WO2022185493A1 - エッジマスクの初期位置決定方法及びエッジマスクの初期位置決定装置 - Google Patents

エッジマスクの初期位置決定方法及びエッジマスクの初期位置決定装置 Download PDF

Info

Publication number
WO2022185493A1
WO2022185493A1 PCT/JP2021/008528 JP2021008528W WO2022185493A1 WO 2022185493 A1 WO2022185493 A1 WO 2022185493A1 JP 2021008528 W JP2021008528 W JP 2021008528W WO 2022185493 A1 WO2022185493 A1 WO 2022185493A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature difference
edge mask
temperature
width direction
correlation
Prior art date
Application number
PCT/JP2021/008528
Other languages
English (en)
French (fr)
Inventor
寛和 古瀬
健治 堀井
桂司 水田
裕二 池本
彰夫 黒田
Original Assignee
Primetals Technologies Japan株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Japan株式会社 filed Critical Primetals Technologies Japan株式会社
Priority to PCT/JP2021/008528 priority Critical patent/WO2022185493A1/ja
Priority to JP2023503294A priority patent/JPWO2022185493A1/ja
Publication of WO2022185493A1 publication Critical patent/WO2022185493A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present disclosure relates to an edge mask initial position determination method and an edge mask initial position determination apparatus.
  • the steel sheet In steel sheet rolling equipment, the steel sheet is sometimes cooled with a coolant for the purpose of improving the mechanical properties of the steel sheet.
  • the temperature at the ends of the steel sheet in the width direction tends to drop more easily than at the center in the width direction. This leads to a decrease in yield due to deformation of the steel plate. Therefore, in order to suppress overcooling of the width direction end portion of the steel plate in the cooling process, an edge mask for shielding the end portion so that the coolant from the cooling device does not directly hit the width direction end portion of the steel plate is used.
  • Patent Literature 1 discloses a cooling device provided with an edge mask for adjusting the amount of cooling water supplied to the edge portion of the hot-rolled coil under a cooling header for supplying cooling water to the hot-rolled coil. ing.
  • this cooling device the temperature distribution in the width direction of the hot-rolled coil, which is calculated based on the temperature in the width direction of the hot-rolled coil measured at the inlet side of the cooling device and the transfer speed of the hot-rolled coil, is uniform. , the number of driven edge masks and the depth (edge mask pattern) are adjusted.
  • the temperature of the hot-rolled coil in the width direction at the entrance side of the cooling device, the transfer speed of the hot-rolled coil, and the edge mask pattern set according to the information on the hot-rolled coil are used.
  • An appropriate edge mask pattern is determined by calculating the temperature distribution in the width direction of the hot-rolled coil.
  • the temperature distribution in the strip width direction of the hot-rolled coil is obtained by calculation in order to determine the edge mask pattern, the calculation for determining the edge mask pattern (including initial settings) is complicated and high load. It is considered to be a thing.
  • At least one embodiment of the present invention provides an initial position of an edge mask that can appropriately set the initial position of the edge mask that facilitates homogenizing the temperature distribution in the width direction of the steel sheet while reducing the calculation load. It is an object of the present invention to provide a position determination method and an initial position determination device for an edge mask.
  • a method for initial position determination of an edge mask comprises: A method for determining the initial position of an edge mask for shielding a coolant jetted toward a steel plate in a region including a plate end position in the width direction of the steel plate, A first correlation between the position of the edge mask in the width direction of the steel sheet and a first temperature difference EU, which is the difference between the maximum temperature and the average temperature of the steel sheet in the width direction of the steel sheet, and the position of the edge mask and the average temperature and the plate end position in the plate width direction of the steel plate, or the temperature at a position inside by a specified amount from the plate end position and outside the position where the maximum temperature is reached.
  • the edge mask initial position determination apparatus includes: An edge mask initial position determination device for shielding a coolant jetted toward a steel plate in a region including a plate end position in the width direction of the steel plate, A first correlation between the position of the edge mask in the width direction of the steel sheet and a first temperature difference EU, which is the difference between the maximum temperature and the average temperature of the steel sheet in the width direction of the steel sheet, and the position of the edge mask and the average temperature and the plate end position in the plate width direction of the steel plate, or the temperature at a position inside by a specified amount from the plate end position and outside the position where the maximum temperature is reached.
  • a correlation acquisition unit that acquires a second correlation with the temperature difference ED; of the difference
  • an edge mask initial position determination method and an edge that can appropriately set the initial position of an edge mask that facilitates equalizing the temperature distribution in the width direction of a steel sheet while reducing the calculation load.
  • a mask initial positioning apparatus is provided.
  • FIG. 1 is a schematic diagram showing a configuration example of a rolling mill equipped with a cooling device including an edge mask to which an initial position determining method according to one embodiment is applied;
  • FIG. 1 is a schematic configuration diagram of a cooling device according to one embodiment;
  • FIG. It is a schematic diagram for explaining the configuration of a control device according to an embodiment.
  • 4 is a flow chart of a method for initial position determination of an edge mask and a method for operating a cooling device according to one embodiment. It is a graph which shows an example of the temperature distribution in the board width direction edge part of a steel plate. It is a figure for demonstrating the relationship between the position of an edge mask, the 1st temperature difference EU, and the 2nd temperature difference ED.
  • 5 is a graph schematically showing an example of a first correlation between the position of the edge mask and the first temperature difference EU and an example of correlation between the position of the edge mask and the second temperature difference ED.
  • 5 is a flow chart of step S500 according to one embodiment.
  • 5 is a flow chart of step S500 according to one embodiment. It is a figure for demonstrating the comparison of 1st temperature difference EU1 and threshold value EUA.
  • 5 is a flow chart of step S500 according to one embodiment. It is a figure for demonstrating the comparison of 2nd temperature difference ED1 and target value EDB.
  • FIG. 5 is a diagram showing an example data set of a plurality of positions of an edge mask and corresponding first temperature differences EU and second temperature differences ED; It is a figure which shows an example of a 1st regression curve. It is a figure which shows an example of a 2nd regression curve. The first regression curve in FIG. 14 and the second regression curve in FIG. 15 are superimposed and displayed.
  • 8 is a flowchart of step S800 according to one embodiment. 8 is a flowchart of step S800 according to one embodiment.
  • FIG. 1 is a schematic diagram showing a configuration example of a rolling mill equipped with a cooling device including an edge mask to which an edge mask initial position determination method according to some embodiments is applied.
  • a rolling facility 1 shown in FIG. 1 is a facility for hot rolling a steel sheet S, and includes a rough rolling mill 2 , a finishing rolling mill 4 , a cooling device 6 , and a winder 10 .
  • the steel sheet S discharged from the heating furnace is rolled by the rough rolling mill 2 and the finishing rolling mill 4 , cooled by the cooling device 6 , and wound into a rolled coil by the winding device 10 .
  • the conveying roll 16 (refer FIG. 2) for conveying the steel plate S is provided in the conveying line of the steel plate S. As shown in FIG.
  • FIG. 2 is a schematic configuration diagram of a cooling device 6 according to some embodiments.
  • the cooling device 6 includes a cooling header 8 arranged above and/or below the steel plate S, and a coolant 100 from the cooling header 8 that is jetted toward the steel plate S. It includes a configured cooling nozzle 9 and an edge mask 18 (18A, 18B) provided between the cooling nozzle 9 and the steel plate S.
  • a plurality of cooling headers 8 may be arranged along the conveying line of the steel plate S, and the cooling nozzles 9 provided in each of the plurality of cooling headers 8 , the coolant 100 may be jetted toward the steel plate S.
  • the coolant 100 may be water, for example.
  • the cooling nozzle 9 is configured to jet a coolant toward the steel plate S over a region corresponding to the steel plate S in the width direction of the plate.
  • a plurality of hole-shaped cooling nozzles 9 may be arranged along the plate width direction.
  • a slit-shaped cooling nozzle 9 extending along the plate width direction may be provided.
  • the edge mask 18 (18A, 18B ) directs the coolant jetted toward the steel plate S in a region including the positions of the plate ends EA, EB in the width direction of the steel plate S. configured to shield.
  • the steel plate S In the region where the coolant is shielded by the edge mask 18, the steel plate S is prevented from being directly exposed to the coolant. Therefore, by providing the edge mask 18, the cooling of the steel sheet S is alleviated in the region including the plate end positions.
  • the edge mask 18 is configured to be movable along the plate width direction. That is, the position of the edge mask in the board width direction can be adjusted.
  • the position of the edge mask 18 in the strip width direction can be represented by the amount of insertion of the edge mask 18 from the strip edge position in the strip width direction (overlapping length between the steel sheet S and the edge mask 18 in the strip edge direction). can.
  • FIG. 2 shows the cooling headers 8 provided above the steel plate S and the edge masks 18 provided corresponding to the cooling nozzles 9. Edge masks 18 may be provided corresponding to the cooling headers 8 and cooling nozzles 9 provided.
  • the rolling facility 1 further includes a control device 20 for controlling the cooling device 6.
  • the controller 20 functions as an initial positioner for the edge mask according to some embodiments.
  • the rolling facility 1 includes an entry-side temperature distribution measuring unit 12 provided on the entry side of the cooling device 6 in the conveying direction of the steel plate S and a It is provided with an output side temperature distribution measurement unit 14 .
  • the entrance-side temperature distribution measuring unit 12 is configured to measure the temperature distribution of the steel sheet S in the sheet width direction on the entrance side of the cooling device 6 .
  • the delivery side temperature distribution measuring unit 14 is configured to measure the temperature distribution of the steel sheet S in the sheet width direction on the delivery side of the cooling device 6 .
  • the entry-side temperature distribution measurement unit 12 and/or the exit-side temperature distribution measurement unit 14 may be configured to measure the temperature of the steel sheet S at each of a plurality of positions in the sheet width direction.
  • FIG. 3 is a schematic diagram for explaining the configuration of the control device 20 according to one embodiment.
  • the control device 20 includes a correlation acquisition section 22, a first position acquisition section 23, an initial position determination section 24, an edge mask control section 26, and a temperature data accumulation section 28. ing.
  • the correlation acquisition unit 22 obtains a first correlation between the position of the edge mask 18 in the strip width direction and a first temperature difference EU described later, and the position of the edge mask 18 in the strip width direction and a second temperature difference ED described later. is configured to obtain a second correlation with
  • the "position of the edge mask” means the position of the edge mask in the strip width direction.
  • the correlation acquisition unit 22 is configured to receive information necessary for acquiring the first correlation and the second correlation from the storage unit 30 .
  • the first position obtaining unit 23 determines the absolute value
  • or the ratio EU/ED between the first temperature difference EU and the second temperature difference ED is configured to obtain a first position, which is the position of the edge mask 18 at which it is within a specified range.
  • the initial position determination unit 24 is configured to determine the initial position of the edge mask 18 using the first position acquired by the first position acquisition unit 23 .
  • the edge mask controller 26 is configured to control the position of the edge mask 18 . In one embodiment, the edge mask controller 26 is configured to adjust the position of the edge mask 18 in the strip width direction such that the edge mask 18 is positioned at the initial position determined by the initial position determiner 24. . In one embodiment, the edge mask control unit 26 measures the temperature distribution in the width direction of the steel sheet S based on the signal indicating the temperature distribution in the width direction of the steel sheet S from the entry-side temperature distribution measurement unit 12 and/or the delivery-side temperature distribution measurement unit 14. is configured to adjust the position of the edge mask 18 in the .
  • the temperature data accumulation unit 28 causes the storage unit 30 to store and accumulate data indicating the temperature distribution in the width direction of the steel sheet S measured by the entry-side temperature distribution measurement unit 12 and/or the delivery-side temperature distribution measurement unit 14. configured as
  • the control device 20 includes a computer equipped with a processor (CPU, etc.), a storage device (memory device; RAM, etc.), an auxiliary storage unit, an interface, and the like.
  • the control device 20 receives a signal indicating the measured value of the temperature distribution in the width direction of the steel sheet S from the entry-side temperature distribution measurement unit 12 and the exit-side temperature distribution measurement unit 14 via the interface.
  • the processor is configured to process the signal thus received.
  • the processor is configured to process the program deployed on the storage device.
  • the processing content of the control device 20 is implemented as a program executed by the processor.
  • the program may be stored in an auxiliary storage unit. During program execution, these programs are expanded in the storage device.
  • the processor is adapted to read the program from the storage device and execute the instructions contained in the program.
  • the storage unit 30 may include a main storage unit or an auxiliary storage unit of a computer that constitutes the control device 20. Alternatively, the storage unit 30 may include a remote storage device connected to the computer via a network.
  • FIG. 4 is a flow chart of a method for initial positioning of the edge mask 18 and a method for operating the cooling device 6 according to some embodiments.
  • the initial position of the edge mask 18 is determined by steps S100 to S500
  • the cooling device 6 is determined by steps S600 to S800 based on the initial position determined by steps S100 to S500. to drive.
  • the correlation acquisition unit 22 acquires a first temperature difference EU and a second temperature difference ED corresponding to each of a plurality of positions of the edge mask 18 in the strip width direction.
  • the first temperature difference EU is the difference EU between the maximum temperature Tmax and the average temperature Tavg in the width direction of the steel sheet S (see FIG. 5).
  • the second temperature difference ED is the difference ED between the average temperature Tavg in the width direction of the steel sheet S and the temperature T0 at the edge position of the steel sheet (see FIG. 5), or the average temperature Tavg in the width direction of the steel sheet S.
  • the difference ED' see FIG.
  • ED is the second temperature difference as the difference between the above-mentioned average temperature Tavg and the temperature T0 at the plate end position, and the above-mentioned average temperature Tavg and the above-mentioned temperature Ts at the position (XS)
  • the second temperature difference as a difference between ED' and ED' may be distinguished from each other, basically, they are not distinguished and are denoted as the second temperature difference ED.
  • FIG. 5 is a graph showing an example of the temperature distribution at the ends of the steel sheet S in the width direction.
  • the horizontal axis of the graph in FIG. 5 represents the position in the strip width direction (that is, the distance from the strip edge position) based on the strip edge position (zero position), and the larger the value, the inner position in the strip width direction.
  • the vertical axis of the graph in FIG. 5 represents temperature.
  • a curve T in the graph indicates the temperature of the steel sheet S at each position in the sheet width direction.
  • the temperature is lowest (temperature T 0 ) at the edge position of the steel sheet (called edge drop).
  • edge drop the temperature of the end portions of the steel sheet S in the width direction
  • most of the center portion in the strip width direction has a uniform temperature distribution and a temperature close to the average temperature Tavg in the strip width direction.
  • the temperature T is higher than the average at positions slightly inside the strip end positions, and there may be positions where the maximum temperature Tmax appears (edge called up). From such a temperature distribution, the first temperature difference EU and the second temperature difference ED can be obtained.
  • the first temperature difference EU and the second temperature difference ED may be obtained based on information pre-stored in the storage unit 30.
  • the storage unit 30 stores in advance temperature distributions in the width direction of the steel sheet S (temperatures at a plurality of locations in the width direction) corresponding to a plurality of positions of the edge mask 18 in the width direction. good too.
  • the correlation acquisition unit 22 acquires the above-described temperature distribution corresponding to each of the plurality of positions of the edge mask 18 from the storage unit 30, and based on these temperature distributions, the plurality of temperature distributions of the edge mask 18.
  • a first temperature difference EU and a second temperature difference ED corresponding to each position may be calculated.
  • the storage unit 30 may store in advance the first temperature difference EU and the second temperature difference ED corresponding to each of a plurality of positions of the edge mask 18 in the plate width direction.
  • the correlation acquisition unit 22 acquires the plurality of positions on the edge mask 18 and the first temperature difference EU and the second temperature difference ED corresponding to each of the plurality of positions from the storage unit 30.
  • the correlation acquisition unit 22 calculates the position of the edge mask 18 in the strip width direction and the first temperature difference EU based on the edge mask position acquired in step S100 and the corresponding first temperature difference EU. is obtained (S200). Further, based on the edge mask position acquired in step S100 and the second temperature difference ED corresponding thereto, the correlation acquisition unit 22 determines the position of the edge mask 18 in the strip width direction and the second temperature difference ED. A second correlation is obtained (S300).
  • FIG. 6 is a diagram for explaining the relationship between the position of the edge mask 18 and the first temperature difference EU and the second temperature difference ED.
  • FIG. 6 schematically shows the position of the edge mask and the corresponding temperature distribution for three cases 1-3.
  • Curves T1 to T3 show temperature distributions of the steel plate S in cases 1 to 3, respectively.
  • the position of the edge mask 18 (here, the innermost position in the strip width direction) is Xa, Xb, and Xc, respectively.
  • the mask insertion amount is the largest in case 3 and the smallest in case 2. Note that the edge mask insertion amount in case 2 is smaller than that in case 1 by ⁇ X. Also, the edge mask insertion amount in case 3 is larger than that in case 1 by ⁇ X.
  • the temperature distribution at the ends of the steel sheet S in the width direction changes depending on the position of the edge mask 18 . More specifically, the smaller the insertion amount of the edge mask 18, the lower the temperature of the plate edge, the smaller the first temperature difference EU, and the larger the second temperature difference ED (and ED'). There is also, the larger the amount of insertion of the edge mask 18, the higher the temperature of the edge of the plate, the larger the first temperature difference EU and the smaller the second temperature difference ED (and ED').
  • FIG. 7 shows a first correlation between the edge mask position (insertion amount) (horizontal axis) and the first temperature difference EU (vertical axis), and the edge mask position (insertion amount) (horizontal axis) and the second correlation. It is a graph which shows typically an example of correlation with the temperature difference ED (and ED') (vertical axis).
  • the correlation between the position (insertion amount) of the edge mask 18 and the first temperature difference EU or the second temperature difference ED (ED') is represented as a linear correlation. may have curvilinear rather than perfectly linear correlations.
  • the slope of a straight line indicating the correlation (first correlation) between the edge mask position (insertion amount) and the first temperature difference EU, and the edge mask position (insertion amount) and the second temperature difference ED Since the slope of the straight line indicating the correlation (second correlation) with (ED') has the opposite sign, the two have an intersection point.
  • the edge mask position (insertion amount) X1 (X1') corresponding to this intersection the first temperature difference EU and the second temperature difference ED (ED') are equal.
  • ) of the difference between the first temperature difference EU and the second temperature difference ED (ED') is zero, and the first temperature difference EU and the second temperature difference ED (ED'), the ratio EU/ED (or EU/ED') is one.
  • the first temperature difference EU and the second temperature difference ED are equal.
  • the first position acquisition unit 23 determines the absolute value
  • a first position which is the position of the edge mask 18 where EU-ED
  • step S400 for example, the position where the absolute value of the difference
  • step S400 the position of the edge mask 18 where the absolute value of the difference
  • the edge mask 18 By positioning the edge mask 18 at a position where the absolute value of the difference
  • the initial position determination unit 24 determines the initial position of the edge mask 18 using the first position acquired in step S400 (step S500).
  • the initial position of the edge mask 18 is the position of the edge mask 18 when cooling of the steel plate S by the cooling device 6 is started.
  • the edge mask control unit 26 controls the driving unit (not shown) for driving the edge mask 18 so that the edge mask 18 is positioned at the initial position determined in step S400 (S600). Then, the cooling device 6 is operated to start cooling the steel plate S (S700). During the cooling of the steel sheet S by the cooling device 6, the temperature distribution in the width direction of the steel sheet S on the entrance side or the exit side of the cooling device 6 is measured by the entry-side temperature distribution measurement unit 12 or the exit-side temperature distribution measurement unit 14. , the position of the edge mask 18 may be adjusted based on the temperature measurement distribution (S800).
  • the temperature distribution in the width direction of the steel sheet S becomes smoother as the first temperature difference EU and the second temperature difference ED are smaller. Further, as described with reference to FIGS. 6 and 7, the larger the insertion amount of the edge mask in the sheet width direction from the sheet edge position, the larger the first temperature difference EU and the smaller the second temperature difference ED.
  • the procedure of steps S100 to S500 establishes the first correlation between the position of the edge mask 18 and the first temperature difference EU, and the position of the edge mask 18 and the second temperature difference ED the absolute value of the difference
  • the initial position of the edge mask 18 is set using the first position of the edge mask 18 where both the first temperature difference EU and the second temperature difference ED are relatively small, From the stage, it becomes easier to uniform the sheet width direction temperature distribution. Moreover, since the first position is acquired based on the first temperature difference EU and the second temperature difference ED, the initial position of the edge mask 18 can be appropriately determined by simple calculation. Therefore, according to the above-described embodiment, it is possible to appropriately set the initial position of the edge mask 18 that facilitates homogenizing the temperature distribution in the width direction of the steel sheet S while reducing the calculation load.
  • step S500 described above for example, an initial position may be determined as described below.
  • FIGS. 8, 9 and 11 are each flow charts of step S500 according to one embodiment.
  • step S500 the first position obtained in step S400 is directly determined as the initial position of the edge mask 18 (S510).
  • the first position of the edge mask 18 at which both the first temperature difference EU and the second temperature difference ED are relatively small is set as the edge mask initial position. From the initial stage, the temperature distribution in the sheet width direction becomes more uniform.
  • step S500 first, a first temperature difference EU1 corresponding to the first position obtained in step S400 (the first The temperature difference EU) is compared with a preset threshold value EU A of the first temperature difference EU (S520).
  • the position of the edge mask 18 corresponding to the threshold EU A is determined as the initial position (S522). On the other hand, if the first temperature difference EU 1 corresponding to the first position is less than or equal to the threshold EU A (No in S520), the first position is determined as the initial position of the edge mask 18 (S524).
  • FIG. 10 is a diagram for explaining a comparison between the first temperature difference EU1 corresponding to the first position and the threshold value EUA of the first temperature difference.
  • the position of the plate end of the steel plate S is indicated by X0.
  • X1 represents the first position
  • XA represents the position in the sheet width direction corresponding to the threshold value EUA of the first temperature difference.
  • a curve T1 (solid line) shows the temperature distribution in the width direction of the steel sheet S when the edge mask 18 is positioned at the first position X1, and the temperature distribution when the edge mask 18 is positioned at the above-described position XA.
  • a curve TA (broken line) indicates the temperature distribution in the width direction of the steel sheet S.
  • the position where the temperature of the steel sheet S is highest in the sheet width direction is somewhat inside the sheet edge position. Even if the absolute value
  • the edge mask 18 when the edge mask 18 is positioned at the first position X1, the absolute value of the difference
  • the edge mask 18 corresponding to the threshold EU A is determined as the initial position (S522).
  • the first position X1 is the edge mask 18 is determined as the initial position (S524). Therefore, the temperature distribution in the width direction of the steel sheet S can be more easily uniformed. Therefore, quality deterioration, deformation, etc. of the steel plate S can be suppressed more effectively.
  • step S500 first, a first temperature difference EU1 corresponding to the first position obtained in step S400 (the first The temperature difference EU) is compared with a preset threshold value EU A of the first temperature difference EU (S530).
  • the position of the edge mask 18 corresponding to the threshold EU A is determined as the initial position (S532). Note that S530 and S532 in this embodiment are the same as S520 and S522 in the embodiment shown in FIG.
  • the second temperature difference ED 1 corresponding to the first position and the second temperature difference A target value ED B is compared (S534).
  • the edge mask position corresponding to the target value ED B is tentatively determined as the initial position (temporarily determined initial position ) (S540). If the first temperature difference EU B corresponding to the provisionally determined initial position is greater than the threshold EU A (Yes at S542), the position of the edge mask 18 corresponding to the threshold EU A is determined as the initial position (S536). If the first temperature difference EU B corresponding to the provisionally determined initial position is equal to or less than the threshold EU A (No in S542), the edge mask position corresponding to the target value ED B is determined as the initial position (S544). On the other hand, if the second temperature difference ED 1 corresponding to the first position is less than or equal to the target value ED B (No in S534), the first position is determined as the initial position of the edge mask 18 (S538).
  • FIG. 12 is a diagram for explaining a comparison between the second temperature difference ED 1 corresponding to the first position and the target value ED B of the second temperature difference.
  • the position of the plate edge of the steel plate S is indicated by X0.
  • X1 represents the first position
  • XA represents the position in the sheet width direction corresponding to the threshold value EUA of the first temperature difference.
  • a curve T1 (solid line) shows the temperature distribution in the width direction of the steel sheet S when the edge mask 18 is positioned at the first position X1.
  • a curve TA (broken line) indicates the temperature distribution in the width direction of the steel sheet S.
  • the trim amount of the steel sheet S in the post-process tends to increase as the second temperature difference ED increases.
  • the first temperature difference EU 1 corresponding to the first position X1 is equal to or less than the threshold EU A (No in S530), and the second temperature difference corresponding to the first position X1 is If ED 1 is greater than the target value (permissible value) ED B (Yes in S534), the edge mask position corresponding to the target value ED B is tentatively determined as the initial position (S540).
  • the edge mask position XA corresponding to the first temperature difference threshold EU A is set as the initial position (S536). That is, the position XA (see curve TA) at which the first temperature difference EU is larger and the second temperature difference is smaller than the temperature distribution (curve T1) at the first position X1 is set as the initial position. , the trim amount in the post-process can be effectively reduced.
  • the first temperature difference EU 1 corresponding to the first position X1 is equal to or less than the threshold EU A (No in S530), and the second temperature difference ED 1 corresponding to the first position X1 is the target value. If the (allowable value) is greater than ED B (Yes in S534) and the first temperature difference EU B corresponding to the tentatively determined initial position is equal to or less than the threshold EU A (No in S542), the edge corresponding to the target value ED B The mask position is determined as the initial position (S544). That is, since the temperature difference from the average temperature can be kept within the allowable range at all positions in the sheet width direction, the trim amount can be effectively reduced.
  • step S534 if the second temperature difference ED1 corresponding to the first position is equal to or less than the target value EDB of the second temperature difference (No in S534 ), the first position is the initial position of the edge mask 18. (S538).
  • the first temperature difference EU 1 corresponding to the first position X1 is equal to or less than the threshold EU A (No in S530), and the second temperature difference ED 1 corresponding to the first position X1 is the target value. If the (permissible value) is equal to or less than ED B (No in S534), the above-mentioned first position X1 is determined as the initial position of the edge mask 18. The temperature distribution in the width direction can be made uniform.
  • the first position may be obtained as described below.
  • step S100 based on the information acquired from the storage unit 30, a plurality of positions on the edge mask 18 and the first temperature difference EU and the second temperature difference ED corresponding to each of the plurality of positions are acquired.
  • the storage unit 30 stores a plurality of positions of the edge mask 18 and a first temperature difference EU and a first A set of data for two temperature differences ED may be stored.
  • the type of the steel plate S is, for example, the steel type, width or thickness of the steel plate.
  • the operating conditions of the rolling equipment 1 are, for example, the line speed (the conveying speed of the steel plate S), or the temperature distribution in the width direction of the steel plate S at a position upstream or downstream of the edge mask 18 .
  • FIG. 13 shows data of a plurality of positions of the edge mask 18 and the data of the first temperature difference EU and the second temperature difference ED corresponding to each of the plurality of positions for a steel plate of steel type X, width 1000 mm, and thickness 10 mm. It shows the set in tabular form.
  • the storage unit 30 may store similar data sets for steel sheets different in steel type, width or thickness from those shown in FIG. 13 .
  • step S200 based on the plurality of positions of the edge mask 18 obtained in step S100 and the first temperature difference EU (see, for example, FIG. 13) corresponding to each of the plurality of positions, edge A first regression curve representing a first correlation between the position of the mask 18 and the first temperature difference EU is obtained. Further, in step S300, based on the plurality of positions of the edge mask 18 obtained in step S100 and the second temperature difference ED corresponding to each of the plurality of positions, the position of the edge mask 18 and the second temperature difference ED Obtain a second regression curve representing a second correlation with .
  • step S400 the first position is selected from the position range in the strip width direction including the position of the edge mask 18 corresponding to the intersection of the first regression curve obtained in S200 and the second regression curve obtained in S300. to get Note that each of the first regression curve and the second regression curve may be a regression line.
  • FIG. 14 and 15 are diagrams respectively showing examples of the first regression curve (straight line) and the second regression curve (straight line) obtained in this way.
  • FIG. 16 shows the first regression curve in FIG. 14 and the second regression curve in FIG. 15 superimposed.
  • steps S200 and S300 for example, the above data sets (the plurality of positions of the edge mask 18 and the plurality of A first regression curve 102 (solid line) shown in FIG. 14 and a second regression curve 106 (solid line) shown in FIG. ).
  • the first position is acquired from the position range including the position of the edge mask 18 corresponding to the intersection of the first regression curve 102 and the second regression curve 106 (X1 (XY) in FIG. 16).
  • the position of the edge mask 18 corresponding to the intersection of the first regression curve 102 and the second regression curve 106 (X1 (XY) in FIG. 16) may be obtained as the first position.
  • the first regression shown in FIG. A curve 104 (dashed line) and a second regression curve 108 (dashed line) shown in FIG. 15 are obtained.
  • the first position is acquired from the position range including the position of the edge mask 18 corresponding to the intersection of the first regression curve 104 and the second regression curve 108 (X1(X) in FIG. 16).
  • the position of the edge mask 18 corresponding to the intersection of the first regression curve 104 and the second regression curve 108 (X1(X) in FIG. 16) may be acquired as the first position.
  • the position of the edge mask 18 corresponding to the intersection of the first regression curve indicating the first correlation and the second regression curve indicating the second correlation is the difference between the first temperature difference EU and the second temperature difference ED. is zero, or the ratio EU/ED between the first temperature difference EU and the second temperature difference ED is one.
  • can easily obtain the first position of the edge mask where is within the specified range.
  • steps S200 and S300 include a plurality of locations of edge mask 18 obtained in step S100 and a first temperature difference EU and a second temperature difference ED (e.g., 13) are obtained as they are as a first temperature difference EU and a second temperature difference ED corresponding to each of the plurality of positions.
  • step S400 the position at which the absolute value
  • Identify the closest location. Therefore, based on the position of the edge mask 18 specified in this way, the first position of the edge mask at which the absolute value of the difference
  • the position of the edge mask 18 corresponding to the threshold EU A is unknown, the initial position of the edge mask 18 may not be properly determined.
  • the positions of the edge mask corresponding to the threshold EU A of the first temperature difference EU may not be included in the plurality of positions. obtain.
  • the edge mask position corresponding to the threshold value EU A is acquired in advance.
  • step S500 compares the second temperature difference ED1 corresponding to the first position with the target value ED B (such as step S534 described above), the edge mask position corresponding to the target value ED B is unknown. Otherwise, the initial position of the edge mask 18 may not be properly determined.
  • the positions of the edge mask corresponding to the target value ED B of the second temperature difference ED may not be included in the plurality of positions. can occur.
  • the edge mask position corresponding to the target value ED B is obtained in advance. Good to keep.
  • the first regression curve 102 (first correlation) and the second regression curve 106 (second correlation) shown in FIGS. It is obtained from a data set of a plurality of positions of the edge mask 18 for each of the steel plates S and the first temperature difference EU or the second temperature difference ED corresponding to the plurality of positions.
  • the first correlation and the second correlation are obtained from a data set for a plurality of types of steel sheets S or operating conditions in which at least one of the above-described parameters is different.
  • An average first position can be obtained for the driving conditions. Therefore, for example, during position control after positioning the edge mask 18 at the initial position, the edge mask 18 can be moved quickly regardless of whether the edge mask 18 is moved inward or outward in the width direction.
  • the steel type, width, thickness, line speed, and temperature in the width direction of the steel sheet S at a position upstream of the edge mask 18 in the conveying direction of the steel sheet S The edge mask 18 for each of the steel plates S having at least one of the same temperature distribution, or a plurality of parameters including the temperature distribution in the plate width direction at a position downstream of the edge mask 18 in the conveying direction of the steel plate S. a first correlation or a second correlation from a data set of a plurality of positions and a first temperature difference EU or a second temperature difference ED corresponding to each of the plurality of positions.
  • the first regression curve 104 (first correlation) and the second regression curve 108 (second correlation) shown in FIGS.
  • a data set of the first temperature difference EU or the second temperature difference ED corresponding to the plurality of positions of the edge mask 18 of the plurality of positions.
  • the first correlation and the second correlation are obtained from a data set about a plurality of types of steel plates S having at least one of the same parameters or operating conditions, so that the steel plate to be cooled A more appropriate first position can be acquired according to the type of S, operating conditions, and the like.
  • the storage unit 30 may be provided in a remote location (for example, another plant, etc.) away from the installation location of the rolling equipment 1.
  • the storage unit 30 installed at a remote location may include a database storing parameters relating to the first correlation and the second correlation in multiple plants. Then, in step S100, parameters related to the first correlation and the second correlation stored in the database are obtained from this database, and in steps S200 and S300, edge mask 18 is determined based on the parameters obtained in step S100. A first correlation and a second correlation may be obtained for determining the initial position.
  • the parameters related to the first correlation and the second correlation in multiple plants are, for example, multiple positions of the edge mask in the rolling equipment of these plants, and the temperature of the steel plate corresponding to the multiple positions (that is, the temperature of the steel plate and/or a first temperature difference EU and/or a second temperature difference ED corresponding to the plurality of positions.
  • the parameters related to the first correlation and the second correlation are acquired from the remote database. do. Therefore, even if there is no data on the temperature distribution of the steel plate S at hand, such as when a new plant is installed, the first correlation, the second correlation, and the The first position can be obtained quickly.
  • the temperature distribution in the width direction of the steel sheet S after cooling with the coolant is measured, and the sheet of the steel sheet S obtained by such measurement
  • Data indicating the temperature distribution in the width direction may be stored in the storage unit 30 .
  • the first correlation and the second correlation may be obtained based on the data indicating the temperature distribution stored in the storage unit 30.
  • the data indicating the temperature distribution obtained by measurement is accumulated in the storage unit 30, and the first correlation and the second correlation are obtained based on the data accumulated in the storage unit 30. . Therefore, since the amount of data accumulated in the storage unit 30 increases with the passage of time, the first correlation, the second correlation, and the first position can be obtained with higher accuracy.
  • the second correlation obtained in step S300 is the position of the edge mask 18, the average temperature in the width direction of the steel plate S, and the temperature at the planned trimming position in the width direction of the steel plate S.
  • This is the correlation with the second temperature difference ED (ED'), which is the difference.
  • information indicating the trimming-scheduled position is stored in advance in the storage unit 30 .
  • the second correlation is obtained using the second temperature difference ED based on the temperature at the trimming-scheduled position in the post-process. Therefore, in this way, by excluding the trimming portion (portion including the plate edge) in the post-process from the consideration of the masking position by the edge mask 18, the position range (portion to be the product) inside the planned trimming position , it is possible to determine the first position and the initial position of the edge mask 18 at which the temperature distribution in the plate width direction can be more appropriately uniformed.
  • the curve T4 shows the temperature distribution of the steel plate S when the edge mask 18 is located at the position indicated by the broken line (position Xd).
  • a first temperature difference (EU'' in the figure) and a second temperature difference (ED' ') are equal (ie, the position Xd of the edge mask 18 can be selected as the first position where the absolute value of the difference between the first temperature difference and the second temperature difference
  • the first temperature difference (EU'') and the second temperature difference (ED'') are relatively small.
  • the temperature distribution of the steel plate S is more effectively uniformed. It turns out that it is possible.
  • step S800 for example, the position of the edge mask 18 may be adjusted as described below.
  • FIGS. 17 and 18 are each flow charts of step S800 according to one embodiment.
  • feedback control of the position of the edge mask 18 is performed based on the temperature distribution in the plate width direction according to the flowchart shown in FIG.
  • the temperature distribution in the width direction of the steel sheet S is measured on the delivery side of the cooling device 6 using the delivery side temperature distribution measuring unit 14 (S810).
  • a first temperature difference EU is obtained based on the temperature distribution measured in step S810 (S812).
  • the position of the edge mask 18 in the width direction is adjusted so that the first temperature difference EU obtained in step S812 does not exceed the threshold value EUA .
  • step S812 the position of the edge mask 18 in the width direction may be adjusted so that the first temperature difference EU acquired in step S812 approaches the threshold value EUA .
  • the edge mask 18 is moved outward in the width direction of the steel sheet S (in the direction from the central portion of the steel sheet S toward the edge of the steel sheet).
  • the edge mask 18 is moved inward in the sheet width direction (direction from the edge of the steel sheet S toward the center).
  • the position of the edge mask 18 is adjusted so as to follow the meandering of the steel sheet S based on the temperature distribution in the sheet width direction.
  • the temperature distribution in the width direction of the steel sheet S is measured on the inlet side and/or the outlet side of the cooling device 6 using the inlet-side temperature distribution measuring unit 12 or the outlet-side temperature distribution measuring unit 14.
  • the meandering amount of the steel plate S is calculated based on the temperature distribution measured in step S820 (S822).
  • the amount of meandering means the amount of deviation between the center of the equipment in the width direction and the center of the steel sheet S in the width direction in FIG.
  • the actual positions of the strip widths E A and E B are obtained from the amount of meandering calculated in step S822, and the positions of the edge masks 18A and 18B in the strip width direction are adjusted with respect to the respective strip edges ( S824).
  • step S820 after the tip of the steel plate S reaches the entry-side temperature distribution measuring unit 12 until the tip of the steel plate S reaches the outlet-side temperature distribution measuring unit 14, the entry-side temperature distribution measuring unit 12 Measure the temperature distribution on the inlet side. Further, in step S822, the plate end position of the steel plate S is specified based on the temperature distribution, and the meandering amount is calculated based on the specified plate end position.
  • step S820 the entry-side temperature distribution measuring unit 12 Then, the temperature distribution on the inlet side and the temperature distribution on the outlet side are measured by the outlet side temperature distribution measuring unit 14 .
  • step S822 the plate end position of the steel plate S is specified based on the temperature distribution on the entry side and the temperature distribution on the delivery side, and the meandering amount is calculated based on the specified plate end position.
  • step S822 the average of the meandering amount calculated from the strip end position specified based on the temperature distribution on the entry side and the meandering amount calculated from the strip end position specified based on the temperature distribution on the delivery side is calculated.
  • the meandering amount of the steel plate S may be calculated.
  • the output-side temperature distribution measuring unit 14 measures the temperature distribution on the outlet side. Further, in step S822, the plate end position of the steel plate S is specified based on the temperature distribution, and the meandering amount is calculated based on the specified plate end position.
  • the position of the edge mask 18 is controlled so as to follow the meandering of the steel sheet S based on the temperature distribution of the steel sheet S on the entrance side or the exit side of the cooling device 6 without using a meandering meter or the like. can do. Further, in the above-described embodiment, a uniform temperature distribution in the width direction of the steel sheet S is maintained so as to follow meandering based on the temperature distribution of the steel sheet S on the entry side or exit side of the cooling device 6. As such, the position of the edge mask 18 can be controlled.
  • both the adjustment of the position of the edge mask 18 based on the flowchart of FIG. 17 and the adjustment of the position of the edge mask 18 based on the flowchart of FIG. 18 may be performed in parallel.
  • a method for initial position determination of an edge mask comprises: A method for determining the initial position of an edge mask for shielding a coolant jetted toward a steel plate in a region including a plate end position in the width direction of the steel plate, A first correlation between the position of the edge mask in the width direction of the steel sheet and a first temperature difference EU, which is the difference between the maximum temperature and the average temperature of the steel sheet in the width direction of the steel sheet, and the position of the edge mask and the average temperature and the plate end position in the plate width direction of the steel plate, or the temperature at a position inside by a specified amount from the plate end position and outside the position where the maximum temperature is reached.
  • a first obtaining step for example, S100 to S300 described above of obtaining a second correlation with the temperature difference ED; of the difference
  • the temperature distribution in the sheet width direction of the steel sheet becomes smoother as the above-described first temperature difference EU and the above-described second temperature difference ED are smaller. Further, the larger the insertion amount of the edge mask in the strip width direction from the strip edge position, the larger the first temperature difference EU and the smaller the second temperature difference ED.
  • of the difference between the first temperature difference EU and the second temperature difference ED is within a specified range, and the edge mask position is obtained using the first position.
  • the width of the steel sheet is set from the initial stage of cooling the steel sheet. It becomes easier to make the directional temperature distribution uniform. Also, since the first position is acquired based on the first temperature difference EU and the second temperature difference ED, the initial position of the edge mask can be appropriately determined by simple calculation. Therefore, according to the method (1) above, it is possible to appropriately set the initial position of the edge mask that facilitates equalizing the temperature distribution in the width direction of the steel sheet while reducing the calculation load.
  • the first position is determined as the initial position.
  • the first position of the edge mask where both the first temperature difference EU and the second temperature difference ED are relatively small is set as the edge mask initial position. From the initial stage, the temperature distribution in the sheet width direction becomes more uniform. Also, since the first position is acquired based on the first temperature difference EU and the second temperature difference ED, the initial position of the edge mask can be appropriately determined by simple calculation. Therefore, according to the method (2) above, it is possible to appropriately set the initial position of the edge mask that facilitates homogenizing the temperature distribution in the width direction of the steel sheet while reducing the calculation load.
  • a first temperature difference EU1 which is the first temperature difference corresponding to the first position, is greater than a threshold value EUA for the first temperature difference, determine the position of the edge mask corresponding to the threshold value EUA . Determined as the initial position.
  • the position where the temperature of the steel plate is highest in the width direction is somewhat inside the plate edge position. Even if the absolute value of the above difference
  • the first temperature difference EU 1 corresponding to the first position acquired in (1) above that is, the first temperature difference EU 1 when the position of the edge mask is the first position If the difference EU 1 ) is greater than the threshold EU A , then the position of the edge mask corresponding to the threshold EU A is determined as the initial position. Therefore, it is possible to avoid an increase in the trim amount due to an excessive first temperature difference EU. Therefore, it is possible to more effectively suppress a decrease in yield.
  • the first position is determined as the initial position.
  • the first temperature difference EU 1 corresponding to the first position acquired in (1) above is equal to or less than the threshold value EU A and is not excessive, the first position is edge-masked. is determined as the initial position of Therefore, the temperature distribution in the width direction of the steel sheet can be more easily uniformed. Therefore, quality deterioration, deformation, etc. of the steel sheet can be more effectively suppressed.
  • the first temperature difference EU 1 is equal to or less than the threshold value EU A
  • the second temperature difference ED 1 which is the second temperature difference corresponding to the first position
  • the target value ED B of the second temperature difference is equal to the target value ED B of the second temperature difference.
  • the trim amount of the steel sheet tends to increase as the second temperature difference ED increases.
  • the first temperature difference EU1 corresponding to the first position is equal to or less than the threshold
  • the second temperature difference corresponding to the first position is the target value (permissible value) If it is greater than ED B , the edge mask position corresponding to the target value ED B is set as the provisional initial position, and if the first temperature difference EU B corresponding to the provisional initial position is equal to or less than the threshold value EU A , the target value ED B
  • the edge mask position corresponding to is set as the initial position. That is, since the temperature difference from the average temperature is kept within the allowable range at all positions in the sheet width direction, the trim amount can be effectively reduced.
  • the first temperature difference EU 1 is equal to or less than the threshold value EU A
  • the second temperature difference ED 1 which is the second temperature difference corresponding to the first position, is equal to the target value ED B of the second temperature difference. If so, then the first position is determined as the initial position.
  • the first temperature difference EU1 corresponding to the first position is equal to or less than the threshold, and the second temperature difference corresponding to the first position is the target value (permissible value) ED
  • the above-described first position is determined as the initial position. Therefore, the temperature distribution in the width direction of the steel sheet can be made uniform while suppressing an increase in the trim amount.
  • the first obtaining step Acquiring a first regression curve representing the first correlation based on the plurality of positions of the edge mask in the plate width direction and the first temperature difference EU corresponding to each of the plurality of positions, obtaining a second regression curve representing the second correlation based on the plurality of positions of the edge mask in the plate width direction and the second temperature difference ED corresponding to each of the plurality of positions;
  • the first position is acquired from a position range in the board width direction including the position of the edge mask corresponding to the intersection of the first regression curve and the second regression curve.
  • the position of the edge mask corresponding to the intersection of the first regression curve indicating the first correlation and the second regression curve indicating the second correlation is the difference between the first temperature difference EU and the second temperature difference ED.
  • This is the position where the absolute value
  • the first acquisition step a plurality of positions of the edge mask in the plate width direction, the first temperature difference EU corresponding to each of the plurality of positions, and the second temperature difference EU corresponding to each of the plurality of positions Get the temperature difference ED
  • the second acquisition step from among the plurality of positions, the position at which the absolute value
  • is the minimum, or the ratio EU/ED is 1 Identify the location closest to . Therefore, based on the edge mask position specified in this way, the first position of the edge mask at which the absolute value of the difference
  • the plurality of positions includes the position of the edge mask corresponding to a threshold EU A of the first temperature difference EU or the position of the edge mask corresponding to a target value ED B of the second temperature difference ED. .
  • the threshold value EU A of the first temperature difference EU and the target value of the second temperature difference ED are set at the plurality of positions. It is possible that the position of the edge mask corresponding to EDB is not included.
  • the plurality of positions of the edge mask in the strip width direction are the positions of the edge mask corresponding to the threshold EU A of the first temperature difference EU or the target value ED B of the second temperature difference ED. the initial position of the edge mask based on a comparison of the first temperature difference EU 1 at the first position with a threshold value EU A or a comparison of the second temperature difference ED 1 at the first position with a target value ED B. can be properly determined.
  • the steel type, width, thickness, line speed of the steel sheet, temperature distribution in the width direction of the steel sheet at a position upstream of the edge mask in the conveying direction of the steel sheet, or the conveying direction At least one of a plurality of parameters including the temperature distribution in the plate width direction at a position downstream of the edge mask in the position of the edge mask for each of a plurality of different steel plates and corresponding to the position
  • the first correlation or the second correlation is obtained from the data set of the first temperature difference EU or the second temperature difference ED.
  • the first correlation and the second correlation are obtained from a data set for a plurality of types of steel sheets or operating conditions in which at least one of the above parameters is different. Or for driving conditions, an average first position can be obtained. Therefore, for example, during position control after the edge mask is positioned at the initial position, the edge mask can be moved quickly regardless of whether it is moved inward or outward in the width direction of the board.
  • the steel type, width, thickness, line speed of the steel sheet, temperature distribution in the width direction of the steel sheet at a position upstream of the edge mask in the conveying direction of the steel sheet, or the conveying direction At least one of a plurality of parameters including the temperature distribution in the sheet width direction at a position downstream of the edge mask in the position of the edge mask for each of the steel sheets is the same and corresponds to the position
  • the first correlation or the second correlation is obtained from the data set of the first temperature difference EU or the second temperature difference ED.
  • the first correlation and the second correlation are acquired from a data set for a plurality of types of steel plates or operating conditions having at least one of the same parameters, so that A more appropriate first position can be obtained according to the type of steel plate, operating conditions, and the like.
  • the first acquisition step acquires the first correlation and the second correlation based on the parameter.
  • parameters related to the first correlation and the second correlation (temperature distribution in the plate width direction of the steel plate, the first temperature difference EU or the second temperature difference ED, etc.) from the remote database to get Therefore, even if there is no data on the temperature distribution of the steel plate at hand, such as when a new plant is installed, the first correlation, the second correlation, and the second correlation are based on the above-described parameters obtained from the remote database. 1 position can be acquired quickly.
  • measuring the temperature distribution in the width direction of the steel sheet after cooling with the coolant a step of storing data indicating the temperature distribution in the plate width direction obtained in the step of measuring in a storage unit;
  • the first acquisition step the first correlation and the second correlation are acquired based on the data stored in the storage unit.
  • the data indicating the temperature distribution obtained by the measurement is accumulated in the storage unit, and the first correlation and the second correlation are acquired based on the data accumulated in the storage unit. . Therefore, since the amount of data accumulated in the storage unit increases with the passage of time, the first correlation, the second correlation, and the first position can be obtained with higher accuracy.
  • the second correlation is a correlation between the position of the edge mask and a second temperature difference ED, which is the difference between the average temperature and the temperature at the planned trimming position in the width direction of the steel sheet.
  • the second correlation is obtained using the second temperature difference ED based on the temperature at the trimming-scheduled position in the post-process. Therefore, in this way, by excluding the trimming part (part including the plate edge) in the post-process from the consideration of the masking position by the edge mask, the position range (part to be the product) inside the planned trimming position , it is possible to determine the first position and the initial position of the edge mask at which the temperature distribution in the plate width direction can be more appropriately uniformed.
  • An edge mask initial position determination apparatus includes: An edge mask initial position determination device for shielding a coolant jetted toward a steel plate in a region including a plate end position in the width direction of the steel plate, A first correlation between the position of the edge mask in the width direction of the steel sheet and a first temperature difference EU, which is the difference between the maximum temperature and the average temperature of the steel sheet in the width direction of the steel sheet, and the position of the edge mask and the average temperature and the plate end position in the plate width direction of the steel plate, or the temperature at a position inside by a specified amount from the plate end position and outside the position where the maximum temperature is reached.
  • a correlation acquisition unit that acquires a second correlation with the temperature difference ED; of the difference
  • the temperature distribution in the sheet width direction of the steel sheet becomes smoother as the above-described first temperature difference EU and the above-described second temperature difference ED are smaller. Further, the larger the insertion amount of the edge mask in the strip width direction from the strip edge position, the larger the first temperature difference EU and the smaller the second temperature difference ED.
  • the edge mask position where the absolute value
  • the initial position of the edge mask can be appropriately determined by simple calculation. Therefore, according to the above configuration (15), it is possible to appropriately set the initial position of the edge mask that facilitates homogenizing the temperature distribution in the width direction of the steel sheet while reducing the calculation load.
  • expressions such as “in a certain direction”, “along a certain direction”, “parallel”, “perpendicular”, “center”, “concentric” or “coaxial”, etc. express relative or absolute arrangements. represents not only such arrangement strictly, but also the state of being relatively displaced with a tolerance or an angle or distance to the extent that the same function can be obtained.
  • expressions such as “identical”, “equal”, and “homogeneous”, which express that things are in the same state not only express the state of being strictly equal, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
  • expressions representing shapes such as a quadrilateral shape and a cylindrical shape not only represent shapes such as a quadrilateral shape and a cylindrical shape in a geometrically strict sense, but also within the range in which the same effect can be obtained. , a shape including an uneven portion, a chamfered portion, and the like.
  • the expressions “comprising”, “including”, or “having” one component are not exclusive expressions excluding the presence of other components.
  • Cooling Equipment 1 Rolling Equipment 2 Rough Rolling Mill 4 Finishing Rolling Mill 6 Cooling Device 8 Cooling Header 9 Cooling Nozzle 10 Winding Machine 12 Entry Side Temperature Distribution Measurement Unit 14 Exit Side Temperature Distribution Measurement Unit 16 Conveyor Roll 18 Edge Mask 20 Control Device 22 Correlation Acquisition unit 23 First position acquisition unit 24 Initial position determination unit 26 Edge mask control unit 28 Temperature data accumulation unit 30 Storage unit 100 Coolant 102 First regression curve 104 First regression curve 106 Second regression curve 108 Second regression curve E A plate end E B plate end S Steel plate

Abstract

エッジマスクの初期位置決定方法は、鋼板に向けて噴出される冷却材を、前記鋼板の板幅方向における板端位置を含む領域にて遮蔽するためのエッジマスクの初期位置決定方法であって、前記板幅方向における前記エッジマスクの位置と、前記鋼板の前記板幅方向における最高温度と平均温度との差である第1温度差EUとの第1相関関係、及び、前記エッジマスクの前記位置と、前記平均温度と前記鋼板の前記板幅方向における板端位置、又は、該板端位置から規定量だけ内側かつ前記最高温度となる位置よりも外側の位置における温度との差である第2温度差EDとの第2相関関係を取得する第1取得ステップと、前記第1相関関係及び前記第2相関関係に基づいて、前記第1温度差EUと前記第2温度差EDとの差の絶対値|EU-ED|が規定範囲内となる前記エッジマスクの前記位置である第1位置を取得する第2取得ステップと、前記第1位置を用いて前記エッジマスクの初期位置を決定するステップと、を備える。

Description

エッジマスクの初期位置決定方法及びエッジマスクの初期位置決定装置
 本開示は、エッジマスクの初期位置決定方法及びエッジマスクの初期位置決定装置に関する。
 鋼板の圧延設備において、鋼板の機械的性質を作りこむ等の目的で、鋼板を冷却材で冷却することがある。鋼板の板幅方向の端部は、板幅方向の中央部に比べて温度が低下しやすい傾向があるが、冷却後の板幅方向における温度分布のばらつきが大きいと、鋼板の品質低下や、鋼板の変形による歩留まりの低下につながる。そこで、冷却過程における鋼板の板幅方向端部の過冷却を抑制するため、冷却装置からの冷却材が鋼板の板幅方向端部に直接かからないように、該端部を遮蔽するためのエッジマスクが用いられている。
 特許文献1には、熱延コイルに冷却水を供給するための冷却ヘッダの下部に、熱延コイルのエッジ部分に供給される冷却水量を調節するためのエッジマスクを備えた冷却装置が開示されている。この冷却装置では、冷却装置の入側で測定された熱延コイルの幅方向の温度及び熱延コイルの移送速度に基づいて算出される熱延コイルの幅方向の温度分布が均一になるように、エッジマスクの駆動個数と深さ(エッジマスクパターン)を調節するようになっている。
特許第5932143号公報
 特許文献1が開示する冷却装置では、熱延コイルの冷却装置入側における幅方向の温度、熱延コイルの移送速度、及び、熱延コイルに関する情報に応じて設定されるエッジマスクパターンを用いて、熱延コイルの板幅方向の温度分布を算出することにより適切なエッジマスクパターンが決定される。しかし、特許文献1の冷却装置において、エッジマスクパターンの初期設定をどのように決定しているかは不明である。また、エッジマスクパターンを決定するために、熱延コイルの板幅方向の温度分布を計算によって取得しているので、エッジマスクパターン(初期設定含む)を決定するための計算が複雑で高負荷なものとなっていると考えられる。
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、計算負荷を低減しながら、鋼板の板幅方向の温度分布を均一化しやすいエッジマスクの初期位置を適切に設定可能なエッジマスクの初期位置決定方法及びエッジマスクの初期位置決定装置を提供することを目的とする。
 本発明の少なくとも一実施形態に係るエッジマスクの初期位置決定方法は、
 鋼板に向けて噴出される冷却材を、前記鋼板の板幅方向における板端位置を含む領域にて遮蔽するためのエッジマスクの初期位置決定方法であって、
 前記板幅方向における前記エッジマスクの位置と、前記鋼板の前記板幅方向における最高温度と平均温度との差である第1温度差EUとの第1相関関係、及び、前記エッジマスクの前記位置と、前記平均温度と前記鋼板の前記板幅方向における板端位置、又は、該板端位置から規定量だけ内側かつ前記最高温度となる位置よりも外側の位置における温度との差である第2温度差EDとの第2相関関係を取得する第1取得ステップと、
 前記第1相関関係及び前記第2相関関係に基づいて、前記第1温度差EUと前記第2温度差EDとの差の絶対値|EU-ED|又は前記第1温度差EUと前記第2温度差EDとの比EU/EDが規定範囲内となる前記エッジマスクの前記位置である第1位置を取得する第2取得ステップと、
 前記第1位置を用いて前記エッジマスクの初期位置を決定するステップと、
を備える。
 また、本発明の少なくとも一実施形態に係るエッジマスクの初期位置決定装置は、
 鋼板に向けて噴出される冷却材を、前記鋼板の板幅方向における板端位置を含む領域にて遮蔽するためのエッジマスクの初期位置決定装置であって、
 前記板幅方向における前記エッジマスクの位置と、前記鋼板の前記板幅方向における最高温度と平均温度との差である第1温度差EUとの第1相関関係、及び、前記エッジマスクの前記位置と、前記平均温度と前記鋼板の前記板幅方向における板端位置、又は、該板端位置から規定量だけ内側かつ前記最高温度となる位置よりも外側の位置における温度との差である第2温度差EDとの第2相関関係を取得する相関関係取得部と、
 前記第1相関関係及び前記第2相関関係に基づいて、前記第1温度差EUと前記第2温度差EDとの差の絶対値|EU-ED|又は前記第1温度差EUと前記第2温度差EDとの比EU/EDが規定範囲内となる前記エッジマスクの前記位置である第1位置を取得する第1位置取得部と、
 前記第1位置を用いて前記エッジマスクの初期位置を決定する初期位置決定部と、
を備える。
 本発明の少なくとも一実施形態によれば、計算負荷を低減しながら、鋼板の板幅方向の温度分布を均一化しやすいエッジマスクの初期位置を適切に設定可能なエッジマスクの初期位置決定方法及びエッジマスクの初期位置決定装置が提供される。
一実施形態に係る初期位置決定方法が適用されるエッジマスクを含む冷却装置を備えた圧延設備の構成例を示す概略図である。 一実施形態に係る冷却装置の概略構成図である。 一実施形態に係る制御装置の構成を説明するための概略図である。 一実施形態に係るエッジマスクの初期位置決定方法及び冷却装置の運転方法のフローチャートである。 鋼板の板幅方向端部における温度分布の一例を示すグラフである。 エッジマスクの位置と第1温度差EU及び第2温度差EDとの関係について説明するための図である。 エッジマスクの位置と第1温度差EUとの第1相関関係、及び、エッジマスクの位置と第2温度差EDとの相関関係の一例を模式的に示すグラフである。 一実施形態に係るステップS500のフローチャートである。 一実施形態に係るステップS500のフローチャートである。 第1温度差EUと閾値EUとの比較を説明するための図である。 一実施形態に係るステップS500のフローチャートである。 第2温度差EDと目標値EDとの比較を説明するための図である。 エッジマスクの複数の位置とこれに対応する第1温度差EU及び第2温度差EDのデータセット例を示す図である。 第1回帰曲線の一例を示す図である。 第2回帰曲線の一例を示す図である。 図14における第1回帰曲線と図15における第2回帰曲線とを重ねて表示したものである。 一実施形態に係るステップS800のフローチャートである。 一実施形態に係るステップS800のフローチャートである。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
(圧延設備及び冷却装置の構成)
 図1は、幾つかの実施形態に係るエッジマスクの初期位置決定方法が適用されるエッジマスクを含む冷却装置を備えた圧延設備の構成例を示す概略図である。図1に示す圧延設備1は、鋼板Sを熱間圧延するための設備であり、粗圧延機2と、仕上圧延機4と、冷却装置6と、巻取機10と、を含む。加熱炉から排出された鋼板Sは、粗圧延機2及び仕上圧延機4で圧延された後、冷却装置6で冷却され、巻取機10で圧延コイルとして巻き取られる。なお、鋼板Sの搬送ラインには、鋼板Sを搬送するための搬送ロール16(図2参照)が設けられる。
 図2は、幾つかの実施形態に係る冷却装置6の概略構成図である。図1及び図2に示すように、冷却装置6は、鋼板Sの上方及び/又は下方に配置される冷却ヘッダ8と、冷却ヘッダ8からの冷却材100を鋼板Sに向けて噴出するように構成された冷却ノズル9と、冷却ノズル9と鋼板Sとの間に設けられるエッジマスク18(18A,18B)と、を含む。幾つかの実施形態では、図1に示すように、鋼板Sの搬送ラインに沿って複数の冷却ヘッダ8が配列されていてもよく、複数の冷却ヘッダ8の各々に設けられた冷却ノズル9から、鋼板Sに向けて冷却材100が噴出されるようになっていてもよい。冷却材100は、例えば水であってもよい。
 冷却ノズル9は、板幅方向において鋼板Sに対応する領域に亘って、鋼板Sに向けて冷却材を噴出するように構成される。一実施形態では、図2に示すように、板幅方向に沿って複数の孔形状の冷却ノズル9が配列されていてもよい。あるいは、一実施形態では、板幅方向に沿って延びるスリット状の冷却ノズル9が設けられていてもよい。
 図2に示すように、エッジマスク18(18A,18B)は、鋼板Sに向けて噴出される冷却材を、鋼板Sの板幅方向における板端E,Eの位置を含む領域にて遮蔽するように構成される。エッジマスク18によって冷却材が遮蔽される領域においては、鋼板Sに冷却材が直接かかるのが抑制される。このため、エッジマスク18を設けることによって、板端位置を含む領域において鋼板Sの冷却が緩和される。
 また、エッジマスク18は、板幅方向に沿って移動可能に構成される。すなわち、エッジマスクの板幅方向における位置が調節可能となっている。なお、板幅方向におけるエッジマスク18の位置は、板幅方向における板端位置からのエッジマスク18の挿入量(板端方向における鋼板Sとエッジマスク18とのオーバーラップ長さ)で表すことができる。
 図2には、鋼板Sの上方に設けられた冷却ヘッダ8及び冷却ノズル9に対応して設けられたエッジマスク18が示されているが、幾つかの実施形態では、鋼板Sの下方に設けられた冷却ヘッダ8及び冷却ノズル9に対応してエッジマスク18が設けられていてもよい。
 図1に示すように、圧延設備1は、冷却装置6を制御するための制御装置20をさらに備えている。制御装置20は、幾つかの実施形態に係るエッジマスクの初期位置決定装置として機能する。
 また、幾つかの実施形態では、圧延設備1は、鋼板Sの搬送方向において冷却装置6の入側に設けられる入側温度分布計測部12及び鋼板Sの搬送方向において冷却装置6の出側に設けられる出側温度分布計測部14を備えている。
 入側温度分布計測部12は、冷却装置6の入側にて、鋼板Sの板幅方向における温度分布を計測するように構成される。出側温度分布計測部14は、冷却装置6の出側にて、鋼板Sの板幅方向における温度分布を計測するように構成される。一実施形態では、入側温度分布計測部12及び/又は出側温度分布計測部14は、板幅方向における複数の位置の各々における鋼板Sの温度を計測するように構成されていてもよい。
 図3は、一実施形態に係る制御装置20の構成を説明するための概略図である。図3に示すように、制御装置20は、相関関係取得部22と、第1位置取得部23と、初期位置決定部24と、エッジマスク制御部26と、温度データ蓄積部28と、を備えている。
 相関関係取得部22は、板幅方向におけるエッジマスク18の位置と後述する第1温度差EUとの第1相関関係、及び、板幅方向におけるエッジマスク18の位置と後述する第2温度差EDとの第2相関関係を取得するように構成される。以下、「エッジマスクの位置」とは、板幅方向におけるエッジマスクの位置を意味する。相関関係取得部22は、第1相関関係及び第2相関関係の取得に必要な情報を記憶部30から受け取るように構成される。
 第1位置取得部23は、相関関係取得部22により取得された第1相関関係及び第2相関関係に基づいて、第1温度差EUと第2温度差EDとの差の絶対値|EU-ED|又は第1温度差EUと第2温度差EDとの比EU/EDが規定範囲内となるエッジマスク18の位置である第1位置を取得するように構成される。
 初期位置決定部24は、第1位置取得部23により取得された第1位置を用いてエッジマスク18の初期位置を決定するように構成される。
 エッジマスク制御部26は、エッジマスク18の位置を制御するように構成される。一実施形態では、エッジマスク制御部26は、初期位置決定部24で決定された初期位置にエッジマスク18が位置するように、板幅方向におけるエッジマスク18の位置を調節するように構成される。一実施形態では、エッジマスク制御部26は、入側温度分布計測部12及び/又は出側温度分布計測部14からの鋼板Sの板幅方向の温度分布を示す信号に基づいて、板幅方向におけるエッジマスク18の位置を調節するように構成される。
 温度データ蓄積部28は、入側温度分布計測部12及び/又は出側温度分布計測部14で計測された鋼板Sの板幅方向の温度分布を示すデータを記憶部30に記憶させて蓄積するように構成される。
 制御装置20は、プロセッサ(CPU等)、記憶装置(メモリデバイス;RAM等)、補助記憶部及びインターフェース等を備えた計算機を含む。制御装置20は、インターフェースを介して、上述の入側温度分布計測部12及び出側温度分布計測部14から、鋼板Sの板幅方向の温度分布の計測値を示す信号を受け取るようになっている。プロセッサは、このようにして受け取った信号を処理するように構成される。また、プロセッサは、記憶装置に展開されるプログラムを処理するように構成される。これにより、上述の各機能部(相関関係取得部22、第1位置取得部23、初期位置決定部24、エッジマスク制御部26及び温度データ蓄積部28)の機能が実現される。
 制御装置20での処理内容は、プロセッサにより実行されるプログラムとして実装される。プログラムは、補助記憶部に記憶されていてもよい。プログラム実行時には、これらのプログラムは記憶装置に展開される。プロセッサは、記憶装置からプログラムを読み出し、プログラムに含まれる命令を実行するようになっている。
 記憶部30は、制御装置20を構成する計算機の主記憶部又は補助記憶部を含んでもよい。あるいは、記憶部30は、該計算機とネットワークを介して接続される遠隔記憶装置を含んでもよい。
(エッジマスクの初期位置決定方法/冷却装置の運転方法)
 以下、幾つかの実施形態に係るエッジマスク18の初期位置決定方法及び冷却装置6の運転方法について説明する。以下においては、上述の制御装置20(初期位置決定装置)を用いてエッジマスク18の初期位置決定及び冷却装置6の運転をする場合について説明するが、幾つかの実施形態では、他の装置を用いてエッジマスク18の初期位置決定及び冷却装置6の運転をしてもよい。また、以下に説明する手順のうち一部又は全部を手動で行ってもよい。
 図4は、幾つかの実施形態に係るエッジマスク18の初期位置決定方法及び冷却装置6の運転方法のフローチャートである。なお、図4に示すフローチャートでは、ステップS100~S500の手順によりエッジマスク18の初期位置を決定し、ステップS600~S800の手順では、ステップS100~S500で決定された初期位置に基づいて冷却装置6を運転する。
 図4に示すように、一実施形態では、まず、相関関係取得部22は、板幅方向におけるエッジマスク18の複数の位置の各々に対応する第1温度差EU及び第2温度差EDを取得する(S100)。ここで、第1温度差EUは、鋼板Sの板幅方向における最高温度Tmaxと平均温度Tavgとの差EU(図5参照)である。また、第2温度差EDは、鋼板Sの板幅方向における平均温度Tavgと板端位置における温度Tとの差ED(図5参照)、又は、鋼板Sの板幅方向における平均温度Tavgと、板端位置から規定量だけ内側かつ最高温度Tmaxとなる位置よりも外側の位置(XS)における温度Tとの差ED’(図5参照)である。なお、上述の、板端位置から規定量だけ内側かつ最高温度Tmaxとなる位置よりも外側の位置(XS)とは、例えば、後工程(冷却装置6による冷却後の工程)で鋼板Sをトリミングする場合の切断予定位置(トリミング予定位置)である。
 以下の説明において、便宜的に、上述の平均温度Tavgと板端位置における温度Tとの差としての第2温度差をED、上述の平均温度Tavgと上述の位置(XS)における温度Tとの差としての第2温度差をED’と区別して表記する場合があるが、基本的には、これらを区別せずに第2温度差EDと表記する。
 ここで、図5を用いて第1温度差EU及び第2温度差EDについて説明する。図5は、鋼板Sの板幅方向端部における温度分布の一例を示すグラフである。図5のグラフの横軸は、板端位置(ゼロの位置)を基準とする板幅方向における位置(即ち板端位置からの距離)を表し、値が大きいほど板幅方向内側の位置を示す。また、図5のグラフの縦軸は温度を表す。グラフ中の曲線Tは板幅方向の各位置における鋼板Sの温度を示す。
 図5に示すように、鋼板の典型的な板幅方向の温度分布では、板端位置にて最も低温(温度T)となる(エッジドロップと呼ばれる)。これは、鋼板Sの板幅方向端部は、板幅方向中央部に比べて温度が低下しやすい傾向があり、鋼板Sの搬送過程等においても低温となるためである。また、図5に示すように、板幅方向中央部の大部分では、一様な温度分布であるとともに、板幅方向における平均温度Tavgに近い温度となる。また、図5に示すように、板幅方向端部において、板端位置よりも少し内側の位置において、温度Tが平均よりも高くなり、最高温度Tmaxとなる位置が出現する場合がある(エッジアップと呼ばれる)。このような温度分布から、上述の第1温度差EU及び第2温度差EDを取得することができる。
 ステップS100では、記憶部30に予め記憶された情報に基づいて、第1温度差EU及び第2温度差EDを取得してもよい。例えば、記憶部30には、板幅方向におけるエッジマスク18の複数の位置の各々に対応する鋼板Sの板幅方向の温度分布(板幅方向の複数の箇所における温度)が予め記憶されていてもよい。この場合、相関関係取得部22は、記憶部30から、エッジマスク18の複数の位置の各々に対応する上述の温度分布を取得して、これらの温度分布に基づいて、エッジマスク18の複数の位置の各々に対応する第1温度差EU及び第2温度差EDを算出するようにしてもよい。あるいは、記憶部30には、板幅方向におけるエッジマスク18の複数の位置の各々に対応する第1温度差EU及び第2温度差EDが予め記憶されていてもよい。この場合、相関関係取得部22は、記憶部30から、エッジマスク18の複数の位置、及び、該複数の位置の各々に対応する第1温度差EU及び第2温度差EDを取得するようにしてもよい。
 次に、相関関係取得部22は、ステップS100で取得したエッジマスク位置、及び、これに対応する第1温度差EUに基づいて、板幅方向におけるエッジマスク18の位置と第1温度差EUとの第1相関関係を取得する(S200)。また、相関関係取得部22は、ステップS100で取得したエッジマスク位置、及び、これに対応する第2温度差EDに基づいて、板幅方向におけるエッジマスク18の位置と第2温度差EDとの第2相関関係を取得する(S300)。
 ここで、図6及び図7を用いて、エッジマスク18の位置と第1温度差EU及び第2温度差EDとの相関関係について説明する。図6は、エッジマスク18の位置と第1温度差EU及び第2温度差EDとの関係について説明するための図である。図6には、3つのケース1~3について、エッジマスクの位置及びこれに対応する温度分布が模式的に示されている。また、ケース1~3のそれぞれにおける鋼板Sの温度分布が曲線T1~T3で示されている。ケース1~3では、エッジマスク18の位置(ここでは、板幅方向にて最も内側の位置)がそれぞれXa、Xb、Xcであり、3つのケースにおける板端位置(X0)を基準とするエッジマスク挿入量は、ケース3で最も大きく、ケース2で最も小さい。なお、ケース2におけるエッジマスク挿入量は、ケース1に比べてΔXだけ小さい。また、ケース3におけるエッジマスク挿入量は、ケース1に比べてΔXだけ大きい。
 図6からわかるように、エッジマスク18の位置に応じて、鋼板Sの板幅方向の端部における温度分布が変わる。より具体的には、エッジマスク18の挿入量が小さいほど、板端部の温度が相対的に低くなり、第1温度差EUは小さく、第2温度差ED(及びED’)は大きくなる傾向がある。また、エッジマスク18の挿入量が大きいほど、板端部の温度が相対的に高くなり、第1温度差EUは大きく、第2温度差ED(及びED’)は小さくなる傾向がある。
 このような、エッジマスク18の位置(挿入量)と、第1温度差EU及び第2温度差ED(及びED’)との相関関係をより一般的に示すと、図7に示すグラフのようになる。図7は、エッジマスクの位置(挿入量)(横軸)と第1温度差EU(縦軸)との第1相関関係、及び、エッジマスクの位置(挿入量)(横軸)と第2温度差ED(及びED’)(縦軸)との相関関係の一例を模式的に示すグラフである。なお、図7のグラフでは、エッジマスク18の位置(挿入量)と第1温度差EU又は第2温度差ED(ED’)との相関関係が線形の相関関係として表されているが、実際には、完全な線形ではなく、曲線的な相関関係である場合もある。
 図7に示すように、エッジマスク位置(挿入量)と第1温度差EUとの相関関係(第1相関関係)を示す直線の傾きと、エッジマスク位置(挿入量)と第2温度差ED(ED’)との相関関係(第2相関関係)を示す直線の傾きとは、符号が反対であるため、両者は交点を有する。この交点に対応するエッジマスク位置(挿入量)X1(X1’)において、第1温度差EUと、第2温度差ED(ED’)は等しくなる。なお、このとき、第1温度差EUと第2温度差ED(ED’)との差の絶対値|EU-ED|(又は|EU-ED’|)はゼロであり、第1温度差EUと第2温度差ED(ED’)との比EU/ED(又はEU/ED’)は1である。なお、図6に示すケース1では、第1温度差EUと第2温度差EDとが等しい。
 次に、第1位置取得部23は、ステップS300で取得した上述の第1相関関係及び第2相関関係に基づいて、第1温度差EUと前記第2温度差EDとの差の絶対値|EU-ED|又は第1温度差EUと第2温度差EDとの比EU/EDが規定範囲内となるエッジマスク18の位置である第1位置を取得する(S400)。
 ステップS400では、例えば、上述の差の絶対値|EU-ED|がゼロとなる位置(図7におけるX1の位置)、又は、ゼロに近い値となるエッジマスク18の位置を、第1位置として取得してもよい。あるいは、上述の比EU/EDが1となる位置(図7におけるX1の位置)、又は1に近い値となるエッジマスク18の位置を、第1位置として取得してもよい。
 一実施形態では、ステップS400では、上述の差の絶対値|EU-ED|が0℃以上100℃以下の範囲内となるエッジマスク18の位置を、第1位置として取得してもよい。上述の差の絶対値|EU-ED|が0℃以上100℃以下の範囲内となる位置にエッジマスク18を位置させることで、第1温度差EU又は第2温度差EDが過大となるのを抑制することができる。よって、第1位置を上述の位置に設定することで、第1温度差EU又は第2温度差EDが過大になること、及び、これによる鋼板の品質低下や鋼板の形状不良等を効果的に抑制することができる。
 次に、初期位置決定部24は、ステップS400で取得した第1位置を用いて、エッジマスク18の初期位置を決定する(ステップS500)。ここで、エッジマスク18の初期位置とは、冷却装置6による鋼板Sの冷却開始時におけるエッジマスク18の位置である。
 また、エッジマスク制御部26は、ステップS400で決定した初期位置にエッジマスク18が位置するように、エッジマスク18を駆動するための駆動部(不図示)を制御する(S600)。そして、冷却装置6を稼働させて、鋼板Sの冷却を開始する(S700)。冷却装置6による鋼板Sの冷却中は、入側温度分布計測部12又は出側温度分布計測部14によって、冷却装置6の入側又は出側における鋼板Sの板幅方向の温度分布を計測し、該温度計測分布に基づいて、エッジマスク18の位置を調節するようにしてもよい(S800)。
 一般に、鋼板Sの板幅方向における温度分布は、上述の第1温度差EU及び上述の第2温度差EDが小さいほど、なだらかなものとなる。また、図6や図7を参照して説明したように、板端位置からの板幅方向におけるエッジマスクの挿入量が大きいほど、第1温度差EUが大きくなり、第2温度差EDが小さくなる傾向がある。
 この点、上述の実施形態によれば、ステップS100~S500の手順により、エッジマスク18の位置と第1温度差EUとの第1相関関係、及び、エッジマスク18の位置と第2温度差EDとの第2相関関係に基づいて、第1温度差EUと第2温度差EDとの差の絶対値|EU-ED|又は第1温度差EUと第2温度差EDとの比EU/EDが規定範囲内となるエッジマスク18の位置である第1位置を取得し、この第1位置を用いてエッジマスク18の初期位置を決定する。すなわち、第1温度差EU及び第2温度差EDの両方が比較的小さくなるエッジマスク18の第1位置を用いてエッジマスク18の初期位置を設定するようにしたので、鋼板Sの冷却の初期段階から板幅方向温度分布を均一化しやすくなる。また、第1温度差EU及び第2温度差EDに基づいて第1位置を取得するようにしたので、簡易な計算により、エッジマスク18の初期位置を適切に決定することができる。よって、上述の実施形態によれば、計算負荷を低減しながら、鋼板Sの板幅方向の温度分布を均一化しやすいエッジマスク18の初期位置を適切に設定することができる。
 上述のステップS500では、例えば、以下に説明するように初期位置を決定してもよい。ここで、図8、図9及び図11は、それぞれ、一実施形態に係るステップS500のフローチャートである。
 図8に示す例示的な実施形態では、ステップS500において、ステップS400で取得した第1位置を、そのままエッジマスク18の初期位置として決定する(S510)。
 上述の実施形態によれば、第1温度差EU及び第2温度差EDの両方が比較的小さくなるエッジマスク18の第1位置をエッジマスク初期位置として設定するようにしたので、鋼板Sの冷却の初期段階から板幅方向温度分布をより均一化しやすくなる。
 図9に示す例示的な実施形態では、ステップS500において、まず、ステップS400で取得した第1位置に対応する第1温度差EU(エッジマスク18の位置が第1位置である場合の第1温度差EU)と、予め設定される第1温度差EUの閾値EUとを比較する(S520)。
 第1位置に対応する第1温度差EUが閾値EUよりも大きい場合(S520でYes)、閾値EUに対応するエッジマスク18の位置を初期位置として決定する(S522)。一方、第1位置に対応する第1温度差EUが閾値EU以下である場合(S520でNo)、第1位置をエッジマスク18の初期位置として決定する(S524)。
 ここで、図10は、第1位置に対応する第1温度差EUと、第1温度差の閾値EUとの比較を説明するための図である。なお、図10において鋼板Sの図示が省略されているが、鋼板Sの板端の位置はX0で示されている。また、図10において、X1は第1位置を表し、XAは、第1温度差の閾値EUに対応する板幅方向の位置を表す。また、図10において、エッジマスク18が第1位置X1に位置するときの鋼板Sの板幅方向の温度分布を曲線T1(実線)で示し、エッジマスク18が上述の位置XAに位置するときの鋼板Sの板幅方向の温度分布を曲線TA(破線)で示す。
 板幅方向において鋼板Sの温度が最も高い位置は、板端位置よりもある程度内側である。仮に、第1温度差EUと第2温度差EDとの差の絶対値|EU-ED|又は比EU/EDが規定範囲内だったとしても、第1温度差EUが過大であると、例えば、鋼板Sの温度が最も高い位置を含む範囲までトリミングしなければならない等、後工程での鋼板のトリム量を大きくする必要が出てしまう。例えば図10に示すように、エッジマスク18が第1位置X1に位置するとき、上述の差の絶対値|EU-ED|又は比EU/EDは規定範囲内であるが、第1温度差EUが過大である(例えば閾値EUよりも大きい)と、板幅方向にてより内側の範囲までトリミングしなければならない等、鋼板のトリム量を大きくする必要が出てしまう。
 この点、上述の実施形態によれば、第1位置X1に対応する第1温度差EUが閾値EUよりも大きい場合には(S520でYes)、該閾値EUに対応するエッジマスク18の位置XAを初期位置として決定する(S522)。このように決定される初期位置にエッジマスク18を位置させることで、図10に示すように鋼板Sの最高温度を低下させることができ(曲線T1及びTA参照)、したがって、第1温度差EUが過大であることによるトリム量の増大を回避することができる。よって、歩留まりの低下をより効果的に抑制することができる。
 また、上述の実施形態によれば、第1位置X1に対応する第1温度差EUが閾値EU以下であり過大でない場合には(S520でNo)、該第1位置X1をエッジマスク18の初期位置として決定する(S524)。したがって、鋼板Sの板幅方向の温度分布をより均一化しやすくなる。よって、鋼板Sの品質低下や変形等をより効果的に抑制することができる。
 図11に示す例示的な実施形態では、ステップS500において、まず、ステップS400で取得した第1位置に対応する第1温度差EU(エッジマスク18の位置が第1位置である場合の第1温度差EU)と、予め設定される第1温度差EUの閾値EUとを比較する(S530)。
 第1位置に対応する第1温度差EUが閾値EUよりも大きい場合(S530でYes)、閾値EUに対応するエッジマスク18の位置を初期位置として決定する(S532)。なお、本実施形態におけるS530及びS532は、図9に示す実施形態におけるS520及びS522と同じである。
 一方、ステップS530で第1位置に対応する第1温度差EUが閾値EU以下である場合(S530でNo)、第1位置に対応する第2温度差EDと、第2温度差の目標値EDとを比較する(S534)。
 そして、第1位置に対応する第2温度差EDが目標値EDよりも大きい場合(S534でYes)、目標値EDに対応するエッジマスク位置を初期位置として仮決定(仮決定初期位置)する(S540)。仮決定初期位置に対応する第1温度差EUが閾値EUよりも大きい場合は(S542でYes)、閾値EUに対応するエッジマスク18の位置を初期位置として決定する(S536)。仮決定初期位置に対応する第1温度差EUが閾値EU以下である場合は(S542でNo)、目標値EDに対応するエッジマスク位置を初期位置として決定する(S544)。一方、第1位置に対応する第2温度差EDが目標値ED以下である場合(S534でNo)、第1位置をエッジマスク18の初期位置として決定する(S538)。
 ここで、図12は、第1位置に対応する第2温度差EDと、第2温度差の目標値EDとの比較を説明するための図である。なお、図12において鋼板Sの図示が省略されているが、鋼板Sの板端の位置はX0で示されている。また、図12において、X1は第1位置を表し、XAは、第1温度差の閾値EUに対応する板幅方向の位置を表す。また、図12において、エッジマスク18が第1位置X1に位置するときの鋼板Sの板幅方向の温度分布を曲線T1(実線)で示し、エッジマスク18が上述の位置XAに位置するときの鋼板Sの板幅方向の温度分布を曲線TA(破線)で示す。
 後工程での鋼板Sのトリム量は、第2温度差EDが大きいほど大きくなる傾向がある。この点、上述の実施形態では、上述の第1位置X1に対応する第1温度差EUが閾値EU以下であり(S530でNo)、かつ、第1位置X1に対応する第2温度差EDが目標値(許容値)EDよりも大きい場合(S534でYes)、目標値EDに対応するエッジマスク位置を初期位置として仮決定する(S540)。仮決定初期位置に対応する第1温度差EUが閾値EUよりも大きい場合(S542でYes)、第1温度差の閾値EUに対応するエッジマスク位置XAを初期位置として設定する(S536)。すなわち、第1位置X1での温度分布(曲線T1)に比べ、第1温度差EUが大きくなるとともに第2温度差が小さくなる位置XA(曲線TA参照)を初期位置として設定するようにしたので、後工程でのトリム量を効果的に低減することができる。
 上述の実施形態では、第1位置X1に対応する第1温度差EUが閾値EU以下であり(S530でNo)、かつ、第1位置X1に対応する第2温度差EDが目標値(許容値)EDよりも大きく(S534でYes)、仮決定初期位置に対応する第1温度差EUが閾値EU以下である場合(S542でNo)、目標値EDに対応するエッジマスク位置を初期位置として決定するようにした(S544)。すなわち、板幅方向における全ての位置において平均温度との温度差を許容範囲に収めることができるので、トリム量を効果的に低減することができる。
 また、ステップS534にて、第1位置に対応する第2温度差EDが、第2温度差の目標値ED以下である場合(S534でNo)、第1位置をエッジマスク18の初期位置として決定する(S538)。
 上述の実施形態では、第1位置X1に対応する第1温度差EUが閾値EU以下であり(S530でNo)、かつ、第1位置X1に対応する第2温度差EDが目標値(許容値)ED以下である場合(S534でNo)、上述の第1位置X1をエッジマスク18の初期位置として決定するようにしたので、トリム量の増大を抑制しながら、鋼板Sの板幅方向の温度分布を均一化することができる。
 上述のステップS100~S400では、例えば、以下に説明するように第1位置を取得してもよい。
 ステップS100では、記憶部30から取得される情報に基づいて、エッジマスク18の複数の位置及び該複数の位置の各々に対応する第1温度差EU及び第2温度差EDを取得する。ここで、記憶部30には、鋼板Sの種類及び/又は圧延設備1の運転条件ごとに、エッジマスク18の複数の位置、及び該複数の位置の各々に対応する第1温度差EU及び第2温度差EDのデータのセットが、格納されていてもよい。鋼板Sの種類は、例えば、鋼板の鋼種、板幅又は板厚等である。圧延設備1の運転条件は、例えば、ライン速度(鋼板Sの搬送速度)、又は、エッジマスク18よりも上流側又は下流側の位置での鋼板Sの板幅方向の温度分布等である。
 記憶部30に格納されるデータの例を図13に示す。図13は、鋼種X、板幅1000mm、板厚10mmの鋼板についての、エッジマスク18の複数の位置及び該複数の位置の各々に対応する第1温度差EU及び第2温度差EDのデータのセットをテーブル形式で示すものである。記憶部30には、図13に示すデータに加え、図13に示すものとは鋼種、板幅又は板厚が異なる鋼板についての、同様のデータのセットが格納されていてもよい。
 幾つかの実施形態では、ステップS200では、ステップS100で取得されるエッジマスク18の複数の位置と該複数の位置の各々に対応する第1温度差EU(例えば図13参照)に基づいて、エッジマスク18の位置と第1温度差EUとの第1相関関係を表す第1回帰曲線を取得する。また、ステップS300では、ステップS100で取得されるエッジマスク18の複数の位置と、該複数の位置の各々に対応する第2温度差EDに基づいて、エッジマスク18の位置と第2温度差EDとの第2相関関係を表す第2回帰曲線を取得する。そして、ステップS400では、S200で得られる第1回帰曲線と、S300で得られる第2回帰曲線との交点に対応するエッジマスク18の位置を含む板幅方向の位置範囲の中から、第1位置を取得する。なお、第1回帰曲線及び第2回帰曲線は、それぞれ、回帰直線であってもよい。
 図14及び図15は、このようにして取得される第1回帰曲線(直線)及び第2回帰曲線(直線)の一例をそれぞれ示す図である。図16は、図14における第1回帰曲線と、図15における第2回帰曲線とを重ねて表示したものである。
 例えば、ステップS200及びS300では、例えば、鋼種(X又はY)又は板幅(t、s)が異なる4種の鋼板Sについての上述のデータのセット(エッジマスク18の複数の位置及び該複数の位置の各々に対応する第1温度差EU及び第2温度差EDのデータのセット)に基づき、図14に示す第1回帰曲線102(実線)、及び図15に示す第2回帰曲線106(実線)を得る。そして、S400では、第1回帰曲線102及び第2回帰曲線106の交点に対応するエッジマスク18の位置(図16におけるX1(XY))を含む位置範囲の中から、第1位置を取得する。なお、S400では、第1回帰曲線102及び第2回帰曲線106の交点に対応するエッジマスク18の位置(図16におけるX1(XY))を第1位置として取得してもよい。
 あるいは、例えば、ステップS200及びS300では、上述の4種のデータセットのうち、特定の鋼種(この例では鋼種X)の鋼板Sについての上述のデータのセットに基づき、図14に示す第1回帰曲線104(破線)、及び図15に示す第2回帰曲線108(破線)を得る。そして、S400では、第1回帰曲線104及び第2回帰曲線108の交点に対応するエッジマスク18の位置(図16におけるX1(X))を含む位置範囲の中から、第1位置を取得する。なお、S400では、第1回帰曲線104及び第2回帰曲線108の交点に対応するエッジマスク18の位置(図16におけるX1(X))を第1位置として取得してもよい。
 第1相関関係を示す第1回帰曲線、及び、第2相関関係を示す第2回帰曲線との交点に対応するエッジマスク18の位置は、第1温度差EUと第2温度差EDとの差の絶対値|EU-ED|がゼロ、又は、第1温度差EUと第2温度差EDとの比EU/EDが1となる位置である。よって、上述の実施形態によれば、第1回帰曲線102,104と第2回帰曲線106,108との交点に基づいて、上述の差の絶対値|EU-ED|又は上述の比EU/EDが規定範囲内となるエッジマスクの第1位置を容易に取得することができる。
 幾つかの実施形態では、ステップS200及びS300では、ステップS100で取得されるエッジマスク18の複数の位置と、該複数の位置の各々に対応する第1温度差EU及び第2温度差ED(例えば図13参照)を、そのまま、該複数の位置の各々に対応する第1温度差EU及び第2温度差EDとして取得する。そして、ステップS400では、該複数の位置の中から、第1温度差EUと第2温度差EDとの差の絶対値|EU-ED|が最小となる位置、又は、第1温度差EUと第2温度差EDとの比EU/EDが1に最も近くなる位置を特定し、このように特定した位置を含む板幅方向の位置範囲の中から、第1位置を取得する。
 一例として、図13に示すデータセットに基づいて第1位置を習得する場合について説明する。ステップS200及びS300では、図13に示すデータセットから、エッジマスク18の複数の位置(エッジマスク挿入量=0mm,10mm,20mm,30mm,40mm)に対応する第1温度差EU及び第2温度差EDをそれぞれ取得する。ステップS400では、これら複数の位置の中から、例えば、第1温度差EUと第2温度差EDとの差の絶対値|EU-ED|が最小となる位置(エッジマスク挿入量=30mm)を特定し、該位置を含む板幅方向の位置範囲の中から第1位置を取得する。ステップS400では、例えば、上述の差の絶対値|EU-ED|が最小となる位置(エッジマスク挿入量=30mm)を第1位置として取得してもよい。あるいは、ステップS400では、これら複数の位置の中から、例えば、第1温度差EUと第2温度差EDとの比EU/EDが1に最も近くなる位置(エッジマスク挿入量=30mm)を特定し、該位置を含む板幅方向の位置範囲の中から第1位置を取得する。ステップS400では、例えば、上述の比EU/EDが1となる位置(エッジマスク挿入量=30mm)を第1位置として取得してもよい。
 上述の実施形態によれば、板幅方向におけるエッジマスク18の複数の位置の中から、上述の差の絶対値|EU-ED|が最小となる位置、又は上述の比EU/EDが1に最も近くなる位置を特定する。よって、このように特定されたエッジマスク18の位置に基づいて、上述の差の絶対値|EU-ED|又は上述の比EU/EDが規定範囲内となるエッジマスクの第1位置を容易に取得することができる。
 なお、後続のステップS500で第1位置に対応する第1温度差EUと閾値EUを比較する場合には(上述のステップS520またはS530等)、閾値EUに対応するエッジマスク18の位置が未知であると、エッジマスク18の初期位置を適切に決定できない場合がある。ここで、板幅方向におけるエッジマスクの複数の位置がランダムに選択される場合、該複数の位置に、第1温度差EUの閾値EUに対応するエッジマスクの位置が含まれないことも生じ得る。
 そこで、本実施形態のように第1温度差EU及び第2温度差EDの離散データを用いて第1位置を取得する場合には、閾値EUに対応するエッジマスク位置を予め取得しておくとよい。図13に示す例では、データセットに、閾値EU(50℃)、及び、該閾値EUに対するエッジマスク位置(エッジマスク挿入量=25mm)のデータが含まれる。
 同様に、ステップS500で第1位置に対応する第2温度差EDと目標値EDを比較する場合には(上述のステップS534等)、目標値EDに対応するエッジマスク位置が未知であると、エッジマスク18の初期位置を適切に決定できない場合がある。ここで、板幅方向におけるエッジマスクの複数の位置がランダムに選択される場合、該複数の位置に、第2温度差EDの目標値EDに対応するエッジマスクの位置が含まれないことも生じ得る。
 そこで、本実施形態のように第1温度差EU及び第2温度差EDの離散データを用いて第1位置を取得する場合には、目標値EDに対応するエッジマスク位置を予め取得しておくとよい。図13に示す例では、データセットに、目標値ED(55℃)に対するエッジマスク位置(エッジマスク挿入量=35mm)が含まれる。
 このように、記憶部30に記憶されるデータセットの板幅方向におけるエッジマスクの複数の位置の中に、第1温度差EUの閾値EU又は第2温度差EDの目標値EDに対応するエッジマスク18の位置が含まれることにより、第1位置における第1温度差EUと閾値EUとの比較、又は、第1位置における第2温度差EDと目標値EDとの比較に基づき、エッジマスクの初期位置を適切に決定することができる。
 幾つかの実施形態では、ステップS100~S300にて、鋼板Sの鋼種、板幅、板厚、ライン速度、鋼板Sの搬送方向におけるエッジマスク18よりも上流側の位置での板幅方向の温度分布、又は、鋼板Sの搬送方向におけるエッジマスク18よりも下流側の位置での板幅方向の温度分布を含む複数のパラメータのうち、少なくとも1つが異なる複数の鋼板Sの各々についてのエッジマスク18の複数の位置と該複数の位置の各々に対応する第1温度差EU又は第2温度差EDのデータ集合から、第1相関関係又は第2相関関係を取得する。
 例えば、上述したように、図14~図16に示す第1回帰曲線102(第1相関関係)及び第2回帰曲線106(第2相関関係)は鋼板Sの鋼種又は板幅が異なる4種の鋼板Sの各々についてのエッジマスク18の複数の位置と該複数の位置に対応する第1温度差EU又は第2温度差EDのデータ集合から取得されたものである。
 上述の実施形態よれば、上述のパラメータのうち少なくとも1つが異なる複数種の鋼板S又は運転条件についてのデータ集合から第1相関関係及び第2相関関係を取得するので、これら複数種の鋼板S又は運転条件について、平均的な第1位置を取得することができる。よって、例えば、エッジマスク18を初期位置に位置させた後の位置制御の際に、エッジマスク18を板幅方向の内側又は外側のどちらに動かす場合でも速やかに移動させやすくなる。
 幾つかの実施形態では、ステップS100~S300にて、鋼板Sの鋼種、板幅、板厚、ライン速度、鋼板Sの搬送方向におけるエッジマスク18よりも上流側の位置での板幅方向の温度分布、又は、鋼板Sの搬送方向におけるエッジマスク18よりも下流側の位置での板幅方向の温度分布を含む複数のパラメータのうち、少なくとも1つが同一である鋼板Sの各々についてのエッジマスク18の複数の位置と該複数の位置の各々に対応する第1温度差EU又は第2温度差EDのデータ集合から、第1相関関係又は第2相関関係を取得する。
 例えば、上述したように、図14~図16に示す第1回帰曲線104(第1相関関係)及び第2回帰曲線108(第2相関関係)は鋼板Sの鋼種が同一の鋼板Sの各々についてのエッジマスク18の複数の位置と該複数の位置に対応する第1温度差EU又は第2温度差EDのデータ集合から取得されたものである。
 上述の実施形態によれば、上述のパラメータのうち少なくとも1つが同一である複数種の鋼板S又は運転条件についてのデータ集合から第1相関関係及び第2相関関係を取得するので、冷却対象の鋼板Sの種類や運転条件等に応じたより適切な第1位置を取得することができる。
 幾つかの実施形態では、記憶部30は、圧延設備1の設置場所から離れた遠隔地(例えば、他のプラント等)に設けられていてもよい。また、遠隔地に設置された記憶部30は、複数プラントにおける第1相関関係及び第2相関関係に関するパラメータが格納されたデータベースを含んでもよい。そして、ステップS100では、このデータベースから、該データベースに格納された第1相関関係及び第2相関関係に関するパラメータを取得し、S200及びS300において、ステップS100で取得したパラメータに基づいて、エッジマスク18の初期位置を決定するための第1相関関係及び第2相関関係を取得するようにしてもよい。
 なお、複数プラントにおける第1相関関係及び第2相関関係に関するパラメータは、例えば、これらのプラントの圧延設備における、エッジマスクの複数の位置、該複数の位置に対応する鋼板の温度(即ち、鋼板の板幅方向の温度分布)、及び/又は、該複数の位置に対応する第1温度差EU及び/又は第2温度差EDを含んでもよい。
 上述の実施形態によれば、遠隔地にあるデータベースから第1相関関係及び第2相関関係に関するパラメータ(鋼板の板幅方向の温度分布、第1温度差EU又は第2温度差ED等)を取得する。したがって、例えば新規プラント設置時等、鋼板Sの温度分布に関するデータが手元に存在しない場合であっても、遠隔地のデータベースから取得した上述のパラメータに基づき、第1相関関係及び第2相関関係並びに第1位置を迅速に取得することができる。
 幾つかの実施形態では、冷却装置6を含む圧延設備1の稼働中に、冷却材で冷却後の鋼板Sの板幅方向の温度分布を計測し、このような計測により得られる鋼板Sの板幅方向の温度分布を示すデータを記憶部30に記憶してもよい。そして、ステップS100~S300では、記憶部30に記憶された上述の温度分布を示すデータに基づいて、第1相関関係及び第2相関関係を取得してもよい。
 上述の実施形態によれば、計測により得られた温度分布を示すデータを記憶部30に蓄積するとともに、記憶部30に蓄積されたデータに基づいて第1相関関係及び第2相関関係を取得する。したがって、時間の経過に伴い、記憶部30に蓄積されるデータの量が増えるので、第1相関関係及び第2相関関係並びに第1位置をより精度良く求めることができる。
 幾つかの実施形態では、ステップS300で取得される第2相関関係は、エッジマスク18の位置と、鋼板Sの板幅方向における平均温度と鋼板Sの板幅方向におけるトリミング予定位置における温度との差である第2温度差ED(ED’)との相関関係である。なお、この場合、記憶部30には、予め、トリミング予定位置を示す情報が格納される。
 上述の実施形態によれば、後工程でのトリミング予定位置における温度に基づく第2温度差EDを用いて第2相関関係を得る。したがって、このように、後工程でのトリミング部分(板端を含む部分)をエッジマスク18によるマスキング位置の考慮対象から除外することで、トリミング予定位置よりも内側の位置範囲(製品となる部分)について、より適切に板幅方向の温度分布を均一化可能な第1位置及びエッジマスク18の初期位置を決定することができる。
 なお、図6中のケース3において、エッジマスク18が破線で示す位置(Xdの位置)に位置する場合の鋼板Sの温度分布が曲線T4(破線)で示されている。この温度分布T4では、第1温度差(図中EU’’)と、鋼板Sの板幅方向における平均温度Tavgとトリミング予定位置Xsにおける温度との差である第2温度差(図中ED’’)とが等しい(すなわち、エッジマスク18の位置Xdは、第1温度差と第2温度差の差の絶対値|EU-ED|がゼロとなる第1位置として選択可能である)。そして、この場合の第1温度差(EU’’)及び第2温度差(ED’’)は比較的小さい。すなわち、トリミング予定位置における温度に基づく第2温度差EDを用いて得られる第2相関関係に基づいてエッジマスク18の第1位置を求めることで、鋼板Sの温度分布をより効果的に均一化可能であることがわかる。
 上述のステップS800では、例えば、以下に説明するように、エッジマスク18の位置を調節してもよい。ここで、図17及び図18は、それぞれ、一実施形態に係るステップS800のフローチャートである。
 一実施形態では、図17に示すフローチャートに従い、板幅方向の温度分布に基づいて、エッジマスク18の位置のフィードバック制御を行う。この実施形態では、まず、出側温度分布計測部14を用いて、冷却装置6の出側にて鋼板Sの板幅方向温度分布を計測する(S810)。次に、ステップS810で計測された温度分布に基づき、第1温度差EUを取得する(S812)。そして、ステップS812で取得される第1温度差EUが閾値EUを超えないように、エッジマスク18の板幅方向の位置を調節する。
 なお、ステップS812では、ステップS812で取得される第1温度差EUが閾値EUに近づくように、エッジマスク18の板幅方向の位置を調節するようにしてもよい。この場合、ステップS812で取得される第1温度差EUが閾値EUよりも大きい場合には、エッジマスク18を板幅方向にて外側方向(鋼板Sの中央部から板端に向かう方向)に移動させるとともに、該第1温度差EUが閾値EUよりも小さい場合には、エッジマスク18を板幅方向にて内側方向(鋼板Sの板端から中央部に向かう方向)に移動させるようにしてもよい。
 このように、冷却装置6の出側で計測される温度分布に基づいてエッジマスク18の位置をフィードバック制御することにより、鋼板Sの均一な温度分布を維持しやすくなる。
 一実施形態では、図18に示すフローチャートに従い、板幅方向の温度分布に基づいて、鋼板Sの蛇行に追従するように、エッジマスク18の位置を調節する。この実施形態では、まず、入側温度分布計測部12又は出側温度分布計測部14を用いて、冷却装置6の入側及び/又は出側にて鋼板Sの板幅方向温度分布を計測する(S820)。次に、ステップS820で計測された温度分布に基づき、鋼板Sの蛇行量を算出する(S822)。ここで、蛇行量とは、図2で設備の板幅方向の中央と鋼板Sの板幅方向の中央とのずれ量を意味する。そして、ステップS822で算出される蛇行量から板幅E、Eの実際の位置を求めて該それぞれの板端に対して、エッジマスク18A、18Bおのおのの板幅方向の位置を調節する(S824)。
 なお、鋼板Sの先端が入側温度分布計測部12に到達してから、鋼板Sの先端が出側温度分布計測部14に到達するまでは、ステップS820では、入側温度分布計測部12により入側の温度分布を計測する。また、ステップS822では、該温度分布に基づいて鋼板Sの板端位置を特定するとともに、特定した板端位置に基づいて、蛇行量を算出する。
 また、鋼板Sの先端が出側温度分布計測部14に到達してから、鋼板Sの尾端が入側温度分布計測部12に到達するまでは、ステップS820では、入側温度分布計測部12及び出側温度分布計測部14により入側の温度分布及び出側の温度分布を計測する。また、ステップS822では、入側の温度分布及び出側の温度分布に基づいて鋼板Sの板端位置を特定するとともに、特定した板端位置に基づいて、蛇行量を算出する。なお、ステップS822では、入側の温度分布に基づき特定される板端位置から算出される蛇行量と、出側の温度分布に基づき特定される板端位置から算出される蛇行量との平均を、鋼板Sの蛇行量として算出してもよい。
 また、鋼板Sの尾端が入側温度分布計測部12を出発してから、鋼板Sの尾端が出側温度分布計測部14に到達するまでは、ステップS820では、出側温度分布計測部14により出側の温度分布を計測する。また、ステップS822では、該温度分布に基づいて鋼板Sの板端位置を特定するとともに、特定した板端位置に基づいて、蛇行量を算出する。
 上述の実施形態では、蛇行計等を用いなくても、冷却装置6の入側又は出側における鋼板Sの温度分布に基づいて、鋼板Sの蛇行に追従するようにエッジマスク18の位置を制御することができる。また、上述の実施形態では、冷却装置6の入側又は出側における鋼板Sの温度分布に基づいて、蛇行に追従するように、かつ、鋼板Sの板幅方向における均一な温度分布を維持するように、エッジマスク18の位置を制御することができる。
 なお、幾つかの実施形態では、図17のフローチャートに基づくエッジマスク18の位置の調節と、図18のフローチャートに基づくエッジマスク18の位置の調節の両方を並行で行ってもよい。
 以下、幾つかの実施形態に係るエッジマスクの初期位置決定方法及びエッジマスクの初期位置決定装置について概要を記載する。
(1)本発明の少なくとも一実施形態に係るエッジマスクの初期位置決定方法は、
 鋼板に向けて噴出される冷却材を、前記鋼板の板幅方向における板端位置を含む領域にて遮蔽するためのエッジマスクの初期位置決定方法であって、
 前記板幅方向における前記エッジマスクの位置と、前記鋼板の前記板幅方向における最高温度と平均温度との差である第1温度差EUとの第1相関関係、及び、前記エッジマスクの前記位置と、前記平均温度と前記鋼板の前記板幅方向における板端位置、又は、該板端位置から規定量だけ内側かつ前記最高温度となる位置よりも外側の位置における温度との差である第2温度差EDとの第2相関関係を取得する第1取得ステップ(例えば上述のS100~S300)と、
 前記第1相関関係及び前記第2相関関係に基づいて、前記第1温度差EUと前記第2温度差EDとの差の絶対値|EU-ED|又は前記第1温度差EUと前記第2温度差EDとの比EU/EDが規定範囲内となる前記エッジマスクの前記位置である第1位置を取得する第2取得ステップ(例えば上述のS400)と、
 前記第1位置を用いて前記エッジマスクの初期位置を決定するステップ(例えば上述のS500)と、
を備える。
 鋼板の板幅方向における温度分布は、上述の第1温度差EU及び上述の第2温度差EDが小さいほど、なだらかなものとなる。また、板端位置からの板幅方向におけるエッジマスクの挿入量が大きいほど、第1温度差EUが大きくなり、第2温度差EDが小さくなる傾向がある。
 この点、上記(1)の方法によれば、エッジマスクの位置と第1温度差EUとの第1相関関係、及び、エッジマスク位置と第2温度差EDとの第2相関関係に基づいて、第1温度差EUと第2温度差EDとの差の絶対値|EU-ED|が規定範囲内となるエッジマスク位置である第1位置を取得し、この第1位置を用いてエッジマスクの初期位置を決定する。すなわち、第1温度差EU及び第2温度差EDの両方が比較的小さくなるエッジマスクの第1位置を用いてエッジマスク初期位置を設定するようにしたので、鋼板の冷却の初期段階から板幅方向温度分布を均一化しやすくなる。また、第1温度差EU及び第2温度差EDに基づいて第1位置を取得するようにしたので、簡易な計算により、エッジマスクの初期位置を適切に決定することができる。よって、上記(1)の方法によれば、計算負荷を低減しながら、鋼板の板幅方向の温度分布を均一化しやすいエッジマスクの初期位置を適切に設定することができる。
(2)幾つかの実施形態では、上記(1)の方法において、
 前記第1位置を、前記初期位置として決定する。
 上記(2)の方法によれば、第1温度差EU及び第2温度差EDの両方が比較的小さくなるエッジマスクの第1位置をエッジマスク初期位置として設定するようにしたので、鋼板の冷却の初期段階から板幅方向温度分布をより均一化しやすくなる。また、第1温度差EU及び第2温度差EDに基づいて第1位置を取得するようにしたので、簡易な計算により、エッジマスクの初期位置を適切に決定することができる。よって、上記(2)の方法によれば、計算負荷を低減しながら、鋼板の板幅方向の温度分布を均一化しやすいエッジマスクの初期位置を適切に設定することができる。
(3)幾つかの実施形態では、上記(1)の方法において、
 前記第1位置に対応する前記第1温度差である第1温度差EUが、前記第1温度差の閾値EUよりも大きい場合、前記閾値EUに対応する前記エッジマスクの前記位置を前記初期位置として決定する。
 板幅方向において鋼板の温度が最も高い位置は、板端位置よりもある程度内側である。仮に、上述の差の絶対値|EU-ED|が規定範囲内だったとしても、第1温度差EUが過大であると、例えばこの位置を含む範囲までトリミングしなければならない等、鋼板のトリム量を大きくする必要が出てしまう。この点、上記(3)の方法によれば、上記(1)で取得された第1位置に対応する第1温度差EU(即ちエッジマスクの位置が第1位置である場合の第1温度差EU)が閾値EUよりも大きい場合には、該閾値EUに対応するエッジマスクの位置を初期位置として決定する。したがって、第1温度差EUが過大であることによるトリム量の増大を回避することができる。よって、歩留まりの低下をより効果的に抑制することができる。
(4)幾つかの実施形態では、上記(3)の方法において、
 前記第1温度差EUが前記閾値EU以下である場合、前記第1位置を前記初期位置として決定する。
 上記(4)の方法によれば、上記(1)で取得された第1位置に対応する第1温度差EUが閾値EU以下であり過大でない場合には、該第1位置をエッジマスクの初期位置として決定する。したがって、鋼板の板幅方向の温度分布をより均一化しやすくなる。よって、鋼板の品質低下や変形等をより効果的に抑制することができる。
(5)幾つかの実施形態では、上記(3)の方法において、
 前記第1温度差EUが前記閾値EU以下であり、かつ、前記第1位置に対応する前記第2温度差である第2温度差EDが、前記第2温度差の目標値EDよりも大きい場合、前記目標値EDに対応する前記エッジマスクの前記位置を仮決定初期位置とし、前記仮決定初期位置に対応する第1温度差EUが前記閾値EU以下である場合、前記目標値EDに対応する前記エッジマスクの前記位置を前記初期位置として決定する。
 鋼板のトリム量は、第2温度差EDが大きいほど大きくなる傾向がある。この点、上記(5)の方法では、上述の第1位置に対応する第1温度差EUが閾値以下であり、かつ、第1位置に対応する第2温度差が目標値(許容値)EDよりも大きい場合、目標値EDに対応するエッジマスク位置を仮決定初期位置とし、仮決定初期位置に対応する第1温度差EUが閾値EU以下である場合、目標値EDに対応するエッジマスク位置を初期位置として設定する。すなわち、板幅方向における全ての位置において平均温度との温度差を許容範囲に収めるようにしたので、トリム量を効果的に低減することができる。
(6)幾つかの実施形態では、上記(3)又は(5)の方法において、
 前記第1温度差EUが前記閾値EU以下であり、かつ、前記第1位置に対応する前記第2温度差である第2温度差EDが、前記第2温度差の目標値ED以下である場合、前記第1位置を前記初期位置として決定する。
 上記(6)の方法によれば、上述の第1位置に対応する第1温度差EUが閾値以下であり、かつ、第1位置に対応する第2温度差が目標値(許容値)ED以下である場合、上述の第1位置を初期位置として決定するようにしたので、トリム量の増大を抑制しながら、鋼板の板幅方向の温度分布を均一化することができる。
(7)幾つかの実施形態では、上記(1)乃至(6)の何れかの方法において、
 前記第1取得ステップでは、
  前記板幅方向における前記エッジマスクの複数の位置と、前記複数の位置の各々に対応する前記第1温度差EUに基づいて、前記第1相関関係を表す第1回帰曲線を取得するとともに、
  前記板幅方向における前記エッジマスクの複数の位置と、前記複数の位置の各々に対応する前記第2温度差EDに基づいて、前記第2相関関係を表す第2回帰曲線を取得し、
 前記第2取得ステップでは、前記第1回帰曲線と前記第2回帰曲線との交点に対応する前記エッジマスクの前記位置を含む前記板幅方向の位置範囲の中から、前記第1位置を取得する。
 第1相関関係を示す第1回帰曲線、及び、第2相関関係を示す第2回帰曲線との交点に対応するエッジマスクの位置は、第1温度差EUと第2温度差EDとの差の絶対値|EU-ED|がゼロ、又は、第1温度差EUと第2温度差EDとの比EU/EDが1となる位置である。よって、上記(7)の方法によれば、第1回帰曲線と第2回帰曲線との交点に基づいて、上述の差の絶対値|EU-ED|又は上述の比EU/EDが規定範囲内となるエッジマスクの第1位置を容易に取得することができる。
(8)幾つかの実施形態では、上記(1)乃至(6)の何れかの方法において、
 前記第1取得ステップでは、前記板幅方向における前記エッジマスクの複数の位置、前記複数の位置の各々に対応する前記第1温度差EU、及び、前記複数の位置の各々に対応する前記第2温度差EDを取得し、
 前記第2取得ステップでは、前記複数の位置の中から、前記第1温度差EUと前記第2温度差EDとの差の絶対値|EU-ED|が最小となる前記位置、又は、前記第1温度差EUと前記第2温度差EDとの比EU/EDが1に最も近くなる前記位置を特定し、該位置を含む前記板幅方向の位置範囲の中から、前記第1位置を取得する。
 上記(8)の方法によれば、板幅方向におけるエッジマスクの複数の位置の中から、上述の差の絶対値|EU-ED|が最小となる位置、又は上述の比EU/EDが1に最も近くなる位置を特定する。よって、このように特定されたエッジマスク位置に基づいて、上述の差の絶対値|EU-ED|又は上述の比EU/EDが規定範囲内となるエッジマスクの第1位置を容易に取得することができる。
(9)幾つかの実施形態では、上記(8)の方法において、
 前記複数の位置は、前記第1温度差EUの閾値EUに対応する前記エッジマスクの前記位置、又は、前記第2温度差EDの目標値EDに対応する前記エッジマスクの前記位置を含む。
 上記(8)の方法において、板幅方向におけるエッジマスクの複数の位置がランダムに選択される場合、該複数の位置に、第1温度差EUの閾値EUや第2温度差EDの目標値EDに対応するエッジマスクの位置が含まれないことも生じ得る。上記(9)の方法によれば、板幅方向におけるエッジマスクの複数の位置は、第1温度差EUの閾値EU又は第2温度差EDの目標値EDに対応するエッジマスクの位置を含むので、第1位置における第1温度差EUと閾値EUとの比較、又は、第1位置における第2温度差EDと目標値EDとの比較に基づき、エッジマスクの初期位置を適切に決定することができる。
(10)幾つかの実施形態では、上記(1)乃至(9)の何れかの方法において、
 前記第1取得ステップでは、鋼板の鋼種、板幅、板厚、ライン速度、前記鋼板の搬送方向における前記エッジマスクよりも上流側の位置での前記板幅方向の温度分布、又は、前記搬送方向における前記エッジマスクよりも下流側の位置での前記板幅方向の温度分布を含む複数のパラメータのうち、少なくとも1つが異なる複数の鋼板の各々についての前記エッジマスクの前記位置と該位置に対応する前記第1温度差EU又は前記第2温度差EDのデータ集合から、前記第1相関関係又は前記第2相関関係を取得する。
 上記(10)の方法によれば、上述のパラメータのうち少なくとも1つが異なる複数種の鋼板又は運転条件についてのデータ集合から第1相関関係及び第2相関関係を取得するので、これら複数種の鋼板又は運転条件について、平均的な第1位置を取得することができる。よって、例えば、エッジマスクを初期位置に位置させた後の位置制御の際に、エッジマスクを板幅方向の内側又は外側のどちらに動かす場合でも速やかに移動させやすくなる。
(11)幾つかの実施形態では、上記(1)乃至(10)の何れかの方法において、
 前記第1取得ステップでは、鋼板の鋼種、板幅、板厚、ライン速度、前記鋼板の搬送方向における前記エッジマスクよりも上流側の位置での前記板幅方向の温度分布、又は、前記搬送方向における前記エッジマスクよりも下流側の位置での前記板幅方向の温度分布を含む複数のパラメータのうち、少なくとも1つが同一である鋼板の各々についての前記エッジマスクの前記位置と該位置に対応する前記第1温度差EU又は前記第2温度差EDのデータ集合から、前記第1相関関係又は前記第2相関関係を取得する。
 上記(11)の方法によれば、上述のパラメータのうち少なくとも1つが同一である複数種の鋼板又は運転条件についてのデータ集合から第1相関関係及び第2相関関係を取得するので、冷却対象の鋼板の種類や運転条件等に応じたより適切な第1位置を取得することができる。
(12)幾つかの実施形態では、上記(1)乃至(11)の何れかの方法において、
 複数プラントにおける前記第1相関関係及び前記第2相関関係に関するパラメータが格納された遠隔地にあるデータベースから、前記パラメータを取得するステップを備え、
 前記第1取得ステップでは、前記パラメータに基づいて、前記第1相関関係及び前記第2相関関係を取得する。
 上記(12)の方法によれば、遠隔地にあるデータベースから第1相関関係及び第2相関関係に関するパラメータ(鋼板の板幅方向の温度分布、第1温度差EU又は第2温度差ED等)を取得する。したがって、例えば新規プラント設置時等、鋼板の温度分布に関するデータが手元に存在しない場合であっても、遠隔地のデータベースから取得した上述のパラメータに基づき、第1相関関係及び第2相関関係並びに第1位置を迅速に取得することができる。
(13)幾つかの実施形態では、上記(1)乃至(12)の何れかの方法において、
 前記冷却材で冷却後の前記鋼板の前記板幅方向の温度分布を計測するステップと、
 前記計測するステップで得られた前記板幅方向の温度分布を示すデータを記憶部に記憶するステップと、を備え、
 前記第1取得ステップでは、前記記憶部に記憶された前記データに基づいて、前記第1相関関係及び前記第2相関関係を取得する。
 上記(13)の方法によれば、計測により得られた温度分布を示すデータを記憶部に蓄積するとともに、記憶部に蓄積されたデータに基づいて第1相関関係及び第2相関関係を取得する。したがって、時間の経過に伴い、記憶部に蓄積されるデータの量が増えるので、第1相関関係及び第2相関関係並びに第1位置をより精度良く求めることができる。
(14)幾つかの実施形態では、上記(1)乃至(13)の何れかの方法において、
 前記第2相関関係は、前記エッジマスクの前記位置と、前記平均温度と前記鋼板の前記板幅方向におけるトリミング予定位置における温度との差である第2温度差EDとの相関関係である。
 上記(14)の方法によれば、後工程でのトリミング予定位置における温度に基づく第2温度差EDを用いて第2相関関係を得る。したがって、このように、後工程でのトリミング部分(板端を含む部分)をエッジマスクによるマスキング位置の考慮対象から除外することで、トリミング予定位置よりも内側の位置範囲(製品となる部分)について、より適切に板幅方向の温度分布を均一化可能な第1位置及びエッジマスクの初期位置を決定することができる。
(15)本発明の少なくとも一実施形態に係るエッジマスクの初期位置決定装置は、
 鋼板に向けて噴出される冷却材を、前記鋼板の板幅方向における板端位置を含む領域にて遮蔽するためのエッジマスクの初期位置決定装置であって、
 前記板幅方向における前記エッジマスクの位置と、前記鋼板の前記板幅方向における最高温度と平均温度との差である第1温度差EUとの第1相関関係、及び、前記エッジマスクの前記位置と、前記平均温度と前記鋼板の前記板幅方向における板端位置、又は、該板端位置から規定量だけ内側かつ前記最高温度となる位置よりも外側の位置における温度との差である第2温度差EDとの第2相関関係を取得する相関関係取得部と、
 前記第1相関関係及び前記第2相関関係に基づいて、前記第1温度差EUと前記第2温度差EDとの差の絶対値|EU-ED|又は前記第1温度差EUと前記第2温度差EDとの比EU/EDが規定範囲内となる前記エッジマスクの前記位置である第1位置を取得する第1位置取得部と、
 前記第1位置を用いて前記エッジマスクの初期位置を決定する初期位置決定部と、
を備える。
 鋼板の板幅方向における温度分布は、上述の第1温度差EU及び上述の第2温度差EDが小さいほど、なだらかなものとなる。また、板端位置からの板幅方向におけるエッジマスクの挿入量が大きいほど、第1温度差EUが大きくなり、第2温度差EDが小さくなる傾向がある。
 この点、上記(15)の構成によれば、エッジマスクの位置と第1温度差EUとの第1相関関係、及び、エッジマスク位置と第2温度差EDとの第2相関関係に基づいて、第1温度差EUと第2温度差EDとの差の絶対値|EU-ED|又は第1温度差EUと第2温度差EDとの比EU/EDが規定範囲内となるエッジマスク位置である第1位置を取得し、この第1位置を用いてエッジマスクの初期位置を決定する。すなわち、第1温度差EU及び第2温度差EDの両方が比較的小さくなるエッジマスクの第1位置を用いてエッジマスク初期位置を設定するようにしたので、鋼板の冷却の初期段階から板幅方向温度分布を均一化しやすくなる。また、第1温度差EU及び第2温度差EDに基づいて第1位置を取得するようにしたので、簡易な計算により、エッジマスクの初期位置を適切に決定することができる。よって、上記(15)の構成によれば、計算負荷を低減しながら、鋼板の板幅方向の温度分布を均一化しやすいエッジマスクの初期位置を適切に設定することができる。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
1    圧延設備
2    粗圧延機
4    仕上圧延機
6    冷却装置
8    冷却ヘッダ
9    冷却ノズル
10   巻取機
12   入側温度分布計測部
14   出側温度分布計測部
16   搬送ロール
18   エッジマスク
20   制御装置
22   相関関係取得部
23   第1位置取得部
24   初期位置決定部
26   エッジマスク制御部
28   温度データ蓄積部
30   記憶部
100  冷却材
102  第1回帰曲線
104  第1回帰曲線
106  第2回帰曲線
108  第2回帰曲線
   板端
   板端
S    鋼板

Claims (15)

  1.  鋼板に向けて噴出される冷却材を、前記鋼板の板幅方向における板端位置を含む領域にて遮蔽するためのエッジマスクの初期位置決定方法であって、
     前記板幅方向における前記エッジマスクの位置と、前記鋼板の前記板幅方向における最高温度と平均温度との差である第1温度差EUとの第1相関関係、及び、前記エッジマスクの前記位置と、前記平均温度と前記鋼板の前記板幅方向における板端位置、又は、該板端位置から規定量だけ内側かつ前記最高温度となる位置よりも外側の位置における温度との差である第2温度差EDとの第2相関関係を取得する第1取得ステップと、
     前記第1相関関係及び前記第2相関関係に基づいて、前記第1温度差EUと前記第2温度差EDとの差の絶対値|EU-ED|が規定範囲内となる前記エッジマスクの前記位置である第1位置を取得する第2取得ステップと、
     前記第1位置を用いて前記エッジマスクの初期位置を決定するステップと、
    を備えるエッジマスクの初期位置決定方法。
  2.  前記第1位置を、前記初期位置として決定する
    請求項1に記載のエッジマスクの初期位置決定方法。
  3.  前記第1位置に対応する前記第1温度差である第1温度差EUが、前記第1温度差の閾値EUよりも大きい場合、前記閾値EUに対応する前記エッジマスクの前記位置を前記初期位置として決定する
    請求項1に記載のエッジマスクの初期位置決定方法。
  4.  前記第1温度差EUが前記閾値EU以下である場合、前記第1位置を前記初期位置として決定する
    請求項3に記載のエッジマスクの初期位置決定方法。
  5.  前記第1温度差EUが前記閾値EU以下であり、かつ、前記第1位置に対応する前記第2温度差である第2温度差EDが、前記第2温度差の目標値EDよりも大きい場合、前記目標値EDに対応する前記エッジマスクの前記位置を仮決定初期位置とし、前記仮決定初期位置に対応する第1温度差EUが前記閾値EU以下である場合、前記目標値EDに対応する前記エッジマスクの前記位置を前記初期位置として決定する
    請求項3に記載のエッジマスクの初期位置決定方法。
  6.  前記第1温度差EUが前記閾値EU以下であり、かつ、前記第1位置に対応する前記第2温度差である第2温度差EDが、前記第2温度差の目標値ED以下である場合、前記第1位置を前記初期位置として決定する
    請求項3又は5に記載のエッジマスクの初期位置決定方法。
  7.  前記第1取得ステップでは、
      前記板幅方向における前記エッジマスクの複数の位置と、前記複数の位置の各々に対応する前記第1温度差EUに基づいて、前記第1相関関係を表す第1回帰曲線を取得するとともに、
      前記板幅方向における前記エッジマスクの複数の位置と、前記複数の位置の各々に対応する前記第2温度差EDに基づいて、前記第2相関関係を表す第2回帰曲線を取得し、
     前記第2取得ステップでは、前記第1回帰曲線と前記第2回帰曲線との交点に対応する前記エッジマスクの前記位置を含む前記板幅方向の位置範囲の中から、前記第1位置を取得する
    請求項1乃至6の何れか一項に記載のエッジマスクの初期位置決定方法。
  8.  前記第1取得ステップでは、前記板幅方向における前記エッジマスクの複数の位置、前記複数の位置の各々に対応する前記第1温度差EU、及び、前記複数の位置の各々に対応する前記第2温度差EDを取得し、
     前記第2取得ステップでは、前記複数の位置の中から、前記第1温度差EUと前記第2温度差EDとの差の絶対値|EU-ED|が最小となる前記位置を特定し、該位置を含む前記板幅方向の位置範囲の中から、前記第1位置を取得する
    請求項1乃至6の何れか一項に記載のエッジマスクの初期位置決定方法。
  9.  前記複数の位置は、前記第1温度差EUの閾値EUに対応する前記エッジマスクの前記位置、又は、前記第2温度差EDの目標値EDに対応する前記エッジマスクの前記位置を含む
    請求項8に記載のエッジマスクの初期位置決定方法。
  10.  前記第1取得ステップでは、鋼板の鋼種、板幅、板厚、ライン速度、前記鋼板の搬送方向における前記エッジマスクよりも上流側の位置での前記板幅方向の温度分布、又は、前記搬送方向における前記エッジマスクよりも下流側の位置での前記板幅方向の温度分布を含む複数のパラメータのうち、少なくとも1つが異なる複数の鋼板の各々についての前記エッジマスクの前記位置と該位置に対応する前記第1温度差EU又は前記第2温度差EDのデータ集合から、前記第1相関関係又は前記第2相関関係を取得する
    請求項1乃至9の何れか一項に記載のエッジマスクの初期位置決定方法。
  11.  前記第1取得ステップでは、鋼板の鋼種、板幅、板厚、ライン速度、前記鋼板の搬送方向における前記エッジマスクよりも上流側の位置での前記板幅方向の温度分布、又は、前記搬送方向における前記エッジマスクよりも下流側の位置での前記板幅方向の温度分布を含む複数のパラメータのうち、少なくとも1つが同一である鋼板の各々についての前記エッジマスクの前記位置と該位置に対応する前記第1温度差EU又は前記第2温度差EDのデータ集合から、前記第1相関関係又は前記第2相関関係を取得する
    請求項1乃至10の何れか一項に記載のエッジマスクの初期位置決定方法。
  12.  複数プラントにおける前記第1相関関係及び前記第2相関関係に関するパラメータが格納された遠隔地にあるデータベースから、前記パラメータを取得するステップを備え、
     前記第1取得ステップでは、前記パラメータに基づいて、前記第1相関関係及び前記第2相関関係を取得する
    請求項1乃至11の何れか一項に記載のエッジマスクの初期位置決定方法。
  13.  前記冷却材で冷却後の前記鋼板の前記板幅方向の温度分布を計測するステップと、
     前記計測するステップで得られた前記板幅方向の温度分布を示すデータを記憶部に記憶するステップと、を備え、
     前記第1取得ステップでは、前記記憶部に記憶された前記データに基づいて、前記第1相関関係及び前記第2相関関係を取得する
    請求項1乃至12の何れか一項に記載のエッジマスクの初期位置決定方法。
  14.  前記第2相関関係は、前記エッジマスクの前記位置と、前記平均温度と前記鋼板の前記板幅方向におけるトリミング予定位置における温度との差である第2温度差EDとの相関関係である
    請求項1乃至13の何れか一項に記載のエッジマスクの初期位置決定方法。
  15.  鋼板に向けて噴出される冷却材を、前記鋼板の板幅方向における板端位置を含む領域にて遮蔽するためのエッジマスクの初期位置決定装置であって、
     前記板幅方向における前記エッジマスクの位置と、前記鋼板の前記板幅方向における最高温度と平均温度との差である第1温度差EUとの第1相関関係、及び、前記エッジマスクの前記位置と、前記平均温度と前記鋼板の前記板幅方向における板端位置、又は、該板端位置から規定量だけ内側かつ前記最高温度となる位置よりも外側の位置における温度との差である第2温度差EDとの第2相関関係を取得する相関関係取得部と、
     前記第1相関関係及び前記第2相関関係に基づいて、前記第1温度差EUと前記第2温度差EDとの差の絶対値|EU-ED|又は前記第1温度差EUと前記第2温度差EDとの比EU/EDが規定範囲内となる前記エッジマスクの前記位置である第1位置を取得する第1位置取得部と、
     前記第1位置を用いて前記エッジマスクの初期位置を決定する初期位置決定部と、
    を備えるエッジマスクの初期位置決定装置。
PCT/JP2021/008528 2021-03-04 2021-03-04 エッジマスクの初期位置決定方法及びエッジマスクの初期位置決定装置 WO2022185493A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/008528 WO2022185493A1 (ja) 2021-03-04 2021-03-04 エッジマスクの初期位置決定方法及びエッジマスクの初期位置決定装置
JP2023503294A JPWO2022185493A1 (ja) 2021-03-04 2021-03-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/008528 WO2022185493A1 (ja) 2021-03-04 2021-03-04 エッジマスクの初期位置決定方法及びエッジマスクの初期位置決定装置

Publications (1)

Publication Number Publication Date
WO2022185493A1 true WO2022185493A1 (ja) 2022-09-09

Family

ID=83154106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008528 WO2022185493A1 (ja) 2021-03-04 2021-03-04 エッジマスクの初期位置決定方法及びエッジマスクの初期位置決定装置

Country Status (2)

Country Link
JP (1) JPWO2022185493A1 (ja)
WO (1) WO2022185493A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009248177A (ja) * 2008-04-10 2009-10-29 Nippon Steel Corp 鋼板圧延方法及びその設備
JP2013103236A (ja) * 2011-11-11 2013-05-30 Jfe Steel Corp 熱鋼板の冷却方法およびその冷却設備
JP2015521111A (ja) * 2012-06-28 2015-07-27 ヒュンダイ スチール カンパニー 冷却装置のエッジマスク制御方法
JP2018047484A (ja) * 2016-09-21 2018-03-29 Jfeスチール株式会社 鋼板の上面冷却装置及び上面冷却方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009248177A (ja) * 2008-04-10 2009-10-29 Nippon Steel Corp 鋼板圧延方法及びその設備
JP2013103236A (ja) * 2011-11-11 2013-05-30 Jfe Steel Corp 熱鋼板の冷却方法およびその冷却設備
JP2015521111A (ja) * 2012-06-28 2015-07-27 ヒュンダイ スチール カンパニー 冷却装置のエッジマスク制御方法
JP2018047484A (ja) * 2016-09-21 2018-03-29 Jfeスチール株式会社 鋼板の上面冷却装置及び上面冷却方法

Also Published As

Publication number Publication date
JPWO2022185493A1 (ja) 2022-09-09

Similar Documents

Publication Publication Date Title
CN108026604B (zh) 用于钢带热处理的热处理设备以及控制用于钢带热处理的热处理设备的方法
WO2022185493A1 (ja) エッジマスクの初期位置決定方法及びエッジマスクの初期位置決定装置
KR100643373B1 (ko) 열간압연 후물재 길이방향 온도 제어방법
JP6816829B2 (ja) エンドレス圧延ラインの温度制御装置
JP6075178B2 (ja) 板厚制御方法および板厚制御装置
JP4894686B2 (ja) 熱延鋼板の製造方法及び製造装置
JP7036241B2 (ja) 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
JP2005270982A (ja) 熱間圧延における被圧延材の冷却制御方法
JP3596460B2 (ja) 厚鋼板の熱処理方法およびその熱処理設備
JPH11267730A (ja) 熱延鋼板の温度制御装置及びその方法
JP3520868B2 (ja) 鋼板の製造方法
KR100711387B1 (ko) 열연강판의 길이방향 온도 제어방법
JP2008188604A (ja) 鋼板冷却における温度制御方法
JP3506120B2 (ja) タンデム圧延機の圧延負荷配分変更方法
JP6414101B2 (ja) 圧下レベル制御装置および圧下レベル制御方法
JP4162622B2 (ja) 冷間圧延におけるエッジドロップ制御方法
JP3109067B2 (ja) 熱間連続圧延における板幅制御方法
JP5637906B2 (ja) 冷間圧延機の板厚制御方法及び板厚制御装置
JP5544589B2 (ja) 熱延鋼板の冷却制御方法
JP2002066635A (ja) 熱延鋼帯の製造方法
JP2020011256A (ja) 熱間圧延ラインのウェッジ制御装置
KR20140100883A (ko) 강판 제조 방법
JP7314921B2 (ja) 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
WO2021192713A1 (ja) 圧延機の形状制御方法及び形状制御装置
WO2015182051A1 (ja) 熱延鋼板の製造方法、鋼板切断位置設定装置、鋼板切断位置設定方法、及び鋼板製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503294

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929065

Country of ref document: EP

Kind code of ref document: A1