WO2022185852A1 - 分岐装置、搬送装置および搬送方法 - Google Patents

分岐装置、搬送装置および搬送方法 Download PDF

Info

Publication number
WO2022185852A1
WO2022185852A1 PCT/JP2022/004817 JP2022004817W WO2022185852A1 WO 2022185852 A1 WO2022185852 A1 WO 2022185852A1 JP 2022004817 W JP2022004817 W JP 2022004817W WO 2022185852 A1 WO2022185852 A1 WO 2022185852A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
conveying
granular material
branching device
feed
Prior art date
Application number
PCT/JP2022/004817
Other languages
English (en)
French (fr)
Inventor
知広 佐藤
亮二 三木
裕二 前田
眞 角
靖史 田熊
Original Assignee
日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄エンジニアリング株式会社 filed Critical 日鉄エンジニアリング株式会社
Priority to NO20230997A priority Critical patent/NO20230997A1/en
Publication of WO2022185852A1 publication Critical patent/WO2022185852A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/80Feeding devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/30Conveying materials in bulk through pipes or tubes by liquid pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the present invention relates to a branching device, a conveying device and a conveying method.
  • Patent Document 1 a feeding method using a feed conveying device disclosed in Patent Document 1 has been proposed.
  • This feed conveying device has a plurality of supply pipes leading from a feeding base on land to each of a plurality of fish cages, and feeds a feed supply source installed at the feeding base and a feed-mixed fluid (feed-mixed fluid). It has a pump that delivers from the source and a branching device that distributes the feed-entrained fluid delivered from the pump to each feed line.
  • this feed conveying device one feed pipe is selected by the branching device, and the feed can be conveyed to the pen corresponding to this feed pipe.
  • the feed conveying apparatus of Patent Literature 1 has problems as described below, so it has not been widely used, and a feeding method suitable for large-scale aquaculture has not yet been established. That is, in the feed conveying device of Patent Document 1, the quantity of the supply pipe extending from the branching device installed at the feeding base to the cage is proportional to the distance from the feeding base to the cage and the number of cages. To increase. For this reason, when a conventional feed conveying device is used for a large-scale offshore pen group, the cost and effort required to install the feed conveying device increase.
  • the present inventors separated the branching device from the feeding base and installed it in the vicinity of the fish cage, and connected the branching device to the pump of the feeding base via a conveying pipe, so that the branching device was connected to the fish cage.
  • the vicinity of the fish preserve is on the ocean, it is easily affected by sea conditions such as typhoons, and it is difficult to stably install the branching device.
  • the above-mentioned problem is not limited to the field of aquaculture, but occurs in the case of transporting granular material to a plurality of transport destinations in or on water.
  • An object of the present invention is to provide a branching device that can reduce the amount of necessary supply pipes and that is easy to install stably, as well as a conveying device and a conveying method using the branching device.
  • a branching device of the present invention is a branching device installed between a conveying pipe for conveying a granular material and a plurality of supply pipes for supplying the granular material to each of a plurality of conveyance destinations, wherein the conveying a plurality of branch flow pipes for communicating between the pipe and each of the supply pipes; a plurality of control valves for opening and closing the flow paths of each of the branch flow pipes; and a watertight enclosure.
  • each control valve by controlling the opening and closing operations of each control valve, it is possible to transport the powder to any destination.
  • the control valve is also housed by a watertight enclosure that is placed underwater.
  • the watertight housing is a housing that does not cause water intrusion due to water pressure even when placed in water after the inside is sealed.
  • the branching device of the present invention can be installed in water near the transport destination with the control valve protected from water. The quantity of extended supply pipes can be suppressed.
  • the branching device of the present invention since the branching device of the present invention is installed underwater, it is less likely to be affected by sea conditions such as typhoons, and stable installation is easy.
  • the branching device of the present invention further includes a branching portion provided between the conveying pipe and the plurality of branch flow pipes, the branching portion comprising an upstream pipe portion connected to the conveying pipe, and the upstream pipe portion. and a plurality of downstream pipe portions branched from the side pipe portion and connected to each of the branch channel pipes, and each inner surface of the downstream pipe portion is aligned with the inner surface of the upstream pipe portion. It is a continuous surface.
  • the airflow mixed with powder particles can be smoothly flowed from the upstream pipe part of the branching part to each of the plurality of downstream pipe parts, and the powder particles collide with the inner wall of the pipe to It is possible to suppress the occurrence of cracks and chips in the grain shape of the body.
  • the granular material is a feed to be fed to a fish tank, it is possible to improve the ingestibility of the feed subject.
  • control valve is an electrically operated valve.
  • the control valve is an electrically operated valve.
  • an electric valve instead of a pneumatic control valve, even if the watertight housing is a sealed container, there is no need to discharge the air in the watertight housing, and the configuration can be simplified.
  • the destination is a fish preserve
  • the granular material is a feed to be fed to the fish preserve. That is, the branching device of the present invention can establish a new feeding method that can cope with an increase in the scale of aquaculture by being used for conveying feed to a fish cage.
  • the conveying apparatus of the present invention includes the branching device described above, a storage tank in which the granular material is stored, the conveying pipe for conveying the granular material in the storage tank, and the powder in the conveying pipe.
  • an airflow generating device that forms an airflow for conveying granules; and a plurality of supply pipes that supply the granular materials conveyed from the conveying pipe via the branching device to each of the plurality of conveying destinations. , provided.
  • the storage tank and the airflow generating device are installed at the powder supply base, the conveying pipe extends from the supply base to the branching device arranged near the conveyance destination, and the powder is conveyed from the branching device.
  • a supply pipe extends to the end.
  • the branching device can be separated from the powder supply base and installed in the vicinity of the transportation destination. Therefore, in the conveying apparatus of the present invention, it is possible to reduce the quantity of the plurality of supply pipes from the branching apparatus to the conveying destination, similar to the effects of the branching apparatus described above.
  • the conveying method of the present invention includes the branching device described above, a storage tank in which the granular material is stored, the conveying pipe for conveying the granular material in the storage tank, and the powder in the conveying pipe. an airflow generating device that forms an airflow for conveying granules; and a plurality of supply pipes that supply the powder or granular material conveyed from the conveying pipe via the branching device to each of the plurality of conveying destinations.
  • the target transport a target transport destination that is an arbitrary transport destination is set, the control valve corresponding to the target transport destination is opened, and the By closing the control valves corresponding to the transport destinations other than the target transport destination, supplying the granular material from the storage tank to the transport pipe, and forming the airflow in the transport pipe, the target transport a supply step of airflow-conveying the granular material to a destination; a supply stop step of stopping the supply of the granular material from the storage tank to the conveying pipe after the supply step; and the supply stop step. and a cleaning step of sequentially or simultaneously opening the plurality of control valves while the airflow is formed in the carrier pipe.
  • the conveying method of the present invention it is possible to clean the branching device after conveying the granular material to the intended destination.
  • a branching device that can reduce the amount of necessary supply pipes and that is easy to install stably, as well as a conveying device and a conveying method using the branching device.
  • an aquaculture system 1 has a plurality of cages 10 submerged from the surface of the sea into the sea, and a feed conveying device 20 (conveying device) for conveying feed to each cage 10 .
  • a plurality of pens 10 constitutes a pen group 10A by collectively arranging them in an arbitrary sea area.
  • the fish preserve group 10A shall include four fish preserves 10 for convenience of explanation.
  • the fish preserve 10 includes a net 11 for enclosing fish and shellfish to be reared, and a frame 12 for keeping the shape of the net 11 in an arbitrary box shape.
  • the fish preserve 10 has a buoy 13 floating above the sea surface, and the frame 12 is supported by the buoy 13 via a hanging means such as a rope.
  • a buoy 13 is connected to the seabed by a mooring line 14, which keeps the pen 10 in place on the ocean.
  • a specific type of the fish preserve 10 is not particularly limited.
  • the fish preserve 10 may be a submersible fish preserve that floats on the surface of the sea or is submerged in the sea by letting air into and out of the frame 12 .
  • the feed conveying device 20 conveys feed to an arbitrary cage 10 of the cage group 10A as a feeding target.
  • the feed conveying device 20 can sequentially convey the feed to each of the pens 10 of the pen group 10A by switching the feeding target.
  • the configuration of the feed conveying device 20 will be described later.
  • the feed conveying device 20 includes a reservoir 21 in which granular feed is stored, a conveying pipe 22 from the reservoir 21 to the sea near the group of fish cages 10A, and a conveying pipe 22. Equipped with an airflow generating device 23 that forms an airflow, a branching device 30 provided at the tip of the conveying pipe 22, a plurality of supply pipes 24 from the branching device 30 to each fish cage 10, and a control device 25. .
  • the storage tank 21, the airflow generator 23, and the control device 25 are installed in a structure 15 composed of a steel-framed tower or the like, and constitute a feeding base.
  • the structure 15 is installed in the vicinity of the sea area where the fish preserve 10 is set, the lower part of the structure 15 is fixed to the seabed, and the upper surface of the structure 15 is placed on the sea surface.
  • the feeding station including the storage tank 21, the airflow generator 23, and the control device 25 is not limited to being set on the offshore structure 15, and may be set on land.
  • the storage tank 21 is configured by a so-called silo or the like, and is capable of storing granular feed inside and supplying a predetermined amount of feed from a supply section 210 at the bottom.
  • the feeding unit 210 includes, for example, a feeding amount adjusting unit such as a rotary feeder whose operation is controlled by the control device 25 .
  • the supply of feed to the storage tank 21 is performed by a vessel S or the like loaded with feed.
  • the conveying pipe 22 has a proximal end 221 connected to the supply section 210 of the storage tank 21 and a distal end 222 connected to the branching device 30 . That is, the conveying pipe 22 forms a conveying channel communicating from the storage tank 21 to the branching device 30 .
  • the carrier pipe 22 is fixed to the structure 15 and the seabed by fasteners or the like.
  • the airflow generator 23 is composed of an electric motor, an engine-driven compressor, or the like, and supplies compressed air to the base end portion 221 of the carrier pipe 22 . As a result, an airflow mixed with the feed supplied from the storage tank 21 (feed-mixed airflow) is formed in the conveying pipe 22 , and the feed-mixed airflow advances through the conveying pipe 22 toward the branching device 30 .
  • the airflow generator 23 is driven and controlled by a controller 25 .
  • the branching device 30 is placed underwater (in the sea) near the pen group 10A.
  • the branching device 30 is configured to direct the feed-entrained airflow sent from the carrier pipe 22 to the feed pipe 24 corresponding to the target pen 10 .
  • valve bodies 26 and 27 that can be closed in an emergency or the like may be provided, respectively. The configuration of the branching device 30 will be described later.
  • the supply pipe 24 is provided for each fish preserve 10 and has a base end connected to the branching device 30 and a tip end connected to the supply portion 24A.
  • the supply pipe 24 extends from the sea to the sea toward the supply section 24A from the branching device 30, and a part of the supply pipe 24 is arranged on the sea.
  • the supply part 24A has a downward discharge port arranged in the fish cage 10, and discharges the feed contained in the feed-mixed airflow supplied from the supply pipe 24 into the fish cage 10 from the discharge port.
  • control device 25 is electrically connected to each of the supply unit 210 of the storage tank 21, the airflow generation device 23, and the branching device 30, and controls these operations.
  • branching device 30 may be electrically connected to controller 25 by running a cable along carrier tube 22 .
  • the feeding station is provided with a power source for supplying power to each part of the feed conveying device 20 .
  • the branching device 30 includes a branching portion 31 connected to the conveying pipe 22, a plurality of branching channel pipes 32A to 32D connected to the branching portion 31, and a branching channel pipe 32A. 32D, respectively, and a housing 34 that accommodates the control valves 33A to 33D.
  • the branch flow pipes 32A to 32D are arranged along the same substantially horizontal direction, and the extending direction of the branch flow pipes 32A to 32D and the advancing direction of the feed-mixed airflow are defined as the X direction.
  • a direction orthogonal to the X direction and along the vertical direction is defined as the Z direction
  • a direction orthogonal to the X direction and the Z direction is defined as the Y direction.
  • FIG. 2 is a side view of the branching device 30 viewed in the Y direction
  • FIG. 3 is a plan view of the branching device 30 viewed in the Z direction.
  • the branching device 30 has a configuration corresponding to the four pens 10 included in the pen group 10A. That is, in this embodiment, the branching device 30 has four branching flow pipes 32A to 32D and four control valves 33A to 33D so as to correspond to the four fish preserves 10, respectively. Note that the branch flow pipe 32D and the control valve 33D are not shown in FIGS. 2 and 3 due to their arrangement. In FIG. 2, each arrangement of the branch flow pipe 32D and the control valve 33D is behind each arrangement of the branch flow pipe 32C and the control valve 33C, and in FIG. Each arrangement is behind each arrangement of the branch flow tube 32B and the control valve 33B.
  • the branching portion 31 is a portion that connects between the conveying pipe 22 and the branched channel pipes 32A to 32D.
  • the branching portion 31 has an upstream pipe portion 311 and a plurality of downstream pipe portions 312A to 312D extending while branching from the upstream pipe portion 311 (see FIG. 4).
  • the upstream pipe portion 311 is connected to the carrier pipe 22 via the valve body 26 .
  • the downstream pipe portions 312A-312D correspond to the branch flow pipes 32A-32D one-to-one, and are connected to the corresponding branch flow pipes 32A-32D, respectively.
  • the downstream pipe portions 312A to 312D are curved away from the central axis C of the transport pipe 22 in the X direction from the upstream pipe portion 311.
  • each inner surface of the downstream pipe portions 312A to 312D is a continuous surface with respect to the inner surface of the upstream pipe portion 311, and a smooth flow path is formed from the upstream pipe portion 311 to the downstream pipe portions 312A to 312D.
  • downstream pipe portions 312A to 312D are axially symmetrical with respect to the central axis C of the transport pipe 22. As shown in FIG. Since the downstream pipe portions 312A to 312D have a common configuration, the downstream pipe portions 312A to 312D may be simply referred to as the downstream pipe portion 312 below.
  • the branch flow pipes 32A to 32D are arranged two each in the Y direction and two each in the Z direction. Since these branch flow pipes 32A to 32D have a common configuration, the branch flow pipes 32A to 32D may be simply referred to as the branch flow pipe 32 hereinafter. Similarly, the control valves 33A to 33D provided in the branch flow pipes 32A to 32D have a common configuration.
  • the branched channel pipe 32 forms a branched channel for the feed-mixed airflow along the X direction.
  • the branched flow channel pipe 32 has an upstream branched flow channel pipe portion 321, a pipe line 331 of the control valve 33, and a downstream branched flow channel pipe portion 322 in order from the upstream side.
  • the base end of the branched flow channel pipe 32 that is, one end of the upstream branched flow channel pipe portion 321 is connected to the corresponding downstream pipe portion 312 of the branched portion 31 .
  • the other end of the upstream branch channel pipe portion 321 is connected to the inlet port of the pipe line 331 of the control valve 33 .
  • a tip portion of the branched flow pipe 32 that is, one end of the downstream branched flow pipe portion 322 is connected to the corresponding supply pipe 24 via the valve element 27 .
  • the other end of the downstream branch channel pipe portion 322 is connected to the outlet port of the pipe line 331 of the control valve 33 .
  • the control valve 33 opens and closes the branch channel by the branch channel pipe 32 .
  • the control valve 33 of this embodiment is an electrically operated valve and is controlled by the control device 25 .
  • the specific type of the motor-operated valve is not particularly limited, an example of the motor-operated valve is a butterfly type motor-operated valve. Further, since the specific configuration of the motor-operated valve is the same as that of the conventional technology, detailed description thereof will be omitted here. , a valve body that performs opening and closing operations in the conduit 331, and a drive section such as a motor that drives the valve body.
  • the housing 34 Since the housing 34 is arranged in the sea, it may be a watertight housing that liquid-tightly accommodates the control valves 33A to 33D so that seawater does not enter the housing 34 .
  • the watertight housing is a housing that does not cause water intrusion due to water pressure even when placed in water after the inside is sealed.
  • the branch flow pipes 32A to 33D penetrate the housing 34 in the X direction, and the outer peripheral surfaces of the branch flow pipes 32A to 32D and the housing 34 are sealed by, for example, welding. ing.
  • the branching device 30 described above is supported by a frame 36 installed on the seabed.
  • the pedestal 36 is configured to support the branching portion 31, the branching channel pipe 32, and the housing 34 of the branching device 30, respectively.
  • the mount 36 is installed so that the X direction and the Y direction of the branching device 30 are substantially parallel to the horizontal plane.
  • the branching device 30 may be installed in a slightly tilted state depending on the condition of the seabed.
  • flange joints are used for the connection between pipe members, the connection between valve members, and the connection between a pipe member and a valve member. , and other types of pipe joints may be used.
  • the feed conveying method by the feed conveying apparatus 20 of the present embodiment includes two operations: a feeding operation for supplying feed to the fish cage 10 to be fed, and a cleaning operation for removing the feed remaining in the feed conveying apparatus 20.
  • a feeding operation for supplying feed to the fish cage 10 to be fed
  • a cleaning operation for removing the feed remaining in the feed conveying apparatus 20.
  • kinds of actions take place.
  • the fish preserve 10 (target destination) to which the fish are to be fed is associated with the branching channel pipe 32A and the control valve 33A of the branching device 30 .
  • a supply operation is performed to supply the feed to the fish preserve 10 to which the feed is to be fed.
  • the control valve 33A corresponding to the fish cage 10 to be fed is opened, and the control valves 33B to 33D corresponding to the other fish cages 10 are closed (step S1 ).
  • the airflow generator 23 starts supplying compressed air to the base end portion 221 of the conveying pipe 22, and the supply portion 210 of the storage tank 21 feeds the feed to the base end portion 221 of the conveying pipe 22. is started to be supplied (step S2; supply step).
  • step S2 supply step
  • the feed-mixed airflow is branched at the branching portion 31 of the branching device 30 and advances to each of the plurality of branched flow passage pipes 32A to 32D.
  • the control valve 33A corresponding to the fish preserve 10 to be fed is in the open state. Therefore, the feed-mixed airflow branched to the branched channel pipe 32A passes through the control valve 33A and is conveyed to the fish preserve 10 to be fed via the corresponding supply pipe 24 .
  • the feed in the feed-mixed air current is dropped into the seawater while being separated from the air by the feed section 24A provided at the tip of the feed pipe 24, and discharged into the fish preserve 10.
  • the control valves 33B to 33D corresponding to each unintended fish pen 10 are closed.
  • FIG. 6 illustrates the branch flow pipes 32A and 32C as representatives of the branch flow pipes 32A to 32D.
  • FIG. 6 also illustrates valve bodies 332 of the control valves 33A and 33C arranged in the branch flow pipes 32A and 32C.
  • step S3 the control device 25 determines that the predetermined time has passed (step S3; Yes)
  • step S4 the supply stop step.
  • the feeding operation for feeding the feed to the fish preserve 10 to which the feed is to be fed is performed.
  • step S4 the supply of airflow by the airflow generator 23 is continued.
  • step S5 cleaning step
  • the compressed air supplied from the airflow generating device 23 passes through all four branch flow pipes 32A to 32D and remains in the branch flow pipes 32A to 32D.
  • the feed F that has been stuck is washed away.
  • step S6 the airflow generator 23 stops supplying the compressed air (step S7).
  • step S7 the flow of FIG. 5 ends. After that, by switching the cage 10 to be fed and repeating the flow of FIG. 5 again, feed can be supplied to each cage 10 in the cage group 10A in order.
  • feed is supplied to one cage 10 in order, but feed may be supplied to a plurality of cages 10 at the same time.
  • the control valves 33 corresponding to the two cages 10 are opened, and the control valves 33 corresponding to the remaining two cages 10 are closed.
  • Feed can be supplied to the two fish cages 10 to be fed by forming feed-mixed air currents.
  • step S5 to S7 the case where all the branch flow pipes 32A to 32D are cleaned simultaneously by opening all the control valves 33A to 33D is described.
  • the branch flow tubes 32A-32D may be cleaned individually. For example, by closing the control valve 33A that was open before step S5 and opening the control valves 33B to 33D that were closed before step S5 one by one, the branch flow pipe 32B ⁇ 32D can be cleaned individually. In this case, since the pressure of the airflow flowing through each of the branched flow pipes 32B-32D can be strengthened, the feed F in each of the branched flow pipes 32B-32D can be washed away more favorably.
  • the branching device 30 of the present embodiment can convey feed to an arbitrary fish preserve 10 by controlling the opening/closing operation of each control valve 33 .
  • the plurality of control valves 33 are housed in the housing 34 .
  • the housing 34 is a watertight housing that does not cause water intrusion due to water pressure even when placed in water with its interior sealed. Therefore, the branching device 30 of the present embodiment can be installed in the water near the plurality of fish cages 10 with the control valve 33 protected from water. The quantity of necessary supply pipes 24 can be suppressed.
  • the branching device 30 of the present embodiment is installed underwater, it is less likely to be affected by sea conditions such as typhoons, and stable installation is easy.
  • the branching device 30 of the present embodiment can be used in the feed conveying device 20 that conveys feed to the fish cage 10, thereby establishing a new feeding method that can cope with the scale-up of aquaculture.
  • the inner surfaces of the downstream pipe portions 312A to 312D of the branch portion 31 are continuous surfaces with respect to the inner surface of the upstream pipe portion 311.
  • an intermittent portion such as unevenness that breaks surface continuity between the inner surface of each of the downstream side pipe portions 312A to 312D and the inner surface of the upstream side pipe portion 311
  • the feed is caught on this intermittent portion. , that is, it becomes the cause of
  • the inner surface of each of the downstream pipe portions 312A to 312D and the inner surface of the upstream pipe portion 311 are smoothly continuous, the feed-mixed airflow is transferred from the upstream pipe portion 311 to the downstream pipe portions 312A to 312D. , and it is possible to prevent the feed from colliding with the inner wall of the pipe and causing chipping in the grain shape of the feed. As a result, it is possible to improve the ingestibility of the feeding target.
  • control valve 33 is not a pneumatic control valve but an electric valve, so there is no need to exhaust the air in the housing 34, and the configuration can be simplified.
  • the feed conveying device 20 of this embodiment has the same effects as the branching device 30 of this embodiment described above. That is, in the feed conveying device 20 of the present embodiment, the storage tank 21 and the airflow generating device 23 constitute a feeding base, and the conveying pipe 22 extends from this feeding base to the branching device 30, and from the branching device 30 to the fish preserve 10. A supply pipe 24 is extended. That is, in the present embodiment, the branching device 30 is separated from the feeding base, installed near the fish preserve 10, and connected to the airflow generating device 23 of the feeding base via the carrier pipe 22. The number of supply pipes 24 up to 10 can be reduced.
  • the branching device 30 is cleaned after conveying the feed to the target fish preserve 10 by performing the above-described supply step, supply stop step, and cleaning step. can be done.
  • the branch flow pipe 32 corresponding to the target fish cage 10 can be cleaned so that no feed remains.
  • sticking of the feed to each branch channel pipe 32 can be prevented.
  • control valve 33 is an electric valve in the above embodiment, it may be a control valve of another drive system.
  • a pneumatic control valve is provided as the control valve 33
  • an air pipe for driving the control valve 33 may be provided.
  • air piping it is necessary to provide a supply piping for supplying air to the control valve 33 and a discharge piping for discharging air from the control valve 33 .
  • the branch portion 31 is provided between the carrier pipe 22 and the plurality of branch channel pipes 32A to 32D. , may be connected to the carrier tube 22 .
  • the branching device 30 and the feed conveying device 20 for conveying the feed to the four cages 10 are described, but the number of cages 10 is not limited to this.
  • the branching device 30 may include as many branched flow pipes 32 as the number of fish cages 10 to which feed is to be conveyed, and a configuration corresponding to each branched flow pipe 32 .
  • the feed conveying device 20 may include the same number of supply pipes 24 as the number of fish cages 10 to which feed is to be conveyed, and a structure corresponding to each supply pipe 24 .
  • the feed conveying device 20 that conveys feed using airflow is described in the above embodiment, the present invention is not limited to this.
  • the branching device 30 of this embodiment may be used in a feed conveying device that conveys feed using water flow.
  • the granular material to be transported is feed, and the feed is transported to a fish cage set on the ocean.
  • the conveying object of the present invention may be any granular material, and the present invention can be used as a conveying device or branching device for conveying the granular material to any destination.
  • the present invention can be used as a conveying device or a branching device for appropriately spraying the water quality improving agent to each region in the sea, with the water quality improving agent as a granular material, and any area in the sea as the destination.
  • the present invention relates to a branching device, a conveying device, and a conveying method, and can be used to convey granular material such as feed to a destination in or on water such as a fish preserve.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

分岐装置(30)は、粉粒体を搬送する搬送管(22)と、複数の搬送先のそれぞれに粉粒体を供給する複数の供給管(24)との間に設置される装置であって、搬送管(22)と各供給管(24)とを連通させる複数の分岐流路管(32A~32D)と、分岐流路管(32A~32D)の各流路を開閉する複数の制御弁(33A~33D)と、水中に配置され、複数の制御弁(33A~33D)を収容する筐体(34)と、を備える。

Description

分岐装置、搬送装置および搬送方法
 本発明は、分岐装置、搬送装置および搬送方法に関する。
 従来、海洋養殖では、海洋上の生簀群への給餌方法として、手まき給餌が一般的に用いられているが、養殖の大規模化に適した新たな給餌方法が求められている。
 例えば、手まき給餌以外の給餌方法として、特許文献1の飼料搬送装置を用いた給餌方法が提案されている。この飼料搬送装置は、陸上の給餌基地から複数の生簀のそれぞれに至る複数の供給管を有するとともに、給餌基地に設置された飼料供給源と、飼料が混入した流体(飼料混入流体)を飼料供給源から送出するポンプと、ポンプから送出された飼料混入流体を各供給管に分配する分岐装置と、を有している。この飼料搬送装置では、分岐装置によって1つの供給管が選択され、この供給管に対応する生簀に対して飼料を搬送できる。
実公昭63-28359号公報
 しかし、特許文献1の飼料搬送装置は、以下に記載するような問題点があるため、普及には至っておらず、養殖の大規模化に適した給餌方法は依然として確立されていない。
 すなわち、特許文献1の飼料搬送装置において、給餌基地に設置された分岐装置から生簀に至るまで延設される供給管の物量は、給餌基地から生簀までの距離および生簀数のそれぞれに比例して増加する。このため、規模の大きい沖合の生簀群に従来の飼料搬送装置を用いる場合、飼料搬送装置の設置にかかるコストや手間が大きくなってしまう。
 そこで、本発明者らは、分岐装置を給餌基地から分離して生簀の近傍に設置するとともに、搬送管を介して分岐装置を給餌基地のポンプに接続することで、分岐装置から生簀に至る複数の供給管の物量を抑えることを検討している。しかし、生簀の近傍は海洋上となるため、台風などの海象による影響を受け易く、分岐装置を安定的に設置することが困難である。
 また、前述した問題は、養殖分野に限られず、水中または水上における複数の搬送先へ粉粒体を搬送するような場合に生じることになる。
 本発明の目的は、必要な供給管の物量を抑えることができ、かつ、安定した設置が容易である分岐装置、ならびに、当該分岐装置を用いた搬送装置および搬送方法を提供することにある。
 本発明の分岐装置は、粉粒体を搬送する搬送管と、複数の搬送先のそれぞれに前記粉粒体を供給する複数の供給管との間に設置される分岐装置であって、前記搬送管と前記供給管の各々とを連通させる複数の分岐流路管と、前記分岐流路管の各々の流路を開閉する複数の制御弁と、複数の前記制御弁を収容しかつ水中に配置される水密筐体と、を備える。
 本発明では、各制御弁の開閉動作を制御することで、任意の搬送先を対象として粉粒体を搬送することができる。また、制御弁は、水中に配置される水密筐体によって収容される。ここで、水密筐体とは、内部を密封したうえで水中に配置された際にも水圧で浸水が生じない筐体である。このため、本発明の分岐装置は、制御弁を水から保護した状態で搬送先の近傍である水中に設置可能であり、この分岐装置を用いた搬送装置では、分岐装置から搬送先に至るまで延設される供給管の物量を抑えることができる。また、本発明の分岐装置は、水中に設置されることで台風などの海象による影響を受け難くなり、安定した設置が容易である。
 本発明の分岐装置は、前記搬送管と複数の前記分岐流路管との間に設けられる分岐部をさらに備え、前記分岐部は、前記搬送管に接続される上流側管部と、前記上流側管部から分岐して前記分岐流路管の各々に接続される複数の下流側管部と、を有し、前記下流側管部の各内面は、前記上流側管部の内面に対して連続した面である。
 本発明では、粉粒体が混入された気流を、分岐部の上流側管部から複数の下流側管部のそれぞれに円滑に流すことができ、粉粒体が管内壁に衝突して粉粒体の粒形状に割れ欠けが生じることを抑制できる。特に、粉粒体が生簀に給餌される飼料である場合、給餌対象の摂食性を向上することができる。
 本発明の分岐装置において、前記制御弁は、電動弁である。
 本発明では、空気式制御弁でなく電動弁を採用することで、水密筐体が密閉容器であっても、この水密筐体内の空気を排出させる必要がなく、構成を簡素化できる。
 本発明の分岐装置において、前記搬送先は、生簀であり、前記粉粒体は、前記生簀に給餌される飼料である。すなわち、本発明の分岐装置は、生簀に飼料を搬送するために用いられることで、養殖の大規模化に対応できる新たな給餌方法を確立させることができる。
 本発明の搬送装置は、前述の分岐装置と、前記粉粒体が貯留される貯留槽と、前記貯留槽内の前記粉粒体を搬送する前記搬送管と、前記搬送管の内部に前記粉粒体を搬送するための気流を形成する気流発生装置と、前記搬送管から前記分岐装置を介して搬送される前記粉粒体を複数の前記搬送先のそれぞれに供給する複数の前記供給管と、を備える。
 本発明の搬送装置では、貯留槽および気流発生装置が粉粒体の供給基地に設置され、この供給基地から搬送先の近傍に配置された分岐装置まで搬送管が延設され、分岐装置から搬送先まで供給管が延設される。すなわち、本発明では、分岐装置を粉粒体の供給基地から分離して搬送先の近傍に設置することができる。よって、本発明の搬送装置では、前述した分岐装置の効果と同様、分岐装置から搬送先に至る複数の供給管の物量を抑えることができる。
 本発明の搬送方法は、前述の分岐装置と、前記粉粒体が貯留される貯留槽と、前記貯留槽内の前記粉粒体を搬送する前記搬送管と、前記搬送管の内部に前記粉粒体を搬送するための気流を形成する気流発生装置と、前記搬送管から前記分岐装置を介して搬送される前記粉粒体を複数の前記搬送先のそれぞれに供給する複数の前記供給管と、を備える飼料搬送装置を用いて実施される搬送方法であって、任意の前記搬送先である対象搬送先を設定し、前記対象搬送先に対応する前記制御弁を開状態にすると共に、前記対象搬送先以外の前記搬送先に対応する前記制御弁を閉状態にし、前記貯留槽から前記搬送管に前記粉粒体を供給すると共に前記搬送管に前記気流を形成することで、前記対象搬送先に対して前記粉粒体を気流搬送する供給ステップと、前記供給ステップの後、前記貯留槽から前記搬送管への前記粉粒体の供給を停止する供給停止ステップと、前記供給停止ステップの後、前記搬送管に前記気流を形成したまま、複数の前記制御弁を順にまたは同時に開状態にする清掃ステップと、を含む。
 本発明の搬送方法では、目的の搬送先に粉粒体を搬送した後の分岐装置の清掃を行うことができる。特に、目的の搬送先に対応する分岐流路管だけでなく、目的以外の搬送先に対応する分岐流路管において、粉粒体が残留しないような清掃を行うことができる。これにより、各分岐流路管における粉粒体の固着を防止できる。
 本発明によれば、必要な供給管の物量を抑えることができ、かつ、安定した設置が容易である分岐装置、ならびに、当該分岐装置を用いた搬送装置および搬送方法を提供することができる。
本発明の一実施形態に係る飼料搬送装置を含んだ養殖システムを示す模式図。 前記実施形態に係る分岐装置を示す側面図。 前記実施形態に係る分岐装置を示す平面図。 前記実施形態に係る分岐装置の分岐部を示す斜視図。 前記実施形態に係る飼料搬送方法を説明するためのフローチャート。 前記実施形態に係る分岐装置における飼料混入気流の流れを説明するための模式図。
 以下、本発明の一実施形態を図面に基づいて説明する。
[養殖システム1]
 図1において、養殖システム1は、海面から海中に沈潜配置された複数の生簀10と、各生簀10に飼料を搬送する飼料搬送装置20(搬送装置)とを有する。複数の生簀10は、任意の海域にまとまって配置されることで生簀群10Aを構成する。なお、図1では、2つの生簀10が図示されているが、本実施形態では、説明の便宜上、生簀群10Aが4つの生簀10を含むものとする。
 生簀10は、飼育する魚介類を囲い込むための網11と、網11の形状を任意の箱状に保つための枠体12とを備える。
 また、生簀10は、海面上に浮上するブイ13を有し、枠体12はロープなどの吊下手段を介してブイ13に吊下支持されている。ブイ13は、係留索14で海底に接続されており、これにより、生簀10は、海洋上の所定位置に定置される。
 なお、生簀10の具体的なタイプは特に限られない。例えば、生簀10は、枠体12に空気を出し入れさせることで、海面上に浮上させたり、海中に沈潜させたりする浮沈式の生簀であってもよい。
 飼料搬送装置20は、生簀群10Aのうちの任意の生簀10を給餌対象として、この生簀10に飼料を搬送する。また、飼料搬送装置20は、給餌対象を切り替えることで、生簀群10Aの各生簀10に対して飼料を順に搬送することができる。飼料搬送装置20の構成については後述する。
[飼料搬送装置20]
 飼料搬送装置20は、図1に示すように、粒状の飼料が貯留される貯留槽21と、貯留槽21から生簀群10Aの付近の海中に至る搬送管22と、搬送管22の内部に搬送気流を形成する気流発生装置23と、搬送管22の先端部に設けられた分岐装置30と、分岐装置30から各生簀10に至る複数の供給管24と、制御装置25と、を備えている。
 貯留槽21、気流発生装置23および制御装置25は、鉄骨製の櫓などで構成された構造体15に設置されており、給餌基地を構成している。構造体15は、生簀10が定置された海域の近辺に設置されており、構造体15の下部が海底に固定され、構造体15の上面が海面上に配置されている。
 なお、貯留槽21、気流発生装置23および制御装置25を含んだ給餌基地は、海上の構造体15に設定されることに限定されず、陸上に設定されてもよい。
 貯留槽21は、いわゆるサイロなどで構成され、内部に粒状の飼料を貯留するとともに、下部の供給部210から所定量ずつの飼料を供給可能である。供給部210は、例えば、制御装置25により動作を制御されるロータリーフィーダ等の給餌量調整部を含んで構成される。
 なお、貯留槽21に対する飼料の補給は、飼料を積載した船舶Sなどにより行われる。
 搬送管22は、貯留槽21の供給部210に接続される基端部221と、分岐装置30に接続される先端部222とを有する。すなわち、搬送管22は、貯留槽21から分岐装置30まで連通する搬送流路を形成している。
 なお、本実施形態において、搬送管22は、構造体15や海底に対して留め具などにより固定されている。
 気流発生装置23は、電動モータもしくはエンジン駆動のコンプレッサなどで構成され、搬送管22の基端部221に圧縮空気を供給する。これにより、搬送管22内には、貯留槽21から供給された飼料が混入された気流(飼料混入気流)が形成され、飼料混入気流は、搬送管22内を分岐装置30に向かって進む。この気流発生装置23は、制御装置25により駆動制御される。
 分岐装置30は、生簀群10Aの近傍の水中(海中)に配置される。分岐装置30は、搬送管22から送られる飼料混入気流を、目的の生簀10に対応する供給管24に対して送るように構成される。なお、分岐装置30と搬送管22との間、および、分岐装置30と供給管24との間には、それぞれ、非常時などに閉状態にできる弁体26,27が設けられてもよい。分岐装置30の構成については後述する。
 供給管24は、生簀10ごとに対応して設けられ、分岐装置30に接続された基端部と、供給部24Aに接続された先端部とを有する。ここで、供給管24は、分岐装置30から供給部24Aに向かって海中から海上に延びており、供給管24の一部分が海上に配置されている。供給部24Aは、生簀10内に配置された下向きの放出口を有しており、供給管24から供給された飼料混入気流に含まれる飼料を、当該放出口から生簀10内に放出する。
 制御装置25は、貯留槽21の供給部210、気流発生装置23、および、分岐装置30のそれぞれに電気的に接続され、これらの動作を制御する。例えば、分岐装置30は、搬送管22に沿ってケーブルを設置して制御装置25に電気的に接続することができる。
 なお、図示を省略するが、給餌基地には、飼料搬送装置20の各部位に電力を供給するための電源が設けられている。
[分岐装置30]
 本実施形態の分岐装置30の構成について、図2および図3を参照して説明する。
 分岐装置30は、図2および図3に示すように、搬送管22に接続される分岐部31と、分岐部31に接続される複数の分岐流路管32A~32Dと、分岐流路管32A~32Dにそれぞれ設けられる制御弁33A~33Dと、制御弁33A~33Dを収容する筐体34と、を備える。
 以下では、分岐流路管32A~32Dがそれぞれ略水平な同一方向に沿って配置されるとして、分岐流路管32A~32Dの延伸方向かつ飼料混入気流の進行方向となる方向をX方向とする。また、X方向に直交かつ鉛直方向に沿った方向をZ方向とし、X方向およびZ方向に直交する方向をY方向とする。
 図2は、分岐装置30をY方向に沿った方向から見た側面図であり、図3は、分岐装置30をZ方向に沿った方向から見た平面図である。
 本実施形態において、分岐装置30は、生簀群10Aに含まれる4つの生簀10に対応する構成を有するものとする。すなわち、本実施形態において、分岐装置30は、4つの生簀10にそれぞれ対応するように、4つの分岐流路管32A~32Dと、4つの制御弁33A~33Dと、を有する。
 なお、図2および図3には、分岐流路管32Dおよび制御弁33Dが、配置上、図示されていない。図2において、分岐流路管32Dおよび制御弁33Dの各配置は、分岐流路管32Cおよび制御弁33Cの各配置の後側であり、図3において、分岐流路管32Dおよび制御弁33Dの各配置は、分岐流路管32Bおよび制御弁33Bの各配置の後側である。
 分岐部31は、搬送管22と分岐流路管32A~32Dとの間を連結する部分である。この分岐部31は、上流側管部311と、上流側管部311から分岐しながら延びる複数の下流側管部312A~312Dとを有する(図4参照)。
 上流側管部311は、弁体26を介して、搬送管22に接続されている。下流側管部312A~312Dは、分岐流路管32A~32Dに対して一対一で対応し、対応する分岐流路管32A~32Dにそれぞれ接続される。
 また、下流側管部312A~312Dは、図4に示すように、上流側管部311からX方向に向かうに従って搬送管22の中心軸Cから離れるように湾曲している。また、下流側管部312A~312Dの各内面は、上流側管部311の内面に対して連続した面であり、上流側管部311から下流側管部312A~312Dにかけて滑らかな流路が形成されている。さらに、下流側管部312A~312Dが形成する湾曲形状は、搬送管22の中心軸Cに対して軸対称である。
 なお、下流側管部312A~312Dは、互いに共通の構成を有するため、以下では、下流側管部312A~312Dを単に下流側管部312と記載する場合がある。
 本実施形態において、分岐流路管32A~32Dは、Y方向に2個ずつ、Z方向に2個ずつ並べられている。これら分岐流路管32A~32Dは、互いに共通の構成を有するため、以下では、分岐流路管32A~32Dを単に分岐流路管32と記載する場合がある。同様に、分岐流路管32A~32Dに設けられる制御弁33A~33Dは、互いに共通の構成を有するため、以下では、制御弁33A~33Dを単に制御弁33と記載する場合がある。
 分岐流路管32は、例えば図2に示すように、飼料混入気流の分岐流路をX方向に沿って形成している。具体的には、分岐流路管32は、上流側から順に、上流側分岐流路管部321、制御弁33の管路331、および下流側分岐流路管部322を有している。
 分岐流路管32の基端部、すなわち上流側分岐流路管部321の一端部は、分岐部31のうちの対応する下流側管部312に接続される。また、上流側分岐流路管部321の他端部は、制御弁33の管路331の入口ポートに接続される。
 分岐流路管32の先端部、すなわち下流側分岐流路管部322の一端部は、弁体27を介して、対応する供給管24に接続される。また、下流側分岐流路管部322の他端部は、制御弁33の管路331の出口ポートに接続される。
 制御弁33は、分岐流路管32による分岐流路の開閉を行う。本実施形態の制御弁33は、電動弁であり、制御装置25によって制御される。電動弁の具体的な種類は、特に限定されないが、例えばバタフライ式電動弁が挙げられる。また、電動弁の具体的構成は、従来技術と同様であるため、ここでの詳細な説明は省略するが、例えば、分岐流路管32の一部を構成する管路331(弁箱)と、管路331内で開閉動作を行う弁体と、弁体を駆動するモータなどの駆動部とを有する。
 筐体34は、海中に配置されるため、筐体34の内部に海水が侵入しないように、制御弁33A~33Dを液密に収容する水密筐体であればよい。ここで、水密筐体とは、内部を密封したうえで水中に配置された際にも水圧で浸水が生じない筐体である。
 例えば、分岐流路管32A~33Dは筐体34をX方向に貫通しているが、分岐流路管32A~32Dの各外周面と筐体34との間は、例えば溶接などによって封止されている。
 以上に説明した分岐装置30は、海底面に設置された架台36によって支持される。この架台36は、分岐装置30のうちの分岐部31、分岐流路管32および筐体34をそれぞれ支持するように構成される。なお、架台36は、分岐装置30のX方向およびY方向が水平面に略平行になるように設置される。ただし、海底面の状況によっては、分岐装置30の姿勢が若干傾いた状態に設置されてもよい。
 なお、本実施形態で参照する図面では、管部材同士の接続、弁部材同士の接続、および、管部材と弁部材との接続には、それぞれフランジ継手が用いられているが、本発明はこれに限られず、他の形式の管継手が用いられてもよい。
[飼料搬送装置20の動作例]
 給餌対象である生簀10に飼料を搬送する場合における飼料搬送装置20の動作例について、図5のフローチャートおよび図6を参照して説明する。本実施形態の飼料搬送装置20による飼料搬送方法は、給餌対象である生簀10に対して飼料を供給する供給動作と、飼料搬送装置20内に残留した飼料を除去するための清掃動作との2種類の動作が行われる。
 なお、説明の便宜上、給餌対象である生簀10(対象搬送先)は、分岐装置30の分岐流路管32Aおよび制御弁33Aが対応しているものとする。
 まず、給餌対象である生簀10に対して飼料を供給する供給動作を行う。
 具体的には、制御装置25の制御により、給餌対象である生簀10に対応する制御弁33Aが開状態になり、その他の生簀10に対応する制御弁33B~33Dが閉状態になる(ステップS1)。次いで、制御装置25の制御により、気流発生装置23が搬送管22の基端部221に圧縮空気を供給開始し、かつ、貯留槽21の供給部210が搬送管22の基端部221に飼料を供給開始する(ステップS2;供給ステップ)。これにより、搬送管22内に分岐装置30へ向かう飼料混入気流が形成される。
 ここで、飼料混入気流は、分岐装置30の分岐部31で分岐し、複数の分岐流路管32A~32Dのそれぞれに進む。
 給餌対象である生簀10に対応する制御弁33Aは開状態である。このため、分岐流路管32Aに分岐した飼料混入気流は、制御弁33Aを通過し、対応する供給管24を介して給餌対象である生簀10にまで搬送される。飼料混入気流中の飼料は、供給管24の先端部に設けられた供給部24Aにより空気を分離されつつ海水に投下され、生簀10内に放出される。
 一方、目的外の各生簀10に対応する制御弁33B~33Dは閉状態である。このため、分岐流路管32B~32Dに分岐した飼料混入気流は、制御弁33B~32Dで流れを止められる。これにより、図6の上側に示すように、制御弁33B~32Dの上流側に飼料Fが蓄積し、分岐部31のうちの分岐流路管32Aに向かう流路のみが開通した状態になる。
 なお、図6には、分岐流路管32A~32Dのうち、分岐流路管32A,32Cが代表して例示されている。また、図6には、分岐流路管32A,32C内に配置される制御弁33A,33Cの各弁体332が例示されている。
 その後、所定時間が経過するまで飼料の供給を継続する。制御装置25により所定時間が経過したと判断された場合(ステップS3;Yesの場合)、貯留槽21の供給部210は、飼料の供給を停止する(ステップS4;供給停止ステップ)。
 以上により、給餌対象である生簀10に対して飼料を搬送する搬送動作が行われる。なお、ステップS4において、気流発生装置23による気流の供給は継続している。
 次いで、飼料搬送装置20内に残留した飼料を除去するための清掃動作を行う。
 具体的には、制御装置25の制御により、分岐装置30における全ての制御弁33A~33Dが開状態になる(ステップS5;清掃ステップ)。これにより、図6の下側に示すように、気流発生装置23から供給される圧縮空気は、4つの分岐流路管32A~32Dの全てを通過し、分岐流路管32A~32Dに残留していた飼料Fを押し流す。
 その後、所定時間が経過するまで気流の供給を継続する。制御装置25により所定時間が経過したと判断された場合(ステップS6;Yesの場合)、気流発生装置23は、圧縮空気の供給を停止する(ステップS7)。
 以上により、図5のフローが終了する。その後、給餌対象である生簀10を切り替え、図5のフローを再び繰り返すことにより、生簀群10Aの各生簀10に対して飼料を順に供給することができる。
[飼料搬送装置20の他の動作例]
 飼料搬送装置20の他の動作例について説明する。
 前記の供給動作(ステップS1~S4)では、1つの生簀10に対して飼料を供給することを順に行う場合について説明しているが、複数の生簀10に対して同時に飼料を供給してもよい。例えば、4つの生簀10のうちの2つの生簀10を給餌対象とする場合、当該2つの生簀10に対応する制御弁33を開状態にし、残りの2つの生簀10に対応する制御弁33を閉状態にして、飼料混入気流を形成することにより、給餌対象である2つの生簀10に飼料を供給することができる。
 また、前述の清掃動作(ステップS5~S7)では、全ての制御弁33A~33Dを開状態にすることで、全ての分岐流路管32A~32Dを同時に清掃する場合について説明しているが、分岐流路管32A~32Dを個別に清掃してもよい。例えば、ステップS5以前に開状態であった制御弁33Aを閉状態にし、ステップS5以前に閉状態であった制御弁33B~33Dを1つずつ順に開状態にすることにより、分岐流路管32B~32Dを個別に清掃することができる。この場合、各分岐流路管32B~32Dに流れる気流の圧を強められるため、各分岐流路管32B~32D内の飼料Fをより好適に押し流すことができる。
[本実施形態の効果]
 本実施形態の分岐装置30は、前述したように、各制御弁33の開閉動作を制御することで、任意の生簀10を対象として飼料を搬送することができる。また、複数の制御弁33は、筐体34によって収容される。ここで、筐体34は、内部を密封したうえで水中に配置された際にも水圧で浸水が生じない水密筐体である。このため、本実施形態の分岐装置30は、制御弁33を水から保護した状態で複数の生簀10の近傍となる水中に設置可能であり、この分岐装置30を用いた飼料搬送装置20では、必要な供給管24の物量を抑えることができる。また、本実施形態の分岐装置30は、水中に設置されることで台風などの海象による影響を受け難くなり、安定した設置が容易である。
 また、本実施形態の分岐装置30は、生簀10に飼料を搬送する飼料搬送装置20に用いられることで、養殖の大規模化に対応できる新たな給餌方法を確立させることができる。
 本実施形態の分岐装置30において、分岐部31の下流側管部312A~312Dの各内面は、上流側管部311の内面に対する連続面とされている。
 ここで、仮に、下流側管部312A~312Dの各内面と上流側管部311の内面との間に面の連続性を絶つ凹凸等の断続部が存在する場合、この断続部に飼料が引っ掛かり、つまりの原因になってしまう。
 本実施形態では、下流側管部312A~312Dの各内面と上流側管部311の内面とが滑らかに連続しているため、飼料混入気流を上流側管部311から下流側管部312A~312Dのそれぞれに円滑に流すことができ、飼料が管内壁に衝突して飼料の粒形状に欠けが生じることを抑制できる。その結果、給餌対象の摂食性を向上することができる。
 本実施形態の分岐装置30では、制御弁33として空気式制御弁でなく電動弁を採用しているため、筐体34内の空気を排出させる必要がなく、構成を簡素化できる。
 本実施形態の飼料搬送装置20は、前述した本実施形態の分岐装置30と同様の効果を奏する。すなわち、本実施形態の飼料搬送装置20では、貯留槽21および気流発生装置23が給餌基地を構成し、この給餌基地から分岐装置30まで搬送管22が延設され、分岐装置30から生簀10まで供給管24が延設される。すなわち、本実施形態では、分岐装置30を給餌基地から分離し、生簀10の近傍に設置するとともに、搬送管22を介して給餌基地の気流発生装置23に接続することで、分岐装置30から生簀10に至る複数の供給管24の物量を抑えることができる。
 本実施形態の飼料搬送装置20を用いた搬送方法は、前述した供給ステップ、供給停止ステップおよび清掃ステップを行うことで、目的の生簀10に飼料を搬送した後の分岐装置30の清掃を行うことができる。特に、目的の生簀10に対応する分岐流路管32だけでなく、目的以外の生簀10に対応する分岐流路管32において、飼料が残留しないような清掃を行うことができる。これにより、各分岐流路管32における飼料の固着を防止できる。
[変形例]
 本発明は前述した実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形などは本発明に含まれる。
 前記実施形態では、制御弁33が電動弁であるが、他の駆動方式の制御弁であってもよい。例えば、制御弁33として空気式制御弁を設ける場合、制御弁33を駆動するための空気配管を設ければよい。ただし、空気配管としては、制御弁33に空気を供給するための供給用配管と、制御弁33から空気を排出するための排出用配管とを設けることを必要とする。
 前記実施形態では、搬送管22と複数の分岐流路管32A~32Dとの間に分岐部31が設けられるが、搬送管22を分岐部として兼用し、各分岐流路管32A~32Dが直接、搬送管22に接続されてもよい。
 前記実施形態では、説明の便宜上、4つの生簀10に対して飼料を搬送するための分岐装置30および飼料搬送装置20を説明しているが、生簀10の数はこれに限られない。例えば、分岐装置30は、飼料の搬送対象となる生簀10の数と同じ数だけの分岐流路管32と、各分岐流路管32に対応する構成とを備えればよい。同様に、飼料搬送装置20は、飼料の搬送対象となる生簀10の数と同じ数だけの供給管24と、各供給管24に対応する構成とを備えればよい。
 前記実施形態では、気流を利用して飼料を搬送する飼料搬送装置20について説明しているが、本発明はこれに限られない。例えば、本実施形態の分岐装置30は、水流を利用して飼料を搬送する飼料搬送装置に用いられてもよい。
 前記実施形態では、搬送対象となる粉粒体が飼料であり、海洋上に設定された生簀に対して飼料を搬送する場合について説明しているが、本発明はこれに限られない。すなわち、本発明の搬送対象は任意の粉粒体であればよく、本発明は、粉粒体を任意の搬送先に搬送するための搬送装置や分岐装置として利用可能である。
 例えば、本発明は、水質改善剤を粉粒体とし、海中の任意の領域を搬送先として、水質改善剤を海中の各領域に適宜散布するための搬送装置や分岐装置として利用可能である。
 本発明は、分岐装置、搬送装置および搬送方法に関し、飼料などの粉粒体を生簀などの水中または水上の搬送先へ搬送することに利用できる。
 1…養殖システム、10…生簀、10A…生簀群、11…網、12…枠体、13…ブイ、14…係留索、15…構造体、20…飼料搬送装置、21…貯留槽、210…供給部、22…搬送管、221…基端部、222…先端部、23…気流発生装置、24…供給管、24A…供給部、25…制御装置、26…弁体、27…弁体、30…分岐装置、31…分岐部、311…上流側管部、312,312A~312D…下流側管部、32,32A~32D…分岐流路管、321…上流側分岐流路管部、322…下流側分岐流路管部、33,33A~33D…制御弁、331…管路、34…筐体(水密筐体)、36…架台。

Claims (6)

  1.  粉粒体を搬送する搬送管と、複数の搬送先のそれぞれに前記粉粒体を供給する複数の供給管との間に設置される分岐装置であって、
     前記搬送管と前記供給管の各々とを連通させる複数の分岐流路管と、
     前記分岐流路管の各々の流路を開閉する複数の制御弁と、
     複数の前記制御弁を収容しかつ水中に配置される水密筐体と、を備える、分岐装置。
  2.  請求項1に記載の分岐装置において、
     前記搬送管と複数の前記分岐流路管との間に設けられる分岐部をさらに備え、
     前記分岐部は、前記搬送管に接続される上流側管部と、前記上流側管部から分岐して前記分岐流路管の各々に接続される複数の下流側管部と、を有し、
     前記下流側管部の各内面は、前記上流側管部の内面に対して連続した面である、分岐装置。
  3.  請求項1または請求項2に記載の分岐装置において、
     前記制御弁は、電動弁である、分岐装置。
  4.  請求項1から請求項3のいずれか一項に記載の分岐装置において、
     前記搬送先は、生簀であり、
     前記粉粒体は、前記生簀に給餌される飼料である、分岐装置。
  5.  請求項1から請求項4のいずれか一項に記載の分岐装置と、
     前記粉粒体が貯留される貯留槽と、
     前記貯留槽内の前記粉粒体を搬送する前記搬送管と、
     前記搬送管の内部に前記粉粒体を搬送するための気流を形成する気流発生装置と、
     前記搬送管から前記分岐装置を介して搬送される前記粉粒体を複数の前記搬送先のそれぞれに供給する複数の前記供給管と、を備える、搬送装置。
  6.  請求項1から請求項4のいずれか一項に記載の分岐装置と、前記粉粒体が貯留される貯留槽と、前記貯留槽内の前記粉粒体を搬送する前記搬送管と、前記搬送管の内部に前記粉粒体を搬送するための気流を形成する気流発生装置と、前記搬送管から前記分岐装置を介して搬送される前記粉粒体を複数の前記搬送先のそれぞれに供給する複数の前記供給管と、を備える搬送装置を用いて実施される搬送方法であって、
     任意の前記搬送先である対象搬送先を設定し、前記対象搬送先に対応する前記制御弁を開状態にすると共に、前記対象搬送先以外の前記搬送先に対応する前記制御弁を閉状態にし、前記貯留槽から前記搬送管に前記粉粒体を供給すると共に前記搬送管に前記気流を形成することで、前記対象搬送先に対して前記粉粒体を気流搬送する供給ステップと、
     前記供給ステップの後、前記貯留槽から前記搬送管への前記粉粒体の供給を停止する供給停止ステップと、
     前記供給停止ステップの後、前記搬送管に前記気流を形成したまま、複数の前記制御弁を順にまたは同時に開状態にする清掃ステップと、を含む、搬送方法。
PCT/JP2022/004817 2021-03-02 2022-02-08 分岐装置、搬送装置および搬送方法 WO2022185852A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO20230997A NO20230997A1 (en) 2021-03-02 2022-02-08 Splitting device, carrier device, and carrier method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-032261 2021-03-02
JP2021032261A JP6912682B1 (ja) 2021-03-02 2021-03-02 分岐装置、搬送装置および搬送方法

Publications (1)

Publication Number Publication Date
WO2022185852A1 true WO2022185852A1 (ja) 2022-09-09

Family

ID=77057397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004817 WO2022185852A1 (ja) 2021-03-02 2022-02-08 分岐装置、搬送装置および搬送方法

Country Status (3)

Country Link
JP (1) JP6912682B1 (ja)
NO (1) NO20230997A1 (ja)
WO (1) WO2022185852A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58500969A (ja) * 1981-06-12 1983-06-23 ウエンズマン ガンナ− 動物に給餌する方法とその装置
JPS6328359U (ja) * 1986-08-11 1988-02-24
JPS63251031A (ja) * 1987-04-08 1988-10-18 株式会社 マリンプロジエクト 餌料分配装置
JPH06125676A (ja) * 1992-10-15 1994-05-10 Kiichi Mori 養魚用プールにおける給餌分岐装置
JPH09294500A (ja) * 1996-04-30 1997-11-18 Bridgestone Corp 魚類用給飼装置
CN104430114A (zh) * 2014-12-22 2015-03-25 天津市水产研究所 单管道水产养殖气力投饵设施
JP2018011572A (ja) * 2016-07-22 2018-01-25 新日鉄住金エンジニアリング株式会社 給餌装置、養殖装置および給餌方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58500969A (ja) * 1981-06-12 1983-06-23 ウエンズマン ガンナ− 動物に給餌する方法とその装置
JPS6328359U (ja) * 1986-08-11 1988-02-24
JPS63251031A (ja) * 1987-04-08 1988-10-18 株式会社 マリンプロジエクト 餌料分配装置
JPH06125676A (ja) * 1992-10-15 1994-05-10 Kiichi Mori 養魚用プールにおける給餌分岐装置
JPH09294500A (ja) * 1996-04-30 1997-11-18 Bridgestone Corp 魚類用給飼装置
CN104430114A (zh) * 2014-12-22 2015-03-25 天津市水产研究所 单管道水产养殖气力投饵设施
JP2018011572A (ja) * 2016-07-22 2018-01-25 新日鉄住金エンジニアリング株式会社 給餌装置、養殖装置および給餌方法

Also Published As

Publication number Publication date
JP6912682B1 (ja) 2021-08-04
JP2022133535A (ja) 2022-09-14
NO20230997A1 (en) 2023-09-18

Similar Documents

Publication Publication Date Title
JP5844495B1 (ja) 水上生簀用耐圧調整式水中上向飼料供給装置
EP3908108B1 (en) Aquaculture system with improved feed transportation and method for transporting feed in an aquaculture system
CN103476671A (zh) 处理压舱箱中的压舱水的系统
JP7042484B2 (ja) 餌放出機
DK2032426T3 (en) System and method for unloading of bulk material from a ship
KR101603323B1 (ko) 양하장치
WO2022185852A1 (ja) 分岐装置、搬送装置および搬送方法
WO2019144532A1 (en) Oxygen dissolving apparatus for ponds
JP2010202015A (ja) 船舶
CN102583718B (zh) 一种mbbr填料负压与正压输送方法与装置
KR102451199B1 (ko) 무선 원격조정 사료 공급선
JP5363438B2 (ja) ポリマーペレット運搬船、ポリマーペレット運搬用バージ、及びその荷役方法
US20150336822A1 (en) Nozzle mixing methods for ship ballast tanks
CN214732741U (zh) 一种连续仓式气力输送设备
CN113896330A (zh) 一种微生物自动活化添加装置
NO20200609A1 (en) Fish farming system
KR20090109978A (ko) 해상 가두리용 자동 먹이공급장치
JP2003144003A (ja) 水産用酸素供給装置
CN220587249U (zh) 一种全潜式深海养殖装置
JP2572536B2 (ja) 自動給餌方法及び自動給餌装置
CN118104599A (zh) 一种深远海养殖饲料输送及投喂船
CN215530891U (zh) 深海养殖船鱼料投喂装置
CN218371987U (zh) 一种污水处理曝气池
CN115349476A (zh) 一种深远海养殖网箱投饵系统
CN102583717A (zh) 一种无桨叶涵道式水下推送搅拌方法与装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22762909

Country of ref document: EP

Kind code of ref document: A1