WO2022193783A1 - 一种锂离子电池废极片安全回收的方法及其应用 - Google Patents

一种锂离子电池废极片安全回收的方法及其应用 Download PDF

Info

Publication number
WO2022193783A1
WO2022193783A1 PCT/CN2021/142799 CN2021142799W WO2022193783A1 WO 2022193783 A1 WO2022193783 A1 WO 2022193783A1 CN 2021142799 W CN2021142799 W CN 2021142799W WO 2022193783 A1 WO2022193783 A1 WO 2022193783A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum slag
aluminum
positive electrode
slag
aluminium slag
Prior art date
Application number
PCT/CN2021/142799
Other languages
English (en)
French (fr)
Inventor
谢英豪
余海军
李长东
刘述敏
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to ES202390067A priority Critical patent/ES2954792R1/es
Priority to HU2200281A priority patent/HUP2200281A1/hu
Priority to DE112021005681.6T priority patent/DE112021005681T5/de
Publication of WO2022193783A1 publication Critical patent/WO2022193783A1/zh
Priority to US18/212,178 priority patent/US20230335816A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the technical field of battery recycling, and in particular relates to a method for safely recycling lithium ion battery waste pole pieces and its application.
  • Waste pole pieces In the production process of lithium-ion batteries, a certain amount of waste pole pieces will be produced in the pole piece production process. In the case of large-scale production of lithium-ion batteries, a large number of waste electrodes are produced. Waste pole pieces contain a large amount of metal elements such as nickel, cobalt, manganese, and lithium. If not recycled, it will cause pollution to the environment.
  • the traditional recycling of waste pole pieces is to crush the pole pieces, and then sort out aluminum slag and battery powder. Since there will be residual acid and moisture after the aluminum slag is washed, the sorted aluminum slag will react with the residual acid and water, release hydrogen and generate heat, and the aluminum slag has the risk of combustion and explosion when stored. At the same time, the battery powder obtained by sorting has residual metal aluminum. In the next step of acid leaching, the residual metal aluminum will react with acid to release hydrogen, which makes the acid leaching process have the risk of combustion and explosion, and the traditional production process has obvious limitations.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art.
  • the present invention proposes a method for the safe recovery of lithium ion battery waste pole pieces and its application.
  • the method is washed with saturated calcium hydroxide solution, and the residual acid is reacted with the saturated calcium hydroxide solution to neutralize the residues in the production process of aluminum slag. Avoid the reaction of aluminum slag with residual acid, release hydrogen and generate heat, and ensure the safety of storage process.
  • the present invention adopts the following technical solutions:
  • a method for safely recycling lithium-ion battery waste pole pieces comprising the following steps:
  • step (3) the aluminum slag obtained in step (2) is first washed with water, rinsed with an anti-explosion agent, and centrifuged to obtain an anti-explosion aluminum slag, which is then packed and compressed to obtain an aluminum slag block;
  • step (3) the explosion suppressor is Saturated calcium hydroxide solution.
  • step (2) it also includes filtering the battery powder, taking the filter residue, and washing to obtain the positive electrode powder B; carefully mixing the positive electrode powder A and the positive electrode powder B, and then adding a solution for dissolving aluminum to soak, stir, filter , take the filter residue and wash it to get the positive electrode powder.
  • the solution for dissolving aluminum is at least one of sodium hydroxide, potassium hydroxide or calcium hydroxide solution.
  • the residual metal aluminum and battery powder directly enter the acid leaching process.
  • the acid leaching process uses high concentration of strong acid and heating conditions. Leaching is carried out, and at this time, the residual metal aluminum will react rapidly with the leaching solution (high-concentration strong acid), which will cause a large amount of hydrogen to quickly accumulate in the leaching tank, and reach an explosive concentration, which makes the leaching tank have a safety risk of explosion.
  • the molten aluminum solution dissolves the residual metal aluminum in the battery powder to prevent the battery powder from releasing hydrogen during the leaching process, preventing fire or explosion.
  • the present invention adds alkali-soluble aluminum to release hydrogen relative to conventional leaching process dissolving aluminum, but, the present invention adds alkali-soluble aluminum, the slow dissolution of aluminum can be controlled by reducing the concentration of the molten aluminum solution, the reaction temperature and other conditions, and then the hydrogen It is released slowly, so that the hydrogen has enough escape time and escape space, so that the hydrogen does not reach the explosive concentration, and the intrinsic safety of the process is realized.
  • the volume concentration of the solution for dissolving aluminum is 0.003-2 mol/L.
  • the temperature of the aluminum-dissolving solution is 15-45°C.
  • the aperture of the screen in the sieving is 0.1-0.5 mm.
  • the acid solution is one of sulfuric acid, hydrochloric acid or nitric acid.
  • the purpose of pickling is to use acid to corrode the surface of metal aluminum slightly. Since the battery powder is attached to the surface of the aluminum foil, after adding acid to corrode slightly, the battery powder falls off the surface of the aluminum foil to achieve separation.
  • the solid-to-liquid ratio of the crushed aluminum slag to the acid solution is 1: (0.3-5) kg/L.
  • the concentration of the acid solution is 0.1-2 mol/L.
  • the stirring speed is 60-1000 r/min.
  • the mixing time is 0.5-60 min.
  • the reaction time is 10-30min.
  • the reaction process releases hydrogen and generates heat at the same time.
  • the treated aluminum slag will be packaged and stored in ton bags. Therefore, during the process of packaging and storage, hydrogen will be released and heat will be stored, which may cause hydrogen to be ignited or even exploded.
  • the washing with water is 0.5-5 min
  • the washing with detonation inhibitor is 0.5-5 min.
  • the pressure of the packing and compression is 5-30 MPa.
  • the positive plate or the negative plate is a hollow circulating liquid-cooled metal plate; the metal is one of copper, silver, gold, gold-plated copper or silver-plated copper.
  • the current is 80-500A, and the testing time is 0.5-5s.
  • the composition of the aluminum slag block is metal aluminum, and the form is a metal block formed by sifting aluminum slag (aluminum foil with a particle size larger than 0.1-0.5mm) and then being melted by a strong current at a high temperature.
  • the present invention makes residual acid react with saturated calcium hydroxide solution by washing with saturated calcium hydroxide solution, neutralizes the residual acid in the production process of aluminum slag, avoids the reaction between aluminum slag and residual acid, avoids the release of hydrogen and heat generation, and ensures storage process safety.
  • the leaching process is leaching with strong acid, such as sulfuric acid, hydrochloric acid, etc. If the battery powder contains metallic aluminum, the leaching process may cause the metallic aluminum to react with a strong acid to generate hydrogen, which may pose a risk of fire and explosion.
  • the battery powder recovered by the present invention is added into the molten aluminum solution to selectively dissolve and separate a small amount of metal aluminum that may be brought in the battery powder due to crushing and sorting, while avoiding the dissolution of other valuable metal elements such as nickel, cobalt, manganese, and lithium.
  • it can also ensure that valuable metals such as nickel, cobalt, manganese, and lithium have a high recovery rate.
  • the present invention packs and compresses the aluminum slag into blocks, which greatly compresses the space between the aluminum slag, reduces the specific surface area of the aluminum slag, reduces the reaction rate of the aluminum slag and the residual alkali or with water, and effectively reduces the release of hydrogen.
  • the aluminum slag is intrinsically safe.
  • the aluminum slag block is composed of a large number of aluminum slag flakes.
  • the aluminum slag flakes are compressed into aluminum slag blocks, there is a large contact resistance between the aluminum slag flakes and the aluminum slag flakes.
  • the position between the slag flakes and the aluminum slag flakes emits a lot of heat, and the position between the aluminum slag flakes and the aluminum slag flakes is heated to melt, and the small-sized aluminum slag heats up quickly.
  • the aluminum slag flakes inside the aluminum slag block form a state of mutual adhesion, so that the small-sized aluminum slag and the aluminum slag flakes are integrated, and the aluminum slag flakes are integrated with the aluminum slag flakes, which expands the particle size of the aluminum slag and increases the aluminum slag.
  • the activation energy of combustion can avoid spontaneous combustion of aluminum slag storage.
  • the present invention uses hollow liquid-cooled metal plates as the positive and negative plates.
  • the temperature of the electrode plates can be effectively maintained and the temperature of the aluminum slag can be cooled.
  • the slag blocks stick together; 2. Avoid the high temperature of the outer surface of the aluminum slag blocks and the reaction with oxygen in the air to cause the aluminum slag blocks to catch fire.
  • step (3) the aluminum slag obtained in step (3) was rinsed with water for 0.5min, washed with saturated calcium hydroxide solution for 0.5min, and dried with a centrifuge to obtain explosion-suppressed aluminum slag;
  • step (3) the aluminum slag obtained in step (3) was washed with water for 1 min, washed with saturated calcium hydroxide solution for 1 min, and dried with a centrifuge to obtain explosion-suppressed aluminum slag;
  • Type aluminum slag block Take the two ends of the aluminum slag block and connect two DC electrode plates (hollow liquid-cooled silver plates) respectively, which are the positive plate and the negative plate, and apply a current of 200A between the positive and negative plates for 2s. After cooling, the safety is obtained.
  • Type aluminum slag block Take the two ends of the aluminum slag block and connect two DC electrode plates (hollow liquid-cooled silver plates) respectively, which are the positive plate and the negative plate, and apply a current of 200A between the positive and negative plates for 2s. After cooling, the safety is obtained.
  • Type aluminum slag block Take the two ends of the aluminum slag block and connect two DC electrode plates (hollow liquid-cooled silver plates) respectively, which are the positive plate and the negative plate, and apply a current of 200A between the positive and negative plates for 2s. After cooling, the safety is obtained.
  • Type aluminum slag block Take the two ends of the aluminum slag block and connect two DC electrode plates (hollow liquid-cooled silver plates) respectively, which are the positive
  • step (3) the aluminum slag obtained in step (3) was rinsed with water for 5min, washed with saturated calcium hydroxide solution for 5min, and dried with a centrifuge to obtain explosion-suppressed aluminum slag;
  • the method for the safe recovery of the lithium-ion battery waste pole pieces of this comparative example includes the following specific steps:
  • the aperture is a 0.5mm sieve, and the material under the sieve is positive electrode powder;
  • the method for the safe recovery of the lithium-ion battery waste pole pieces of this comparative example includes the following specific steps:
  • step (3) the aluminum slag obtained in step (3) was washed with water for 0.5min, washed with saturated sodium hydroxide solution for 0.5min, and dried with a centrifuge to obtain explosion-suppressed aluminum slag;
  • the method for the safe recovery of the lithium-ion battery waste pole pieces of this comparative example includes the following specific steps:
  • step (3) the aluminum slag obtained in step (3) was rinsed with water for 0.5min, washed with saturated calcium hydroxide solution for 0.5min, and dried with a centrifuge to obtain explosion-suppressed aluminum slag;
  • Example 1-3 Two ends of the aluminum slag block were connected to two DC electrode plates (hollow liquid-cooled metal plates) respectively, and electric current was passed through, and after cooling, a safe aluminum slag block was obtained.
  • Comparative Example 3 the two ends of the aluminum slag block were connected to two solid metal copper electrode plates respectively, and an electric current was applied, and after cooling, the aluminum slag block was obtained. The temperature of the surface of the aluminum slag was measured and the adhesion of the electrode plate to the aluminum slag block was observed. The results are shown in Table 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)
  • Processing Of Solid Wastes (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供了一种锂离子电池废极片安全回收的方法及其应用,属于电池回收的技术领域。方法包括以下步骤:将废旧正极片破碎,过筛,得到正极粉A和破碎铝渣;将破碎铝渣和酸液混合,边搅拌边超声,再进行湿法筛分,得到铝渣和电池粉;将得到的铝渣先用水洗涤,再用抑爆剂冲洗,离心,得到抑爆铝渣,再进行打包压缩,得到铝渣块;将铝渣块两端分别连接直流电极的正极板和负极板,施加电流熔融铝渣,冷却后,得到安全型铝渣块。通过饱和氢氧化钙溶液水洗,使残酸与饱和氢氧化钙溶液反应,中和铝渣生产过程残余的酸,避免铝渣与残酸反应,避免释放氢气和产热,保证储存过程的安全。

Description

一种锂离子电池废极片安全回收的方法及其应用 技术领域
本发明属于电池回收的技术领域,具体涉及一种锂离子电池废极片安全回收的方法及其应用。
背景技术
在锂离子电池生产制造过程中,在极片生产环节,会产生一定量的废极片。在锂离子电池大规模生产制造的情况下,会产生大量的废极片。废极片中含有大量镍、钴、锰、锂等金属元素,如果不进行回收处理,则会对环境造成污染。
传统的废极片回收处理是将极片破碎后,分选出铝渣和电池粉,铝渣会采用酸洗涤,二次分选金属铝。由于铝渣洗涤后会残余有酸和水分,分选出来的铝渣会与残余的酸和水反应,释放出氢气并发热,铝渣存放时具有燃烧和爆炸风险。同时,分选得到的电池粉残余有金属铝,在下一步的酸浸环节,残余的金属铝会与酸反应释放氢气,使酸浸环节具有燃烧、爆炸的风险,传统生产工艺局限性明显。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种锂离子电池废极片安全回收的方法及其应用,该方法通过饱和氢氧化钙溶液水洗,使残酸与饱和氢氧化钙溶液反应,中和铝渣生产过程残余的酸,避免铝渣与残酸反应,释放氢气和产热,保证储存过程的安全。
为实现上述目的,本发明采用以下技术方案:
一种锂离子电池废极片安全回收的方法,包括以下步骤:
(1)将废旧正极片破碎,过筛,得到正极粉A和破碎铝渣;
(2)将所述破碎铝渣和酸液混合,边搅拌边超声,再进行湿法筛分,得到铝渣和电池粉;
(3)在步骤(2)得到的铝渣先用水洗涤,再用抑爆剂冲洗,离心,得到抑爆铝渣,再进行打包压缩,得到铝渣块;
(4)将所述铝渣块两端分别连接直流电极的正极板和负极板,施加电流熔融铝渣,冷却后,得到安全型铝渣块;步骤(3)中,所述抑爆剂为饱和氢氧化钙溶液。
优选地,步骤(2)中,还包括对电池粉进行过滤,取滤渣,洗涤,即得正极粉B;仔将正极粉A和正极粉B混合,再加入溶解铝的溶液浸泡,搅拌,过滤,取滤渣,洗涤,即得正极粉。
更优选地,所述溶解铝的溶液为氢氧化钠、氢氧化钾或氢氧化钙溶液中的至少一种。
传统的不除残铝的工艺,残余的金属铝与电池粉直接进入酸浸环节,实际生产中为了使电池粉具有较好的溶解效果,酸浸环节是采用高浓度强酸,以及加热的条件下进行浸出,而此时残余金属铝会与浸出液(高浓度强酸)快速反应,会使得浸出罐中快速聚集大量的氢气,而达到爆炸浓度,使浸出罐具有爆炸的安全风险。
溶铝液是把电池粉中残余的金属铝溶解出来,避免电池粉在浸出环节释放氢气,避免起火或者爆炸。虽然,本发明加碱溶铝相对于常规的浸出工序溶铝都会释放氢气,但是,本发明加碱溶铝,可以通过降低溶铝液的浓度、反应温度等条件控制铝缓慢溶解,进而使氢气缓慢释放,使氢气有足够的逸散时间和逸散空间,不至于使氢气达到爆炸浓度,实现工艺的本质安全。
更优选地,所述溶解铝的溶液的体积浓度为0.003-2mol/L。
更优选地,所述溶解铝的溶液的温度为15-45℃。
优选地,步骤(1)中,所述过筛中的筛网孔径为0.1-0.5mm。
优选地,步骤(2)中,所述酸液为硫酸、盐酸或硝酸中的一种。
酸洗目的是用酸把金属铝表面微腐蚀,由于电池粉是附着于铝箔表面,加酸微腐蚀以后,电池粉从铝箔表面脱落,实现分离。反应过程是:2Al+6H +=2Al 3++3H 2↑。
优选地,步骤(2)中,所述破碎铝渣与酸液的固液比为1:(0.3-5)kg/L。
优选地,步骤(2)中,所述酸液的浓度为0.1-2mol/L。
优选地,步骤(2)中,所述搅拌的速度为60-1000r/min。
优选地,步骤(2)中,所述混合的时间为0.5-60min。
优选地,步骤(2)中,所述反应的时间为10-30min。
加饱和氢氧化钙溶液目的是:由于对铝渣进行酸洗(甚至酸洗后再水洗)后,铝渣表面会有残留的酸(如果酸洗后再水洗,只能把残酸浓度降低,并不能彻底把残酸去除), 残留的酸会继续和铝渣反应,反应式为:2Al+6H +=2Al 3++3H 2↑。反应过程释放氢气并同时发热,处理后的铝渣会用吨袋包装贮存,因此,包装贮存的过程中就会有氢气释放和热量存储,就很可能会导致氢气被引燃甚至爆炸。
通过饱和氢氧化钙溶液水洗(或者叫饱和氢氧化钙溶液冲洗),使铝渣残余的酸与饱和氢氧化钙溶液反应,反应式OH -+H +=H 2O,中和铝渣生产过程残余的酸,避免铝渣与残酸反应,避免释放氢气和产热,避免燃烧和爆炸,保证储存过程的安全。
饱和氢氧化钙溶液冲洗后,铝渣表面会残余碱液,由于饱和氢氧化钙溶液可以与空气中二氧化碳反应,消耗残余的碱,并同时形成碳酸钙。生成的碳酸钙会包覆在铝渣表面,阻止铝渣和水的进一步反应2Al+6H 2O=2Al(OH) 3+3H 2
优选地,步骤(3)中,所述用水冲洗为0.5-5min,用抑爆剂冲洗的时间为0.5-5min。
优选地,步骤(3)中,所述打包压缩的压力为5-30MPa。
优选地,步骤(4)中,所述正极板或负极板为中空循环液冷金属板;所述金属为铜、银、金、铜镀金或铜镀银中的一种。
优选地,步骤(4)中,所述电流为80-500A,所述测试的时间为0.5-5s。
铝渣块的成分是金属铝,形态是经过过筛的铝渣(粒径大于0.1-0.5mm的铝箔片)被压缩后,再被强电流高温熔融形成的金属块状物。
相对于现有技术,本发明的有益效果如下:
1、本发明通过饱和氢氧化钙溶液水洗,使残酸与饱和氢氧化钙溶液反应,中和铝渣生产过程残余的酸,避免铝渣与残酸反应,避免释放氢气和产热,保证储存过程的安全。
2、利用氢氧化钙溶解度低的特点,控制水洗液碱度,避免残碱大量过量。碱洗后,残余的少量碱液可以和空气中二氧化碳反应,生成碳酸钙。碳酸钙不溶于水,会包裹在铝渣颗粒表面,阻止残酸/残碱和铝渣持续反应释放氢气和产热。生成的碳酸钙粒径微小,可以有效降低铝粉的引燃概率,具有很强的抑爆作用,可有效抑制铝渣的爆炸。消除铝渣因堆放可能发生起火或爆炸的可能性,使生产的铝渣具有本质安全的性质。
3、由于电池粉回收后会进入浸出工序,浸出工序是采用强酸浸出,如硫酸、盐酸等。如果电池粉中含有金属铝,则在浸出过程可能会导致金属铝与强酸反应,产生氢气,可能有起火和爆炸的风险。本发明回收得到的电池粉加入溶铝液将电池粉中因破碎分选 可能带入的少量的金属铝选择性溶解分离,同时避免其他镍钴锰锂等有价金属元素的溶解,该发明在消除电池粉安全隐患的前提下,也能保证镍钴锰锂等有价金属具有很高的回收率。
4、本发明将铝渣打包压缩成块,极大地压缩了铝渣之间的空隙,减少了铝渣的比表面积,降低铝渣与残碱或者与水的反应速率,有效减少氢气的释放,使铝渣达到本质安全。
5、本发明将铝渣压缩成块后,施加强电流,使铝渣熔融为一体。这是由于铝渣块内部是由大量铝渣片构成,铝渣片被压缩成为铝渣块时,铝渣片与铝渣片之间接触存在较大的接触电阻,当电流通过时,在铝渣片与铝渣片之间的位置放出大量热量,铝渣片与铝渣片之间的位置被加热至熔融,小粒径的铝渣升温速度快。铝渣块内部的铝渣片形成相互粘连的状态,使小粒径铝渣与铝渣片融为一体,铝渣片与铝渣片融为一体,扩大铝渣的粒径尺寸,增加铝渣燃烧的活化能,避免铝渣储存发生自燃。
6、本发明采用中空液冷金属板作为正极板和负极板,在电流通过电极板时,有效保持电极板的温度,冷却铝渣的温度,可以:1.避免电极板发热导致电极板与铝渣块发生粘连;2.避免铝渣块外表面温度过高与空气中氧气反应导致铝渣块着火。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例的锂离子电池废极片安全回收的方法,包括以下具体步骤:
(1)将废旧正极片破碎,过筛,得到正极粉A和破碎铝渣;
(2)将破碎铝渣与0.1mol/L的硫酸按固液比为1:5kg/L混合,边搅拌边超声,搅拌速度为500r/min,混合时间为60min,得到酸洗后的破碎铝渣;
(3)采用湿法筛分对酸洗后的破碎铝渣进行筛分,将筛上物从酸液中取出,其主要为铝渣,筛下物主要为电池粉,对筛下物过滤,取滤渣,用水对滤渣冲洗,得到正极粉B;
(4)将正极粉A和正极粉B混合,按固液比为1:0.5kg/L加入0.003mol/L的氢氧化钙溶液,浸泡120min,过滤,取滤渣,用水冲洗滤渣,得到安全型正极粉;
(5)在步骤(3)得到的铝渣用水冲洗0.5min,用饱和氢氧化钙溶液冲洗0.5min,用离心机甩干,得到抑爆铝渣;
(6)将抑爆铝渣放入到金属打包机中,以压力为5MPa进行打包压缩,得到铝渣块;
(7)将铝渣块取两端分别连接两片直流电极板(中空液冷铜板),分别为正极板和负极板,在正负极板之间施加80A电流5s,冷却后,得到安全型铝渣块。
实施例2
本实施例的锂离子电池废极片安全回收的方法,包括以下具体步骤:
(1)将废旧正极片破碎,过孔径为0.3mm的筛网,得到正极粉A和破碎铝渣;
(2)将破碎铝渣与1mol/L的硫酸按固液比为1:1kg/L混合,边搅拌边超声,搅拌速度为500r/min,混合时间为5min,得到酸洗后的破碎铝渣;
(3)采用湿法筛分对酸洗后的破碎铝渣进行筛分,将筛上物从酸液中取出,其主要为铝渣,筛下物主要为电池粉,对筛下物过滤,取滤渣,用水对滤渣冲洗,得到正极粉B;
(4)将正极粉A和正极粉B混合,按固液比为1:0.5kg/L加入0.5mol/L的氢氧化钠溶液,浸泡30min,过滤,取滤渣,用水冲洗滤渣,得到安全型正极粉;
(5)在步骤(3)得到的铝渣用水冲洗1min,用饱和氢氧化钙溶液冲洗1min,用离心机甩干,得到抑爆铝渣;
(6)将抑爆铝渣放入到金属打包机中,以压力为10MPa进行打包压缩,得到铝渣块;
(7)将铝渣块取两端分别连接两片直流电极板(中空液冷银板),分别为正极板和负极板,在正负极板之间施加200A电流2s,冷却后,得到安全型铝渣块。
实施例3
本实施例的锂离子电池废极片安全回收的方法,包括以下具体步骤:
(1)将废旧正极片破碎,过筛,得到正极粉A和破碎铝渣;
(2)将破碎铝渣与2mol/L的硫酸按固液比为1:0.3kg/L混合,边搅拌边超声,搅拌速度为500r/min,混合时间为60min,得到酸洗后的破碎铝渣;
(3)采用湿法筛分对酸洗后的破碎铝渣进行筛分,将筛上物从酸液中取出,其主要为铝渣,筛下物主要为电池粉,对筛下物过滤,取滤渣,用水对滤渣冲洗,得到正极粉B;
(4)将正极粉A和正极粉B混合,按固液比为1:2kg/L加入2mol/L的氢氧化钾溶液,浸泡1min,过滤,取滤渣,用水冲洗滤渣,得到安全型正极粉;
(5)在步骤(3)得到的铝渣用水冲洗5min,用饱和氢氧化钙溶液冲洗5min,用离心机甩干,得到抑爆铝渣;
(6)将抑爆铝渣放入到金属打包机中,以压力为30MPa进行打包压缩,得到铝渣块;
(7)将铝渣块取两端分别连接两片直流电极板(中空液冷金板),分别为正极板和负极板,在正负极板之间施加500A电流0.5s,冷却后,得到安全型铝渣块。
对比例1
本对比例的锂离子电池废极片安全回收的方法,包括以下具体步骤:
(1)将废锂离子电池正极片破碎后孔径为0.5mm筛网,筛下物为正极粉;
(2)筛上物按固液比1:1kg/L加入1mol/L的硫酸混合1min,过滤,用水冲洗后晾干,得到本对比例的铝渣。
对比例2
本对比例的锂离子电池废极片安全回收的方法,包括以下具体步骤:
(1)将废旧正极片破碎,过筛,得到正极粉A和破碎铝渣;
(2)将破碎铝渣与0.1mol/L的硫酸按固液比为1:5kg/L混合,边搅拌边超声,搅拌速度为500r/min,混合时间为60min,得到酸洗后的破碎铝渣;
(3)采用湿法筛分对酸洗后的破碎铝渣进行筛分,将筛上物从酸液中取出,其主要为铝渣,筛下物主要为电池粉,对筛下物过滤,取滤渣,用水对滤渣冲洗,得到正极粉B;
(4)将正极粉A和正极粉B混合,按固液比为1:0.5kg/L加入0.003mol/L的氢氧化钙溶液,浸泡120min,过滤,取滤渣,用水冲洗滤渣,得到安全型正极粉;
(5)在步骤(3)得到的铝渣用水冲洗0.5min,用饱和氢氧化钠溶液冲洗0.5min,用离心机甩干,得到抑爆铝渣;
(6)将抑爆铝渣放入到金属打包机中,以5MPa进行打包压缩,得到铝渣块;
(7)将铝渣块取两端分别连接两片直流电极板(中空液冷铜板),分别为正极板和负极板,在正负极板之间施加80A电流5s,冷却后,得到对比例2的铝渣块。
对比例3
本对比例的锂离子电池废极片安全回收的方法,包括以下具体步骤:
(1)将废旧正极片破碎,过筛,得到正极粉A和破碎铝渣;
(2)将破碎铝渣与0.1mol/L的硫酸按固液比为1:5kg/L混合,边搅拌边超声,搅拌速度为500r/min,混合时间为60min,得到酸洗后的破碎铝渣;
(3)采用湿法筛分对酸洗后的破碎铝渣进行筛分,将筛上物从酸液中取出,其主要为铝渣,筛下物主要为电池粉,对筛下物过滤,取滤渣,用水对滤渣冲洗,得到正极粉B;
(4)将正极粉A和正极粉B混合,按固液比为1:0.5kg/L加入0.003mol/L的氢氧化钙溶液,浸泡120min,过滤,取滤渣,用水冲洗滤渣,得到安全型正极粉;
(5)在步骤(3)得到的铝渣用水冲洗0.5min,用饱和氢氧化钙溶液冲洗0.5min,用离心机甩干,得到抑爆铝渣;
(6)将抑爆铝渣放入到金属打包机中,以5MPa进行打包压缩,得到铝渣块;
(7)将铝渣块取两端分别连接两片实心金属铜电极板,分别为正极板和负极板,在正负极板之间施加80A电流5s,冷却后,得到铝渣块。
结果对比:
(1)分别以上述实施例和对比例回收得到的铝和电池粉对比处理前后核算金属回收率,结果见表1,结果表明实施例回收得到的电池粉加入溶铝液将电池粉中因破碎分选可能带入的少量的金属铝选择性溶解分离,同时避免其他镍钴锰锂等有价金属元素的溶解,该发明在消除电池粉安全隐患的前提下,也能保证镍钴锰锂等有价金属具有很高的回收率。
(2)分别以上述实施例和对比例回收得到的铝渣静置7天,测定单位时间的氢气释放速率;分别以上述实施例和对比例回收得到的电池粉加入硫酸,测定单位重量物料在单位时间内的氢气释放速率,结果见表2,结果显示实施例1-3将铝渣打包压缩成块,极大地压缩了铝渣之间的空隙,减少了铝渣的比表面积,降低铝渣与残碱或者与水的反 应速率,有效减少氢气的释放,使铝渣达到本质安全,而对比例1有较为严重的氢气释放,对比例2当用饱和氢氧化钠溶液替换饱和氢氧化钙溶液作为抑爆剂,铝渣还是会有氢气释放。
(3)在室温25℃下,分别以上述实施例和对比例回收得到的铝渣装入吨袋中分别静置1h和24h,测定铝渣内部的温度,结果见表3。
(4)实施例1-3将铝渣块取两端分别连接两片直流电极板(中空液冷金属板),通入电流,冷却后,得到安全型铝渣块。对比例3的将铝渣块取两端分别连接两片实心金属铜电极板,通入电流,冷却后,得到铝渣块。测定铝渣外表的温度和观察电极板与铝渣块发生粘连的情况,结果见表4。
表1金属回收率
金属 实施例1回收率 实施例2回收率 实施例3回收率 对比例1回收率
Al 98.8% 98.2% 99.1% 83.6%
Ni 99.2% 98.5% 98.1% 80.3%
Co 99.5% 99.6% 99.2% 82.7%
Mn 98.7% 99.2% 98.8% 76.9%
Li 97.9% 98.3% 98.6% 72.6%
表2铝渣储存和电池粉浸出氢气释放速率
Figure PCTCN2021142799-appb-000001
表3铝渣储存发热温度
Figure PCTCN2021142799-appb-000002
表4铝渣外表温度和黏连情况
Figure PCTCN2021142799-appb-000003
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种锂离子电池废极片安全回收的方法,其特征在于,包括以下步骤:
    (1)将废旧正极片破碎,过筛,得到正极粉A和破碎铝渣;
    (2)将所述破碎铝渣和酸液混合,边搅拌边超声,再进行湿法筛分,得到铝渣和电池粉;
    (3)在步骤(2)得到的铝渣先用水洗涤,再用抑爆剂冲洗,离心,得到抑爆铝渣,再进行打包压缩,得到铝渣块;
    (4)将所述铝渣块两端分别连接直流电极的正极板和负极板,施加电流熔融铝渣,冷却后,得到安全型铝渣块;步骤(3)中,所述抑爆剂为饱和氢氧化钙溶液。
  2. 根据权利要求1所述的方法,其特征在于,步骤(2)中,还包括对电池粉进行过滤,取滤渣,洗涤,即得正极粉B;将正极粉A和正极粉B混合,再加入溶解铝的溶液浸泡,搅拌,过滤,取滤渣,洗涤,即得正极粉。
  3. 根据权利要求2所述的方法,其特征在于,所述溶解铝的溶液为氢氧化钠、氢氧化钾或氢氧化钙溶液中的至少一种。
  4. 根据权利要求2所述的方法,其特征在于,所述溶解铝的溶液的体积浓度为0.003-2mol/L;所述溶解铝的溶液的温度为15-45℃。
  5. 根据权利要求1所述的方法,其特征在于,步骤(2)中,所述酸液为硫酸、盐酸或硝酸中的一种。
  6. 根据权利要求1所述的方法,其特征在于,步骤(2)中,所述破碎铝渣与酸液的固液比为1:(0.3-5)kg/L;步骤(2)中,所述酸液的浓度为0.1-2mol/L。
  7. 根据权利要求1所述的方法,其特征在于,步骤(3)中,所述用水冲洗为0.5-5min,用抑爆剂冲洗的时间为0.5-5min。
  8. 根据权利要求1所述的方法,其特征在于,步骤(4)中,所述电流为80-500A,所述施加电流的时间为0.5-5s。
  9. 根据权利要求1所述的方法,其特征在于,步骤(4)中,所述正极板或负极板为中空循环液冷金属板;所述金属为铜、银、金、铜镀金或铜镀银中的一种。
  10. 权利要求1-9任一项所述的方法在回收金属中的应用。
PCT/CN2021/142799 2021-03-19 2021-12-30 一种锂离子电池废极片安全回收的方法及其应用 WO2022193783A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES202390067A ES2954792R1 (es) 2021-03-19 2021-12-30 Un metodo para la recuperacion segura de una pieza de anodo de desecho de una bateria de iones de litio y aplicacion del mismo
HU2200281A HUP2200281A1 (hu) 2021-03-19 2021-12-30 Lítiumion-akkumulátor hulladék anódrészének biztonságos kinyerési eljárása, és annak felhasználása
DE112021005681.6T DE112021005681T5 (de) 2021-03-19 2021-12-30 Verfahren zur sicheren rückgewinnung eines anoden-abfallstückes einer lithium-ionen-batterie und anwendung davon
US18/212,178 US20230335816A1 (en) 2021-03-19 2023-06-20 Method for safe recovery of a waste anode piece of a lithium ion battery and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110295469.2A CN113131030B (zh) 2021-03-19 2021-03-19 一种锂离子电池废极片安全回收的方法及其应用
CN202110295469.2 2021-03-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/212,178 Continuation US20230335816A1 (en) 2021-03-19 2023-06-20 Method for safe recovery of a waste anode piece of a lithium ion battery and application thereof

Publications (1)

Publication Number Publication Date
WO2022193783A1 true WO2022193783A1 (zh) 2022-09-22

Family

ID=76773415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142799 WO2022193783A1 (zh) 2021-03-19 2021-12-30 一种锂离子电池废极片安全回收的方法及其应用

Country Status (6)

Country Link
US (1) US20230335816A1 (zh)
CN (1) CN113131030B (zh)
DE (1) DE112021005681T5 (zh)
ES (1) ES2954792R1 (zh)
HU (1) HUP2200281A1 (zh)
WO (1) WO2022193783A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087476A1 (zh) * 2022-10-27 2024-05-02 广东邦普循环科技有限公司 一种废旧锂电池正极片回收铝生成铝锭的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113131030B (zh) * 2021-03-19 2022-10-18 广东邦普循环科技有限公司 一种锂离子电池废极片安全回收的方法及其应用
CN113957252B (zh) * 2021-09-27 2023-07-07 湖南邦普循环科技有限公司 一种选择性回收废旧锂电池中有价金属的方法
CN115896455B (zh) * 2022-10-28 2024-03-08 广东邦普循环科技有限公司 废旧锂电池正极片回收处理设备及其方法
CN115842186A (zh) * 2022-11-22 2023-03-24 广东邦普循环科技有限公司 一种废锂电池的回收处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104526114A (zh) * 2014-11-04 2015-04-22 南方增材科技有限公司 一种金属构件埋弧堆焊成形方法
CN107732352A (zh) * 2017-10-12 2018-02-23 南通新玮镍钴科技发展有限公司 一种废锂离子电池正极材料回收利用的方法
JP2019169308A (ja) * 2018-03-22 2019-10-03 三菱マテリアル株式会社 コバルトとアルミニウムの分離方法
CN111908491A (zh) * 2020-08-22 2020-11-10 刘洪亮 一种利用废铝渣、铝灰生产聚氯化铝的工艺
CN113131030A (zh) * 2021-03-19 2021-07-16 广东邦普循环科技有限公司 一种锂离子电池废极片安全回收的方法及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100514745C (zh) * 2007-12-24 2009-07-15 深圳市格林美高新技术股份有限公司 一种废弃电池的控制破碎回收方法及其系统
CN102723537B (zh) * 2012-06-01 2016-01-27 华南师范大学 一种从废旧锂电池正极料物理分离钴酸锂的清洁生产方法
DE102014014894A1 (de) * 2014-10-13 2016-04-14 Adensis Gmbh Verfahren zur Rückgewinnung von Aktivmaterial aus den Kathoden von Lithiumionenbatterien
CN105895854A (zh) * 2016-06-14 2016-08-24 天齐锂业股份有限公司 锂离子电池正极边角料的回收方法
CN108666643A (zh) * 2018-04-17 2018-10-16 祝融峰 锂离子电池正极材料回收方法及装置
CN111193079A (zh) * 2020-01-09 2020-05-22 吉利汽车研究院(宁波)有限公司 一种电池系统温度调节装置及车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104526114A (zh) * 2014-11-04 2015-04-22 南方增材科技有限公司 一种金属构件埋弧堆焊成形方法
CN107732352A (zh) * 2017-10-12 2018-02-23 南通新玮镍钴科技发展有限公司 一种废锂离子电池正极材料回收利用的方法
JP2019169308A (ja) * 2018-03-22 2019-10-03 三菱マテリアル株式会社 コバルトとアルミニウムの分離方法
CN111908491A (zh) * 2020-08-22 2020-11-10 刘洪亮 一种利用废铝渣、铝灰生产聚氯化铝的工艺
CN113131030A (zh) * 2021-03-19 2021-07-16 广东邦普循环科技有限公司 一种锂离子电池废极片安全回收的方法及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087476A1 (zh) * 2022-10-27 2024-05-02 广东邦普循环科技有限公司 一种废旧锂电池正极片回收铝生成铝锭的方法

Also Published As

Publication number Publication date
ES2954792R1 (es) 2024-03-25
ES2954792A2 (es) 2023-11-24
HUP2200281A1 (hu) 2023-01-28
DE112021005681T5 (de) 2023-12-21
US20230335816A1 (en) 2023-10-19
CN113131030A (zh) 2021-07-16
CN113131030B (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2022193783A1 (zh) 一种锂离子电池废极片安全回收的方法及其应用
CN102703706B (zh) 一种从废旧钴酸锂电池中回收有价金属的方法
CN104538696B (zh) 从镍钴锰酸锂正极材料的废锂离子电池中回收金属的方法
CN111690813A (zh) 利用低共熔溶剂浸出废旧锂离子电池中有价金属的方法
CN104538695B (zh) 废镍钴锰酸锂电池中回收金属并制备镍钴锰酸锂的方法
CN101847763A (zh) 一种废旧磷酸铁锂电池综合回收的方法
CN101831548A (zh) 一种自废旧锰酸锂电池中回收有价金属的方法
CN106654437B (zh) 从含锂电池中回收锂的方法
CN114606386B (zh) 一种废弃锂电池磨浸回收钴和锂的工艺
KR102313447B1 (ko) 이차전지로부터 금속 회수 방법
CN108336442A (zh) 一种从废旧锂离子电池正极片中分离铝箔和正极废料的方法
WO2023029898A1 (zh) 一种从废旧锂离子电池中回收有价金属的方法
WO2016141875A1 (zh) 一种废旧电池的回收处理方法
CN107919507A (zh) 从废旧锂电池中回收磷酸铁锂的方法
CN105895854A (zh) 锂离子电池正极边角料的回收方法
CN113415814B (zh) 一种利用超低温焙烧从废旧锂离子电池中选择性回收锂的方法
WO2023060990A1 (zh) 电池粉浸出渣回收制取活性负极材料的方法
CN111411232A (zh) 一种废旧动力锂电池正极极片中有价金属元素的全量回收方法
CN112909370A (zh) 一种废旧锂电池中三元正极材料的修复方法
CN113904014B (zh) 一种废旧锂电池极片材料分离回收方法
CN101262082A (zh) 一种手机用废旧锂离子电池的处理回收方法
CN114480850A (zh) 一种加压还原回收废旧锂离子电池正极材料中有价金属的方法及系统
CN104183882B (zh) 一种分离锂离子电池正负极片中极流体与活性材料的方法
CN113308604B (zh) 面向退役电池极片中边缘金属的本质安全处理方法及应用
WO2023098167A1 (zh) 废旧钴酸锂电池的回收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931355

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112021005681

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931355

Country of ref document: EP

Kind code of ref document: A1