WO2022188888A1 - 具有吹功能的园林工具 - Google Patents

具有吹功能的园林工具 Download PDF

Info

Publication number
WO2022188888A1
WO2022188888A1 PCT/CN2022/080647 CN2022080647W WO2022188888A1 WO 2022188888 A1 WO2022188888 A1 WO 2022188888A1 CN 2022080647 W CN2022080647 W CN 2022080647W WO 2022188888 A1 WO2022188888 A1 WO 2022188888A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
fan
edge
air
garden tool
Prior art date
Application number
PCT/CN2022/080647
Other languages
English (en)
French (fr)
Inventor
刘正伟
解文辉
李成重
喻学锋
段风伟
焦石平
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Priority to EP22766410.9A priority Critical patent/EP4306807A1/en
Publication of WO2022188888A1 publication Critical patent/WO2022188888A1/zh
Priority to US18/244,743 priority patent/US20240032489A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H1/00Removing undesirable matter from roads or like surfaces, with or without moistening of the surface
    • E01H1/08Pneumatically dislodging or taking-up undesirable matter or small objects; Drying by heat only or by streams of gas; Cleaning by projecting abrasive particles
    • E01H1/0809Loosening or dislodging by blowing ; Drying by means of gas streams
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G20/00Cultivation of turf, lawn or the like; Apparatus or methods therefor
    • A01G20/40Apparatus for cleaning the lawn or grass surface
    • A01G20/43Apparatus for cleaning the lawn or grass surface for sweeping, collecting or disintegrating lawn debris
    • A01G20/47Vacuum or blower devices
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H1/00Removing undesirable matter from roads or like surfaces, with or without moistening of the surface
    • E01H1/08Pneumatically dislodging or taking-up undesirable matter or small objects; Drying by heat only or by streams of gas; Cleaning by projecting abrasive particles
    • E01H1/0863Apparatus loosening or removing the dirt by blowing and subsequently dislodging it at least partially by suction ; Combined suction and blowing nozzles
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H1/00Removing undesirable matter from roads or like surfaces, with or without moistening of the surface
    • E01H1/12Hand implements, e.g. litter pickers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/703Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps specially for fans, e.g. fan guards

Definitions

  • the invention relates to the technical field of garden tools, in particular to a garden tool with a blowing function.
  • a garden blower is a common garden tool with a blowing function, which uses the airflow to the ground to remove dust or debris for cleaning.
  • the garden blower In order to generate higher wind pressure and wind speed to meet the cleaning needs, the garden blower must be at a higher power when working to generate enough wind power, but it is easy to generate noise.
  • the quality of the structural design of garden tools directly determines the level of noise during the work process. For example, in the existing garden tools, due to the structural cooperation defect between the fan and the fan, when the airflow dynamically passes through the gap between the fans, it will produce higher noise.
  • a garden tool with a blowing function comprising: a casing; an air duct, connected to the casing, and air can be blown out from the air duct; a fan, which rotates around the axis of the fan to make the air flow; a motor drives all The fan rotates around the axis of the fan; the blowing force F and the noise LP of the garden tool with the blowing function when the motor is at the highest speed satisfy the following relationship: 16N ⁇ F ⁇ 23N, 53dBA ⁇ LP ⁇ 57dBA; or, 23N ⁇ F ⁇ 40N, 53dBA ⁇ LP ⁇ 0.0121F 2 -0.0603F+53.065dBA.
  • the rotational speed of the motor is: 16000r/min ⁇ 26000r/min.
  • the rotational speed of the motor is: 18000r/min ⁇ 22000r/min.
  • the diameter of the projected contour of the fan in a plane perpendicular to the axis of the fan is 88 mm ⁇ 120 mm.
  • the blowing force F and the noise LP of the garden tool with the blowing function when the motor is at the highest rotational speed also satisfy the following relationship:
  • the air volume Q of the garden tool with the blowing function, the pressure P pressure , and the input power P work of the motor respectively satisfy the following relationships:
  • the garden tool is a blower capable of blowing leaves on the ground
  • the housing is provided with an air inlet
  • the blower includes an air inlet shield connected to the air inlet
  • the fan Can rotate around the fan axis and introduce outside air through the air inlet shroud
  • the fan comprises: a hub; and a plurality of fan blades extending radially outward from the hub and distributed around the fan axis;
  • the The fan blade includes a pressure surface and a suction surface for generating airflow, the pressure surface and the suction surface meet in the direction of the fan axis to form a leading edge and a trailing edge, and in the rotation direction of the fan, the leading edge is located in front of the trailing edge,
  • the minimum distance between the front edge of the fan blade and the air inlet shield is D5
  • the length of the garden tool is L0; wherein, 0.15 ⁇ D5: L0 ⁇ 0.4 .
  • the hair dryer further includes a duct connected to the housing; the duct includes a guide cover, a guide inner cover, and a guide connected to the guide cover and the guide inside
  • the first stationary blade between the hoods, the motor is accommodated in the inner shroud; the ratio of the cross-sectional area S1 of the air inlet to the cross-sectional area S2 of the outer shroud is 1.6-4.
  • the motor drives the fan to rotate around its own axis, so as to blow air out of the air duct.
  • the garden tool of the present application has different noise reduction effects.
  • the blowing force of the garden tool is greater than or equal to 16N and less than or equal to 23N, that is, when the garden tool is applied to the medium working condition
  • the noise generated by the garden tool is controlled as follows: 53dBA ⁇ LP ⁇ 57dBA; when the blowing force of the garden tool is greater than 23N, and
  • the noise control it produces is: 53dBA ⁇ LP ⁇ 0.0121F 2 -0.0603F+53.065dBA.
  • the garden tool of the present application can effectively reduce the noise during operation on the basis of ensuring the blowing performance.
  • the present application provides a garden tool with a blowing function, comprising: a casing; an air duct, connected to the casing, and air can be blown out from the air duct;
  • the fan comprises: a hub; and a plurality of fan blades extending radially outward from the hub and distributed around the fan axis; a motor, which drives the fan to rotate around the fan axis; characterized in that the fan blades include A pressure surface and a suction surface that generate airflow, the pressure surface and the suction surface meet in the direction of the fan axis to form a leading edge and a trailing edge, and in the rotation direction of the fan, the leading edge is located in the In front of the trailing edge, the projections of the leading edge and the trailing edge of two adjacent fan blades adjacent to each other in a plane perpendicular to the fan axis do not overlap each other; two adjacent fan blades Between projections in a plane perpendicular to the axis of the fan, there is an interval gap, and
  • the interval D0 is greater than or equal to 2 mm and less than or equal to 3.5 mm.
  • the fan axis is defined as the X axis
  • a line perpendicular to and intersecting with the fan axis through an end point of the leading edge close to the hub is defined as the Y axis
  • the X axis and the Y axis are defined as the Y axis.
  • the vertical and intersecting line is defined as the Z axis; the maximum distance between the projections of the suction surface and the pressure surface in the plane formed by the X axis and the Z axis, respectively, is defined as the maximum value of the fan blade. thickness h;
  • the ratio of the value of the gap D0 to the value of the maximum thickness h of the fan ranges from 1 to 1.5.
  • the number of the fan blades is 7 to 23.
  • the fan blades are injection-molded or die-casted on the hub.
  • the ratio of the diameter D2 of the hub to the diameter D1 of the projected contour of all the fan blades in a plane perpendicular to the fan axis is 0.4-0.6.
  • the present application provides a garden tool with a blowing function, comprising: a casing; an air duct connected to the casing, the air duct is provided with an air outlet for air to blow out; a fan, which rotates around the axis of the fan, used for Make the air flow and blow out from the air outlet; the motor drives the fan to rotate around the axis of the fan;
  • the fan includes: a hub; and a plurality of blades extending radially outward from the hub and distributed about a fan axis, the blades including a root secured to the hub, a top edge spaced from the hub, a leading edge and a trailing edge extending between the root portion and the top edge, the leading edge being located forward of the trailing edge in the direction of rotation of the fan;
  • the fan axis is defined as the X axis
  • the line passing through an end point of the leading edge close to the hub is perpendicular to and intersecting the fan axis is defined as the Y axis
  • the line perpendicular to and intersecting with the X axis and the Y axis is defined as Z axis;
  • the projection midpoints of the root and the top edge in the plane formed by the X axis and the Y axis are respectively defined as the first midpoint and the second midpoint, passing through the first midpoint and parallel to the Y axis
  • the line is defined as the first vertical axis, and in the direction of airflow, the second midpoint is located on the downstream side of the first vertical axis toward the air outlet of the air duct.
  • the included angle ⁇ between the line connecting the first midpoint and the second midpoint and the first vertical axis is 0° ⁇ 9°.
  • the projection of the leading edge on the plane formed by the Y axis and the Z axis is defined as a front side projection, and a line connecting opposite two ends of the front side projection is defined as a chord line L;
  • At least two places on the front side projection are located on opposite sides of the chord line L, respectively.
  • the projection of the front side at the part of the outer contour of the front edge away from the hub deviates from the chord line L and is concave on one side away from the air outlet of the air duct;
  • the front side projection of the front edge close to the part of the outer contour of the hub deviates from the chord line L and protrudes toward one side of the air outlet of the air duct.
  • the projection of the leading edge on the plane formed by the Y axis and the Z axis is defined as a front side projection, and the front side projection is on the part of the leading edge away from the hub
  • the outer contour is bent and extended to form a concave structure on the front side projection, and the opening direction of the concave structure is consistent with the rotation direction of the fan.
  • the front side is projected between a tangent line at a point where the outer contour lines of the front edge and the top edge intersect and away from the hub and the chord line L
  • the bending angle ⁇ is 5° to 15°.
  • the projection of the leading edge on the plane formed by the X axis and the Y axis is located on the side of the Y axis facing the air outlet of the air duct.
  • the projection of the leading edge in the plane formed by the X axis and the Y axis is a tangent between an end point of the leading edge close to the hub and the Y axis
  • the included angle ⁇ is 3° to 25°.
  • a line passing through an end point of the trailing edge close to the hub and perpendicular to the X-axis is defined as a second vertical axis
  • the projection of the trailing edge on the plane formed by the X axis and the Y axis is located on the side of the second vertical axis facing away from the air outlet of the air duct.
  • the projection of the trailing edge in the plane formed by the X-axis and the Y-axis is between a tangent at the intersection of the trailing edge and the hub and the second vertical axis
  • the included angle ⁇ is 8° ⁇ 20°.
  • the fan is intercepted in a plane perpendicular to the Y axis, and the connecting lines between the intersections on the leading edge and the trailing edge respectively are defined as installation lines, and the installation lines and The installation angle ⁇ between the X axes gradually increases from the root to the top edge.
  • the installation angle ⁇ between the installation line and the X axis is 5° ⁇ 30° at the root.
  • the included angle ⁇ between the mounting line on the top edge and the X axis is 30° ⁇ 85° at the top edge.
  • the fan blade further includes a curved transition portion located at the junction of the trailing edge and the top edge and is formed from the top edge to the hub, and the circular transition portion of the curved surface has a transition portion.
  • the arc surface protrudes away from the hub.
  • the radius of the rounded corner projected by the curved surface transition portion in the plane formed by the X axis and the Y axis is 1 mm ⁇ 5 mm.
  • a tangent of the curved transition portion projected at an end point of the curved transition portion close to the top edge in the plane formed by the X axis and the Y axis and the Y axis
  • the included angle ⁇ is between 0° and 45°.
  • the duct also includes a duct connected to the casing; the duct includes a diversion cover, a flow diversion inner cover, and is connected between the flow diversion cover and the flow diversion inner cover
  • the first stationary blade; the gap D3 between the projections of the fan blade and the first stationary blade respectively in the plane formed by the X axis and the Y axis gradually increases from the root to the top edge .
  • the present application provides a garden tool with a blowing function, comprising: a casing; an air duct connected to the casing, the air duct is provided with an air outlet for air to blow out; a duct connected to the casing , used to guide the flow of the air; the fan, which rotates around the axis of the fan, is used to make the air flow; the motor drives the fan to rotate around the axis of the fan; a first stationary blade between the guide outer cover and the guide inner cover;
  • the first stationary vane includes a bottom connected to the inner guide cover, a top connected to the outer guide cover, a first front edge and a first rear edge spaced apart in the direction of airflow;
  • the fan axis is defined as the X axis, and the plane passing through any point on the fan and perpendicular to the X axis is defined as the reference plane;
  • a distance between an end point of the first front side edge close to the bottom and the reference plane is smaller than a distance between an end point of the first front side edge close to the top and the reference plane.
  • the fan includes a hub, a plurality of blades extending radially outward from the hub and distributed around a fan axis, the blades including a root portion fixed to the hub, and the hub a spaced apart top edge, a leading edge and a trailing edge extending between the root and the top edge, the leading edge being located forward of the trailing edge in the direction of rotation of the fan;
  • the distance between an end point of the first front side edge close to the bottom and an end point of the rear edge close to the root is smaller than a distance between an end point of the first front side edge close to the top and the rear edge close to the bottom end. The distance from an endpoint of the top edge.
  • a distance between an end point of the first rear edge close to the bottom and the reference plane is smaller than a distance between an end point of the first rear edge close to the top and the reference plane distance.
  • the fan includes a hub, a plurality of blades extending radially outward from the hub and distributed around a fan axis, the blades including a root portion fixed to the hub, and the hub a spaced apart top edge, a leading edge and a trailing edge extending between the root and the top edge, the leading edge being located forward of the trailing edge in the direction of rotation of the fan;
  • the distance between an end point of the first rear side edge close to the bottom and an end point of the rear edge close to the root is smaller than a distance between an end point of the first rear side edge close to the top and the rear edge close to the end point. The distance from an endpoint of the top edge.
  • the axis of the inner air deflector is defined as the X' axis
  • the line passing through an end point of the first front side edge close to the bottom that is perpendicular to the X' axis and intersects is defined as Y' axis
  • the line perpendicular to and intersecting with the X' axis and the Y' axis is defined as the Z' axis;
  • the cross section of the stationary blade obtained by intercepting the first stationary blade with a plane parallel to the X' axis and the Z' axis forming a plane crosses the X' axis near a part of the fan and runs along the inner shroud. Circumferential bending extension.
  • the section of the stationary blade obtained by the first stationary blade is taken with a plane parallel to the X' axis and the Z' axis forming a plane, and the maximum height in the direction of the Z' axis Defined as the bending distance D4 of the first stationary blade;
  • the bending distance D4 of the first stationary blade gradually increases from the bottom to the top.
  • the bending distance D4 of the first stationary blade is 1 mm ⁇ 15 mm.
  • the first stationary blade has a windward side and a leeward side opposite to the windward side, and the windward side and the leeward side are formed by the X' axis and the Z' axis
  • the outer contour line of the projection of the plane intersects, and the angle between the tangent at an intersection near the fan and the X' axis is defined as the first stationary blade inlet angle Le, and the first stationary blade inlet angle Le is 35° ⁇ 65°.
  • the stator vane section includes a first portion extending along the X' axis, a second portion extending over the X' axis and extending along the circumferential direction of the inner shroud; the The second part includes an inner concave line and an outer convex line arranged oppositely, and the maximum distance between the connecting line at both ends of the inner concave line and the outer convex line is defined as the concave chord height H, and the concave chord height H 2mm to 6mm.
  • the projection of the first front edge on the plane formed by the X' axis and the Y' axis is located on the side of the Y' axis facing the air outlet of the air duct.
  • the projection of the first front edge on the plane formed by the X' axis and the Y' axis is a clip between the tangent near the bottom and the X' axis
  • the angle ⁇ is 60° to 90°.
  • the projection of the first rear edge on the plane formed by the X' axis and the Y' axis is a circular arc concave toward the first front edge.
  • the projection of the first rear side edge on the plane formed by the X' axis and the Y' axis is a clip between the tangent near the bottom and the X' axis
  • the angle b is 45° to 90°.
  • the projection of the first rear side edge on the plane formed by the X' axis and the Y' axis is a clip between the tangent near the top and the X' axis
  • the angle c is smaller than the included angle b.
  • the bottom of the first stationary blade is inclined at a first angle relative to the fan axis; the top of the first stationary blade is inclined at a second angle relative to the fan axis.
  • the first stationary blades are evenly spaced around the inner air guide cover, and the airflow generated by the fan can pass through the gaps between the first stationary blades; the first stationary blades The number of leaves is 3 to 11.
  • the length of the first stationary blade is L1
  • the mid-arc chord length of the fan blade of the fan is L2; wherein, 3 ⁇ L1: L2 ⁇ 9;
  • the length of the first stationary blade is defined as the distance between the first front side edge of the first stationary blade and the first rear side edge of the first stationary blade along the airflow direction.
  • the present application provides a garden tool with a blowing function, comprising: a casing; an air duct, connected to the casing, air can be blown out from the air duct; a duct, connected to the casing, for guiding the The air flows; the fan rotates around the axis of the fan, and is used to make the air flow; the motor drives the fan to rotate around the axis of the fan; the first stationary blade between the inner guide covers, the garden tool further comprises a guide cone connected to the inner guide cover and a second stationary blade arranged on the guide cone;
  • the second stationary vane In the flow direction of the airflow, the second stationary vane is located downstream of the first stationary vane.
  • the second vane includes a first inner edge connected to the flow guide cone, a first outer edge opposite to the first inner edge and in contact with the first inner edge an edge, and an intersection at the connection of the first inner edge and the first outer edge; the first outer edge is in the shape of an arc that protrudes radially outward.
  • the width W of the second vane decreases linearly from the first inner edge to the first outer edge.
  • the second stationary blade includes two end portions adjacent to the corresponding intersection points respectively, and a middle portion located between the two end portions; the middle portion is located at the same
  • the width of the cross-section remains constant; the width of the end portions in the same cross-section gradually increases from the intersection to the middle portion.
  • the second stationary vanes are evenly spaced around the guide cone, and the airflow passing through the first stationary vanes can pass through the gap between the second stationary vanes; the The number of the second stationary blades is 3-7.
  • the length of the second stationary blade is L3, and the chord length of the first stationary blade is L4; wherein, 0.2 ⁇ L3: L4 ⁇ 1;
  • the length of the second stationary vane is defined as the dimension of the second stationary vane along the flow direction of the airflow.
  • the inlet installation angle of the second stationary blade is d, and 0° ⁇ d ⁇ 15°;
  • the inlet installation angle of the second stationary blade is defined as the included angle between the tangent of the mid-arc surface of the second stationary blade and the fan axis of the fan.
  • the garden tool further comprises a third stationary blade located downstream of the second stationary blade along the airflow direction; the third stationary blade is in the shape of a flat plate and is approximately along the direction of the fan axis extend and are evenly spaced along the circumference.
  • the number of the third stationary vanes is 3 to 11.
  • the distance between the third stationary blade and the first stationary blade is L5, and the chord length of the first stationary blade is L4; wherein, 2 ⁇ L5: L4 ⁇ 4.
  • the length of the third stationary blade is L6, and the chord length of the first stationary blade is L4; wherein, 0.5 ⁇ L6: L4 ⁇ 2; the length of the third stationary blade is defined as is the dimension of the third stationary blade along the axial direction of the fan.
  • the inlet installation angle of the third stationary blade is e, 0° ⁇ e ⁇ 15°.
  • the third stationary vane includes a second front edge, a second rear edge, a second inner edge close to the housing, and a second outer edge opposite to the second inner edge edge;
  • the second outer edge extends obliquely relative to the fan axis
  • the second front edge extends concavely relative to the fan axis, and smoothly transitions with the second outer edge.
  • the application also provides a garden tool with a blowing function, comprising: a casing; an air duct, connected to the casing, and air can be blown out from the air duct; a duct, connected to the casing, for guiding the the air flow; the fan, which rotates around the axis of the fan, is used to make the air flow; the motor drives the fan to rotate around the axis of the fan;
  • the first stationary blade between the guide inner covers, and the garden tool further includes a third stationary blade located downstream of the first stationary blade in the airflow direction.
  • the third stationary blade is disposed in a connection area between the casing and the air duct.
  • the third stationary blades are in the shape of a flat plate, extend substantially along the axial direction of the fan, and are evenly spaced along the circumferential direction.
  • the duct further comprises a flow guide cone connected to the flow guide inner cover and a second stationary vane arranged on the flow guide cone;
  • the second stationary vane is located between the first stationary vane and the third stationary vane.
  • the present application provides a garden tool with a blowing function, comprising: a casing with an air inlet; a fan, which rotates around the axis of the fan, and is used to make air flow; a motor, which drives the fan to rotate around the axis of the fan; a hood connected to the air inlet, the fan can rotate around the axis of the fan and introduce outside air from the air inlet through the air inlet shroud;
  • a three-dimensional air intake array grid enveloping the surface, the three-dimensional air intake array grid includes:
  • the web includes a plurality of the webs spaced along the second direction;
  • the flow-breaking rib extending along the second direction includes a plurality of flow-breaking ribs, and each of the flow-breaking rib is overlapped with two adjacent webs along the second direction, and the plurality of the flow breaking ribs are overlapped along the second direction.
  • the flow breaking ribs and a plurality of the webs are defined to form a plurality of grid units arranged at intervals, and air intake holes for air to pass through are formed between the adjacent grid units;
  • the protruding portion of the rib is raised in a direction away from the air inlet relative to the web, so as to form an outwardly convex outer envelope surface of the three-dimensional air inlet array grid; wherein the first direction is related to the The second direction intersects.
  • a plurality of the grid units are arranged at intervals along the second direction to form a plurality of rows, and the grid units of each row are arranged along the first direction;
  • the two most adjacent grid cells in adjacent rows are staggered in the first direction.
  • two adjacent flow-breaking ribs in adjacent rows are staggered at equal intervals in the first direction.
  • the three-dimensional air intake array grid is provided with a main air intake area and an auxiliary air intake area surrounding the main air intake area; the grid units located in the main air intake area are The projected shape on the plane perpendicular to the axis of the air inlet is the same.
  • the flow-breaking rib includes a first air-guiding portion and a second air-guiding portion extending from the ejection portion toward the adjacently spaced webs; the flow breaking rib the rib has a windward side and a leeward side opposite the windward side;
  • the predetermined distance D6 at which the leeward side of the ejection portion bulges outward relative to the web is 2 mm ⁇ 20 mm.
  • the ejection portion has a top surface on the windward side, and the first wind guide portion and the second wind guide portion are respectively a first wind guide surface and a second guide surface on the windward side. wind surface;
  • the width of the top surface is respectively smaller than the width of the first wind guide surface and the second wind guide surface.
  • the widths of the first wind guide surface and the second wind guide surface gradually increase from the point where they are connected with the top surface to the direction of the web.
  • the top surface is perpendicular to the axis of the air inlet
  • the projections of the first wind guide surface and the second wind guide surface in the plane perpendicular to the first direction are respectively between the projections of the top surface in the plane perpendicular to the first direction.
  • the included angles are all De, 90° ⁇ De ⁇ 180°.
  • the windward side further includes third wind guide surfaces located on opposite sides of the flow-breaking rib along the first direction;
  • the third wind guide surface is joined to the top surface, the first wind guide surface and the second wind guide surface, and extends outwardly and obliquely along the first direction.
  • the included angle between the first wind guide surfaces on opposite sides of the top surface is 10° ⁇ 60°.
  • the distance between two adjacent webs is 5 mm ⁇ 15 mm.
  • the side of the web plate facing away from the air inlet includes at least a first side and a second side which are arranged to intersect in the first direction, and the space between the first side and the second side is The included angle is: 140° ⁇ 180°.
  • the air inlet shield further includes a frame connected to the air inlet, and the frame surrounds the outside of the three-dimensional air intake array grid.
  • the outer envelope surface of the three-dimensional air intake array grid protrudes from an end surface of the frame facing away from the air inlet.
  • the air inlet shroud has a shroud axis, and an end face of the frame facing away from the air inlet is inclined relative to the shroud axis.
  • the present application provides a garden tool with a blowing function, comprising: a casing with an air inlet; a fan, which rotates around the axis of the fan, and is used to make air flow; a motor, which drives the fan to rotate around the axis of the fan; a hood, connected to the air inlet, the fan can rotate around the axis of the fan and introduce outside air from the air inlet through the air inlet shield;
  • the garden tool further includes a plurality of guide vanes arranged in the upstream area of the fan, and the airflow introduced by the air inlet can pass through the gaps between the guide vanes to guide the airflow to form parallel airflow.
  • a plurality of the guide vanes are arranged parallel to each other and evenly spaced.
  • the distance between two adjacent guide vanes is 12 mm to 18 mm.
  • the distance between the guide vane and the air inlet is 10 mm to 50 mm.
  • the chord length of each of the guide vanes is 10 mm to 50 mm.
  • the housing has an air flow channel communicating with the air inlet
  • the housing includes a straight section substantially parallel to the axis of the fan, and a curved section upstream of the straight section and curved downwardly relative to the straight section;
  • the guide vanes are arranged on the curved section and extend along the inner wall of the curved section.
  • the included angle between the axis of the fan and the vertical line perpendicular to the plane where the air inlet is located is 120 degrees to 180 degrees.
  • the casing includes a first half-shell and a second half-shell symmetrically arranged on a symmetrical reference plane; the fan axis is located on the symmetrical reference plane, and the first half-shell and the second half-shell have an upper edge and a lower edge that fit each other; the upper edge of the first half-shell and the upper edge of the second half-shell are located in the part of the curved section, facing the symmetry reference The projections on the faces overlap each other and have a third curved profile;
  • the lower edge of the first half-shell and the lower edge of the second half-shell are located in the portion of the curved segment, the projections toward the symmetry reference plane overlap each other and have a fourth curved profile.
  • both the third curved contour and the fourth curved contour are arc-shaped
  • the third curved contour and the fourth curved contour are located on concentric circles with different radii.
  • the guide vane includes a first sub-guide vane and a second sub-guide vane which are symmetrically arranged on the symmetrical reference plane;
  • the first sub-guide vane and the second sub-guide vane are coupled to form a complete guide vane.
  • the projection of the guide vane toward the symmetrical reference plane has a fifth curved contour, and the fifth curved contour is in the shape of an arc;
  • a middle arc line that bisects the third curved contour and the fourth curved contour is perpendicular and bisects the fifth curved contour.
  • FIG. 1 is a structural cross-sectional view of a garden tool with a blowing function in an embodiment of the application
  • Fig. 2 is two kinds of different noise curves of the application
  • Fig. 3 is the structural schematic diagram of the fan of the garden tool with blowing function shown in Fig. 2;
  • FIG. 4 is a schematic structural diagram of the fan shown in FIG. 3 from another perspective
  • FIG. 5 is a schematic structural diagram of the fan shown in FIG. 3 from another perspective
  • FIG. 6 is a schematic diagram 1 of the projection structure of the fan shown in FIG. 5 in the plane formed by the Y axis and the Z axis;
  • FIG. 7 is an enlarged schematic view of the structure at the middle circle C of the fan shown in FIG. 6;
  • FIG. 8 is an enlarged schematic view of the structure at the middle circle T of the fan shown in FIG. 6;
  • FIG. 10 is a schematic diagram 1 of the projection structure of the fan in the plane formed by the X axis and the Y axis according to an embodiment of the application;
  • FIG. 11 is a second schematic diagram of the projection structure of the fan in the plane formed by the X axis and the Y axis according to an embodiment of the application;
  • FIG. 12 is an enlarged schematic view of the structure at the middle circle D of the fan shown in FIG. 11;
  • FIG. 13 is a second schematic view of the projection structure of the fan shown in FIG. 5 in the plane formed by the Y axis and the Z axis;
  • FIG. 14 is a schematic cross-sectional view of the fan shown in FIG. 13 along different directions;
  • 15 is a noise spectrum comparison diagram of a fan in an embodiment of the present application with 17 blades and a fan in the prior art with 17 blades;
  • Fig. 16 is the structural schematic diagram of the duct of the garden tool with blowing function shown in Fig. 1;
  • FIG. 17 is a schematic cross-sectional view of FIG. 16 along the radial direction
  • Fig. 18 is a projection view in the plane formed by the X' axis and the Y' axis of the matching structure of the fan and the first stationary blade shown in Fig. 1;
  • 19 is a schematic cross-sectional view of the matching structure of the fan and the first stationary blade shown in FIG. 1 along different directions;
  • Fig. 20 is the assembly schematic diagram of the guide cone and the second stationary blade of the garden tool with blowing function shown in Fig. 1;
  • FIG. 21 is a schematic view of the assembly of the flow guide cone and the second stationary vane of FIG. 20 from another perspective;
  • Figure 22 is a partial enlarged view at B in Figure 20;
  • Fig. 23 is the assembly schematic diagram of the connecting cylinder and the third stationary blade of the garden tool with blowing function shown in Fig. 1;
  • FIG. 24 is a schematic view of the assembly of the connecting cylinder and the third stationary blade shown in FIG. 23 from another perspective;
  • FIG. 25 is a schematic cross-sectional view of FIG. 24 along the radial direction
  • Fig. 26 is the first structural schematic diagram of the air inlet shield of the garden tool with blowing function shown in Fig. 1;
  • Fig. 27 is a structural cross-sectional view of the air inlet shield shown in Fig. 26 along the C1-C1 direction;
  • Fig. 28 is a structural cross-sectional view of the air inlet shield shown in Fig. 26 along the C2-C2 direction;
  • Fig. 29 is a structural cross-sectional view of the air inlet shroud shown in Fig. 26 along the C3-C3 direction;
  • Fig. 30 is the second structural schematic diagram of the air inlet shield of the garden tool with the blowing function shown in Fig. 1;
  • Figure 31 is a schematic structural diagram of the flow-breaking rib of the air inlet shield shown in Figure 15;
  • FIG. 32 is a schematic cross-sectional view of the assembly structure of the guide vane and the first half-shell or the second half-shell of the garden tool with blowing function shown in FIG. 1 .
  • a power tool with a blowing function in the related art may specifically be a garden tool 100.
  • a garden blower as an example, it usually includes a housing 10, a duct 30, a fan 50 for generating airflow, a motor for driving the fan 50, and It is matched with the air duct 20 of the housing 10 .
  • both the motor and the fan 50 are arranged in the duct 30
  • the duct 30 is arranged in the casing 10
  • the air duct 20 is connected to the casing 10 and connected with the casing 10 to form an air flow channel.
  • the air duct 20 is provided with an air outlet 22, and the housing 10 is also provided with an air inlet 11.
  • the function of the duct 30 of the air inlet 11 is to guide the airflow generated by the fan 50 to move to the air outlet 22 of the blowing duct 20, and the air flows from the air inlet. 11 enters the interior of the housing 10, and flows from the airflow channel to the air outlet 22 to be blown out.
  • the duct can also be connected between the casing 10 and the air duct 20 .
  • the cleaning conditions encountered by the garden blower mainly include: fallen leaves and small garbage on the ground outside the home or in the park, debris between the cracks of the floor tiles, and wet leaves adhering to the ground.
  • the inventors found that, in order to meet the cleaning requirements for the above-mentioned working conditions, the air volume and wind speed provided by the garden blower should be large enough.
  • the motor and fan 50 are miniaturized, the rotational speed of the motor needs to be increased in order to ensure the air volume and wind speed. In this way, the noise caused by the eddy current generated by the airflow hitting the fan blade 54 is increased.
  • the size of the duct 30 is reduced, which will also increase the airflow.
  • the impact on the structure in the duct 30 generates eddy currents and causes noise.
  • the airflow is separated from the eddy current, it is easy to generate high-decibel noise, even sharp noise.
  • the embodiment of the present application takes a garden blower as an example to describe the structure of the garden tool 100 with a blowing function in the present application.
  • the garden tool 100 can be a hand-held garden blower. This embodiment is only used as an example to illustrate, It does not limit the technical scope of this application.
  • a garden tool 100 with a blowing function includes: a casing 10 , an air duct 20 , a fan 50 and a motor.
  • the air duct 20 is connected to the housing 10 , and air can be blown out from the air duct 20 .
  • the fan 50 rotates about the fan axis 51 for creating a flow of air.
  • the motor drives the fan 50 to rotate about the fan axis 51 .
  • the blowing force F of the garden tool 100 with blowing function and the noise LP satisfy the following relationship: 16N ⁇ F ⁇ 23N, 53dBA ⁇ LP ⁇ 57dBA; or, 23N ⁇ F ⁇ 40N, 53dBA ⁇ LP ⁇ 0.0121F 2 -0.0603F+53.065 dBA.
  • the motor drives the fan 50 to rotate around its axis, so as to blow air out of the air duct 20 .
  • the garden tool 100 of the present application has different noise reduction effects.
  • the noise generated by the garden tool 100 can be controlled as follows: 53dBA ⁇ LP ⁇ 57dBA;
  • the force is greater than 23N and less than or equal to 40N, that is, when it is generally used in heavy working conditions, the noise generated can be controlled as: 53dBA ⁇ LP ⁇ 0.0121F 2 -0.0603F+53.065dBA.
  • the garden tool 100 of the present application effectively reduces noise during operation on the basis of ensuring the blowing performance.
  • the blowing force in this embodiment can be a value between 16N and 23N under medium working conditions, such as: 16N, 17N, 18N, 19N, 20N, 21N, 22N, etc., while the noise can be Control to be greater than or equal to 53dBA and less than 57dBA, such as: 53dBA, 54dBA, 55dBA, 56dBA, etc.
  • the blowing force is a value greater than 23N under heavy working conditions, such as: 24N, 25N, 27N, 29N, 30N, 35N, 40N, etc.
  • the noise in this application can be achieved in the range of 53dBA ⁇ 0.0121F 2 -0.0603F+ Between 53.065dBA, for example: 53dBA, 54dBA, 55dBA, 56dBA, 58dBA, 60dBA, 62dBA, 63dBA, 64dBA, 65dBA, etc.
  • the blowing force F and the noise LP satisfy the following relationship: 23N ⁇ F ⁇ 40N, 53dBA ⁇ LP ⁇ 0.0081F 2 +0.1374F+48.473dBA.
  • blowing force is greater than one value of 23N under heavy working conditions, such as: 24N, 25N, 27N, 29N, 30N, 35N, 40N, etc.
  • the noise in this application can be achieved in the range of 53dBA ⁇ 0.0081F 2 + Values between 0.1374F+48.473, for example: 53dBA, 54dBA, 55dBA, 56dBA, 58dBA, 60dBA, 62dBA, 63dBA, etc.
  • the noise data recorded in this embodiment can be obtained by using the noise measurement method of GB/T4583-2007 Garden Tools 100; EU noise regulations can also be used, for example, the requirements for the test environment can be one of the following : a free-field laboratory above a reflective surface; an outdoor flat open space where the test environment has no other reflectors except the emitting surface, so that the sound source can radiate to the free space above the reflective surface; for the sound pressure on the measurement surface, the same as the sound Compared with the source emission field, the effect of the reverberation field is less in the room etc.
  • the criterion for background noise may be: the averaged background noise at the microphone position should be at least 6dBA lower than the measured sound pressure level, of course, preferably lower than 15dBA and so on.
  • a circle with a radius of 15 meters (50 feet) centered on the tester can be selected under the condition that the background noise of the community is less than 52 decibels, and multiple (for example, 8) direction points are taken on the circle to test each point respectively. Measure the A-weighted sound pressure level, and average the 8 test values to obtain the noise value.
  • the test tool can be a hand-held noise decibel meter.
  • the garden tool 100 of the present application achieves the above-mentioned better noise reduction performance, that is, under the same blowing force, the noise of the product is lower.
  • improvements should be made in at least one of the structures of the upstream area of the air duct 12, the fan 50, the first stationary blade 36, the second stationary blade 39, the third stationary blade 40 and the air inlet shroud 60.
  • the upstream area and/or the downstream area of the air duct 12 is provided with sound-absorbing or sound-insulating materials, the gap between the blades 54 of the fan 50 is controlled, the front edge 546 of the fan 50 is bent along the rotation direction of the fan 50, and the The first front side edge 366 or the second rear side edge 368 on the first stationary blade 36 extends backwards along the side toward the air outlet 22 and the like.
  • the above-mentioned different improved structures or combinations of different improved structures achieve a better noise reduction effect.
  • the noise test is performed with two garden tools 100 with different combinations of improved structures as follows, and the obtained noise data is given as an example, please refer to Table 1.
  • Table 1 is an example of noise data of two garden tools with different combinations of improved structures of the application.
  • the measured data of noise 1 is in the oblique section area under the curve of FIG. 2( a ), namely: 53dBA ⁇ LP ⁇ 0.0121F 2 ⁇ 0.0603F+53.065dBA.
  • the data of noise 2 is in the oblique section area under the curve of Fig. 2(b), namely: 53dBA ⁇ LP ⁇ 0.0081F 2 +0.1374F+48.473dBA.
  • the rotational speed of the motor is controlled as follows: the rotational speed of the motor is 13000 r/min to 27000 r/min.
  • the rotational speed of the motor is controlled as follows: 16000r/min ⁇ 26000r/min.
  • the speed control of the motor is 18000r/min ⁇ 22000r/min.
  • the rotational speed of the motor is further limited within a certain range, so that the garden tool 100 can take into account both the air output and the noise reduction, and improve the use experience of the product.
  • the speed of the motor can take any value within 16000r/min ⁇ 26000r/min, for example: the speed of the motor can be but not limited to 18000r/min, 18500r/min, 19000r/min, 19500r/min, 20000r /min, 22000r/min, 23000r/min, 24000r/min, 25000r/min, etc., the noise generated by the reduction of the motor speed will be reduced.
  • the projected profile diameter of the fan 50 in a plane perpendicular to the fan axis 51 is 88 mm ⁇ 120 mm.
  • the diameter of the fan 50 has a certain influence on the air output volume, and the larger the diameter of the fan 50 is, the larger the air output volume is. However, if the diameter of the fan 50 is too large, not only will the overall volume of the garden tool 100 become larger, but also the motor needs to output more work.
  • the diameter of the fan 50 is reasonably controlled to be 88mm-120mm, which is not only conducive to increasing the air output, but also conducive to the miniaturization and energy saving of the garden tool 100, thereby A garden tool 100 with the effects of low rotational speed, high air volume and low noise is achieved.
  • the projection profile diameter should be understood as: the projection formed by the fan 50 in a plane perpendicular to the fan axis 51 is or approximately is a circular profile, and the diameter of the circular profile is the projected profile diameter.
  • the projected profile diameter is desirable but not limited to 88mm, 90mm, 95mm, 100mm, 105mm, 110mm, 115mm, 120mm, etc. in the design.
  • the air volume Q of the garden tool 100 with the blowing function, the pressure P pressure , and the input power P work of the motor respectively satisfy the following relationships: 450cfm ⁇ Q ⁇ 1500cfm, 1400Pa ⁇ P pressure ⁇ 5000Pa , 700W ⁇ P work ⁇ 3000W.
  • air duct efficiency (air flow rate of garden tool 100 ⁇ air outlet pressure at air duct 20) / input power of the motor, it can be known that the air volume Q of garden tool 100, the pressure P pressure , the input power P power of the motor are reasonably controlled respectively. The data can ensure high air duct efficiency.
  • the air volume Q, the pressure P pressure , and the motor input power P work of the garden tool 100 with the blowing function satisfy the following relationships: 600cfm ⁇ Q ⁇ 850cfm, 3000Pa ⁇ P pressure ⁇ 4500Pa , 700W ⁇ P power ⁇ 1400W.
  • air duct efficiency (air flow rate of garden tool 100 ⁇ air outlet pressure at air duct 20)/motor input power
  • the garden tool is a blower capable of blowing leaves on the ground.
  • the housing is provided with an air inlet 11
  • the blower includes an air inlet shield 60 connected to the air inlet 11 .
  • the fan 50 can rotate around the fan axis 51 and introduce outside air through the air inlet shield 60 .
  • the fan 50 includes: a hub 52 ; and a plurality of blades 54 extending radially outward from the hub 52 and distributed around a fan axis 51 .
  • the fan blade 54 includes a pressure surface 543 and a suction surface 545 for generating airflow.
  • the pressure surface 543 and the suction surface 545 meet in the direction of the fan axis 51 to form a leading edge 546 and a trailing edge 548 .
  • the leading edge 546 is located forward of the trailing edge 548 in the rotational direction of the fan 50 .
  • the minimum distance between the leading edge 546 of the fan blade 54 of the fan 50 and the air inlet shield 60 is D5
  • the length of the garden tool is L0; wherein, 0.15 ⁇ D5: L0 ⁇ 0.4.
  • the minimum value of the distance between the fan 50 and the air inlet shroud 60 is the ratio between D5 and the length L0 of the garden tool 100 to be controlled between 0.15 and 0.4, for example, the air inlet 11 and the leading edge 546 of the fan blade 54
  • the distance between them is about 200mm, etc., so that there is enough space before the fan 50 to reduce the pressure drop in the garden tool 100 and attenuate the noise amplitude. In this way, it not only ensures a reasonable product structure, but also ensures stable air intake and reduces noise.
  • the minimum distance between the front edge 546 of the fan blade 54 of the fan 50 and the air inlet shroud 60 should be understood as: in the direction of the fan axis 51 , the front edge 546 of the fan blade 54 and the air inlet shroud 60 (For example, the distance between the frame 64 or the three-dimensional air intake array grid) takes the minimum value.
  • the length of the garden tool 100 should be understood as: in the direction of the fan axis 51, the distance between the two outermost end points of the garden tool 100, for example: in the direction of the fan axis 51, the air inlet shield 60 faces away from the fan The maximum distance between one side of the duct 50 and the end of the air duct 20 away from the fan 50 .
  • the hair dryer further includes a duct 30 connected with the housing.
  • the duct 30 includes a guide cover 32 , a guide inner cover 34 and a first stationary blade 36 connected between the guide cover 32 and the guide inner cover 34 , and the motor is accommodated in the guide inner cover 34 .
  • the air inlet 11 and the air guide cover 32 are taken in a plane perpendicular to the axis of the fan.
  • the ratio between the cross-sectional area S1 of the air inlet 11 and the cross-sectional area S2 of the air guide cover 32 is 1.6 to 4. It can be seen that the cross-sectional area S1 of the air inlet 11 needs to be larger than the cross-sectional area S2 of the air guide cover 32.
  • the ratio of the cross-sectional areas of the two is controlled between 1.6 and 4, which is conducive to ensuring sufficient air volume in the duct 30 and improving the blowing efficiency.
  • a garden tool 100 with a blowing function includes: a casing 10 , an air duct 20 , a fan 50 and a motor.
  • the air duct 20 is connected to the housing 10 , and air can be blown out from the air duct 20 .
  • the fan 50 rotates about the fan axis 51 for creating a flow of air.
  • the fan 50 includes: a hub 52 ; and a plurality of blades 54 extending radially outward from the hub 52 and distributed around a fan axis 51 .
  • the motor drives the fan 50 to rotate about the fan axis 51 .
  • the fan blade 54 includes a pressure surface 543 and a suction surface 545 for generating airflow.
  • the pressure surface 543 and the suction surface 545 meet in the direction of the fan axis 51 to form a leading edge 546 and a trailing edge 548 .
  • the leading edge 546 is located in front of the trailing edge 548 , and the projections of the leading edge 546 and the trailing edge 548 of two adjacent fan blades 54 adjacent to each other in a plane perpendicular to the fan axis 51 do not overlap each other .
  • There is an interval between projections of two adjacent fan blades 54 in a plane perpendicular to the fan axis 51 and the interval D0 is greater than 0 mm and less than or equal to 4 mm.
  • the above-mentioned garden tool 100 with a blowing function arranges a plurality of fan blades 54 on the hub 52 at intervals around the fan axis 51, so that the projections of two adjacent fan blades 54 in a plane perpendicular to the fan axis 51 have the same value.
  • the spaced gaps are provided for the airflow to pass through the spaced gaps stably, so as to ensure the blowing efficiency of the garden tool 100 . Since the interval gap D0 is controlled to be less than or equal to 4 mm, the gap between two adjacent fans 50 becomes smaller, so that during the operation of the garden tool 100 , the pulsation of the frequency-doubling noise of the airflow between the two adjacent fans 50 can be reduced. , effectively reducing the running noise of the garden tool 100.
  • the number of blades 54 in the fan 50 is negatively correlated with the width of the blades 54 , that is, reducing the number of blades 54 can increase the width of the blades 54 ; increasing the number of blades 54 can reduce the width of the blades 54 .
  • the number of the fan blades 54 is increased to reduce the width of the fan blades 54 in order to ensure the sturdiness of the fan blades 54, the pressure gradient on the surface of the fan blades 54 will be changed, and the blowing efficiency will be reduced.
  • the present application controls the interval D0 to be less than or equal to 4 mm, and on the premise of ensuring the number of fan blades 54, the width of the fan blades 54 in the fan 50 can be widened as much as possible to improve the blowing efficiency.
  • the number of the fan blades 54 is 7-23.
  • the number of fan blades may be 11-17.
  • the number of fan blades may be but not limited to: 13, 15, etc.
  • the separation gap D0 is greater than or equal to 2 mm and less than or equal to 3.5 mm. If the interval is too large, the frequency-doubling noise pulsation between the fan blades 54 will be increased; if the interval is too small, the demolding effect of the fan 50 will be affected. For this reason, the interval gap is controlled between 2mm and 3.5mm, which can not only ensure effective demoulding, but also reduce the frequency doubling noise pulsation and improve the noise reduction effect.
  • the interval D0 can take any value between 2mm and 3.5mm, for example: 2mm, 2.2mm, 2.4mm, 2.6mm, 2.8mm, 3mm, 3.2mm, 3.4mm, 3.5mm, etc.
  • the fan axis 51 is defined as the X axis, and the line passing through an end point of the leading edge 546 near the hub 52 that is perpendicular to the fan axis 51 and intersects is defined as the Y axis, and the X axis and The lines where the Y axes are both perpendicular and intersect is defined as the Z axis; the maximum distance between the projections of the suction surface 545 and the pressure surface 543 in the planes formed by the X axis and the Z axis, respectively, is defined as the maximum thickness h of the fan blade 54 .
  • the ratio of the value of the interval gap D0 to the value of the maximum thickness h of the fan 50 ranges from 1 to 1.5. In this way, taking the maximum thickness h of the fan 50 as a reference, the size of the interval gap D0 is defined so that the interval gap is kept within a reasonable range, Effectively reduce the frequency doubling noise pulsation and improve the noise reduction effect.
  • the blades 54 are injection-molded or die-cast to the hub 52 .
  • the integral molding of the fan blade 54 and the hub 52 will reduce the manufacturing cost, but when the interval gap between the fan blade 54 and the fan blade 54 is less than 2 mm, the mold manufacturing precision will be significantly reduced, and the manufacturing difficulty will be improved. is equal to 2 mm. If the spacing gap is larger than 3.5 mm, the aerodynamic performance of the fan 50 will also be reduced. Based on this, the spacing gap is preferably less than or equal to 4 mm.
  • the garden tool 100 is used to perform cleaning work, which may be, but not limited to, a hand-held hair dryer, a backpack hair dryer, etc., and can collect scattered foreign objects, where the foreign objects may be leaves or garbage.
  • the direction of the airflow corresponding to the air outlet 22 is defined as the front end (remote end). one end.
  • the side into which the airflow flows is defined as the rear end (proximal end).
  • the proximal end of the garden blower refers to the end of the garden blower that is close to the user when the user uses the garden machine for cleaning.
  • the garden implement 100 with a blowing function extends longitudinally substantially in the direction indicated by arrow A between the front end and the rear end.
  • the upper part of the drawing is defined as upper
  • the lower part of the drawing is defined as lower
  • the outward of the drawing is defined as the left
  • the inward of the drawing is defined as the right.
  • the hub 52 is generally cylindrical in shape with a closed upstream end and an open downstream end.
  • the hub 52 includes a central bore 522 that is shaped and sized to receive a motor shaft and/or rotor of an electric motor, which may be connected to the motor by an interference fit or other drive connection, for example.
  • the plurality of fan blades 54 extend around the circumference of the hub 52 , and the fan axis 51 passes through the center of the central hole 522 .
  • the fan blade 54 can be integrally formed with the hub 52, thereby reducing the manufacturing cost.
  • the fan blade 54 and the hub 52 can also be manufactured separately and then assembled together, which is not limited herein.
  • the end of the hub 52 in the direction of the air flow when the fan 50 rotates has a guide surface for guiding the airflow to the direction of the fan blade 54. surface, etc., which are not limited here.
  • the guide surface can guide the airflow to generate a swirling flow, so as to prevent the airflow from hitting the fan blades 54 vertically, and reduce noise.
  • the leading edge 546 and the trailing edge 548 adjacent to each other in the two adjacent fan blades 54 have a gap in the projection in the plane perpendicular to the fan axis 51 .
  • the separation gap varies continuously from the root portion 542 to the top edge 544.
  • the separation gap size at the root portion 542 is a1
  • the separation gap at the top edge 544 is a2.
  • a1 and a2 have different sizes.
  • the pressure gradient of the leading edge 546 and the trailing edge 548 of the fan blade 54 from the top edge 544 to the root 542 can be smoothly transitioned and changed, thereby reducing the turbulent energy in the airflow and reducing the airflow
  • the tendency to separate from the fan blade 54 reduces the fundamental frequency of the noise of the fan blade 54 and the multiplier sound, especially the disappearance of most of the multiplier sound, which can reduce the noise of the blade tip of the fan blade 54 to a certain extent at high rotation speed. Sharp sound decibels, thereby improving user experience.
  • the projection of the leading edge 546 in a plane perpendicular to the fan axis 51 has a first curved profile
  • the trailing edge 548 includes a second curved profile in projection in a plane perpendicular to the fan axis 51, the first curved profile The curvature of the curved profile, different from the curvature of the second curved profile. In this way, it can be ensured that the spacing gap varies continuously from the root 542 to the top edge 544 .
  • the housing 10 includes an air duct portion 12 extending substantially longitudinally along the fan axis 51 and an operating handle for the user to hold.
  • the air duct portion 12 is configured as an inner hollow tubular body, and defines an airflow channel that allows airflow to flow, and both ends of the air duct portion 12 are provided with a first opening and a second opening that communicate with the airflow channel, wherein, The first opening serves as the air inlet 11 , the outside air can enter the air duct portion 12 from the first opening, and the second opening serves as a connection port for connecting with the air duct 20 .
  • One end of the air duct 20 is detachably connected to the air duct 12 through the second opening, and the other end of the air duct 20 is provided with an air outlet 22 through which air can be blown out from the air duct 20 .
  • the air duct portion 12 may be a combination of pipe bodies formed by connecting two or more segments of pipe bodies. It should be understood that the garden tool 100 with a blowing function can also have an air suction function, that is, air is sucked in from the air outlet 22 of the air duct 20 together with the sundries, and is discharged from the aforementioned air inlet 11 after passing through the fan 50 .
  • each of the plurality of fan blades 54 has the same geometric shape, and for the sake of brevity, a single fan blade 54 will be further described below.
  • the blades 54 extend outwards substantially in the radial direction of the hub 52 , and the hub 52 and the blades 54 are rotatable around the aforementioned fan axis 51 by the drive of the motor, thereby generating airflow moving along the fan axis 51 .
  • the fan axis 51 passes through the center of the hub 52, so as to ensure that the airflow direction is substantially parallel to the fan axis 51 and the extension direction of the air duct 12 to avoid noise caused by eddy currents in the airflow.
  • the size of the slit in the radial direction is less than 1 mm.
  • the operating handle includes a grip portion 142, the grip portion 142 is used for the user to operate and hold, the grip portion 142 is connected to the air duct portion 12 and extends from the air duct portion 12, and the trigger can be Provided in the grip portion 142, the user can operate the trigger to control the motor to work or stop, so that the garden tool 100 with the blowing function is in the working state or the non-working state.
  • the user can also operate the trigger.
  • the trigger controls the rotational speed of the motor to adjust the power of the garden tool 100 with the blowing function in different gears.
  • the damping sound-absorbing material may be a foam or fiber-based composite material, or a composite material such as glass fiber or natural fiber, and may also be made of other polymer materials such as polyurethane foam.
  • the inventor of the present application found that the noise source of the garden tool 100 with blowing function, such as a garden blower, mainly comes from the air duct portion 12 , and further analysis found that one of the reasons for the noise is caused by the unevenness inside the air duct portion 12 .
  • the sound absorbing material is arranged downstream of the fan, specifically, the sound-absorbing material may be wrapped in the circumferential direction of the air guide cover, and/or the sound-absorbing material may be disposed downstream of the air guide cover.
  • the pressure surface 543 and the suction surface 545 are opposite sides of the fan blade 54, respectively.
  • the pressure surface 543 pushes the air to flow toward the side of the air outlet 22, so that it stably passes through the gap , to form a stable airflow.
  • the projections of the pressure surface 543 and the suction surface 545 on the planes formed by the X axis and the Z axis respectively may be linear contours or surface contours.
  • the pressure surface 543 and the suction surface 545 are one or more curved surfaces in the direction of the Y axis (ie the radial direction of the hub 52)
  • the pressure surface 543 and the suction surface 545 are respectively in the plane formed by the X axis and the Z axis
  • the projection has at least part of the ghost region to form the face contour.
  • the maximum distance between the projections of the pressure surface 543 and the suction surface 545 should be understood as the connecting line distance between any point on the projection of the pressure surface 543 and the corresponding point on the projection of the suction surface 545 .
  • a cross-sectional method can also be used, for example, the fan blades 54 are sequentially intercepted from the root 542 to the top edge 544 on a plane parallel to the plane formed by the X-axis and the Z-axis.
  • the pressure surface 543 and the suction surface 545 are respectively line profiles on corresponding cross sections; the maximum distance between the two line profiles is taken as the thickness h of the fan 50 .
  • a measuring tool such as a vernier caliper can be stuck on the pressure surface 543 and the suction surface 545 for direct measurement, etc.
  • the ratio of the diameter D2 of the hub 52 to the diameter D1 of the projected contour of all the blades 54 in the plane perpendicular to the fan axis 51 is 0.4-0.6, that is, the hub 52 of the fan 50
  • the ratio is 0.4-0.6, which is beneficial to ensure the blowing efficiency of the fan 50 and improve the working efficiency.
  • the ratio between the diameter D2 of the hub 52 and the diameter D1 of the projected contour of all blades 54 in a plane perpendicular to the fan axis 51 can be any value between 0.4 and 0.6, for example: the hub
  • the ratio between the diameter D2 of 52 and the diameter D1 of the projected profile of all blades 54 in a plane perpendicular to the fan axis 51 is 0.4, 0.45, 0.5, 0.55, 0.6, etc.
  • the ratio between the diameter D2 of the hub 52 and the diameter D1 of the projected contour of all the blades 54 in the plane perpendicular to the fan axis 51 is 0.5, which makes the hub 52 of the fan 50 more reasonable than the configuration, and the air Better results.
  • the blade 54 includes a root 542 secured to the hub 52 , a top edge 544 spaced from the hub 52 , a leading edge 546 , and a trailing edge 548 .
  • Root 542 is the radially innermost edge of blade 54 closest to and attached to hub 52
  • top edge 544 is the radially outermost edge of blade 54 spaced from hub 52 .
  • the leading edge 546 extends between the root 542 and the top edge 544 as the foremost edge in the direction of airflow passing through the fan 50 , that is, the edge where the airflow first contacts the blades 54 during the rotation of the fan 50 .
  • the trailing edge 548 is the last edge in the direction of airflow through the fan 50 , that is, the edge of the blade 54 that contacts the airflow last during rotation of the fan 50 , and extends between the root 542 and the top edge 544 .
  • a first end of leading edge 546 at root 542 is attached to hub 52 , a second end of leading edge 546 at root 542 is spaced from hub 52 , and a first end of trailing edge 548 at root 542 is attached to hub 52 , the second end of the trailing edge 548 at the root 542 is spaced from the hub 52 .
  • a garden tool 100 with a blowing function includes: a casing 10 , an air duct 20 , a fan 50 and a motor.
  • the air duct 20 is connected to the housing 10 , and the air duct 20 is provided with an air outlet 22 for blowing out air to the outside.
  • the fan 50 rotates around the fan axis 51 to make the air flow and blow out from the air outlet 22 .
  • the motor drives the fan 50 to rotate about the fan axis 51 .
  • the fan 50 includes: a hub 52 ; and a plurality of fan blades 54 extending radially outward from the hub 52 and distributed around the fan axis 51 .
  • Fan blade 54 includes a root portion 542 secured to hub 52, a top edge 544 spaced from hub 52, a leading edge 546 and a trailing edge 548 extending between root portion 542 and top edge 544.
  • the forward Edge 546 is located forward of trailing edge 548 .
  • the fan axis 51 is defined as the X axis
  • the line passing through an end point of the leading edge 546 close to the hub 52 that is perpendicular to the fan axis 51 and intersects is defined as the Y axis.
  • the line perpendicular to and intersecting the X-axis and the Y-axis is defined as the Z-axis.
  • the projection midpoints of the root portion 542 and the top edge 544 in the plane formed by the X axis and the Y axis are respectively defined as the first midpoint 5421 and the second midpoint 5441 .
  • a line passing through the first midpoint 5421 and parallel to the Y axis is defined as the first vertical axis 5422 .
  • the second midpoint 5441 is located on the downstream side of the first vertical axis 5422 toward the side of the air outlet 22 of the air duct 20 .
  • a plurality of fan blades 54 are arranged on the hub 52 at intervals around the fan axis 51, so that the airflow can pass through between two adjacent fan blades 54 stably, so as to ensure the blowing of the garden tool 100. efficiency. Since the second midpoint 5441 of the top edge 544 is located on the side of the first vertical axis 5422 toward the air outlet 22 of the air duct 20 , that is, the second midpoint 5441 does not pass over the first vertical axis 5422 along the air inlet side toward the garden tool 100 . Therefore, the top edge 544 as a whole presents a tendency to extend toward the air outlet 22 relative to the root portion 542 .
  • This design makes the shape design of the fan 50 more consistent with the airflow direction, reduces the collision between the airflow and the fan blade 54, the path of the airflow is long, increases the work done by the airflow on the surface of the fan blade 54, reduces noise, and improves blowing efficiency.
  • the shape of the hub 52 is substantially cylindrical and has a closed upstream end and an open downstream end.
  • the shape of the hub 52 is similar to that in any of the above embodiments, and the above description can be directly referred to, and details are not repeated here.
  • root 542 is the radially innermost edge of blade 54 closest to hub 52 and attached to hub 52
  • top edge 544 is the radially outermost edge of blade 54 spaced from hub 52
  • the leading edge 546 is the foremost edge in the direction of airflow through the fan 50 , that is, the edge where the airflow first contacts the blades 54 during the rotation of the fan 50
  • the leading edge 546 extends between the root 542 and the top edge 544
  • the trailing edge 548 is the last edge in the direction of airflow through the fan 50 , that is, the edge of the blade 54 that contacts the airflow last during rotation of the fan 50 , and extends between the root 542 and the top edge 544 .
  • a first end of leading edge 546 at root 542 is attached to hub 52 , a second end of leading edge 546 at root 542 is spaced from hub 52 , and a first end of trailing edge 548 at root 542 is attached to hub 52 , the second end of the trailing edge 548 at the root 542 is spaced from the hub 52 .
  • the included angle ⁇ between the line connecting the first midpoint 5421 and the second midpoint 5441 and the first vertical axis 5422 is 0° ⁇ 9°. It can be seen from this that the connection line between the first midpoint 5421 and the second midpoint 5441 extends obliquely toward the side of the air outlet 22, and the angle between the oblique extending direction and the first vertical axis 5422 is controlled to be 0° (excluding 0°) ⁇ 9°, which further increases the work done by the airflow on the surface of the fan blade 54, so that the noise reduction effect is further improved.
  • the angle ⁇ between the line connecting the first midpoint 5421 and the second midpoint 5441 and the first vertical axis 5422 may be, but not limited to, 1°, 2°, 3°, 5°, 7° °, 8°, 9°, etc.
  • the included angle ⁇ between the line connecting the first midpoint 5421 and the second midpoint 5441 and the first vertical axis 5422 is 2°.
  • the projection of the leading edge 546 in the plane formed by the Y axis and the Z axis is defined as a front side projection 5461 .
  • the line connecting the opposite end points of the front side projection 5461 is defined as the chord line L5462. At least two places on the front side projection 5461 are located on opposite sides of the chord line L5462, respectively.
  • the concave-convex characteristic of the front side projection 5461 is fed back to the fan blade 54, it can be seen that the leading edge 546 is at least a quadratic curve design when viewed in the plane formed by the Y axis and the Z axis, so that the leading edge of the fan blade 54 is
  • the pressure gradients at 546 and trailing edge 548 from root 542 to top edge 544 can be smoothly transitioned and varied, reducing turbulence within the airflow and reducing the tendency of the airflow to separate from blades 54, minimizing noise.
  • chord line L5462 there may be two locations on opposite sides of the chord line L5462, respectively; there may also be two locations on one side of the chord line L5462, and one location on the other side of the chord line L5462; Alternatively, both locations are located on one side of the chord line L5462, and both locations are located on the other side of the chord line L5462, that is, the leading edge 546 has a quartic curve design or the like.
  • the front side projection 5461 of the front edge 546 away from the outer contour of the hub 52 deviates from the chord line L5462 and is concave on one side away from the air outlet 22 of the air duct 20 .
  • the front side projection 5461 of the front edge 546 near the part of the outer contour of the hub 52 deviates from the chord line L5462 and protrudes toward one side of the air outlet 22 of the air duct 20 .
  • the front edge 546 has a waveform design, and the front side projection 5461 of a part of the front edge 546 away from the hub 52 is a concave design, so that the fan blade 54 is designed in three dimensions.
  • the part near the end of the leading edge 546 has a waveform design, and the end away from the hub 52 is in a forward bending state, which is beneficial to reduce the tendency of the airflow to separate from the fan blade 54 and minimize the noise.
  • the front projection 5461 of the leading edge 546 in the plane formed by the Y axis and the Z axis has a concave and convex offset design relative to the chord line L5462, and the radian between the concave and the convex can be different. , can also remain consistent.
  • the front side projection 5461 has a sinusoidal waveform design.
  • the front side projection 5461 is a sine curve, and the front side projection 5461 includes a wave crest section 5463 and a wave trough section 5464 located on opposite sides of the sine line L5462 .
  • the crest section 5463 is close to the root 542 and protrudes toward the side of the air outlet 22 of the air duct 20 relative to the chord line L5462; the trough section 5464 is close to the top edge 544 and is concave on the side of the air outlet 22 away from the air duct 20 relative to the chord line L5462 .
  • the maximum vertical distances between the wave crest section 5463 and the wave trough section 5464 and the chord line L5462 are respectively defined as the first chord height 5465 and the second chord height 5466 .
  • the ratio of the first string height 5465 and the second string height 5466 to the length of the string L5462 can be 0.008 ⁇ 0.03, respectively.
  • the ratio of the first string height 5465 and the second string height 5466 to the length of the string L5462 can be 0.016, 0.008, 0.03, etc., respectively.
  • the specific structure can refer to FIG. 9.
  • the curve is marked with ⁇ ; the first string height When the ratio of the 5465 and the second chord height 5466 to the chord line L5462 is 0.008, the curve is marked with ⁇ ; when the ratio of the first chord height 5465 and the second chord height 5466 to the chord line L5462 is 0.016, the curve is marked with ⁇ .
  • the ratio of the first chord height 5465 and the second chord height 5466 to the length of the string L5462 is preferably 0.016.
  • the projection of the leading edge 546 in the plane formed by the Y axis and the Z axis is defined as the front side projection 5461 .
  • the front side projection 5461 is bent and extended at the part of the outer contour of the front edge 546 away from the hub 52, so as to form a concave structure 5467 on the front side projection 5461, the opening of the concave structure 5467 is oriented in the same direction as the rotation direction of the fan 50, that is, in a three-dimensional space Among them, the portion of the front edge 546 away from the hub 52 is bent and inclined forward along the rotation direction of the fan 50 , which facilitates the concentration of airflow and achieves the noise reduction effect.
  • one end of the front side projection 5461 is bent toward the rotation direction of the fan 50, which will cause partial curvature on the pressure surface 543 and the suction surface 545 on both sides of the fan blade 54.
  • the pressure surface 543 and the suction surface 545 are respectively curved.
  • a portion near the point of attachment between the leading edge 546 and the top edge 544 is bent in the rotational direction of the fan 50 .
  • the projection of the leading edge 546 ie, the front side projection 5461
  • the projection of the trailing edge 548 is located in front of the projection of the trailing edge 548 in the rotational direction of the fan 50; at the same time, on the X axis
  • the projection of the trailing edge 548 is positioned closer to the air outlet 22 than the projection of the leading edge 546 .
  • the blades 54 on the hub 52 extend substantially obliquely radially relative to the hub 52 .
  • the bending angle ⁇ between the tangent line L5462 and the tangent line L5462 of the front side projection 5461 at the intersection of the outer contour lines of the leading edge 546 and the top edge 544 and away from the hub 52 is 5°. ⁇ 15°.
  • the bending angle of one end of the front side projection 5461 is controlled to be between 5° and 15°, so as to further improve the flow of airflow and improve the noise reduction performance of the garden tool 100 .
  • the bending angle of one end of the front side projection 5461 may be 5°, 7°, 9°, 11°, 13°, 14°, 15°, etc.
  • the projection of the leading edge 546 on the plane formed by the X axis and the Y axis is located on the side of the Y axis facing the air outlet 22 . It can be seen from this that the entire front edge 546 extends toward the air outlet 22 relative to the Y axis, so that the fan blades 54 are more consistent with the airflow, reduce the collision between the airflow and the fan blades 54, extend the path of the airflow on the fan blades 54, and increase the airflow on the fan blades. The work done on the surface of 54 further improves the blowing efficiency.
  • the projection of the leading edge 546 on the plane formed by the X axis and the Y axis may be a straight line or a curve. It should be noted that if the leading edge 546 is a projected straight line in the plane formed by the X axis and the Y axis, it does not mean that the leading edge 546 is a linear structure design in the three-dimensional space, because the leading edge 546 is formed on the Y axis and the Z axis. It can also be designed as a curve in the plane. For example, when viewed in the plane formed by the Y axis and the Z axis, one end of the front edge 546 is bent toward the rotation direction of the fan 50, etc.
  • the projection of the leading edge 546 on the plane formed by the X axis and the Y axis is a curve, it can be a primary curve or a multiple curve, for example: the projection of the leading edge 546 on the plane formed by the X axis and the Y axis, from The end close to the root 542 to the end close to the top edge 544 first protrudes toward the air inlet 11 side of the housing 10 ; and then concave toward the air outlet 22 side.
  • the projection can also continue to be arranged in order of convex and concave.
  • the projection of the leading edge 546 in the plane formed by the X axis and the Y axis is a quadratic curve, for example: the projection is from the end of the leading edge 546 close to the root 542 to the end of the leading edge 546 close to the top edge 544 It includes a first arc segment 550 , and a second arc segment 551 attached to the first arc segment 550 .
  • the first arc segment 550 is convex toward the side of the air inlet 11 of the housing 10 ; the second arc segment 551 is concave toward the side of the air outlet 22 .
  • the shape design of the fan blade 54 is more in line with the airflow, and the work done by the airflow on the surface of the fan blade 54 is increased.
  • the convex curvature of the side facing the air inlet 11 of the housing 10 and the concave curvature of the side facing the air outlet 22 can be different, or they can be kept the same, for example: if the convex curvature and the concave curvature are the same,
  • the projection of the leading edge 546 in the plane defined by the X-axis and the Y-axis may also be sinusoidal.
  • the projection of the leading edge 546 on the plane formed by the X axis and the Y axis, the angle ⁇ between the tangent of the leading edge 546 near an end point of the hub 52 and the Y axis is 3° ⁇ 25°.
  • the setting of the included angle ⁇ can affect the inclination of the leading edge 546 toward the side of the air outlet 22 . If the included angle ⁇ is too small, the inclination of the leading edge 546 toward the air outlet 22 will be too small, and the effect of extending the airflow path cannot be achieved. If the included angle ⁇ is too large, the overall inclination of the fan blade 54 is relatively large.
  • the included angle ⁇ is reasonably controlled to be 3° ⁇ 25°, so that the garden tool 100 has both miniaturization and high air blowing rate.
  • the tangent of the leading edge 546 close to an end point of the hub 52 can also be understood as: the projection of the leading edge 546 on the plane formed by the X axis and the Y axis, the leading edge 546 on the fan blade 54 and the root 542 tangent at the intersection.
  • the included angle ⁇ may be, but not limited to, 3°, 6°, 9°, 12°, 15°, 18°, 21°, 24°, 25°, and the like.
  • the included angle ⁇ is preferably 6°, which makes the airflow tend to flow more slowly, reduces the formation of turbulent flow, and effectively reduces noise.
  • a line passing through the trailing edge 548 close to an end point of the hub 52 and perpendicular to the X axis is defined as the second vertical axis 5423 ; the trailing edge 548 is in the plane formed by the X axis and the Y axis.
  • the projection is located on the side of the second vertical axis 5423 facing away from the air outlet 22 of the air duct 20 .
  • trailing edge 548 has a forward inclination trend with respect to the side of the air inlet 11, so that the pressure gradient from the root 542 to the top edge 544 at the leading edge 546 and the trailing edge 548 of the fan blade 54 can be smoothly transitioned and changed, thereby Turbulence within the airflow is reduced and noise is minimized.
  • the leading edge 546 of the fan blade 54 includes a curved profile in the meridian plane established by the axial and radial axes (ie, the plane constituted by the X axis and the Y axis), and the trailing edge 548 includes the axial and The curved profile of the meridian plane established by the radial axis. That is, the blade 54 is twisted in three-dimensional space, eg, when the blade 54 is viewed in a meridian plane defined by an axis extending parallel to the fan axis 51 and a radial axis, the leading edge 546 of the blade 54 and trailing edge 548 each have a curved profile.
  • the projection of at least a portion of at least one of the leading edge 546 and the trailing edge 548 in a plane perpendicular to the fan axis 51 may also have a straight profile, and accordingly, the leading edge 546 and the trailing edge 548 may also have straight profiles. At least a portion of at least one of the edges 548 also has a straight profile in the aforementioned meridian plane, without limitation.
  • At least a portion of at least one of the projections of the leading edge 546 and the trailing edge 548 in a plane perpendicular to the fan axis 51 has a curved profile
  • at least one of the leading edge 546 and the trailing edge 548 is the same as the one from the fan 50 .
  • the line extending radially from the center point has an offset in the rotation angle of the fan 50 .
  • the leading edge 546 of the fan blade 54 is swept back and the trailing edge 548 is swept forward.
  • both the leading edge 546 and the trailing edge 548 of the fan blade 54 are offset from the line extending radially from the center point of the fan 50 in the rotation angle of the fan 50 , then the fan blade 54 overall was swept back.
  • the projection of the trailing edge 548 in the plane formed by the X axis and the Y axis, the angle ⁇ between the tangent at the intersection of the trailing edge 548 and the hub 52 and the second vertical axis 5423 is 8 ° ⁇ 20°.
  • the size of the included angle ⁇ is reasonably controlled, so that the airflow tends to flow more slowly, which is beneficial to improve the noise reduction effect.
  • included angle ⁇ can be taken as, but not limited to, 8°, 10°, 12°, 14°, 16°, 18°, 20°, and the like.
  • the included angle ⁇ is preferably 14°, so that the airflow tends to flow more slowly, which is more conducive to reducing noise.
  • the projection of the trailing edge 548 on the plane formed by the X axis and the Y axis, the angle between the tangent at the end of the trailing edge 548 close to the top edge 544 and the X axis is 0° (excluding the 0°) ⁇ 45°.
  • the projection of the fan blade 54 on the plane formed by the X-axis and the Y-axis is defined as the blade projection 56 .
  • Lines passing through the two end points of the leaf projection 56 at the root 542 and both perpendicular to the X-axis are respectively defined as a first edge line 560 and a second edge line 561 .
  • a line connecting the two end points of the leaf projection 56 at the root 542 defines a third edge 562 .
  • a line passing through an end point on the leaf projection 56 that is farthest from the root 542 and parallel to the third edge line 562 is defined as a fourth edge line 563 .
  • the first edge line 560 , the second edge line 561 , the third edge line 562 and the fourth edge line 563 enclose a quadrangular surface 564 .
  • the area of the leaf projection 56 accounts for 0.6 or more of the area of the quadrilateral surface 564 .
  • the fan 50 is taken in a plane perpendicular to the Y axis, and the connecting line between the intersections on the leading edge 546 and the trailing edge 548 is defined as a mounting line 547 , and the mounting line 547
  • the installation angle ⁇ with the X axis gradually increases from the root 542 to the top edge 544 . It can be seen that the fan blades 54 are twisted, and the installation angle at the root portion 542 is the smallest, so that a larger number of fan blades 54 can be arranged on the hub 52 . In order to make the air flow efficiency of the fan blade 54 higher when it rotates, the installation angle ⁇ between the root portion 542 of the fan blade 54 and the X axis is not as small as possible.
  • the cross-sectional shape of the root portion 542 of the fan blade 54 is different from the cross-sectional shape of the top edge 544 of the fan blade 54, and the root portion 542 of the fan blade 54 is in its cross-sectional shape.
  • the length in the extension direction is less than the length of the top edge 544 of the fan blade 54 in its extension direction, that is, the length in the extension direction of the side of the connection between the fan blade 54 and the hub 52 is smaller than that of the fan blade 54 away from the hub 52 The length of one side in the direction of its extension. Since the diameter of the connection between the hub 52 and the fan blade 54 is small, the circumference is also small.
  • More fan blades 54 may be provided in the circumferential direction of the hub 52 .
  • the installation angle ⁇ between the installation line 547 and the X-axis is gradually increased from the root 542 to the top edge 544, so that the pressure gradient from the root 542 to the top edge 544 at the leading edge 546 and the trailing edge 548 of the fan blade 54 can be Smooth transitions and changes reduce the tendency of the airflow to separate from the blades 54, reduce turbulence within the airflow, and minimize noise.
  • the change transition rate of the installation angle ⁇ between the installation line 547 and the X axis from the root 542 to the top edge 544 may be consistent or inconsistent.
  • the change transition rate between the installation angle ⁇ at the root 542 and the installation angle ⁇ of the fan blade 54 at the radial midpoint between the root 542 and the top edge 544 is lower than the installation from the midpoint The rate of change in transition between the included angle ⁇ and the mounting included angle ⁇ at the top edge 544, etc.
  • the installation angle ⁇ between the installation line 547 and the X axis is 5° ⁇ 30° at the root portion 542 .
  • the installation angle ⁇ at the root portion 542 may be, but not limited to, 5°, 10°, 15°, 20°, 25°, 30°, and the like.
  • the installation angle ⁇ at the root 542 is preferably 17°.
  • the included angle ⁇ between the mounting line 547 on the top edge 544 and the X axis is 30° ⁇ 85° at the top edge 544 .
  • the installation angle ⁇ at the top edge 544 may be, but not limited to, 30°, 40°, 50°, 60°, 70°, 80°, 85°, and the like.
  • the fan blade 54 further includes a curved transition portion 541 located at the junction of the trailing edge 548 and the top edge 544 and approaching the hub 52 from the top edge 544 , and the curved transition portion 541 is The arc surface protrudes away from the hub 52 .
  • the curved transition portion 541 is in the shape of an arc. When the cross section of the curved transition portion 541 along the plane extending substantially along the fan blade 54 is arc-shaped, when the fan blade 54 rotates, it can be more conducive to divert the airflow at the blade tip of the fan blade 54 to the fan blade 54 and the fan blade 54.
  • the area of the duct 30 between the fan blades 54 can better reduce the eddy current formed by the blade tip of the fan blade 54 when it rotates, thereby reducing the pressure of the airflow impacting the fan blade 54 in the Coanda layer at the blade tip of the fan blade 54, and finally The purpose of further reducing aerodynamic noise is achieved, that is, the blade frequency screeching is reduced.
  • the radius length of the curved surface transition portion 541 ranges from 2 mm to 6 mm.
  • the radius length of the curved transition portion 541 may also be limited to be between 0.5 mm and 5 mm, for example, the radius length of the curved transition portion 541 may be 0.5 mm, 2 mm, 3 mm, 4 mm, 5 mm, etc. .
  • the projected fillet radius of the curved transition portion 541 in the plane formed by the X axis and the Y axis is 1 mm ⁇ 5 mm.
  • the fillet radius may be, but not limited to, 1mm, 2mm, 3mm, 4mm, 5mm, and the like. In this way, the eddy current formed by the blade tip of the fan blade 54 during rotation can be better reduced, so as to reduce the blade frequency squeal.
  • the angle ⁇ between the tangent of the curved transition portion 541 projected at an end point of the curved transition portion 541 near the top edge 544 and the Y axis in the plane formed by the X axis and the Y axis is 0° ⁇ 45°.
  • the included angle n may be 8°.
  • the blade 54 further includes a tip tip 549 at the intersection of the leading edge 546 and the top edge 544 .
  • leading edge 546 of blade 54 includes an inner portion adjacent hub 52 and an outer portion adjacent top edge 544 , the outer portion of leading edge 546 extending forward and formed at the intersection of top edges 544 Blade tip tip 549.
  • the blade tip tip 549 can cut the airflow, so as to disperse the airflow, and prevent the airflow from gathering to form a vortex and increasing the noise.
  • the junction of the leading edge 546 and the top edge 544 forms a ribbed edge with an acute or right angle, where the acute or right angle is an included angle formed by the intersection of the faces.
  • the width of the outer portion of the leading edge 546 gradually decreases in the direction of forward extension
  • the width of the top edge 544 gradually decreases in the direction of extension from the trailing edge 548 to the front edge 546, so that the A tip is formed at the intersection of the leading edge 546 and the top edge 544, which can also function as a cutting airflow.
  • the garden tool 100 with a blowing function further includes a duct 30 .
  • the duct 30 includes a guide outer cover 32 , a flow guide inner cover 34 and a first stationary blade 36 connected between the flow guide cover 32 and the flow guide inner cover 34 .
  • the airflow on the top edge 544 of the fan blade 54 is closer to the air flow, the flow velocity is higher. Therefore, when the first stationary blade 36 is extended radially outward from the hub 52, the more deviated from the fan blade 54, the larger the first stationary blade 54 is.
  • the gap between the blade 36 and the fan blade 54 makes the air flow in the high-speed part rotate between the two, so as to prevent the air flow at the top edge 544 from impacting the first stationary blade 36 preferentially and rapidly, so as to ensure the air flow on the first stationary blade 36.
  • the airflow remains uniform for effective noise reduction.
  • the fan 50 may be located in the duct 30 as a whole; it may also be partially located in the duct 30 .
  • they can also be arranged at intervals, for example, in the flow direction of the airflow, the duct 30 is located at the downstream end of the fan 50, and the like.
  • the duct 30 is arranged in the air duct portion 12 of the housing 10.
  • the duct 30 is used to guide the airflow and rectify the airflow generated by the fan 50. Therefore, the duct 30 is located in the downstream area of the air duct portion 12. After the air flow in the upstream area of the air duct 12 enters the air duct 12 from the air inlet 11, it moves toward the direction close to the fan 50, and after passing through the fan 50, the airflow moves from the upstream area of the air duct 12 to the downstream area, and passes through the culvert. The rectification of the channel 30 is finally blown out through the air duct 20 .
  • FIG. 15 shows a comparison diagram of the noise spectrum of the fan 50 in the embodiment of the present application with 17 fan blades 54 and the fan 50 in the prior art with 17 fan blades 54 , as shown in FIG. 15 .
  • the X-axis is the rotational speed of the fan blade 54
  • the Y-axis in the figure is the decibel of the noise. It can be seen from the figure that at different rotational speeds, the decibel of the noise emitted by the fan 50 in the embodiment of the present application is basically lower than that in the prior art.
  • the fan 50 in the embodiment of the present application has a noise reduction of 2 ⁇ 2 ⁇ About 3 decibels, the fan 50 in the embodiment of the present application has a noise reduction of about 5-10 decibels, and the air duct efficiency is reduced by less than 2% compared with the fan 50 in the prior art.
  • a garden tool 100 with a blowing function includes: a casing 10 , an air duct 20 , a duct 30 , a fan 50 and a motor.
  • the air duct 20 is connected to the housing 10 , and the air duct 20 is provided with an air outlet 22 for blowing out air to the outside.
  • Ducts 30 are connected to the housing (10) for guiding air flow.
  • the fan 50 rotates about the fan axis 51 for creating a flow of air.
  • the motor drives the fan 50 to rotate about the fan axis 51 .
  • the duct 30 includes a guide cover 32 , a guide inner cover 34 and a first stationary vane 36 connected between the guide cover 32 and the guide inner cover 34 ; Bottom 362, top 364 connected to shroud 32, first front edge 366 and first rear edge 368 spaced in the direction of airflow; fan axis 51 is defined as the X axis, passing through any point on fan 50 and perpendicular to X The plane of the axis is defined as reference plane 53 ;
  • the air velocity at the top 364 of the first stationary blade 36 is greater than the air velocity at the bottom 362 of the first stationary blade 36 due to the action of air pressure.
  • One end of the first front side edge 366 of the first stationary blade 36 at the bottom 362 is positioned downstream of the other end of the first front side edge 366 of the first stationary blade 36 at the top 364 , effectively extending the first front side of the first stationary blade 36 The distance of the end of the side edge 366 at the top 364 from the fan blade 54 .
  • the air guide cover 32 is generally arranged along the direction of the fan axis 51 , the air guide inner cover 34 is located in the center of the air guide cover 32 , and an airflow circulation space is formed between the air guide cover 32 and the air guide inner cover 34 .
  • the cross section of the vertical fan axis 51 is substantially annular.
  • the first stationary vanes 36 are located in the annular circulation space, and are evenly distributed around the inner guide cover 34 at even intervals, and the gaps between the first stationary vanes 36 arranged at intervals are for air flow.
  • the number of the first stationary vanes 36 is 3 to 11. In this way, it can play a guiding role, and will not affect the passage of airflow due to the excessive number of the first stationary vanes 36 and cause an increase in airflow. noise.
  • the guide inner cover 34 also extends substantially along the direction of the fan axis 51 , the interior of the guide inner cover 34 is hollow, and the cross-sectional area of the flow guide inner cover 34 in the direction perpendicular to the fan axis 51 is smaller than or equal to the hub of the fan 50 52 is the largest cross-sectional area in the direction perpendicular to the fan axis 51.
  • the motor is entirely disposed inside the inner air guide cover 34 , or the motor is at least partially disposed in the inner air guide cover 34 .
  • the guide inner cover 34 is cylindrical, and the outer wall of the guide inner cover 34 and the inner wall of the guide outer cover 32 are evenly arranged along the direction of the fan axis 51, so that the airflow can be guided along the direction parallel to the fan axis 51. Move in the direction of the direction to avoid the noise generated by the eddy current.
  • the air guide inner cover 34 includes a receiving part and a guide part connected to the receiving part, the receiving part is arranged close to the fan 50 for accommodating the motor, and the air guide part is arranged near the air duct 20 and is integrally formed with the receiving part .
  • a mounting hole 346 is provided at the rear end of the accommodating part close to the fan 50, the motor is fixed in the accommodating part through the mounting hole 346, and one end (front end) of the air guide part close to the air duct 20 is provided with an opening for leading out into the air guide inner cover 34 of the airflow inside.
  • the rear end of the accommodating part is also provided with an air guide hole 340.
  • a cooling channel for cooling the motor is formed between the air guide hole 340 and the aforementioned opening. Cool down.
  • air guide hole 340 is provided, of course, several air guide holes 340 can also be provided, as shown in FIG. As a preferred embodiment, the cross section of the air guide hole 340 is circular.
  • the fan 50 includes a hub 52 , a plurality of blades 54 extending radially outward from the hub 52 and distributed about the fan axis 51 .
  • Fan blade 54 includes a root portion 542 secured to hub 52, a top edge 544 spaced from hub 52, a leading edge 546 and a trailing edge 548 extending between root portion 542 and top edge 544. In the direction of rotation of fan 50, the forward Edge 546 is located forward of trailing edge 548 .
  • the distance between an end of the first front edge 366 close to the bottom 362 and an end of the trailing edge 548 close to the root 542 is smaller than the distance between an end of the first front edge 366 close to the top 364 and an end of the trailing edge 548 close to the top edge 544 . It can be seen from this that the closer the first stationary blade 36 is to the top portion 364, the farther it is from the fan blade 54, so that the gap between the first stationary blade 36 and the fan blade 54 can be appropriately enlarged, so that the airflow of the high-speed part is between the two. Rotating between, to prevent the airflow at the top edge 544 from impinging on the first stationary blade 36 quickly and preferentially. In this way, it is ensured that the airflow on the first stationary blade 36 is kept uniform, and an effective noise reduction effect is achieved.
  • the distance between an end of the first rear edge 368 near the bottom 362 and the reference plane 53 is smaller than the distance between an end of the first rear edge 368 near the top 364 and the reference plane 53 . It can be seen from this that one end of the first rear edge 368 at the bottom 362 is located upstream of the other end of the first rear edge 368 at the top 364 in the direction of airflow. As shown in FIG.
  • the first rear edge 368 is in the shape of an arc, and the distance from the end of the first rear edge 368 at the bottom 362 to the rotation plane of the fan 50 is smaller than the first
  • the rear side edge 368 is located at the other end of the top 364 at a distance from the plane of rotation of the fan 50 .
  • the fan 50 includes a hub 52 , a plurality of fan blades 54 extending radially outward from the hub 52 and distributed around the fan axis 51 .
  • Fan blade 54 includes a root portion 542 secured to hub 52, a top edge 544 spaced from hub 52, a leading edge 546 and a trailing edge 548 extending between root portion 542 and top edge 544. In the direction of rotation of fan 50, the forward Edge 546 is located forward of trailing edge 548 .
  • the distance between an end of the first rear edge 368 close to the bottom 362 and an end of the rear edge 548 close to the root 542 is smaller than the distance between an end of the first rear edge 368 close to the top 364 and an end of the trailing edge 548 close to the top edge 544 .
  • Such a design can effectively avoid turbulence in the airflow, so as to achieve the purpose of reducing noise decibels.
  • the axis of the inner shroud 34 is defined as the X' axis.
  • a line passing through an end point of the first front side edge 366 near the bottom 362 and perpendicular to and intersecting the X' axis is defined as the Y' axis.
  • the line perpendicular to and intersecting the X' axis and the Y' axis is defined as the Z' axis.
  • the stationary blade section 31 obtained by cutting the first stationary blade 36 with a plane parallel to the X' axis and the Z' axis forming a plane crosses the X' axis near a part of the fan 50 and extends along the circumferential direction of the guide inner cover 34.
  • a part of the first stationary blade 36 close to the fan 50 is designed in a circular arc shape, which is more effective in guiding the airflow and has a good noise reduction effect.
  • stator blade section 31 that crosses the X' axis should be understood as: at least a part of the stator blade section 31 close to the air outlet 22 of the air duct 20 is located on the side of the X' axis or directly on the line of the X' axis. A portion of the blade section 31 close to the fan 50 is curved and extended, can cross the X' axis, and is located on the other side of the X' axis.
  • the first stationary blade 36 has a windward side and a leeward side opposite to the windward side, the outer contour of the projection of the windward side and the leeward side on the plane formed by the X' axis and the Z' axis
  • the angle between the tangent line and the X' axis that intersects and is close to an intersection point of the fan 50 is defined as the first stationary blade inlet angle Le, and the first stationary blade inlet angle Le is 35° ⁇ 65°.
  • the research and development found that when the inlet installation angle of the blade is too large, the inlet impact loss increases, the flow condition of the blade inlet is not good, and the vortex noise increases. As the inlet angle of the blade decreases, the sound pressure level of the inlet noise gradually decreases. , but with the further reduction of the inlet installation angle, the inlet separation loss of the inlet angle increases, and the eddy current noise also increases. Therefore, selecting an appropriate inlet angle can reduce the noise of the garden tool 100 with a blowing function.
  • the inventor further researched and found that setting the inlet angle Le of the first stationary blade 36 to be between 35° and 65° can ensure airflow. Efficient flow conditions and reduce eddy current noise, thereby improving the noise impact of the whole machine and improving the user experience.
  • the stator blade section 31 obtained by intercepting the first stator blade 36 with a plane parallel to the X' axis and the Z' axis constituting a plane, the maximum height in the direction of the Z' axis is defined is the bending distance D4 of the first stationary blade 36 .
  • the bending distance D4 of the first stationary vane 36 gradually increases from the bottom 362 to the top 364 . In this way, the closer the first stationary blade 36 is to a part of the top portion 364, the greater the curvature thereof, so that the effect of guiding the airflow is better, and a better noise reduction effect is achieved.
  • the maximum height in the direction of the Z' axis should be understood as: after the stator blade section 31 is bent over the X' axis, the curved part has an upper end point farthest from the X' axis; 31 has a lower end point farthest away from the upper end point on the portion that does not cross the X' axis or is on the X' axis line.
  • the maximum value of the height in the direction of the Z' axis may be the distance between the upper end point and the lower end point in the direction of the Z' axis.
  • the bending distance D4 of the first stationary blade 36 is 1 mm ⁇ 15 mm, that is, the bending distance of the first stationary blade 36 on the bottom 362 and the top 364 is controlled at 1 mm ⁇ 15 mm.
  • the bending distance D4 may be, but not limited to, 1 mm, 3 mm, 5 mm, 7 mm, 7.8 mm, 9 mm, 11 mm, 13 mm, 15 mm, and the like.
  • the vane section 31 includes a first portion 311 extending along the X' axis, a second portion 312 extending across the X' axis and extending in a curved circumferential direction of the inner shroud 34.
  • the second portion 312 includes inner concave lines 3121 and outer convex lines 3122 that are oppositely disposed.
  • the maximum distance between the connecting line between the two ends of the inner concave line 3121 and the outer convex line 3122 is defined as the concave chord height H, and the concave chord height H is 2mm ⁇ 6mm.
  • the first part 311 can be located on the line of the X' axis, or can be located on one side of the X' axis; and the second part 312 is bent over (or deviating from) the X' axis.
  • the concave chord height H is controlled to be 2mm to 6mm, which effectively ensures that the second part 312 maintains a proper curvature, so that the airflow can enter between the first stationary blade 36 and the first stationary blade 36 more smoothly, so as to achieve noise reduction decibels Purpose.
  • the projection of the first front edge 366 on the plane formed by the X' axis and the Y' axis is located on the side of the Y' axis toward the air outlet 22 of the air duct 20. That is, when viewed in the plane formed by the X' axis and the Y' axis, the first front edge 366 extends obliquely toward the air outlet 22 side relative to the Y' axis in a three-dimensional space. In this way, on the one hand, the flow path of the high-speed airflow is extended, and the noise generated by the airflow hitting the first stationary blade 36 is reduced; , avoiding the generation of eddy currents and further reducing the noise.
  • the angle ⁇ between the tangent of the projection of the first front edge 366 on the plane formed by the X' axis and the Y' axis near the bottom 362 and the X' axis is 60° ⁇ 90° .
  • the angle ⁇ between the projected tangent of the first front side edge 366 near the bottom 362 and the X' axis is controlled to be 60° ⁇ 90°, so that the first front side edge 366 can extend radially outward as a whole.
  • the better deviation from the X' axis makes the difference in airflow velocity between the top 364 and the bottom 362 of the first stationary vane 36 more gradual.
  • the included angle ⁇ may be, but not limited to, 60°, 70°, 80°, and the like. Specifically, in some embodiments, the included angle ⁇ is preferably 84°.
  • the projection of the first front edge 366 on the plane formed by the X' axis and the Y' axis may be a straight outline or a curved outline.
  • the projection is a curve profile, it can be a linear curve, a quadratic curve, or the like.
  • the projection of the first front side edge 366 on the plane formed by the X' axis and the Y' axis is protruding along the side facing the fan 50 in a part close to the air guide inner cover 34;
  • the side facing the air outlet 22 is concave, etc.
  • the projection of the first rear side edge 368 on the plane formed by the X' axis and the Y' axis is a circular arc concave toward the first front side edge 366. This design can better guide airflow with different flow rates and achieve better noise reduction effect.
  • the angle b between the tangent of the projection of the first rear edge 368 on the plane formed by the X' axis and the Y' axis near the bottom 362 and the X' axis is 45° ⁇ 90° .
  • the included angle b may be any value between 30° and 90°, for example, the included angle b is 45°, 50°, 60°, 70°, 80°, and the like. Specifically, in some embodiments, the included angle b is preferably 81°. In this way, it is beneficial to optimize the arc design of the first rear side edge 368 and improve the guiding effect of the first stationary blade 36 .
  • the included angle c between the tangent of the projection of the first rear side edge 368 on the plane formed by the X' axis and the Y' axis near the top 364 and the X' axis is smaller than the included angle b. That is, the curvature of the first rear edge 368 near the top 364 is greater than the curvature of the first rear edge 368 near the bottom 362, which facilitates extending the tip of the first rear edge 368 toward the air outlet 22, ensuring that the The difference in airflow velocity between the top 364 and the bottom 362 of the first stationary blade 36 is further reduced, which ensures more uniform airflow, which is beneficial to reduce noise.
  • the included angle c can also be any value between 30° and 90°, for example, the included angle c is 30°, 35°, 40°, 45°, 50°, 60°, 70°, 80° ° etc.
  • the bottom 362 of the first stationary blade 36 is inclined at a first angle relative to the fan axis 51 ; the top 364 of the first stationary blade 36 is inclined at a second angle relative to the fan axis 51 .
  • the pressure gradient from the bottom 362 to the top 364 at the first front edge 366 and the first rear edge 368 of the first stationary blade 36 can be smoothly transitioned and changed, thereby reducing the turbulence in the airflow and reducing the airflow from the bottom 362 to the top 364.
  • the first angle is not equal to the second angle, which further reduces the tendency of the airflow to separate from the first stationary vanes 36, reduces turbulence in the airflow, and thus minimizes noise.
  • the main function of the first stationary blade 36 is to rectify the airflow to guide the airflow to flow in the direction of the fan axis 51. Therefore, the first stationary blade 36 is generally extended and arranged in the direction of the fan axis 51.
  • the first angle and The range of the second angle is kept within the range of 0° to 30°, so that not only can the airflow be well diverted, but also the effect of noise reduction can be achieved.
  • the length of the first stationary blade 36 is L1
  • the mid-arc chord length of the fan blade 54 of the fan 50 is L2, where 3 ⁇ L1:L2 ⁇ 9.
  • the fan blade 54 has a pressure surface 543 and a suction surface 545 opposite to each other
  • the middle arc of the fan blade 54 refers to the space between the pressure surface 543 and the suction surface 545 of the fan blade 54 The line connecting the centers of the inscribed circles.
  • the length of the first vane 36 is defined as the distance between the first front edge 366 of the first vane 36 and the first rear edge 368 of the first vane 36 in the direction of airflow.
  • the length of the first stationary blade 36 can be taken as: between the bottom 362 and the top 364, and between the first front edge 366 and the first rear edge 368 at any point distance; alternatively, between the bottom 362 and the top 364, the maximum distance between the first front edge 366 and the first rear edge 368; or, between the bottom 362 and the top 364, the first front edge Average of all distances between 366 and first rear side edge 368, etc.
  • the method of taking the value of the length of the first stationary blade 36 can also be used, but it should be noted that in the same ratio, the length L1 of the first stationary blade 36 and the mid-arc chord
  • the value of the length L2 should be consistent, for example: the length L1 of the first stationary blade 36 is the distance between the first front edge 366 and the first rear edge 368 on the bottom 362; and the mid-arc chord length L2 should be Take the chord length of the line connecting the centers of the inscribed circles between the pressure surface 543 and the suction surface 545 on the root portion 542, etc.
  • the aerodynamic performance parameters of the fan blade 54 such as the geometric inlet angle, the geometric outlet angle, the maximum thickness of the blade, the maximum deflection and other parameters, all need to be based on the mid-arc of the blade.
  • the error is directly related to the accuracy of the calculation of the aerodynamic performance of the fan 50 .
  • the aerodynamic performance of the fan 50 is directly related to the noise generated by the airflow during the flow process. The inventor found that the rectification and noise reduction performance of the first static blade 36 is related to the mid-arc of the fan 50.
  • one end of the first front side edge 366 at the bottom 362 is located downstream of the other end of the first front side edge 366 at the top 364
  • one end of the first rear side edge 368 at the bottom 362 is located at the Upstream of the other end at the top 364
  • the length of the first stationary blade 36 varies between the bottom 362 and the top 364.
  • the length of the first stationary blade 36 is set as the length of the fan blade 54.
  • a garden tool 100 with a blowing function includes: a casing 10 , an air duct 20 , a duct 30 , a fan 50 and a motor.
  • the air duct 20 is connected to the housing 10 , and air can be blown out from the air duct 20 .
  • Ducts 30 are accommodated in housing 10 for guiding air flow.
  • the fan 50 rotates about the fan axis 51 for creating a flow of air.
  • the motor drives the fan 50 to rotate about the fan axis 51 .
  • the duct 30 includes a guide outer cover 32 , a flow guide inner cover 34 , and a first stationary vane 36 located between the flow guide cover 32 and the flow guide inner cover 34 .
  • the garden tool 100 further includes a guide cone 38 connected to the guide inner cover 34 and a second stationary blade 39 arranged on the guide cone 38 .
  • the second vane 39 is located downstream of the first vane 36 in the flow direction of the airflow.
  • the above-mentioned garden tool 100 with a blowing function is guided by the first stationary blade 36, and the rotation angle of the airflow generated by the rotation of the fan 50 is reduced.
  • the rotating vortex in the airflow reduces the noise and further reduces the impact of the noise, especially the vortex frequency during the airflow flow, thereby reducing the frequency doubled squeal.
  • the second stationary vane 39 is located downstream of the first stationary vane 36 and extends axially and longitudinally along the outer wall of the guide cone 38 .
  • the second stationary vanes 39 are evenly spaced around the guide cone 38 , and the airflow passing through the first stationary vanes 36 can pass through the gap between the second stationary vanes 39 , thereby playing a role in guiding the flow.
  • the number of the second stationary vanes 39 is 3-7.
  • the guide cone 38 has an open upstream end (rear end) and a closed downstream end (front end). The upstream end of the guide cone 38 is connected to the front end of the guide inner cover 34.
  • the 50 rotates, there is a guide surface for guiding the airflow to the air outlet 22 in the direction of the air flow. limited.
  • the downstream end of the guide cone 38 is also provided with a heat dissipation hole, wherein the heat dissipation hole communicates with the opening of the front end of the guide inner cover 34.
  • the cooling airflow flows into the guide through the opening of the guide inner cover 34. into the cone 38 and flow out from the heat dissipation holes of the guide cone 38 to cool the motor.
  • the second stationary vane 39 is integrally formed with the guide cone 38 .
  • the second vane 39 includes a first inner edge 392 connected to the guide cone 38 , a first outer edge 394 opposite to the first inner edge 392 and in contact with the first inner edge 392 , and located on the first inner side
  • the intersection of the edge 392 and the first outer edge 394, the first inner edge 392 extends along the direction of the fan axis 51 on the outer wall of the deflector cone 38, and the first outer edge 394 extends along the direction of the fan axis 51 and protrudes outwards arc shape.
  • the second stationary blade 39 further includes a first guide surface 396 and a second guide surface 398 extending between the first inner edge 392 and the first outer edge 394 and disposed oppositely.
  • An outer edge 394 can disperse the air flow and guide the air flow to the first guide surface 396 and the second guide surface 398 , so that the air flow can flow substantially along the direction of the fan axis 51 , thereby reducing the rotating eddy current and reducing the noise.
  • the second stationary vane 39 can also be detachably connected with the flow guide cone 38, which is not limited herein.
  • the width of the second stationary blade 39 decreases linearly from the first inner edge 392 to the first outer edge 394 . It should be understood that, in order to ensure the reliability of the connection between the second stationary vane 39 and the diversion cone 38, the width of the first inner edge 392 should be kept a certain width to increase the connection area between the second stationary vane 39 and the diversion cone 38, while the first outer edge 392 should have a certain width.
  • the edge 394 can play the role of dispersing the airflow, so the width of the first outer edge 394 should be smaller than the width of the first inner edge 392 .
  • the first guide surface 396 and the second guide surface 398 connecting the first inner edge 392 and the first outer edge 394 are configured to be relatively expanded and inclined, and the space between the first guide surface 396 and the second guide surface 398
  • the distance, that is, the width dimension of the second stationary blade 39 decreases linearly from the first inner edge 392 to the first outer edge 394 .
  • the first guide surface 396 and the second guide surface 398 can further smooth the transition and change of the pressure gradients at the first outer edge 394 and the first inner edge 392, thereby reducing the vortex in the airflow and reducing the airflow from the airflow.
  • the first guide surface 396 and the second guide surface 398 are arranged symmetrically, which further improves the rectification performance of the second stationary blade 39 .
  • the second stationary blade 39 includes two end portions adjacent to the corresponding intersection points respectively, and a middle portion located between the two end portions, the middle portion being located at the same cross-sectional width to maintain Invariably, the width of the end portion in the same cross-section gradually increases from the intersection to the middle portion.
  • the first inner edge 392 and the second outer edge 44 have first and second intersection points spaced apart from each other along the direction of the fan axis 51
  • the second stationary blade 39 includes a middle portion located at an intermediate position, and a connecting middle portion Part of the first end portion 391 and the second end portion 393 of the first intersection and the second intersection.
  • the width dimension of the middle portion in the same cross section remains unchanged, and the widths of the first end portion 391 and the second end portion 393 in the same cross section gradually increase from the intersection to the middle portion. That is to say, the second stationary blade 39 forms a structure of “small ends at both ends and large in the middle” along the direction of the fan axis 51 , as shown in FIG. 21 and FIG.
  • the portion 391 and the second end portion 393 are pointed with a width gradually decreasing from the middle portion toward the first intersection and the second intersection.
  • the first end portion 391 is beneficial to disperse the airflow and reduce the vortex noise
  • the second end portion 393 is beneficial to avoid the tendency of the airflow to separate from the second stationary blade 39, thereby avoiding separation noise.
  • the length of the second stationary vane 39 is L3, and the chord length of the first stationary vane 36 is L4, where 0.2 ⁇ L3:L4 ⁇ 1, where the second stationary vane 36 has a chord length L4.
  • the length of the blade 39 is defined as the dimension of the second stationary blade 39 along the flow direction of the airflow, that is, along the direction of the fan axis 51 .
  • the inventor has found that the function of the second stationary blade 39 is to further guide the airflow to flow in the direction of the fan axis 51 by setting the second stationary blade 39, so that the rotation angle of the airflow generated by the rotation of the fan 50 is reduced, and the rotation in the airflow is reduced. Eddy currents, thereby reducing noise.
  • the rectification and noise reduction performance of the second stator blade 39 is related to the chord length of the first stator blade 36. Further research found that the length of the second stator blade 39 is set to be 0.2 of the chord length of the first stator blade 36. Under the premise of ensuring good rectification performance, the generation of eddy currents in the airflow is significantly reduced, and the corresponding decibel of noise is also significantly reduced, improving user experience.
  • the inlet installation angle of the second stationary blade 39 is d, 0° ⁇ d ⁇ 15°, and the inlet installation angle of the second stationary blade 39 is defined as the middle arc of the second stationary blade 39
  • the angle between the tangent of the surface and the fan axis 51 of the fan 50, wherein the definition of the mid-arc of the second stationary blade 39 can refer to the above-mentioned determination of the mid-arc of the fan blade 54, which is not repeated here.
  • the inlet installation angle of the blade decreases, the sound pressure level of the inlet noise gradually increases.
  • the inlet separation loss of the inlet installation angle increases, and the eddy current noise also increases.
  • the function of the second stationary blade 39 is to further guide the airflow along the direction of the fan axis 51. Therefore, setting the inlet installation angle of the second stationary blade 39 to be between 0° and 15° can further ensure the flow of the airflow. , reduce the eddy current noise, thereby improving the noise impact of the whole machine and improving the user experience.
  • a garden tool 100 with a blowing function includes: a casing 10 , an air duct 20 , a duct 30 , a fan 50 and a motor.
  • the air duct 20 is connected to the housing 10 , and air can be blown out from the air duct 20 .
  • Duct 30 is connected to housing 10 for guiding air flow.
  • the fan 50 rotates about the fan axis 51 for creating a flow of air.
  • the motor drives the fan 50 to rotate about the fan axis 51 .
  • the duct 30 includes a guide outer cover 32 , a flow guide inner cover 34 , and a first stationary vane 36 located between the flow guide cover 32 and the flow guide inner cover 34 .
  • the garden tool 100 also includes a third vane 40 downstream of the first vane 36 in the airflow direction.
  • the above-mentioned garden tool 100 with a blowing function is provided with a third stationary blade 40 downstream of the first stationary blade 36. After the airflow rectified by the first stationary blade 36, after being guided by the third stationary blade 40, the airflow is basically formed along the The parallel airflow flowing in the direction of the fan axis 51 can avoid the sharp-frequency noise generated by the rotation and impact of the airflow in the air duct portion 12 and the air duct 20, and further improve the noise reduction effect.
  • the garden tool 100 with a blowing function further includes a third stationary blade 40 located downstream of the second stationary blade 39 along the flow direction of the airflow.
  • the third stationary blades 40 are in the shape of a flat plate, extend substantially along the direction of the fan axis 51 , and are evenly spaced along the circumferential direction.
  • the garden tool 100 with a blowing function further includes a connecting cylinder 33, the number of the third stationary blades 40 is 3-11, the third stationary blades 40 are arranged on the inner wall of the connecting cylinder 33 in the circumferential direction, and the connecting cylinder 33 is provided with a connection
  • the connecting cylinder 33 may be located in the connection area of the air duct 20 and the housing 10 .
  • the third vane 40 includes a second front side edge 46 , a second rear side edge 48 , a second inner side edge 42 connected to the connecting barrel 33 , and a second outer side opposite the second inner side edge 42 . edge 44, and a blade tip (not shown) at the junction of the second outer edge 44 and the second rear edge 48.
  • the second stationary vane 39 may not be provided, but only the first stationary vane 36 and the third stationary vane 40 may be provided, which is not limited herein.
  • the distance between the third stationary blade 40 and the first stationary blade 36 is L5, and the chord length of the first stationary blade 36 is L4, where 2 ⁇ L5:L4 ⁇ 4 .
  • the distance between the third stationary blade 40 and the first stationary blade 36 refers to the distance between the third stationary blade 40 and the first stationary blade 36 along the airflow direction, that is, the distance along the fan axis 51 from the first stationary blade 36 , specifically the third stationary blade 40 The distance of the second front side edge 46 from the first stationary blade 36 .
  • the main function of the third stationary blade 40 is that after being guided by the third stationary blade 40 , the airflow basically forms a parallel airflow flowing in the direction of the fan axis 51 , so the third stationary blade 40 is separated from the first stationary blade 36 The distance will affect the rectification effect.
  • the inventor's research found that if the third stationary blade 40 is too close to the first stationary blade 36, the airflow rectified by the third stationary blade 40 is not a parallel airflow that flows in the direction of the fan axis 51. If the third stationary blade 40 If the distance from the first stationary blade 36 is too far, on the one hand, the length of the casing 10 will be extended, which is not conducive to the design requirements of miniaturization and light weight. decline.
  • the distance between the third stationary blade 40 and the first stationary blade 36 is set to be 2 to 4 times the chord length of the first stationary blade 36, which not only ensures a better rectification effect, but also plays a role in Obvious noise reduction effect.
  • the length of the third stationary blade 40 is L6
  • the chord length of the first stationary blade 36 is L4 , 0.5 ⁇ L6: L4 ⁇ 2.
  • the length of the third stationary blade 40 is defined as the dimension of the third stationary blade 40 along the direction of the fan axis 51 .
  • the inlet installation angle of the third stationary blade 40 is e, 0° ⁇ e ⁇ 15°. It should be understood that the function of the third stationary blade 40 is to further guide the airflow along the direction of the fan axis 51. Therefore, setting the inlet installation angle of the third stationary blade 40 to be between 0° and 15° can further ensure that the The flow condition of the airflow can reduce the eddy current noise, thereby improving the noise impact of the whole machine and improving the user experience.
  • the inlet installation angle of the third stationary blade 40 is e, which can be understood as: the angle between the tangent on the mid-arc surface between the opposite sides of the third stationary blade 40 and the fan axis 51, the specific representation method can refer to The above-mentioned determination method of the middle arc of the fan blade 54 .
  • the second outer edge 44 extends obliquely relative to the fan axis 51 in an expanding manner, and the second front edge 46 extends concavely relative to the fan axis 51 .
  • the longitudinal section of the second front side edge 46 is arc-shaped and smoothly transitions with the second outer side edge 44 .
  • the air flow guided by the second stationary vane 39 first comes into contact with the second front side edge 46, and the second front side edge 46 is concavely curved and extends to help reduce the air flow velocity difference of the air flow at different radial dimensions.
  • the gradient transitions smoothly to reduce eddy current noise, and the second outer edge 44 extends obliquely with respect to the expansion of the fan axis 51 .
  • the gradients that help to further reduce the difference in airflow velocity at different radial dimensions are gentle transitions, and further guide the airflow to substantially form a parallel airflow flowing in the direction of the fan axis 51 .
  • the inventor of the present application has verified through experiments that the use of the above-mentioned multiple stationary blades for diversion can reduce the noise decibel by 1-3 decibels, the sharp sound decibel can be reduced by 2-5 decibels, and the air duct efficiency of the air duct portion 12 can be increased by 2 %.
  • a garden tool 100 with a blowing function includes: a casing 10 , a fan 50 and an air inlet shield 60 .
  • the housing 10 has an air inlet 11 .
  • the fan 50 rotates about the fan axis 51 for creating a flow of air.
  • the motor drives the fan 50 to rotate about the fan axis 51 .
  • the air inlet shroud 60 is connected to the air inlet 11 , and the fan 50 can rotate around the fan axis 51 and introduce outside air from the air inlet 11 through the air inlet shroud 60 .
  • the air intake shroud 60 includes a three-dimensional air intake array grid having an outwardly convex outer envelope surface.
  • the three-dimensional air intake array grid includes: webs 61 extending along the first direction 612 , the webs 61 include a plurality of webs 61 , and the webs 61 are spaced along the second direction 661 ; and flow-breaking ribs extending along the second direction 661
  • the strip 66 includes a plurality of flow-breaking ribs 66. Each flow-breaking rib 66 is overlapped with two adjacent webs 61 along the second direction 661.
  • the plurality of flow-breaking ribs 66 and the plurality of webs 61 A plurality of grid units 62 arranged at intervals are defined and formed, and air intake holes 621 for air to pass through are formed between adjacent grid units 62; It is raised in the direction away from the air inlet 11 to form a convex outer envelope surface of the three-dimensional air inlet array grid; wherein, the first direction 612 and the second direction 661 intersect.
  • the above-mentioned garden tool 100 with a blowing function is designed to have a three-dimensional air intake array grid with an outwardly convex arc-shaped envelope surface, and the outer envelope surface and/or inner envelope surface of the plurality of grid units 62 smoothly transition,
  • the flow loss of the air flow can be reduced to the greatest extent;
  • the swirls generated at the skeletons of different grid units 62 may cancel each other.
  • the spatial fluctuation of the airflow can be weakened without increasing the number of grid units 62, so that the airflow entering the air inlet shroud 60 tends to be parallel, which is beneficial to reduce the generation of eddy currents, thereby reducing noise.
  • the ejection portion 68 of the flow-breaking rib 66 is bulged relative to the web 61 in the direction away from the air inlet 11 , that is, the ejection portion 68 at least partially protrudes from the web 61 , so the airflow enters the grid unit 62
  • the flow is first blocked by the two adjacent ejection parts 68 and divided into the surrounding areas; after the divided flow is blocked by the adjacent two webs 61, the airflow is prevented from being affected by the adjacent two webs 61 and the adjacent two at the same time.
  • the obstruction of the ejection part 68 effectively increases the air intake flow and reduces the wind resistance.
  • the ejection portion 68 may have a surface structure, for example: the ejection portion 68 may be a complete plane; or it may be formed by splicing a plurality of planes with an included angle; or it may be an arch or curved arc surface Wait.
  • the ejection portion 68 may also have a point or line-like structure, for example, the ejection portion 68 is the end point of a cone;
  • the garden tool 100 with a blowing function further includes an air inlet shield 60 .
  • the air inlet shield 60 is connected to the air inlet 11 of the air duct 12 , and the motor can
  • the driving fan 50 rotates around the fan axis 51 to introduce the external air from the air inlet 11 through the air inlet shroud 60 .
  • the air inlet shield 60 and the air inlet 11 may be configured to be detachably connected.
  • the air inlet shield 60 includes a plurality of grid units 62 for air to pass through, and air enters the air inlet 11 of the air duct 12 through the plurality of grid units 62 .
  • the sum of the ventilation areas defines the total effective ventilation area in and out of the air inlet shroud 60 .
  • the total effective ventilation area of the air inlet shroud 60 can be understood as the sum of the projected areas of the grid units 62 on a plane perpendicular to the axis of the air inlet 11 .
  • the maximum aperture of the grid unit 62 is not greater than 7 mm, and preferably, the maximum aperture of the grid unit 62 is not greater than 4 mm. In this way, while protecting the human body, it can also prevent sundries from entering the air inlet 11 .
  • the air inlet shield 60 includes a three-dimensional air intake array grid and a frame 64 , and the frame 64 surrounds the three-dimensional air intake array grid and is connected to the air inlet 11 of the housing 10 by means of the frame 64 .
  • the three-dimensional air intake array grid includes a plurality of grid cells 62, and has a convexly curved outer envelope surface, for example, the envelope surface can be a spherical surface. Further, the three-dimensional air intake array grid has an outwardly convex arc-shaped inner envelope surface.
  • the envelope surface means that in the process of wave propagation, the geometric positions of the points in the same phase can always be found, and the trajectory of these points is an equal-phase surface, which is called the envelope surface.
  • the inventor has found that the rotation of the fan 50 causes the air to be sucked in through the air inlet shroud 60 and the air inlet 11 , and before the air passes through the air inlet shroud 60 , the air has a circumferential direction relative to the axial direction of the air inlet 11 . With little or no velocity component, the presence of the grid unit 62 will cause the airflow passing through the air inlet shroud 60 to generate a velocity component in the circumferential direction to generate eddy currents, thereby generating eddy current noise.
  • the three-dimensional air intake array grid is designed to have an outwardly convex arc-shaped envelope surface, such as the spherical outer envelope surface shown in FIG. 26 and FIG.
  • the outer envelope surface and/or the inner envelope surface of 62 smoothly transition, on the one hand, the flow loss of the airflow can be reduced to the greatest extent;
  • the intake air flow tends to be uniform to generate substantially parallel intake air flow, and the swirls generated at the skeletons of different grid units 62 may cancel each other.
  • the spatial fluctuation of the airflow can be weakened without increasing the number of grid units 62, so that the airflow entering the air inlet shroud 60 tends to be parallel, which is beneficial to reduce the generation of eddy currents, thereby reducing noise.
  • it can also increase the air flow and efficiency, and improve the air intake efficiency.
  • the flow-breaking rib 66 includes a first air guide portion 681 and a second air guide portion 682 extending from the ejection portion 68 toward the adjacent webs 61 arranged at intervals.
  • the predetermined distance D6 by which the leeward side of the ejection portion 68 bulges outward relative to the web 61 is 2 mm ⁇ 20 mm.
  • the present application controls the height distance D6 between 2mm and 20mm, which can not only ensure that the airflow is staggered and block the flow, and increase the air intake; it can also block the noise inside the fan, so as to delay the noise from spreading outwards.
  • first air guide portions 681 and the second air guide portions 682 extending toward the adjacently spaced webs 61 are respectively located on opposite sides of the ejection portion 68 along the second direction 661 in some specific embodiments.
  • the structure extending obliquely toward the web 61 is convenient to guide the airflow according to the preset path, avoid generating swirl flow, and reduce noise.
  • the height distance D6 may be 2 mm, 3 mm, 5 mm, 8 mm, 11 mm, 14 mm, 17 mm, 20 mm, and the like. Specifically, in some embodiments, the height distance D6 is preferably 3 mm ⁇ 8 mm.
  • the three-dimensional air intake array grid has a plurality of grid cells 62 arranged at intervals, and the projection of each grid cell 62 on a plane perpendicular to the axis of the air inlet 11 has regular and / or irregular shapes.
  • the three-dimensional air intake array grid is provided with a main air intake area and an auxiliary air intake area surrounding the frame 64, and the projected shape of the grid units 62 located in the main air intake area on a plane perpendicular to the axis of the air inlet 11 is the same . In this way, the connection between the grid unit 62 and the frame 64 in the auxiliary air intake area is facilitated.
  • each grid unit 62 on a plane perpendicular to the central axis of the air inlet 11 is a polygon, for example, a hexagon, a heptagon or an octagon.
  • the maximum inscribed spherical radius of the grid unit 62 determines the maximum grid width of the grid unit 62.
  • the grid unit 62 having a smaller grid width is beneficial to reduce noise, and a polygonal grid is used.
  • the unit 62 is beneficial to control the maximum grid width of the grid unit 62, thereby facilitating the control of noise.
  • the auxiliary air intake area should be understood as: when the three-dimensional air intake array grid is connected inside the frame 64, a plurality of spaces will be formed between the inner wall of the frame 64 and surround the outside of the main air intake area, that is, the The space is formed by the enclosure between the "grid unit 62" in a non-closed state and the inner wall of the frame 64; and the main air intake area is a space formed by a combination of multiple "grid units 62" in a completely closed state.
  • a plurality of grid cells 62 are arranged at intervals along the second direction 661 to form a plurality of rows, the grid cells 62 in each row are arranged along the first direction 612, and the two most adjacent three-dimensional progress in adjacent rows
  • the air array grids are dislocated in the first direction 612 .
  • the first direction 612 and the second direction 661 intersect, specifically, the first direction 612 is the lateral direction as shown in FIG. 26 , and the second direction 661 is the longitudinal direction as shown in FIG. 26 .
  • grid units 62 located in different rows are staggered from each other, so as to avoid generating eddy currents as much as possible, thereby reducing noise.
  • the three-dimensional air intake array grid includes a web 61 extending along a first direction 612 and a flow-breaking rib 66 extending along a second direction 661 , and the web 61 includes a plurality of The webs 61 are arranged at intervals along the second direction 661, and the flow-breaking ribs 66 include a plurality of them.
  • the 66 is configured to have an airflow channel that communicates with two adjacent grid units 62 along the first direction 612 , and a plurality of flow-breaking ribs 66 and a plurality of webs 61 define and form a plurality of grid units 62 arranged at intervals.
  • the top surfaces 652 of the plurality of flow-breaking ribs 66 form the outwardly convex arc-shaped outer envelope surface of the three-dimensional air intake array grid, and the inner surfaces of the plurality of webs 61 form the outwardly convex arc-shaped inner envelope of the three-dimensional air intake array grid. network surface.
  • the flow-breaking ribs 66 are used to divide the air flow, so that a plurality of fine air flows can pass through the grid unit 62 to form a substantially parallel air flow, which is beneficial to reduce noise.
  • the flow breaking ribs 66 and the web 61 hardly overlap each other, which is also beneficial to the manufacture of the air inlet shroud 60, for example, by injection molding , which is conducive to demoulding.
  • the flow-breaking rib 66 has an air flow channel connecting two adjacent grid units 62, which helps to increase the intake air volume without increasing the noise.
  • the ejector portion 68 has a top surface 652 on the windward side 65 .
  • the first wind guide portion 681 and the second wind guide portion 682 respectively have a first wind guide surface 654 and a second wind guide surface 656 on the windward side 65 .
  • the web 61 is substantially parallel to the axis of the air inlet 11, which is beneficial to guide the airflow, and the thickness of the web 61 is 0.25 mm to 2 mm.
  • the top surface 652 is perpendicular to the axis of the air inlet 11, and the projections of the first wind guide surface 654 and the second wind guide surface 656 on a plane perpendicular to the first direction 612 are respectively at the top surface 652.
  • the included angles between the projections in the plane perpendicular to the first direction 612 are all De, and 90° ⁇ De ⁇ 180°
  • the cross section of the flow-breaking rib 66 along the windward side 65 of the second direction 661 The profile is trapezoidal, and the cross-sectional profile on the leeward side is also trapezoidal.
  • the width of the top surface 652 is less than the width of the first wind guide surface 654 and the second wind guide surface 656.
  • the width of the first wind guide surface 654 extends from the top surface 652 to the web. 61 gradually increases, and the projection of the flow-breaking rib 66 on a plane perpendicular to the axis of the air inlet 11 is in the shape of a dumbbell. In this way, the flow-breaking rib 66 first comes into contact with the air flow, and its width is small to divide the air flow.
  • the first air guide surface 654 and the second air guide surface 656 have larger widths and extend obliquely.
  • the second wind guide surface 656 guides the airflow according to a preset path, so as to avoid generating swirling flow, thereby reducing noise.
  • two adjacent flow-breaking ribs 66 in adjacent rows are staggered at equal intervals in the first direction 612 .
  • two grid cells 62 located in adjacent rows are staggered along the first direction 612
  • two adjacent grid cells 62 located in an even row and an adjacent odd row are located in the same column along the second direction 661 .
  • the flow-breaking ribs 66 can be spaced apart from different grid units 62, and the two adjacent grid units 62 located in adjacent rows are staggered and located in the even-numbered rows and the odd-numbered rows.
  • the two adjacent grid units 62 are located in the same column, and both are realized by the arrangement of the flow-breaking ribs 66, which means that the flow-breaking ribs 66 are regularly arranged, and the first wind guide surface 654 and the second wind guide surface 656 can
  • the airflow is introduced into the two grid units 62 whose even-numbered rows and odd-numbered rows are located in the same column, so as to avoid mutual influence between airflows and reduce noise.
  • the windward side 65 further includes third wind guide surfaces 67 located on opposite sides of the flow breaking rib 66 along the first direction 612 , and the third wind guide surfaces 67 are joined to the top surface 652 , the first wind guide surface 654 and the second wind guide surface 656, and extend outward along the first direction 612 obliquely.
  • the flow-breaking rib 66 forms an air guide surface along the first direction 612 and the second direction 661, so that the airflow can be guided into different grid units 62 along the first direction 612 and/or the second direction 661, avoiding The airflow creates a swirl, further reducing noise.
  • the inventor of the present application has verified through experiments that the use of the above-mentioned air inlet shield 60 can reduce the noise decibel by 1-2 decibels, the screech decibel can be reduced by 1 decibel, and the air duct efficiency of the air duct portion 12 can be increased by 1% to 2% .
  • the air inlet shroud 60 has a shroud axis 63 .
  • the first wind guide surface 654 is disposed toward the shield axis 63 relative to the second wind guide surface 656 .
  • the angle f between the second wind guide surface 656 and the shield axis 63 gradually increases from the grid edge of the three-dimensional air intake array to the shield axis 63 big.
  • the included angle f can be 17°, 19°, 20° from the edge of the grid of the three-dimensional air intake array to the shield axis 63 in sequence. °, 21 °. It can be seen from this that the closer to the middle of the air inlet shield 60, the larger the inclination angle of the second air guide surface 656, which facilitates the dispersion of the air intake to the surrounding of the air inlet shield 60, so that the air is evenly fed and avoids the air intake shield 60. Central air intake.
  • the angle f between the second wind guide surface 656 and the shield axis 63 is the difference from the three-dimensional air intake array grid.
  • the grid edge to shroud axis 63 may also remain unchanged.
  • the air inlet shroud 60 has a shroud axis 63
  • the web 61 includes an inner surface on the side facing away from the air inlet, and is located on opposite sides of the inner surface along the second direction 661 and The fourth wind guide surface 611 extending obliquely with respect to the inner surface.
  • the distance between the fourth wind guide surfaces 611 between two adjacent webs 61 increases gradually from the end of the fourth wind guide surface 611 away from the inner surface to the end of the fourth wind guide surface 611 close to the inner surface, and toward the casing 10 in an expanded structure. In this way, when the airflow flows onto the fourth air guide surface 611, under the action of the fourth air guide surface 611, it spreads outward, so that the airflow distribution is more uniform and stable.
  • the angle g between the fourth wind guide surface 611 on the web 61 facing away from the shield axis 63 and the shield axis 63 is from the edge of the three-dimensional air intake array grid to the shield axis 63 in the second direction 661 slowing shrieking.
  • the included angle g in the second direction 661 may also remain unchanged from the grid edge of the three-dimensional air intake array to the shield axis 63 .
  • the distance between two adjacent webs 61 is 5 mm ⁇ 15 mm.
  • the effective air intake area of the air inlet shroud 60 will be reduced, reducing the air intake volume; when the gap between two adjacent webs 61 is too large, the achieve protection.
  • the distance between the webs 61 is controlled to be 5 mm to 15 mm, and on the premise of achieving effective protection, the air intake can be ensured, the generation of eddy currents can be reduced, and the noise reduction effect can be improved.
  • the distance between two adjacent webs 61 may be 5 mm, 7 mm, 9 mm, 11 mm, 13 mm, 15 mm, or the like.
  • the side of the web 61 facing away from the air inlet includes at least a first side 613 and a second side 614 which are arranged to intersect in the first direction 612 .
  • the angle between the first surface 613 and the second surface 614 is 140° ⁇ 180°.
  • the first surface 613 and the second surface 614 can both be flat surfaces or curved surfaces. When the first surface 613 and the second surface 614 are both curved surfaces, a point can be taken as a tangent line on each of them, and the two tangent lines can be understood as the angle between the first surface 613 and the second surface 614 .
  • first face 613 and the second face 614 can be taken at one end away from the second face 614; the point can also be taken in the middle of the first face 613; Alternatively, a point or the like is taken on the end of the first surface 613 close to the second surface 614 .
  • the side of the web 61 facing the air inlet may be a curved surface, or may be formed by splicing a plurality of planes at an included angle, or the like.
  • the air inlet shield 60 further includes a frame 64 connected to the air inlet 11 , and the three-dimensional air intake array grid is connected in the frame 64 .
  • the connection methods of the three-dimensional air intake array grid on the frame 64 may be various, for example: the connection mode of the three-dimensional air intake array grid on the frame 64 may be, but not limited to, bolt connection, clamping, riveting, welding, One-piece molding, etc.
  • the outer envelope surface of the three-dimensional air intake array grid protrudes from one end face of the frame 64 facing away from the air inlet 11 . In this way, protruding the outer envelope surface from the frame 64 is beneficial to increase the structural strength and limit the noise radiation.
  • the inlet shroud 60 has a shroud axis 63 .
  • One end surface of the frame 64 facing away from the air inlet 11 is inclined relative to the shield axis 63 .
  • a garden tool 100 with a blowing function includes: a housing 10 , a fan 50 and an air inlet shield 60 .
  • the housing 10 has an air inlet 11 .
  • the fan 50 rotates about the fan axis 51 for creating a flow of air.
  • the motor drives the fan 50 to rotate about the fan axis 51 .
  • the air inlet shroud 60 is connected to the air inlet 11 , and the fan 50 can rotate around the fan axis 51 and introduce outside air from the air inlet 11 through the air inlet shroud 60 .
  • the garden tool 100 further includes a plurality of guide vanes 90 disposed in the upstream area of the fan 50, and the airflow introduced by the air inlet 11 can pass through the gaps between the guide vanes 90 to guide the airflow to form parallel airflow.
  • the garden tool 100 with a blowing function further includes a plurality of guide vanes 90 disposed in the upstream area of the fan 50 near the air inlet 11 , and are formed by the air inlet.
  • the airflow introduced by the tuyere 11 can pass through the gaps between the guide vanes 90 to guide the airflow to form a parallel airflow.
  • the plurality of guide vanes 90 extend substantially parallel to each other along the axial direction of the air inlet 11 , and the plurality of guide vanes 90 are substantially evenly spaced to guide the airflow well, so that the airflow passes through the guide vanes 90 to form a parallel air flow, thereby reducing the frequency of the air flow hitting the inner wall of the air duct part 12 to achieve noise reduction.
  • the non-parallel airflow is refracted and lost between the guide vanes 90, so that noise can be reduced. Therefore, the guide vanes 90 can also be used as a sound insulation grille.
  • the distance between the guide vanes 90 and the air inlet 11 is 10 mm to 50 mm
  • the number of the guide vanes 90 is 5-20
  • the distance between two adjacent guide vanes 90 is 12 mm to 12 mm. 18 mm
  • the chord length of each guide vane 90 is 10 mm to 50 mm.
  • the distance between adjacent guide vanes 90 is 15 mm, so that a better noise reduction effect can be achieved.
  • the housing 10 includes a straight section 13 and a curved section 14 located upstream of the straight section 13 and bent downward relative to the straight section 13 , the fan 50 is disposed on the straight section 13 , the guide vane 90 is disposed on the curved section 14 and extends along the inner wall of the curved section 14 .
  • the straight section 13 is substantially parallel to the fan axis 51
  • the front end of the curved section 14 is connected to the rear end of the straight section 13
  • the rear end of the curved section 14 is provided with the aforementioned air inlet 11
  • the air inlet shield 60 is connected to the There are 11 air inlets.
  • the included angle between the fan axis 51 and the vertical line perpendicular to the plane where the air inlet 11 is located is set between 120 degrees and 180 degrees. In this way, by arranging the curved section 14, the flow path of the air flow can be extended, and the curved inner wall of the curved section 14 and the guide vanes 90 can be used for good flow guidance, so that the air flow reaching the fan 50 is a substantially parallel air flow, which is beneficial to reduce noise.
  • the housing 10 includes a first half-shell and a second half-shell symmetrically arranged on a symmetrical reference plane, the first half-shell and the second half-shell have upper and lower edges adapted to each other, the first half-shell The upper edges of the first and second half-shells are matched with each other, and the lower edges of the first and second half-shells are matched with each other, thereby forming the aforementioned airflow channel.
  • the cross-sectional shape of the housing 10 is a circle, and the cross-sectional contours of the first half-shell and the second half-shell are two symmetrically arranged semicircular arcs, the first half-shell and the second half-shell
  • the radially two side edges of the half shell are the aforementioned upper edge and lower edge, respectively.
  • the fan axis 51 is located on the symmetrical reference plane
  • the upper edge of the first half-shell and the upper edge of the second half-shell are located on the part of the curved section 14, the projections towards the symmetrical reference plane overlap each other and have a third curved profile
  • the lower edge of the first half-shell and the lower edge of the second half-shell are located in the portion of the curved segment 14, the projections towards the symmetry reference plane overlap each other and have a fourth curved profile.
  • the third curved contour and the fourth curved contour may both be arc-shaped, and the third curved contour and the fourth curved contour are located on concentric circles with different radii. In this way, the curvature of the curved section 14 is made to transition smoothly, and the airflow entering from the air inlet 11 can flow smoothly along the curved section 14 of the housing 10 , which has a good guiding effect.
  • the guide vanes 90 are connected to the inner wall of the casing 10 and located on the curved section 14, and are located on the path of the airflow.
  • the guide vane 90 includes a first sub-guide vane 9290 and a second sub-guide vane 9490 symmetrically arranged on a symmetrical reference plane.
  • the first sub-guide vane 9290 It is coupled with the second sub-guide vane 9490 to form a complete guide vane 90 .
  • the first sub-guide vane 9290 and the second sub-guide vane 9490 both have upper and lower guide surfaces that are in contact with the airflow.
  • the The guide surfaces corresponding to the first sub-guide vane 9290 and the second sub-guide vane 9490 form smooth curved surfaces.
  • the projection of the guide vane 90 toward the symmetrical reference plane has a fifth curved profile, the fifth The curved contour is in the shape of a circular arc, and the middle arc line that bisects the third curved contour and the fourth curved contour is vertical and bisects the fifth curved contour.
  • the inventor of the present application has verified through experiments that the above-mentioned guide vanes 90 are provided in the upstream area of the fan 50 near the air inlet 11, which can reduce the noise by 2-3 decibels, and the squeaky decibel can be reduced by 2-4 decibels.
  • the duct efficiency of the 12 is reduced by less than 1%.
  • the garden tool 100 with a blowing function further includes a power source, and the power source is used to provide power for the motor.
  • the power source can be a DC power source, specifically a rechargeable battery pack, and the battery pack can be detachably installed on the housing 10 .
  • the casing 10 is provided with one or two or more battery pack mounting parts for combining the battery packs.
  • the battery pack mounting parts can be provided near the operating handle, and the number of battery packs is the same as the number of battery pack mounting parts. match. It should be understood that the battery pack mounting portion should be disposed close to the operating handle, so that the weight unit can be as close as possible to the operating grip point, thereby reducing the user's work fatigue.
  • the battery pack in the embodiment of the present application can supply power for at least two different types of DC tools, for example, it can be used for garden tools 100 with blowing function, lawn mowers, lawn mowers, chainsaws, pruning machines, angle grinders, 100 garden tools such as electric hammer and electric drill.
  • the user can only purchase the bare metal of the garden tool 100 with the blowing function, and use the existing battery packs on the other garden tools 100 to supply power to the garden tool 100 with the blowing function, so as to realize the energy sharing of multiple tools,
  • the battery pack can be fixed on the battery pack mounting portion by means of snapping or plugging.
  • the battery pack includes slide rails (not numbered) on both sides of the battery pack,
  • the upper side is provided with a buckle portion and a number of electrode connecting pieces (not shown).
  • the slide rail part can be matched with the battery pack mounting part to limit the position of the battery pack in the radial direction, and the buckle part is connected with the shell 10 to realize the position limit of the battery pack in the axial direction, so as to stabilize the battery pack. Connect to the battery pack mounting part.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • a first feature "on” or “under” a second feature may be in direct contact between the first and second features, or the first and second features indirectly through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明涉及一种具有吹功能的园林工具,在运行中,电机驱使风扇绕自身轴线旋转,以使空气从风管中吹出。而对于不同工况下,本申请的园林工具具有不同降噪效果的表现。当园林工具的吹力大于或等于16N,且小于或等于23N,即园林工具应用于中工况时,其产生的噪音控制为:53dBA≤LP<57dBA;当园林工具的吹力大于23N,且小于或等于40N即应用于重工况时,其产生的噪音控制为:53dBA≤LP≤0.0121F 2-0.0603F+53.065dBA。如此,本申请园林工具在保证吹风性能的基础上,有效减小运行中的噪声。

Description

具有吹功能的园林工具
交叉参考相关引用
本申请要求如下优先权:
2021年3月12日递交的申请号为202110268034.9、发明名称为“具有吹功能的电动工具”的中国专利申请。
上述优先权文本的全部内容通过引用结合在本申请中。
技术领域
本发明涉及园林工具技术领域,特别是涉及具有吹功能的园林工具。
背景技术
随着城市绿化面积的不断扩大,公园、公路等公共场所的绿化带遍及全国各地,具有吹功能的园林工具也被广泛应用。例如,花园吹风机就是常见的一种具有吹功能的园林工具,借助吹向地面的气流来清除灰尘或者杂物进行清洁。为产生较高的风压和风速以满足清洁需求,需要花园吹风机在工作时必须处于一个较高的功率才能够产生满足要求的风力,但如此容易产生噪声。
而园林工具的结构设计的好坏直接决定工作过程中噪音的高低,比如:现有园林工具中,受限于风扇与风扇之间结构配合缺陷,导致气流动态通过风扇之间的间隙时,会产生较高的噪音。
现有园林工具中,对气流具有一定整流作用的静叶片,在其结构设计,往往朝进风侧前倾设置,导致气流的噪音依然较高。
现有园林工具中,为优化进风效果,会在进气侧设置进风护罩。然而,往往受限于进风护罩上的格栅结构设计缺陷,导致降噪效果并不明显。
发明内容
基于此,有必要提供一种吹功能的园林工具,在保证吹风性能的基础上,有效减小运行中的噪声。
一种具有吹功能的园林工具,包括:壳体;风管,连接所述壳体,空气能够从所述风管吹出;风扇,绕风扇轴线旋转,用于使空气产生流动;电机,驱使所述风扇绕风扇轴线旋转;所述具有吹功能的园林工具在所述电机处于最高转速下的吹力F和噪音LP满足以下关系:16N≤F≤23N,53dBA≤LP<57dBA;或者,23N<F≤40N,53dBA≤LP≤0.0121F 2-0.0603F+53.065dBA。
在其中一种实施方式中,所述电机的转速为:16000r/min~26000r/min。
在其中一种实施方式中,所述电机的转速为:18000r/min~22000r/min。
在其中一种实施方式中,所述风扇在垂直于所述风扇轴线的平面内的投影轮廓直径为88mm~120mm。
在其中一种实施方式中,所述具有吹功能的园林工具在所述电机处于最高转速下的吹力F和噪音LP还满足以下关系:
23N<F≤40N,53dBA≤LP≤0.0081F 2+0.1374F+48.473dBA。
在其中一种实施方式中,所述具有吹功能的园林工具的风量Q,压力P ,电机的输入功率P 分别满足以下关系:
450cfm≤Q≤1500cfm,1400Pa≤P ≤5000Pa,700W≤P ≤3000W。
在其中一种实施方式中,所述园林工具为能够吹动地面树叶的吹风机,所述壳体设有进风口,所述吹风机包括连接在所述进风口上的进风护罩,所述风扇能够绕风扇轴线旋转并将外界空气透过所述进风护罩引入;所述风扇包括:毂;及从所述毂沿径向向外延伸并围绕风扇轴线分布的多个扇叶;所述扇叶包括用 于产生气流的压力面和吸力面,所述压力面与所述吸力面在所述风扇轴线的方向上交汇形成前缘和后缘,在所述风扇的转动方向上,所述前缘位于所述后缘的前方,
在所述风扇轴线的方向上,所述风扇扇叶的前缘与所述进风护罩之间间距最小值为D5,所述园林工具的长度为L0;其中,0.15≤D5:L0≤0.4。
在其中一种实施方式中,所述吹风机还包括与所述壳体连接的涵道;所述涵道包括导流外罩、导流内罩以及连接于所述导流外罩和所述导流内罩之间的第一静叶片,电机容纳在所述导流内罩中;所述进风口的横截面积S1和所述导流外罩横截面积S2的比率为1.6~4。
上述的具有吹功能的园林工具,电机驱使风扇绕自身轴线旋转,以使空气从风管中吹出。而对于不同工况下,本申请的园林工具具有不同降噪效果的表现。当园林工具的吹力大于或等于16N,且小于或等于23N,即园林工具应用于中工况时,其产生的噪音控制为:53dBA≤LP<57dBA;当园林工具的吹力大于23N,且小于或等于40N即应用于重工况时,其产生的噪音控制为:53dBA≤LP≤0.0121F 2-0.0603F+53.065dBA。如此,本申请园林工具在保证吹风性能的基础上,有效减小运行中的噪声。
本申请提供一种具有吹功能的园林工具,包括:壳体;风管,连接所述壳体,空气能够从所述风管吹出;风扇,绕风扇轴线旋转,用于使空气产生流动,所述风扇包括:毂;及从所述毂沿径向向外延伸并围绕风扇轴线分布的多个扇叶;电机,驱使所述风扇绕风扇轴线旋转;其特征在于,所述扇叶包括用于产生气流的压力面和吸力面,所述压力面与所述吸力面在所述风扇轴线的方向上交汇形成前缘和后缘,在所述风扇的转动方向上,所述前缘位于所述后缘的前方,相邻两个所述扇叶彼此相邻的所述前缘和所述后缘在垂直于所述风扇轴线的平面内的投影彼此不重叠;相邻两个所述扇叶在垂直于所述风扇轴线的平面内的投影之间具有间隔间隙,所述间隔间隙D0大于0mm,且小于或等于4mm。
在其中一种实施方式中,所述间隔间隙D0大于或等于2mm,且小于或等于3.5mm。
在其中一种实施方式中,所述风扇轴线定义为X轴线,经过所述前缘靠近所述毂的一端点与所述风扇轴线垂直且相交的线定义为Y轴线,与X轴线和Y轴线垂直且相交的线定义为Z轴线;所述吸力面与所述压力面分别在所述X轴线和所述Z轴线构成的平面内的投影之间的距离最大值定义为所述扇叶的最大厚度h;
所述间隔间隙D0的值与所述风扇的最大厚度h的值的比率范围为1~1.5。
在其中一种实施方式中,其特征在于,所述扇叶的数量为7个~23个。
在其中一种实施方式中,所述扇叶为注塑成型或压铸成型于所述毂。
在其中一种实施方式中,所述毂的直径D2与全部的所述扇叶在垂直于所述风扇轴线的平面内的投影轮廓的直径D1之比为0.4~0.6。
本申请提供一种具有吹功能的园林工具,包括:壳体;风管,连接所述壳体,所述风管设有供空气向外吹出的出风口;风扇,绕风扇轴线旋转,用于使空气产生流动并自所述出风口向外吹出;电机,驱使所述风扇绕风扇轴线旋转;
所述风扇包括:毂;及从所述毂沿径向向外延伸并围绕风扇轴线分布的多个扇叶,所述扇叶包括固定到毂的根部、与所述毂间隔开的顶缘、在所述根部和所述顶缘之间延伸的前缘和后缘,在所述风扇的转动方向上,所述前缘位于所述后缘的前方;
所述风扇轴线定义为X轴线,经过所述前缘靠近所述毂的一端点与所述风扇轴线垂直且相交的线定义为Y轴线,与X轴线和Y轴线垂直且相交的线定义为Z轴线;
所述根部和所述顶缘分别在所述X轴线与Y轴线构成的平面内的投影中点对应定义为第一中点、第二中点,经过所述第一中点并与Y轴线平行的线定义为第一竖轴线,在气流流动的方向上,所述第二中点位于所述第一竖轴线的下游朝向所述风管的出风口的一侧。
在其中一种实施方式中,所述第一中点与所述第二中点之间的连线和所述第一竖轴线之间的夹角β为0°~9°。
在其中一种实施方式中,所述前缘在所述Y轴线与所述Z轴线构成的平面内投影定义为前侧投影,所述前侧投影的相对两端点之间的连线定义为弦线L;
所述前侧投影上至少两处分别位于所述弦线L的相对两侧。
在其中一种实施方式中,所述前缘远离所述毂的部分外轮廓处的前侧投影偏离所述弦线L并背离所述风管的出风口的一侧内凹;
所述前缘靠近所述毂的部分外轮廓处的前侧投影偏离所述弦线L并朝向所述风管的出风口的一侧凸出。
在其中一种实施方式中,所述前缘在所述Y轴线和所述Z轴线构成的平面内的投影定义为前侧投影,所述前侧投影在所述前缘远离所述毂的部分外轮廓处弯曲延伸,以在所述前侧投影上形成凹陷结构,所述凹陷结构的开口朝向与所述风扇的转动方向保持一致。
在其中一种实施方式中,所述前侧投影在所述前缘和所述顶缘的外轮廓线相交并远离所述毂的一交点处的切线和所述所述弦线L之间的弯曲角度α为5°~15°。
在其中一种实施方式中,所述前缘在所述X轴线与Y轴线构成的平面内的投影位于所述Y轴线朝向所述风管的出风口的一侧。
在其中一种实施方式中,所述前缘在所述X轴线与Y轴线构成的平面内的投影,在所述前缘靠近所述毂的一端点处的切线与所述Y轴线之间的夹角θ为3°~25°。
在其中一种实施方式中,经过所述后缘靠近所述毂的一端点并垂直于所述X轴线的线定义为第二竖轴线;
所述后缘在所述X轴线与Y轴线构成的平面内的投影,位于所述第二竖轴线背向所述风管的出风口的一侧。
在其中一种实施方式中,所述后缘在所述X轴线与Y轴线构成的平面内的投影,在所述后缘与所述毂的交点处的切线与所述第二竖轴线之间的夹角δ为8°~20°。
在其中一种实施方式中,以垂直于所述Y轴线的平面截取所述风扇,分别在所述前缘和所述后缘上的交点之间连线定义为安装线,所述安装线与所述X轴线之间的安装夹角γ从所述根部至所述顶缘逐渐增大。
在其中一种实施方式中,所述安装线与所述X轴线之间的安装夹角γ在所述根部处为5°~30°。
在其中一种实施方式中,所述顶缘上的安装线与所述X轴线之间的夹角γ在所述顶缘处为30°~85°。
在其中一种实施方式中,所述扇叶还包括位于所述后缘和所述顶缘交界处呈由所述顶缘向所述毂靠拢的曲面过渡部,且所述曲面过渡部的圆弧面背向所述毂凸出。
在其中一种实施方式中,所述曲面过渡部在所述X轴线与所述Y轴线构成的平面内投影的圆角半径为1mm~5mm。
在其中一种实施方式中,所述曲面过渡部在所述X轴线与所述Y轴线构成的平面内投影在所述曲面过渡部靠近所述顶缘的一端点处的切线与所述Y轴线之间夹角η为0°~45°。
在其中一种实施方式中,还包括与所述壳体连接的涵道;所述涵道包括导流外罩、导流内罩以及连接于所述导流外罩和所述导流内罩之间的第一静叶片;所述扇叶与所述第一静叶片分别在所述X轴线与所述Y轴线构成的平面内的投影之间间隙D3从所述根部至所述顶缘逐渐增大。
本申请提供一种具有吹功能的园林工具,包括:壳体;风管,连接所述壳体,所述风管设有供空气向外吹出的出风口;涵道,连接于所述壳体,用于引导所述空气流动;风扇,绕风扇轴线旋转,用于使空气 产生流动;电机,驱使所述风扇绕风扇轴线旋转;所述涵道包括导流外罩、导流内罩以及连接于所述导流外罩和所述导流内罩之间的第一静叶片;
所述第一静叶片包括连接到所述导流内罩的底部、连接到所述导流外罩的顶部、间隔位于气流流动方向的第一前侧边缘和第一后侧边缘;
所述风扇轴线定义为X轴线,经过所述风扇上任一点并垂直于所述X轴线的平面定义为参考平面;
所述第一前侧边缘靠近所述底部的一端点与所述参考平面的距离小于所述第一前侧边缘靠近所述顶部的一端点与所述参考平面的距离。
在其中一种实施方式中,所述风扇包括毂、从所述毂沿径向向外延伸并围绕风扇轴线分布的多个扇叶,所述扇叶包括固定到毂的根部、与所述毂间隔开的顶缘、在所述根部和所述顶缘之间延伸的前缘和后缘,在所述风扇的转动方向上,所述前缘位于所述后缘的前方;
所述第一前侧边缘靠近所述底部的一端点与所述后缘靠近所述根部的一端点的距离小于所述第一前侧边缘靠近所述顶部的一端点与所述后缘靠近所述顶缘的一端点的距离。
在其中一种实施方式中,所述第一后侧边缘靠近所述底部的一端点与所述参考平面的距离小于所述第一后侧边缘靠近所述顶部的一端点与所述参考平面的距离。
在其中一种实施方式中,所述风扇包括毂、从所述毂沿径向向外延伸并围绕风扇轴线分布的多个扇叶,所述扇叶包括固定到毂的根部、与所述毂间隔开的顶缘、在所述根部和所述顶缘之间延伸的前缘和后缘,在所述风扇的转动方向上,所述前缘位于所述后缘的前方;
所述第一后侧边缘靠近所述底部的一端点与所述后缘靠近所述根部的一端点的距离小于所述第一后侧边缘靠近所述顶部的一端点与所述后缘靠近所述顶缘的一端点的距离。
在其中一种实施方式中,所述导流内罩的轴线定义为X’轴线,经过所述第一前侧边缘靠近所述底部的一端点与所述X’轴线垂直且相交的线定义为Y’轴线,与X’轴线和Y’轴线垂直且相交的线定义为Z’轴线;
以平行于所述X’轴线和Z’轴线构成平面的面截取所述第一静叶片获取的静叶截面在靠近所述风扇的一部分处越过所述X’轴线并沿所述导流内罩的周向弯曲延伸。
在其中一种实施方式中,以平行于所述X’轴线和Z’轴线构成平面的面截取所述第一静叶片获取的静叶截面,在所述Z’轴线的方向上的高度最大值定义为所述第一静叶片的弯曲距离D4;
所述第一静叶片的弯曲距离D4从所述底部至所述顶部逐渐增大。
在其中一种实施方式中,所述第一静叶片的弯曲距离D4为1mm~15mm。
在其中一种实施方式中,所述第一静叶片具有迎风侧和与所述迎风侧相对的背风侧,所述迎风侧和所述背风侧在所述X’轴线和所述Z’轴线构成的平面的投影的外轮廓线相交,且靠近所述风扇的一交点处的切线与所述X’轴线的夹角定义为第一静叶片入口角Le,所述第一静叶片入口角Le为35°~65°。
在其中一种实施方式中,所述静叶截面包括沿所述X’轴线延伸的第一部分、越过所述X’轴线并沿所述导流内罩的周向弯曲延伸的第二部分;所述第二部分包括相对设置的内凹线和外凸线,所述内凹线两端的连线与所述外凸线之间的距离最大值定义为凹弦高H,所述凹弦高H为2mm~6mm。
在其中一种实施方式中,所述第一前侧边缘在所述X’轴线和所述Y’轴线构成的平面的投影位于所述Y’轴线朝向所述风管的出风口的一侧。
在其中一种实施方式中,所述第一前侧边缘在所述X’轴线和所述Y’轴线构成的平面的投影在靠近所述底部处的切线与所述X’轴线之间的夹角ε为60°~90°。
在其中一种实施方式中,所述第一后侧边缘在所述X’轴线和所述Y’轴线构成的平面的投影为朝向所述第一前侧边缘凹陷的圆弧。
在其中一种实施方式中,所述第一后侧边缘在所述X’轴线和所述Y’轴线构成的平面的投影在靠近所述底部处的切线与所述X’轴线之间的夹角b为45°~90°。
在其中一种实施方式中,所述第一后侧边缘在所述X’轴线和所述Y’轴线构成的平面的投影在靠近所述顶部处的切线与所述X’轴线之间的夹角c小于所述夹角b。
在其中一种实施方式中,所述第一静叶片的底部相对于所述风扇轴线以第一角度倾斜设置;所述第一静叶片的顶部相对所述风扇轴线以第二角度倾斜设置。
在其中一种实施方式中,所述第一静叶片环绕所述导流内罩均匀间隔设置,所述风扇产生的气流能够从所述第一静叶片之间的间隙通过;所述第一静叶片的数量为3~11个。
在其中一种实施方式中,所述第一静叶片的长度为L1,所述风扇的扇叶的中弧线弦长为L2;其中,3≤L1:L2≤9;
所述第一静叶片的长度定义为沿气流流动方向所述第一静叶片的第一前侧边缘与所述第一静叶片的第一后侧边缘之间的距离。
本申请提供一种具有吹功能的园林工具,包括:壳体;风管,连接所述壳体,空气能够从所述风管吹出;涵道,连接于所述壳体,用于引导所述空气流动;风扇,绕风扇轴线旋转,用于使空气产生流动;电机,驱使所述风扇绕风扇轴线旋转;所述涵道包括导流外罩、导流内罩以及位于所述导流外罩和所述导流内罩之间的第一静叶片,所述园林工具还包括连接于所述导流内罩的导流锥和设置于所述导流锥上的第二静叶片;
沿气流流动方向,所述第二静叶片位于所述第一静叶片的下游。
在其中一种实施方式中,所述第二静叶片包括连接至所述导流锥的第一内侧边缘、与所述第一内侧边缘相对且与所述第一内侧边缘相接的第一外侧边缘,以及位于所述第一内侧边缘和第一外侧边缘连接处的交叉点;所述第一外侧边缘呈径向向外凸出的圆弧状。
在其中一种实施方式中,所述第二静叶片的宽度W从所述第一内侧边缘向第一外侧边缘线性减小。
在其中一种实施方式中,所述第二静叶片包括分别与对应的所述交叉点相邻的两个末端部分,以及位于两个所述末端部分之间中间部分;所述中间部分位于同一横截面的宽度保持不变;所述末端部分位于同一横截面的宽度从所述交叉点向所述中间部分逐渐增大。
在其中一种实施方式中,所述第二静叶片环绕所述导流锥均匀间隔设置,流经所述第一静叶片的气流能够从所述第二静叶片之间的间隙通过;所述第二静叶片的数量为3~7个。
在其中一种实施方式中,所述第二静叶片的长度为L3,所述第一静叶片的弦长为L4;其中,0.2≤L3:L4≤1;
所述第二静叶片的长度定义为所述第二静叶片沿气流流动方向的尺寸。
在其中一种实施方式中,所述第二静叶片的进口安装角为d,0°≤d≤15°;
所述第二静叶片的进口安装角定义为所述第二静叶片的中弧面的切线与所述风扇的风扇轴线之间的夹角。
在其中一种实施方式中,所述园林工具还包括沿气流流动方向位于所述第二静叶片下游的第三静叶片;所述第三静叶片呈平板状,并大致沿所述风扇轴线方向延伸,且沿周向均匀间隔布设。
在其中一种实施方式中,所述第三静叶片的数量为3个~11个。
在其中一种实施方式中,所述第三静叶片距所述第一静叶片的距离为L5,所述第一静叶片的弦长为L4;其中,2≤L5:L4≤4。
在其中一种实施方式中,所述第三静叶片的长度为L6,所述第一静叶片的弦长为L4;其中,0.5≤L6:L4≤2;所述第三静叶片的长度定义为所述第三静叶片沿风扇轴线方向的尺寸。
在其中一种实施方式中,所述第三静叶片的进口安装角为e,0°≤e≤15°。
在其中一种实施方式中,所述第三静叶片包括第二前侧边缘、第二后侧边缘、靠近所述壳体的第二内侧边缘、与所述第二内侧边缘相对的第二外侧边缘;
沿气流流动方向,所述第二外侧边缘相对所述风扇轴线扩张地倾斜延伸,所述第二前侧边缘相对风扇轴线呈内凹地弯曲延伸,且与所述第二外侧边缘平滑过渡。
本申请还提供一种具有吹功能的园林工具,包括:壳体;风管,连接所述壳体,空气能够从所述风管吹出;涵道,连接于所述壳体,用于引导所述空气流动;风扇,绕风扇轴线旋转,用于使空气产生流动;电机,驱使所述风扇绕风扇轴线旋转;所述涵道包括导流外罩、导流内罩以及位于所述导流外罩和所述导流内罩之间的第一静叶片,所述园林工具还包括沿气流方向上位于所述第一静叶片的下游的第三静叶片。
在其中一种实施方式中,所述第三静叶片设置于所述壳体与所述风管的连接区域。
在其中一种实施方式中,所述第三静叶片呈平板状,并大致沿所述风扇轴线方向延伸,且沿周向均匀间隔布设。
在其中一种实施方式中,所述涵道还包括连接于所述导流内罩的导流锥和设置于所述导流锥上的第二静叶片;
沿气流流动方向,所述第二静叶片位于所述第一静叶片和所述第三静叶片之间。
本申请提供一种具有吹功能的园林工具,包括:壳体,具有进风口;风扇,绕风扇轴线旋转,用于使空气产生流动;电机,驱使所述风扇绕风扇轴线旋转;及进风护罩,连接在所述进风口处,所述风扇能够绕风扇轴线旋转并将外界空气透过所述进风护罩从所述进风口引入;所述进风护罩包括具有向外凸地外包络表面的三维进气阵列栅格,所述三维进气阵列栅格包括:
沿第一方向延伸的腹板,所述腹板包括多个,多个所述腹板沿第二方向间隔布设;以及
沿第二方向延伸的破流筋条,所述破流筋条包括多个,每一所述破流筋条沿第二方向搭接于相邻的两个所述腹板上,多个所述破流筋条与多个所述腹板界定形成多个间隔设置的栅格单元,相邻的所述栅格单元之间形成有供气流穿过的进气孔;多个所述破流筋条的顶出部相对于所述腹板向背离所述进风口的方向隆起,以形成所述三维进气阵列栅格向外凸地外包络表面;其中,所述第一方向与所述第二方向相交。
在其中一种实施方式中,多个所述栅格单元沿第二方向间隔排列形成多行,每一行的所述栅格单元沿第一方向排布;
相邻行中最相邻的两个所述栅格单元在第一方向上错位排布。
在其中一种实施方式中,相邻行中的相邻的两个所述破流筋条在第一方向上等间距错位排布。
在其中一种实施方式中,所述三维进气阵列栅格设有主进风区域和环绕所述主进风区域的辅进风区域;位于所述主进风区域的所述栅格单元在垂直于所述进风口的轴线的平面上的投影形状相同。
在其中一种实施方式中,所述破流筋条包括自所述顶出部朝向相邻间隔排布的所述腹板延伸的第一导风部与第二导风部;所述破流筋条具有迎风侧和与所述迎风侧相对的背风侧;
所述顶出部的背风侧相对于所述腹板向外隆起的所述预设距离D6是2mm~20mm。
在其中一种实施方式中,所述顶出部在所述迎风侧具有顶表面,所述第一导风部与第二导风部在所述迎风侧分别第一导风面与第二导风面;
其中,所述顶表面的宽度分别小于所述第一导风面和第二导风面的宽度。
在其中一种实施方式中,所述第一导风面和第二导风面的宽度从其与所述顶表面连接处向所述腹板方向逐渐增大。
在其中一种实施方式中,所述顶表面与所述进风口的轴线相垂直;
所述第一导风面和所述第二导风面在垂直于所述第一方向的平面内的投影分别与所述顶表面在垂直 于所述第一方向的平面内的投影之间的夹角均为De,90°≤De≤180°。
在其中一种实施方式中,所述迎风侧还包括沿第一方向位于所述破流筋条相对两侧的第三导风面;
所述第三导风面接合于所述顶表面、所述第一导风面和所述第二导风面,且沿所述第一方向外倾斜延伸。
在其中一种实施方式中,所述顶表面相对两侧的第一导风面之间的夹角为10°~60°。
在其中一种实施方式中,相邻两个所述腹板之间的间距为5mm~15mm。
在其中一种实施方式中,所述腹板背向进风的一侧面在第一方向上至少包括相交设置的第一面与第二面,所述第一面与所述第二面之间的夹角为:140°~180°。
在其中一种实施方式中,所述进风护罩还包括连接于所述进风口处的边框,所述边框环绕在所述三维进气阵列栅格外。
在其中一种实施方式中,所述三维进气阵列栅格的外包络表面凸出所述边框背向所述进风口的一端面。
在其中一种实施方式中,所述进风护罩具有一护罩轴线,所述边框背向所述进风口的一端面相对于所述护罩轴线倾斜设置。
本申请提供一种具有吹功能的园林工具,包括:壳体,具有进风口;风扇,绕风扇轴线旋转,用于使空气产生流动;电机,驱使所述风扇绕风扇轴线旋转;及进风护罩,连接在所述进风口处,所述风扇能够绕风扇轴线旋转并将外界空气透过所述进风护罩从所述进风口引入;
所述园林工具还包括设置于所述风扇的上游区域的多个导叶片,由所述进风口引入的气流能够从所述导叶片之间的间隙通过,以导流形成平行气流。
在其中一种实施方式中,多个所述导叶片彼此平行均匀间隔设置。
在其中一种实施方式中,相邻的两个所述导叶片之间的距离为12毫米~18毫米。
在其中一种实施方式中,所述导叶片距所述进风口的距离为10毫米~50毫米。
在其中一种实施方式中,每一所述导叶片的弦长为10毫米~50毫米。
在其中一种实施方式中,所述壳体具有一与所述进风口连通的气流通道;
所述壳体包括与风扇轴线大致平行的平直段,以及位于所述平直段上游且相对所述平直段向下弯曲的弯曲段;
所述导叶片设置于所述弯曲段,且沿所述弯曲段的内壁延伸。
在其中一种实施方式中,所述风扇轴线与垂直于所述进风口所在平面的垂线之间的夹角为120度~180度。
在其中一种实施方式中,所述壳体包括以一对称基准面对称设置的第一半壳和第二半壳;所述风扇轴线位于所述对称基准面上,所述第一半壳和所述第二半壳具有彼此适配的上缘和下缘;所述第一半壳的上缘和所述第二半壳的上缘位于所述弯曲段的部分,朝向所述对称基准面上的投影彼此重叠且具有第三弯曲轮廓;
所述第一半壳的下缘和所述第二半壳的下缘位于所述弯曲段的部分,朝向所述对称基准面上的投影彼此重叠且具有第四弯曲轮廓。
在其中一种实施方式中,所述第三弯曲轮廓和所述第四弯曲轮廓均呈圆弧状;
所述第三弯曲轮廓、第四弯曲轮廓位于不同半径的同心圆上。
在其中一种实施方式中,所述导叶片包括以所述对称基准面对称设置的第一子导叶片和第二子导叶片;
所述第一子导叶片和所述第二子导叶片耦接形成完整的所述导叶片。
在其中一种实施方式中,所述导叶片朝向所述对称基准面上的投影具有第五弯曲轮廓,所述第五弯曲轮廓呈圆弧状;
平分所述第三弯曲轮廓和所述第四弯曲轮廓的中弧线垂直且平分所述第五弯曲轮廓。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例中的具有吹功能的园林工具的结构剖视图;
图2为本申请两种不同的噪音曲线图;
图3为图2所示的具有吹功能的园林工具的风扇的结构示意图;
图4为图3所示的风扇的另一视角的结构示意图;
图5为图3所示的风扇的又一视角的结构示意图;
图6为图5所示的风扇在Y轴线与Z轴线构成平面内的投影结构示意图一;
图7为图6所示的风扇中圈C处结构放大示意图;
图8为图6所示的风扇中圈T处结构放大示意图;
图9为本申请一实施例中不同弦高所对应的正弦曲线图;
图10为本申请一实施例中风扇在X轴线与Y轴线构成平面内的投影结构示意图一;
图11为本申请一实施例中风扇在X轴线与Y轴线构成平面内的投影结构示意图二;
图12为图11所示的风扇中圈D处结构放大示意图;
图13为图5所示的风扇在Y轴线与Z轴线构成平面内的投影结构示意图二;
图14为图13所示的风扇沿不同方向的截面示意图;
图15为扇叶数量为17的本申请一实施例中的风扇与扇叶数量为17的现有技术中的风扇的噪声频谱对比图;
图16为图1所示的具有吹功能的园林工具的涵道的结构示意图;
图17为图16沿径向的截面示意图;
图18为图1所示的风扇与第一静叶片配合结构在X’轴线与Y’轴线构成平面内投影图;
图19为图1所示的风扇与第一静叶片配合结构沿不同方向的截面示意图;
图20为图1所示的具有吹功能的园林工具的导流锥与第二静叶片的装配示意图;
图21为图20的导流锥与第二静叶片另一视角的装配示意图;
图22为图20中B处的局部放大图;
图23为图1所示的具有吹功能的园林工具的连接筒与第三静叶片的装配示意图;
图24为图23所示的连接筒与第三静叶片另一视角的装配示意图;
图25为图24沿径向的截面示意图;
图26为图1所示的具有吹功能的园林工具的进风护罩的结构示意图一;
图27为图26所示的进风护罩沿C1-C1方向的结构剖视图;
图28为图26所示的进风护罩沿C2-C2方向的结构剖视图;
图29为图26所示的进风护罩沿C3-C3方向的结构剖视图;
图30为图1所示的具有吹功能的园林工具的进风护罩的结构示意图二;
图31为图15所示的进风护罩的破流筋条的结构示意图;
图32为图1所示的具有吹功能的园林工具的导叶片与第一半壳或第二半壳装配结构的截面示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
相关现有技术中的具有吹功能的电动工具,具体可为园林工具100,以花园吹风机为例,通常包括壳体10、涵道30、产生气流的风扇50、用于驱动风扇50的电机和配接于壳体10的风管20。在本实施方式中,电机和风扇50均设置在涵道30内,涵道30设置在壳体10内,风管20连接壳体10,并与壳体10连接形成气流通道。风管20上设有出风口22,壳体10上还设有进风口11,进风口11涵道30的作用是引导风扇50产生的气流向吹风管20的出风口22移动,空气从进风口11进入壳体10的内部,并从气流通道流动到出风口22吹出。当然,涵道也可以连接在壳体10和风管20之间。
上述的花园吹风机实现机器的高工作性能和低噪声是相互矛盾的。具体而言,花园吹风机遇到的清洁工况主要有:家庭室外或者公园地面上的落叶和小型垃圾、地面砖缝之间的碎屑、黏附在地面上的湿树叶。发明人研究发现,为了能满足对上述工况的清洁要求,通常花园吹风机提供的风量和风速要足够大。但,例如将电机和风扇50小型化,为保证风量和风速则需要提高电机的转速,如此,增加了气流撞击扇叶54产生涡流造成的噪声,同时,涵道30尺寸降低,也会增加气流撞击涵道30内结构产生涡流造成噪声。且,在气流在脱离涡流时容易产生分贝较高的噪声,甚至是尖频噪声。
因此,高工作性能和低噪声之间的相互矛盾、相互制约一直是制造者的痛点。本申请中,通过对进风护罩、风扇、涵道30内的静叶片等结构进行改进,避免气流撞击涵道30内的结构而产生涡流,从而可以实现保证吹风性能基本不变的同时,实现小型化和低噪声。
本申请实施例以花园吹风机为例,对本申请的中具有吹功能的园林工具100的结构进行说明,具体地,该园林工具100可以为手持式花园吹风机,本实施例仅用以作为范例说明,并不会限制本申请的技术范围。
在一些实施例中,请参考图1,一种具有吹功能的园林工具100,包括:壳体10、风管20、风扇50和电机。风管20连接壳体10,空气能够从风管20吹出。风扇50绕风扇轴线51旋转,用于使空气产生流动。电机驱使风扇50绕风扇轴线51旋转。具有吹功能的园林工具100的吹力F,噪音LP满足以下关系:16N≤F≤23N,53dBA≤LP<57dBA;或者,23N<F≤40N,53dBA≤LP≤0.0121F 2-0.0603F+53.065dBA。
上述的具有吹功能的园林工具100,电机驱使风扇50绕自身轴线旋转,以使空气从风管20中吹出。而对于不同工况下,本申请的园林工具100具有不同降噪效果的表现。当园林工具100的吹力大于或等于16N,且小于或等于23N,即园林工具100一般应用于中工况时,其产生的噪音能够控制为:53dBA≤LP<57dBA;当园林工具100的吹力大于23N,且小于或等于40N,即一般应用于重工况时,其产生的噪音能够控制为:53dBA≤LP≤0.0121F 2-0.0603F+53.065dBA。如此,本申请园林工具100在保证吹风性能的基础上,有效减小运行中的噪声。
需要说明的是,本实施例中的吹力在中工况下时可为16N~23N之间的一值,比如:16N、17N、18N、19N、20N、21N、22N等,而噪音则可以控制到大于或等于53dBA,且小于57dBA之间,比如:53dBA、54dBA、55dBA、56dBA等。同样,吹力在重工况下时为大于23N中一值,比如:24N、25N、27N、29N、30N、35N、40N等,本申请中噪音可实现在53dBA~0.0121F 2-0.0603F+53.065dBA之间,比如:53dBA、54dBA、55dBA、 56dBA、58dBA、60dBA、62dBA、63dBA、64dBA、65dBA等。其中,本实施例中吹力的获取,需保证园林工具100为处于最高转速,即园林工具100在最高转速下所获取的最大吹力值,及处于最高转速下测得的噪音。
更优选的,当园林工具100的吹力大于23N,且小于或等于40N,吹力F和噪音LP满足以下关系:23N<F≤40N,53dBA≤LP≤0.0081F 2+0.1374F+48.473dBA。
需要说明的是,吹力在重工况下时为大于23N中一值,比如:24N、25N、27N、29N、30N、35N、40N等,本申请中噪音可实现在53dBA~0.0081F 2+0.1374F+48.473之间的取值,比如:53dBA、54dBA、55dBA、56dBA、58dBA、60dBA、62dBA、63dBA等。
还需说明的是,本实施例中记载的噪音数据可采用GB/T4583-2007园林工具100噪声测量方法进行获取;也可采用欧盟噪声法规等,比如:对于测试环境的要求可为以下之一:一个反射面上方的自由场实验室;测试环境除发射面外没有其他反射体,使得声源能够向反射面上方的自由空间辐射的室外平坦空地;对测量表面上声压而言,与声源发射场相比,反响场的影响较小的房间等。而对于背景噪声的准则可为:在传声器位置上平均后的背景噪声应当至少比测量的声压级低6dBA,当然,最好低15dBA以上等。
具体地,可选取社区背景噪音符合小于52分贝的条件下,以测试人员为中心15米(50英尺)为半径的圆,在圆上取多个(例如8个)方向点分别测试每个点测A计权声压级,并将8个测试数值平均,获得噪音值,测试工具可为手持式噪音分贝仪。
本申请的园林工具100为达到上述较好的降噪表现,即在同等吹力下,产品的噪音更低。发明人经过研究发现在风道部12的上游区域、风扇50、第一静叶片36、第二静叶片39、第三静叶片40和进风护罩60等结构中至少一个上进行改进。比如:风道部12的上游区域和/或下游区域设置吸音或隔音材料、控制风扇50的扇叶54之间间隔间隙、将风扇50的前缘546沿着风扇50的转动方向弯曲设置、将第一静叶片36上的第一前侧边缘366或第二后侧边缘368沿朝向出风口22一侧后倾延伸设置等。上述不同的改进结构或不同的改进结构组合,其实现了较好的降噪效果。
如下以两种改进结构不同组合的园林工具100进行噪音测试,获取的噪音数据进行举例,请参考表格1。
表格1为本申请两种改进结构不同组合的园林工具的噪音数据举例。
吹力/N 噪音1/dBA 噪音2/dBA
25 59.1 56.8
27 60.24 58.05
30 62.12 59.8
33 64.24 61.8
35 65.75 63.2
40 70 66.9
即在具体的一些实施例中,测得的噪音1的数据处于图2(a)的曲线下方斜剖线区域中,即为:53dBA≤LP≤0.0121F 2-0.0603F+53.065dBA。噪音2的数据在图2(b)的曲线下方的斜剖线区域中,即为:53dBA≤LP≤0.0081F 2+0.1374F+48.473dBA。
具体的,在本申请的其中一种实施方案中,电机的转速控制为:电机转速在13000r/min到27000r/min。优选的,电机的转速控制为:16000r/min~26000r/min。电机运行时,其转速降低产生的噪声将会减小,而过于降低则会带来风量的减小。为此,本申请合理控制电机的转速,将其设置为16000r/min~26000r/min,在保证合理的出风量下,有效降低园林工具100的噪音,以实现一种合理转速、低噪声效果的园林工具100。
更进一步地,电机的转速控制为:18000r/min~22000r/min。如此,将电机的转速进一步限定在一定范围内,使得园林工具100更能兼顾出风量和噪音降低量,提升产品的使用体验。
需要说明的是,电机的转速在16000r/min~26000r/min之内取任一值,比如:电机的转速可为但不限于18000r/min、18500r/min、19000r/min、19500r/min、20000r/min、22000r/min、23000r/min、24000r/min、25000r/min等,电机转速降低产生的噪声将会减小。
在一些实施例中,风扇50在垂直于风扇轴线51的平面内的投影轮廓直径为88mm~120mm。风扇50的直径对于出风量具有一定的影响,风扇50的直径越大,出风量也随之增大。但,若风扇50直径过大,不仅导致园林工具100整体体积变大;而且电机需输出更大做功。对此,为兼顾园林工具100的出风量、产品体积以及电机做功,合理控制风扇50的直径为88mm~120mm,不仅有利于提高出风量,而且也有利于园林工具100小型化和节能化,从而达到实现一种低转速、高风量、低噪声效果的园林工具100。
需要说明的是,投影轮廓直径应理解为:风扇50在垂直于风扇轴线51的平面内形成的投影呈或近似呈圆形轮廓,该圆形轮廓的直径即为投影轮廓直径。投影轮廓直径在设计时可取但不限于88mm、90mm、95mm、100mm、105mm、110mm、115mm、120mm等。
在一些实施例中,具有吹功能的园林工具100的风量Q,压力P ,电机的输入功率P 分别满足以下关系:450cfm≤Q≤1500cfm,1400Pa≤P ≤5000Pa,700W≤P ≤3000W。根据风道效率=(园林工具100中风流量×风管20处的出风压力)/电机的输入功率的公式可知,分别合理控制园林工具100的风量Q,压力P ,电机的输入功率P 的数据,能保证较高风道效率。
进一步地,具有吹功能的园林工具100的风量Q,压力P ,电机的输入功率P 分别满足以下关系:600cfm≤Q≤850cfm,3000Pa≤P ≤4500Pa,700W≤P ≤1400W。根据风道效率=(园林工具100中风流量×风管20处的出风压力)/电机的输入功率的公式可知,合理改善园林工具100的风道效率,提升园林工具100的性能。而小的噪音能够优化提升风道效率。
在一些实施例中,请参考图1,园林工具为能够吹动地面树叶的吹风机。壳体设有进风口11,吹风机包括连接在进风口11上的进风护罩60,风扇50能够绕风扇轴线51旋转并将外界空气透过进风护罩60引入。风扇50包括:毂52;及从毂52沿径向向外延伸并围绕风扇轴线51分布的多个扇叶54。扇叶54包括用于产生气流的压力面543和吸力面545。压力面543与吸力面545在风扇轴线51的方向上交汇形成前缘546和后缘548。在风扇50的转动方向上,前缘546位于后缘548的前方。在风扇轴线51的方向上,风扇50扇叶54的前缘546与进风护罩60之间间距最小值为D5,园林工具的长度为L0;其中,0.15≤D5:L0≤0.4。
由此可知,当风扇50与进风护罩60之间的间距过小时,会导致气流直接冲击在风扇50上,增加运行噪音。而当风扇50与进风护罩60之间的间距过大时,不仅会减弱风扇50在进风护罩60处吸力,而且还会导致电动工具园林工具100整体变长,产品变得笨重。为此,将风扇50与进风护罩60之间间距最小值为D5与园林工具100的长度L0之间比值控制在0.15和0.4之间,例如进气口11与扇叶54的前缘546之间间距为200mm左右等,这样使得风扇50之前具有足够的空间,以减少园林工具100内的压降,削弱噪声振幅。如此,既保证产品结构合理,又能保证进风平稳,降低噪音。
需要说明的是,风扇50扇叶54的前缘546与进风护罩60之间间距最小值应理解为:在风扇轴线51的方向上,扇叶54的前缘546和进风护罩60(比如:边框64或者三维进气阵列栅格)之间的距离取最小值。而园林工具100的长度应理解为:在风扇轴线51的方向上,园林工具100最外侧的两个端点之间的间距,比如:在风扇轴线51的方向上,进风护罩60背向风扇50的一侧面与风管20远离风扇50的一端之间的距离最大值。
进一步地,请参考图1,吹风机还包括与壳体连接的涵道30。涵道30包括导流外罩32、导流内罩34以及连接于导流外罩32和导流内罩34之间的第一静叶片36,电机容纳在导流内罩34中。以垂直风扇轴线的平面截取进风口11和导流外罩32。进风口11截面的横截面积S1和导流外罩32截面的横截面积S2 的比率为1.6~4,由此可知,进风口11的横截面积S1需大于导流外罩32横截面积S2,并将两者横截面积之比控制在1.6与4之间,这样有利于保证涵道30内的风量充足,提高吹风效率。
在一个实施例中,请参考图5与图6,一种具有吹功能的园林工具100,包括:壳体10、风管20、风扇50和电机。风管20连接壳体10,空气能够从风管20吹出。风扇50绕风扇轴线51旋转,用于使空气产生流动。风扇50包括:毂52;及从毂52沿径向向外延伸并围绕风扇轴线51分布的多个扇叶54。电机驱使风扇50绕风扇轴线51旋转。扇叶54包括用于产生气流的压力面543和吸力面545。压力面543与吸力面545在风扇轴线51的方向上交汇形成前缘546和后缘548。在风扇50的转动方向上,前缘546位于后缘548的前方,相邻两个扇叶54彼此相邻的前缘546和后缘548在垂直于风扇轴线51的平面内的投影彼此不重叠。相邻两个扇叶54在垂直于风扇轴线51的平面内的投影之间具有间隔间隙,间隔间隙D0大于0mm,且小于或等于4mm。
上述的具有吹功能的园林工具100,将多个扇叶54在毂52上绕风扇轴线51间隔排布,使之相邻两个扇叶54在垂直于风扇轴线51的平面内的投影均具有间隔间隙,以供气流从间隔间隙中稳定穿过,保证园林工具100的吹风效率。由于间隔间隙D0控制为小于或等于4mm,使得相邻两个风扇50之间间隙变小,这样在园林工具100工作过程中,能够减少气流在相邻两个风扇50之间倍频噪音的脉动,有效降低园林工具100的运行噪音。另外,风扇50中扇叶54数量与扇叶54的宽度之间为负相关变化,即减少扇叶54数量能增大扇叶54宽度;增加扇叶54数量能减小扇叶54宽度。但若为保证扇叶54的坚固性,采用增加扇叶54数量,以减少扇叶54宽度的方式,势必会导致扇叶54表面压力梯度发生改变,降低吹风效率。为此,本申请将间隔间隙D0控制为小于或等于4mm,在保证扇叶54数量的前提下,能尽可能拓宽风扇50中的扇叶54宽度,以提高吹风效率。在申请中,扇叶54的数量为7~23个。优选的,扇叶的数量可以为11~17个。比如,扇叶的数量可以是但不限于:13个,15个等。
在一些实施例中,请参考图6,间隔间隙D0大于或等于2mm,且小于或等于3.5mm。间隔间隙过大,会增加扇叶54之间的倍频噪音脉动;而间隔间隙过小,则影响风扇50脱模效果。为此,将间隔间隙控制在2mm~3.5mm之间,既能确保有效脱模,又能减少倍频噪音脉动,提高降噪效果。
需要说明的是,间隔间隙D0可取2mm~3.5mm之间中任一值,比如:2mm、2.2mm、2.4mm、2.6mm、2.8mm、3mm、3.2mm、3.4mm、3.5mm等。
在一些实施例中,请参考图5和图14,风扇轴线51定义为X轴线,经过前缘546靠近毂52的一端点与风扇轴线51垂直且相交的线定义为Y轴线,与X轴线和Y轴线均垂直且相交的线定义为Z轴线;吸力面545与压力面543分别在X轴线和Z轴线构成的平面内的投影之间的距离最大值定义为扇叶54的最大厚度h。间隔间隙D0的值与风扇50的最大厚度h的值的比率范围为1~1.5,如此,以风扇50的最大厚度h为参考,限定间隔间隙D0的大小,使得间隔间隙保持在合理范围内,有效减少倍频噪音脉动,提高降噪效果。
在一些实施例中,扇叶54为注塑成型或压铸成型于毂52。扇叶54和毂52一体成型将降低制作成本,但扇叶54与扇叶54之间的间隔间隙小于2毫米时,模具制作精度将显著降低,且制作难度提升,则间隔间隙优选为大于或等于2毫米。而间隔间隙大于3.5毫米,风扇50的空气动力性能也将降低,基于此,间隔间隙优选为小于或等于4毫米。
需要说明的是,园林工具100用于执行清洁工作,其可为但不限于手持吹风机、背包吹风机等,能够将散落的异物集中,这里的异物可以为树叶或垃圾。为便于理解,如图1所示,将出风口22对应的气流流出的方向定义为前端(远端),例如,花园吹风机的前端是指使用者在利用花园机进行清扫作业时,远离使用者的一端。相应地,将气流流进的一侧定义为后端(近端),例如,花园吹风机的近端是指使用者在利用花园机进行清扫作业时,花园吹风机靠近使用者的一端。具有吹功能的园林工具100在前端和后端 之间大致沿箭头A所示的方向纵向延伸。如图1所示,图纸的上方定义为上方,图纸的下方定义为下方,图纸向外定义为左侧,图纸向内定义为右侧。可以理解,上述定义仅为了说明,并不能理解为对本申请的限定。
还需说明的是,毂52的形状大致呈圆柱状,其具有封闭的上游端和开放的下游端。具体地,毂52包括中心孔522,该中心孔522的形状和尺寸被构造为能够接纳电机的电机轴和/或转子,例如,电机的电机轴可以通过过盈配合或其他传动连接方式连接于该中心孔522,多个扇叶54围绕毂52的周向延伸,风扇轴线51穿过该中心孔522的中心。其中,扇叶54可以与毂52一体成型,从而降低了制造成本,当然,扇叶54和毂52也可以分开制作后组装到一起,在此不做限定。
毂52在风扇50转动时气流来流的方向上的端部具有用于引导气流向扇叶54方向流动的导流面,该导流面可以呈部分或全部的椭圆抛物面、椭圆锥面、圆锥面等等,在此不作任何限定。如此,该导流面能够将气流进行引导而产生旋流,避免气流垂直撞击扇叶54,降低了噪声。
另外,相邻的两个扇叶54中彼此相邻的前缘546和后缘548,在与风扇轴线51垂直的平面内的投影中具有间隔间隙。这样,可以引导气流进入扇叶54和扇叶54之间的涵道30区域,从而避免涡流的产生,降低了噪声。一些实施例中,该间隔间隙从根部542向顶缘544连续变化,例如图4所示的实施例中,在根部542处的间隔间隙尺寸为a1,在顶缘544处的间隔间隙为a2,a1和a2具有不同的大小。如此,在风扇50的旋转过程中,扇叶54的前缘546和后缘548从顶缘544到根部542的压力梯度可以平缓过渡及变化,从而减少了气流内的湍流能量,并减小气流从扇叶54分离的倾向,扇叶54旋转的噪声基频以及倍频音均有所降低,尤其使大部分倍频音消失,在高转速下可以在一定程度上降低扇叶54叶尖的尖音分贝,从而提高用户体验。
具体到实施例中,前缘546在垂直于风扇轴线51的平面内的投影具有第一弯曲轮廓,后缘548包括在与风扇轴线51垂直的平面内的投影中的第二弯曲轮廓,第一弯曲轮廓的曲率,与第二弯曲轮廓的曲率相异。如此,可以保证间隔间隙从根部542向顶缘544连续变化。
在一些实施例中,请参考图1,壳体10包括大致沿风扇轴线51纵向延伸的风道部12以及供使用者握持的操作手柄。具体地,风道部12被构造为内部中空的管状体,并界定出允许气流流动的气流通道,风道部12的两端设有连通该气流通道的第一开口和第二开口,其中,第一开口作为进风口11,外界的空气能够从第一开口进入风道部12内,第二开口作为连接口,用于与风管20连接。风管20的一端通过该第二开口与风道部12可拆卸地连接,风管20的另一端设有出风口22,空气可以通过该出风口22从风管20吹出。
需要说明的是,风道部12可以为两段或者多段管体连接形成的管体组合。应当理解的是,该具有吹功能的园林工具100还可以具有吸风功能,即空气连同杂物从风管20的出风口22吸入,并通过风扇50后从前述的进风口11排出。
还需说明的是,需指出的是,多个扇叶54中的每一个几何形状是相同的,为了表述简洁,下面将以单个扇叶54进行进一步描述。扇叶54大致沿毂52的径向方向向外延伸,毂52和扇叶54经由电机的驱动可围绕前述的风扇轴线51旋转,从而产生沿风扇轴线51方向移动地气流。作为一种优选地实施方式,风扇轴线51穿过毂52的中心,如此可以保证气流流动方向基本与风扇轴线51和风道部12延伸方向平行,避免气流产生涡流而造成的噪声。扇叶54与风道部12的内壁之间还设有缝隙,一方面可以避免扇叶54与风道部12的内壁干涉,另一方面,避免扇叶54与风道部12的内壁之间形成涡流而造成的噪声,较佳地,缝隙在径向上的尺寸小于1mm。
更进一步地,请参考图1,操作手柄包括握持部142,握持部142用于使用者操作握持,握持部142连接到风道部12并从风道部12延伸,触发器可以设置于握持部142中,用户可以操作触发器从而控制电 机的工作或停机以使该具有吹功能的园林工具100处于工作状态或非工作状态,在一些实施实施例中,用户还可以通过操作触发器控制电机的转速,以调节该具有吹功能的园林工具100的功率在不同档位。
在一些实施例中,风道部12的上游区域至少部分内壁设有吸音材料。具体地,该阻尼吸音材料可以为泡沫或基于纤维的复合材料,或例如玻璃纤维或天然纤维的复合材料,还可以为聚氨酯泡沫等其他高分子材料制成。本申请的发明人研究发现,例如花园吹风机的具有吹功能的园林工具100的噪音源主要来源于风道部12,进一步分析发现,噪音的产生一个原因是由于风道部12内部的凹凸不平引起,气流撞击到风道部12的内壁后在凹陷处容易产生涡流,从而造成噪音。通过在风道部12的上游区域设置吸音材料,即可以理解为位于进风口11与风扇之间的壳体内壁至少部分设有吸音材料。一方面可以使风道腔内的凹凸部位尽可能平整,不易产生涡流,另一方面,阻尼吸音材料可以吸纳噪音,从而降低了用户听到的噪声,提高了用户的操作舒适感。作为一种优选地实施方式,该吸音材料为隔音海绵。当然,进一步的,可以在风扇的下游设置吸音材料,具体的,在导流外罩的周向上包裹吸音材料,和/或在导流外罩的下游设置吸音材料。
在一些实施例中,压力面543和吸力面545分别为扇叶54的相对两侧面,扇叶54在旋转时,压力面543推压空气朝出风口22一侧流动,使之稳定通过间隔间隙,以形成稳定的气流流动。
同时,压力面543和吸力面545分别在X轴线和Z轴线构成的平面内的投影可为线性轮廓,也可为面轮廓。比如:当压力面543和吸力面545在Y轴线的方向(即毂52的径向)上为一次或多次曲面时,压力面543和吸力面545分别在X轴线和Z轴线构成的平面内的投影具有至少部分重影区域,以形成面轮廓。此时,压力面543和吸力面545的投影之间的距离最大值应理解为:压力面543的投影上任一点和吸力面545的投影上对应点之间的连线距离。当然,在确定风扇50的厚度h时,也可采用截面方式,例如:以平行于X轴线和Z轴线构成的平面的面,从根部542至顶缘544依次截取扇叶54。此时,压力面543和吸力面545分别在对应的截面上分别为线轮廓;取两个线轮廓之间的距离最大值作为风扇50的厚度h。又或者,在确权时,还可以通过游标卡尺等测量工具卡在压力面543和吸力面545上进行直接测量等。
在一些实施例中,请参考图6,毂52的直径D2与全部的扇叶54在垂直于风扇轴线51的平面内的投影轮廓的直径D1之比为0.4~0.6,即风扇50的轮毂52比为0.4~0.6,有利于保证风扇50的吹风效率,提高作业效率。
需要说明的是,毂52的直径D2与全部的扇叶54在垂直于风扇轴线51的平面内的投影轮廓的直径D1之间的比值可为0.4~0.6之间的任一值,比如:毂52的直径D2与全部的扇叶54在垂直于风扇轴线51的平面内的投影轮廓的直径D1之间的比值为0.4、0.45、0.5、0.55、0.6等。
具体地,毂52的直径D2与全部的扇叶54在垂直于风扇轴线51的平面内的投影轮廓的直径D1之间的比值为0.5,这样使得风扇50的轮毂52比配置更为合理,吹风效果更佳。
在一些实施例中,扇叶54包括固定到毂52的根部542、与毂52间隔开的顶缘544、前缘546以及后缘548。根部542是扇叶54最靠近毂52,且附接到毂52的径向地最内边缘,顶缘544是扇叶54与毂52间隔开的径向最外边缘。前缘546在穿过风扇50的气流方向上的最前边缘,也即是风扇50旋转过程中气流首先接触扇叶54的边缘,该前缘546在根部542和顶缘544之间延伸。后缘548是在穿过风扇50的气流方向上的最后边缘,也即是风扇50旋转过程中最后接触气流的扇叶54的边缘,该后缘548在根部542和顶缘544之间延伸。前缘546在根部542处的第一端附接到毂52,前缘546在根部542处的第二端与毂52间隔开,后缘548在根部542处的第一端附接到毂52,后缘548在根部542处的第二端与毂52间隔开。
在一些实施例中,请参考图10,一种具有吹功能的园林工具100,包括:壳体10、风管20、风扇50和电机。风管20连接壳体10,风管20设有供空气向外吹出的出风口22。风扇50绕风扇轴线51旋转,用于使空气产生流动并自出风口22向外吹出。电机驱使风扇50绕风扇轴线51旋转。风扇50包括:毂52; 及从毂52沿径向向外延伸并围绕风扇轴线51分布的多个扇叶54。扇叶54包括固定到毂52的根部542、与毂52间隔开的顶缘544、在根部542和顶缘544之间延伸的前缘546和后缘548,在风扇50的转动方向上,前缘546位于后缘548的前方。风扇轴线51定义为X轴线,经过前缘546靠近毂52的一端点与风扇轴线51垂直且相交的线定义为Y轴线。与X轴线和Y轴线垂直且相交的线定义为Z轴线。根部542和顶缘544分别在X轴线与Y轴线构成的平面内的投影中点对应定义为第一中点5421、第二中点5441。经过第一中点5421并与Y轴线平行的线定义为第一竖轴线5422。在气流流动的方向上,第二中点5441位于第一竖轴线5422的下游朝向风管20的出风口22的一侧。
上述的具有吹功能的园林工具100,将多个扇叶54在毂52上绕风扇轴线51间隔排布,使气流从相邻两个扇叶54之间稳定穿过,保证园林工具100的吹风效率。由于顶缘544的第二中点5441位于第一竖轴线5422朝向风管20的出风口22一侧,即第二中点5441沿朝向园林工具100的进风侧未掠过第一竖轴线5422,因此,顶缘544整体会相对根部542呈现出朝向出风口22的方向延伸趋势。如此设计,使得风扇50的形状设计与气流流向更加吻合,减少气流与扇叶54的碰撞、气流流经的路径长,增加气流在扇叶54表面的做功,降低噪音,提升吹风效率。
需要说明的是,毂52的形状大致呈圆柱状,其具有封闭的上游端和开放的下游端。毂52的形状与上述任一实施例中类似设计,可直接参考如上描述,在此不再赘述。
还需说明的是,根部542是扇叶54最靠近毂52,且附接到毂52的径向地最内边缘,顶缘544是扇叶54与毂52间隔开的径向最外边缘。前缘546是在穿过风扇50的气流方向上的最前边缘,也即是风扇50旋转过程中气流首先接触扇叶54的边缘,该前缘546在根部542和顶缘544之间延伸。后缘548是在穿过风扇50的气流方向上的最后边缘,也即是风扇50旋转过程中最后接触气流的扇叶54的边缘,该后缘548在根部542和顶缘544之间延伸。前缘546在根部542处的第一端附接到毂52,前缘546在根部542处的第二端与毂52间隔开,后缘548在根部542处的第一端附接到毂52,后缘548在根部542处的第二端与毂52间隔开。
进一步地,请参考图10,第一中点5421与第二中点5441之间的连线和第一竖轴线5422之间的夹角β为0°~9°。由此可知,第一中点5421与第二中点5441之间的连线为朝向出风口22的一侧倾斜延伸,且该倾斜延伸方向与第一竖轴线5422之间夹角控制为0°(不包括0°)~9°,这样进一步增加气流在扇叶54表面的做功,使得降噪效果进一步提升。
可选地,第一中点5421与第二中点5441之间的连线和第一竖轴线5422之间的夹角β可为但不限于1°、2°、3°、5°、7°、8°、9°等。具体在一些实施例中,第一中点5421与第二中点5441之间的连线和第一竖轴线5422之间的夹角β为2°。
在一些实施例中,请参考图7,前缘546在Y轴线与Z轴线构成的平面(即垂直于X轴线的平面)内投影定义为前侧投影5461。前侧投影5461的相对两端点之间的连线定义为弦线L5462。前侧投影5461上至少两处分别位于弦线L5462的相对两侧。由此可知,前侧投影5461上相对于弦线L5462而言,至少具有一处越过弦线L5462,一处未越过弦线L5462,即前缘546在Y轴线与Z轴线构成的平面内的投影至少有两处为凹凸状。因此,由前侧投影5461的凹凸特性反馈至扇叶54上,可知,在Y轴线与Z轴线构成的平面中观察前缘546,其至少为二次曲线设计,这样使得扇叶54的前缘546和后缘548处由根部542到顶缘544的压力梯度可以平缓过渡及变化,减少了气流内的湍流,并减小气流从扇叶54分离的倾向,将噪声最小化。
需要说明的是,前缘546投影上可有两处分别位于弦线L5462的相对两侧;也可有两个处均位于弦线L5462的一侧,一处位于弦线L5462的另一侧;或者,两处均位于弦线L5462的一侧,两处均位于弦线L5462的另一侧,即前缘546上具有四次曲线设计等。
进一步地,请参考图7,前缘546远离毂52的部分外轮廓处的前侧投影5461偏离弦线L5462并背离风管20的出风口22的一侧内凹。前缘546靠近毂52的部分外轮廓处的前侧投影5461偏离弦线L5462并朝向风管20的出风口22的一侧凸出。由此可知,在Y轴线与Z轴线构成的平面内,前缘546上呈波形设计,且前缘546上远离毂52的一部分的前侧投影5461为内凹设计,这样使得扇叶54在三维空间中,靠近前缘546端的部分具有波形设计,并在远离毂52的一端为前弯状态,有利于减小气流从扇叶54分离的倾向,将噪声最小化。
需要说明的是,前缘546在Y轴线与Z轴线构成的平面内的前侧投影5461,相对弦线L5462具有内凹和外凸偏移设计,其内凹和外凸之间的弧度可不相同,也可保持一致。当前侧投影5461上两处的内凹和外凸的弧度保持一致时,前侧投影5461上则具有正弦波形设计。
具体地,请参考图9,前侧投影5461为正弦曲线,前侧投影5461包括位于弦线L5462的相对两侧的波峰段5463和波谷段5464。波峰段5463靠近根部542并相对于弦线L5462朝向风管20的出风口22一侧凸出;波谷段5464靠近顶缘544并相对于弦线L5462背离风管20的出风口22一侧内凹。波峰段5463和波谷段5464分别与弦线L5462之间的垂直距离最大值定义为第一弦高5465、第二弦高5466。第一弦高5465和第二弦高5466分别与弦线L5462的长度之比均可为0.008~0.03。比如:第一弦高5465和第二弦高5466分别与弦线L5462的长度之比均可为0.016、0.008、0.03等。具体结构可参考图9,以弦线L5462的长度为25.1mm为例,第一弦高5465和第二弦高5466分别与弦线L5462之比为0.03时,曲线用◆标记;第一弦高5465和第二弦高5466分别与弦线L5462之比为0.008时,曲线用●标记;第一弦高5465和第二弦高5466分别与弦线L5462之比为0.016时,曲线用▲标记。
具体在一些实施例中,第一弦高5465和第二弦高5466分别与弦线L5462的长度之比均优选为0.016。
在一个实施例中,请参考图6,前缘546在Y轴线和Z轴线构成的平面内的投影定义为前侧投影5461。前侧投影5461在前缘546远离毂52的部分外轮廓处弯曲延伸,以在前侧投影5461上形成凹陷结构5467,凹陷结构5467的开口朝向与风扇50的转动方向保持一致,即在三维空间中,前缘546远离毂52的部分表现出沿风扇50的转动方向弯曲前倾,这样便于气流集中,实现降噪效果。
需要说明的是,前侧投影5461一端朝风扇50的转动方向弯曲,会引起扇叶54两侧的压力面543和吸力面545上均具有部分弯曲,比如:压力面543和吸力面545上分别靠近前缘546与顶缘544之间附接点的一部分沿风扇50的转动方向弯曲。
还需说明的是,在Y轴线和Z轴线构成的平面内,前缘546的投影(即前侧投影5461)在风扇50的转动方向上位于后缘548的投影的前方;同时,在X轴线和Y轴线构成的平面内,后缘548的投影相对于前缘546的投影更靠近出风口22设置。此时,扇叶54在毂52上则大致相对毂52径向倾斜延伸。
进一步地,请参考图6与图8,前侧投影5461在前缘546和顶缘544的外轮廓线相交并远离毂52的一交点处的切线和弦线L5462之间的弯曲角度α为5°~15°。如此,将前侧投影5461一端的弯曲角度控制在5°~15°之间,进一步改善气流的流动,提升园林工具100的降噪性能。
需要说明的是,前侧投影5461的一端弯曲角度可取为5°、7°、9°、11°、13°、14°、15°等。
在一些实施例中,请参考图10,前缘546在X轴线与Y轴线构成的平面内的投影位于Y轴线朝向出风口22的一侧。由此可知,前缘546整体相对Y轴线向出风口22延伸,使得扇叶54与气流更吻合,减少气流与扇叶54的碰撞,延长气流在扇叶54上的路径,增加气流在扇叶54表面的做功,进一步提升吹风效率。
需要说明的是,前缘546在X轴线与Y轴线构成的平面内的投影可为直线,也可为曲线。需注意的是,若前缘546在X轴线与Y轴线构成的平面内的投影直线时,不代表前缘546在三维空间内为直线结构设计,因为,前缘546在Y轴线与Z轴线构成的平面内也可成曲线设计。比如:在Y轴线与Z轴线构成的平面内 观察,前缘546一端朝风扇50的转动方向弯曲等。
当前缘546在X轴线与Y轴线构成的平面内的投影为曲线时,其可为一次曲线,也可多次曲线,比如:前缘546在X轴线与Y轴线构成的平面内的投影,从靠近根部542一端至靠近顶缘544一端,先朝向壳体10的进风口11一侧凸起;再朝向出风口22一侧内凹。当然,该投影还可继续依次凸起和内凹设置。
具体地,请参考图11,前缘546在X轴线与Y轴线构成的平面内的投影为二次曲线,例如:该投影在从前缘546靠近根部542一端至前缘546靠近靠近顶缘544一端的方向上包括第一弧段550、及与第一弧段550附接的第二弧段551。第一弧段550朝向壳体10的进风口11一侧凸起;第二弧段551朝向出风口22一侧内凹。如此设计,使得扇叶54的形状设计更加吻合气流流动,增加气流在扇叶54表面的做功。其中,朝向壳体10的进风口11一侧凸起的曲率和朝向出风口22一侧内凹的曲率可不同,也可保持一致,比如:若凸起的曲率和内凹的曲率相同时,前缘546在X轴线与Y轴线构成的平面内的投影也可正弦曲线。
在一些实施例中,请参考图10,前缘546在X轴线与Y轴线构成的平面内的投影,在前缘546靠近毂52的一端点处的切线与Y轴线之间的夹角θ为3°~25°。该夹角θ的设定能影响前缘546朝向出风口22一侧的倾斜幅度。若夹角θ过小时,会导致前缘546朝向出风口22一侧的倾斜幅度过小,无法实现气流路径延长的效果。若夹角θ过大时,导致扇叶54整体倾斜幅度较大。此时需保证毂52的轴向长度足够长,才能满足顶缘544能接近壳体10的内壁,然而这样势必会导致园林工具100整个体积变大,产品笨重,不利于使用。为此,本实施例合理控制夹角θ为3°~25°,使得园林工具100兼顾小型化和高吹风率。
需要说明的是,前缘546靠近毂52的一端点处的切线也可理解为:前缘546在X轴线与Y轴线构成的平面内的投影,在扇叶54上的前缘546与根部542的交点处的切线。另外,夹角θ可取为但不限于3°、6°、9°、12°、15°、18°、21°、24°、25°等。
具体地,夹角θ优选为6°,这样使得气流更趋于缓流,减少湍流的形成,有效降低噪音。
在一些实施例中,请参考图10,经过后缘548靠近毂52的一端点并垂直于X轴线的线定义为第二竖轴线5423;后缘548在X轴线与Y轴线构成的平面内的投影,位于第二竖轴线5423背向风管20的出风口22一侧。由此可知,后缘548相对于进风口11的一侧具有前倾趋势,这样使扇叶54的前缘546和后缘548处由根部542到顶缘544的压力梯度可以平缓过渡及变化,从而减少了气流内的湍流,将噪声最小化。
需要说明的是,扇叶54的前缘546包括在由轴向和径向轴线建立的子午平面(即由X轴线与Y轴线构成的平面)中的弯曲轮廓,后缘548包括在轴向和径向轴线建立的子午平面的弯曲轮廓。也就是说,扇叶54在三维空间中呈扭转状态,例如,当在由平行于风扇轴线51延伸的轴线和径向的轴线限定的子午平面中观察扇叶54,扇叶54的前缘546和后缘548均具有弯曲轮廓。
可以理解,在其他一些实施例中,前缘546和后缘548中至少一者的至少部分在垂直于风扇轴线51的平面内的投影也可以具有笔直地轮廓,相应地,前缘546和后缘548中至少一者的至少部分在前述的子午平面中也具有笔直的轮廓,在此不做限定。
特别指出的是,前缘546和后缘548在垂直于风扇轴线51的平面内的投影中至少一个的至少一部分具有弯曲的轮廓,则前缘546和后缘548中至少一个与从风扇50的中心点向径向延伸的线在风扇50旋转角度上存在偏移,此时,扇叶54的前缘546被后掠、后缘548被前掠。具体到如图9所示的实施例中,扇叶54的前缘546和后缘548均与从风扇50的中心点向径向延伸的线在风扇50旋转角度上存在偏移,则扇叶54整体被后掠。
进一步地,请参考图10,后缘548在X轴线与Y轴线构成的平面内的投影,在后缘548与毂52的交点处的切线与第二竖轴线5423之间的夹角δ为8°~20°。如此,合理控制夹角δ的大小,使得气流更趋于缓流,有利于提高降噪效果。
需要说明的是,夹角δ可取为但不限于8°、10°、12°、14°、16°、18°、20°等。
具体地,夹角δ优选为14°,这样气流更趋于缓流,更有利于降低噪音。
还需说明的是,后缘548在X轴线与Y轴线构成的平面内的投影,在后缘548靠近顶缘544的一端点处的切线与X轴线之间的夹角为0°(不包括0°)~45°。
在一些实施例中,请参考图11,扇叶54在X轴线与Y轴线构成的平面内的投影定义为叶投影56。分别经过叶投影56在根部542处的两端点并均垂直于X轴线的线分别定义为第一边线560和第二边线561。叶投影56在根部542处的两端点连线定义第三边线562。经过叶投影56上最远离根部542的一端点并平行于第三边线562的线定义为第四边线563。第一边线560、第二边线561、第三边线562和第四边线563围合形成四边形面564。叶投影56的面积占四边形面564的面积为0.6以上。
在一些实施例中,请参考图13与图14,以垂直于Y轴线的平面截取风扇50,分别在前缘546和后缘548上的交点之间连线定义为安装线547,安装线547与X轴线之间的安装夹角γ从根部542至顶缘544逐渐增大。由此可知,扇叶54呈扭曲状,并在根部542处的安装夹角最小,可以使得毂52上设置较多数量的扇叶54。为了使得扇叶54转动时形成气流的效率较高,扇叶54的根部542与X轴线之间的安装夹角γ并不是越小越好。
为了能够进一步的在毂52上设置更多数量的扇叶54,扇叶54的根部542的横截面形状异于扇叶54的顶缘544的横截面形状,且扇叶54的根部542在其延伸方向上的长度小于扇叶54的顶缘544在其延伸方向上的长度,也就是说,扇叶54与毂52的连接处的一侧在其延伸方向上的长度小于扇叶54远离毂52一侧在其延伸方向上的长度。由于毂52与扇叶54连接处直径较小,导致周长也小,当扇叶54的根部542在其延伸方向上的长度小于扇叶54的顶缘544在其延伸方向上的长度以后,毂52的周向上可以设置更多个的扇叶54。
另外,将安装线547与X轴线之间的安装夹角γ从根部542至顶缘544逐渐增大,使扇叶54的前缘546和后缘548处由根部542到顶缘544的压力梯度可以平缓过渡及变化,减小气流从扇叶54分离的倾向,减少了气流内的湍流,将噪声最小化。
需要说明的是,安装线547与X轴线之间的安装夹角γ从根部542至顶缘544之间的变化过渡率可保持一致,也可不一致。比如:根部542处的安装夹角γ和扇叶54在根部542和顶缘544之间的径向中点处的安装夹角γ和之间的变化过渡率,低于从该中点处安装夹角γ和顶缘544处的安装夹角γ之间的变化过渡率等。
进一步地,请参考图14,安装线547与X轴线之间的安装夹角γ在根部542处为5°~30°。其中,安装夹角γ在根部542处可取为但不限于5°、10°、15°、20°、25°、30°等。在具体的一些实施例中,安装夹角γ在根部542处优选为17°。
在一些实施例中,请参考图11,顶缘544上的安装线547与X轴线之间的夹角γ在顶缘544处为30°~85°。其中,安装夹角γ在顶缘544处可取为但不限于30°、40°、50°、60°、70°、80°、85°等。
需要说明的是,当安装夹角γ在根部542处为5°~30°,且夹角γ在顶缘544处为30°~85°时,扇叶54之间的压力梯度更加能趋于平缓过渡及变化,有效减少了气流内的湍流,将噪声最小化。
在一些实施例中,请参考图10和图12,扇叶54还包括位于后缘548和顶缘544交界处呈由顶缘544向毂52靠拢的曲面过渡部541,且曲面过渡部541的圆弧面背向毂52凸出。具体到一些实施方式中,曲面过渡部541呈圆弧状。当曲面过渡部541在沿扇叶54大体延伸的平面上的横截面呈圆弧状时,在扇叶54转动时其能够更加有利于将扇叶54叶尖处的气流引流到扇叶54与扇叶54之间的涵道30区域,从而更好的减小扇叶54叶尖在转动时形成的涡流,进而减小扇叶54叶尖处附壁层气流冲击扇叶54的压力,最终实现进一步降低气动噪声的目的,即减小了叶频尖声。
进一步地,曲面过渡部541的半径长度范围为2mm~6mm。当然,在其他一些实施例中,曲面过渡部541的半径长度范围还可限定为0.5mm~5mm之间,比如:曲面过渡部541的半径长度可为0.5mm、2mm、3mm、4mm、5mm等。
在一些实施例中,曲面过渡部541在X轴线与Y轴线构成的平面内投影的圆角半径为1mm~5mm。比如:该圆角半径可为但不限于1mm、2mm、3mm、4mm、5mm等。这样,能更好地减小扇叶54叶尖在转动时形成的涡流,以减小了叶频尖声。
在一些实施例中,请参考图12,曲面过渡部541在X轴线与Y轴线构成的平面内投影在曲面过渡部541靠近顶缘544的一端点处的切线与Y轴线之间夹角η为0°~45°。具体到一些实施例中,夹角η可为8°。
在一些实施例中,请参考图3,扇叶54还包括位于前缘546和顶缘544交叉点处的叶尖末梢549。具体地,扇叶54的前缘546包括与毂52相邻的内部部分以及与顶缘544相邻的外部部分,前缘546的外部部分向前伸展,并在顶缘544的交叉点处形成叶尖末梢549。如此,该叶尖末梢549能够切割气流,从而将气流分散,避免气流聚集形成涡流而增大噪声。具体到一些实施例中,前缘546和顶缘544的交接处形成呈锐角或直角的棱状边缘,该锐角或直角为面与面相交形成的夹角。
具体到另一些实施例中,前缘546的外部部分的宽度在向前伸展方向上逐渐减小,顶缘544的宽度在由后缘548向前缘546的伸展方向上逐渐减小,从而使前缘546和顶缘544的交叉处形成尖端,同样能够起到切割气流的功效。
在一些实施例中,请参考图18,具有吹功能的园林工具100还包括涵道30。涵道30包括导流外罩32、导流内罩34以及连接于导流外罩32和导流内罩34之间的第一静叶片36。扇叶54与第一静叶片36分别在X轴线与Y轴线构成的平面内的投影之间间隙D3从根部542至顶缘544逐渐增大。可知,第一静叶片36沿毂52径向向外延伸时,则越偏离扇叶54设置,即两者之间的间隙越大。由于扇叶54越靠近顶缘544部分上的气流,其流速越大,因此,将第一静叶片36沿毂52径向向外延伸时越偏离扇叶54设置,能适当拉大第一静叶片36与扇叶54之间的间隙,使得高速部分的气流在两者之间打转,避免顶缘544处的气流优先快速冲击到第一静叶片36上,这样保证第一静叶片36上的气流保持均一化,实现有效的降噪效果。
需要说明的是,风扇50可整体位于涵道30内;也可部分位于涵道30内。当然,在两者结构设计时,也可将两者间隔设置,比如:在气流的流动方向上,涵道30位于风扇50的下游端等。
同时,涵道30设置在壳体10的风道部12内,涵道30用于引导气流移动并对风扇50产生的气流进行整流,因此,涵道30位于风道部12的下游区域,在风道部12的上游区域气流从进风口11进入到风道部12后,向靠近风扇50的方向移动,而通过风扇50后,气流从风道部12的上游区域移动至下游区域,经过涵道30的整流,并最终通过风管20向外吹出。
图15示出了扇叶54数量为17的本申请实施例中的风扇50,与扇叶54数量为17的现有技术中的风扇50的噪声频谱对比图,如图15所示,图中X轴为扇叶54的转速,图中Y轴为噪声的分贝,从图中可以看出,在不同转速下,本申请实施例中的风扇50发出的噪声的分贝基本都小于现有技术中的风扇50发出的噪声的分贝,针对上述两种情况下得到的计权综合声压级而言,本申请实施例中的风扇50比现有技术中的风扇50的整机降噪在2~3分贝左右,对于叶尖声倍频而言,本申请实施例中的风扇50比现有技术中的风扇50的整机降噪5~10分贝左右,且风道效率下降小于2%。
在一些实施例中,请参考图18,一种具有吹功能的园林工具100,包括:壳体10、风管20、涵道30、风扇50和电机。风管20连接壳体10,风管20设有供空气向外吹出的出风口22。涵道30连接于壳体(10),用于引导空气流动。风扇50绕风扇轴线51旋转,用于使空气产生流动。电机驱使风扇50绕风扇轴线51旋转。涵道30包括导流外罩32、导流内罩34以及连接于导流外罩32和导流内罩34之间的第一静叶片 36;第一静叶片36包括连接到导流内罩34的底部362、连接到导流外罩32的顶部364、间隔位于气流流动方向的第一前侧边缘366和第一后侧边缘368;风扇轴线51定义为X轴线,经过风扇50上任一点并垂直于X轴线的平面定义为参考平面53;第一前侧边缘366靠近底部362的一端点与参考平面53的距离小于第一前侧边缘366靠近顶部364的一端点与参考平面53的距离。
上述的具有吹功能的园林工具100,气流流动过程中,由于气压作用,位于第一静叶片36的顶部364处的气流速度,大于位于第一静叶片36的底部362处的气流速度,通过将第一静叶片36的第一前侧边缘366在底部362处的一端设置为位于其第一前侧边缘366在顶部364处的另一端的下游,有效延长了第一静叶片36的第一前侧边缘366位于顶部364处的一端距离扇叶54的距离。这样,一方面,延长了高速气流的流动路径,降低了气流撞击第一静叶片36产生的噪声,另一方面,使位于第一静叶片36顶部364处和底部362处的气流速度差异平缓过渡,避免了产生涡流,进一步地降低了噪声。
需要说明的是,导流外罩32大致沿风扇轴线51方向设置,导流内罩34位于导流外罩32的中心,导流外罩32与导流内罩34之间构成气流流通空间,该流通空间的垂直风扇轴线51的横截面大致为环形。第一静叶片36位于该环形的流通空间内,并且环绕导流内罩34均匀间隔地分布,两两间隔设置的第一静叶片36之间的间隙供气流流通。
作为一种实施方式,第一静叶片36的数量为3~11个,如此,可以在起到导流作用的同时,不会因第一静叶片36数量过多而影响气流通过并造成增大噪声。
另外,导流内罩34也大致沿风扇轴线51方向延伸,导流内罩34的内部中空设置,导流内罩34在与风扇轴线51相垂直方向上的截面面积小于或等于风扇50的毂52与风扇轴线51相垂直方向上的最大截面面积。
作为可选地实施方式,电机整体设置在导流内罩34的内,或者电机至少部分地设置在导流内罩34内。较佳地,导流内罩34呈圆筒状,导流内罩34的外壁与导流外罩32的内壁之间的沿风扇轴线51方向均匀设置,这样,可以引导气流沿平行于风扇轴线51方向的方向移动,避免涡流产生的噪声。
进一步地,导流内罩34包括容纳部及与容纳部相连接的导流部,容纳部靠近风扇50设置,用以容纳电机,导流部靠近风管20设置,其为与容纳部一体成型。容纳部靠近风扇50的后端设有安装孔346,电机通过该安装孔346固定于容纳部内,导流部靠近风管20的一端(前端)设有敞口,用于导出进入导流内罩34的内的气流。容纳部的后端还设有导风孔340,导风孔340与前述的敞口之间形成用于冷却电机的冷却通道,气流从导风孔340流入并从敞口流出,从而可以对电机进行冷却。
需要说明的是,导风孔340仅设有一个,当然,导风孔340也可设有若干个,如图16所示,若干导风孔340围绕风扇轴线51均匀间隔设置在容纳部的后端,作为一种较佳地实施方式,导风孔340横截面呈圆形。
在一些实施例中,请参考图18,风扇50包括毂52、从毂52沿径向向外延伸并围绕风扇轴线51分布的多个扇叶54。扇叶54包括固定到毂52的根部542、与毂52间隔开的顶缘544、在根部542和顶缘544之间延伸的前缘546和后缘548,在风扇50的转动方向上,前缘546位于后缘548的前方。第一前侧边缘366靠近底部362的一端点与后缘548靠近根部542的一端点的距离小于第一前侧边缘366靠近顶部364的一端点与后缘548靠近顶缘544的一端点的距离。由此可知,第一静叶片36越靠近顶部364的部分,则越远离扇叶54,这样能适当拉大第一静叶片36与扇叶54之间的间隙,使得高速部分的气流在两者之间打转,避免顶缘544处的气流优先快速冲击到第一静叶片36上。如此,保证第一静叶片36上的气流保持均一化,实现有效的降噪效果。
在一些实施例中,请参考图18,第一后侧边缘368靠近底部362的一端点与参考平面53的距离小于第一后侧边缘368靠近顶部364的一端点与参考平面53的距离。由此可知,沿气流流动方向,第一后侧 边缘368在底部362处的一端位于第一后侧边缘368在顶部364处的另一端的上游。如图17所示,沿平行于风扇轴线51的纵向截面,第一后侧边缘368呈圆弧状,第一后侧边缘368位于底部362的一端距风扇50的旋转平面的距离,小于第一后侧边缘368位于顶部364的另一端距风扇50的旋转平面的距离。这样,在气流向出风口22流动过程中,可以对不同气流速度的气流进行导向,避免气流内产生湍流,从而达到降低噪声分贝的目的。
进一步地,请参考图18,风扇50包括毂52、从毂52沿径向向外延伸并围绕风扇轴线51分布的多个扇叶54。扇叶54包括固定到毂52的根部542、与毂52间隔开的顶缘544、在根部542和顶缘544之间延伸的前缘546和后缘548,在风扇50的转动方向上,前缘546位于后缘548的前方。第一后侧边缘368靠近底部362的一端点与后缘548靠近根部542的一端点的距离小于第一后侧边缘368靠近顶部364的一端点与后缘548靠近顶缘544的一端点的距离。如此设计,能有效避免气流内产生湍流,从而达到降低噪声分贝的目的。
在一些实施例中,请参考图16和图19,导流内罩34的轴线定义为X’轴线。经过第一前侧边缘366靠近底部362的一端点与X’轴线垂直且相交的线定义为Y’轴线。与X’轴线和Y’轴线垂直且相交的线定义为Z’轴线。以平行于X’轴线和Z’轴线构成平面的面截取第一静叶片36获取的静叶截面31在靠近风扇50的一部分处越过X’轴线并沿导流内罩34的周向弯曲延伸。此时,从X’轴线和Z’轴线构成平面中观察,第一静叶片36靠近风扇50的一部分呈圆弧状设计,对于气流的引导更加有效,起着良好的降噪功效。
需要说明的是,静叶截面31一部分越过X’轴线应理解为:静叶截面31靠近风管20的出风口22的至少部分位于X’轴线一侧或者直接位于X’轴线的线上,静叶截面31靠近风扇50的一部分则弯曲延伸,能越过X’轴线,并位于X’轴线的另一侧。
在一些实施例中,请参考图19,第一静叶片36具有迎风侧和与迎风侧相对的背风侧,迎风侧和背风侧在X’轴线和Z’轴线构成的平面的投影的外轮廓线相交,且靠近风扇50的一交点处的切线与X’轴线的夹角定义为第一静叶片入口角Le,第一静叶片入口角Le为35°~65°。
研发发现,叶片的进口安装角过大时进口冲击损失有所增大,叶片进口流动状况不佳,涡流噪声增大,而随着叶片的入口角的减小,进口噪声的声压级逐渐降低,但随着进口安装角的进一步减小,入口角进口分离损失增加,涡流噪声同样增大。因此,选择合适的入口角,能够降低具有吹功能的园林工具100的噪声,发明人进一步研究发现,将第一静叶片36的入口角Le设置为在35°~65°之间,能够保证气流高效的流动状况,且降低涡流噪声,从而改善整机的噪声影响,提高了用户体验。
在一些实施例中,请参考图19,以平行于X’轴线和Z’轴线构成平面的面截取第一静叶片36获取的静叶截面31,在Z’轴线的方向上的高度最大值定义为第一静叶片36的弯曲距离D4。第一静叶片36的弯曲距离D4从底部362至顶部364逐渐增大。如此,第一静叶片36越靠近顶部364的一部分,其弯曲度越大,这样对于气流的导流效果更佳,实现更优的降噪效果。
需要说明的是,在Z’轴线的方向上的高度最大值应理解为:静叶截面31越过X’轴线弯曲后,弯曲的部分上具有一最远离X’轴线的上端点;而静叶截面31未越过X’轴线或处于X’轴线线上的部分上具有一最远离上端点的下端点。此时,在Z’轴线的方向上的高度最大值可为上端点与下端点之间在Z’轴线的方向上的距离。
进一步地,请参考图19,第一静叶片36的弯曲距离D4为1mm~15mm,即第一静叶片36分别在底部362和顶部364上的弯曲距离均控制在1mm~15mm。其中,弯曲距离D4可为但不限于1mm、3mm、5mm、7mm、7.8mm、9mm、11mm、13mm、15mm等。
在一些实施例中,请参考图19,静叶截面31包括沿X’轴线延伸的第一部分311、越过X’轴线并沿 导流内罩34的周向弯曲延伸的第二部分312。第二部分312包括相对设置的内凹线3121和外凸线3122。内凹线3121两端的连线与外凸线3122之间的距离最大值定义为凹弦高H,凹弦高H为2mm~6mm。由此可知,第一部分311可位于X’轴线的线上,也可位于X’轴线的一侧;而第二部分312为越过(或偏离)X’轴线弯曲。同时,控制凹弦高H为2mm~6mm,这样有效保证第二部分312保持合适的弯曲曲度,使得气流更加顺畅进入第一静叶片36与第一静叶片36之间,以达到降噪分贝目的。
在一些实施例中,请参考图18,第一前侧边缘366在X’轴线和Y’轴线构成的平面的投影位于Y’轴线朝向风管20的出风口22一侧。即在X’轴线和Y’轴线构成的平面中观察,第一前侧边缘366在三维空间中相对Y’轴线朝出风口22一侧倾斜延伸。这样,一方面,延长了高速气流的流动路径,降低了气流撞击第一静叶片36产生的噪声;另一方面,使位于第一静叶片36顶部364处和底部362处的气流速度差异平缓过渡,避免了产生涡流,进一步地降低了噪声。
进一步地,请参考图18,第一前侧边缘366在X’轴线和Y’轴线构成的平面的投影在靠近底部362处的切线与X’轴线之间的夹角ε为60°~90°。如此,将第一前侧边缘366靠近底部362处投影的切线与X’轴线之间的夹角ε控制为60°~90°,便于第一前侧边缘366整体沿径向向外延伸时能更好偏离X’轴线,使位于第一静叶片36顶部364处和底部362处的气流速度差异更趋于平缓。
需要说明的是,夹角ε可为但不限于60°、70°、80°等。具体在一些实施例中,夹角ε优选为84°。
还需说明的是,第一前侧边缘366在X’轴线和Y’轴线构成的平面的投影可为笔直的轮廓,也可为曲线轮廓。当该投影为曲线轮廓时,可为一次曲线、二次曲线等。比如:第一前侧边缘366在X’轴线和Y’轴线构成的平面的投影,在靠近导流内罩34的一部分沿朝向风扇50的一侧凸起;在靠近导流外罩32的一部分沿朝向出风口22一侧内凹等。
在一些实施例中,请参考图18,第一后侧边缘368在X’轴线和Y’轴线构成的平面的投影为朝向第一前侧边缘366凹陷的圆弧。如此设计,对于不同流速的气流具有更好地导向,实现更好的降噪效果。
进一步地,请参考图18,第一后侧边缘368在X’轴线和Y’轴线构成的平面的投影在靠近底部362处的切线与X’轴线之间的夹角b为45°~90°。其中,夹角b可为30°~90°之间任一值,比如:夹角b为、45°、50°、60°、70°、80°等。具体在一些实施例中,夹角b优选为81°。如此,有利于优化第一后侧边缘368的圆弧设计,提升第一静叶片36的导向效果。
更进一步地,第一后侧边缘368在X’轴线和Y’轴线构成的平面的投影在靠近顶部364处的切线与X’轴线之间的夹角c小于夹角b。即,第一后侧边缘368靠近顶部364的弯曲度大于第一后侧边缘368靠近底部362的弯曲曲度,便于朝出风口22一侧延长第一后侧边缘368的尖部处,保证位于第一静叶片36顶部364处和底部362处的气流速度差异进一步减小,保证气流流动更加均一化,利于降低噪音。
需要说明的是,夹角c也可为30°~90°之间任一值,比如:夹角c为30°、35°、40°、45°、50°、60°、70°、80°等。
在一些实施例中,请参考图19,第一静叶片36的底部362相对于风扇轴线51以第一角度倾斜设置;第一静叶片36的顶部364相对风扇轴线51以第二角度倾斜设置。如此,使第一静叶片36的第一前侧边缘366和第一后侧边缘368处由底部362到顶部364的压力梯度可以平缓过渡及变化,从而减少了气流内的湍流,减小气流从第一静叶片36分离的倾向,将噪声最小化。
进一步地,该第一角度不等于该第二角度,这样可以进一步减小了气流从第一静叶片36分离的倾向,减少了气流内的湍流,从而噪声最小化。特别强调的是,第一静叶片36的主要作用是对气流进行整流,以引导气流大致沿风扇轴线51方向流动,因此,第一静叶片36大致沿风扇轴线51方向延伸布置,第一角度和第二角度的范围保持在0°~30°的范围内,如此不仅可以对气流进行良好的导流,还起到降噪的功 效。
在一些实施例中,第一静叶片36的长度为L1,风扇50的扇叶54的中弧线弦长为L2,其中,3≤L1:L2≤9。需要说明的是,请参考图14与图18,扇叶54具有相对的压力面543和吸力面545,扇叶54的中弧线是指,扇叶54的压力面543和吸力面545之间的内切圆的圆心的连线。第一静叶片36的长度定义为沿气流流动方向第一静叶片36的第一前侧边缘366与第一静叶片36的第一后侧边缘368之间的距离。需要注意的是,在确权或取证时,第一静叶片36的长度可取为:在底部362与顶部364之间,任一处第一前侧边缘366与第一后侧边缘368之间的距离;或者,在底部362与顶部364之间,第一前侧边缘366与第一后侧边缘368之间的距离最大值;又或者,在底部362与顶部364之间,第一前侧边缘366与第一后侧边缘368之间所有距离的平均值等。中弧线弦长L2在具体表征时,可同样采用第一静叶片36的长度的取值方法,但需注意的是,在同一比值中,第一静叶片36的长度L1和中弧线弦长L2的取值方式应保持一致,比如:第一静叶片36的长度L1取底部362上第一前侧边缘366与第一后侧边缘368之间的距离;而中弧线弦长L2应取根部542上压力面543和吸力面545之间的内切圆的圆心连线的弦长值等。
应当理解的是,扇叶54的气动性性能参数,例如几何进气角、几何出气角、叶片最大厚度、最大挠度等参数,都需要依靠叶片的中弧线为基础,因此,中弧线的误差直接关系到风扇50的气动性性能计算的准确性。而风扇50的气动性性能又直接关系到气流在流动过程中产生的噪声,发明人研究发现,第一静叶片36的整流和降噪性能与风扇50的中弧线具有关联性,进一步研究发现,第一前侧边缘366在底部362处的一端位于第一前侧边缘366在顶部364处的另一端的下游,第一后侧边缘368在底部362处的一端位于第一后侧边缘368在顶部364处的另一端的上游,则第一静叶片36的长度在底部362和顶部364之间是变化的,综合考量气流速度和气压,将第一静叶片36的长度设置为扇叶54的中弧线弦长的3倍~9倍,在保证良好的整流性能的前提下,气流中涡流的产生显著减少,相应的噪声的分贝也显著降低,提高了用户的体验感。
在一个实施例中,请参考图1与图20,一种具有吹功能的园林工具100,包括:壳体10、风管20、涵道30、风扇50和电机。风管20连接壳体10,空气能够从风管20吹出。涵道30容纳于壳体10中,用于引导空气流动。风扇50绕风扇轴线51旋转,用于使空气产生流动。电机驱使风扇50绕风扇轴线51旋转。涵道30包括导流外罩32、导流内罩34以及位于导流外罩32和导流内罩34之间的第一静叶片36。园林工具100还包括连接于导流内罩34的导流锥38和设置于导流锥38上的第二静叶片39。沿气流流动方向,第二静叶片39位于第一静叶片36的下游。
上述的具有吹功能的园林工具100,经过第一静叶片36的引导,风扇50旋转产生的气流的旋转角度减小,通过设置第二静叶片39,进一步引导气流沿风扇轴线51方向流动,降低气流中的旋转涡流,减小了噪声,实现进一步降低噪声影响,尤其是降低气流流动过程中的涡流频率,从而降低倍频尖声。
需要说明的是,第二静叶片39位于第一静叶片36的下游,并沿导流锥38外壁轴向地纵长延伸。
具体地,请参考图21,第二静叶片39环绕导流锥38均匀间隔设置,流经第一静叶片36的气流能够从第二静叶片39之间的间隙通过,从而起到导流作用,作为一种实施方式,第二静叶片39的数量为3~7个。沿气流流动方向,导流锥38具有开放的上游端(后端)和封闭的下游端(前端),导流锥38的上游端连接于导流内罩34的前端,导流锥38在风扇50转动时气流来流的方向上具有用于引导气流向出风口22流动的导流面,该导流面可以呈部分或全部的椭圆抛物面、椭圆锥面、圆锥面等等,在此不作任何限定。导流锥38的下游端还设有散热孔,其中,散热孔与导流内罩34的前端的敞口连通,当执行吹风功能时,冷却气流通过导流内罩34的敞口流入导流锥38内,并从导流锥38的散热孔流出,起到冷却电机的作用。
在一些实施例中,请参考图22,第二静叶片39一体成型于导流锥38。具体地,第二静叶片39包括连接至导流锥38的第一内侧边缘392、与第一内侧边缘392相对且与第一内侧边缘392相接的第一外侧边 缘394,以及位于第一内侧边缘392和第一外侧边缘394连接处的交叉点,第一内侧边缘392在导流锥38外壁沿风扇轴线51方向延伸,第一外侧边缘394沿风扇轴线51的方向延伸且呈向外凸出的圆弧状。参阅图22,具体到一些实施例中,第二静叶片39还包括在第一内侧边缘392和第一外侧边缘394之间延伸且相对设置的第一引导面396和第二引导面398,第一外侧边缘394能够将气流分散,并引导流向至第一引导面396和第二引导面398,最终使气流能够大致沿风扇轴线51的方向流动,从而减少了旋转涡流,降低了噪声。
可以理解,在其他一些实施例中,第二静叶片39也可以与导流锥38可拆卸地连接,在此不做限定。
进一步地,请参考图20,第二静叶片39的宽度从第一内侧边缘392向第一外侧边缘394线性减小。应当理解的是,为保证第二静叶片39与导流锥38的连接可靠性,第一内侧边缘392的宽度应当保持一定宽度,以增加其与导流锥38的连接面积,而第一外侧边缘394可以起到分散气流的作用,则第一外侧边缘394的宽度应当小于第一内侧边缘392的宽度。因此,连接第一内侧边缘392和第一外侧边缘394的第一引导面396和第二引导面398则被构造为相对扩张地倾斜设置,则第一引导面396和第二引导面398之间的距离,即第二静叶片39的宽度尺寸从第一内侧边缘392向第一外侧边缘394线性减小。如此,第一引导面396和第二引导面398可以进一步地使第一外侧边缘394处和第一内侧边缘392处的压力梯度平缓过渡及变化,从而减少了气流内的涡流,减小气流从第二静叶片39分离的倾向,将噪声最小化。作为一种优选地实施方式,第一引导面396和第二引导面398对称设置,这样进一步地提高第二静叶片39的整流性能。
进一步地,请参考图21,该第二静叶片39包括分别与对应的交叉点相邻的两个末端部分,以及位于两个末端部分之间中间部分,该中间部分位于同一横截面的宽度保持不变,该末端部分位于同一横截面的宽度从交叉点向中间部分逐渐增大。具体地,第一内侧边缘392和第二外侧边缘44沿风扇轴线51的方向具有彼此间隔地第一交叉点和第二交叉点,第二静叶片39包括位于中间位置的中间部分,以及衔接中间部分且与第一交叉点和第二交叉点的第一末端部分391和第二末端部分393。中间部分位于同一横截面的宽度尺寸保持不变,第一末端部分391和第二末端部分393位于同一横截面的宽度从交叉点向中间部分逐渐增大。也就是说,第二静叶片39沿风扇轴线51的方向形成“两端小、中间大”的构造,如图21及图22所示,以沿风扇轴线51的方向的视角观察,第一末端部分391和第二末端部分393呈尖端状,宽度从中间部分向第一交叉点和第二交叉点逐渐减小。这样,在第一末端部分391有利于分散气流,减小涡流噪声,在第二末端部分393有利于避免气流与第二静叶片39分离的倾向,从而避免产生分离噪声。
在一些实施例中,请参考图19与图20,第二静叶片39的长度为L3,第一静叶片36的弦长为L4,其中,0.2≤L3:L4≤1,其中,第二静叶片39的长度定义为第二静叶片39沿气流流动方向,即沿风扇轴线51的方向的尺寸。发明人研究发现,第二静叶片39的作用在于,通过设置第二静叶片39,进一步引导气流沿风扇轴线51的方向流动,风扇50旋转产生的气流的旋转角度减小,减少气流中的旋转涡流,从而降低了噪声。因此,第二静叶片39的整流和降噪性能与第一静叶片36的弦长具有关联性,进一步研究发现,将第二静叶片39的长度设置为第一静叶片36的弦长的0.2倍~1倍,在保证良好的整流性能的前提下,气流中涡流的产生显著减少,相应的噪声的分贝也显著降低,提高了用户的体验感。
在一些实施例中,请参考图20,第二静叶片39的进口安装角为d,0°≤d≤15°,第二静叶片39的进口安装角定义为第二静叶片39的中弧面的切线与风扇50的风扇轴线51之间的夹角,其中,第二静叶片39的中弧面的定义可参考上述扇叶54的中弧线的确定方式,在此不再赘述。如前文,叶片的进口安装角过大时进口冲击损失有所增大,叶片进口流动状况不佳,涡流噪声增大,而随着叶片的进口安装角度的减小,进口噪声的声压级逐渐降低,但随着进口安装角的进一步减小,进口安装角进口分离损失增加,涡流噪声同样增大。而第二静叶片39的作用在于进一步引导气流沿风扇轴线51的方向流动,因此,将第二 静叶片39的进口安装角设置为在0°~15°之间,能够进一步保证气流的流动状况,降低涡流噪声,从而改善整机的噪声影响,提高了用户体验。
在一些实施例中,请参考图1与图23,一种具有吹功能的园林工具100,包括:壳体10、风管20、涵道30、风扇50和电机。风管20连接壳体10,空气能够从风管20吹出。涵道30连接于壳体10,用于引导空气流动。风扇50绕风扇轴线51旋转,用于使空气产生流动。电机驱使风扇50绕风扇轴线51旋转。涵道30包括导流外罩32、导流内罩34以及位于导流外罩32和导流内罩34之间的第一静叶片36。园林工具100还包括沿气流方向上位于第一静叶片36的下游的第三静叶片40。
上述的具有吹功能的园林工具100,在第一静叶片36的下游设置第三静叶片40,经过第一静叶片36整流后的气流,通过第三静叶片40的引导后,气流基本形成沿风扇轴线51的方向流动的平行气流,能够避免气流在风道部12和风管20内旋转撞击产生的尖频噪声,进一步提高降噪效果。
虽然不希望受到理论限制,在经过第一静叶片36和第二静叶片39的整流后,具有吹功能的园林工具100的噪声分贝已显著下降,寄期望获得更小噪声目的,参阅图23~图25,在一些实施例中,具有吹功能的园林工具100还包括沿气流流动方向位于第二静叶片39下游的第三静叶片40。第三静叶片40呈平板状,并大致沿风扇轴线51的方向延伸,且沿周向均匀间隔布设。研究发现,经过第二静叶片39整流后的气流,通过第三静叶片40的引导后,气流基本形成沿风扇轴线51的方向流动的平行气流,能够避免气流在风道部12和风管20内旋转撞击产生的尖频噪声。具体地,具有吹功能的园林工具100还包括连接筒33,第三静叶片40的数量为3~11个,第三静叶片40沿周向设置于连接筒33的内壁,连接筒33设连接于壳体10或风管20,更具体地,连接筒33可以位于风管20和壳体10的连接区域。具体到一些实施例中,第三静叶片40包括第二前侧边缘46、第二后侧边缘48、连接到连接筒33的第二内侧边缘42、与第二内侧边缘42相对的第二外侧边缘44,以及位于第二外侧边缘44和第二后侧边缘48的连接处的叶片末梢(图未标)。可以理解,在其他一些实施例中,也可不设置第二静叶片39,而仅设置第一静叶片36和第三静叶片40,在此不做限定。
在一些实施例中,请参考图1与图19,第三静叶片40距第一静叶片36的距离为L5,第一静叶片36的弦长为L4,其中,2≤L5:L4≤4。其中,第三静叶片40距第一静叶片36的距离是指第三静叶片40沿气流流动方向,即沿风扇轴线51的方向距第一静叶片36的距离,具体是第三静叶片40的第二前侧边缘46距第一静叶片36的距离。应当理解的是,第三静叶片40的主要作用是通过第三静叶片40的引导后,气流基本形成沿风扇轴线51的方向流动的平行气流,故第三静叶片40距第一静叶片36的距离会影响整流效果。发明人研究发现,如果第三静叶片40距第一静叶片36过近,经过第三静叶片40整流后的气流并不是基本沿风扇轴线51的方向流动的平行气流,如果第三静叶片40距第一静叶片36过远,则一方面,会延长壳体10的长度,不利于小型化和轻量化的设计要求,另一方面,相较于未设置第三静叶片40噪声并没有明显下降。本申请的实施例中,将第三静叶片40距第一静叶片36的距离设置为第一静叶片36的弦长的2~4倍,在保证较佳的整流效果的同时,还起到了明显的降噪效果。
在一些实施例中,请参考图19与图25,第三静叶片40的长度为L6,第一静叶片36的弦长为L4,0.5≤L6:L4≤2。其中,第三静叶片40的长度定义为第三静叶片40沿风扇轴线51的方向的尺寸。发明人研究发现,第三静叶片40的长度过长,一方面,不利于实现小型化和轻量化的设计要求,另一方面,噪声并没有明显下降,因此,本申请的实施例中,将第三静叶片40的长度,设置为第一静叶片36的弦长的0.5倍~2倍,可以在不较大程度增加质量的前提下,能够保证良好的整流性能并降低噪声。
在一些实施例中,请参考图23,第三静叶片40的进口安装角为e,0°≤e≤15°。应当理解的是,第三静叶片40的作用在于进一步引导气流沿风扇轴线51的方向流动,因此,将第三静叶片40的进口安装角设置为在0°~15°之间,能够进一步保证气流的流动状况,降低涡流噪声,从而改善整机的噪声影响, 提高了用户体验。另外,第三静叶片40的进口安装角为e可理解为:第三静叶片40的相对两侧面之间的中弧面上的切线与风扇轴线51之间的夹角,具体表征方式可参考上述扇叶54的中弧线的确定方式。
在一些实施例中,请参考图23,沿气流流动方向,第二外侧边缘44相对风扇轴线51扩张地倾斜延伸,第二前侧边缘46相对风扇轴线51呈内凹的弯曲延伸,具体到实施方式中,第二前侧边缘46的纵向截面呈圆弧状,且与第二外侧边缘44平滑过渡。如此,通过第二静叶片39的引导后的气流,首先与第二前侧边缘46接触,第二前侧边缘46呈内凹地弯曲延伸有助于气流在不同径向尺寸处的气流速度差的梯度平缓过渡,降低了涡流噪声,第二外侧边缘44相对风扇轴线51扩展的倾斜延伸。有助于进一步降低不同径向尺寸处的气流速度差的梯度平缓过渡,且进一步导向气流基本形成沿风扇轴线51的方向流动的平行气流。
本申请的发明人经过试验验证,采用上述的多个静叶片进行导流,能够降低噪声分贝1-3分贝,尖声分贝能够降低2-5分贝,风道部12的风道效率升高2%。
在一些实施例中,请参考图1、图26及图30,一种具有吹功能的园林工具100,包括:壳体10、风扇50和进风护罩60。壳体10具有进风口11。风扇50绕风扇轴线51旋转,用于使空气产生流动。电机驱使风扇50绕风扇轴线51旋转。进风护罩60连接在进风口11处,风扇50能够绕风扇轴线51旋转并将外界空气透过进风护罩60从进风口11引入。进风护罩60包括具有向外凸地外包络表面的三维进气阵列栅格。三维进气阵列栅格包括:沿第一方向612延伸的腹板61,腹板61包括多个,多个腹板61沿第二方向661间隔布设;以及沿第二方向661延伸的破流筋条66,破流筋条66包括多个,每一破流筋条66沿第二方向661搭接于相邻的两个腹板61上,多个破流筋条66与多个腹板61界定形成多个间隔设置的栅格单元62,相邻的栅格单元62之间形成有供气流穿过的进气孔621;多个破流筋条66的顶出部68相对于腹板61向背离进风口11的方向隆起,以形成三维进气阵列栅格向外凸地外包络表面;其中,第一方向612与第二方向661相交。
上述的具有吹功能的园林工具100,将三维进气阵列栅格设计为具有向外凸地弧状包络面,多个栅格单元62的外包络面和/或内包络面平滑过渡,一方面可以最大程度降低气流的流量损失,另一方面,从进风护罩60中心向四周排布的多个栅格单元62可以使进气气流趋于均匀,产生大致平行的进气气流,且不同栅格单元62的骨架处产生的旋流可能会相互之间抵消。如此,一方面,可以在不增加栅格单元62数量的同时,弱化气流在空间上的波动,使进入进风护罩60的气流趋于平行,有利于减少涡流的产生,进而降低噪声。另一方面,还可以增加空气流动和效率,提高进风效率。另外,由于破流筋条66的顶出部68为相对腹板61沿背离进风口11方向隆起设置,即顶出部68上至少部分鼓出腹板61,因此,气流在进入栅格单元62时,先受到相邻两个顶出部68阻流并向四周分流;分流后再受到相邻两个腹板61阻流,这样避免气流同时受到相邻两个腹板61和相邻两个顶出部68的阻流,有效增加进风流量,减少风阻。
需要说明的是,顶出部68可呈面结构,比如:顶出部68可为一个完整的平面;或者为由多个成夹角的平面拼接而成;又或者为拱形或曲线弧面等。当然,顶出部68也可呈点或线状结构,比如:顶出部68为圆锥的端点;或者顶出部68两侧面交互形成的夹角线等。
参阅图1、图30及图31,本申请的实施例中,具有吹功能的园林工具100还包括进风护罩60,进风护罩60与风道部12的进风口11连接,电机能驱动风扇50绕风扇轴线51转动以将外部的空气透过进风护罩60从进风口11引入,进风护罩60至出风口22之间形成供空气流动的气流通道。其中,为了便于清理风道部12进风护罩60与进风口11可以被配置为可拆卸地连接。可以理解,进风护罩60的一个作用是防止用户的手指伸入到风道部12的内部,从而产生危险,另一个作用是防止例如树叶或杂物在清扫作业中进入风道部12从而造成电机和风扇50发生故障。具体到一些实施例中,进风护罩60包括多个供气流通过的栅格单元62,空气经由该多个栅格单元62进入风道部12的进风口11,多个栅格单元62的通风面积之和界定出进风护罩60的有效通风总面积。即,进风护罩60的有效通风总面积可以理解为栅格单元62 在与进风口11的轴线相垂直的平面上投影面积之和。作为一种具体的实施方式,栅格单元62的最大孔径不大于7mm,优选地,栅格单元62的最大孔径不大于4mm。如此,可以对人体起到防护作用的同时,还可以防止杂物进入进风口11。
进一步地,请参考图30,进风护罩60包括三维进气阵列栅格和边框64,边框64环绕在三维进气阵列栅格上,且借助边框64连接于壳体10的进风口11处。该三维进气阵列栅格包括多个栅格单元62,且具有向外凸地弧状外包络表面,例如,该包络面可以呈球形面。进一步地,三维进气阵列栅格具有向外凸地弧状内包络表面。需要说明的是,包络面是指在波的传播过程中,总可以找到同相位各点的几何位置,这些点的轨迹是一个等相位面,叫做包络面。发明人研究发现,风扇50的旋转会使空气经过进风护罩60和进风口11吸入,在空气穿过进风护罩60之前,空气沿相对于进风口11的轴线方向的周向方向具有很小的速度分量或没有速度分量,而因为栅格单元62的存在,则会导致穿过进风护罩60的气流在周向方向上产生速度分量从而产生涡流,进而产生涡流噪声。为了减小气流在空间上的波动,则需要较窄的空气通道(栅格单元62)将气流分割为多股细小气流,但如此会增加空气流动的阻力,影响进风量,同时,也会增加进风护罩60的质量并增加噪声。为解决该问题,发明人进一步发现,将三维进气阵列栅格设计为具有向外凸地弧状包络面,例如如图26和图30所示的球形外包络面,多个栅格单元62的外包络面和/或内包络面平滑过渡,一方面可以最大程度降低气流的流量损失,另一方面,从进风护罩60中心向四周排布的多个栅格单元62可以使进气气流趋于均匀,产生大致平行的进气气流,且不同栅格单元62的骨架处产生的旋流可能会相互之间抵消。如此,一方面,可以在不增加栅格单元62数量的同时,弱化气流在空间上的波动,使进入进风护罩60的气流趋于平行,有利于减少涡流的产生,进而降低噪声。另一方面,还可以增加空气流动和效率,提高进风效率。在一些实施例中,请参考图1,破流筋条66包括自顶出部68朝向相邻间隔排布的腹板61延伸的第一导风部681与第二导风部682。顶出部68的背风侧相对于腹板61向外隆起的预设距离D6是2mm~20mm。当顶出部68与腹板61之间高度距离过小时,顶出部68与腹板61之间无法在气流流动方向上发生空间上的错层,导致气流同时受到破流筋条66和腹板61的阻流,导致风阻过大,减小进风量。当顶出部68与腹板61之间高度距离过大时,不仅导致园林工具100整体长度过大,而且无法堵住风机内侧的噪音,延缓噪音向外扩散。为此,本申请将高度距离D6控制在2mm~20mm之间,既能保证气流错层阻流,提高进风量;又能堵住风机内侧的噪音,实现延缓噪音向外扩散。
另外,朝向相邻间隔排布的腹板61延伸的第一导风部681与第二导风部682,在具体一些实施例中,分别为沿第二方向661位于顶出部68相对两侧且朝向腹板61倾斜延伸的结构,这样便于将气流按照预设路径导流,避免产生旋流,从而降低了噪声。
需要说明的是,高度距离D6可取为2mm、3mm、5mm、8mm、11mm、14mm、17mm、20mm等。具体在一些实施例中,高度距离D6优选为3mm~8mm。
在一些实施例中,请参考图26,三维进气阵列栅格具有间隔布设的多个栅格单元62,每一栅格单元62在垂直于进风口11的轴线的平面上的投影具有规则和/或不规则的形状。具体地,三维进气阵列栅格设有主进风区域和环绕边框64的辅进风区域,位于主进风区域的栅格单元62在垂直于进风口11的轴线的平面上的投影形状相同。如此,便于在辅进风区域栅格单元62与边框64的连接。具体到一些实施例中,每一栅格单元62在垂直于进风口11的中轴线的平面上的投影呈多边形,例如,呈六边形、七边形或八边形。应当理解的是,栅格单元62的最大内切球面半径确定了栅格单元62的最大栅格宽度,通常,栅格单元62具有较小的栅格宽度有利于降低噪声,采用多边形的栅格单元62有利于控制栅格单元62的最大栅格宽度,从利于控制噪声。
需要说明的是,辅助进风区域应理解为:三维进气阵列栅格连接在边框64内部时,会与边框64的内壁之间形成多个间隔环绕在主进风区域外部的空间,即该空间由非封闭状态的“栅格单元62”与边框64 的内壁之间围合形成;而主进风区域则由多个完整封闭状态的“栅格单元62”组合形成的空间。
在一些实施例中,多个栅格单元62沿第二方向661间隔排列形成多行,每一行的栅格单元62沿第一方向612排布,相邻行中最相邻的两个三维进气阵列栅格在第一方向612上错位排布。其中,第一方向612与第二方向661相交,具体地,第一方向612为如图26所示的横向,第二方向661为如图26所示的纵向。如此,使位于不同行的栅格单元62之间相互错开,从而尽可能地避免产生涡流,进而降低了噪声。
在一些实施例中,请参考图26,三维进气阵列栅格包括沿第一方向612延伸的腹板61和沿第二方向661延伸的破流筋条66,腹板61包括多个,多个腹板61沿第二方向661间隔布设,破流筋条66包括多个,每一破流筋条66沿第二方向661搭接于相邻的两个腹板61上,破流筋条66被构造为具有沿第一方向612连通相邻的两个栅格单元62的气流通道,多个破流筋条66与多个腹板61界定形成多个间隔设置的栅格单元62。多个破流筋条66的顶表面652形成三维进气阵列栅格向外凸地弧状外包络表面,多个腹板61的内表面形成三维进气阵列栅格向外凸地弧状内包络表面。如此,一方面,破流筋条66用于分割气流,从而能够使多股细小气流经过栅格单元62后形成大致平行的气流,有利于降低噪声。另一方面,沿平行于进风口11的轴线观察进风护罩60,破流筋条66和腹板61相互之间几乎没有重叠,也有利于进风护罩60的制造,例如采用注塑成型,有利于脱模。再一方面,破流筋条66具有连通相邻的两个栅格单元62的气流通道,在不增加噪声的前提下,有助于提高进气量。
在一些实施例中,顶出部68在迎风侧65具有顶表面652。第一导风部681与第二导风部682在迎风侧65分别第一导风面654与第二导风面656。作为一种实施方式,腹板61基本平行于进风口11的轴线,利于对气流进行导向,腹板61的厚度为0.25毫米~2毫米。
参阅图31,具体地,顶表面652与进风口11的轴线相垂直,第一导风面654和第二导风面656在垂直于第一方向612的平面内的投影分别与顶表面652在垂直于第一方向612的平面内的投影之间的夹角均为De,90°≤De≤180°具体到实施例中,该破流筋条66沿第二方向661的迎风侧65的截面轮廓为梯形,背风侧的截面轮廓也为梯形。较佳地,顶表面652的宽度小于第一导风面654和第二导风面656的宽度,例如,一些实施方式中,第一导风面654的宽度从其与顶表面652向腹板61逐渐增大,破流筋条66在垂直于进风口11的轴线的平面上的投影呈哑铃状。如此,破流筋条66首先与气流接触,其宽度较小能够将气流分割,第一导风面654和第二导风面656宽度较大且倾斜延伸,利用第一导风面654和第二导风面656将气流按照预设路径导流,避免产生旋流,从而降低了噪声。
进一步地,请参考图26,在一些实施例中,相邻行中的相邻的两个破流筋条66在第一方向612上等间距错位排布。例如:位于相邻行的两个栅格单元62沿第一方向612错位排布,位于偶数行和位于奇数行相邻的两个栅格单元62沿第二方向661位于同一列。可以理解,在本实施例中,破流筋条66能够间隔不同的栅格单元62,而位于相邻行中相邻的两个栅格单元62错位排布,且位于偶数行和奇数行中相邻的两个栅格单元62位于同一列,均通过破流筋条66的布置实现,则表征破流筋条66规则排布,第一导风面654和第二导风面656能够将气流导入偶数行和奇数行位于同一列的两个栅格单元62中,避免气流之间相互影响,降低了噪声。
在一些实施例中,请参考图31,迎风侧65还包括沿第一方向612位于破流筋条66相对两侧的第三导风面67,该第三导风面67接合于顶表面652、第一导风面654和第二导风面656,且沿第一方向612外倾斜延伸。如此,使破流筋条66沿第一方向612和第二方向661均形成导风面,从而能够将气流沿第一方向612和/或第二方向661导入不同的栅格单元62中,避免气流产生旋流,进一步降低了噪声。
本申请的发明人经过试验验证,采用上述的进风护罩60,能够降低噪声分贝1-2分贝,尖声分贝能够降低1分贝,风道部12的风道效率升高1%~2%。
在一些实施例中,请参考图28,进风护罩60具有一护罩轴线63。第一导风面654相对第二导风面656 朝向护罩轴线63设置。在第二方向661上位于同一列的破流筋条66中,第二导风面656与护罩轴线63之间的夹角f,从三维进气阵列栅格边缘至护罩轴线63逐渐增大。比如:以同一列并位于护罩轴线63的一侧4个破流筋条66为例,夹角f从三维进气阵列栅格边缘至护罩轴线63依次可为17°、19°、20°、21°。由此可知,越靠近进风护罩60中间,第二导风面656的倾角越大,这样便于将进风分散至进风护罩60的四周,使得均匀进风,避免进风护罩60中部集中进风。
当然,在其他一些实施例中,在第二方向661上位于同一列的破流筋条66中,第二导风面656与护罩轴线63之间的夹角f,从三维进气阵列栅格边缘至护罩轴线63也可保持不变。
在一些实施例中,请参考图29,进风护罩60具有一护罩轴线63,腹板61包括背向进风的一侧的内表面、沿第二方向661位于内表面相对两侧且相对内表面倾斜延伸的第四导风面611。相邻两个腹板61之间的第四导风面611之间间距从第四导风面611远离内表面的一端至第四导风面611靠近内表面的一端逐渐增大,向壳体10内呈扩张结构。这样当气流流动至第四导风面611上时,在第四导风面611的作用下,向外扩散,使得气流分布更加均匀、平稳。
另外,腹板61上背向护罩轴线63的第四导风面611与护罩轴线63之间的夹角g,在第二方向661上从三维进气阵列栅格边缘至护罩轴线63逐渐减小。当然,在其他一些实施例中,夹角g在第二方向661上从三维进气阵列栅格边缘至护罩轴线63也可保持不变。
在一些实施例中,请参考图26,相邻两个腹板61之间的间距为5mm~15mm。当相邻两个腹板61之间间距过小时,会导致进风护罩60的有效进风面积变小,降低进风量;当相邻两个腹板61之间间隙过大时,则无法实现防护作用。为此,将腹板61之间的间距控制为5mm~15mm,在实现有效防护的前提下,保证进风量,减少涡流的产生,提高降噪效果。
需要说明的是,相邻两个腹板61之间的间距可为5mm、7mm、9mm、11mm、13mm、15mm等。
在一些实施例中,请参考图27,腹板61背向进风的一侧面在第一方向612上至少包括相交设置的第一面613与第二面614。第一面613与第二面614之间的夹角为:140°~180°。其中,第一面613和第二面614均可为平面,也可为曲面。当第一面613和第二面614均为曲面时,可在各自上取一点作切线,两个切线可理解为第一面613和第二面614之间的夹角。而如何在第一面613和第二面614上取点位置不作限定,比如:可在第一面613远离第二面614的一端上取点;也可在第一面613的中部取点;或者,在第一面613上靠近第二面614的一端上取点等。
可选地,腹板61朝向进风的一侧面可为曲面,也可为多个成夹角的平面进行拼接而成等。
在一些实施例中,请参考图30,进风护罩60还包括连接于进风口11处的边框64,三维进气阵列栅格连接于边框64内。其中,三维进气阵列栅格在边框64上的连接方式可为多种,比如:三维进气阵列栅格在边框64上的连接方式可为但不限于螺栓连接、卡接、铆接、焊接、一体成型等。
进一步地,三维进气阵列栅格的外包络表面凸出边框64背向进风口11的一端面。如此,将外包络表面凸出边框64,有利于增加结构强度,限制噪音辐射。
另外,在一些实施例中,进风护罩60具有一护罩轴线63。边框64背向进风口11的一端面相对于护罩轴线63倾斜设置。
在一些实施例中,请参考图1,一种具有吹功能的园林工具100,包括:壳体10、风扇50和进风护罩60。壳体10具有进风口11。风扇50绕风扇轴线51旋转,用于使空气产生流动。电机驱使风扇50绕风扇轴线51旋转。进风护罩60连接在进风口11处,风扇50能够绕风扇轴线51旋转并将外界空气透过进风护罩60从进风口11引入。园林工具100还包括设置于风扇50的上游区域的多个导叶片90,由进风口11引入的气流能够从导叶片90之间的间隙通过,以导流形成平行气流。
上述的具有吹功能的园林工具100,为了进一步降低噪声,发明人研究发现,风扇50的旋转会使空气 经过进风护罩60和进风口11吸入,气流经过进风护罩60会产生大致平行的进气气流,但仍然存在非平行气流导致涡流的产生。为解决该问题,参阅图1及图32,本申请的一些实施例中,具有吹功能的园林工具100还包括设置于风扇50的上游区域靠近进风口11处的多个导叶片90,由进风口11引入的气流能够从导叶片90之间的间隙通过,以导流形成平行气流。具体地,多个导叶片90彼此平行地大致沿进风口11的轴线方向延伸,且多个导叶片90基本均匀间隔设置,以对气流进行良好的导向,以使气流经过导叶片90后形成平行气流,从而减少气流撞击风道部12内壁的频率,实现降噪。且非平行气流在导叶片90之间折射损耗,从而能够降低噪声,因此,导叶片90也可以用作隔声栅。应当理解的是,气流经过风扇50后会产生高速气流,而在风道部12的上游区域的气流相较于下游区域处于低速,则非平行气流在导叶片90之间的折射撞击产生的噪声较低,并不会影响具有吹功能的园林工具100的整体噪声,则设置导叶片90可以起到良好的降噪效果。
具体到一些实施方式中,导叶片90距进风口11的距离为10毫米~50毫米,导叶片90的数量为5-20个,相邻的两个导叶片90之间的距离为12毫米~18毫米,每一导叶片90的弦长为10毫米~50毫米。作为一种较佳地实施方式,相邻导叶片90之间的距离为15毫米,如此能够起到较佳的降噪效果。
进一步地,请参考图1,壳体10包括平直段13以及位于平直段13上游且相对平直段13向下弯曲的弯曲段14,该风扇50设置于平直段13,该导叶片90设置于弯曲段14,且沿弯曲段14的内壁延伸。具体地,平直段13与风扇轴线51大致平行,弯曲段14的前端与平直段13的后端连接,弯曲段14的后端设有前述的进风口11,进风护罩60连接于该进风口11处。风扇轴线51与垂直于进风口11所在平面的垂线之间的夹角设置在120度~180度之间。如此,通过设置弯曲段14可以延长气流的流动路径,利用弯曲段14的弯曲内壁和导叶片90进行良好的导流,从而使到达风扇50的气流为大致平行的气流,有利于降低噪声。具体地,壳体10包括以一对称基准面对称设置的第一半壳和第二半壳,第一半壳和第二半壳具有彼此适配的上缘和下缘,第一半壳和第二半壳的上缘彼此配接,第一半壳和第二半壳的下缘彼配接,从而形成前述的气流通道。具体到一些实施例中,壳体10的的横截面形状为圆形,则第一半壳和第二半壳的横截面轮廓为对称设置的两个半圆弧,第一半壳和第二半壳位于径向的两侧边缘分别为前述的上缘和下缘。
进一步地,风扇轴线51位于对称基准面上,第一半壳的上缘和第二半壳的上缘位于弯曲段14的部分,朝向该对称基准面上的投影彼此重叠且具有第三弯曲轮廓,第一半壳的下缘和第二半壳的下缘位于弯曲段14的部分,朝向对称基准面上的投影彼此重叠且具有第四弯曲轮廓。如图1所示,在前述的一些实施例中,第三弯曲轮廓和第四弯曲轮廓可以均呈圆弧状,第三弯曲轮廓、第四弯曲轮廓位于不同半径的同心圆上。如此,使弯曲段14的曲率平缓过渡,由进风口11进入的气流,能够沿着壳体10的弯曲段14平缓流动,起到良好的导流作用。
导叶片90连接于壳体10位于弯曲段14的内壁,且位于气流流动的路径上。具体地,该导叶片90包括以对称基准面对称设置的第一子导叶片9290和第二子导叶片9490,当第一半壳和第二半壳彼此配接,第一子导叶片9290和第二子导叶片9490耦接形成完整的导叶片90。具体到实施例中,第一子导叶片9290和第二子导叶片9490均具有与气流接触的上下两个导流面,第一子导叶片9290和第二子导叶片9490耦接后,第一子导叶片9290和第二子导叶片9490对应的导流面形成平滑的曲面。诚然,为了使经过流经导叶片90和弯曲段14内壁的气流更为平缓以降噪,在进一步地一些实施例中,导叶片90朝向对称基准面上的投影具有第五弯曲轮廓,第五弯曲轮廓呈圆弧状,平分第三弯曲轮廓和第四弯曲轮廓的中弧线垂直且平分该第五弯曲轮廓。
本申请的发明人经过试验验证,在风扇50的上游区域靠近进风口11处设置有上述的导叶片90,能够降低噪声分贝2-3分贝,尖声分贝能够降低2-4分贝,风道部12的风道效率降低小于1%。
本申请的实施例,具有吹功能的园林工具100还包括电源,电源用于为电机提供电力,该电源可以为 直流电源,具体可以为可充电的电池包,电池包以能够可拆卸地方式安装在壳体10上。具体地,壳体10上设有供电池包结合的一个或者两个或者多个电池包安装部,该电池包安装部可以靠近操作手柄处设置,电池包的数量与电池包安装部的数量相匹配。应当理解的是,电池包安装部应靠近操作手柄设置,可以实现重量单元尽可能的距离操作握持点最近,减少使用者工作的疲劳度。
本申请实施例中的电池包至少能为两种不同种类的直流工具供电,例如可以通用于具有吹功能的园林工具100、打草机、割草机、链锯、修枝机、角磨、电锤、电钻等园林工具100。如此,使用者可以仅购买具有吹功能的园林工具100的裸机,并通过利用已有的其它园林工具100上的电池包来为具有吹功能的园林工具100进行供电,实现多工具的能源共享,一方面,利于电池包平台的通用;另一方面,也为使用者节省了购买成本。具体到实施例中,电池包可采用卡扣方式或者插拔方式固定于电池包安装部上,例如,一些实施例中,电池包包括于其两侧设有滑轨部(未标号)、于其上侧设有的卡扣部及若干电极连接片(未图示)。其中滑轨部可与电池包安装部配接实现电池包在径向上被限位,卡扣部与壳体10卡扣连接,实现电池包在轴向上被限位,从而将电池包稳定的连接在电池包安装部上。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。

Claims (30)

  1. 一种具有吹功能的园林工具(100),包括:
    壳体(10),设有进风口(11);
    风管(20),连接所述壳体(10),所述风管(20)设有供空气向外吹出的出风口(22);
    风扇(50),绕风扇轴线(51)旋转,用于使空气产生流动并自所述出风口(22)向外吹出;
    电机,驱使所述风扇(50)绕风扇轴线(51)旋转;
    其特征在于,所述具有吹功能的园林工具(100)在所述电机处于最高转速下的吹力F和噪音LP满足以下关系:
    16N≤F≤23N,53dBA≤LP<57dBA;或者,
    23N<F≤40N,53dBA≤LP≤0.0121F 2-0.0603F+53.065dBA。
  2. 根据权利要求1所述的具有吹功能的园林工具(100),其特征在于,所述电机的转速为:16000r/min~26000r/min。
  3. 根据权利要求1所述的具有吹功能的园林工具(100),其特征在于,所述风扇(50)在垂直于所述风扇轴线(51)的平面内的投影轮廓直径为88mm~120mm。
  4. 根据权利要求1所述的具有吹功能的园林工具(100),其特征在于,所述具有吹功能的园林工具(100)在所述电机处于最高转速下的吹力F和噪音LP还满足以下关系:
    23N<F≤40N,53dBA≤LP≤0.0081F 2+0.1374F+48.473dBA。
  5. 根据权利要求1所述的具有吹功能的园林工具(100),其特征在于,所述具有吹功能的园林工具(100)的风量Q,压力P ,电机的输入功率P 分别满足以下关系:
    450cfm≤Q≤1500cfm,1400Pa≤P ≤5000Pa,700W≤P ≤3000W。
  6. 根据权利要求1所述的具有吹功能的园林工具(100),其特征在于,所述园林工具为能够吹动地面树叶的吹风机,所述吹风机包括连接在所述进风口(11)上的进风护罩(60),所述风扇(50)能够绕风扇轴线(51)旋转并将外界空气透过所述进风护罩(60)引入;
    所述风扇(50)包括:
    毂(52);及
    从所述毂(52)沿径向向外延伸并围绕风扇轴线(51)分布的多个扇叶(54);所述扇叶(54)包括用于产生气流的压力面(543)和吸力面(545),所述压力面(543)与所述吸力面(545)在所述风扇轴线(51)的方向上交汇形成前缘(546)和后缘(548),在所述风扇的转动方向上,所述前缘位于所述后缘的前方,
    在所述风扇轴线(51)的方向上,所述风扇(50)扇叶的前缘(546)与所述进风护罩(60)之间间距最小值为D5,所述园林工具的长度为L0;
    其中,0.15≤D5:L0≤0.4。
  7. 根据权利要求6所述的具有吹功能的园林工具(100),其特征在于,所述吹风机还包括与所述壳体连接的涵道(30);
    所述涵道(30)包括导流外罩(32)、导流内罩(34)以及连接于所述导流外罩(32)和所述导流内罩(34)之间的第一静叶片(36),电机容纳在所述导流内罩(34)中;以垂直风扇轴线的平面截取所述进风口和所述导流外罩(32),所述进风口(11)截面的的横截面积S1和所述导流外罩(32)截面横截面积S2的比率为1.6~4。
  8. 根据权利要求1所述的具有吹功能的园林工具(100),其特征在于,所述风扇(50)包括:
    毂(52);及从所述毂(52)沿径向向外延伸并围绕风扇轴线(51)分布的多个扇叶(54);
    所述扇叶(54)包括用于产生气流的压力面(543)和吸力面(545),所述压力面(543)与所述吸力面(545)在所述风扇轴线(51)的方向上交汇形成前缘(546)和后缘(548),在所述风扇的转动方向上,所述前缘位于 所述后缘的前方,相邻两个所述扇叶彼此相邻的所述前缘和所述后缘在垂直于所述风扇轴线(51)的平面内的投影彼此不重叠;
    相邻两个所述扇叶(54)在垂直于所述风扇轴线(51)的平面内的投影之间具有间隔间隙,所述间隔间隙D0大于0mm,且小于或等于4mm。
  9. 根据权利要求8所述的具有吹功能的园林工具(100),其特征在于,所述风扇轴线(51)定义为X轴线,经过所述前缘(546)靠近所述毂(52)的一端点与所述风扇轴线(51)垂直且相交的线定义为Y轴线,与X轴线和Y轴线垂直且相交的线定义为Z轴线;
    所述吸力面(545)与所述压力面(543)分别在所述X轴线和所述Z轴线构成的平面内的投影之间的距离最大值定义为所述扇叶(54)的最大厚度h;
    所述间隔间隙D0的值与所述风扇(50)的最大厚度h的值的比率范围为1~1.5。
  10. 根据权利要求8所述的具有吹功能的园林工具(100),其特征在于,所述扇叶(54)为注塑成型或压铸成型于所述毂(52)。
  11. 根据权利要求1所述的具有吹功能的园林工具(100),其特征在于,所述风扇(50)包括:毂(52);及
    从所述毂(52)沿径向向外延伸并围绕风扇轴线(51)分布的多个扇叶(54),所述扇叶(54)包括固定到毂(52)的根部(542)、与所述毂(52)间隔开的顶缘(544)、在所述根部(542)和所述顶缘(544)之间延伸的前缘(546)和后缘(548),在所述风扇(50)的转动方向上,所述前缘(546)位于所述后缘(548)的前方;
    所述风扇轴线(51)定义为X轴线,经过所述前缘(546)靠近所述毂(52)的一端点与所述风扇轴线(51)垂直且相交的线定义为Y轴线,与X轴线和Y轴线垂直且相交的线定义为Z轴线;
    所述根部(542)和所述顶缘(544)分别在所述X轴线与Y轴线构成的平面内的投影中点对应定义为第一中点(5421)、第二中点(5441),经过所述第一中点(5421)并与Y轴线平行的线定义为第一竖轴线(5422),在气流流动的方向上,所述第二中点(5441)位于所述第一竖轴线(5422)的下游朝向所述风管(20)的出风口的一侧。
  12. 根据权利要求11所述的具有吹功能的园林工具(100),其特征在于,所述第一中点(5421)与所述第二中点(5441)之间的连线和所述第一竖轴线(5422)之间的夹角β为0°~9°。
  13. 根据权利要求11所述的具有吹功能的园林工具(100),其特征在于,所述前缘(546)在所述Y轴线与所述Z轴线构成的平面内投影定义为前侧投影(5461),所述前侧投影(5461)的相对两端点之间的连线定义为弦线L(5462);
    所述前侧投影(5461)上至少两处分别位于所述弦线L的相对两侧。
  14. 根据权利要求13所述的具有吹功能的园林工具(100),其特征在于,所述前缘(546)远离所述毂(52)的部分外轮廓处的前侧投影(5461)偏离所述弦线L(5462)并背离所述风管(20)的出风口的一侧内凹;
    所述前缘(546)靠近所述毂(52)的部分外轮廓处的前侧投影(5461)偏离所述弦线L(5462)并朝向所述风管(20)的出风口的一侧凸出。
  15. 根据权利要求13所述的具有吹功能的园林工具(100),其特征在于,所述前侧投影(5461)在所述前缘(546)远离所述毂(52)的部分外轮廓处弯曲延伸,以在所述前侧投影(5461)上形成凹陷结构(5467),所述凹陷结构(5467)的开口朝向与所述风扇(50)的转动方向保持一致,所述前侧投影(5461)在所述前缘(546)和所述顶缘(544)的外轮廓线相交并远离所述毂(52)的一交点处的切线和所述所述弦线L(5462)之间的弯曲角度α为5°~15°。
  16. 根据权利要求11所述的具有吹功能的园林工具(100),其特征在于,所述前缘(546)在所述X轴线与Y轴线构成的平面内的投影位于所述Y轴线朝向所述风管(20)的出风口的一侧,所述前缘(546)在所 述X轴线与Y轴线构成的平面内的投影,在所述前缘(546)靠近所述毂(52)的一端点处的切线与所述Y轴线之间的夹角θ为3°~25°。
  17. 根据权利要求11所述的具有吹功能的园林工具(100),其特征在于,以垂直于所述Y轴线的平面截取所述风扇(50),分别在所述前缘(546)和所述后缘(548)上的交点之间连线定义为安装线(547),所述安装线(547)与所述X轴线之间的安装夹角γ从所述根部(542)至所述顶缘(544)逐渐增大。
  18. 根据权利要求11所述的具有吹功能的园林工具(100),其特征在于,所述扇叶(54)还包括位于所述后缘(548)和所述顶缘(544)交界处呈由所述顶缘(544)向所述毂(52)靠拢的曲面过渡部(541),且所述曲面过渡部(541)的圆弧面背向所述毂(52)凸出,所述曲面过渡部(541)在所述X轴线与所述Y轴线构成的平面内投影的圆角半径为1mm~5mm。
  19. 根据权利要求1所述的具有吹功能的园林工具(100),其特征在于,所述具有吹功能的园林工具(100)还包括与所述壳体连接的涵道(30);所述涵道(30)包括导流外罩(32)、导流内罩(34)以及连接于所述导流外罩(32)和所述导流内罩(34)之间的第一静叶片(36);
    所述第一静叶片(36)包括连接到所述导流内罩(34)的底部(362)、连接到所述导流外罩(32)的顶部(364)、间隔位于气流流动方向的第一前侧边缘(366)和第一后侧边缘(368);
    所述风扇轴线(51)定义为X轴线,经过所述风扇(50)上任一点并垂直于所述X轴线的平面定义为参考平面(53);
    所述第一前侧边缘(366)靠近所述底部(362)的一端点与所述参考平面(53)的距离小于所述第一前侧边缘(366)靠近所述顶部(364)的一端点与所述参考平面(53)的距离。
  20. 根据权利要求19所述的具有吹功能的园林工具(100),其特征在于,所述第一后侧边缘(368)靠近所述底部(362)的一端点与所述参考平面(53)的距离小于所述第一后侧边缘(368)靠近所述顶部(364)的一端点与所述参考平面(53)的距离。
  21. 根据权利要求19所述的具有吹功能的园林工具(100),其特征在于,所述导流内罩(34)的轴线定义为X’轴线,经过所述第一前侧边缘(366)靠近所述底部(362)的一端点与所述X’轴线垂直且相交的线定义为Y’轴线,与X’轴线和Y’轴线垂直且相交的线定义为Z’轴线;
    以平行于所述X’轴线和Z’轴线构成平面的面截取所述第一静叶片(36)获取的静叶截面(31)在靠近所述风扇(50)的一部分处越过所述X’轴线并沿所述导流内罩的周向弯曲延伸,
    以平行于所述X’轴线和Z’轴线构成平面的面截取所述第一静叶片(36)获取的静叶截面(31),在所述Z’轴线的方向上的高度最大值定义为所述第一静叶片(36)的弯曲距离D4;所述第一静叶片(36)的弯曲距离D4从所述底部(362)至所述顶部(364)逐渐增大。
  22. 根据权利要求21所述的具有吹功能的园林工具(100),其特征在于,所述第一静叶片(36)具有迎风侧和与所述迎风侧相对的背风侧,所述迎风侧和所述背风侧在所述X’轴线和所述Z’轴线构成的平面的投影的外轮廓线相交,且靠近所述风扇(50)的一交点处的切线与所述X’轴线的夹角定义为第一静叶片入口角Le,所述第一静叶片入口角Le为35°~65°。
  23. 根据权利要求19所述的具有吹功能的园林工具(100),其特征在于,所述第一静叶片(36)的长度为L1,所述风扇(50)的扇叶(54)的中弧线弦长为L2;其中,3≤L1:L2≤9;
    所述第一静叶片(36)的长度定义为沿气流流动方向所述第一静叶片(36)的第一前侧边缘(366)与所述第一静叶片(36)的第一后侧边缘(368)之间的距离。
  24. 根据权利要求19所述的具有吹功能的园林工具(100),其特征在于,所述园林工具(100)还包括连接于所述导流内罩(34)的导流锥(38)和设置于所述导流锥(38)上的第二静叶片(39);
    沿气流流动方向,所述第二静叶片(39)位于所述第一静叶片(36)的下游。
  25. 根据权利要求24所述的具有吹功能的园林工具(100),其特征在于,所述第二静叶片(39)的长度为L3,所述第一静叶片(36)的弦长为L4;其中,0.2≤L3:L4≤1;
    所述第二静叶片(39)的长度定义为所述第二静叶片(39)沿气流流动方向的尺寸。
  26. 根据权利要求1所述的具有吹功能的园林工具(100),其特征在于,所述园林工具还包括连接在所述进风口处的进风护罩(60),所述风扇(50)能够绕风扇轴线(51)旋转并将外界空气透过所述进风护罩(60)从所述进风口引入;所述进风护罩(60)包括具有向外凸地外包络表面的三维进气阵列栅格,所述三维进气阵列栅格包括:
    沿第一方向(612)延伸的腹板(61),所述腹板(61)包括多个,多个所述腹板(61)沿第二方向(661)间隔布设;以及
    沿第二方向(661)延伸的破流筋条(66),所述破流筋条(66)包括多个,每一所述破流筋条(66)沿第二方向(661)搭接于相邻的两个所述腹板(61)上,多个所述破流筋条(66)与多个所述腹板(61)界定形成多个间隔设置的栅格单元(62),相邻的所述栅格单元(62)之间形成有供气流穿过的进气孔(621);
    多个所述破流筋条(66)的顶出部(68)相对于所述腹板(61)向背离所述进风口的方向隆起,以形成所述三维进气阵列栅格向外凸地外包络表面;
    其中,所述第一方向(612)与所述第二方向(661)相交。
  27. 根据权利要求26所述的具有吹功能的园林工具(100),其特征在于,多个所述栅格单元(62)沿第二方向(661)间隔排列形成多行,每一行的所述栅格单元(62)沿第一方向(612)排布;
    相邻行中最相邻的两个所述栅格单元(62)在第一方向(612)上错位排布。
  28. 根据权利要求27所述的具有吹功能的园林工具(100),其特征在于,相邻行中的相邻的两个所述破流筋条(66)在第一方向(612)上等间距错位排布。
  29. 根据权利要求26所述的具有吹功能的园林工具(100),其特征在于,所述破流筋条(66)包括自所述顶出部(68)朝向相邻间隔排布的所述腹板(61)延伸的第一导风部(681)与第二导风部(682);所述破流筋条(66)具有迎风侧(65)和与所述迎风侧(65)相对的背风侧;
    所述顶出部(68)的背风侧相对于所述腹板(61)向外隆起的预设距离D6是2mm~20mm。
  30. 根据权利要求26所述的具有吹功能的园林工具(100),其特征在于,所述进风护罩(60)还包括连接于所述进风口处的边框(64),所述边框(64)环绕在所述三维进气阵列栅格外。
PCT/CN2022/080647 2021-03-12 2022-03-14 具有吹功能的园林工具 WO2022188888A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22766410.9A EP4306807A1 (en) 2021-03-12 2022-03-14 Garden tool having blowing function
US18/244,743 US20240032489A1 (en) 2021-03-12 2023-09-11 Garden tool having blowing function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110268034.9 2021-03-12
CN202110268034 2021-03-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/244,743 Continuation US20240032489A1 (en) 2021-03-12 2023-09-11 Garden tool having blowing function

Publications (1)

Publication Number Publication Date
WO2022188888A1 true WO2022188888A1 (zh) 2022-09-15

Family

ID=83226286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080647 WO2022188888A1 (zh) 2021-03-12 2022-03-14 具有吹功能的园林工具

Country Status (4)

Country Link
US (1) US20240032489A1 (zh)
EP (1) EP4306807A1 (zh)
CN (2) CN115075178A (zh)
WO (1) WO2022188888A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286935A (ja) * 1994-04-19 1995-10-31 Nippon Kagaku Kogyo Kk 循環式風洞設備における低騒音軸流送風機
CN204551351U (zh) * 2014-11-28 2015-08-12 苏州宝时得电动工具有限公司 吹风机
CN209686307U (zh) * 2018-05-03 2019-11-26 苏州宝时得电动工具有限公司 花园吹风机
CN210317897U (zh) * 2019-07-16 2020-04-14 苏州宝时得电动工具有限公司 风叶机构和吹风机
CN211975528U (zh) * 2020-04-07 2020-11-20 南京德朔实业有限公司 一种园林风机
CN212508973U (zh) * 2020-05-27 2021-02-09 苏州宝时得电动工具有限公司 用于园林吹风机的风叶机构和园林吹风机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286935A (ja) * 1994-04-19 1995-10-31 Nippon Kagaku Kogyo Kk 循環式風洞設備における低騒音軸流送風機
CN204551351U (zh) * 2014-11-28 2015-08-12 苏州宝时得电动工具有限公司 吹风机
CN209686307U (zh) * 2018-05-03 2019-11-26 苏州宝时得电动工具有限公司 花园吹风机
CN210317897U (zh) * 2019-07-16 2020-04-14 苏州宝时得电动工具有限公司 风叶机构和吹风机
CN211975528U (zh) * 2020-04-07 2020-11-20 南京德朔实业有限公司 一种园林风机
CN212508973U (zh) * 2020-05-27 2021-02-09 苏州宝时得电动工具有限公司 用于园林吹风机的风叶机构和园林吹风机

Also Published As

Publication number Publication date
US20240032489A1 (en) 2024-02-01
CN115075178A (zh) 2022-09-20
CN217810730U (zh) 2022-11-15
EP4306807A1 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
KR102582026B1 (ko) 송풍장치 및 이를 포함하는 공기조화기의 실외기
US20130101408A1 (en) Fan, molding die, and fluid feeder
US9382913B2 (en) Fan, molding die, and fluid feeder
KR100293489B1 (ko) 에어클리너
US10274222B2 (en) Fan unit and air conditioner
KR102058064B1 (ko) 공기조화기
JP5748916B2 (ja) 空気調和機の室内機、及びこの室内機を備えた空気調和機
WO2023124700A1 (zh) 组合式扇叶装置及组合出风装置
WO2022188888A1 (zh) 具有吹功能的园林工具
CN101285479A (zh) 贯流双通道风机
CN113719478A (zh) 吹风机
CN214742186U (zh) 鼓风机
CN108800349A (zh) 导风圈结构、空调室外机及空调器
KR20060087771A (ko) 공기조화기
CN211343490U (zh) 导叶、风道组件以及送风设备
CN208028675U (zh) 降噪散热型洗衣机电机转子
CN113738698A (zh) 用于园林吹风机的风叶机构和园林吹风机
KR100686020B1 (ko) 공기조화기
CN215719782U (zh) 叶轮、风机和吸尘器
CN114483652B (zh) 一种蜗壳、风机及烟机
CN210568683U (zh) 一种变截面倾斜叶轮及侧吸油烟机
CN220017603U (zh) 新风模块及空调器
CN215949943U (zh) 用于风机的导流结构及家用电器
CN212899154U (zh) 吹风机
JP4460758B2 (ja) 遠心送風機及びこれを備えた車両用空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766410

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022766410

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022766410

Country of ref document: EP

Effective date: 20231012