WO2022195663A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2022195663A1
WO2022195663A1 PCT/JP2021/010342 JP2021010342W WO2022195663A1 WO 2022195663 A1 WO2022195663 A1 WO 2022195663A1 JP 2021010342 W JP2021010342 W JP 2021010342W WO 2022195663 A1 WO2022195663 A1 WO 2022195663A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
circulation path
closed state
heat exchanger
open state
Prior art date
Application number
PCT/JP2021/010342
Other languages
English (en)
French (fr)
Inventor
久登 森田
康太 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023506388A priority Critical patent/JP7387057B2/ja
Priority to PCT/JP2021/010342 priority patent/WO2022195663A1/ja
Publication of WO2022195663A1 publication Critical patent/WO2022195663A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present disclosure relates to a refrigeration cycle device.
  • a refrigeration cycle device that has a function to prevent the compressor from starting when the refrigerant is dissolved in the lubricating oil in the compressor.
  • Patent Document 1 since the refrigerant may dissolve in the lubricating oil of the compressor while the refrigerating cycle device is idle for a long period of time, the lubricating oil is heated to dissipate the refrigerant when the refrigerating cycle device is restarted.
  • a technique is disclosed in which the compressor is started after sufficient evaporation.
  • the compressor can be started after the refrigerant gradually dissolved in the lubricating oil is changed from liquid to gas over a long period of time. Abnormal increase can be prevented.
  • the phenomenon in which the refrigerant flows into the compressor as a liquid does not only occur when the refrigerating cycle device is out of service for a long period of time, but can also occur during operation of the refrigerating cycle.
  • the compressor is repeatedly stopped and restarted according to the target temperature.
  • the stopped compressor is restarted, the pressure on the discharge side of the compressor increases, and the refrigerant in the refrigerant circuit begins to circulate. At this time, unvaporized liquid refrigerant may flow into the compressor from the suction side of the compressor.
  • This phenomenon occurs because the pressure in the refrigerant circuit on the suction side of the compressor changes abruptly from low pressure to high pressure as the compressor starts.
  • the decompression device installed in the refrigerant circuit cannot follow the pressure rise, and the refrigerant in the refrigerant circuit cannot evaporate and remains liquid. may return to the compressor.
  • a large torque load may be applied to the compressor, and the compressor in transition from the stop state to the start state cannot follow the change in pressure, and the compressor does not operate normally. there is a possibility.
  • the present disclosure has been made in order to solve such problems, and the object thereof is to prevent the compressor from operating due to the sudden inflow of refrigerant from the suction side of the compressor when the compressor is started. To provide a refrigerating cycle device that prevents troubles from occurring.
  • the refrigeration cycle device in the present disclosure includes a compressor, a first heat exchanger, a second heat exchanger, a pressure reducing device, a compressor, a first heat exchanger, a pressure reducing device, and a second heat exchanger in that order.
  • a circulation path for circulating a refrigerant, a control device for controlling a compressor, and a pressure sensor arranged on the suction side of the compressor for detecting the pressure in the circulation path are provided.
  • the decompression device is configured such that the circulation path can be switched between an open state and a closed state. When the decompression device switches the circulation path from the closed state to the open state, the control device starts the compressor when the rate of increase in pressure specified based on the detection value of the pressure sensor is less than a threshold.
  • FIG. 1 is a diagram showing the configuration of a refrigeration cycle apparatus according to Embodiment 1; FIG. It is a figure which shows the detection value of the pressure sensor before and behind a low pressure cut.
  • 4 is a flow chart for restarting the compressor according to the detected value of the pressure sensor; It is a flowchart of the modification which restarts a compressor according to the detected value of a pressure sensor.
  • FIG. 6 is a diagram showing the configuration of a refrigeration cycle apparatus according to Embodiment 2; It is a flow chart for restarting the compressor after closing the electromagnetic valve arranged in the heat source side unit. It is a flowchart of the modification which restarts a compressor, after closing the solenoid valve arrange
  • FIG. 1 is a diagram showing the configuration of a refrigeration cycle apparatus 10 according to Embodiment 1.
  • the refrigeration cycle device 10 according to Embodiment 1 is typically an air conditioner, a freezer, or the like.
  • the refrigeration cycle apparatus 10 includes a heat source side unit 100 and a load side unit 200 .
  • the heat source side unit 100 is, for example, a condensing unit (refrigerator), specifically an outdoor unit.
  • the load-side unit 200 is, for example, an indoor unit such as a showcase or unit cooler.
  • a refrigerant circuit in which a compressor 1, a first heat exchanger 2, a pressure reducing device 3 and a second heat exchanger 4 are connected in sequence is formed in the refrigeration cycle device 10.
  • the decompression device 3 includes an expansion valve 31 and an electromagnetic valve 22 .
  • the refrigeration cycle device 10 circulates the refrigerant through the compressor 1, the first heat exchanger 2, the pressure reducing device 3 and the second heat exchanger 4 in this order.
  • the route through which the refrigerant circulates is referred to as a “circulation route”.
  • the refrigerant circulating in the circulation path exchanges heat with the air in the first heat exchanger 2 and the second heat exchanger 4 .
  • the refrigerating cycle device 10 lowers the temperature of the air around the load side unit 200, which is an indoor unit.
  • the temperature of the air around the load side unit 200 may simply be referred to as "the temperature of the load side unit 200".
  • the heat source side unit 100 includes a compressor 1, a first heat exchanger 2, a pressure sensor 6 and a control device 7.
  • the load side unit 200 includes a decompression device 3 and a second heat exchanger 4 .
  • a liquid pipe 20 and a gas pipe 21 are provided between the heat source side unit 100 and the load side unit 200 .
  • the liquid pipe 20 allows liquid refrigerant to flow from the heat source side unit 100 to the load side unit 200 .
  • the liquid refrigerant may be simply referred to as liquid refrigerant.
  • the gas pipe 21 allows gaseous refrigerant to flow from the load side unit 200 to the heat source side unit 100 .
  • gaseous refrigerant may be simply referred to as gaseous refrigerant.
  • the first heat exchanger 2 corresponds to the "first heat exchanger” in the present disclosure
  • the second heat exchanger 4 corresponds to the “second heat exchanger” in the present disclosure
  • the pressure reducing device 3 corresponds to the present It corresponds to the “decompression device” in the disclosure
  • the solenoid valve 22 corresponds to the "first switching device” in the disclosure.
  • Direction D indicates the direction in which the coolant flows.
  • the compressor 1 is configured to compress the refrigerant in the refrigerant circuit.
  • the compressor 1 may be a constant speed compressor with a constant compression capacity, or an inverter compressor with a variable compression capacity.
  • the inverter compressor is configured to variably control the number of revolutions. Specifically, the drive frequency of the inverter compressor is changed based on an instruction from the control device 7 . Thereby, the rotation speed of the inverter compressor is adjusted and the compression capacity is changed. Compression capacity is the amount of refrigerant delivered per unit time.
  • the refrigerant discharged from the compressor 1 becomes a high-temperature, high-pressure superheated gas.
  • the first heat exchanger 2 is connected to the discharge side of the compressor 1.
  • the first heat exchanger 2 radiates heat to fins or the like to condense the refrigerant. Therefore, the first heat exchanger 2 functions as a condenser.
  • the refrigerant passing through the first heat exchanger 2 exchanges heat with the air around the first heat exchanger 2 due to forced convection generated by a fan (not shown) provided in the heat source side unit 100 .
  • a fan not shown
  • the refrigerant passing through the first heat exchanger 2 is condensed into a medium-temperature, high-pressure liquid.
  • Medium-temperature and high-pressure liquid refrigerant flows from the heat source side unit 100 to the load side unit 200 via the liquid pipe 20 .
  • the solenoid valve 22 is arranged between the first heat exchanger 2 and the expansion valve 31 .
  • the solenoid valve 22 switches the circulation path between an open state and a closed state.
  • solenoid valve 22 is a two-way valve.
  • the expansion valve 31 expands the refrigerant.
  • the refrigerant expanded by the expansion valve 31 is in a low-temperature, low-pressure gas-liquid two-phase state.
  • the solenoid valve 22 and the expansion valve 31 may be provided as an integral device.
  • the second heat exchanger 4 evaporates a low-temperature, low-pressure gas-liquid two-phase refrigerant. That is, the low-temperature, low-pressure gas-liquid two-phase refrigerant exchanges heat with liquid such as air or water around the second heat exchanger 4 .
  • the refrigerant evaporated by the second heat exchanger 4 becomes a low-pressure superheated gas. Therefore, the second heat exchanger 4 functions as an evaporator.
  • the low-pressure superheated gas refrigerant flows from the load side unit 200 to the heat source side unit 100 via the gas pipe 21 .
  • a circulation path is formed through which the refrigerant circulates.
  • the pressure sensor 6 is provided in the circulation path on the suction side of the compressor 1.
  • pressure sensor 6 is provided between gas pipe 21 and compressor 1 .
  • the pressure sensor 6 detects the pressure in the circulation path at the position where the pressure sensor 6 is provided.
  • the pressure sensor 6 transmits information including the detected pressure value in the circulation path to the control device 7 .
  • the control device 7 uses the pressure detected by the pressure sensor 6 to control the compressor 1 .
  • Controller 7 is connected to pressure sensor 6 and compressor 1 .
  • the control device 7 includes a CPU 71 (Central Processing Unit), a storage device 72 (including ROM and RAM, for example), an input/output buffer, and the like.
  • the control device 7 starts and stops the compressor 1 by the CPU executing a program stored in the storage device 72 .
  • the state in which the control device 7 is activating the compressor 1 may be referred to as the “starting state”, and the state in which the control device 7 is stopping the compressor 1 may be referred to as the “stop state”.
  • Prescribed thresholds, prescribed temperatures, prescribed pressures, prescribed time periods, etc. may be stored by an external device that is capable of communicating with the controller 7 .
  • the prescribed threshold, prescribed temperature, prescribed pressure, and prescribed period of time may be determined based on experiments and the like.
  • the control device 7 includes a display 8.
  • the display 8 is composed of, for example, a 7-segment LED.
  • the display 8 can display the state of the control device 7 and the like.
  • the control device 7 is provided in the heat source side unit 100 .
  • the control device 7 may be provided in a unit separate from the heat source side unit 100 .
  • the load side unit 200 includes a temperature detector 25.
  • the temperature detector 25 is a thermistor or the like provided to detect the temperature of the load side unit 200 .
  • the solenoid valve 22 and the temperature detector 25 are connected.
  • the solenoid valve 22 is configured to switch the state of the circulation path according to the temperature detected by the temperature detector 25 .
  • the solenoid valve 22 may be controlled by a controller or the like (not shown) provided in the load side unit 200 .
  • the electromagnetic valve 22 switches the circulation path through which the refrigerant circulates to the closed state. As a result, in the refrigeration cycle device 10, circulation of the refrigerant is stopped, and the temperature of the load side unit 200 is prevented from dropping more than necessary.
  • the electromagnetic valve 22 switches the circulation path through which the refrigerant circulates to the open state. As a result, in the refrigeration cycle device 10, circulation of the refrigerant is started, and it is possible to prevent the temperature of the load side unit 200 from rising.
  • FIG. 2 is a diagram showing detected values of the pressure sensor 6 before and after the low pressure cut.
  • the low pressure cut is a control to stop the compressor 1 due to a decrease in the detection value of the pressure sensor 6 based on the fact that the temperature of the load side unit 200 has decreased and the circulation path has been blocked by the electromagnetic valve 22.
  • the control device 7 stops the compressor 1 when the temperature of the load side unit 200 is lowered due to the low pressure cut.
  • the low pressure cut will be described in detail below with reference to FIG. In FIG. 2, the vertical axis indicates the value detected by the pressure sensor 6, and the horizontal axis indicates the elapsed time.
  • the compressor 1 Before the time Ta, in the refrigeration cycle device 10, the compressor 1 is started and the electromagnetic valve 22 opens the circulation path. That is, before the time Ta, the compressor 1 compresses the refrigerant with a constant pressure and discharges the refrigerant. Heat exchange occurs between the refrigerant and the air around the second heat exchanger 4, and the air in the load side unit 200 is cooled.
  • the temperature of the cooled load side unit 200 falls below the specified lower limit temperature. That is, in order to prevent the temperature of load-side unit 200 from dropping more than necessary, electromagnetic valve 22 can switch the circulation path from the open state to the closed state by load-side unit 200 . Therefore, circulation of the refrigerant stops. The flow velocity of the refrigerant decreases after the circulation path becomes blocked. As shown in FIG. 2, the detected value of the pressure sensor 6 gradually decreases as the flow velocity of the refrigerant decreases.
  • the low pressure cut value is a specified pressure value for the control device 7 to cut the low pressure. That is, the control device 7 executes low pressure cut, which is control to stop the compressor 1, when the detected value of the pressure sensor 6 becomes the low pressure cut value.
  • the control device 7 stops the compressor 1 based on the pressure sensor 6 of the heat source-side unit 100 . That is, the control device 7 need not be connected to the load side unit 200 .
  • the temperature of the load side unit 200 gradually rises. As a result, the temperature of the load-side unit 200 exceeds the prescribed upper limit temperature at time Tc. That is, after time Tc, the refrigeration cycle device 10 needs to restart circulation of the refrigerant.
  • the electromagnetic valve 22 switches the circulation path from the closed state to the open state in order to prevent the temperature of the load side unit 200 from rising beyond the upper limit temperature.
  • the compressor 1 is stopped, the refrigerant blocked by the electromagnetic valve 22 flows into the heat source side unit 100 side because the circulation path is in an open state. Therefore, as shown in FIG. 2, the detected value of the pressure sensor 6 sharply rises after time Tc.
  • the control device 7 activates the compressor 1 after the electromagnetic valve 22 switches the circulation path to the open state.
  • the control device 7 determines whether or not preparations for starting the compressor 1 are complete. In other words, the controller 7 determines whether the compressor 1 is ready.
  • the ready state is a state indicating whether or not the compressor 1 is in a pre-start state. When the compressor 1 is in the ready state, the controller 7 determines that the compressor 1 is in a pre-start stage.
  • the low pressure cut return value is a prescribed pressure value stored by the storage device 72 .
  • the low pressure cut return value is a value higher than the low pressure cut value.
  • the control device 7 After determining that the compressor 1 is in the ready state, the control device 7 compares the pressure increase rate specified based on the detection value of the pressure sensor 6 with the threshold.
  • the pressure increase speed specified based on the detected value of the pressure sensor 6 is simply referred to as "increase speed”. Specifically, the controller 7 activates the compressor 1 when the rate of increase becomes less than the prescribed threshold value V1.
  • a method other than the method using the low-pressure cut return value may be used as the condition for entering the ready state.
  • the control device 7 determines that the compressor 1 has entered the ready state based on the lapse of a prescribed period of time after the low pressure cut.
  • the rising speed at time Te is indicated as speed Ve. That is, velocity Ve is the slope of the tangent line at time Te of the curve shown in FIG. In other words, the rising speed is the amount of change in the detected value of the pressure sensor 6 per unit time.
  • the speed Ve is a speed equal to or higher than the threshold value V1. Therefore, the control device 7 does not start the compressor 1 because the speed Ve at the time Te is not less than the threshold value V1.
  • the refrigerant Since the velocity Ve at the time Te is the pressure equal to or higher than the threshold value V1, the refrigerant abruptly flows into the heat source side unit 100 at the time Te. Therefore, when the stopped compressor 1 is restarted at time Te, a large amount of non-vaporized liquid refrigerant may flow into the compressor 1 from the load side unit 200 .
  • the control device 7 controls the compressor 1 so as not to start during the time Te when the speed Ve is equal to or greater than the threshold value V1.
  • the speed Vf indicates the rising speed at time Tf.
  • the speed Vf is a speed less than the threshold value V1. Therefore, at time Tf, the controller 7 starts the compressor 1 because the speed Vf is less than the threshold value V1.
  • the control device 7 of the refrigeration cycle apparatus 10 in the present embodiment determines whether or not to start the compressor 1 by focusing on the rising speed after the compressor 1 becomes ready. As a result, the control device 7 prevents the refrigerant circuit from causing liquid refrigerant to flow into the compressor 1 during the transition from the stop state to the start state. That is, in the refrigeration cycle apparatus 10 of Embodiment 1, when the compressor 1 is started, it is possible to prevent the refrigerant from suddenly flowing in from the suction side of the compressor 1 to cause malfunction of the compressor 1 .
  • FIG. 3 is a flow chart for restarting the compressor 1 according to the detected value of the pressure sensor 6.
  • the control device 7 executes a low pressure cut (step S11). That is, the control device 7 stops the compressor 1 because the electromagnetic valve 22 of the load side unit 200 is switched and the circulation path is blocked.
  • the control device 7 determines whether or not the compressor 1 is ready (step S12). That is, the control device 7 determines whether the detected value of the pressure sensor 6 is the low pressure cut return value. When determining that the compressor 1 is not in the ready state because the detected value of the pressure sensor 6 is not the low-pressure cut return value (NO in step S12), the control device 7 stops the process at step S12.
  • the control device 7 determines whether the rising speed is less than the threshold value V1. (step S13). If the rising speed is less than the threshold value V1 (YES in step S13), the control device 7 activates the compressor 1 (step S14) and terminates the process. That is, when the rising speed is less than the threshold value V1, the refrigerant does not suddenly flow in from the suction side of the compressor 1, so the compressor 1 can be started.
  • step S15 the control device 7 executes standby processing for the compressor 1 (step S15). That is, the control device 7 causes the compressor 1 to stand by for a prescribed period. The specified waiting period should be short. After the standby process ends, the control device 7 again compares the rising speed with the threshold value.
  • the control device 7 determines whether or not the rising speed is less than the threshold V1 (step S16).
  • the threshold value to be compared in step S16 may be a value different from the threshold value in step S13.
  • the threshold to be compared in step S16 may be threshold V2, which is lower than threshold V1.
  • the compressor 1 is in standby processing, so it is expected that the rate of increase in step S16 is lower than the rate of increase in step S13.
  • Specific values of threshold V1 and threshold V2 can be determined based on experiments.
  • step S16 If the rising speed is not less than the threshold V1 (NO in step S16), the control device 7 returns the process to step S15. As a result, the control device 7 causes the compressor 1 to wait until the rising speed becomes less than the threshold value V1. If the rising speed is less than the threshold value V1 (YES in step S16), the control device 7 activates the compressor 1 (step S14) and terminates the process.
  • the controller 7 compares the rising speed with the threshold after the compressor 1 is ready.
  • the controller 7 compares the rising speed with the threshold after the compressor 1 is ready.
  • FIG. 3 illustrates an example in which the controller 7 starts the compressor 1 when the solenoid valve 22 switches the circulation path from the closed state to the open state and the rising speed is less than the threshold value V1.
  • FIG. 4 is a flowchart of a modification in which the compressor 1 is restarted according to the detected value of the pressure sensor 6.
  • FIG. 4 description of the configuration overlapping with that of the flowchart of FIG. 3 will not be repeated.
  • step S17 when the rate of increase is not less than the threshold value V1 in step S16, the control device 7 determines whether or not the first period has passed (step S17).
  • the first period is a prescribed period starting from time Tb or time Tc in FIG. If the first period has not elapsed (NO in step S17), the control device 7 returns the process to step S15.
  • step S17 When the first period has elapsed (YES in step S17), the control device 7 activates the compressor 1 (step S14) and terminates the process. As a result, it is possible to prevent the compressor 1 from being unable to start because the speed of increase does not become less than the threshold value V1 due to a failure of the pressure sensor 6 or the like.
  • Embodiment 2 refrigerating cycle apparatus 10A in Embodiment 2 is explained.
  • control device 7 starts compressor 1 based on the rate of increase in the detection value detected by pressure sensor 6 .
  • FIG. 5 is a diagram showing the configuration of a refrigeration cycle apparatus 10A according to Embodiment 2.
  • FIG. 6 is a flowchart for restarting the compressor 1 after closing the solenoid valve 11 arranged in the heat source side unit 100 .
  • the description of the configuration overlapping with that of the first embodiment will not be repeated.
  • the heat source side unit 100 included in the refrigeration cycle apparatus 10A in the second embodiment includes an electromagnetic valve 11. As shown in FIG. A solenoid valve 11 is arranged between the second heat exchanger 4 and the compressor 1 . The solenoid valve 11 of the heat source side unit 100 switches the circulation path between an open state and a closed state. As described above, the electromagnetic valve 22 of the load-side unit 200 similarly switches the circulation path between the open state and the closed state.
  • the open state of the circulation path by the solenoid valve 22 of the load-side unit 200 will be referred to as the "first open state”
  • the closed state of the circulation path by the solenoid valve 22 of the load-side unit 200 will be referred to as the "first closed state.”
  • the open state of the circulation path by the solenoid valve 11 of the heat source side unit 100 is called a "second open state”
  • the closed state of the circulation path by the solenoid valve 11 of the heat source side unit 100 is called a "second closed state”.
  • the control device 7 is configured to be able to control the electromagnetic valve 11 arranged in the heat source side unit 100 . As a result, the control device 7 can control the solenoid valve 11 without using the pressure sensor 6 and prevent the liquid refrigerant from flowing when the compressor 1 is started. A control flow of the control device 7 according to the second embodiment will be described with reference to FIG.
  • the control device 7 executes a low pressure cut (step S21). That is, the control device 7 stops the compressor 1 because the circulation path is in the first blocked state.
  • control device 7 determines whether or not the compressor 1 is ready (step S22). That is, the control device 7 determines whether the detected value of the pressure sensor 6 has reached the low pressure cut return value. If the detected value of the pressure sensor 6 has not reached the low-pressure cut return value and the compressor 1 is not in the ready state (NO in step S22), the control device 7 leaves the process at step S22.
  • the control device 7 controls the circulation path to the second closed state (step S23). ). After that, the control device 7 controls the compressor 1 from the stop state to the start state (step S24).
  • the compressor 1 is controlled from the stop state to the start state, but since the circulation path is switched to the closed state by the electromagnetic valve 11, the liquid refrigerant does not suddenly flow in from the suction side of the compressor 1. .
  • the control device 7 determines whether or not the second period has elapsed (step S25).
  • the second period is a specified period starting from when the compressor 1 is started (step S24). If the second period has not elapsed (NO in step S25), the control device 7 leaves the process at step S25. When the second period elapses, the compressor 1 completely transitions from the transition from the stop state to the start state to the start state.
  • control device 7 determines that the second period has elapsed (YES in step S25), it controls to the second open state (step S26). That is, the control device 7 switches the solenoid valve 11 to bring the circulation path into the second open state. As a result, the refrigerant flows into the compressor 1 not during the transition from the stop state to the start state, but after the state is completely shifted to the start state.
  • the control flow shown in FIG. 6 can prevent the liquid refrigerant from suddenly flowing into the compressor 1 during the transition from the stop state to the start state.
  • the electromagnetic valve 11 can be used to prevent the refrigerant from suddenly flowing in from the suction side of the compressor 1, thereby preventing the compressor 1 from malfunctioning. .
  • FIG. 7 illustrates an example in which the control device 7 uses the solenoid valve 22 and the solenoid valve 11 to start the compressor 1 .
  • the electromagnetic valve 11 causes the compressor to open. 1, the circulation path is switched from the second closed state to the second open state.
  • FIG. 7 is a flowchart of a modification in which the compressor is restarted after closing the solenoid valve arranged in the heat source side unit. Steps S31 to S34 in the flowchart of FIG. 7 correspond to steps S11 to S14 in the flowchart of FIG. 3, respectively. In short, if the flowchart shown in FIG. 7 and the flowchart shown in FIG. 3 are compared, the process when the control device 7 determines that the rising speed is not less than the threshold value V1 is different. In FIG. 3, the compressor standby process is executed (step S15), whereas in FIG. 7, the control device 7 controls the second closed state (step S35).
  • steps S35 to S38 in the flowchart of FIG. 7 correspond to steps S23 to S26 in the flowchart of FIG. 6, respectively. That is, from step S35 onward in the flowchart shown in FIG. 7, the control device 7 executes the same processing as the processing from step S23 described with reference to FIG.
  • control device 7 is not connected to the load side unit 200 has been described. 7 is applicable. In this case, since the control device 7 is connected to the load side unit 200, it can directly determine whether or not the electromagnetic valve 22 has been switched.
  • control device 7 may replace the process of determining whether it is in the ready state in FIG. 6 (step S22) with a process of determining whether it has been switched to the first open state. Similarly, the control device 7 may replace the process of determining whether it is in the ready state (step S32) in FIG. 7 with a process of determining whether it has been switched to the first open state.
  • control device 7 switches the circulation path from the second open state to the second closed state by controlling the solenoid valve 11 when the circulation path is switched from the first closed state to the first open state. may Thereby, the control device 7 can switch to the second closed state without determining whether or not it is in the ready state.
  • the refrigeration cycle device 10 in the present disclosure includes a compressor 1, a first heat exchanger 2, a second heat exchanger 4, an expansion valve 31, a compressor 1, a 1 heat exchanger 2, expansion valve 31, and second heat exchanger 4, a circulation path for circulating the refrigerant in this order; a control device 7 for controlling the compressor 1; and a pressure sensor 6 for detecting the internal pressure.
  • the decompression device 3 is configured such that the circulation path can be switched between an open state and a closed state.
  • the control device 7 operates the compressor 1 when the rate of increase in pressure specified based on the detection value of the pressure sensor 6 is less than the threshold value V1. to start.
  • the decompression device 3 switches the circulation path from the open state to the closed state when the temperature of the air heat-exchanging with the second heat exchanger becomes lower than the specified first temperature,
  • the circulation path is switched from the closed state to the open state. This prevents the compressor 1 from malfunctioning due to sudden inflow of refrigerant from the suction side of the compressor 1 when the low pressure cut is performed.
  • the compressor when the decompression device 3 switches the circulation path from the closed state to the open state, the compressor is stopped if the rising speed is equal to or higher than the threshold.
  • the compressor is stopped if the rising speed is equal to or higher than the threshold.
  • the controller 7 controls the control device 7 when the rising speed does not drop below the threshold value V1 within the first period after the electromagnetic valve 22 switches the circulation path from the closed state to the open state. Compressor 1 is started. As a result, it is possible to prevent the compressor 1 from being unable to start because the speed of increase does not become less than the threshold value V1 due to a failure of the pressure sensor 6 or the like.
  • the pressure reducing device 3 includes an expansion valve 31 and an electromagnetic valve disposed between the first heat exchanger 2 and the expansion valve 31 to switch the circulation path between an open state and a closed state. 22.
  • a refrigeration cycle device 10A in the present disclosure includes a compressor 1, a first heat exchanger 2, a second heat exchanger 4, an expansion valve 31, a compressor 1, a 1 heat exchanger 2, expansion valve 31, and second heat exchanger 4 in order to circulate the refrigerant; a solenoid valve 22 for switching between the state and the first closed state; and a solenoid valve 11 arranged between the second heat exchanger 4 and the compressor 1 for switching the circulation path between the second open state and the second closed state. , and a controller 7 for controlling the compressor 1 and the solenoid valve 11 .
  • the solenoid valve 22 switches the circulation path from the first closed state to the first opened state
  • the controller 7 starts the compressor 1 in the second closed state, and then opens the circulation path from the second closed state to the second open state. switch to state.
  • the refrigeration cycle device 10A further includes a pressure sensor 6 arranged on the suction side of the compressor 1 and detecting the pressure within the circulation path.
  • the control device 7 is in the second closed state if the pressure increase speed specified based on the detection value of the pressure sensor 6 is not less than the threshold value. After starting the compressor 1, the circulation path is switched from the second closed state to the second open state.
  • the control device 7 rapidly supplies the liquid refrigerant to the compressor 1 during the transition from the stop state to the start state while reducing the opening and closing of the solenoid valve. It is possible to prevent troubles in the operation of the compressor 1 due to the inflow.
  • control device 7 switches the circulation path from the second open state to the second closed state by controlling the electromagnetic valve 11 when the circulation path is switched from the first closed state to the first open state.

Abstract

本開示における冷凍サイクル装置(10)は、圧縮機(1)と、第1熱交換器(2)と、第2熱交換器(4)と、減圧装置(3)と、圧縮機、第1熱交換器、減圧装置、および第2熱交換器の順に冷媒を循環させる循環経路と、圧縮機を制御する制御装置(7)と、圧縮機の吸入側に配置され、循環経路内の圧力を検出する圧力センサ(6)とを備える。減圧装置は、循環経路を開放状態と閉塞状態とに切り換えることが可能に構成される。制御装置は、減圧装置が循環経路を閉塞状態から開放状態に切り換えたとき、圧力センサの検出値に基づいて特定される圧力の上昇速度が閾値未満である場合に圧縮機を起動する。

Description

冷凍サイクル装置
 本開示は、冷凍サイクル装置に関する。
 従来、冷媒が圧縮機内の潤滑油に溶け込んだ状態で圧縮機を起動することを防止する機能を備える冷凍サイクル装置が知られている。
 特許文献1では、冷凍サイクル装置が長期にわたって休止している間に冷媒が圧縮機の潤滑油中に溶け込むことがあるため、冷凍サイクル装置を再起動させるときに、潤滑油を加熱して冷媒を十分蒸発させてから、圧縮機を起動させる技術が開示されている。
特開平5-312419号公報
 特許文献1に記載の技術によれば、長期にわたり潤滑油に徐々に溶け込んだ冷媒を液体から気体に変化させた後に圧縮機を起動することができるため、圧縮機が起動する際の起動トルクが異常に増大することを防止できる。
 しかしながら、冷媒が液体のままで圧縮機に流入する現象は、冷凍サイクル装置が長期にわたって休止することのみによって発生するわけではなく、冷凍サイクルの運転中にも発生し得る。冷凍サイクルの運転中は、目標温度に応じて圧縮機の停止と再起動とを繰り返す。停止している圧縮機を再起動したときに、圧縮機の吐出側の圧力が高まることで冷媒回路内の冷媒が循環し始める。このとき、気化していない液冷媒が圧縮機の吸入側から圧縮機に流入する可能性がある。
 この現象は、圧縮機の吸入側の冷媒回路の圧力が圧縮機の起動に伴って低圧から高圧へと急激に変化することに起因して発生する。圧縮機の吸入側の冷媒回路の圧力が急激に上昇することで、冷媒回路に設けた減圧装置がその圧力上昇に追従することができず、冷媒回路内の冷媒が蒸発しきれずに液体のままで圧縮機に戻るおそれがある。このとき、圧縮機に大きなトルク負荷がかかる場合があり、停止状態から起動状態へと遷移中の圧縮機は圧力の変化に対して制御を追従させることができず、圧縮機が正常に動作しない可能性がある。
 本開示は、このような課題を解決するためになされたものであり、その目的は、圧縮機を起動する場合に、圧縮機の吸入側から急激に冷媒が流入することにより、圧縮機の動作に不具合が生じることを防止する冷凍サイクル装置を提供することである。
 本開示における冷凍サイクル装置は、圧縮機と、第1熱交換器と、第2熱交換器と、減圧装置と、圧縮機、第1熱交換器、減圧装置、および第2熱交換器の順に冷媒を循環させる循環経路と、圧縮機を制御する制御装置と、圧縮機の吸入側に配置され、循環経路内の圧力を検出する圧力センサとを備える。減圧装置は、循環経路を開放状態と閉塞状態とに切り換えることが可能に構成される。制御装置は、減圧装置が循環経路を閉塞状態から開放状態に切り換えたとき、圧力センサの検出値に基づいて特定される圧力の上昇速度が閾値未満である場合に圧縮機を起動する。
 本開示によれば、圧縮機を起動する場合に、圧縮機の吸入側から急激に冷媒が流入することにより、圧縮機の動作に不具合が生じることを防止する冷凍サイクル装置を実現できる。
実施の形態1における冷凍サイクル装置の構成を示す図である。 低圧カットの前後における圧力センサの検出値を示す図である。 圧力センサの検出値に応じて圧縮機を再起動するフローチャートである。 圧力センサの検出値に応じて圧縮機を再起動する変形例のフローチャートである。 実施の形態2における冷凍サイクル装置の構成を示す図である。 熱源側ユニットに配置された電磁弁を閉塞状態にした後に圧縮機を再起動するフローチャートである。 熱源側ユニットに配置された電磁弁を閉塞状態にした後に圧縮機を再起動する変形例のフローチャートである。
 以下、図面を参照しつつ、本開示に係る技術思想の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
 実施の形態1.
 <冷凍サイクル装置の構成>
 図1は、実施の形態1における冷凍サイクル装置10の構成を示す図である。実施の形態1に係る冷凍サイクル装置10は、典型的には、空気調和装置、冷凍庫等である。冷凍サイクル装置10は、熱源側ユニット100および負荷側ユニット200を備える。熱源側ユニット100は、たとえば、コンデンシングユニット(冷凍機)であり、具体的には室外機である。負荷側ユニット200は、たとえば、ショーケース、ユニットクーラー等の室内機である。
 冷凍サイクル装置10には、圧縮機1、第1熱交換器2、減圧装置3および第2熱交換器4が順次接続された冷媒回路が形成されている。減圧装置3は、膨張弁31と電磁弁22とを備える。冷凍サイクル装置10は、圧縮機1、第1熱交換器2、減圧装置3および第2熱交換器4の順に冷媒を循環させる。以下では、冷媒が循環する経路を「循環経路」と称する。循環経路を循環する冷媒は、第1熱交換器2および第2熱交換器4において、空気との間で熱交換を行う。これにより、冷凍サイクル装置10は、室内機である負荷側ユニット200の周囲の空気の温度を低下させる。以下では、負荷側ユニット200の周囲の空気の温度を、単に「負荷側ユニット200の温度」と称する場合がある。
 熱源側ユニット100は、圧縮機1、第1熱交換器2、圧力センサ6および制御装置7を備える。負荷側ユニット200は、減圧装置3、および第2熱交換器4を備える。熱源側ユニット100と負荷側ユニット200との間には、液配管20およびガス配管21が設けられる。液配管20は、液状の冷媒を熱源側ユニット100から負荷側ユニット200へと流入させる。以下、液状の冷媒を単に液冷媒と称する場合がある。ガス配管21は、気体状の冷媒を負荷側ユニット200から熱源側ユニット100へと流入させる。以下、気体状の冷媒を単に気体冷媒と称する場合がある。第1熱交換器2は、本開示における「第1熱交換器」に対応し、第2熱交換器4は、本開示における「第2熱交換器」に対応し、減圧装置3は、本開示における「減圧装置」に対応し、電磁弁22は、本開示における「第1切換装置」に対応する。
 以下では、冷凍サイクル装置10の循環経路内に配置される構成について、圧縮機1から順に冷媒が循環する順番で説明する。方向Dは、冷媒が流れる方向を示す。
 圧縮機1は、冷媒回路内の冷媒を圧縮するように構成されている。圧縮機1は、圧縮容量が一定である定速圧縮機であってもよく、または、圧縮容量が可変のインバーター圧縮機であってもよい。インバーター圧縮機は、回転数を可変に制御するように構成されている。具体的には、インバーター圧縮機は、制御装置7からの指示に基づいて駆動周波数が変更される。これにより、インバーター圧縮機の回転数は調整され、圧縮容量は変化する。圧縮容量とは、単位時間あたりに冷媒を送り出す量である。圧縮機1から吐出された冷媒は、高温高圧の過熱ガス状となる。
 第1熱交換器2は、圧縮機1の吐出側に接続されている。第1熱交換器2は、フィン等に放熱して冷媒を凝縮する。したがって、第1熱交換器2は、凝縮器として機能する。熱源側ユニット100内に設けられた図示しないファンが生じさせる強制対流により、第1熱交換器2を通過する冷媒は、第1熱交換器2の周囲の空気との間で熱交換をする。これにより、第1熱交換器2を通過する冷媒は、凝縮されて中温高圧の液状となる。中温高圧の液状の冷媒は、液配管20を介して熱源側ユニット100から負荷側ユニット200へと流入する。
 電磁弁22は、第1熱交換器2と膨張弁31との間に配置される。電磁弁22は、循環経路を開放状態と閉塞状態とに切り換える。典型的には、電磁弁22は、二方弁である。膨張弁31は、冷媒を膨張させる。膨張弁31によって膨張された冷媒は、低温低圧の気液二相状態となる。電磁弁22と膨張弁31とは、一体の装置として設けられてもよい。
 第2熱交換器4は、低温低圧の気液二相状態の冷媒を蒸発させる。すなわち、低温低圧の気液二相状態の冷媒は、第2熱交換器4の周囲の空気または水等の液体との間で熱交換をする。第2熱交換器4により蒸発された冷媒は、低圧の過熱ガス状態となる。したがって、第2熱交換器4は、蒸発器として機能する。低圧の過熱ガス状態の冷媒は、ガス配管21を介して負荷側ユニット200から熱源側ユニット100へと流入する。このように、冷凍サイクル装置10では、冷媒が循環する循環経路が形成される。
 熱源側ユニット100内において、圧力センサ6は、圧縮機1の吸入側に循環経路に設けられる。換言すれば、圧力センサ6は、ガス配管21と圧縮機1との間に設けられる。圧力センサ6は、圧力センサ6が設けられた位置の循環経路内の圧力を検出する。圧力センサ6は、検出した循環経路内の圧力の値を含む情報を制御装置7に送信する。
 制御装置7は、圧力センサ6が検出した圧力を用いて、圧縮機1を制御する。制御装置7は、圧力センサ6および圧縮機1と接続される。制御装置7は、CPU71(Central Processing Unit)、記憶装置72(たとえば、ROMおよびRAMを含む。)、入出力バッファ等を含む。制御装置7は、記憶装置72に格納されたプログラムをCPUが実行することにより、圧縮機1の起動および停止する。本開示では、制御装置7が圧縮機1を起動している状態を「起動状態」と称する場合があり、制御装置7が圧縮機1を停止している状態を「停止状態」と称する場合がある。また、以下では、規定の閾値、規定の温度、規定の圧力、および規定の期間などについて説明するが、これらのパラメータは、制御装置7の記憶装置72に予め記憶される。規定の閾値、規定の温度、規定の圧力、および規定の期間などは、制御装置7と通信可能である外部の装置によって記憶されてもよい。規定の閾値、規定の温度、規定の圧力、および規定の期間は、実験等に基づいて、定められ得る。
 制御装置7は、ディスプレイ8を備える。ディスプレイ8は、たとえば、7セグメントLED等により構成される。ディスプレイ8は、制御装置7の状態等を表示可能である。制御装置7は、熱源側ユニット100内に設けられる。制御装置7は、熱源側ユニット100と別体のユニット内に設けられていてもよい。
 負荷側ユニット200は、温度検出器25を含む。温度検出器25は、具体的には、負荷側ユニット200の温度を検出するために設けられたサーミスタ等である。電磁弁22と温度検出器25とは接続されている。電磁弁22は、温度検出器25が検出した温度に応じて、循環経路の状態を切り換えるように構成される。電磁弁22は、負荷側ユニット200に設けられた図示しない制御装置等により制御されてもよい。
 負荷側ユニット200の温度が規定の下限温度を下回ったとき、電磁弁22は、冷媒が循環する循環経路を閉塞状態に切り換える。これにより、冷凍サイクル装置10では、冷媒の循環が停止し、負荷側ユニット200の温度が必要以上に低下することを防止する。
 また、負荷側ユニット200の温度が規定の上限温度を上回ったとき、電磁弁22は、冷媒が循環する循環経路を開放状態に切り換える。これにより、冷凍サイクル装置10では、冷媒の循環が開始し、負荷側ユニット200の温度が上昇することを防止することができる。
 <圧力センサ6の検出値に応じた制御>
 図2を参照して、圧力センサ6を用いて循環経路の閉塞状態または開放状態を制御する例を説明する。図2は、低圧カットの前後における圧力センサ6の検出値を示す図である。低圧カットとは、負荷側ユニット200の温度が下がり、電磁弁22によって循環経路が閉塞状態になったことに基づいて、圧力センサ6の検出値が下がったことにより、圧縮機1を停止する制御を意味する。制御装置7は、低圧カットにより、負荷側ユニット200の温度が低下したことに伴って、圧縮機1を停止する。以下では、図2を用いて低圧カットについて詳述する。図2において、縦軸は、圧力センサ6の検出値の値を示し、横軸は、経過時間を示す。
 時間Taより前において、冷凍サイクル装置10では、圧縮機1が起動され、電磁弁22が循環経路を開放状態にする。すなわち、時間Taより前では、圧縮機1は、一定の圧力により圧縮し冷媒を吐出する。冷媒と第2熱交換器4の周囲の空気との間において熱交換が発生し、負荷側ユニット200の空気は冷却される。
 続いて、時間Taにおいて、冷却された負荷側ユニット200の温度が規定の下限温度を下回る。すなわち、負荷側ユニット200の温度が必要以上に低下することを防止するため、電磁弁22は、負荷側ユニット200によって、循環経路を開放状態から閉塞状態に切り換えることができる。そのため、冷媒の循環は停止する。冷媒の流速は、循環経路が閉塞状態になった後、低下する。図2に示されるように、冷媒の流速の低下に伴って、圧力センサ6の検出値は徐々に低下する。
 時間Tbにおいて、圧力センサ6の検出値は、低圧カット値に達する。低圧カット値とは、制御装置7が低圧カットをするための規定の圧力の値である。すなわち、制御装置7は、圧力センサ6の検出値が低圧カット値となったとき、圧縮機1を停止する制御である低圧カットを実行する。
 これにより、負荷側ユニット200で循環経路が電磁弁22によって閉塞状態に切り換えられた場合においても、制御装置7は、熱源側ユニット100の圧力センサ6に基づいて圧縮機1を停止する。すなわち、制御装置7は、負荷側ユニット200と接続される必要がない。
 時間Tbにおいて圧縮機1が停止した後、負荷側ユニット200の温度は、徐々に上昇する。これにより、時間Tcにおいて、負荷側ユニット200の温度が規定の上限温度を上回る。すなわち、時間Tc以降において、冷凍サイクル装置10では、再度、冷媒の循環を開始する必要がある。
 時間Tcとなった時、負荷側ユニット200の温度が上限温度を超えて上昇することを防止するため、電磁弁22は、循環経路を閉塞状態から開放状態に切り換える。圧縮機1は停止しているが、循環経路が開放状態になったことにより、電磁弁22によって堰き止められていた冷媒は、熱源側ユニット100側へと流入する。そのため、図2に示されるように、時間Tc以降の圧力センサ6の検出値が急峻に上昇する。
 時間Tcにおいて、電磁弁22が循環経路を開放状態に切り換えた後、制御装置7は、圧縮機1を起動する。制御装置7は、圧縮機1を起動する準備が整っているか否かを判断する。換言すれば、制御装置7は、圧縮機1が準備状態であるか否かを判断する。準備状態とは、圧縮機1が起動する前段階の状態であるか否かを示す状態である。制御装置7は、圧縮機1が準備状態である場合、圧縮機1が起動する前段階にあると判断する。
 図2の例では、圧縮機1が準備状態であるか否かを低圧カット復帰値に基づいて判断する。低圧カット復帰値は、記憶装置72によって記憶される規定の圧力の値である。低圧カット復帰値は、低圧カット値よりも高い値である。上述の通り、圧力センサ6の検出値は、時間Tcから急峻に上昇する。時間Tdにおいて、圧力センサ6の検出値が低圧カット復帰値となる。これにより、制御装置7は、圧縮機1が準備状態であると判断する。
 圧縮機1が準備状態であると判断した後、制御装置7は、圧力センサ6の検出値に基づいて特定される圧力の上昇速度と閾値とを比較する。以下では、圧力センサ6の検出値に基づいて特定される圧力の上昇速度を単に、「上昇速度」と称する。具体的には、制御装置7は、上昇速度が規定の閾値V1未満となったとき、圧縮機1を起動する。
 準備状態となるための条件として、低圧カット復帰値を用いる方法以外の方法を用いてもよい。たとえば、制御装置7は、低圧カットしてから規定の期間が経過したことに基づいて、圧縮機1が準備状態となったことを判断する。
 図2において、時間Teにおける上昇速度は、速度Veとして示される。すなわち、速度Veは、図2に示される曲線の時間Teにおいての接線の傾きである。換言すれば、上昇速度は単位時間あたりの圧力センサ6の検出値の変化量である。速度Veは、閾値V1以上の速度である。したがって、制御装置7は、時間Teにおける速度Veが閾値V1未満ではないため、圧縮機1を起動しない。
 時間Teにおける速度Veが閾値V1以上の圧力であることから、時間Teにおいて、熱源側ユニット100へ急激に冷媒が流入している。したがって、時間Teにおいて、停止している圧縮機1を再度、起動した場合、気化していない多量の液冷媒が負荷側ユニット200から圧縮機1へと流入する可能性がある。
 停止状態から起動状態へと遷移中の圧縮機1に液冷媒が流入した場合、圧縮機1におけるフィードバック等の制御が追従しきれないため、圧縮機1を駆動する際に生じる抵抗が液冷媒中において増加し得る。これにより、圧縮機1は、正常に動作しない可能性がある。したがって、速度Veが閾値V1以上である時間Teにおいて、制御装置7は、圧縮機1を起動しないように制御する。
 続いて、時間Tfに着目する。時間Tcにおいて、電磁弁22が開放状態に切り換えた後、圧力センサ6の検出値は、負荷側ユニット200の温度に相当する圧力に収束する。すなわち、圧力センサ6の検出値の上昇速度は、徐々に低下する。図2に示されるように、速度Vfは、時間Tfにおける上昇速度を示す。速度Vfは、閾値V1未満の速度である。したがって、時間Tfにおいて、制御装置7は、速度Vfが閾値V1未満であるため、圧縮機1を起動する。
 ようするに、本実施の形態における冷凍サイクル装置10の制御装置7は、圧縮機1が準備状態となった後に、上昇速度に着目して、圧縮機1の起動の可否を決定する。これにより、制御装置7は、停止状態から起動状態へと遷移中の圧縮機1に冷媒回路が液冷媒を流入させることを防止する。すなわち、実施の形態1の冷凍サイクル装置10では、圧縮機1を起動する場合に、圧縮機1の吸入側から急激に冷媒が流入して圧縮機1の動作に不具合が生じることを防止できる。
 <圧縮機1を再起動する制御フロー>
 図3は、圧力センサ6の検出値に応じて圧縮機1を再起動するフローチャートである。以下では、図2にて説明した低圧カットにより圧縮機1が停止された後の圧縮機1を再起動する制御装置7の制御フローを示す。制御装置7は、低圧カットを実行する(ステップS11)。すなわち、負荷側ユニット200の電磁弁22が切り換えられ循環経路が閉塞状態になったことに起因して、制御装置7は、圧縮機1を停止する。
 続いて、制御装置7は、圧縮機1が準備状態であるか否かを判断する(ステップS12)。すなわち、制御装置7は、圧力センサ6の検出値が低圧カット復帰値であるかを判断する。圧力センサ6の検出値が低圧カット復帰値ではないため、圧縮機1が準備状態ではないと判断する場合(ステップS12でNO)、制御装置7は、処理をステップS12に留める。
 圧力センサ6の検出値が低圧カット復帰値となり、圧縮機1が準備状態であると判断した場合(ステップS12でYES)、制御装置7は、上昇速度が閾値V1未満であるか否かを判断する(ステップS13)。上昇速度が閾値V1未満である場合(ステップS13でYES)、制御装置7は、圧縮機1を起動し(ステップS14)、処理を終了する。すなわち、上昇速度が閾値V1未満である場合、圧縮機1の吸入側から急激に冷媒が流入しないため、圧縮機1を起動できる。
 上昇速度が閾値V1未満ではない場合(ステップS13でNO)、制御装置7は、圧縮機1に対して待機処理を実行する(ステップS15)。すなわち、制御装置7は、規定の期間、圧縮機1を待機させる。待機させる規定の期間は、短期間であることが望ましい。待機処理の終了後、制御装置7は、再び上昇速度と閾値とを比較する。
 制御装置7は、上昇速度が閾値V1未満であるか否かを判断する(ステップS16)。ステップS16で比較対象となる閾値は、ステップS13における閾値と異なる値であってもよい。たとえば、ステップS16で比較対象となる閾値は、閾値V1よりも低い閾値V2であってもよい。ステップS16では、圧縮機1は待機処理が実行されているため、ステップS16の上昇速度は、ステップS13の上昇速度と比較して低下していることが期待される。閾値V1および閾値V2の具体的な値は、実験に基づいて定められ得る。
 上昇速度が閾値V1未満でない場合(ステップS16でNO)、制御装置7は、処理をステップS15に戻す。これにより、制御装置7は、上昇速度が閾値V1未満となるまで、圧縮機1を待機させる。上昇速度が閾値V1未満である場合(ステップS16でYES)、制御装置7は、圧縮機1を起動し(ステップS14)、処理を終了する。
 このように、制御装置7は、圧縮機1が準備状態となった後に上昇速度と閾値とを比較する。これにより、冷凍サイクル装置10では、停止状態から起動状態に遷移中の圧縮機1に対して、吸入側から冷媒が急激に流入し、圧縮機1の動作に不具合が生じることを防止することができる。
 <実施の形態1における変形例>
 以下では、図3に示される圧縮機1を再起動する制御フローの変形例を示す。図3においては、制御装置7は、電磁弁22が循環経路を閉塞状態から開放状態に切り換えたとき、上昇速度が閾値V1未満である場合に圧縮機1を起動する例について説明した。
 実施の形態1における変形例において、制御装置7が、循環経路を閉塞状態から開放状態に電磁弁22により切り換えられてから、第1期間が経過するまでに上昇速度が第1閾値以下に低下しない場合、圧縮機1を起動する例を、図4を用いて説明する。図4は、圧力センサ6の検出値に応じて圧縮機1を再起動する変形例のフローチャートである。図4のフローチャートにおいて、図3のフローチャートと重複する構成の説明については繰り返さない。
 図4において、制御装置7は、ステップS16で上昇速度が閾値V1未満ではない場合、第1期間が経過したか否かを判断する(ステップS17)。第1期間は、図2の時間Tbまたは時間Tcを始期とする規定の期間である。制御装置7は、第1期間が経過していない場合(ステップS17でNO)、処理をステップS15に戻す。
 制御装置7は、第1期間が経過した場合(ステップS17でYES)、圧縮機1を起動し(ステップS14)、処理を終了する。これにより、圧力センサ6の故障などにより上昇速度が閾値V1未満とならず、圧縮機1を起動できないことを防止できる。
 実施の形態2.
 以下では、実施の形態2における冷凍サイクル装置10Aについて説明する。実施の形態1においては、制御装置7は、圧力センサ6が検出する検出値の上昇速度に基づいて、圧縮機1を起動する例について説明した。
 実施の形態2では、制御装置7が熱源側ユニット100に配置された電磁弁11を用いて、圧縮機1を起動する例を図5および図6を用いて説明する。図5は、実施の形態2における冷凍サイクル装置10Aの構成を示す図である。図6は、熱源側ユニット100に配置された電磁弁11を閉塞状態にした後に圧縮機1を再起動するフローチャートである。実施の形態2において、実施の形態1と重複する構成の説明については繰り返さない。
 図5に示されるように、実施の形態2における冷凍サイクル装置10Aが備える熱源側ユニット100は、電磁弁11を備える。電磁弁11は、第2熱交換器4と圧縮機1との間に配置される。熱源側ユニット100の電磁弁11は、循環経路を開放状態と閉塞状態とに切り換える。上述の通り、負荷側ユニット200の電磁弁22も、同様に循環経路を開放状態と閉塞状態とに切り換える。
 以下では、負荷側ユニット200の電磁弁22による循環経路の開放状態を「第1開放状態」と称し、負荷側ユニット200の電磁弁22による循環経路の閉塞状態を「第1閉塞状態」と称し、熱源側ユニット100の電磁弁11による循環経路の開放状態を「第2開放状態」と称し、熱源側ユニット100の電磁弁11による循環経路の閉塞状態を「第2閉塞状態」と称する。
 制御装置7は、熱源側ユニット100に配置される電磁弁11を制御できるように構成される。これにより、制御装置7は、圧力センサ6を用いずに電磁弁11を制御し、圧縮機1の起動時に液冷媒が流入することを防ぐことが可能となる。図6を参照して、実施の形態2における制御装置7の制御フローについて説明する。
 制御装置7は、低圧カットを実行する(ステップS21)。すなわち、循環経路が第1閉塞状態になったことに起因して、制御装置7は圧縮機1を停止する。
 続いて、制御装置7は、圧縮機1が準備状態であるか否かを判断する(ステップS22)。すなわち、制御装置7は、圧力センサ6の検出値が低圧カット復帰値に到達したかを判断する。圧力センサ6の検出値が低圧カット復帰値に到達しておらず、圧縮機1が準備状態ではない場合(ステップS22でNO)、制御装置7は、処理をステップS22に留める。
 圧力センサ6の検出値が低圧カット復帰値に到達し、圧縮機1が準備状態となった場合(ステップS22でYES)、制御装置7は、循環経路を第2閉塞状態に制御する(ステップS23)。その後、制御装置7は、圧縮機1を停止状態から起動状態に制御する(ステップS24)。ここで、圧縮機1を停止状態から起動状態に制御するが、電磁弁11によって循環経路が閉塞状態に切り換えられているため、液冷媒は圧縮機1の吸入側から急激に流入することがない。
 制御装置7は、圧縮機1を起動した後、第2期間が経過したか否かを判断する(ステップS25)。第2期間は、圧縮機1を起動したとき(ステップS24)を始期とする規定の期間である。制御装置7は、第2期間が経過していない場合(ステップS25でNO)、処理をステップS25に留める。第2期間が経過することによって、圧縮機1は、停止状態から起動状態への遷移中から、完全に起動状態へと移行する。
 制御装置7は、第2期間が経過したと判断する場合(ステップS25でYES)、第2開放状態に制御する(ステップS26)。すなわち、制御装置7は、電磁弁11を切り換えて循環経路を第2開放状態にする。これにより、圧縮機1には、停止状態から起動状態への遷移中の期間ではなく完全に起動状態に移行した後に、冷媒が流入される。
 これにより、冷凍サイクル装置10Aでは、図6に示す制御フローにより、停止状態から起動状態へと遷移中に圧縮機1に対して急激に液冷媒を流入させることを防止できる。このように、実施の形態2の冷凍サイクル装置10Aにおいても、電磁弁11を用いて、圧縮機1の吸入側から急激に冷媒が流入して圧縮機1の動作に不具合が生じることを防止できる。
 <実施の形態2における第1変形例>
 以下では、実施の形態2における制御装置7の制御フローの変形例を示す。図7では、制御装置7が電磁弁22および電磁弁11を用いて圧縮機1を起動する例について説明する。具体的には、制御装置7が、循環経路を閉塞状態から開放状態に電磁弁22により切り換えられたとき、圧力センサ6が検出する上昇速度が閾値V1未満でない場合に、電磁弁11で圧縮機1を起動した後、循環経路を第2閉塞状態から第2開放状態に切り換える。
 図7は、熱源側ユニットに配置された電磁弁を閉塞状態にした後に圧縮機を再起動する変形例のフローチャートである。図7のフローチャートのステップS31~S34は、図3のフローチャートのステップS11~S14とそれぞれ対応する。ようするに、図7に示すフローチャートと図3に示すフローチャートとを比較すれば、上昇速度が閾値V1未満ではないと制御装置7が判断した場合の処理が異なる。図3では、圧縮機待機処理を実行する(ステップS15)ことに対して、図7では、制御装置7は第2閉塞状態に制御する(ステップS35)。
 さらに、図7のフローチャートのステップS35~S38は、図6のフローチャートのステップS23~S26とそれぞれ対応する。すなわち、図7に示すフローチャートのステップS35以降では、制御装置7は、図6で説明したステップS23からの処理と同一の処理を実行する。
 このように、図7に示すように圧力センサ6と電磁弁11とを組み合わせることにより、制御装置7は、停止状態から起動状態へと遷移中に圧縮機1に対して急激に液冷媒を流入して圧縮機1の動作に不具合が生じることを防止できる。さらに、図7に示す制御フローでは、上昇速度が閾値V1以上であるときのみ第2閉塞状態に制御する。これにより、図7では、電磁弁開閉を低減させることができる。
 また、実施の形態2では、制御装置7が負荷側ユニット200と接続されていない構成について説明したが、制御装置7と負荷側ユニット200とは接続されている構成であっても図6または図7に示す制御フローを適用可能である。この場合、制御装置7は、負荷側ユニット200と接続されていることから、電磁弁22が切り換えられたか否かを直接的に判断することができる。
 そのため、制御装置7は、図6の準備状態であるかを判断する処理(ステップS22)を、第1開放状態に切り換えられたかを判断する処理に代えてもよい。同様に、制御装置7は、図7の準備状態であるかを判断する処理(ステップS32)を、第1開放状態に切り換えられたかを判断する処理に代えてもよい。
 換言すれば、制御装置7は、循環経路が第1閉塞状態から第1開放状態に切り換わったときに、電磁弁11を制御することにより循環経路を第2開放状態から第2閉塞状態に切り換えてもよい。これにより、準備状態であるか否かを判断することなく、制御装置7は、第2閉塞状態に切り換えることができる。
 (まとめ)
 以下に、本実施の形態を総括する。
 図1~図3に示すように、本開示における冷凍サイクル装置10は、圧縮機1と、第1熱交換器2と、第2熱交換器4と、膨張弁31と、圧縮機1、第1熱交換器2、膨張弁31、および第2熱交換器4の順に冷媒を循環させる循環経路と、圧縮機1を制御する制御装置7と、圧縮機1の吸入側に配置され、循環経路内の圧力を検出する圧力センサ6とを備える。減圧装置3は、循環経路を開放状態と閉塞状態とに切り換えることが可能に構成される。制御装置7は、減圧装置3が循環経路を閉塞状態から開放状態に切り換えたとき、圧力センサ6の検出値に基づいて特定される圧力の上昇速度が閾値V1未満である場合に圧縮機1を起動する。
 これにより、冷凍サイクル装置10では、圧縮機1を起動する場合に、圧縮機1の吸入側から急激に冷媒が流入することにより、圧縮機の動作に不具合が生じることを防止する。
 好ましくは、図2に示すように、減圧装置3は、第2熱交換器と熱交換する空気の温度が規定の第1温度未満になったときに循環経路を開放状態から閉塞状態に切り換え、第2熱交換器と熱交換する空気の温度が規定の第2温度以上になったときに循環経路を閉塞状態から開放状態に切り換える。これにより、低圧カットが行われた場合において、圧縮機1の吸入側から急激に冷媒が流入することにより、圧縮機1の動作に不具合が生じることを防止する。
 好ましくは、図3に示すように、減圧装置3が循環経路を閉塞状態から開放状態に切り換えたとき、上昇速度が閾値以上である場合、圧縮機を停止する。これにより、上昇速度が閾値以上である場合に、圧縮機1の吸入側から急激に冷媒を流入させることを防止できる。
 好ましくは、図4に示すように、制御装置7は、電磁弁22が循環経路を閉塞状態から開放状態に切り換えてから第1期間が経過するまでに上昇速度が閾値V1以下に低下しない場合、圧縮機1を起動する。これにより、圧力センサ6の故障などにより上昇速度が閾値V1未満とならず、圧縮機1を起動できないことを防止できる。
 好ましくは、図2に示すように、減圧装置3は、膨張弁31と、第1熱交換器2と膨張弁31との間に配置され、循環経路を開放状態と閉塞状態とに切り換える電磁弁22とを含む。
 図5または図6に示すように、本開示における冷凍サイクル装置10Aは、圧縮機1と、第1熱交換器2と、第2熱交換器4と、膨張弁31と、圧縮機1、第1熱交換器2、膨張弁31、および第2熱交換器4の順に冷媒を循環させる循環経路と、第1熱交換器2と膨張弁31との間に配置され、循環経路を第1開放状態と第1閉塞状態とに切り換える電磁弁22と、第2熱交換器4と圧縮機1との間に配置され、循環経路を第2開放状態と第2閉塞状態とに切り換える電磁弁11と、圧縮機1および電磁弁11を制御する制御装置7とを備える。制御装置7は、電磁弁22が循環経路を第1閉塞状態から第1開放状態に切り換えたとき、第2閉塞状態で圧縮機1を起動した後、循環経路を第2閉塞状態から第2開放状態に切り換える。
 これにより、冷凍サイクル装置10では、圧縮機1を起動する場合に、圧力センサ6を用いることなく、圧縮機1の吸入側から急激に冷媒が流入することにより、圧縮機の動作に不具合が生じることを防止する。
 好ましくは、図7に示すように、冷凍サイクル装置10Aは、圧縮機1の吸入側に配置され、循環経路内の圧力を検出する圧力センサ6をさらに備える。制御装置7は、電磁弁22が循環経路を閉塞状態から開放状態に切り換えたとき、圧力センサ6の検出値に基づいて特定される圧力の上昇速度が閾値未満でない場合に、第2閉塞状態で圧縮機1を起動した後、循環経路を第2閉塞状態から第2開放状態に切り換える。
 これにより、圧力センサ6と電磁弁11とを組み合わせて、電磁弁の開閉を低減させつつ、制御装置7は、停止状態から起動状態へと遷移中に圧縮機1に対して急激に液冷媒を流入して圧縮機1の動作に不具合が生じることを防止できる。
 好ましくは、制御装置7は、循環経路が第1閉塞状態から第1開放状態に切り換わったときに、電磁弁11を制御することにより循環経路を第2開放状態から第2閉塞状態に切り換える。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 圧縮機、2 凝縮器、3 減圧装置、4 蒸発器、6 圧力センサ、7 制御装置、8 ディスプレイ、10,10A 冷凍サイクル装置、11,22 電磁弁、20 液配管、21 ガス配管、25 温度検出器、31 膨張弁、100 熱源側ユニット、200 負荷側ユニット、D 方向、Ta,Tb,Tc,Td,Te,Tf 時間、V1,V2 閾値、Ve,Vf 速度。

Claims (10)

  1.  冷凍サイクル装置であって、
     圧縮機と、
     第1熱交換器と、
     第2熱交換器と、
     減圧装置と、
     前記圧縮機、前記第1熱交換器、前記減圧装置、および前記第2熱交換器の順に冷媒を循環させる循環経路と、
     前記圧縮機を制御する制御装置と、
     前記圧縮機の吸入側に配置され、前記循環経路内の圧力を検出する圧力センサとを備え、
     前記減圧装置は、前記循環経路を開放状態と閉塞状態とに切り換えることが可能に構成され、
     前記制御装置は、前記減圧装置が前記循環経路を前記閉塞状態から前記開放状態に切り換えたとき、前記圧力センサの検出値に基づいて特定される圧力の上昇速度が閾値未満である場合に前記圧縮機を起動する、冷凍サイクル装置。
  2.  前記減圧装置は、
      前記第2熱交換器と熱交換する空気の温度が規定の第1温度未満になったときに前記循環経路を前記開放状態から前記閉塞状態に切り換え、
      前記第2熱交換器と熱交換する空気の温度が規定の第2温度以上になったときに前記循環経路を前記閉塞状態から前記開放状態に切り換える、請求項1に記載の冷凍サイクル装置。
  3.  前記制御装置は、前記減圧装置が前記循環経路を前記閉塞状態から前記開放状態に切り換えたとき、前記上昇速度が前記閾値以上である場合、前記圧縮機を停止する、請求項1または請求項2に記載の冷凍サイクル装置。
  4.  前記制御装置は、前記減圧装置が前記循環経路を前記閉塞状態から前記開放状態に切り換えてから第1期間が経過するまでに前記上昇速度が前記閾値以下に低下しない場合、前記圧縮機を起動する、請求項1~請求項3のいずれか1項に記載の冷凍サイクル装置。
  5.  前記減圧装置は、膨張弁と、前記第1熱交換器と前記膨張弁との間に配置され、前記循環経路を前記開放状態と前記閉塞状態とに切り換える第1切換装置とを含む、請求項1~請求項4のいずれか1項に記載の冷凍サイクル装置。
  6.  冷凍サイクル装置であって、
     圧縮機と、
     第1熱交換器と、
     第2熱交換器と、
     減圧装置と、
     前記圧縮機、前記第1熱交換器、前記減圧装置、および前記第2熱交換器の順に冷媒を循環させる循環経路と、
     前記第2熱交換器と前記圧縮機との間に配置され、前記循環経路を第2開放状態と第2閉塞状態とに切り換える第2切換装置と、
     前記圧縮機および前記第2切換装置を制御する制御装置とを備え、
     前記減圧装置は、前記循環経路を第1開放状態と第1閉塞状態とに切り換えることが可能に構成され、
     前記制御装置は、前記減圧装置が前記循環経路を前記第1閉塞状態から前記第1開放状態に切り換えたとき、前記第2閉塞状態で前記圧縮機を起動した後、前記循環経路を前記第2閉塞状態から前記第2開放状態に切り換える、冷凍サイクル装置。
  7.  前記圧縮機の吸入側に配置され、前記循環経路内の圧力を検出する圧力センサをさらに備え、
     前記制御装置は、前記減圧装置が前記循環経路を前記第1閉塞状態から前記第1開放状態に切り換えたとき、前記圧力センサの検出値に基づいて特定される圧力の上昇速度が閾値未満でない場合に、前記第2閉塞状態で前記圧縮機を起動した後、前記循環経路を前記第2閉塞状態から前記第2開放状態に切り換える、請求項6に記載の冷凍サイクル装置。
  8.  前記制御装置は、前記循環経路が前記第1閉塞状態から前記第1開放状態に切り換わったときに、前記第2切換装置を制御することにより前記循環経路を前記第2開放状態から前記第2閉塞状態に切り換える、請求項6または請求項7に記載の冷凍サイクル装置。
  9.  前記減圧装置は、
      前記第2熱交換器と熱交換する空気の温度が規定の第1温度未満になったときに前記循環経路を前記第1開放状態から前記第1閉塞状態に切り換え、
      前記第2熱交換器と熱交換する空気の温度が規定の第2温度以上になったときに前記循環経路を前記第1閉塞状態から前記第1開放状態に切り換える、請求項6~請求項8のいずれか1項に記載の冷凍サイクル装置。
  10.  前記減圧装置は、膨張弁と、前記第1熱交換器と前記膨張弁との間に配置され、前記循環経路を前記第1開放状態と前記第1閉塞状態とに切り換える第1切換装置とを含む、請求項6~請求項9のいずれか1項に記載の冷凍サイクル装置。
PCT/JP2021/010342 2021-03-15 2021-03-15 冷凍サイクル装置 WO2022195663A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023506388A JP7387057B2 (ja) 2021-03-15 2021-03-15 冷凍サイクル装置
PCT/JP2021/010342 WO2022195663A1 (ja) 2021-03-15 2021-03-15 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010342 WO2022195663A1 (ja) 2021-03-15 2021-03-15 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2022195663A1 true WO2022195663A1 (ja) 2022-09-22

Family

ID=83320051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010342 WO2022195663A1 (ja) 2021-03-15 2021-03-15 冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JP7387057B2 (ja)
WO (1) WO2022195663A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190507A (ja) * 1993-12-27 1995-07-28 Kobe Steel Ltd ヒートポンプ
JPH11182950A (ja) * 1997-12-19 1999-07-06 Daikin Ind Ltd 冷凍装置
JPH11281222A (ja) * 1998-03-31 1999-10-15 Nippon Kentetsu Co Ltd オープンショーケースの冷媒循環量制御装置
JP2005030679A (ja) * 2003-07-14 2005-02-03 Mitsubishi Electric Corp 冷凍空調装置及び冷凍空調装置の制御方法
JP2005233463A (ja) * 2004-02-18 2005-09-02 Hitachi Ltd 冷凍空調装置
JP2009222272A (ja) * 2008-03-14 2009-10-01 Mitsubishi Electric Corp 冷凍装置
JP2015175575A (ja) * 2014-03-18 2015-10-05 日立アプライアンス株式会社 冷凍装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5312419B2 (ja) 2003-11-28 2013-10-09 京セラ株式会社 燃料電池
WO2019210728A1 (en) 2018-05-04 2019-11-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Mobile terminal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190507A (ja) * 1993-12-27 1995-07-28 Kobe Steel Ltd ヒートポンプ
JPH11182950A (ja) * 1997-12-19 1999-07-06 Daikin Ind Ltd 冷凍装置
JPH11281222A (ja) * 1998-03-31 1999-10-15 Nippon Kentetsu Co Ltd オープンショーケースの冷媒循環量制御装置
JP2005030679A (ja) * 2003-07-14 2005-02-03 Mitsubishi Electric Corp 冷凍空調装置及び冷凍空調装置の制御方法
JP2005233463A (ja) * 2004-02-18 2005-09-02 Hitachi Ltd 冷凍空調装置
JP2009222272A (ja) * 2008-03-14 2009-10-01 Mitsubishi Electric Corp 冷凍装置
JP2015175575A (ja) * 2014-03-18 2015-10-05 日立アプライアンス株式会社 冷凍装置

Also Published As

Publication number Publication date
JP7387057B2 (ja) 2023-11-27
JPWO2022195663A1 (ja) 2022-09-22

Similar Documents

Publication Publication Date Title
US11231199B2 (en) Air-conditioning apparatus with leak detection control
JP5575192B2 (ja) 二元冷凍装置
JP5784121B2 (ja) 冷凍サイクル装置
JP5641875B2 (ja) 冷凍装置
JP2014031981A (ja) 二元冷凍装置
EP2317250A1 (en) Refrigeration device
JPWO2018211556A1 (ja) 冷凍サイクル装置
JP2015064169A (ja) 温水生成装置
JPH0849930A (ja) 熱ポンプ装置
JPH04251158A (ja) 冷凍装置の運転制御装置
EP3228954A2 (en) Cooling apparatus
WO2022195663A1 (ja) 冷凍サイクル装置
JP6707195B2 (ja) 冷凍サイクル装置
JP2013155992A (ja) ヒートポンプサイクル装置
JPH08327193A (ja) 空気調和機
KR101769821B1 (ko) 공기조화기 및 그 제어방법
JP4063041B2 (ja) 多室形空気調和機の制御方法
JP2018173195A (ja) 冷凍装置
JP6704513B2 (ja) 冷凍サイクル装置
JP3416897B2 (ja) 空気調和機
JP2011226724A (ja) 冷凍サイクル装置及びその起動制御方法
JP7331021B2 (ja) 冷凍サイクル装置
JP2019138486A (ja) 冷媒回路システム及びデフロスト運転の制御方法
WO2022249437A1 (ja) ヒートポンプ装置および給湯装置
KR101518053B1 (ko) 멀티형 공기조화기의 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931419

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023506388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931419

Country of ref document: EP

Kind code of ref document: A1