能である。
第1酸化物は、リチウム(Li)とニッケル(Ni)とを構成金属元素とする。
第2酸化物は、Liと、Niと、Li及びNi以外の金属元素の少なくとも1種と、を構成金属元素として含む。Li及びNi以外の金属元素としては、例えば、遷移金属元素、典型金属元素などが挙げられる。第2酸化物は、Li及びNi以外の金属元素として、好ましくは、原子数換算で、Niと同程度、又は、Niよりも少ない割合で含むことが好ましい。Li及びNi以外の金属元素は、例えば、Co、Mn、Al、Cr、Fe、V、Mg、Ca、Na、Ti、Zr、Nb、Mo、W、Cu、Zn、Ga、In、Sn、La及びCeからなる群から選択される少なくとも1種であり得る。これらの正極活物質は、単独で用いても複数を混合して用いてもよい。
フッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体などが挙げられる。
ゴム粒子としては、スチレン-ブタジエンゴム粒子、アクリロニトリルゴム粒子などが挙げられる。
これらの中でも、正極合材層の耐酸化性を向上させる観点から、バインダーは、フッ素樹脂が好ましい。バインダーは1種を単独で使用でき、必要に応じて2種以上を組み合わせて使用できる。
負極は、負極活物質を少なくとも1種含む。負極活物質は、リチウムイオンの吸蔵及び放出が可能である。
非晶質炭素材料として、例えば、ハードカーボン、コークス、1500℃以下に焼成したメソカーボンマイクロビーズ(MCMB)、メソフェーズピッチカーボンファイバー(MCF)などが挙げられる。
黒鉛材料としては、天然黒鉛、人造黒鉛が挙げられる。人造黒鉛としては、黒鉛化MCMB、黒鉛化MCFなどが挙げられる。黒鉛材料は、ホウ素を含有してもよい。黒鉛材料は、金属又は非晶質炭素で被覆されていてもよい。黒鉛材料を被覆する金属の材質としては、金、白金、銀、銅、スズなどが挙げられる。黒鉛材料は、非晶質炭素と黒鉛との混合物であってもよい。
セパレータとしては、例えば、多孔質の樹脂平板が挙げられる。多孔質の樹脂平板の材質としては、樹脂、この樹脂を含む不織布などが挙げられる。樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリエステル、セルロース、ポリアミドなどが挙げられる。
図1を参照して、本開示の実施形態に係る電気化学デバイス前駆体1の一例について具体的に説明する。図1は、本開示の実施形態に係る電気化学デバイス前駆体1の断面図である。
次に、本開示の実施形態に係る電気化学デバイスについて説明する。
詳しくは、本実施形態に係る電気化学デバイスは、ケースと、正極と、負極と、セパレータと、電解液とを備える。正極、負極、セパレータ、及び電解液は、ケースに収容されている。正極は、リチウムイオンの吸蔵及び放出が可能である。負極は、リチウムイオンの吸蔵及び放出が可能である。電解液は、本実施形態に係る非水電解液である。負極は、SEI膜を含む。正極は、SEI膜を含む。
次に、本開示の実施形態に係る電気化学デバイス前駆体の製造方法について、説明する。
正極を準備する方法としては、例えば、正極合材スラリーを正極集電体の表面に塗布し、乾燥させる方法などが挙げられる。正極合材スラリーは、正極活物質及びバインダーを含む。
正極合材スラリーに含まれる溶媒としては、有機溶媒が好ましい。有機溶媒としては、N-メチル-2-ピロリドン(NMP)などが挙げられる。
正極合材スラリーの塗布方法は、特に限定されず、例えば、スロットダイコーティング、スライドコーティング、カーテンコーティング、グラビアコーティングなどが挙げられる。正極合材スラリーの乾燥方法は、特に限定されず、温風、熱風、低湿風による乾燥;真空乾燥;赤外線(例えば遠赤外線)照射による乾燥;などが挙げられる。乾燥時間は、特に限定されず、好ましくは1分~30分である。乾燥温度は、特に限定されず、好ましくは40℃~80℃である。
正極集電体上に正極合材スラリーを塗布し、乾燥させた乾燥物は、加圧処理が施されることが好ましい。これにより、正極活物質層の空隙率は低減する。加圧処理の方法としては、例えば、金型プレス、ロールプレスなどが挙げられる。
負極を準備する方法としては、例えば、負極合材スラリーを負極集電体の表面に塗布し、乾燥させる方法などが挙げられる。負極合材スラリーは、負極活物質及びバインダーを含む。
負極合材スラリーに含まれる溶媒としては、例えば、水、水と相溶する液状媒体などが挙げられる。負極合材スラリーに含まれる溶媒が水と相溶する液状媒体を含むと、負極集電体への塗工性向上させることができる。水と相溶する液状媒体としては、アルコール類、グリコール類、セロソルブ類、アミノアルコール類、アミン類、ケトン類、カルボン酸アミド類、リン酸アミド類、スルホキシド類、カルボン酸エステル類、リン酸エステル類、エーテル類、ニトリル類などが挙げられる。
負極合材スラリーの塗布方法、乾燥方法、及び加圧処理は、正極合材スラリーの塗布方法、乾燥方法、及び加圧処理として例示した方法と同様の方法が挙げられる。
非水電解液を準備する方法としては、例えば、非水溶媒に電解質を溶解させて溶液を得る工程と、得られた溶液に対して、鎖状スルホン化合物(I)及び環状スルホン化合物(II)を添加し混合して、非水電解液を得る工程とを含む。
例えば、収容工程では、正極、負極、及びセパレータで電池素子を作製する。次いで、正極の正極集電体と正極リードとを電気的に接続するとともに、負極の負極集電体と負極リードとを電気的に接続する。次いで、電池素子をケース内に収容して、固定する。
正極集電体と正極リードとを電気的に接続する方法は、特に限定されず、例えば、超音波溶接、抵抗溶接などが挙げられる。負極集電体と負極リードとを電気的に接続する方法は、特に限定されず、例えば、超音波溶接や抵抗溶接などが挙げられる。
次に、本開示の実施形態に係る電気化学デバイスの製造方法について説明する。
エージング処理は、第1充電フェーズと、第1保持フェーズと、第2充電フェーズと、第2保持フェーズと、充放電フェーズとを含んでもよい。
下記のようにして、非水電解液を得た。
エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、エチルメチルカーボネート(EMC)とを、EC:DMC:EMC=30:35:35(体積比)で混合した。これにより、非水溶媒としての混合溶媒(非水溶媒)を得た。
LiPF6(電解質)を、得られた混合溶媒に対し、最終的に得られる非水電解液中の濃度が1モル/リットルとなるように溶解させ、電解液を得た。
鎖状スルホン化合物(I-1)は下記式(I-1)で表される。環状スルホン化合物(II-1)は下記式(II-1)で表される。
以下のようにして、電気化学デバイス前駆体としてのアルミラミネート型電池を作製した。
以下のようにして、正極を準備した。
正極活物質としてLi(Ni0.5Co0.2Mn0.3O2)(94質量%)、導電助剤としてカーボンブラック(3質量%)、及び結着材としてポリフッ化ビニリデン(PVDF)(3質量%)を添加した混合物を得た。得られた混合物を、N-メチルピロリドン溶媒中に分散させ、正極合材スラリーを得た。
正極集電体として厚さ20μmのアルミニウム箔を準備した。
得られた正極合材スラリーをアルミニウム箔(正極集電体)上に塗布し、乾燥後、プレス機で圧延し、正極原反を得た。この正極原反は、正極の活物質合材層(以下、「正極合材層」という。)が形成された領域と、正極合材層が形成されていない領域(以下、「タブ接着用未塗工部」という。)とを含む。タブ接着用未塗工部は、余白となる未塗工部である。
得られた正極原反をスリットし、正極を得た。正極は、正極合材層と、タブ接着用未塗工部とを有する。正極合材層のサイズは、幅29mm、長さ40mmであった。タブ接着用未塗工部のサイズは、幅5mm、長さ11mmであった。
以下のようにして、負極を準備した。
負極活物質としてグラファイト(96質量%)、導電助剤としてカーボンブラック(1質量%)、増粘剤として純水中で分散したカルボキシメチルセルロースナトリウムを固形分で1質量%、及び結着材として純水中で分散したスチレン-ブタジエンゴムの(SBR)を固形分で2質量%を混合し、負極合材スラリーを得た。
負極集電体として厚さ10μmの銅箔を準備した。
得られた負極合材スラリーを銅箔(負極集電体)上に塗布し、乾燥後、プレス機で圧延し、負極原反を得た。この負極原反は、負極の活物質合材層(以下、「負極合材層」という。)が形成された領域と、負極合材層が形成されていない領域(以下、「タブ接着用未塗工部」という。)を含む。タブ接着用未塗工部は、余白となる未塗工部である。
得られた負極原反をスリットし、負極を得た。負極は、負極合材層と、タブ接着用未塗工部とを有する。負極合材層のサイズは、幅30mm、長さ41mmであった。タブ接着用未塗工部のサイズは、幅5mm、長さ11mmであった。
上述した非水電解液の製造で得られた非水電解液を準備した。
セパレータとして、多孔性ポリプロピレンフィルムを準備した。
正極、負極、及びセパレ-タを、負極の塗工面がセパレータに接し、かつ正極の塗工面がセパレータに接する向きで重ねて積層体を得た。次いで、得られた積層体の正極のタブ接着用未塗工部にアルミニウム製の正極タブ(正極リード)を超音波接合機で接合した。得られた積層体の負極のタブ接着用未塗工部にニッケル製の負極タブ(負極リード)を超音波接合機で接合した。正極タブ及び負極タブが接合された積層体を、アルミニウムの両面を樹脂層で被覆した一対のラミネートフィルム(ケース)で挟み込み、次いで三辺を加熱シールし、ラミネート体(組立体)を得た。この際、ラミネート体におけるシールされた三辺のうち、シールされていない開口部に接する一辺から正極タブ及び負極タブがはみ出すようにした。
ラミネート体の開口部から、上述して得た非水電解液を0.25mL注入し、ラミネートの開口部を封止した。これにより、アルミラミネート型電池(電気化学デバイス前駆体)を得た。
添加剤としての鎖状スルホン化合物(I-1)と、環状スルホン化合物(II-1)と、環状スルホン化合物(C-1)と、環状スルホン化合物(C-2)と、環状スルホン化合物(C-3)と、ビニレンカーボネート(III-1)と、リチウムビス(フルオロスルホニル)イミド(IV-1)と、環状ジカルボニル化合物(V-2)と、ジフルオロリン酸リチウム(VI-1)とを、最終的に得られる非水電解液の全量に対する含有量が、表1に記載の含有量(質量%)となるように、基本電解液に添加した他は、実施例1と同様にして、アルミラミネート型電池(電気化学デバイス前駆体)を得た。
なお、鎖状スルホン化合物(I-1)は下記式(I-1)で表される。環状スルホン化合物(II-1)は下記式(II-1)で表される。環状スルホン化合物(C-1)は、下記式(C-1)で表される。環状スルホン化合物(C-2)は、下記式(C-2)で表される。環状スルホン化合物(C-3)は、下記式(C-3)で表される。ビニレンカーボネート(III-1)は、下記式(III-1)で表される。リチウムビス(フルオロスルホニル)イミド(IV-1)は、下記式(IV-1)で表される。環状ジカルボニル化合物(V-2)は、下記式(V-2)で表される。ジフルオロリン酸リチウム(VI-1)は、下記式(VI-1)で表される。
得られたアルミラミネート型電池に、下記のエージング処理を施し、第1電池を得た。得られた第1電池に、下記の初期充放電処理を施し、第2電池を得た。得られた第2電池に、下記の直流抵抗評価用処理を施し、第3電池を得た。得られた第3電池に、高温保存処理を施し、第4電池を得た。得られた第4電池に、下記の後期充放電処理を施し、第5電池を得た。
得られた第1電池~第5電池を用いて、下記の測定方法により、高温保存後抵抗、及び容量維持率の各々を測定した。これらの測定結果を表1に示す。
アルミラミネート型電池(電気化学デバイス電池前駆体)に、下記のエージング処理を施し、第1電池を得た。
アルミラミネート型電池(電気化学デバイス電池前駆体)を、25℃~70℃の温度範囲下、終止電圧1.5V~3.5Vの範囲で充電した後、5時間~50時間の範囲で休止させた。次に、25℃~70℃の温度範囲下、終止電圧3.5V~4.2Vの範囲で電池前駆体を充電し、5時間~50時間の範囲で保持した。次に、25℃~70℃の温度範囲下で電池前駆体を4.2Vまで充電し、その後2.5Vまで放電させた。これにより、第1電池を得た。
第1電池に、下記の初期充放電処理を施し、第2電池を得た。
第1電池を、25℃の温度環境にて12時間保持した。次いで、第1電池を充電レート0.2Cにて4.2V(SOC(State Of Charge)100%)まで定電流定電圧充電(0.2C-CCCV)し、次いで30分間休止させ、次いで放電レート0.2Cにて2.5Vまで定電流放電(0.2C-CC)させた。これを3サイクル行って第1電池を安定させた。その後、充電レート0.2Cにて4.2Vまで定電流定電圧充電(0.5C-CCCV)し、次いで30分間休止させ、次いで放電レート1Cにて2.5Vまで定電流放電(1C-CC)させた。これにより、第2電池を得た。
第2電池に、下記の直流抵抗評価用処理を施し、第3電池を得た。
第2電池を25℃の温度環境で充電レート0.2Cにて3.7VまでCCCV充電した。「CCCV充電」とは、定電流定電圧(Constant Current Constant Voltage)で充電することを意味する。
次いで、第2電池に対し、-10℃の温度環境にて3時間以上静置し、十分に電池を冷却させた。その後、-10℃の温度環境で、放電レート0.1CにてCC10s放電を施し、充電レート0.1CにてCC10s充電を施した。「CC10s放電」とは、定電流(Constant Current)にて10秒間放電することを意味する。「CC10s充電」とは、定電流(Constant Current)にて10秒間充電することを意味する。
次いで、第2電池に対し、放電レート0.2CにてCC10s放電を施し、充電レート0.1CにてCC20s充電を施した。
次いで、第2電池に対し、放電レート0.4CにてCC10s放電を施し、充電レート0.1CにてCC40s充電を施した。
次いで、第2電池に対し、放電レート0.6CにてCC10s放電を行い、充電レート0.1CにてCC60s充電を施した。これにより、第3電池を得た。
第3電池に、下記の高温保存処理を施し、第4電池を得た。
第3電池を、25℃の温度環境にて、充電レート0.2Cにて4.2Vまで定電流充電した。次いで、充電状態の第3電池を60℃の雰囲気下で28日間静置した。これにより、第4電池を得た。
第4電池に、下記の後期充放電処理を施し、第5電池を得た。
第4電池を25℃の温度環境で放熱し、第1放電をした後、第1充電をし、第2放電をした。第1放電は、放電レート1Cにて2.5Vまで定電流放電(1C-CC)したことを示す。第1充電は、充電レート0.2Cにて4.2Vまで定電流定電圧充電(0.2C-CCCV)したことを示す。第2放電は、放電レート1Cにて2.5Vまで定電流放電(1C-CC)したことを示す。これにより、第5電池を得た。
下記式(X1)に示すように、比較例1の第5電池の直流抵抗(DCIR:Direct current internal resistance)に対する、比較例2~比較例7、及び実施例1~実施例8の第5電池の直流抵抗の相対値を、「高温保存後抵抗[%]」(表1参照)とした。
放電レート0.1C~0.6Cの各々における「CC10s放電」による各電圧低下量(=放電開始前の電圧-放電開始後10秒目の電圧)と、各電流値(即ち、放電レート0.1C~0.6Cに相当する各電流値)と、に基づき、第5電池の直流抵抗(Ω)を求めた。
下記式(X2)に示すように、比較例1の第4電池の容量維持率に対する、比較例2~比較例7、実施例1~実施例8の第4電池の容量維持率の相対値を、「容量維持率[%]」(表1参照)とした。
比較例3~比較例5の非水電解液は、環状スルホン化合物(C-1)、環状スルホン化合物(C-2)、又は環状スルホン化合物(C-3)を含有し、環状スルホン化合物(II)を含有しなかった。そのため、比較例3~比較例5の電気化学デバイスは、比較例1の電気化学デバイスに対して、容量維持率が100%以下であった。すなわち、比較例3~比較例5の電気化学デバイスは、高温環境下で長期に保存されても、電気化学デバイスの容量の低下が抑制されていないことがわかった。
比較例6及び比較例7の非水電解液は、鎖状スルホン化合物(I-1)を単独で含有するとともに、鎖状スルホン化合物(I-1)の含有量は、比較例1の鎖状スルホン化合物(I-1)の含有量に対して20倍以上であった。そのため、比較例6及び比較例7の電気化学デバイスは、比較例1の非水電解液を用いた電気化学デバイスに対して、高温保存後抵抗が220%以上、容量維持率が65%以下であった。すなわち、比較例6及び比較例7の電気化学デバイスは、高温環境下で長期に保存されても、電気化学デバイスの容量の低下及び直流抵抗の増加が抑制されていないことがわかった。
これに対し、実施例1~実施例8の非水電解液は、鎖状スルホン化合物(I-1)と、環状スルホン化合物(II-1)とを含有する。そのため、実施例1~実施例8の電気化学デバイスは、比較例1の電気化学デバイスに対して、高温保存後抵抗が94%以下で、容量維持率が101%以上であった。すなわち、実施例1~実施例8の電気化学デバイスは、高温環境下で長期に保存されても、電気化学デバイスの容量の低下及び直流抵抗の増加が抑制されていることがわかった。
実施例1と実施例3との対比、及び実施例2と実施例4との対比から、環状スルホン化合物(II-1)の含有量を0.5質量%超とすることで、高温保存後抵抗が低下することがわかった。すなわち、環状スルホン化合物(II-1)の含有量を0.5質量%超とすることで、高温環境下で長期に保存されても、電気化学デバイスの直流抵抗の増加をより抑制することができることがわかった。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
Claims (11)
- 下記一般式(I)で表される鎖状スルホン化合物(I)と、
下記一般式(II)で表される環状スルホン化合物(II)と、
を含有し、
前記鎖状スルホン化合物(I)の含有量は、非水電解液の全量に対し、0.01質量%~10質量%である、非水電解液。
〔式(I)中、R11及びR12は、それぞれ独立に、炭素数1~6のアルキル基又は炭素数1~6のフッ化アルキル基を表す。〕
〔式(II)中、R21は炭素数3~6のアルキレン基、炭素数2~6のアルケニレン基、又は式(ii-1)で表される基であり、
*は、結合位置を示し、
式(ii-1)中、R22は、水素原子、炭素数1~6のアルキル基、又は式(ii-2)で表される基であり、
R23は、炭素数1~2のアルキル基、又は式(ii-2)で表される基である。〕 - 前記R11が、炭素数1~6のフッ化アルキル基である、請求項1に記載の非水電解液。
- 前記R21は前記式(ii-1)で表される基であり、
前記R22及び前記R23の少なくとも一方は、前記式(ii-2)で表される基である、請求項1又は請求項2に記載の非水電解液。 - 下記式(V)で表される環状ジカルボニル化合物(V)を含有する、請求項1~請求項5のいずれか1項に記載の非水電解液。
〔式(V)中、
Mは、アルカリ金属であり、
Yは、遷移元素、周期律表の13族元素、14族元素、又は15族元素であり、
bは、1~3の整数であり、
mは、1~4の整数であり、
nは、0~8の整数であり、
qは、0又は1であり、
R51は、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基、又は炭素数6~20のハロゲン化アリーレン基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、qが1でmが2~4の場合にはm個のR51はそれぞれが結合していてもよい。)であり、
R52は、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、又は炭素数6~20のハロゲン化アリール基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、nが2~8の場合はn個のR52はそれぞれが結合して環を形成していてもよい。)であり、
Q1、及びQ2は、それぞれ独立に、酸素原子、又は炭素原子である。〕 - モノフルオロリン酸リチウム及びジフルオロリン酸リチウムからなる群より選ばれる少なくとも1種の化合物(VI)を含有する、請求項1~請求項6のいずれか1項に記載の非水電解液。
- ケースと、
前記ケースに収容された、正極、負極、セパレータ、及び電解液と、
を備え、
前記正極が、リチウムイオンを吸蔵及び放出可能な正極であり、
前記負極が、リチウムイオンを吸蔵及び放出可能な負極であり、
前記電解液が、請求項1~請求項7のいずれか1項に記載の非水電解液である、電気化学デバイス前駆体。 - 前記正極が、正極活物質として、下記式(X)で表されるリチウム含有複合酸化物を含む、請求項8に記載の電気化学デバイス前駆体。
LiNiaCobMncO2 … 式(X)
〔式(X)中、a、b及びcは、それぞれ独立に、0超1未満であり、かつ、a、b及びcの合計は、0.99~1.00である。〕 - 請求項8に記載の電気化学デバイス前駆体を準備する工程と、
前記電気化学デバイス前駆体に対して、充電及び放電を施す工程とを含む、電気化学デバイスの製造方法。 - 請求項8又は請求項9に記載の電気化学デバイス前駆体に対して、充電及び放電を施して得られた電気化学デバイス。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280003084.7A CN115380416A (zh) | 2021-03-18 | 2022-02-07 | 非水电解液、电化学设备前体、电化学设备、及电化学设备的制造方法 |
US17/910,128 US20240213548A1 (en) | 2021-03-18 | 2022-02-07 | Non-aqueous electrolyte solution, electrochemical device precursor, electrochemical device, and method of producing electrochemical device |
JP2022524654A JP7097524B1 (ja) | 2021-03-18 | 2022-02-07 | 非水電解液、電気化学デバイス前駆体、電気化学デバイス、及び電気化学デバイスの製造方法 |
EP22764290.7A EP4310973A1 (en) | 2021-03-18 | 2022-02-07 | Non-aqueous electrolyte, electrochemical device precursor, electrochemical device, and method for producing electrochemical device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021045217 | 2021-03-18 | ||
JP2021-045217 | 2021-03-18 | ||
JP2021-137178 | 2021-08-25 | ||
JP2021137178 | 2021-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022196176A1 true WO2022196176A1 (ja) | 2022-09-22 |
Family
ID=83322231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/004642 WO2022196176A1 (ja) | 2021-03-18 | 2022-02-07 | 非水電解液、電気化学デバイス前駆体、電気化学デバイス、及び電気化学デバイスの製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022196176A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014049294A (ja) * | 2012-08-31 | 2014-03-17 | Tdk Corp | リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池 |
EP3570351A1 (en) * | 2018-05-17 | 2019-11-20 | Contemporary Amperex Technology Co., Limited | Lithium ion battery |
WO2020063882A1 (zh) | 2018-09-28 | 2020-04-02 | 宁德时代新能源科技股份有限公司 | 非水电解液、锂离子电池、电池模块、电池包及装置 |
JP2021045217A (ja) | 2019-09-15 | 2021-03-25 | 株式会社サンセイアールアンドディ | 遊技機 |
JP2021137178A (ja) | 2020-03-03 | 2021-09-16 | 象印マホービン株式会社 | 断熱容器および断熱容器の製造方法 |
-
2022
- 2022-02-07 WO PCT/JP2022/004642 patent/WO2022196176A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014049294A (ja) * | 2012-08-31 | 2014-03-17 | Tdk Corp | リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池 |
EP3570351A1 (en) * | 2018-05-17 | 2019-11-20 | Contemporary Amperex Technology Co., Limited | Lithium ion battery |
WO2020063882A1 (zh) | 2018-09-28 | 2020-04-02 | 宁德时代新能源科技股份有限公司 | 非水电解液、锂离子电池、电池模块、电池包及装置 |
JP2021045217A (ja) | 2019-09-15 | 2021-03-25 | 株式会社サンセイアールアンドディ | 遊技機 |
JP2021137178A (ja) | 2020-03-03 | 2021-09-16 | 象印マホービン株式会社 | 断熱容器および断熱容器の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107431247B (zh) | 非水系电解液和非水系二次电池 | |
JP7040460B2 (ja) | リチウムイオン二次電池用黒鉛系材料の製造方法、リチウムイオン二次電池用負極の製造方法、及びリチウムイオン二次電池の製造方法 | |
JP7070676B2 (ja) | 還元型グラフェン系材料 | |
WO2013042503A1 (ja) | 非水系二次電池 | |
JP7550562B2 (ja) | リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、及びリチウム二次電池の製造方法 | |
WO2022168584A1 (ja) | リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、及びリチウム二次電池の製造方法 | |
JP2023019021A (ja) | 非水電解液、電気化学デバイス前駆体、及び電気化学デバイスの製造方法 | |
JP2023137680A (ja) | リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、リチウムスルファート化合物及びリチウム二次電池の製造方法 | |
JP2023112560A (ja) | リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、及びリチウム二次電池の製造方法 | |
WO2022196176A1 (ja) | 非水電解液、電気化学デバイス前駆体、電気化学デバイス、及び電気化学デバイスの製造方法 | |
JP7417456B2 (ja) | 非水電解液用調製液、リチウムイオン二次電池用非水電解液及びその製造方法、並びに、リチウムイオン二次電池 | |
WO2023119987A1 (ja) | 非水電解液、電気化学デバイス前駆体、電気化学デバイス、及び電気化学デバイスの製造方法 | |
JP7097524B1 (ja) | 非水電解液、電気化学デバイス前駆体、電気化学デバイス、及び電気化学デバイスの製造方法 | |
JP2021158039A (ja) | リチウムイオン二次電池 | |
JP2023114910A (ja) | 非水電解液、電気化学デバイス前駆体、電気化学デバイス、及び電気化学デバイスの製造方法 | |
WO2024167007A1 (ja) | 電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、及び、リチウム二次電池の製造方法 | |
JP7428346B2 (ja) | リチウム二次電池、及びリチウム二次電池の製造方法 | |
WO2024034691A1 (ja) | リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池の製造方法、及びリチウム二次電池 | |
JP2023142129A (ja) | 電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、及びリチウム二次電池の製造方法 | |
JP7447904B2 (ja) | 還元型酸化グラフェン-ジヒドロキシナフタレン複合材料 | |
JP7411475B2 (ja) | 錯化合物及びその製造方法、リチウムイオン二次電池用添加剤、リチウムイオン二次電池用非水電解液、並びに、リチウムイオン二次電池 | |
WO2024053674A1 (ja) | 電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池の製造方法、及びリチウム二次電池 | |
WO2020235447A1 (ja) | 炭素材料、及びそれを用いたリチウムイオン二次電池 | |
JP2023129103A (ja) | 電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、及びリチウム二次電池の製造方法 | |
JP2023094174A (ja) | リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、リチウムスルホネート化合物及びリチウム二次電池の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022524654 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 17910128 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22764290 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022764290 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022764290 Country of ref document: EP Effective date: 20231018 |