WO2022193721A1 - 混合动力汽车发电扭矩分配方法及混合动力汽车 - Google Patents

混合动力汽车发电扭矩分配方法及混合动力汽车 Download PDF

Info

Publication number
WO2022193721A1
WO2022193721A1 PCT/CN2021/133371 CN2021133371W WO2022193721A1 WO 2022193721 A1 WO2022193721 A1 WO 2022193721A1 CN 2021133371 W CN2021133371 W CN 2021133371W WO 2022193721 A1 WO2022193721 A1 WO 2022193721A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
power generation
drv
crg
motor
Prior art date
Application number
PCT/CN2021/133371
Other languages
English (en)
French (fr)
Inventor
伍庆龙
张天强
杨钫
王燕
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022193721A1 publication Critical patent/WO2022193721A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present application relates to the field of new energy vehicle control, for example, to a method for distributing power generation torque for a hybrid vehicle and a hybrid vehicle.
  • Plug-in hybrid vehicles are widely used because of their good power and economy.
  • Plug-in hybrid vehicles are mainly vehicles that obtain power transmission from the electric drive system and the engine. Based on the coordinated control of torque distribution between the motor and the engine, they can not only achieve a larger driving torque output, but also optimize the working area of the engine and ultimately reduce the power consumption. Fuel consumption and emissions to achieve the goal of energy saving and emission reduction.
  • the plug-in hybrid vehicle has two power sources, the engine and the motor, output torque, if the torque distribution between the engine and the motor cannot be effectively carried out, it will inevitably affect the driving control of the vehicle and the performance of the vehicle's power and economy.
  • the related technology mainly considers the demand of the input shaft of the power system, performs torque distribution control based on the target command, limits the torque change rate of the engine, controls the torque output of the motor, and finally makes the actual torque of the input shaft consistent with the target torque.
  • the power system of the power vehicle distributes the torque under the condition of driving power generation.
  • the present application provides a hybrid vehicle power generation torque distribution method and a hybrid vehicle, which can effectively control the torque distribution of the hybrid vehicle power system reasonably, thereby improving the driving smoothness of the vehicle and ensuring the balanced use of the vehicle's energy.
  • a method for distributing power generation torque for a hybrid electric vehicle comprising:
  • the engine target torque T Eng-tar is the sum of the driver demand torque T Drv and the electric accessory consumption demand torque T Ele
  • the motor target torque T m- tar is the required torque T Ele consumed by the electrical accessory
  • the driver demand torque T Drv is not in the high load region, obtain the maximum torque T Crg-max and the minimum torque T Crg-min of on-board power generation, according to the maximum torque of on-board power generation T Crg-max and all The minimum driving power generation torque T Crg-min determines the motor allowable power generation torque T m
  • the engine target torque T Eng-tar is the sum of the driver demand torque T Drv and the motor allowable power generation torque T m
  • the motor The target torque T m-tar is the difference between the actual engine output torque T Eng-act and the driver demand torque T Drv .
  • the driver demand torque T Drv is not in the high load region, it is determined whether the driver demand torque T Drv is in the middle load region, and if the driver demand torque T Drv is not in the middle load region load region, the driver demand torque T Drv is in the low load region, and the state of charge (State of Charge, SOC) of the battery is less than the upper limit of the on-board power generation SOC, the engine target torque T Eng-tar is increased to the medium Within the torque range of the engine economic zone in the load zone;
  • the driver demand torque T Drv in the high-load region, the middle-load region, and the low-load region sequentially decreases.
  • the optimal torque T Eng-eco in the engine economic zone, the maximum power generation torque T warm when the engine is warmed up, and the driver demand torque T Drv are obtained;
  • T 1
  • the motor minimum economical power generation torque T Crg-eco , the engine economic zone lower limit torque T Eng-low , the running power balance demand torque T balance , the warm-up maximum power generation torque T warm , the driver demand torque T Drv and the electric motor are obtained.
  • accessory consumption demand torque T Ele the motor minimum economical power generation torque T Crg-eco , the engine economic zone lower limit torque T Eng-low , the running power balance demand torque T balance , the warm-up maximum power generation torque T warm , the driver demand torque T Drv and the electric motor
  • T 3
  • the engine target torque T Eng-tar is increased to the engine economy in the middle load region Zone upper torque.
  • the engine economic zone upper limit torque T Eng-up , the driver demand torque T Drv and the warm-up maximum power generation torque T warm are obtained;
  • T n1
  • the minimum economical electric power generation torque T Crg-eco of the motor, the required torque T balance for driving power balance, the maximum power generation torque for warm-up T warm and the electric accessory consumption required torque T Ele are obtained;
  • the allowable power generation torque T m of the motor at the engine running speed is queried, and the allowable power generation torque T m of the motor is less than the maximum torque T Crg- max and greater than the minimum torque T Crg-min for on-board power generation.
  • the allowable power generation torque T m of the motor is equal to the minimum torque of on-board power generation T Crg-min .
  • a hybrid electric vehicle power generation torque distribution device comprising:
  • the first module is configured to obtain the driver demand torque T Drv and determine whether the driver demand torque T Drv is in a high load region;
  • the second module is configured to, in response to the driver demand torque T Drv being in the high load region, the engine target torque T Eng-tar being the sum of the driver demand torque T Drv and the electric accessory consumption demand torque T Ele ,
  • the motor target torque T m-tar is the electric accessory consumption demand torque T Ele ;
  • the third module is configured to obtain the maximum torque T Crg-max and the minimum torque T Crg-min of on-board power generation in response to the driver demand torque T Drv not being in the high-load region, and according to the maximum torque of on-board power generation T Crg-max and the minimum running power generation torque T Crg-min determine the motor allowable power generation torque T m , and the engine target torque T Eng-tar is the driver demand torque T Drv and the motor allowable power generation torque T m The sum, the motor target torque T m-tar is the difference between the actual engine output torque T Eng-act and the driver demand torque T Drv .
  • a hybrid electric vehicle includes a processor, a memory, and a program stored in the memory and executable by the processor, and when the program is executed, the above-mentioned method for distributing power generation and torque of a hybrid electric vehicle is implemented.
  • a computer storage medium storing a computer program, when the computer program is executed by a processor, realizes the above-mentioned method for distributing power generation and torque of a hybrid electric vehicle.
  • FIG. 1 is a flow chart of a method for distributing power generation torque during driving of a hybrid electric vehicle provided by an embodiment of the present application;
  • FIG. 2 is a schematic diagram of the position area division of a driver's demand torque on an engine universal characteristic map provided by an embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a hybrid vehicle power generation torque distribution device provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a hybrid vehicle provided by an embodiment of the present application.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • connection may be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • a first feature "on” or “under” a second feature may include the first and second features in direct contact, or may include the first and second features not directly in contact The contact is made through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the present embodiment provides a torque distribution method for the power generation of the hybrid vehicle to solve the above problem.
  • the method for distributing power generation torque of a hybrid electric vehicle includes:
  • the driver demand torque T Drv Obtain the driver demand torque T Drv , and determine whether the driver demand torque T Drv is in the high load region; if the driver demand torque T Drv is in the high load region, the engine target torque T Eng-tar is the driver demand torque T Drv and The sum of the electric accessory consumption demand torque T Ele , the motor target torque T m-tar is the electric accessory consumption demand torque T Ele ; if the driver demand torque T Drv is not in the high load area, the maximum driving torque T Crg-max and The minimum torque T Crg-min of on-board power generation is determined according to the maximum torque of on-board power generation T Crg-max and the minimum torque of on-board power generation T Crg-min to determine the allowable power generation torque T m of the motor, and the target engine torque T Eng-tar is the driver’s demand torque T Drv The sum of the motor allowable power generation torque T m , the motor target torque T m-tar is the difference between the actual engine output torque T Eng-act and the driver demand torque T Drv
  • the hybrid electric vehicle power generation torque distribution method provided in this embodiment is based on the load area where the driver's demand torque T Drv is located, combined with different influencing factors of the vehicle under the driving power generation condition and the output torque capability of the entire power system, Then, the torque distribution of the power source is controlled, and the torque distribution of the power system of the hybrid vehicle can be effectively and reasonably controlled, thereby improving the driving smoothness of the vehicle and ensuring the balanced use of the energy of the vehicle.
  • the power system of the hybrid vehicle is mainly composed of assembly components such as an engine, a drive motor, a power battery pack, a gearbox, and a transmission mechanism, and also has a controller corresponding to a plurality of assembly components.
  • Engine Controller Engine Management System, EMS
  • Hybrid Vehicle Controller Hybrid Control Unit, HCU
  • Motor Controller Motor Controller
  • Battery Management System Battery Management System
  • Transmission Controller Transmission Control Unit, TCU
  • the area 1 is the low load area
  • the area 2 is the medium load area
  • the region 3 is a high-load region
  • the driver demand torque T Drv in the high-load region, the medium-load region, and the low-load region decreases sequentially.
  • the three load zones are divided by the torque-speed curve a and the torque-speed curve b.
  • the area between the two torque-speed curves is the torque range of the engine economic zone.
  • the torque-speed curve a is defined as the lower limit torque of the engine economic zone
  • the torque - The speed curve b is defined as the upper limit torque of the engine's economic zone.
  • the driver demand torque T Drv When the driver demand torque T Drv is not in the high load region, it is determined whether the driver demand torque T Drv is in the low load region .
  • the target engine torque T Eng-tar is raised to within the torque range of the engine economy zone in the middle load zone.
  • the increased target engine torque T Eng-tar is used for on-board power generation, and the increased engine target torque T Eng-tar is limited by the on-board power generation maximum torque T Crg-max and the on-board power generation minimum torque T Crg-min .
  • the engine economic zone optimal torque T Eng-eco the warm-up maximum power generation torque T warm and the driver demand torque T Drv .
  • the driver's demand torque T Drv is calculated and obtained; based on the universal characteristic curve of the engine, the optimal torque T Eng-eco of the engine economic zone is obtained; (EMS) internal mode, calculate and obtain the warm-up maximum power generation torque T warm .
  • the minimum driving power generation torque T Crg-min in the low load area When calculating the minimum driving power generation torque T Crg-min in the low load area, first obtain the motor minimum economic power generation torque T Crg-eco , the engine economic zone lower limit torque T Eng-low , the driving power balance demand torque T balance , and the maximum warm-up torque The power generation torque T warm , the driver demand torque T Drv and the electric accessory consumption demand torque T Ele .
  • the driver's demand torque T Drv is calculated and obtained; based on the torque-speed curve a and torque-speed curve b of the universal characteristics of the engine, the lower limit of the engine economic zone is obtained.
  • Torque T Eng-low based on the motor efficiency characteristic curve, obtain the minimum economical power generation torque T Crg-eco of the motor; based on the battery energy management algorithm, obtain the driving power balance demand torque T balance ; Torque T Ele ; based on the internal mode of the engine controller (EMS), calculate and obtain the warm-up maximum power generation torque T warm .
  • EMS engine controller
  • the motor allowable power generation torque T m is less than the maximum torque T Crg-max of on-board power generation and greater than the minimum torque of on-board power generation T Crg-min .
  • Each operating speed of the engine corresponds to a value of the allowable power generation torque T m of the motor.
  • the value of T m should be between the maximum torque T Crg-max of on-board power generation and the minimum torque of on-board power generation T Crg-min .
  • the engine target torque T Eng-tar is increased to the upper limit torque of the engine economic region in the middle load region.
  • the upper limit torque T Eng-up of the engine economic zone, the driver's demand torque T Drv and the maximum warm-up power generation torque T warm are obtained first.
  • the driver's demand torque T Drv is calculated and obtained; based on the universal characteristic curve of the engine, the upper limit torque T Eng-up of the engine economic zone is obtained; EMS) internal mode, calculate and obtain the warm-up maximum power generation torque T warm .
  • T n1
  • the minimum running power generation torque T Crg-min in the medium load region first obtain the motor minimum economic power generation torque T Crg-eco , the running power balance demand torque T balance , the warm-up maximum power generation torque T warm and the electric accessory consumption demand torque T Ele .
  • the minimum economical power generation torque T Crg-eco of the motor is obtained;
  • the driving power balance demand torque T balance is obtained;
  • the electric accessory consumption demand torque T Ele is obtained;
  • the warm-up maximum power generation torque T warm is calculated and obtained.
  • the torque of the motor at the running speed of the engine is queried, and the allowable power generation torque T m of the motor is less than the maximum torque T Crg-max of on-board power generation and greater than the minimum torque of on-board power generation T Crg-min .
  • Each operating speed of the engine corresponds to a value of the allowable power generation torque T m of the motor.
  • the value of T m should be between the maximum torque T Crg-max of on-board power generation and the minimum torque of on-board power generation T Crg-min .
  • the power of the motor When the power of the motor is limited, that is, when the temperature of the electric drive system is too high or the motor fails, the torque of the motor is limited, and the maximum torque T Crg-max of the on-board power generation may be less than or equal to the minimum torque of the on-board power generation T Crg-min , and the motor is allowed to
  • the power generation torque T m is used as the driving minimum power generation torque T Crg-min .
  • the power generation torque distribution method for hybrid electric vehicles takes into account the power and torque capability characteristics of multiple power sources, including the power capabilities of the engine, motor and battery under different conditions, and combines the configuration characteristics of the power system. In order to carry out torque distribution control during driving power generation, it can effectively, truly and reliably calculate the torque output and distribution of multiple power sources.
  • this embodiment also provides a hybrid vehicle power generation torque distribution device, including a first module 11, a second module 12 and a third module 13.
  • the first module 11 is configured to obtain the driver demand torque T Drv and determine whether the driver demand torque T Drv is in a high load area; the second module 12 is configured to respond to the driver demand torque T Drv in the high load region.
  • the engine target torque T Eng-tar is the sum of the driver demand torque T Drv and the electric accessory consumption demand torque T Ele
  • the motor target torque T m-tar is the electric accessory consumption demand torque T Ele
  • the third module 13 is configured to, in response to the driver's demand torque T Drv not being in the high load region, obtain the maximum torque T Crg-max and the minimum torque T Crg-min of power generation on-board, according to the maximum torque of power-on-driving T Crg-min
  • the torque T Crg-max and the minimum torque T Crg-min of the driving power generation determine the allowable power generation torque T m of the motor
  • the target engine torque T Eng-tar is the driver demand torque T Drv and the motor allowable power generation torque T The sum of m , the motor target torque
  • the hybrid electric vehicle power generation torque distribution device provided in this embodiment is applicable to the hybrid electric vehicle power generation torque distribution method provided in any of the above embodiments, and has corresponding functions and effects.
  • the hybrid electric vehicle includes a processor 10, a memory 20, and a program stored in the memory 20 and executable by the processor 10.
  • the program When the program is executed, the above-mentioned method for distributing the power generation torque of the hybrid vehicle during driving is realized, the fuel economy and power performance of the hybrid vehicle are improved, and the driving comfort of the vehicle is improved.
  • the power system of a hybrid vehicle includes the above-mentioned engine, drive motor, power battery pack, gearbox, transmission mechanism and other assembly components, and also has a controller corresponding to multiple assembly components, including an engine controller (EMS) , Hybrid Vehicle Controller (HCU), Motor Controller (MCU), Battery Management System (BMS), Transmission Controller (TCU), etc.
  • EMS engine controller
  • HCU Hybrid Vehicle Controller
  • MCU Motor Controller
  • BMS Battery Management System
  • TCU Transmission Controller
  • the hybrid vehicle controller (HCU) since the system control judgment of the hybrid vehicle controller (HCU) is relatively comprehensive, the hybrid vehicle controller (HCU) can obtain the accelerator and brake pedal openings, and obtain the running state signals of the motor and the engine. , the calculation and judgment are given comprehensively, so the hybrid vehicle controller (HCU) is used to coordinately control the torque distribution of the vehicle power system. In other embodiments, the distribution of torque of the power system may also be controlled by a motor controller (MCU), which is not limited herein.
  • MCU motor controller
  • the computer-readable storage medium may be a non-transitory storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

本文公开了一种混合动力汽车发电扭矩分配方法及混合动力汽车。该混合动力汽车发电扭矩分配方法包括:获取驾驶员需求扭矩,并判断所述驾驶员需求扭矩是否处于高负荷区;响应于驾驶员需求扭矩处于高负荷区,发动机目标扭矩为驾驶员需求扭矩和电附件消耗需求扭矩之和,电机目标扭矩为电附件消耗需求扭矩;响应于驾驶员需求扭矩没有处于高负荷区,获取行车发电最大扭矩和行车发电最小扭矩,根据行车发电最大扭矩和行车发电最小扭矩确定电机许用发电扭矩,发动机目标扭矩为驾驶员需求扭矩和电机许用发电扭矩之和,电机目标扭矩为发动机实际输出扭矩和驾驶员需求扭矩之差。

Description

混合动力汽车发电扭矩分配方法及混合动力汽车
本申请要求在2021年03月18日提交中国专利局、申请号为202110292460.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及新能源汽车控制领域,例如涉及一种混合动力汽车发电扭矩分配方法及混合动力汽车。
背景技术
插电式混合动力汽车由于兼具良好的动力性和经济性而被广泛地推广使用。插电式混合动力汽车主要是从电驱动系统和发动机中获得动力传输的汽车,基于电机和发动机扭矩分配协同控制,不仅能实现较大的驱动扭矩输出,还可以优化发动机的工作区域,最终降低油耗和排放,达到节能减排的目标。
由于插电式混合动力汽车具有发动机和电机两个动力源输出扭矩,如果不能有效地进行发动机和电机之间的扭矩分配,势必会影响到整车行驶控制以及车辆动力性和经济性表现。
相关技术主要是从动力系统输入轴的需求考虑,基于目标指令进行扭矩分配控制,限制发动机的扭矩改变速率,控制电机的扭矩输出,最终使得输入轴的实际扭矩和目标扭矩一致,但是没有针对混合动力汽车的动力系统在行车发电的工况下的扭矩进行分配。
因此,如何准确、有效地进行混合动力汽车的动力系统在行车发电的工况下的扭矩分配是要解决的关键问题。
发明内容
本申请提供一种混合动力汽车发电扭矩分配方法及混合动力汽车,能够有效地对混合动力车辆动力系统的扭矩分配进行合理控制,从而提高车辆的驾驶平顺性,保证车辆的能量平衡使用。
一种混合动力汽车发电扭矩分配方法,所述分配方法包括:
获取驾驶员需求扭矩T Drv,并判断所述驾驶员需求扭矩T Drv是否处于高负荷区;
若所述驾驶员需求扭矩T Drv处于所述高负荷区,则发动机目标扭矩T Eng-tar 为所述驾驶员需求扭矩T Drv和电附件消耗需求扭矩T Ele之和,电机目标扭矩T m-tar为所述电附件消耗需求扭矩T Ele
若所述驾驶员需求扭矩T Drv没有处于所述高负荷区,则获取行车发电最大扭矩T Crg-max和行车发电最小扭矩T Crg-min,根据所述行车发电最大扭矩T Crg-max和所述行车发电最小扭矩T Crg-min确定电机许用发电扭矩T m,所述发动机目标扭矩T Eng-tar为所述驾驶员需求扭矩T Drv和电机许用发电扭矩T m之和,所述电机目标扭矩T m-tar为发动机实际输出扭矩T Eng-act和所述驾驶员需求扭矩T Drv之差。
一实施例中,若所述驾驶员需求扭矩T Drv没有处于高负荷区,则判断所述驾驶员需求扭矩T Drv是否处于中负荷区,若所述驾驶员需求扭矩T Drv没有处于所述中负荷区,则所述驾驶员需求扭矩T Drv处于低负荷区,且电池充电状态(State of Charge,SOC)小于行车发电SOC的上限时,提升所述发动机目标扭矩T Eng-tar至所述中负荷区内的发动机经济区扭矩范围内;
所述高负荷区、所述中负荷区和所述低负荷区的所述驾驶员需求扭矩T Drv依次减小。
一实施例中,获取发动机经济区最优扭矩T Eng-eco、暖机最大发电扭矩T warm和驾驶员需求扭矩T Drv
设置T 1=|T Eng-eco-T Drv|,T 2=Min(T Drv,T 1),则所述行车发电最大扭矩T Crg-max=Min(T warm,T 2)。
一实施例中,获取电机最小经济发电扭矩T Crg-eco、发动机经济区下限扭矩T Eng-low、行驶电量平衡需求扭矩T balance、暖机最大发电扭矩T warm、驾驶员需求扭矩T Drv和电附件消耗需求扭矩T Ele
设置T 3=|T Eng-low-T Drv|,T 4=Max(T Crg-eco,T balance,T Ele,T 3),则所述行车发电最小扭矩T Crg-min=Min(T warm,T 4)。
一实施例中,若所述驾驶员需求扭矩T Drv处于中负荷区,且电池SOC小于行车发电SOC的上限时,提升所述发动机目标扭矩T Eng-tar至所述中负荷区内的发动机经济区上限扭矩。
一实施例中,获取发动机经济区上限扭矩T Eng-up、驾驶员需求扭矩T Drv和暖机最大发电扭矩T warm
设置T n1=|T Eng-up-T Drv|,T n2=Min(T Drv,T n1),则所述行车发电最大扭矩T Crg-max=Min(T warm,T n2)。
一实施例中,获取电机最小经济发电扭矩T Crg-eco、行驶电量平衡需求扭矩T balance、暖机最大发电扭矩T warm和电附件消耗需求扭矩T Ele
设置T n3=Max(T Crg-eco,T balance,T Ele),则所述行车发电最小扭矩T Crg-min=Min(T warm,T n3)。
一实施例中,根据电机外特性曲线,查询所述电机在发动机运行转速下的所述电机许用发电扭矩T m,所述电机许用发电扭矩T m小于所述行车发电最大扭矩T Crg-max且大于所述行车发电最小扭矩T Crg-min
一实施例中,在所述行车发电最大扭矩T Crg-max小于或等于所述行车发电最小扭矩T Crg-min,所述电机许用发电扭矩T m等于所述行车发电最小扭矩T Crg-min
一种混合动力汽车发电扭矩分配装置,包括:
第一模块,设置为获取驾驶员需求扭矩T Drv,并判断所述驾驶员需求扭矩T Drv是否处于高负荷区;
第二模块,设置为响应于所述驾驶员需求扭矩T Drv处于所述高负荷区,发动机目标扭矩T Eng-tar为所述驾驶员需求扭矩T Drv和电附件消耗需求扭矩T Ele之和,电机目标扭矩T m-tar为所述电附件消耗需求扭矩T Ele
第三模块,设置为响应于所述驾驶员需求扭矩T Drv没有处于所述高负荷区,获取行车发电最大扭矩T Crg-max和行车发电最小扭矩T Crg-min,根据所述行车发电最大扭矩T Crg-max和所述行车发电最小扭矩T Crg-min确定电机许用发电扭矩T m,发动机目标扭矩T Eng-tar为所述驾驶员需求扭矩T Drv和所述电机许用发电扭矩T m之和,电机目标扭矩T m-tar为发动机实际输出扭矩T Eng-act和所述驾驶员需求扭矩T Drv之差。
一种混合动力汽车,包括处理器、存储器以及存储在所述存储器上可被所述处理器执行的程序,所述程序被执行时实现上述的混合动力汽车发电扭矩分配方法。
一种计算机存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现上述的混合动力汽车发电扭矩分配方法。
附图说明
图1是本申请实施例提供的一种混合动力汽车行车发电扭矩分配方法的流程图;
图2是本申请实施例提供的一种驾驶员需求扭矩在发动机万有特性图上的位置区域划分示意图;
图3是本申请实施例提供的一种混合动力汽车发电扭矩分配装置的结构示意图;
图4是本申请实施例提供的一种混合动力汽车的结构示意图。
具体实施方式
下面将结合附图对本申请实施例的技术方案做描述,所描述的实施例仅仅是本申请一部分实施例。
在本申请的描述中,除非另有规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本申请中的含义。
在本申请中,除非另有规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
针对相关技术中没有针对混合动力汽车的动力系统在行车发电的工况下的扭矩进行分配的问题,本实施例提供了一种混合动力汽车行车发电扭矩分配方法以解决上述问题。
如图1所示,在本实施例中,混合动力汽车发电扭矩分配方法包括:
获取驾驶员需求扭矩T Drv,并判断驾驶员需求扭矩T Drv是否处于高负荷区;若驾驶员需求扭矩T Drv处于高负荷区,则发动机目标扭矩T Eng-tar为驾驶员需求扭矩T Drv和电附件消耗需求扭矩T Ele之和,电机目标扭矩T m-tar为电附件消耗需求扭矩T Ele;若驾驶员需求扭矩T Drv没有处于高负荷区,则获取行车发电最大扭矩T Crg-max和行车发电最小扭矩T Crg-min,根据行车发电最大扭矩T Crg-max和行车发电最小扭矩T Crg-min确定电机许用发电扭矩T m,发动机目标扭矩T Eng-tar为驾驶员需求扭矩T Drv和电机许用发电扭矩T m之和,电机目标扭矩T m-tar为发动机实际输出扭矩T Eng-act和驾驶员需求扭矩T Drv之差。
本实施例提供的混合动力汽车发电扭矩分配方法是基于驾驶员需求扭矩T Drv所处的负荷区域,结合车辆在行车发电工况下的不同影响因素和整个动力系统的可输出的扭矩能力情况,进而控制动力源的扭矩分配,能够有效地对混合动力车辆动力系统的扭矩分配进行合理控制,从而提高车辆的驾驶平顺性,保证车辆的能量平衡使用。
在本实施例中,混合动力汽车的动力系统主要由发动机、驱动电机、动力电池组、变速箱、传动机构等总成部件构成,同时还具有与多个总成部件相对应的控制器,有发动机控制器(Engine Management System,EMS)、混合动力整车控制器(Hybrid Control Unit HCU)、电机控制器(Motor Control Unit,MCU)、电池管理系统(Battery Management System,BMS)、变速箱控制器(Transmission Control Unit,TCU)等。
如图2所示,在混合动力汽车行驶过程中,根据驾驶员需求扭矩T Drv在发动机万有特性图上的位置可以分为三个区域,区域1为低负荷区,区域2为中负荷区,区域3为高负荷区,高负荷区、中负荷区和低负荷区的驾驶员需求扭矩T Drv依次减小。三个负荷区用扭矩-转速曲线a和扭矩-转速曲线b进行分割,两条扭矩-转速曲线之间的区域是发动机经济区扭矩范围,扭矩-转速曲线a定义为发动机经济区下限扭矩,扭矩-转速曲线b定义为发动机经济区上限扭矩。
在驾驶员需求扭矩T Drv没有处于高负荷区,则判断驾驶员需求扭矩T Drv是否处于低负荷区,若驾驶员需求扭矩T Drv处于低负荷区,且电池SOC小于行车发电SOC上限时,则提升发动机目标扭矩T Eng-tar至中负荷区内的发动机经济区扭矩范围内。增加的发动机目标扭矩T Eng-tar用于行车发电,且增加的发动机目标扭矩T Eng-tar受行车发电最大扭矩T Crg-max和行车发电最小扭矩T Crg-min限制。
在计算低负荷区域下的行车发电最大扭矩T Crg-max时,先获取发动机经济区最优扭矩T Eng-eco、暖机最大发电扭矩T warm和驾驶员需求扭矩T Drv。例如,根据油门加速、制动踏板、车速及整车行驶状态,计算获取驾驶员需求扭矩T Drv;基于发动机的万有特性曲线,获取发动机经济区最优扭矩T Eng-eco;基于发动机控制器(EMS)内部模式,计算获取暖机最大发电扭矩T warm。然后再根据发动机经济区最优扭矩T Eng-eco、暖机最大发电扭矩T warm和驾驶员需求扭矩T Drv,设置T 1=|T Eng-eco-T Drv|,T 2=Min(T Drv,T 1),则行车发电最大扭矩T Crg-max=Min(T warm,T 2)。
在计算低负荷区域下的行车发电最小扭矩T Crg-min时,先获取电机最小经济发电扭矩T Crg-eco、发动机经济区下限扭矩T Eng-low、行驶电量平衡需求扭矩T balance、暖机最大发电扭矩T warm、驾驶员需求扭矩T Drv和电附件消耗需求扭矩T Ele。例如,根据油门加速、制动踏板、车速及整车行驶状态,计算获取驾驶员需求扭矩T Drv;基于发动机的万有特性的扭矩-转速曲线a和扭矩-转速曲线b,获取发动机经济区下限扭矩T Eng-low;基于电机效率特性曲线,获取电机最小经济发电扭矩T Crg-eco;基于电池能量管理算法,获取行驶电量平衡需求扭矩T balance;基于整车低压电源使用,计算电附件消耗需求扭矩T Ele;基于发动机控制器(EMS)内部模式,计算获取暖机最大发电扭矩T warm。然后根据电机最小经济发电扭矩 T Crg-eco、发动机经济区下限扭矩T Eng-low、行驶电量平衡需求扭矩T balance、暖机最大发电扭矩T warm、驾驶员需求扭矩T Drv和电附件消耗需求扭矩T Ele设置T 3=|T Eng-low-T Drv|,T 4=Max(T Crg-eco,T balance,T Ele,T 3),则行车发电最小扭矩T Crg-min=Min(T warm,T 4)。
基于电机外特性曲线,查询电机在发动机运行转速下的电机许用发电扭矩T m,电机许用发电扭矩T m小于行车发电最大扭矩T Crg-max且大于行车发电最小扭矩T Crg-min。每个发动机运行转速对应一个电机许用发电扭矩T m的值,在电机正常工作时,T m的值应该是在行车发电最大扭矩T Crg-max与行车发电最小扭矩T Crg-min之间。
在电机功率受限时,即电驱动系统温度过高或者电机发生故障时,电机的扭矩受限,可能出现行车发电最大扭矩T Crg-max小于或等于行车发电最小扭矩T Crg-min,那么电机许用发电扭矩T m为行车最小发电扭矩T Crg-min。综上,动力源扭矩分配输出为:发动机目标扭矩T Eng-tar=T Drv+T m;电机目标扭矩T m-tar=T Eng-act-T Drv
若驾驶员需求扭矩T Drv处于中负荷区时,且电池SOC小于行车发电SOC的上限时,提升发动机目标扭矩T Eng-tar至中负荷区内的发动机经济区上限扭矩。
在计算中负荷区域下的行车发电最大扭矩T Crg-max时,先获取发动机经济区上限扭矩T Eng-up、驾驶员需求扭矩T Drv和暖机最大发电扭矩T warm。例如,根据油门加速、制动踏板、车速及整车行驶状态,计算获取驾驶员需求扭矩T Drv;基于发动机的万有特性曲线,获取发动机经济区上限扭矩T Eng-up;基于发动机控制器(EMS)内部模式,计算获取暖机最大发电扭矩T warm。然后再根据发动机经济区上限扭矩T Eng-up、驾驶员需求扭矩T Drv和暖机最大发电扭矩T warm设置T n1=|T Eng-up-T Drv|,T n2=Min(T Drv,T n1),则行车发电最大扭矩T Crg-max=Min(T warm,T n2)。
在计算中负荷区域下的行车发电最小扭矩T Crg-min时,先获取电机最小经济发电扭矩T Crg-eco、行驶电量平衡需求扭矩T balance、暖机最大发电扭矩T warm和电附件消耗需求扭矩T Ele。例如,基于电机效率特性曲线,获取电机最小经济发电扭矩T Crg-eco;基于电池能量管理算法,获取行驶电量平衡需求扭矩T balance;基于整车低压电源使用,获取电附件消耗需求扭矩T Ele;基于发动机控制器(EMS)内部模式,计算获取暖机最大发电扭矩T warm。然后根据电机最小经济发电扭矩T Crg-eco、行驶电量平衡需求扭矩T balance、暖机最大发电扭矩T warm和电附件消耗需求扭矩T Ele设置T n3=Max(T Crg-eco,T balance,T Ele),则行车发电最小扭矩T Crg-min=Min(T warm,T n3)。
基于电机外特性曲线,查询电机在发动机运行转速下的扭矩,电机许用发 电扭矩T m小于行车发电最大扭矩T Crg-max且大于行车发电最小扭矩T Crg-min。每个发动机运行转速对应一个电机许用发电扭矩T m的值,在电机正常工作时,T m的值应该是在行车发电最大扭矩T Crg-max与行车发电最小扭矩T Crg-min之间。
在电机功率受限时,即电驱动系统温度过高或者电机发生故障时,电机的扭矩受限,可能出现行车发电最大扭矩T Crg-max小于或等于行车发电最小扭矩T Crg-min,电机许用发电扭矩T m为行车最小发电扭矩T Crg-min。综上,动力源扭矩分配输出为:发动机目标扭矩T Eng-tar=T Drv+T m;电机目标扭矩T m-tar=T Eng-act-T Drv
在驾驶员需求扭矩T Drv处于高负荷区时,在高负荷区行车发电的功率仅用于满足电附件的消耗需求,此时可控制发动机行车发电的功率满足于电附件使用功率需求。因此,在驾驶员需求扭矩T Drv处于高负荷区时,发动机目标扭矩T Eng-tar=T Drv+T Ele,电机目标扭矩T m-tar=T Ele
本实施例提供的混合动力汽车行车发电扭矩分配方法考虑了多个动力源的功率及扭矩能力特性,包括发动机、电机和电池在不同情况下的功率能力,同时结合动力系统的构型特点,提出了在行车发电时进行了扭矩分配控制,能够有效、真实、可靠地计算出多个动力源的扭矩输出及分配。
如图3所示,本实施例还提供了一种混合动力汽车发电扭矩分配装置,包括第一模块11、第二模块12和第三模块13.
第一模块11,设置为获取驾驶员需求扭矩T Drv,并判断所述驾驶员需求扭矩T Drv是否处于高负荷区;第二模块12,设置为响应于所述驾驶员需求扭矩T Drv处于所述高负荷区,发动机目标扭矩T Eng-tar为所述驾驶员需求扭矩T Drv和电附件消耗需求扭矩T Ele之和,电机目标扭矩T m-tar为所述电附件消耗需求扭矩T Ele;第三模块13,设置为响应于所述驾驶员需求扭矩T Drv没有处于所述高负荷区,获取行车发电最大扭矩T Crg-max和行车发电最小扭矩T Crg-min,根据所述行车发电最大扭矩T Crg-max和所述行车发电最小扭矩T Crg-min确定电机许用发电扭矩T m,发动机目标扭矩T Eng-tar为所述驾驶员需求扭矩T Drv和所述电机许用发电扭矩T m之和,电机目标扭矩T m-tar为发动机实际输出扭矩T Eng-act和所述驾驶员需求扭矩T Drv之差。
本实施例提供的混合动力汽车发电扭矩分配装置可适用于上述任意实施例提供的混合动力汽车发电扭矩分配方法,具备相应的功能和效果。
本实施例还提供了一种混合动力汽车,如图4所示,该混合动力汽车包括处理器10、存储器20以及存储在所述存储器20上可被所述处理器10执行的程 序,所述程序被执行时实现上述的混合动力汽车行车发电扭矩分配方法,提高了混合动力汽车的燃油经济性和动力性,提高了车辆驾驶的平顺性。
混合动力汽车的动力系统包括上述的发动机、驱动电机、动力电池组、变速箱、传动机构等总成部件,同时还具有与多个总成部件相对应的控制器,有发动机控制器(EMS)、混合动力整车控制器(HCU)、电机控制器(MCU)、电池管理系统(BMS)、变速箱控制器(TCU)等。
在本实施例中,由于混合动力整车控制器(HCU)的系统控制判断较为全面,混合动力整车控制器(HCU)可以获取加速和制动踏板开度,获得电机、发动机的运行状态信号,综合给出计算和判断,故采用混合动力整车控制器(HCU)协调控制整车动力系统的扭矩分配。在其他实施例中,也可以通过电机控制器(MCU)来控制动力系统扭矩的分配,在此不作限定。
本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的混合动力汽车发电扭矩分配方法中的相关操作。该计算机可读存储介质可以为非暂态存储介质。

Claims (12)

  1. 一种混合动力汽车发电扭矩分配方法,包括:
    获取驾驶员需求扭矩T Drv,并判断所述驾驶员需求扭矩T Drv是否处于高负荷区;
    响应于所述驾驶员需求扭矩T Drv处于所述高负荷区,发动机目标扭矩T Eng-tar为所述驾驶员需求扭矩T Drv和电附件消耗需求扭矩T Ele之和,电机目标扭矩T m-tar为所述电附件消耗需求扭矩T Ele
    响应于所述驾驶员需求扭矩T Drv没有处于所述高负荷区,获取行车发电最大扭矩T Crg-max和行车发电最小扭矩T Crg-min,根据所述行车发电最大扭矩T Crg-max和所述行车发电最小扭矩T Crg-min确定电机许用发电扭矩T m,发动机目标扭矩T Eng-tar为所述驾驶员需求扭矩T Drv和所述电机许用发电扭矩T m之和,电机目标扭矩T m-tar为发动机实际输出扭矩T Eng-act和所述驾驶员需求扭矩T Drv之差。
  2. 根据权利要求1所述的混合动力汽车发电扭矩分配方法,还包括:
    响应于所述驾驶员需求扭矩T Drv没有处于所述高负荷区,判断所述驾驶员需求扭矩T Drv是否处于中负荷区,响应于所述驾驶员需求扭矩T Drv没有处于所述中负荷区,所述驾驶员需求扭矩T Drv处于低负荷区,且在电池充电状态SOC小于行车发电SOC的上限的情况下,提升所述发动机目标扭矩T Eng-tar至所述中负荷区内的发动机经济区扭矩范围内;
    所述高负荷区、所述中负荷区和所述低负荷区的驾驶员需求扭矩T Drv依次减小。
  3. 根据权利要求2所述的混合动力汽车发电扭矩分配方法,其中,所述获取行车发电最大扭矩T Crg-max,包括:
    获取发动机经济区最优扭矩T Eng-eco和暖机最大发电扭矩T warm和驾驶员需求扭矩T Drv
    设置T 1=|T Eng-eco-T Drv|,T 2=Min(T Drv,T 1),则所述行车发电最大扭矩T Crg-max=Min(T warm,T 2)。
  4. 根据权利要求2所述的混合动力汽车发电扭矩分配方法,其中,所述获取行车发电最小扭矩T Crg-min,包括:
    获取电机最小经济发电扭矩T Crg-eco、发动机经济区下限扭矩T Eng-low、行驶电量平衡需求扭矩T balance、暖机最大发电扭矩T warm、驾驶员需求扭矩T Drv和电附件消耗需求扭矩T Ele
    设置T 3=|T Eng-low-T Drv|,T 4=Max(T Crg-eco,T balance,T Ele,T 3),则所述行车发电最小扭矩T Crg-min=Min(T warm,T 4)。
  5. 根据权利要求2所述的混合动力汽车发电扭矩分配方法,还包括:
    响应于所述驾驶员需求扭矩T Drv处于所述中负荷区,在电池SOC小于行车发电SOC的上限的情况下,提升所述发动机目标扭矩T Eng-tar至所述中负荷区内的发动机经济区上限扭矩。
  6. 根据权利要求5所述的混合动力汽车发电扭矩分配方法,其中,所述获取行车发电最大扭矩T Crg-max,包括:
    获取发动机经济区上限扭矩T Eng-up、驾驶员需求扭矩T Drv和暖机最大发电扭矩T warm
    设置T n1=|T Eng-up-T Drv|,T n2=Min(T Drv,T n1),则所述行车发电最大扭矩T Crg-max=Min(T warm,T n2)。
  7. 根据权利要求5所述的混合动力汽车发电扭矩分配方法,其中,所述获取行车发电最小扭矩T Crg-min,包括:
    获取电机最小经济发电扭矩T Crg-eco、行驶电量平衡需求扭矩T balance、暖机最大发电扭矩T warm和电附件消耗需求扭矩T Ele
    设置T n3=Max(T Crg-eco,T balance,T Ele),则所述行车发电最小扭矩T Crg-min=Min(T warm,T n3)。
  8. 根据权利要求1所述的混合动力汽车发电扭矩分配方法,其中,所述根据所述行车发电最大扭矩T Crg-max和所述行车发电最小扭矩T Crg-min确定电机许用发电扭矩T m,包括:
    根据电机外特性曲线,查询所述电机在发动机运行转速下的所述电机许用发电扭矩T m,所述电机许用发电扭矩T m小于所述行车发电最大扭矩T Crg-max且大于所述行车发电最小扭矩T Crg-min
  9. 根据权利要求8所述的混合动力汽车发电扭矩分配方法,其中,
    在所述行车发电最大扭矩T Crg-max小于或等于所述行车发电最小扭矩T Crg-min的情况下,所述电机许用发电扭矩T m等于所述行车发电最小扭矩T Crg-min
  10. 一种混合动力汽车发电扭矩分配装置,包括:
    第一模块,设置为获取驾驶员需求扭矩T Drv,并判断所述驾驶员需求扭矩T Drv是否处于高负荷区;
    第二模块,设置为响应于所述驾驶员需求扭矩T Drv处于所述高负荷区,发动机目标扭矩T Eng-tar为所述驾驶员需求扭矩T Drv和电附件消耗需求扭矩T Ele之和,电机目标扭矩T m-tar为所述电附件消耗需求扭矩T Ele
    第三模块,设置为响应于所述驾驶员需求扭矩T Drv没有处于所述高负荷区,获取行车发电最大扭矩T Crg-max和行车发电最小扭矩T Crg-min,根据所述行车发电最大扭矩T Crg-max和所述行车发电最小扭矩T Crg-min确定电机许用发电扭矩T m,发动机目标扭矩T Eng-tar为所述驾驶员需求扭矩T Drv和所述电机许用发电扭矩T m之和,电机目标扭矩T m-tar为发动机实际输出扭矩T Eng-act和所述驾驶员需求扭矩T Drv之差。
  11. 一种混合动力汽车,包括处理器、存储器以及存储在所述存储器上可被所述处理器执行的程序,所述程序被执行时实现如权利要求1-9任一项所述的混合动力汽车发电扭矩分配方法。
  12. 一种计算机存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-9任一项所述的混合动力汽车发电扭矩分配方法。
PCT/CN2021/133371 2021-03-18 2021-11-26 混合动力汽车发电扭矩分配方法及混合动力汽车 WO2022193721A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110292460.6A CN112977396B (zh) 2021-03-18 2021-03-18 混合动力汽车发电扭矩分配方法及混合动力汽车
CN202110292460.6 2021-03-18

Publications (1)

Publication Number Publication Date
WO2022193721A1 true WO2022193721A1 (zh) 2022-09-22

Family

ID=76334410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133371 WO2022193721A1 (zh) 2021-03-18 2021-11-26 混合动力汽车发电扭矩分配方法及混合动力汽车

Country Status (2)

Country Link
CN (1) CN112977396B (zh)
WO (1) WO2022193721A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116653911A (zh) * 2023-05-29 2023-08-29 广州汽车集团股份有限公司 混动系统控制方法、装置、计算机可读介质及电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112977396B (zh) * 2021-03-18 2022-04-22 中国第一汽车股份有限公司 混合动力汽车发电扭矩分配方法及混合动力汽车
CN113978447B (zh) * 2021-10-27 2024-01-09 岚图汽车科技有限公司 一种扭矩控制方法及相关设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150151736A1 (en) * 2013-12-02 2015-06-04 Hyundai Motor Company Method and apparatus for controlling torque intervention of hybrid electric vehicle
CN105644546A (zh) * 2015-12-29 2016-06-08 湖南南车时代电动汽车股份有限公司 一种混合动力客车的发动机和驱动电机的发电控制方法
CN110834621A (zh) * 2019-10-15 2020-02-25 中国第一汽车股份有限公司 轻混汽车扭矩分配控制方法、存储介质及车辆
CN111169458A (zh) * 2019-10-10 2020-05-19 中国第一汽车股份有限公司 一种混合动力汽车的功率分配方法、装置及系统
CN111873983A (zh) * 2020-06-28 2020-11-03 北京汽车股份有限公司 一种混合动力汽车扭矩控制的方法、装置及混合动力汽车
CN112977396A (zh) * 2021-03-18 2021-06-18 中国第一汽车股份有限公司 混合动力汽车发电扭矩分配方法及混合动力汽车

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5293212B2 (ja) * 2009-01-15 2013-09-18 日産自動車株式会社 車両の駆動力制御装置
CN102381314B (zh) * 2011-10-10 2014-03-12 重庆长安汽车股份有限公司 一种混合动力汽车充放电控制方法
FR2994545B1 (fr) * 2012-08-14 2014-08-08 Peugeot Citroen Automobiles Sa Procede de limitation de couple d'une machine electrique de vehicule hybride, dans le cas d'une forte demande en couple
CN103318170B (zh) * 2013-07-10 2016-08-10 潍柴动力股份有限公司 一种混合动力城市客车及其扭矩分配方法和系统
CN104410120A (zh) * 2014-11-24 2015-03-11 重庆长安汽车股份有限公司 混合动力汽车充电控制方法及装置
CN105292108A (zh) * 2015-10-29 2016-02-03 北京新能源汽车股份有限公司 混合动力汽车、控制系统及其控制方法
CN106853820B (zh) * 2015-12-09 2019-01-15 上海汽车集团股份有限公司 混合动力车辆多动力源分配的控制方法和系统
CN107253475B (zh) * 2017-06-08 2020-04-07 重庆长安汽车股份有限公司 一种用于混合动力汽车的扭矩分配方法、扭矩分配控制器
CN109693660B (zh) * 2017-10-24 2020-08-04 上海汽车集团股份有限公司 一种插电式混合动力汽车的动力源扭矩分配方法及装置
CN108556836B (zh) * 2018-05-30 2020-06-09 科力远混合动力技术有限公司 功率分流混合动力汽车制动器辅助起动发动机的控制方法
KR102582404B1 (ko) * 2019-02-20 2023-09-25 에이치엘만도 주식회사 마일드 하이브리드 시스템의 제어 방법 및 장치
CN110239512B (zh) * 2019-05-10 2021-01-05 浙江吉利控股集团有限公司 一种混合动力车辆的能量管理方法及系统
CN111016874B (zh) * 2019-12-05 2021-04-16 浙江吉利汽车研究院有限公司 一种用于混合动力汽车的扭矩分配方法和扭矩分配装置
GB2590961B (en) * 2020-01-09 2022-08-24 Jaguar Land Rover Ltd Hybrid vehicle control system and method
CN112124297B (zh) * 2020-09-07 2022-04-29 长城汽车股份有限公司 混合动力车辆的驱动方法、装置和车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150151736A1 (en) * 2013-12-02 2015-06-04 Hyundai Motor Company Method and apparatus for controlling torque intervention of hybrid electric vehicle
CN105644546A (zh) * 2015-12-29 2016-06-08 湖南南车时代电动汽车股份有限公司 一种混合动力客车的发动机和驱动电机的发电控制方法
CN111169458A (zh) * 2019-10-10 2020-05-19 中国第一汽车股份有限公司 一种混合动力汽车的功率分配方法、装置及系统
CN110834621A (zh) * 2019-10-15 2020-02-25 中国第一汽车股份有限公司 轻混汽车扭矩分配控制方法、存储介质及车辆
CN111873983A (zh) * 2020-06-28 2020-11-03 北京汽车股份有限公司 一种混合动力汽车扭矩控制的方法、装置及混合动力汽车
CN112977396A (zh) * 2021-03-18 2021-06-18 中国第一汽车股份有限公司 混合动力汽车发电扭矩分配方法及混合动力汽车

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116653911A (zh) * 2023-05-29 2023-08-29 广州汽车集团股份有限公司 混动系统控制方法、装置、计算机可读介质及电子设备
CN116653911B (zh) * 2023-05-29 2024-02-13 广州汽车集团股份有限公司 混动系统控制方法、装置、计算机可读介质及电子设备

Also Published As

Publication number Publication date
CN112977396A (zh) 2021-06-18
CN112977396B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2022193721A1 (zh) 混合动力汽车发电扭矩分配方法及混合动力汽车
US7438664B2 (en) Control apparatus for vehicle and hybrid vehicle
US10077039B2 (en) Hybrid electrical vehicle and method for controlling the same
US10011264B2 (en) Control system of hybrid electrical vehicle and control method for the same
CN107697063B (zh) 一种智能混合动力汽车能量管理控制方法
US7232401B2 (en) Method of compensating torque at cylinder switching on a DOD engine with electric parallel hybrid
KR101776723B1 (ko) 하이브리드 차량의 주행 모드 변환 제어 방법 및 그 제어 장치
CN104709278B (zh) 混合动力车辆的控制装置
US7150266B2 (en) Method of controlling air fuel ratio learning for dual injection internal combustion engine in hybrid vehicle
US10077040B2 (en) Hybrid electrical vehicle and method for controlling same
US7617893B2 (en) Method and system for determining final desired wheel power in a hybrid electric vehicle powertrain
WO2015032347A1 (zh) 混合动力汽车的控制系统和控制方法
US7216729B2 (en) Method and system of requesting engine on/off state in a hybrid electric vehicle
US8433465B2 (en) Transitioning between series-drive and parallel-drive in a hybrid-electric vehicle powertrain
KR101714206B1 (ko) 친환경 차량의 엔진 운전 제어 시스템 및 방법
US20150012159A1 (en) Speed change control system and speed change control method for hybrid vehicle
CN104417345A (zh) 混合动力汽车的控制系统和控制方法
JP2010070031A (ja) ハイブリッド車両の制御装置
CN104417523A (zh) 混合动力汽车的控制系统和控制方法
CA2895935A1 (en) Hybrid-vehicle control device and control method
CN110550018A (zh) 一种增程式混合动力汽车的能量管理方法
US11752996B2 (en) System and method for controlling power consumption of high voltage battery
KR20210075472A (ko) 하이브리드 차량의 제어 장치 및 방법
JP5212749B2 (ja) ハイブリッド車両の制御装置及び制御方法
WO2021052023A1 (zh) 发动机的扭矩控制方法及控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931295

Country of ref document: EP

Kind code of ref document: A1