WO2022183954A1 - 一种液体输送系统及稳定出液方法 - Google Patents

一种液体输送系统及稳定出液方法 Download PDF

Info

Publication number
WO2022183954A1
WO2022183954A1 PCT/CN2022/077505 CN2022077505W WO2022183954A1 WO 2022183954 A1 WO2022183954 A1 WO 2022183954A1 CN 2022077505 W CN2022077505 W CN 2022077505W WO 2022183954 A1 WO2022183954 A1 WO 2022183954A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
stroke
liquid
reversing
chamber
Prior art date
Application number
PCT/CN2022/077505
Other languages
English (en)
French (fr)
Inventor
金鸿雁
张锋
马小军
潘芹
刘春俊
仇卫勤
Original Assignee
南微医学科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南微医学科技股份有限公司 filed Critical 南微医学科技股份有限公司
Priority to DE212022000092.7U priority Critical patent/DE212022000092U1/de
Priority to JP2023600075U priority patent/JP3244287U/ja
Publication of WO2022183954A1 publication Critical patent/WO2022183954A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/148Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons flexible, e.g. independent bags
    • A61M5/152Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons flexible, e.g. independent bags pressurised by contraction of elastic reservoirs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/1452Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16804Flow controllers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16877Adjusting flow; Devices for setting a flow rate
    • A61M5/16881Regulating valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M2005/1401Functional features
    • A61M2005/1405Patient controlled analgesia [PCA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3341Pressure; Flow stabilising pressure or flow to avoid excessive variation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices

Definitions

  • the present disclosure relates to the technical field of medical devices, and in particular, to a liquid delivery system and a method for stabilizing liquid discharge.
  • fluid injection is required, for example, in submucosal resection, endoscopic submucosal injection of the bulge can be achieved by infusion of fluid.
  • the delivery pump in order to realize the continuous delivery of liquid, the delivery pump is set as a single-chamber and single-piston, that is, when the piston moves forward, one side of the piston discharges liquid, and when the piston moves reversely, the other side of the piston discharges liquid.
  • the existing single-chamber and single-piston delivery pump has the following problems: when the piston moves to the left and right ends of the working cavity, it needs to be reversed, so the piston must have a deceleration, stop, and reverse acceleration. process that results in a reduced pressure and flow reduction for the liquid to drain.
  • Objects of the present disclosure include, for example, to provide a fluid delivery system that can improve the technical problem of reduced outlet pressure when the piston is reversed.
  • the purpose of the present disclosure also includes providing a method for stabilizing the liquid discharge, which can improve the technical problem of the reduction of the liquid discharge pressure when the piston is reversed.
  • Embodiments of the present disclosure provide a liquid delivery system that includes a pump body, a first piston, and a second piston; the pump body has a piston cavity, and the first piston and the second piston are used to transport the
  • the piston chamber is divided into a first chamber and a second chamber that are independent of each other; the first piston slides relative to the piston chamber to allow the first chamber to enter and exit the liquid, and the second piston slides relative to the piston chamber so that the second chamber enters and exits liquid, and the first chamber and the second chamber are used for alternately entering and exiting liquid;
  • the first piston switches the first chamber from liquid out to liquid in, so as to compensate by the liquid out of the second chamber
  • the liquid outlet pressure changes when the first chamber is switched from the liquid outlet to the liquid inlet.
  • the liquid delivery system further includes a driving member, which is used for driving the first piston to move along a first movement track, and at the same time, for driving the second piston to move along a second movement track.
  • a driving member which is used for driving the first piston to move along a first movement track, and at the same time, for driving the second piston to move along a second movement track.
  • the first motion trajectory includes a first liquid inlet stroke and a first liquid outlet stroke and two first reversing points located between the first liquid inlet stroke and the first liquid outlet stroke
  • the second motion trajectory includes a second liquid inlet stroke and a second liquid outlet stroke, and two second reversing points located between the second liquid inlet stroke and the second liquid outlet stroke.
  • the first reversing point and the two second reversing points are arranged in a one-to-one correspondence, and the first reversing point and the corresponding second reversing point are arranged staggered along the circumferential direction.
  • the first liquid inlet stroke has a first velocity V1
  • the first liquid outlet stroke has a second velocity V2
  • the second liquid inlet stroke has a third velocity V3
  • the second liquid outlet stroke With the fourth speed V4, V1>V4, V3>V2.
  • V2 V4.
  • the first track further includes a first reversing stroke and a second reversing stroke, the first reversing stroke, the first liquid inlet stroke, the second reversing stroke and the first reversing stroke.
  • a liquid outlet stroke is connected end to end, wherein one of the first reversing points is located in the first reversing stroke, and the other first reversing point is located in the second reversing stroke; and/or,
  • the second track includes a third reversing stroke and a fourth reversing stroke, and the third reversing stroke, the second liquid outlet stroke, the fourth reversing stroke and the second liquid inlet stroke start and end connection, wherein one of the second reversing points is located in the third reversing stroke, and the other second reversing point is located in the fourth reversing stroke.
  • the intersection point of the first reversing stroke and the first liquid outlet stroke is P1
  • the first reversing point of the third reversing stroke is Q2
  • the driving member is configured to drive the first piston to reach the Q2 when the second piston is driven to reach the Q2.
  • the intersection point of the first reversing stroke and the first liquid outlet stroke is P1
  • the intersection point of the third reversing stroke and the second liquid outlet stroke is Q3
  • the driving member is used for After driving the second piston over the Q3, the first piston is driven to the P1, or the driving member is used to drive the first piston while driving the second piston to the Q3 The piston reaches the P1.
  • the intersection point of the fourth reversing stroke and the second liquid outlet stroke is Q4, and the first reversing point in the second reversing stroke is P5; After the first piston passes the P5, the second piston is driven to reach the Q4, or the driving member is used to drive the second piston to the Q4 when the first piston is driven to reach the P5. Q4.
  • the intersection point of the fourth reversing stroke and the second liquid outlet stroke is Q4
  • the intersection point of the second reversing stroke and the first liquid outlet stroke is P6
  • the driving part is used for the stroke.
  • the second piston is driven to reach the Q4, or the driving member is used to drive the first piston to the P6 while driving the first piston to reach the P6.
  • the second piston reaches the Q4.
  • the driving member includes a first driving part and a second driving part, the first driving part is provided with a first track, and the first track is drivingly connected with the first piston to drive the The first piston moves along the first movement track; the second drive part is provided with a second track, and the second track is drive-connected with the second piston to drive the second piston along the first track.
  • Two motion trajectory motion is provided.
  • the first track has a first liquid inlet section and a first liquid outlet section, and the first liquid inlet section is used for the first liquid inlet stroke of the first piston along the first movement track.
  • the first liquid inlet section has a first slope value K1; the first liquid outlet section is used to make the first piston move along the first liquid outlet stroke of the first movement track, and the first liquid outlet section
  • the first liquid outlet section has a second slope value K2;
  • the second track has a second liquid inlet section and a second liquid outlet section, and the second liquid inlet section is used to make the second piston move along the second liquid inlet stroke of the second movement track, and all the The second liquid inlet section has a third slope value K3; the second liquid outlet section is used to make the second piston move along the second liquid outlet stroke of the second movement track, and the second liquid outlet segment has a third slope value K4;
  • K2 K4.
  • first driving part and the second driving part are fixedly connected, and the first driving part and the second driving part are arranged coaxially.
  • the first driving part includes a first cam
  • the second driving part includes a second cam
  • the first cam has a cam groove forming the first track
  • the second cam has a cam groove forming the first track. the cam groove of the second track.
  • the liquid conveying system further includes a guide rail, a first sliding block and a second sliding block, and the first sliding block and the second sliding block are both slidably connected to the guide rail;
  • the first sliding block A first follower pin that is slidably matched with the first track is arranged on it, and the first piston is connected with the first sliding block, so as to be connected with the first cam through the first sliding block;
  • the The second sliding block is provided with a second following pin which is slidingly matched with the second track, and the second piston is connected with the second sliding block so as to be driven by the second sliding block with the second cam connect.
  • the driving member includes two driving cylinders, wherein one of the driving cylinders is drivingly connected with the first piston to drive the first piston to move along the first movement track, and the other driving the A cylinder is drivingly connected with the second piston to drive the second piston to move along the second movement track.
  • Embodiments of the present disclosure also provide a method for stabilizing liquid output for controlling a liquid delivery system to stabilize liquid output.
  • the liquid delivery system includes a pump body and a first piston and a second piston disposed in the pump body.
  • the first piston It is used to form a first chamber in the pump body, and when the first piston slides relative to the pump body, the first chamber enters and leaves the liquid
  • the second piston is used to form a second chamber in the pump body , and when the second piston slides relative to the pump body, the second chamber enters and leaves the liquid.
  • the method for stabilizing liquid discharge includes: controlling the first piston to change direction, and controlling the second piston to discharge liquid from the second chamber, so as to compensate the first liquid discharge from the second chamber
  • the outlet pressure of the first chamber changes when the piston is reversed.
  • the step of controlling the first piston to change direction, and controlling the second piston to discharge liquid from the first chamber includes:
  • the second piston is controlled to move cyclically along the third reversing stroke, the second liquid outlet stroke, the fourth reversing stroke and the second liquid inlet stroke, and the second piston is in the third reversing stroke and the first reversing stroke. All four reversing strokes perform acceleration and deceleration to change the movement direction of the second piston; and when the second piston moves along the third reversing stroke and the fourth reversing stroke, control the first reversing stroke.
  • a piston drains the first chamber.
  • the movement speed of the first piston during the first liquid inlet stroke is greater than the movement speed of the second piston during the second liquid outlet stroke;
  • the movement rate of the liquid inlet stroke is greater than the movement rate of the first piston during the first liquid outlet stroke.
  • the first piston moves at a uniform speed in the first liquid inlet stroke and the first liquid outlet stroke, respectively;
  • the second piston is in the second liquid inlet stroke and the second liquid outlet stroke. respectively uniform motion;
  • the movement rate of the first piston in the first liquid inlet stroke is equal to the movement rate of the second piston in the second liquid inlet stroke
  • the movement rate of the first piston in the first liquid outlet stroke is equal to the movement rate of the second piston in the second liquid outlet stroke
  • the time when the first piston reaches the intersection of the first liquid outlet stroke and the first reversing stroke is later than the second piston reaches the third reversing stroke.
  • the time when the second piston reaches the intersection of the second liquid outlet stroke and the fourth reversing stroke is later than the time when the first piston reaches the reversing point of the second reversing stroke point time.
  • the time when the second piston reaches the intersection of the third reversing stroke and the second liquid outlet stroke is later than the second piston reaches the third reversing stroke.
  • the time when the first piston reaches the intersection of the first liquid outlet stroke and the first reversing stroke is later than the time when the second piston reaches the third reversing stroke and the The moment of the intersection of the second liquid discharge stroke, or both arrive at the same time;
  • the time when the first piston reaches the intersection of the second reversing stroke and the first liquid outlet stroke is later than the time when the first piston reaches the reversing point of the second reversing stroke time; the time when the second piston reaches the intersection of the second liquid outlet stroke and the fourth reversing stroke is later than the time when the first piston reaches the second reversing stroke and the first liquid outlet
  • the beneficial effects of the liquid delivery system and the method for stabilizing liquid discharge according to the embodiments of the present disclosure include, for example:
  • the liquid delivery system includes a pump body, a first piston, and a second piston.
  • the pump body has a piston cavity
  • the first piston and the second piston are respectively slidably arranged in the piston cavity
  • the first piston and the second piston are used to separate the piston cavity into mutually independent first and second chambers .
  • the first piston switches the first chamber from the liquid outlet to the liquid inlet, that is, when the first piston changes direction, the second piston makes the second chamber in the liquid outlet
  • the outlet pressure of the first chamber when the first piston is reversed is compensated by the liquid outlet from the second chamber, so that the liquid delivery system can continuously and stably deliver liquid to the outside, and the improvement occurs when the piston is reversed.
  • Embodiments of the present disclosure also provide a method for stabilizing fluid output for controlling a fluid delivery system to stabilize fluid output.
  • the method for stabilizing the liquid discharge includes controlling the relative movement of the first piston and the second piston relative to the pump body, and in a working cycle, the time when the first piston switches from the liquid discharge stage to the liquid input stage is later than the time when the second piston switches from the liquid input stage to the liquid input stage.
  • FIG. 1 is a schematic structural diagram of a liquid delivery system provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic partial structure diagram of a liquid delivery system provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a driving member in a liquid delivery system provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a driving member in a liquid delivery system provided by an embodiment of the present disclosure from another perspective;
  • FIG. 5 is a schematic structural diagram of the liquid delivery system provided by the embodiment of the present disclosure when the second piston reaches Q1;
  • FIG. 6 is a schematic structural diagram of the liquid delivery system provided by the embodiment of the present disclosure when the second piston reaches Q2;
  • FIG. 7 is a schematic structural diagram of the liquid delivery system provided by the embodiment of the present disclosure when the second piston reaches Q3;
  • FIG. 8 is a schematic structural diagram of the liquid delivery system provided by the embodiment of the present disclosure when the first piston reaches P5;
  • FIG. 9 is a schematic structural diagram of the first piston reaching P6 in the liquid delivery system provided by the embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of the second piston in the second liquid delivery system provided by the embodiment of the present disclosure when it reaches Q2;
  • FIG. 11 is a schematic structural diagram of the third liquid delivery system when the second piston reaches Q3 according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of the fourth liquid delivery system provided by an embodiment of the present disclosure when the first piston reaches P5;
  • FIG. 13 is a schematic structural diagram of the fifth liquid delivery system when the first piston reaches P6 according to an embodiment of the present disclosure
  • FIG. 14 is a velocity-time diagram of a first piston and a second piston in one working cycle in a liquid delivery system provided in accordance with an embodiment of the present disclosure.
  • Icon 100-liquid delivery system; 110-pump body; 111-piston chamber; 112-first chamber; 113-second chamber; 114-first liquid inlet; 115-first liquid outlet; 116- The second liquid inlet; 117 - the second liquid outlet; 120 - the first piston; 121 - the first piston part; 122 - the first piston rod; 130 - the second piston; 131 - the second piston part; 132 - the first Two piston rods; 140-drive part; 141-first track; 1411-first liquid outlet section; 1412-first reversing section; 1413-first liquid inlet section; 1414-second reversing section; 142-first reversing section Two tracks; 1421- the second liquid inlet section; 1422- the third reversing section; 1423 - the second liquid outlet section; 1424 - the fourth reversing section; 151 - the first slider; 152 - the first follower pin; - The second slider; 154 - the second follower pin
  • FIG. 1 is a schematic structural diagram of a liquid delivery system 100 provided in this embodiment
  • FIG. 2 is a partial structural schematic diagram of the liquid delivery system 100 provided by this embodiment.
  • the present embodiment provides a liquid delivery system 100 , which includes a pump body 110 , a first piston 120 and a second piston 130 .
  • the pump body 110 has a piston chamber 111
  • the first piston 120 and the second piston 130 are respectively slidably arranged in the piston chamber 111
  • the first piston 120 and the second piston 130 are used to separate the piston chamber 111 into independent parts.
  • the first chamber 112 and the second chamber 113 are examples of the piston chamber 112 and the second chamber 113 .
  • the volume of the first chamber 112 changes, so that the first chamber 112 enters and exits the liquid.
  • the volume of the second chamber 113 changes, so that the second chamber 113 enters and exits the liquid.
  • the first chamber 112 and the second chamber 113 alternately enter and exit the fluid, so that the fluid delivery system 100 continuously exits the fluid.
  • the first piston 120 switches the first chamber 112 from the liquid outlet to the liquid inlet, that is, when the first piston 120 changes direction, the second piston 130 makes the first
  • the second chamber 113 is in a liquid outlet state, so that the liquid outlet pressure of the second chamber 113 compensates for the liquid outlet pressure of the first chamber 112 when the first piston 120 is reversed, so that the liquid delivery system 100 is continuously and stably outwards
  • the liquid is delivered to achieve the purpose of improving the drop in the outlet pressure that occurs when the piston is reversed.
  • reversing should be understood in a broad sense.
  • the reversing is the moment of reversing.
  • the piston 120 has a reversing section. In the reversing section, the deceleration becomes 0 and then reversely accelerates to a constant speed and stable motion, and the reversing is the time period during which the reversing is performed.
  • liquid delivery system 100 provided by this embodiment:
  • the pump body 110 has a cylindrical piston cavity 111 , and the first piston 120 and the second piston 130 are respectively movably matched with the piston cavity 111 .
  • a piston 120 and a second piston 130 form a single-chamber double-piston pump structure.
  • the pump body 110 is provided with a first opening and a second opening arranged on both sides of the piston chamber 111 along the axial direction of the piston chamber 111 .
  • the first piston 120 includes a first piston portion 121 and a first piston rod 122 that are connected to each other.
  • a sealing member is provided on the outer periphery of the first piston portion 121, and the sealing member is in sealing cooperation with the piston cavity 111, so that the piston cavity 111 is located in the first piston cavity 111. Spaces on both sides of the piston portion 121 are separated.
  • the first piston rod 122 passes through the first opening, and the first piston portion 121 is partitioned to form the first chamber 112 located on the side of the first piston portion 121 close to the first opening. A portion between the first opening and the first piston portion 121 .
  • the second piston 130 includes a second piston portion 131 and a second piston rod 132 that are connected to each other.
  • the outer periphery of the second piston portion 131 is provided with a sealing member, and the sealing member is in sealing cooperation with the piston cavity 111 to place the piston cavity 111 in the second piston.
  • the spaces on both sides of the portion 131 are separated, in other words, the piston cavity 111 is divided by the first piston 120 and the second piston 130 to form three mutually independent spaces, and the three spaces are respectively located on the side of the first piston 120 away from the second piston 130 , between the first piston 120 and the second piston 130 and the side of the second piston 130 away from the first piston 120 .
  • the second piston rod 132 passes through a second opening, and the portion of the piston cavity 111 between the second piston portion 131 and the second opening is the second cavity 113 .
  • Both the first opening and the second opening are provided with sealing end caps, the sealing end cap and the piston cavity 111 are sealed, and the sealing end cap and the piston rod are slidably sealed, so as to ensure that during the working process, the first cavity 112 and the second chamber 113 are in a sealed state.
  • the pump body 110 is provided with a first liquid inlet 114 and a first liquid outlet 115 that communicate with the first chamber 112.
  • first piston 120 moves in the direction of reducing the space of the first chamber 112
  • the liquid leaves the first chamber 112 from the first liquid outlet 115
  • the pump body 110 is also provided with a second liquid inlet 116 and a second liquid outlet 117 that communicate with the second chamber 113 .
  • the liquid When moving in the direction, the liquid leaves the first chamber 112 from the second liquid outlet 117, and when the second piston 130 moves in a direction that increases the space of the second chamber 113, the liquid flows from the second liquid inlet 116 into the first chamber 112. Two chambers 113 .
  • the liquid delivery system 100 is continuously discharged from the first chamber 112 and the second chamber 113 by alternately entering and exiting the liquid.
  • the first liquid inlet 114 , the first liquid outlet 115 , the second liquid inlet 116 and the second liquid outlet 117 are all provided with one-way valves (not shown in the figure), so as to realize one-way liquid through the one-way valve In and out of the first chamber 112 and the second chamber 113 .
  • the first piston 120 switches the first chamber 112 from the liquid outlet to the liquid inlet.
  • the second piston 130 switches the direction to switch the second chamber 113 from the liquid inlet to the liquid outlet, so when the first piston 120 moves to the reverse direction, the second piston 130 makes the second chamber 113 switch from the liquid inlet to the liquid outlet.
  • the chamber 113 is in a liquid outlet state, that is, the liquid outlet of the second chamber 113 compensates the pressure drop that occurs when the first chamber 112 is switched from liquid outlet to liquid inlet, so as to ensure stable outlet pressure.
  • the first piston 120 makes the first chamber 112 in the liquid out state, that is, the liquid out of the first chamber 112
  • the pressure drop that occurs when the second chamber 113 is switched from the liquid outlet to the liquid inlet is compensated to ensure that the liquid outlet pressure is stable.
  • FIG. 3 is a schematic structural diagram of the driving member 140 in the liquid delivery system 100 provided in this embodiment. 1 and 3, in this embodiment, the liquid delivery system 100 further includes a driving member 140, and the driving member 140 is drivingly connected with the first piston 120 and the second piston 130, thereby driving the first piston 120 along the first piston 120. A movement track moves, and the second piston 130 is driven to move along the second movement track at the same time.
  • the driving member 140 is provided with a first track 141 and a second track 142.
  • the first track 141 is drive-connected with the first piston 120 to drive the first piston 120 to move corresponding to the first track 141 and move relative to the piston cavity 111, thereby realizing In and out of the first chamber 112 .
  • the second rail 142 is in driving connection with the second piston 130 , so as to drive the second piston 130 to move corresponding to the second rail 142 and slide relative to the piston cavity 111 , thereby realizing the liquid in and out of the second cavity 113 .
  • the structure of the driving member 140 is not limited here. It can be understood that in other embodiments, the structure of the driving member 140 can also be set as required, for example, the driving member 140 is set to drive the first pistons respectively 120 and two driving cylinders for the movement of the second piston 130, etc., so that one of the driving cylinders is drivingly connected with the first piston 120 to drive the first piston 120 to move along the first movement track, and the other driving cylinder is driven with the second piston 130. connected, so as to drive the second piston 130 to move along the second movement track.
  • the driving cylinder can be an electric cylinder, that is, an electric push rod or a linear motor. Accuracy is enough.
  • the driving member 140 includes a first driving part and a second driving part, the first rail 141 is provided on the first driving part, and the second rail 142 is provided on the second driving part.
  • the first driving part and the second driving part are fixedly connected, and the first driving part and the second driving part are arranged coaxially, so that in use, the first rail 141 and the second rail 142 can be driven to rotate at the same time by the same power member 156 , thereby driving the first piston 120 and the second piston 130 to slide relative to the pump body 110 at the same time.
  • the first driving part and the second driving part are both cams, the first driving part is the first cam, and the second driving part is the second cam, in other words, the driving member 140 is a camshaft.
  • the first cam and the second cam are integrally connected by shaft segments.
  • the first track 141 is the cam groove of the first cam, in other words, the first cam is a grooved cam.
  • the second track 142 is the cam groove of the second cam, in other words, the second cam is a grooved cam.
  • first track 141 and the second track 142 are both cam grooves, that is, the first track 141 and the second track 142 are formed by concave inward on the outer peripheral surface. It can be understood that in other embodiments Among them, the first rail 141 and the second rail 142 can also be set as protrusions according to requirements, that is, the first rail 141 and the second rail 142 are formed by protruding outward from the outer peripheral surface.
  • the liquid delivery system 100 also includes a guide rail 155 , a first slider 151 and a second slider 153 . Both the first sliding block 151 and the second sliding block 153 are slidably connected with the guide rail 155 .
  • the first sliding block 151 is provided with a first following pin 152 slidably matched with the first track 141 , and one end of the first following pin 152 extends into the first track 141 .
  • the first track 141 slides, and the first follower pin 152 moves along the axial direction of the driving member 140 , thereby driving the first sliding block 151 to slide relative to the guide rail 155 , and driving the first piston 120 to slide through the first sliding block 151 .
  • the second sliding block 153 is provided with a second following pin 154 that cooperates with the second track 142.
  • One end of the second following pin 154 extends into the second track 142.
  • the liquid delivery system 100 further includes a power member 156 , and the power member 156 is drivingly connected with the driving member 140 to rotate the driving member 140 .
  • the power member 156 is a motor.
  • FIG. 4 is a schematic structural diagram of the driving member 140 in the liquid delivery system 100 provided in this embodiment from another viewing angle.
  • the first track 141 includes a first liquid inlet section 1413 and a first liquid outlet section 1411 , and there is a space between the first liquid inlet section 1413 and the first liquid outlet section 1411 Two reversing points.
  • the first follower pin 152 slides along the first liquid inlet section 1413, the first piston 120 moves in the direction of increasing the volume of the first chamber 112, so that the first chamber 112 is filled with liquid.
  • the first piston 120 is located at The first liquid inlet stroke of the first motion trajectory, that is, the first liquid inlet section 1413 is used to move the first piston 120 along the first liquid inlet stroke of the first motion trajectory; when the first follower pin 152 moves along the first liquid outlet section When the 1411 slides, the first piston 120 moves in the direction of reducing the volume of the first chamber 112, so that the first chamber 112 is discharged. That is, the first liquid outlet section 1411 is used to move the first piston 120 along the first liquid outlet stroke of the first movement track.
  • the first chamber 112 is switched between liquid inlet and liquid outlet, that is, the first piston 120 is correspondingly located at the reversing point of the first motion trajectory, and the reversing point of the first motion trajectory is the first reversing point.
  • the first motion trajectory includes the first liquid inlet stroke and the first liquid outlet stroke and two first reversing points located between the first liquid inlet stroke and the first liquid outlet stroke.
  • the second track 142 includes a second liquid inlet section 1421 and a second liquid outlet section 1423, and there are two reversing points between the second liquid inlet section 1421 and the second liquid outlet section 1423.
  • the second piston 130 moves in the direction of increasing the volume of the second chamber 113, so that the second chamber 113 is filled with liquid.
  • the second piston 130 is located at The second liquid inlet stroke of the second movement track, that is, the second liquid inlet section 1421 is used to move the second piston 130 along the second liquid inlet stroke of the second movement track; when the second follower pin 154 moves along the second liquid outlet section When the 1423 slides, the second piston 130 moves in the direction of reducing the volume of the second chamber 113, so that the second chamber 113 is discharged. That is, the second liquid outlet section 1423 is used to move the second piston 130 along the second liquid outlet stroke of the second movement track.
  • the second piston 130 is reversed, so that the The second chamber 113 is switched between liquid inlet and liquid outlet, that is, the second piston 130 is correspondingly located at the reversing point of the second movement trajectory, and the second movement trajectory reversing point is the second reversing point.
  • the second motion trajectory includes the second liquid inlet stroke and the second liquid outlet stroke and two second reversing points located between the second liquid inlet stroke and the second liquid outlet stroke.
  • the first liquid inlet section 1413 and the second liquid outlet section 1423 are approximately located at the same circumferential position of the camshaft, that is, when the first follower pin 152 slides along the first liquid inlet section 1413, the second follower pin 154 is approximately along the second liquid outlet.
  • the segment 1423 slides, in other words, when the first piston 120 moves along the first liquid inlet stroke, the second piston 130 generally moves along the second liquid outlet stroke, at this time, the first chamber 112 is filled with liquid and the second chamber 113 is discharged.
  • the first liquid outlet section 1411 and the second liquid inlet section 1421 are approximately located at the same circumferential position of the camshaft, that is, when the first follower pin 152 slides along the first liquid outlet section 1411, the second follower pin 154 is approximately along the second liquid inlet section.
  • the segment 1421 slides, in other words, when the first piston 120 moves along the first liquid outlet stroke, the second piston 130 roughly moves along the second liquid inlet stroke, at this time, the first chamber 112 is liquid out, and the second chamber 113 is liquid inlet. so that the liquid delivery system 100 is continuously discharged.
  • the first reversing point and the second reversing point are staggered, that is, the reversing moments of the first piston 120 and the second piston 130 arrive successively, so that the liquid outlet from the first chamber 112 and the liquid outlet from the second chamber 113 There is a partial overlap to ensure the stability of the liquid outlet pressure during reversing.
  • the first liquid inlet stroke has a first velocity V1
  • the first liquid outlet stroke has a second velocity V2
  • the second liquid inlet stroke has a third velocity V3
  • the second liquid outlet stroke has a fourth velocity V4, V1>V4, V3> v2.
  • V1>V4 that is, the moving speed of the first piston 120 when moving along the first liquid inlet stroke is greater than the moving speed of the second piston 130 when moving along the second liquid outlet stroke, in other words, the first follower pin 152 moves along the first liquid inlet stroke.
  • the moving speed of the first piston 120 when the liquid section 1413 slides is greater than the moving speed of the second piston 130 when the second follower pin 154 slides along the second liquid outlet section 1423 .
  • V3>V2 that is, the moving speed of the first piston 120 when moving along the first liquid outlet stroke is smaller than the moving speed of the second piston 130 when moving along the second liquid inlet stroke, in other words, the first follower pin 152 moves along the first liquid outlet stroke
  • the moving speed of the first piston 120 when the liquid section 1411 slides is smaller than the moving speed of the second piston 130 when the second follower pin 154 slides along the second liquid inlet section 1421 .
  • the moving speed of the first piston 120 when the liquid section 1411 slides is equal to the moving speed of the second piston 130 when the second follower pin 154 slides along the second liquid outlet section 1423 , thereby ensuring the overall liquid output stability of the liquid delivery system 100 .
  • the moving speed of the first piston 120 when the liquid section 1413 slides is equal to the moving speed of the second piston 130 when the second follower pin 154 slides along the second liquid inlet section 1421 . It can be understood that, in other embodiments, the values of V1 and V3 can also be set according to requirements.
  • the rates of movement of the first piston 120 along the first liquid inlet stroke and along the first liquid outlet stroke are both constant values, that is, when the first follower pin 152 slides along the first liquid inlet section 1413 and the first follower pin 152 moves along the first liquid inlet section 1413 .
  • the first piston 120 moves at a uniform speed.
  • the rates of movement of the second piston 130 along the second liquid inlet stroke and along the second liquid outlet stroke are both constant, that is, when the second follower pin 154 slides along the second liquid inlet section 1421 and the second follower pin 154 moves along the second liquid inlet section 1421
  • the second piston 130 moves at a uniform speed.
  • the first liquid inlet section 1413 has a first slope value K1
  • the first liquid outlet section 1411 has a second slope value K2
  • the second liquid inlet section 1421 has a third slope value K3
  • the second liquid outlet section 1423 has a third slope value K3.
  • the four slope values are K4, K1>K4, K3>K2, so that when the first driving part and the second driving part move at the same rotation speed, V1>V4, V3>V2 is realized.
  • the first liquid inlet section 1413 , the first liquid outlet section 1411 , the second liquid inlet section 1421 and the second liquid outlet section 1423 are all straight lines.
  • the first liquid inlet section The slope values of 1413, the first liquid outlet section 1411, the second liquid inlet section 1421 and the second liquid outlet section 1423 are the slopes of the corresponding straight lines.
  • the first piston 120 is in the first liquid inlet stroke and the first liquid outlet The stroke moves at a uniform speed
  • the second piston 130 moves at a uniform speed in the second liquid inlet stroke and the second liquid outlet stroke. It can be understood that in other embodiments, it is also required.
  • the first liquid inlet section 1413 can be set as a curve accordingly, and the first slope value K1 of the first liquid inlet section 1413 is the average slope of the curve.
  • the first track 141 further includes a first reversing section 1412 and a second reversing section 1414, a first reversing section 1412, a first liquid inlet section 1413, a first reversing section 1413, a The second reversing section 1414 is connected end to end with the first liquid outlet section 1411 , that is, the first follower pin 152 runs along the first reversing section 1412 , the first liquid inlet section 1413 , the second reversing section 1414 and the first liquid outlet section 1411
  • the movement is a working cycle, and FIG.
  • the first motion trajectory further includes a first reversing stroke and a second reversing stroke, and the first reversing stroke, the first liquid inlet stroke, the second reversing stroke and the first liquid outlet stroke are connected end to end, thereby forming the first reversing stroke.
  • a trajectory of motion One of the first reversing points of the first motion trajectory is located within the first reversing stroke, and the other first reversing point of the first motion trajectory is located within the second reversing stroke.
  • the first piston 120 moves along the first reversing stroke; when the first following pin 152 slides along the first liquid inlet section 1413, the first piston 120 moves along the first reversing stroke.
  • the second track 142 further includes a third reversing section 1422 and a fourth reversing section 1424.
  • the third reversing section 1422, the second liquid outlet section 1423, the fourth reversing section 1424 and the second liquid inlet section 1421 are connected end to end, That is, the movement of the second follower pin 154 along the third reversing section 1422, the second liquid outlet section 1423, the fourth reversing section 1424 and the second liquid inlet section 1421 is a working cycle, and FIG. 3 shows the third reversing section 1423.
  • the second motion trajectory also includes a third reversing stroke and a fourth reversing stroke, and the third reversing stroke, the second liquid outlet stroke, the fourth reversing stroke and the second liquid inlet stroke are connected end to end, thereby forming the first Two motion trajectories.
  • One of the second reversing points of the second movement trajectory is located in the third reversing stroke, and the other second reversing point of the second movement trajectory is located in the fourth reversing stroke.
  • the second piston 130 moves along the third reversing stroke; when the second following pin 154 slides along the second liquid outlet section 1423, the second piston 130 moves along the third reversing stroke.
  • the second piston 130 moves along the fourth reversing stroke; when the second follower pin 154 moves along the second liquid inlet section 1421, The second piston 130 moves along the second liquid inlet stroke.
  • the acceleration and deceleration of the first piston 120 when reversing the first reversing stroke and the second reversing stroke, and the acceleration and deceleration of the second piston 130 when reversing the third reversing stroke and the fourth reversing stroke are determined by setting A first reversing segment 1412 and a second reversing segment 1414 are arranged on the first track 141, and a third reversing segment 1422 and a fourth reversing segment 1424 are arranged on the second track 142, so that the first motion track has a corresponding The first reversing stroke, the second reversing stroke, and the second movement track have corresponding third reversing strokes and fourth reversing strokes, thereby making the reversing process of the first piston 120 and the second piston 130 more stable and avoiding the occurrence of shock.
  • the slopes of the first reversing section 1412, the first liquid inlet section 1413, the second reversing section 1414 and the first liquid outlet section 1411 are continuous, the third reversing section 1422, the second liquid outlet section 1423, the fourth reversing section The slopes of 1424 and the second liquid inlet section 1421 are continuous.
  • FIG. 5 is a schematic structural diagram of the liquid delivery system 100 provided by the present embodiment when the second piston 130 reaches Q1
  • FIG. 6 is a structural schematic diagram of the liquid delivery system 100 provided by the present embodiment when the second piston 130 reaches Q2.
  • the intersection point of the first reversing stroke and the first liquid outlet stroke is P1
  • the first reversing point of the first reversing stroke is P2
  • the first reversing stroke is P2.
  • the intersection with the first liquid inlet stroke is P3.
  • the first follower pin 152 slides along the sequence of the first liquid outlet section 1411, the first reversing section 1412, and the first liquid inlet section 1413.
  • the first piston 120 slides along the first movement track of the first
  • P1 to P2 correspond to the deceleration stroke of the first piston 120
  • P2 to P3 correspond to the acceleration stroke of the first piston 120 .
  • the intersection point of the second liquid inlet stroke and the third reversing stroke is Q1
  • the second reversing point in the third reversing stroke is Q2
  • the intersection point of the third reversing stroke and the second liquid outlet stroke is Q3.
  • the second follower pin 154 slides along the sequence of the second liquid inlet section 1421, the third reversing section 1422, and the second liquid outlet section 1423.
  • the second piston 130 slides along the first position of the second movement track.
  • the sequential movement of the second liquid inlet stroke, the third reversing stroke, and the second liquid outlet stroke, Q1 to Q2 correspond to the deceleration stroke of the second piston 130
  • Q2 to Q3 correspond to the acceleration stroke of the second piston 130 .
  • the driving member 140 is used to drive the first piston 120 to reach P1 after driving the second piston 130 to cross Q2.
  • the position corresponding to P1 on the first track 141 is located on the second track 142 and the position corresponding to Q2 is close to the second outlet.
  • One side of the liquid segment 1423, so that the moment when the second piston 130 reaches Q2 is earlier than the moment when the first piston 120 reaches P1 during the rotation of the driving member 140.
  • the first piston 120 causes the first chamber 112 to discharge liquid and the first piston 120 moves at a constant speed (as shown in FIG. 6 ). Show). Since the time when the second piston 130 reaches Q1 is earlier than the time when the first piston 120 reaches P1, obviously, when the second piston 130 reaches Q1, the first piston 120 is in a state of uniform motion and the first chamber 112 is discharged (as shown in FIG. 5 ), that is, the first follower pin 152 moves along the first liquid outlet section 1411 at this time.
  • the "position point corresponding to a certain point” refers to the position point of the track that follows the pin when the piston reaches the point.
  • the position point corresponding to P1 is the position point on the first track 141 reached by the first follower pin 152 when the first piston 120 reaches P1, and at the same time on the first track 141, the position corresponding to P1 The point is marked as P1;
  • the position point corresponding to Q2 is the position point on the second track 142 reached by the second follower pin 154 when the second piston 130 reaches Q2, and at the same time on the second track 142, the position point corresponding to Q2 It is marked as Q2.
  • the moment when the second piston 130 reaches Q2 is earlier than the moment when the first piston 120 reaches P1.
  • the driving member 140 can also be set to When the second piston 130 is driven to reach Q2, the first piston 120 is driven to reach P1, that is, when the second piston 130 reaches Q2, the first piston 120 reaches P1 (as shown in FIG. 10).
  • FIG. 7 is a schematic structural diagram of the liquid delivery system 100 provided in the present embodiment when the second piston 130 reaches Q3.
  • the driving member 140 is used to drive the first piston 120 to reach P1 after driving the second piston 130 to cross Q3.
  • the position corresponding to P1 on the first track 141 is located on the second track 142 corresponding to the position Q3 on the side of the second liquid outlet section 1423 , on the second piston 130
  • the first piston 120 reaches P1. Since the second piston 130 moves sequentially along the sequence of Q1, Q2 and Q3, the moment when the second piston 130 reaches Q3 is later than the moment when the second piston 130 reaches Q2.
  • the second The first piston 120 does not reach P1 until the piston 130 crosses Q2, that is, after the second piston 130 crosses Q2 and Q3 in sequence.
  • the deceleration stroke of the liquid discharge stage is started (as shown in FIG. 7 ), so that the liquid discharge pressure at the liquid discharge end of the first chamber 112 is compensated by the second chamber 113 .
  • the driving member 140 can also be configured to drive the first piston 120 to reach P1 (as shown in FIG. 11 ) while driving the second piston 130 to reach Q3, in other words, the first The second piston 130 reaches Q3 at the same moment when the piston 120 reaches P1, that is, along the rotation direction of the driving member 140, the position corresponding to P1 on the first track 141 and the position corresponding to Q3 on the second track 142 are located at the same point. Circumferential position.
  • the positions of the first piston 120 when reaching P1 and P3 are coincident; the positions of the second piston 130 when reaching Q1 and Q3 are coincident. It can be understood that, in other embodiments, the positions of points P1 and P3, and the positions of Q1 and Q3 can also be set according to requirements.
  • FIG. 8 is a schematic structural diagram of the liquid delivery system 100 provided by the present embodiment when the first piston 120 reaches P5
  • FIG. 9 is a structural schematic diagram of the liquid delivery system 100 provided by the present embodiment when the first piston 120 reaches P6.
  • the intersection point of the first liquid inlet stroke and the second reversing stroke is P4
  • the first reversing point of the second reversing stroke is P5
  • the second reversing stroke The intersection point with the first liquid outlet stroke is P6
  • P4 to P5 correspond to the deceleration stroke of the first piston 120
  • P5 to P6 correspond to the acceleration stroke of the first piston 120 .
  • intersection point of the second liquid outlet stroke and the fourth reversing stroke is Q4
  • the second reversing point of the fourth reversing stroke is Q5
  • the intersection point of the fourth reversing stroke and the second liquid inlet stroke is Q6, and Q4 to Q5 are Corresponding to the deceleration stroke of the second piston 130
  • Q5 to Q6 correspond to the acceleration stroke of the second piston 130 .
  • the driving member 140 is used to drive the second piston 130 to reach Q4 after driving the first piston 120 to cross P5.
  • the position corresponding to Q4 on the second track 142 is located on the first track 141 and the position corresponding to P5 is close to the side of the first liquid outlet section 1411 , so that the first piston 120
  • the second piston 130 reaches Q4 after passing P5. That is, when the first piston 120 starts to change direction, so that the first chamber 112 is switched from the liquid inlet to the liquid outlet, the second piston 130 makes the second chamber 113 liquid, and the second piston 130 moves at a constant speed (as shown in FIG. 8 ). shown).
  • the driving member 140 may also be configured to drive the second piston 130 to Q4 when the first piston 120 is driven to reach P5, that is, when the first piston 120 reaches P5, the second piston 130 is driven to reach Q4. Piston 130 reaches Q4 (shown in Figure 12).
  • the driving member 140 is used to drive the second piston 130 to Q4 after driving the first piston 120 to cross P6.
  • the position point corresponding to Q4 on the second track 142 is located on the first track 141 and P6.
  • the corresponding position point is close to one side of the second liquid outlet section 1423, so that after the first piston 120 crosses P6, the second piston 130 reaches Q4.
  • the second piston 130 starts a deceleration stroke in the liquid discharge stage (as shown in FIG. 9 ).
  • the first piston 120 sequentially moves in the order of P4, P5 and P6, it is apparent that the time when the first piston 120 reaches P5 is earlier than the time when the first piston 120 reaches P6. It can be understood that in other embodiments, it can also be set that the second piston 130 reaches Q4 and the first piston 120 reaches P6 (as shown in FIG. 13 ), that is, the position point on the first track 141 corresponding to P6 and the first piston 120 . The position point corresponding to Q4 on the second track 142 is located at the same circumferential position of the camshaft.
  • FIG. 2 the arrows in the drawings shown in FIG. 2 , FIG. 5 , FIG. 6 , FIG. 7 , FIG. 8 , FIG. 9 , FIG. 10 , FIG. 11 , FIG. 12 and FIG. 13 represent the first piston 120 and the The movement direction of the second piston 130 .
  • FIG. 14 is a speed-time diagram of the first piston 120 and the second piston 130 in one working cycle in the liquid delivery system 100 provided in this embodiment, and in FIG. 14 , when the piston speed is negative, the corresponding chamber is in In the liquid inlet state, when the piston speed is positive, the corresponding chamber is in the liquid out state. Therefore, the thick solid line in FIG. 14 shows the speed-time relationship of the first piston 120, and the thin solid line in FIG. 14 shows the second Speed-time relationship of piston 130. 2 , 5 , 6 , 7 , 8 , 9 and 14 , the working process of the liquid delivery system 100 provided in this embodiment will be described below with the position shown in FIG. 2 as the starting point of a working cycle. illustrate:
  • both the first piston 120 and the second piston 130 slide to the left at a constant speed.
  • the first piston 120 is in the first liquid outlet stroke
  • the second piston 130 is in the second liquid inlet stroke.
  • the volume of the first chamber 112 gradually decreases, the liquid in the first chamber 112 flows out from the first liquid outlet 115, the volume of the second chamber 113 gradually increases, and the liquid enters the second liquid inlet 116 from the second liquid inlet 116. chamber 113 .
  • the speed of the first piston 120 is smaller than the speed of the second piston 130 , and the distance between the first piston 120 and the second piston 130 decreases.
  • the first piston 120 and the second piston 130 are still moving to the left, that is, the first chamber 112 is still out of liquid, the second chamber 113 is still in liquid, and the first piston 120 is still moving at a constant speed Sliding, the second piston 130 reaches the left deceleration point, that is, the second piston 130 reaches the position corresponding to Q1, and there is an appropriate distance between the first piston 120 and the second piston 130 to avoid the occurrence of the first piston 120 and the second piston 130. collision.
  • the first piston 120 still slides to the left at a constant speed, that is, the first chamber 112 is still flowing out.
  • the second piston 130 reaches the left reversing point, that is, the second piston 130 reaches the position Q2, and the second chamber 113 is switched from liquid inlet to liquid outlet at this time.
  • the second piston 130 decelerates and at the same time the first piston 120 moves at a constant speed, so the distance between the second piston 130 and the first piston 120 increases. In other words, as shown in FIG. 5 In the position shown, the distance between the first piston 120 and the second piston 130 is minimal.
  • the first piston 120 is still moving at a constant speed to the left, that is, the first chamber 112 is still discharging liquid.
  • the second piston 130 moves to the right to the left acceleration end point, that is, the second piston 130 reaches Q3, the second chamber 113 discharges liquid, the first piston 120 and the second piston 130 move in opposite directions, and the first piston 120 and the second piston 130 move in opposite directions.
  • the distance between the pistons 130 gradually increases.
  • the first piston 120 moves to the left to the left deceleration point (ie at P1), and then decelerates to the left to change to the left. to the point (that is, at P2), after which the first chamber 112 starts to enter the liquid, and keeps moving to the right at a constant speed after accelerating to the right to the left acceleration end point (that is, at P3).
  • the first piston 120 and the second The pistons 130 uniformly move to the right, and the moving speed of the first piston 120 is greater than the moving speed of the second piston 130 , that is, the distance between the first piston 120 and the second piston 130 gradually decreases.
  • the first piston 120 moves to the right to the right deceleration point (ie, at P4), and the second piston 130 still moves to the right at a constant speed, so that the second chamber 113 discharges liquid.
  • the first piston 120 and the second An appropriate distance exists between the pistons 130 to avoid collision between the first piston 120 and the second piston 130, after which the first piston 120 starts to decelerate to the right.
  • the second piston 130 In the position shown in FIG. 8 , the second piston 130 is still sliding to the right at a constant speed, that is, the second chamber 113 is still flowing out.
  • the first piston 120 moves to the right to the right reversing point, that is, the first piston 120 reaches the position P5, and the first chamber 112 switches from the liquid inlet to the liquid outlet at this time.
  • the second piston 130 still moves to the right at a constant speed, so that the second chamber 113 is discharged.
  • the first piston 120 accelerates to the left to the right acceleration end point (ie at P6), the first piston 120 and the second piston 130 move in the opposite direction, and the first chamber 112 and the second chamber 113 both perform liquid discharge .
  • the second piston 130 moves to the right to the right deceleration point (ie, at Q4), and then moves to the right to change with deceleration.
  • the second chamber 113 starts to enter the liquid, and keeps moving to the left at a constant speed after accelerating to the left to the right acceleration end point (ie, at Q6).
  • the first piston 120 and the The two pistons 130 both move to the left at a constant speed, and the moving speed of the first piston 120 is lower than the moving speed of the second piston 130 until the first piston 120 and the second piston 130 move to the positions shown in FIG. 2 , at which point one working cycle ends , the first piston 120 and the second piston 130 repeat the above motion process to perform the next working cycle.
  • the liquid delivery system 100 provided by this embodiment has at least the following advantages:
  • the first piston 120 and the second piston 130 are slidably disposed in the piston cavity of the pump body 110 .
  • a piston 120 and a second piston 130 move asynchronously, that is, when the first chamber 112 corresponding to the first piston 120 performs liquid in and out switching, the second chamber 113 corresponding to the second piston 130 performs liquid out to compensate for the first
  • the liquid outlet pressure changes when the first chamber 112 enters and exits the liquid.
  • the first chamber 112 performs the liquid outlet to compensate the second chamber 113 for the liquid inlet and outlet switching.
  • the hydraulic change of the liquid that occurs during the time so as to achieve the purpose of continuous and stable liquid discharge of the single-chamber pump.
  • the present embodiment also provides a method for stabilizing fluid output, which is used to control the fluid delivery system 100 to stabilize fluid output.
  • the system delivery system includes a pump body 110 and a first piston 120 and a second piston 130 arranged in the pump body 110.
  • the first piston 120 is used to form a first chamber 112 in the pump body 110, and the first piston 120 is opposite to the pump
  • the body 110 slides the first chamber 112 into and out of fluid.
  • the second piston 130 is used to form the second chamber 113 in the pump body 110 , and when the second piston 130 slides relative to the pump body 110 , the second chamber 113 enters and leaves the liquid.
  • the stable liquid discharge method can be used to control the first motor and the second motor of the above-mentioned liquid delivery system 100 to drive the first piston 120 and the second piston 130 to slide relative to the pump body 110 .
  • the stabilizing liquid discharge method includes:
  • the first piston 120 is controlled to change direction, and the second piston 130 is controlled to make the second chamber 113 discharge liquid, so as to compensate the discharge of the first chamber 112 when the first piston 120 is reversed by the liquid discharge from the second chamber 113 . hydraulic pressure changes.
  • the first piston 120 is controlled to move cyclically along the first reversing stroke, the first liquid inlet stroke, the second reversing stroke, and the first liquid outlet stroke, and the first piston 120 performs the first reversing stroke and the second reversing stroke respectively. Acceleration and deceleration are performed to change the movement direction of the first piston 120 . And when the first piston 120 moves along the first reversing stroke and the second reversing stroke, the second piston 130 discharges the liquid from the second chamber 113 .
  • the first reversing stroke is the stroke of the first piston 120 passing through P1, P2 and P3 in FIG. 2 in sequence
  • the first liquid inlet stroke is the movement of the first piston 120 from P3 to P4 in FIG. 2 .
  • the second reversing stroke is the stroke of the first piston 120 passing through P4, P5 and P6 in FIG. 2 in sequence
  • the first liquid outlet stroke is the stroke of the first piston 120 moving from P4 to P1 in FIG. 2 .
  • the second piston 130 is controlled to move cyclically along the third reversing stroke, the second liquid outlet stroke, the fourth reversing stroke, and the second liquid inlet stroke, and the second piston 130 performs the third reversing stroke and the fourth reversing stroke respectively. Acceleration and deceleration are performed to change the movement direction of the first piston 120 . And when the second piston 130 moves along the third reversing stroke and the fourth reversing stroke, the first piston 120 discharges the liquid from the first chamber 112 .
  • the third reversing stroke is the stroke of the second piston 130 passing through Q1, Q2 and Q3 in FIG. 2 in sequence
  • the second liquid outlet stroke is the movement of the second piston 130 from Q3 to Q4 in FIG. 2 .
  • the fourth reversing stroke is the stroke of the second piston 130 passing through Q4, Q5 and Q6 in FIG. 2 in sequence
  • the second liquid inlet stroke is the stroke of the second piston 130 moving from Q6 to Q1 in FIG. 2 .
  • the first piston 120 moves at a uniform speed in the first liquid inlet stroke and the first liquid outlet stroke, respectively, the second piston 130 moves at a uniform speed in the second liquid inlet stroke and the second liquid outlet stroke, and the first piston 120 is in the first liquid inlet stroke.
  • the movement rate of the stroke is equal to the movement rate of the second piston 130 in the second liquid inlet stroke, and the movement rate of the first piston 120 in the first liquid outlet stroke is equal to the movement rate of the second piston 130 in the second liquid outlet stroke.
  • the time when the first piston 120 reaches the intersection of the first liquid outlet stroke and the first reversing stroke is later than the time when the second piston 130 reaches the third reversing stroke.
  • the second piston 130 moves to the right to make the second chamber 113 discharge liquid; the second piston 130 The time when the first piston 120 reaches the intersection point of the second liquid outlet stroke and the fourth reversing stroke (ie, the position of Q4 shown in FIG.
  • the time when the second piston 130 reaches the intersection of the third reversing stroke and the second liquid outlet stroke is later than the time when the second piston 130 reaches the reversing point of the third reversing stroke; the first piston 120 reaches the The time of the intersection of the first liquid discharge stroke and the first reversing stroke (that is, the position P1 shown in FIG. 2 ) is later than the time when the second piston 130 reaches the intersection of the third reversing stroke and the second liquid discharge stroke (ie, the position shown in FIG. 2 ).
  • the first piston 120 is in the position shown in FIG. 7 .
  • the moment when the first piston 120 reaches the intersection of the second reversing stroke and the first liquid outlet stroke is later than the moment when the first piston 120 reaches the reversing point of the second reversing stroke; the second piston
  • the time when 130 reaches the intersection of the second liquid discharge stroke and the fourth reversing stroke ie, the Q4 position shown in FIG. 2
  • the second piston 130 is in the position shown in FIG. 9 .

Abstract

一种液体输送系统(100)及稳定出液方法,涉及医疗器械技术领域。该液体输送系统(100)包括泵体(110)、第一活塞(120)和第二活塞(130)。泵体(110)内具有活塞腔(111),第一活塞(120)和第二活塞(130)分别可滑动地设置在活塞腔(111)内,且第一活塞(120)和第二活塞(130)用于将活塞腔(111)分隔成相互独立的第一腔室(112)和第二腔室(113)。第一腔室(112)和第二腔室(113)交替进出液,以使液体输送系统(100)持续出液。第二活塞(130)使第二腔室(113)出液时,第一活塞(120)使第一腔室(112)从出液向进液切换,即在第一活塞(120)换向时,第二活塞(130)使第二腔室(113)处于出液状态,如此通过第二腔室(113)的出液对第一活塞(120)换向时第一腔室(112)的出液压力进行补偿,进而使液体输送系统(100)持续稳定地向外输送液体,改善在活塞换向时出现的出液压力降低的问题。

Description

一种液体输送系统及稳定出液方法
相关申请的交叉引用
本公开要求于2021年03月03日提交中国专利局的申请号为“CN 202110236300.X”名称为“一种液体输送系统及稳定出液方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及医疗器械技术领域,具体而言,涉及一种液体输送系统及稳定出液方法。
背景技术
在一些临床手术过程中,需要进行液体注射,例如在粘膜下切除术中,可以通过输注液体实现内镜黏膜下注射隆起。
现有的液体输送系统中,为了实现液体的连续输送将输送泵设置为单腔单活塞,即活塞正向移动时活塞一侧出液,活塞反向移动时活塞另一侧出液。然而发明人研究发现,现有的单腔单活塞的输送泵存在以下问题:在活塞运动至工作腔道的左右两端时都需要反向,则活塞必然有一个减速、停止、反向加速的过程,此过程会造成液体排除的压力降低和流量减少的情况。
发明内容
本公开的目的包括,例如,提供了一种液体输送系统,其能够改善在活塞换向时出现的出液压力降低的技术问题。
本公开的目的还包括,提供了一种稳定出液方法,其能够改善在活塞换向时出现的出液压力降低的技术问题。
本公开的实施方式可以这样实现:
本公开的实施方式提供了一种液体输送系统,其包括泵体、第一活塞和第二活塞;所述泵体具有活塞腔,所述第一活塞和所述第二活塞用于将所述活塞腔分隔成相互独立的第一腔室和第二腔室;所述第一活塞相对所述活塞腔滑动以使所述第一腔室进出液,所述第二活塞相对所述活塞腔滑动以使所述第二腔室进出液,所述第一腔室和所述第二腔室用于交替进出液;
其中,所述第二活塞使所述第二腔室出液时,所述第一活塞使所述第一腔室从出液向进液切换,以通过所述第二腔室的出液补偿所述第一腔室从出液向进液切换时的出液压力变化。
可选地,所述液体输送系统还包括驱动件,所述驱动件用于驱动所述第一活塞沿第一运动轨迹运动,同时用于驱动所述第二活塞沿第二运动轨迹运动。
可选地,所述第一运动轨迹包括第一进液行程和第一出液行程以及位于所述第一进液行程和所述第一出液行程之间的两个第一换向点,所述第二运动轨迹包括第二进液行程和第二出液行程以及位于所述第二进液行程和所述第二出液行程之间的两个第二换向点,两个所述第一换向点和两个所述第二换向点一一对应设置,且所述第一换向点和对应的所述第二换向点沿周向错位设置。
可选地,所述第一进液行程具有第一速度V1,所述第一出液行程具有第二速度V2,所述第二进液行程具有第三速度V3,所述第二出液行程具有第四速度V4,V1>V4,V3>V2。
可选地,V2=V4。
可选地,所述第一轨道还包括第一换向行程和第二换向行程,所述第一换向行程、所述第一进液行程、所述第二换向行程和所述第一出液行程首尾连接,其中一个所述第一换向点位于所述第一换向行程内,另一个所述第一换向点位于所述第二换向行程内;和/或,
所述第二轨道包括第三换向行程和第四换向行程,所述第三换向行程、所述第二出液行程、所述第四换向行程和所述第二进液行程首尾连接,其中一个所述第二换向点位于所述第三换向行程内,另一个所述第二换向点位于所述第四换向行程内。
可选地,所述第一换向行程与所述第一出液行程的交点为P1,所述第三换向行程的所述第一换向点为Q2;所述驱动件用于在驱动所述第二活塞越过所述Q2后,驱动所述第一活塞到达所述P1,或者所述驱动件用于在驱动所述第二活塞到达所述Q2时,驱动所述第一活塞到达所述P1。
可选地,所述第一换向行程与所述第一出液行程的交点为P1,所述第三换向行程与所述第二出液行程的交点为Q3,所述驱动件用于在驱动所述第二活塞越过所述Q3后,驱动所述第一活塞到达所述P1,或者所述驱动件用于在驱动所述第二活塞到达所述Q3的同时,驱动所述第一活塞到达所述P1。
可选地,所述第四换向行程与所述第二出液行程的交点为Q4,所述第二换向行程内的第一换向点为P5;所述驱动件用于在驱动所述第一活塞越过所述P5后,驱动所述第二活塞到达所述Q4,或者所述驱动件用于在驱动所述第一活塞到达所述P5时,驱动所述第二活塞到达所述Q4。
可选地,所述第四换向行程与所述第二出液行程的交点为Q4,所述第二换向行程与所述第一出液行程的交点为P6,行程所述驱动件用于在驱动所述第一活塞越过所述P6后,驱动所述第二活塞到达所述Q4,或者所述驱动件用于在驱动所述第一活塞到达所述P6的同时,驱动所述第二活塞到达所述Q4。
可选地,所述驱动件包括第一驱动部和第二驱动部,所述第一驱动部上设置有第一轨道,所述第一轨道与所述第一活塞传动连接,以驱动所述第一活塞沿所述第一运动轨迹运动;所述第二驱动部上设置有第二轨道,所述第二轨道与所述第二活塞传动连接,以驱动所述第二活塞沿所述第二运动轨迹运动。
可选地,所述第一轨道具有第一进液段和第一出液段,所述第一进液段用于使所述第一活塞沿所述第一运动轨迹的第一进液行程运动,且所述第一进液段具有第一斜率值K1;所述第一出液段用于使所述第一活塞沿所述第一运动轨迹的第一出液行程运动,且所述第一出液段具有第二斜率值K2;
所述第二轨道具有第二进液段和第二出液段,所述第二进液段用于使所述第二活塞沿所述第二运动轨迹的第二进液行程运动,且所述第二进液段具有第三斜率值K3;所述第二出液段用于使所述第二活塞沿所述第二运动轨迹的第二出液行程运动,且所述第二出液段具有第三斜率值K4;
K1>K4,K3>K2。
可选地,K2=K4。
可选地,所述第一驱动部和所述第二驱动部固定连接,且所述第一驱动部和所述第二驱动部同轴设置。
可选地,所述第一驱动部包括第一凸轮,所述第二驱动部包括第二凸轮,所述第一凸轮具有形成所述第一轨道的凸轮槽,所述第二凸轮具有形成所述第二轨道的凸轮槽。
可选地,所述液体输送系统还包括导轨、第一滑块和第二滑块,所述第一滑块和所述第二滑块均与所述导轨滑动连接;所述第一滑块上设置有与所述第一轨道滑动配合的第一跟随销,所述第一活塞与所述第一滑块连接,以通过所述第一滑块与所述第一凸轮传动连接;所述第二滑块上设置有与所述第二轨道滑动配合的第二跟随销,所述第二活塞与所述第二滑块连接,以通过所述第二滑块与所述第二凸轮传动连接。
可选地,所述驱动件包括两个驱动缸,其中一个所述驱动缸与所述第一活塞传动连接,以驱动所述第一活塞沿所述第一运动轨迹运动,另一个所述驱动缸与所述第二活塞传动连接,以驱动所述第二活塞沿所述第二运动轨迹运动。
本公开的实施方式还提供了一种稳定出液方法,用于控制液体输送系统稳定出液,所述液体输送系统包括泵体以及设置在泵体内的第一活塞和第二活塞,第一活塞用于在泵体内形成第一腔室,且在所述第一活塞相对泵体滑动时使所述第一腔室进出液,所述第二活塞用于在所述泵体内形成第二腔室,且在所述第二活塞相对泵体滑动时使所述第二腔室进出液。
所述稳定出液方法包括:控制所述第一活塞换向,且控制所述第二活塞使所述第二腔室出液,以通过所述第二腔室的出液补偿所述第一活塞换向时所述第一腔室的出液压力变化。
可选地,所述控制所述第一活塞换向,且控制所述第二活塞使所述第一腔室出液的步骤包括:
控制所述第一活塞沿第一换向行程、第一进液行程、第二换向行程和第一出液行程循环运动;所述第一活塞在所述第一换向行程和所述第二换向行程均进行加减速,以改变所述第一活塞的运动方向;且当所述第一活塞沿所述第一换向行程和所述第二换向行程运动时,控制所述第二活塞使所述第二腔室出液;
控制所述第二活塞沿第三换向行程、第二出液行程、第四换向行程和第二进液行程循环运动,所述第二活塞在所述第三换向行程和所述第四换向行程均进行加减速,以改变所述第二活塞的运动方向;且当所述第二活塞沿所述第三换向行程和所述第四换向行程运动时,控制所述第一活塞使所述第一腔室出液。
可选地,所述第一活塞在所述第一进液行程时的运动速率大于所述第二活塞在所述第二出液行程时的运动速率;所述第二活塞在所述第二进液行程的运动速率大于所述第一活塞在所述第一出液行程时的运动速率。
可选地,所述第一活塞在所述第一进液行程和所述第一出液行程分别匀速运动;所述第二活塞在所述第二进液行程和所述第二出液行程分别匀速运动;
所述第一活塞在所述第一进液行程的运动速率等于所述第二活塞在所述第二进液行程的运动速率,所述第一活塞在所述第一出液行程的运动速率等于所述第二活塞在所述第二出液行程的运动速率。
可选地,在一个工作循环中,所述第一活塞到达所述第一出液行程和所述第一换向行程的交点的时刻晚于所述第二活塞到达所述第三换向行程的换向点的时刻,所述第二活塞到达所述第二出液行程和所述第四换向行程的交点的时刻晚于所述第一活塞到达所述第二换向行程的换向点的时刻。
可选地,在一个工作循环中,所述第二活塞到达所述第三换向行程和所述第二出液行程的交点的时刻晚于所述第二活塞到达所述第三换向行程的换向点的时刻;所述第一活塞到达所述第一出液行程和所述第一换向行程的交点的时刻晚于所述第二活塞到达所述第三换向行程和所述第二出液行程的交点的时刻,或者二者同时到达;
在一个工作循环中,所述第一活塞到达所述第二换向行程和所述第一出液行程的交点的时刻晚于所述第一活塞到达所述第二换向行程的换向点的时刻;所述第二活塞到达所述第二出液行程和所述第四换向行程的交点的时刻晚于所述第一活塞到达所述第二换向行程和所述第一出液行程的交点的时刻,或者二者同时到达。
本公开实施方式的液体输送系统及稳定出液方法的有益效果包括,例如:
本公开的实施方式提供的液体输送系统包括泵体、第一活塞和第二活塞。泵体内具有活塞腔,第一活塞和第二活塞分别可滑动地设置在活塞腔内,且第一活塞和第二活塞用于将活塞腔分隔成相互独立的第一腔室和第二腔室。当第一活塞相对活塞腔滑动时,第一腔室的容积发生变化,进而使第一腔室进出液。当第二活塞相对活塞腔滑动时,第二腔室的容积发生变化,进而使第二腔室进出液。第一腔室和第二腔室交替进出液,以使液体输送系统持续出液。其中在第二活塞使第二腔室出液时,第一活塞使第一腔室从出液向进液切换,即在第一活塞换向时,第二活塞使第二腔室处于出液状态,如此通过第二腔室的出液对第一活塞换向时第一腔室的出液压力进行补偿,进而使液体输送系统持续稳定地向外输送液体,实现改善在活塞换向时出现的出液压力降低的目的。
本公开的实施方式还提供了一种稳定出液方法,其用于控制液体输送系统稳定出液。稳定出液方法包括控制第一活塞和第二活塞相对泵体活动,且在一个工作循环中,第一活塞从出液阶段切换至进液阶段的时刻晚于第二活塞从进液阶段切换至出液阶段的时刻,换言之,当第二活塞开始使第二腔室出液时,第一腔室仍在出液,如此第一腔室和第二腔室的出液相互叠加,以避免在第一活塞换向以及第二活塞换向过程中液体输送系统出现的压力降低、流量减少的情况,使得液体输送系统持续出液的同时压力变化小甚至不出现变化。
附图说明
为了更清楚地说明本公开实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施方式,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开的实施方式提供的液体输送系统的结构示意图;
图2为本公开的实施方式提供的液体输送系统的局部结构示意图;
图3为本公开的实施方式提供的液体输送系统中驱动件的结构示意图;
图4为本公开的实施方式提供的液体输送系统中驱动件在另一视角下的结构示意图;
图5为本公开的实施方式提供的液体输送系统中第二活塞到达Q1时的结构示意图;
图6为本公开的实施方式提供的液体输送系统中第二活塞到达Q2时的结构示意图;
图7为本公开的实施方式提供的液体输送系统中第二活塞到达Q3时的结构示意图;
图8为本公开的实施方式提供的液体输送系统中第一活塞到达P5时的结构示意图;
图9为本公开的实施方式提供的液体输送系统中第一活塞到达P6时的结构示意图;
图10为本公开的实施方式提供的第二种液体输送系统中第二活塞到达Q2时的结构示意图;
图11为本公开的实施方式提供的第三种液体输送系统中第二活塞到达Q3时的结构示意图;
图12为本公开的实施方式提供的第四种液体输送系统中第一活塞到达P5时的结构示意图;
图13为本公开的实施方式提供的第五种液体输送系统中第一活塞到达P6时的结构示意图;
图14为本公开的实施方式提供的液体输送系统中第一活塞和第二活塞在一个工作循环中的速度-时间图。
图标:100-液体输送系统;110-泵体;111-活塞腔;112-第一腔室;113-第二腔室;114-第一进液口;115-第一出液口;116-第二进液口;117-第二出液口;120-第一活塞;121-第一活塞部;122-第一活塞杆;130-第二活塞;131-第二活塞部;132-第二活塞杆;140-驱动件;141-第一轨道;1411-第一出液段;1412-第一换向段;1413-第一进液段;1414-第二换向段;142-第二轨道;1421-第二进液段;1422-第三换向段;1423-第二出液段;1424-第四换向段;151-第一滑块;152-第一跟随销;153-第二滑块;154-第二跟随销;155-导轨;156-动力件。
具体实施方式
为使本公开实施方式的目的、技术方案和优点更加清楚,下面将结合本公开实施方式中的附图,对本公开实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本公开一部分实施方式,而不是全部的实施方式。通常在此处附图中描述和示出的本公开实施方式的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施方式的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施方式。基于本公开中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行定义和解释。
在本公开的描述中,需要说明的是,若出现术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该公开产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,若出现术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
需要说明的是,在不冲突的情况下,本公开的实施方式中的特征可以相互结合。
图1为本实施方式提供的液体输送系统100的结构示意图,图2为本实施方式提供的液体输送系统100的局部结构示意图。请结合参照图1和图2,本实施方式提供了一种液体输送系统100,其包括泵体110、第一活塞120和第二活塞130。泵体110内具有活塞腔111,第一活塞120和第二活塞130分别可滑动地设置在活塞腔111内,且第一活塞120和第二活塞130用于将活塞腔111分隔成相互独立的第一腔室112和第二腔室113。当第一活塞120相对活塞腔111滑动时,第一腔室112的容积发生变化,进而使第一腔室112进出液。当第二活塞130相对活塞腔111滑动时,第二腔室113的容积发生变化,进而使第二腔室113进出液。第一腔室112和第二腔室113交替进出液,以使液体输送系统100持续出液。其中在第二活塞130使第二腔室113出液时,第一活塞120使第一腔室112从出液向进液切换,即在第一活塞120换向时,第二活塞130使第二腔室113处于出液状态,如此通过第二腔室113的出液对第一活塞120换向时第一腔室112的出液压力进行补偿,进而使液体输送系统100持续稳定地向外输送液体,实现改善在活塞换向时出现的出液压力降低的目的。
需要说明的是,在本实施方式的描述中,“换向时”应做广义地理解,当第一活塞120瞬间进行换向的时候,换向时即为换向这一时刻,当第一活塞120具有换向段,在该换向段内减速为0然后反向加速至匀速稳定运动,则换向时即为进行换向的这一时间段。
下面对本实施方式提供的液体输送系统100进行说明:
请结合参照图1和图2,在本实施方式中,泵体110内具有柱状的活塞腔111,第一活塞120和第二活塞130分别与活塞腔111活动配合,换言之,泵体110和第一活塞120以及第二活塞130形成单腔双活塞泵结构。
泵体110上开设有沿活塞腔111的轴向设置在活塞腔111两侧的第一开口和第二开口。第一活塞120包括相互连接的第一活塞部121和第一活塞杆122,第一活塞部121的外周设置有密封件,该密封件与活塞腔111密封配合,以将活塞腔111位于第一活塞部121两侧的空间分隔。第一活塞杆122穿设第一开口,第一活塞部121分隔形成位于第一活塞部121靠近第一开口一侧的第一腔室112,换言之,第一腔室112即为活塞腔111位于第一开口和第一活塞部121之间的部分。
第二活塞130包括相互连接的第二活塞部131和第二活塞杆132,第二活塞部131的外周设置有密封件,该密封件与活塞腔111密封配合以将活塞腔111位于第二活塞部131两侧的空间分隔,换言之,通过第一活塞120和第二活塞130将活塞腔111分隔形成相互独立的三个空间,三个空间分别位于第一活塞120远离第二活塞130的一侧、第一活塞120与第二活塞130之间以及第二活塞130远离第一活塞120的一侧。第二活塞杆132穿设第二开口,活塞腔111位于第二活塞部131与第二开口之间的部分即为第二腔室113。
第一开口和第二开口处均设置有密封端盖,密封端盖与活塞腔111之间密封,且密封端盖与活塞杆之间滑动密封,如此保证在工作过程中,第一腔室112和第二腔室113均处于密封状态。
泵体110上开设有与第一腔室112连通的第一进液口114和第一出液口115,当第一活塞120向使第一腔室112的空间减小的方向运动时,液体从第一出液口115离开第一腔室112,当第一活塞120向使第一腔室112的空间增大的方向运动时,液体从第一进液口114流入第一腔室112。同理地,泵体110上还开设有与第二腔室113连通的第二进液口116和第二出液口117,当第二活塞130向使第二腔室113的空间减小的方向运动时,液体从第二出液口117离开第一腔室112,当第二活塞130向使第二腔室113的空间增大的方向运动时,液体从第二进液口116流入第二腔室113。通过第一腔室112和第二腔室113的交替进出液,使液体输送系统100连续出液。
第一进液口114、第一出液口115、第二进液口116和第二出液口117处均设置有单向阀(图未示出),以通过单向阀实现液体单向进出第一腔室112和第二腔室113。
而且,在第二活塞130使第二腔室113出液时,第一活塞120使第一腔室112从出液向进液切换,换言之,在第一活塞120换向以使第一腔室112从出液向进液切换之前,第二活塞130换向以使第二腔室113从进液向出液切换,如此当第一活塞120运动至换向时,第二活塞130使第二腔室113处于出液状态,即第二腔室113的出液对第一腔室112从出液向进液切换时出现的压降进行补偿,以保证出液压力稳定。当第二活塞130运动至换向、以使第二腔室113从出液向进液切换时,第一活塞120使第一腔室112处于出液状态,即第一腔室112的出液对第二腔室113从出液向进液切换时出现的压降进行补偿,以保证出液压力稳定。
图3为本实施方式提供的液体输送系统100中驱动件140的结构示意图。请结合参照图1和图3,在本实施方式中,液体输送系统100还包括驱动件140,驱动件140与第一活塞120和第二活塞130均传动连接,从而驱动第一活塞120沿第一运动轨迹运动,同时驱动第二活塞130沿第二运动 轨迹运动。驱动件140上设置有第一轨道141和第二轨道142,第一轨道141与第一活塞120传动连接,以带动第一活塞120对应第一轨道141运动,且相对活塞腔111运动,进而实现第一腔室112的进出液。第二轨道142与第二活塞130传动连接,以带动第二活塞130对应第二轨道142运动,且相对活塞腔111滑动,进而实现第二腔室113的进出液。
需要说明的是,此处并不对驱动件140的结构进行限制,可以理解的,在其他实施方式中,也可以根据需求设置驱动件140的结构,例如将驱动件140设置为分别驱动第一活塞120和第二活塞130运动的两个驱动缸等,如此其中一个驱动缸与第一活塞120传动连接,从而驱动第一活塞120沿第一运动轨迹运动,另外一个驱动缸与第二活塞130传动连接,从而驱动第二活塞130沿第二运动轨迹运动,驱动缸可以是电缸,即电动推杆、直线电机,可以理解的,驱动缸也可以是其他缸体结构,例如油缸,能够满足驱动精度即可。
可选地,驱动件140包括第一驱动部和第二驱动部,第一轨道141设置在第一驱动部上,第二轨道142设置在第二驱动部上。第一驱动部和第二驱动部固定连接,且第一驱动部和第二驱动部同轴设置,如此在使用时,通过同一动力件156即可驱动第一轨道141和第二轨道142同时转动,进而带动第一活塞120和第二活塞130同时相对泵体110滑动。
第一驱动部和第二驱动部均为凸轮,第一驱动部即为第一凸轮,第二驱动部即为第二凸轮,换言之,驱动件140为凸轮轴。第一凸轮和第二凸轮之间通过轴段连接成一体。第一轨道141即为第一凸轮的凸轮槽,换言之,第一凸轮为槽形凸轮。第二轨道142即为第二凸轮的凸轮槽,换言之,第二凸轮为槽形凸轮。
需要说明的是,在本实施方式中,第一轨道141和第二轨道142均为凸轮槽,即第一轨道141和第二轨道142通过外周面向内凹陷形成,可以理解的,在其他实施方式中,也可以根据需求,例如将第一轨道141和第二轨道142设置为凸起,即第一轨道141和第二轨道142通过外周面向外凸出形成。
液体输送系统100还包括导轨155、第一滑块151和第二滑块153。第一滑块151和第二滑块153均与导轨155滑动连接。第一滑块151上设置有与第一轨道141滑动配合的第一跟随销152,第一跟随销152的一端伸入第一轨道141内,当驱动件140转动时,第一跟随销152沿第一轨道141滑动,第一跟随销152产生沿驱动件140的轴向的运动,从而带动第一滑块151相对导轨155滑动,并且通过第一滑块151带动第一活塞120滑动。第二滑块153上设置有与第二轨道142配合的第二跟随销154,第二跟随销154的一端伸入第二轨道142内,当驱动件140转动时,第二跟随销154沿第二轨道142滑动,第二跟随销154产生沿驱动件140的轴向的运动,从而带动第二滑块153相对导轨155滑动,并且通过第二滑块153带动第二活塞130滑动。
可选地,液体输送系统100还包括动力件156,动力件156与驱动件140传动连接,以使驱动件140转动。可选地,动力件156为电机。
图4为本实施方式提供的液体输送系统100中驱动件140在另一视角下的结构示意图。请结合参照图3和图4,在本实施方式中,第一轨道141包括第一进液段1413和第一出液段1411,第一进液段1413和第一出液段1411之间具有两个换向点。当第一跟随销152沿第一进液段1413滑动时,第一活塞120沿使第一腔室112容积增加的方向运动,以使第一腔室112进液,此时第一活塞120位于第一运动轨迹的第一进液行程,即第一进液段1413用于使第一活塞120沿第一运动轨迹的第一进液行程运动;当第一跟随销152沿第一出液段1411滑动时,第一活塞120沿使第一腔室112容积减小的方向运动,以使第一腔室112出液,此时第一活塞120位于第一运动轨迹的第一出液行程, 即第一出液段1411用于使第一活塞120沿第一运动轨迹的第一出液行程运动,同时当第一跟随销152运动至换向点时,第一活塞120换向,以使第一腔室112在进液和出液之间切换,即第一活塞120相应位于第一运动轨迹的换向点,该第一运动轨迹的换向点为第一换向点。换言之,第一运动轨迹包括第一进液行程和第一出液行程以及位于第一进液行程和第一出液行程之间的两个第一换向点。
第二轨道142包括第二进液段1421和第二出液段1423,第二进液段1421和第二出液段1423之间具有两个换向点。当第二跟随销154沿第二进液段1421滑动时,第二活塞130沿使第二腔室113容积增加的方向运动,以使第二腔室113进液,此时第二活塞130位于第二运动轨迹的第二进液行程,即第二进液段1421用于使第二活塞130沿第二运动轨迹的第二进液行程运动;当第二跟随销154沿第二出液段1423滑动时,第二活塞130沿使第二腔室113容积减小的方向运动,以使第二腔室113出液,此时第二活塞130位于第二运动轨迹的第二出液行程,即第二出液段1423用于使第二活塞130沿第二运动轨迹的第二出液行程运动,同时当第二跟随销154运动至换向点时,第二活塞130换向,以使第二腔室113在进液和出液之间切换,即第二活塞130相应位于第二运动轨迹的换向点,该第二运动轨迹换向点为第二换向点。换言之,第二运动轨迹包括第二进液行程和第二出液行程以及位于第二进液行程和第二出液行程之间的两个第二换向点。
第一进液段1413和第二出液段1423大致位于凸轮轴的同一周向位置,即第一跟随销152沿第一进液段1413滑动时,第二跟随销154大致沿第二出液段1423滑动,换言之,第一活塞120沿第一进液行程运动时,第二活塞130大致沿第二出液行程运动,此时第一腔室112进液,第二腔室113出液。第一出液段1411与第二进液段1421大致位于凸轮轴的同一周向位置,即第一跟随销152沿第一出液段1411滑动时,第二跟随销154大致沿第二进液段1421滑动,换言之,第一活塞120沿第一出液行程运动时,第二活塞130大致沿第二进液行程运动,此时第一腔室112出液,第二腔室113进液,以使液体输送系统100连续出液。第一换向点和第二换向点错位设置,即第一活塞120和第二活塞130的换向时刻先后到达,以使第一腔室112的出液与第二腔室113的出液存在部分重合,保证换向时的出液压力稳定性。
第一进液行程具有第一速度V1,第一出液行程具有第二速度V2,第二进液行程具有第三速度V3,第二出液行程具有第四速度V4,V1>V4,V3>V2。需要说明的是,在本实施方式中,当活塞在对应行程内变速运动时,速度即表征活塞在该段行程内的平均运动速率。
V1>V4,即第一活塞120在沿第一进液行程运动时的移动速率大于第二活塞130在沿第二出液行程运动时的移动速率,换言之,第一跟随销152沿第一进液段1413滑动时第一活塞120的移动速率大于第二跟随销154沿第二出液段1423滑动时第二活塞130的移动速率。
V3>V2,即第一活塞120在沿第一出液行程运动时的移动速率小于第二活塞130在沿第二进液行程运动时的移动速率,换言之,第一跟随销152沿第一出液段1411滑动时第一活塞120的移动速率小于第二跟随销154沿第二进液段1421滑动时第二活塞130的移动速率。
V2=V4,即第一活塞120在沿第一出液行程运动时的移动速率等于第二活塞130在沿第二出液行程运动时的移动速率,换言之,第一跟随销152沿第一出液段1411滑动时第一活塞120的移动速率等于第二跟随销154沿第二出液段1423滑动时第二活塞130的移动速率,从而保证液体输送系统100整体的出液稳定性。
V1=V3,即第一活塞120在沿第一进液行程运动时的移动速度等于第二活塞130在沿第二进液行程运动时的移动速率,换言之,第一跟随销152沿第一进液段1413滑动时第一活塞120的移动速 率等于第二跟随销154沿第二进液段1421滑动时第二活塞130的移动速率。可以理解的,在其他实施方式中,也可以根据需求设置V1和V3的数值。
第一活塞120沿第一进液行程运动和沿第一出液行程运动的速率均为定值,即当第一跟随销152沿第一进液段1413滑动时以及第一跟随销152沿第一出液段1411滑动时,第一活塞120均匀速运动。第二活塞130沿第二进液行程运动和沿第二出液行程运动的速率均为定值,即当第二跟随销154沿第二进液段1421滑动时以及第二跟随销154沿第二出液段1423滑动时,第二活塞130均匀速运动。
相应地,第一进液段1413具有第一斜率值K1,第一出液段1411具有第二斜率值K2,第二进液段1421具有第三斜率值K3,第二出液段1423具有第四斜率值K4,K1>K4,K3>K2,如此在第一驱动部和第二驱动部同转速运动时,实现V1>V4,V3>V2。K2=K4,如此在第一驱动部和第二驱动部同转速运动时,实现V2=V4。K1=K3,如此在第一驱动部和第二驱动部同转速运动时,实现V1=V3。
需要说明的是,在本实施方式中,第一进液段1413、第一出液段1411、第二进液段1421和第二出液段1423均为直线,相应地,第一进液段1413、第一出液段1411、第二进液段1421和第二出液段1423的斜率值即为对应直线的斜率,此时,第一活塞120在第一进液行程和第一出液行程均匀速运动,第二活塞130在第二进液行程和第二出液行程均匀速运动,可以理解的,在其他实施方式中,也根据需求,例如当第一活塞120在第一进液行程中需变速运动时,第一进液段1413可相应设置为曲线,同时第一进液段1413的第一斜率值K1即为该段曲线的平均斜率。
请结合参照图1-图4,在本实施方式中,第一轨道141还包括第一换向段1412和第二换向段1414,第一换向段1412、第一进液段1413、第二换向段1414和第一出液段1411首尾相连,即第一跟随销152沿第一换向段1412、第一进液段1413、第二换向段1414和第一出液段1411的运动为一个工作循环,图3中示出了第一换向段1412、第一进液段1413、第二换向段1414和第一出液段1411的延伸运动轨迹的展开结构,即第一轨道141的形线的展开图。相应地,第一运动轨迹还包括第一换向行程和第二换向行程,第一换向行程、第一进液行程、第二换向行程和第一出液行程首尾连接,从而形成第一运动轨迹。第一运动轨迹的其中一个第一换向点位于第一换向行程内,第一运动轨迹的另一个第一换向点位于第二换向行程内。
当第一跟随销152沿第一换向段1412滑动时,第一活塞120沿第一换向行程运动;当第一跟随销152沿第一进液段1413滑动时,第一活塞120沿第一进液行程运动;当第一跟随销152沿第二换向段1414滑动时,第一活塞120沿第二换向行程运动;当第一跟随销152沿第一出液段1411运动时,第一活塞120沿第一出液行程运动。
第二轨道142还包括第三换向段1422和第四换向段1424,第三换向段1422、第二出液段1423、第四换向段1424和第二进液段1421首尾相连,即第二跟随销154沿第三换向段1422、第二出液段1423、第四换向段1424和第二进液段1421的运动为一个工作循环,图3中示出了第三换向段1422、第二出液段1423、第四换向段1424和第二进液段1421的延伸轨迹的展开结构,即第二轨道142的形线的展开图。相应地,第二运动轨迹还包括第三换向行程和第四换向行程,第三换向行程、第二出液行程、第四换向行程和第二进液行程首尾连接,从而形成第二运动轨迹。第二运动轨迹的其中一个第二换向点位于第三换向行程内,第二运动轨迹的另一个第二换向点位于第四换向行程内。
当第二跟随销154沿第三换向段1422滑动时,第二活塞130沿第三换向行程运动;当第二跟随销154沿第二出液段1423滑动时,第二活塞130沿第二出液行程运动;当第二跟随销154沿第四换 向段1424滑动时,第二活塞130沿第四换向行程运动;当第二跟随销154沿第二进液段1421运动时,第二活塞130沿第二进液行程运动。
第一活塞120在第一换向行程和第二换向行程进行换向时的加减速,第二活塞130在第三换向行程和第四换向行程进行换向时的加减速,通过设置在第一轨道141设置第一换向段1412和第二换向段1414,在第二轨道142设置第三换向段1422和第四换向段1424,从而使第一运动轨迹具有相应的第一换向行程和第二换向行程、第二运动轨迹具有相应的第三换向行程和第四换向行程,进而使得第一活塞120和第二活塞130的换向过程更加平稳,避免出现冲击。第一换向段1412、第一进液段1413、第二换向段1414和第一出液段1411的斜率连续,第三换向段1422、第二出液段1423、第四换向段1424和第二进液段1421的斜率连续。
图5为本实施方式提供的液体输送系统100中第二活塞130到达Q1时的结构示意图,图6为本实施方式提供的液体输送系统100中第二活塞130到达Q2时的结构示意图。请结合参照图5和图6,在本实施方式中,第一换向行程与第一出液行程的交点为P1,第一换向行程的第一换向点为P2,第一换向行程与第一进液行程的交点为P3。在本实施方式中,第一跟随销152沿第一出液段1411、第一换向段1412、第一进液段1413的顺序滑动,相应地,第一活塞120沿第一运动轨迹的第一出液行程、第一换向行程、第一进液行程的顺序运动,P1至P2即对应第一活塞120的减速行程,P2至P3即对应第一活塞120的加速行程。
第二进液行程和第三换向行程的交点为Q1,第三换向行程内的第二换向点为Q2,第三换向行程与第二出液行程的交点为Q3。在本实施方式中,第二跟随销154沿第二进液段1421、第三换向段1422、第二出液段1423的顺序滑动,相应地,第二活塞130沿第二运动轨迹的第二进液段行程、第三换向行程、第二出液行程的顺序运动,Q1至Q2即对应第二活塞130的减速行程,Q2至Q3即对应第二活塞130的加速行程。
驱动件140用于在驱动第二活塞130越过Q2后,驱动第一活塞120到达P1。相应地,沿驱动件140的转动方向(即图4中所示的顺时针方向),第一轨道141上与P1对应的位置点位于第二轨道142上与Q2对应的位置点靠近第二出液段1423的一侧,以在驱动件140的转动过程中,使第二活塞130到达Q2的时刻早于第一活塞120到达P1的时刻。
即在第二活塞130开始换向,以使第二腔室113从进液向出液切换时,第一活塞120使第一腔室112出液且第一活塞120匀速运动(如图6所示)。由于第二活塞130到达Q1的时刻早于第一活塞120到达P1的时刻,显然地,当第二活塞130到达Q1时,第一活塞120处于匀速运动且使第一腔室112出液的状态(如图5所示),即此时第一跟随销152沿第一出液段1411运动。
需要说明的是,在本实施方式的描述中,“某点对应的位置点”指在活塞到达该点时,跟随销到达的轨道的位置点,同时在图3中,该位置点即通过某点的标号进行标注,例如P1对应的位置点即为第一活塞120到达P1时,第一跟随销152到达的第一轨道141上的位置点,同时在第一轨道141上,P1对应的位置点即标注为P1;Q2对应的位置点即为第二活塞130到达Q2时,第二跟随销154到达的第二轨道142上的位置点,同时在第二轨道142上,Q2对应的位置点即标注为Q2。
还需要说明的是,在本实施方式中,第二活塞130到达Q2的时刻早于第一活塞120到达P1的时刻,可以理解的,在其他实施方式中,也可以将驱动件140设置为在驱动第二活塞130到达Q2时,驱动第一活塞120到达P1,即第二活塞130到达Q2的同时第一活塞120到达P1(如图10所示)。
图7为本实施方式提供的液体输送系统100中第二活塞130到达Q3时的结构示意图。请结合 参照图5-图7,驱动件140用于在驱动第二活塞130越过Q3后,驱动第一活塞120到达P1。相应地,沿驱动件140的转动方向,第一轨道141上与P1对应的位置点位于第二轨道142上与Q3对应的位置点靠近第二出液段1423的一侧,在第二活塞130越过Q3后,第一活塞120到达P1。由于第二活塞130沿Q1、Q2和Q3的顺序依次运动,因此第二活塞130到达Q3的时刻晚于第二活塞130到达Q2的时刻,显然地,在第二活塞130越过Q3前,第二活塞130越过Q2,即第二活塞130依次越过Q2和Q3之后,第一活塞120才到达P1,换言之,第二活塞130匀速运动并使第二腔室113出液的过程中,第一活塞120开始出液阶段的减速行程(如图7所示),如此通过第二腔室113对第一腔室112出液末端的出液压力进行补偿。
可以理解的,在其他实施方式中,也可以将驱动件140设置为用于在驱动第二活塞130到达Q3的同时,驱动第一活塞120到达P1(如图11所示),换言之,第一活塞120到达P1的同一时刻第二活塞130到达Q3,即此时沿驱动件140的转动方向,第一轨道141上与P1对应的位置点和第二轨道142上与Q3对应的位置点位于同一周向位置。
由于第一活塞120到达P2以及P3的时刻晚于第一活塞120到达P1的时刻,因此显然地,当第一活塞120到达P2甚至P3时,第二跟随销154沿第二出液段1423滑动,即此时第二活塞130已经处于匀速运动并使第二腔室113出液的状态。
可选地,第一活塞120到达P1和P3时的位置重合;第二活塞130到达Q1和Q3的位置重合。可以理解的,在其他实施方式中,也可以根据需求设置P1点和P3点的位置,以及Q1和Q3的位置。
图8为本实施方式提供的液体输送系统100中第一活塞120到达P5时的结构示意图,图9为本实施方式提供的液体输送系统100中第一活塞120到达P6时的结构示意图。请结合参照图8和图9,在本实施方式中,第一进液行程与第二换向行程的交点为P4,第二换向行程的第一换向点为P5,第二换向行程与第一出液行程的交点为P6,P4至P5即对应第一活塞120的减速行程,P5至P6即对应第一活塞120的加速行程。第二出液行程和第四换向行程的交点为Q4,第四换向行程的第二换向点为Q5,第四换向行程与第二进液行程的交点为Q6,Q4至Q5即对应第二活塞130的减速行程,Q5至Q6即对应第二活塞130的加速行程。
驱动件140用于在驱动第一活塞120越过P5后,驱动第二活塞130到达Q4。换言之,沿驱动件140的转动方向,第二轨道142上与Q4对应的位置点位于第一轨道141上与P5对应的位置点靠近第一出液段1411的一侧,以在第一活塞120越过P5后第二活塞130到达Q4。即在第一活塞120开始换向,以使第一腔室112从进液向出液切换时,第二活塞130使第二腔室113出液,且第二活塞130匀速运动(如图8所示)。由于第一活塞120到达P4的时刻早于第一活塞120到达P5的时刻,显然地,当第一活塞120到达P4时,第二活塞130处于匀速运动且使第一腔室112出液的状态,即此时第二跟随销154沿第二出液段1423运动。
可以理解的,在其他实施方式中,也可以将驱动件140设置为用于在驱动第一活塞120到达P5时,驱动第二活塞130到达Q4,即第一活塞120到达P5的同时,第二活塞130到达Q4(如图12所示)。
驱动件140用于在驱动第一活塞120越过P6后,驱动第二活塞130到达Q4,沿驱动件140的转动方向,第二轨道142上与Q4对应的位置点位于第一轨道141上与P6对应的位置点靠近第二出液段1423的一侧,以在第一活塞120越过P6之后,第二活塞130到达Q4。换言之,第一活塞120匀速运动使第一腔室112出液的过程中,第二活塞130开始出液阶段的减速行程(如图9所示)。同时,由于第一活塞120沿P4、P5和P6的顺序依次运动,显然地,第一活塞120到达P5的时刻早 于第一活塞120到达P6的时刻。可以理解的,在其他实施方式中,也可以设置为第二活塞130达到Q4的同时第一活塞120到达P6(如图13所示),即第一轨道141上与P6对应的位置点和第二轨道142上与Q4对应的位置点位于凸轮轴的同一周向位置。
由于第二活塞130到达Q5甚至Q6的时刻晚于第二活塞130到达Q4的时刻,因此显然地,当第二活塞130到达Q5以及Q6时,第一跟随销152沿第一出液段1411滑动,即第一活塞120已经处于匀速运动并使第一腔室112出液的状态。
需要说明的是,图2、图5、图6、图7、图8、图9、图10、图11、图12和图13所示的附图中的箭头即为示意第一活塞120和第二活塞130的运动方向。
图14为本实施方式提供的液体输送系统100中第一活塞120和第二活塞130在一个工作循环中的速度-时间图,且在图14中,当活塞速度为负时,对应腔室处于进液状态,当活塞速度为正时,对应腔室处于出液状态,因此图14中粗实线示出了第一活塞120的速度-时间关系,图14中细实线示出了第二活塞130的速度-时间关系。请结合参照图2、图5、图6、图7、图8、图9以及图14,下面以图2所示位置作为一个工作循环的起点对本实施方式提供的液体输送系统100的工作过程进行说明:
在如图2所示位置时,第一活塞120和第二活塞130均向左匀速滑动,此时第一活塞120处于第一出液行程,第二活塞130处于第二进液行程。第一腔室112的容积逐渐减小,第一腔室112内的液体从第一出液口115流出,第二腔室113的容积逐渐增大,液体从第二进液口116进入第二腔室113。且此时第一活塞120的速率小于第二活塞130的速率,第一活塞120和第二活塞130的距离减小。
在如图5所示位置时,第一活塞120和第二活塞130仍向左运动,即第一腔室112仍在出液,第二腔室113仍在进液,且第一活塞120匀速滑动,第二活塞130到达左侧减速点,即第二活塞130到达Q1对应位置,第一活塞120和第二活塞130之间存在适当的距离,以避免第一活塞120和第二活塞130发生碰撞。
在如图6所示位置时,第一活塞120仍向左匀速滑动,即第一腔室112仍在出液。此时第二活塞130到达左侧换向点,即第二活塞130到达Q2处,第二腔室113此时从进液向出液切换。由于从Q1运动至Q2的过程中,第二活塞130减速运动,与此同时第一活塞120匀速运动,因此第二活塞130与第一活塞120之间的距离增大,换言之,在如图5所示位置时,第一活塞120和第二活塞130之间的距离最小。
在如图7所示位置时,第一活塞120仍向左匀速运动,即第一腔室112仍在出液。第二活塞130向右运动至左侧加速终点,即第二活塞130到达Q3处,第二腔室113出液,第一活塞120和第二活塞130反向运动,第一活塞120和第二活塞130之间的距离逐渐增大。
在第二活塞130向右匀速运动,以使第二腔室113出液的过程中,第一活塞120向左运动至左侧减速点(即P1处),然后向左减速运动至左侧换向点(即P2处),此后第一腔室112开始进液,并在向右加速运动至左侧加速终点(即P3处)后保持匀速向右运动,此时第一活塞120和第二活塞130均向右匀速运动,且第一活塞120的运动速率大于第二活塞130的运动速率,即第一活塞120与第二活塞130之间的距离逐渐减小。
之后第一活塞120向右运动至右侧减速点(即P4处),此时第二活塞130仍向右匀速运动,以使第二腔室113出液,此时第一活塞120和第二活塞130之间存在适当的距离,以避免第一活塞120和第二活塞130发生碰撞,此后第一活塞120开始向右减速运动。
在如图8所示位置时,第二活塞130仍向右匀速滑动,即第二腔室113仍在出液。第一活塞120向右运动至右侧换向点,即第一活塞120到达P5处,第一腔室112此时从进液向出液切换。
在如图9所示位置时,第二活塞130仍向右匀速运动,以使第二腔室113出液。此时第一活塞120向左加速运动至右侧加速终点(即P6处),第一活塞120和第二活塞130反向运动,且第一腔室112和第二腔室113均进行出液。
在第一活塞120向左匀速运动,以使第一腔室112出液的过程中,第二活塞130向右运动至右侧减速点(即Q4处),然后向有减速运动至右侧换向点(即Q5处),此时第二腔室113开始进液,并在向左加速运动至右侧加速终点(即Q6处)后保持匀速向左运动,此时第一活塞120和第二活塞130均向左匀速运动,且第一活塞120的运动速率小于第二活塞130的运动速率,直至第一活塞120和第二活塞130运动至图2所示位置,此时一个工作循环结束,第一活塞120和第二活塞130重复上述运动过程以进行下一工作循环。
本实施方式提供的一种液体输送系统100至少具有以下优点:
本实施方式提供的液体输送系统100,其在泵体110的活塞腔内滑动设置有第一活塞120和第二活塞130,通过对第一活塞120和第二活塞130的单独控制,以使第一活塞120和第二活塞130异步活动,即在与第一活塞120对应的第一腔室112进行进出液切换时,与第二活塞130对应的第二腔室113进行出液,以补偿第一腔室112进出液时发生的出液压力变化,同理地,在第二腔室113进行进出液切换时,第一腔室112进行出液,以补偿第二腔室113进行进出液切换时发生的出液液力变化,从而实现了单腔泵的连续稳定出液的目的。
本实施方式也提供了一种稳定出液方法,其用于控制液体输送系统100稳定出液。系统输送系统包括泵体110以及设置在泵体110内的第一活塞120和第二活塞130,第一活塞120用于在泵体110内形成第一腔室112,且第一活塞120相对泵体110滑动时使第一腔室112进出液。第二活塞130用于在泵体110内形成第二腔室113,且在第二活塞130相对泵体110滑动时使第二腔室113进出液。该稳定出液方法可用于控制上述的液体输送系统100的第一电机和第二电机,以带动第一活塞120和第二活塞130相对泵体110滑动。
该稳定出液方法包括:
控制第一活塞120换向,且控制第二活塞130使所述第二腔室113出液,以通过第二腔室113的出液补偿第一活塞120换向时第一腔室112的出液压力变化。
控制第一活塞120沿第一换向行程、第一进液行程、第二换向行程和第一出液行程循环运动,第一活塞120在第一换向行程和第二换向行程分别进行加减速,以改变第一活塞120的运动方向。且当第一活塞120沿第一换向行程和第二换向行程运动时,第二活塞130使第二腔室113出液。在本实施方式中,第一换向行程即为第一活塞120依次经过图2中P1、P2和P3的行程,第一进液行程即为第一活塞120从图2中的P3运动至P4的行程,第二换向行程即为第一活塞120依次经过图2中P4、P5和P6的行程,第一出液行程即为第一活塞120从图2中的P4运动至P1的行程。
控制第二活塞130沿第三换向行程、第二出液行程、第四换向行程和第二进液行程循环运动,第二活塞130在第三换向行程和第四换向行程分别进行加减速,以改变第一活塞120的运动方向。且当第二活塞130沿第三换向行程和第四换向行程运动时,第一活塞120使第一腔室112出液。在本实施方式中,第三换向行程即为第二活塞130依次经过图2中Q1、Q2和Q3的行程,第二出液行程即为第二活塞130从图2中的Q3运动至Q4的行程,第四换向行程即为第二活塞130依次经过图2中Q4、Q5和Q6的行程,第二进液行程即为第二活塞130从图2中的Q6运动至Q1的行程。
第一活塞120在第一进液行程和第一出液行程分别匀速运动,第二活塞130在第二进液行程和第二出液行程分别匀速运动,且第一活塞120在第一进液行程的运动速率等于第二活塞130在第二进液行程的运动速率,第一活塞120在第一出液行程的运动速率等于第二活塞130在第二出液行程的运动速率。
在一个工作循环中,第一活塞120到达第一出液行程和第一换向行程的交点(即图2中所示P1位置)的时刻晚于第二活塞130到达第三换向行程的换向点(即图2中所示Q2位置)的时刻,即第一活塞120处于出液阶段的减速过程时,第二活塞130向右运动以使第二腔室113出液;第二活塞130到达第二出液行程和第四换向行程的交点(即图2中所示Q4位置)的时刻晚于第一活塞120到达第二换向行程的换向点(即图2中所示P5位置)的时刻,即第二活塞130处于出液阶段的减速过程时,第一活塞120向左运动以使第一腔室112出液。
当第一活塞120沿第一换向行程和第二换向行程运动时,第二活塞130沿第二出液行程运动,当第二活塞130沿第三换向行程和第四换向行程运动时,第一活塞120沿第一出液行程运动。
在一个工作循环中,第二活塞130到达第三换向行程和第二出液行程的交点的时刻晚于第二活塞130到达第三换向行程的换向点的时刻;第一活塞120到达第一出液行程和第一换向行程的交点(即图2中所示P1位置)的时刻晚于第二活塞130到达第三换向行程和第二出液行程的交点(即图2中所示Q3位置)的时刻,即当第二活塞130到达第三换向行程和第二出液行程的交点时,第一活塞120处于如图7所示位置。或者,也可以设置为二者同时到达,即当第二活塞130到达第三换向行程和第二出液行程的交点时,第一活塞120到达第一出液行程和第一换向行程的交点。
同时,在一个工作循环中,第一活塞120到达第二换向行程和第一出液行程的交点的时刻晚于第一活塞120到达第二换向行程的换向点的时刻;第二活塞130到达第二出液行程和第四换向行程的交点(即图2中所示Q4位置)的时刻晚于第一活塞120到达第二换向行程和第一出液行程的交点(即图2中所示P1位置)的时刻,即当第一活塞120到达第二换向行程和第一出液行程的交点时,第二活塞130处于如图9所示位置。或者,也可以设置为二者同时到达,即当第一活塞120到达第二换向行程和第一出液行程的交点时,第二活塞130到达第二出液行程和第四换向行程的交点。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种液体输送系统,其特征在于,包括泵体(110)、第一活塞(120)和第二活塞(130);所述泵体(110)具有活塞腔(111),所述第一活塞(120)和所述第二活塞(130)用于将所述活塞腔(111)分隔成相互独立的第一腔室(112)和第二腔室(113);所述第一活塞(120)相对所述活塞腔(111)滑动以使所述第一腔室(112)进出液,所述第二活塞(130)相对所述活塞腔(111)滑动以使所述第二腔室(113)进出液,所述第一腔室(112)和所述第二腔室(113)用于交替进出液;
    其中,所述第二活塞(130)使所述第二腔室(113)出液时,所述第一活塞(120)使所述第一腔室(112)从出液向进液切换,以通过所述第二腔室(113)的出液补偿所述第一腔室(112)从出液向进液切换时的出液压力变化。
  2. 根据权利要求1所述的液体输送系统,其特征在于,所述液体输送系统(100)还包括驱动件(140),所述驱动件(140)用于驱动所述第一活塞(120)沿第一运动轨迹运动,同时用于驱动所述第二活塞(130)沿第二运动轨迹运动。
  3. 根据权利要求2所述的液体输送系统,其特征在于,所述第一运动轨迹包括第一进液行程和第一出液行程以及位于所述第一进液行程和所述第一出液行程之间的两个第一换向点,所述第二运动轨迹包括第二进液行程和第二出液行程以及位于所述第二进液行程和所述第二出液行程之间的两个第二换向点,两个所述第一换向点和两个所述第二换向点一一对应设置,且所述第一换向点和对应的所述第二换向点错位设置。
  4. 根据权利要求3所述的液体输送系统,其特征在于,所述第一进液行程具有第一速度V1,所述第一出液行程具有第二速度V2,所述第二进液行程具有第三速度V3,所述第二出液行程具有第四速度V4,V1>V4,V3>V2。
  5. 根据权利要求4所述的液体输送系统,其特征在于,V2=V4。
  6. 根据权利要求3所述的液体输送系统,其特征在于,所述第一运动轨迹还包括第一换向行程和第二换向行程,所述第一换向行程、所述第一进液行程、所述第二换向行程和所述第一出液行程首尾连接,其中一个所述第一换向点位于所述第一换向行程内,另一个所述第一换向点位于所述第二换向行程内;和/或,
    所述第二运动轨迹包括第三换向行程和第四换向行程,所述第三换向行程、所述第二出液行程、所述第四换向行程和所述第二进液行程首尾连接,其中一个所述第二换向点位于所述第三换向行程内,另一个所述第二换向点位于所述第四换向行程内。
  7. 根据权利要求6所述的液体输送系统,其特征在于,所述第一换向行程与所述第一出液行程的交点为P1,所述第三换向行程的所述第一换向点为Q2;所述驱动件(140)用于在驱动所述第二活塞(130)越过所述Q2后,驱动所述第一活塞(120)到达所述P1,或者所述驱动件(140)用于在驱动所述第二活塞(130)到达所述Q2时,驱动所述第一活塞(120)到达所述P1。
  8. 根据权利要求6所述的液体输送系统,其特征在于,所述第一换向行程与所述第一出液行程的交点为P1,所述第三换向行程与所述第二出液行程的交点为Q3,所述驱动件(140)用于在驱动所述第二活塞(130)越过所述Q3后,驱动所述第一活塞(120)到达所述P1,或者所述驱动件(140)用于在驱动所述第二活塞(130)到达所述Q3的同时,驱动所述第一活塞(120)到达所述P1。
  9. 根据权利要求7或8所述的液体输送系统,其特征在于,所述第四换向行程与所述第二出液 行程的交点为Q4,所述第二换向行程内的第一换向点为P5;所述驱动件(140)用于在驱动所述第一活塞(120)越过所述P5后,驱动所述第二活塞(130)到达所述Q4,或者所述驱动件(140)用于在驱动所述第一活塞(120)到达所述P5时,驱动所述第二活塞(130)到达所述Q4。
  10. 根据权利要求7或8所述的液体输送系统,其特征在于,所述第四换向行程与所述第二出液行程的交点为Q4,所述第二换向行程与所述第一出液行程的交点为P6,所述驱动件(140)用于在驱动所述第一活塞(120)越过所述P6后,驱动所述第二活塞(130)到达所述Q4,或者所述驱动件(140)用于在驱动所述第一活塞(120)到达所述P6的同时,驱动所述第二活塞(130)到达所述Q4。
  11. 根据权利要求2所述的液体输送系统,其特征在于,所述驱动件(140)包括第一驱动部和第二驱动部,所述第一驱动部上设置有第一轨道(141),所述第一轨道(141)与所述第一活塞(120)传动连接,以驱动所述第一活塞(120)沿所述第一运动轨迹运动;所述第二驱动部上设置有第二轨道(142),所述第二轨道(142)与所述第二活塞(130)传动连接,以驱动所述第二活塞(130)沿所述第二运动轨迹运动。
  12. 根据权利要求11所述的液体输送系统,其特征在于,所述第一轨道(141)具有第一进液段(1413)和第一出液段(1411),所述第一进液段(1413)用于使所述第一活塞(120)沿所述第一运动轨迹的第一进液行程运动,且所述第一进液段(1413)具有第一斜率值K1;所述第一出液段(1411)用于使所述第一活塞(120)沿所述第一运动轨迹的第一出液行程运动,且所述第一出液段(1411)具有第二斜率值K2;
    所述第二轨道(142)具有第二进液段(1421)和第二出液段(1423),所述第二进液段(1421)用于使所述第二活塞(130)沿所述第二运动轨迹的第二进液行程运动,且所述第二进液段(1421)具有第三斜率值K3;所述第二出液段(1423)用于使所述第二活塞(130)沿所述第二运动轨迹的第二出液行程运动,且所述第二出液段(1423)具有第三斜率值K4;
    K1>K4,K3>K2。
  13. 根据权利要求12所述的液体输送系统,其特征在于,K2=K4。
  14. 根据权利要求11所述的液体输送系统,其特征在于,所述第一驱动部和所述第二驱动部固定连接,且所述第一驱动部和所述第二驱动部同轴设置。
  15. 根据权利要求11所述的液体输送系统,其特征在于,所述第一驱动部包括第一凸轮,所述第二驱动部包括第二凸轮,所述第一凸轮具有形成所述第一轨道(141)的凸轮槽,所述第二凸轮具有形成所述第二轨道(142)的凸轮槽。
  16. 根据权利要求15所述的液体输送系统,其特征在于,所述液体输送系统(100)还包括导轨(155)、第一滑块(151)和第二滑块(153),所述第一滑块(151)和所述第二滑块(153)均与所述导轨(155)滑动连接;所述第一滑块(151)上设置有与所述第一轨道(141)滑动配合的第一跟随销(152),所述第一活塞(120)与所述第一滑块(151)连接,以通过所述第一滑块(151)与所述第一凸轮传动连接;所述第二滑块(153)上设置有与所述第二轨道(142)滑动配合的第二跟随销(154),所述第二活塞(130)与所述第二滑块(153)连接,以通过所述第二滑块(153)与所述第二凸轮传动连接。
  17. 根据权利要求2所述的液体输送系统,其特征在于,所述驱动件(140)包括两个驱动缸,其中一个所述驱动缸与所述第一活塞(120)传动连接,以驱动所述第一活塞(120)沿所述第一运动轨迹运动,另一个所述驱动缸与所述第二活塞(130)传动连接,以驱动所述第二活塞(130)沿 所述第二运动轨迹运动。
  18. 一种稳定出液方法,用于控制液体输送系统(100)稳定出液,所述液体输送系统(100)包括泵体(110)以及设置在泵体(110)内的第一活塞(120)和第二活塞(130),第一活塞(120)用于在泵体(110)内形成第一腔室(112),且在所述第一活塞(120)相对泵体(110)滑动时使所述第一腔室(112)进出液,所述第二活塞(130)用于在所述泵体(110)内形成第二腔室(113),且在所述第二活塞(130)相对泵体(110)滑动时使所述第二腔室(113)进出液,其特征在于,所述稳定出液方法包括:
    控制所述第一活塞(120)换向,且控制所述第二活塞(130)使所述第二腔室(113)出液,以通过所述第二腔室(113)的出液补偿所述第一活塞(120)换向时所述第一腔室(112)的出液压力变化。
  19. 根据权利要求18所述的稳定出液方法,其特征在于,所述控制所述第一活塞(120)换向,且控制所述第二活塞(130)使所述第一腔室(112)出液的步骤包括:
    控制所述第一活塞(120)沿第一换向行程、第一进液行程、第二换向行程和第一出液行程循环运动;所述第一活塞(120)在所述第一换向行程和所述第二换向行程均进行加减速,以改变所述第一活塞(120)的运动方向;且当所述第一活塞(120)沿所述第一换向行程和所述第二换向行程运动时,控制所述第二活塞(130)使所述第二腔室(113)出液;
    控制所述第二活塞(130)沿第三换向行程、第二出液行程、第四换向行程和第二进液行程循环运动,所述第二活塞(130)在所述第三换向行程和所述第四换向行程均进行加减速,以改变所述第二活塞(130)的运动方向;且当所述第二活塞(130)沿所述第三换向行程和所述第四换向行程运动时,控制所述第一活塞(120)使所述第一腔室(112)出液。
  20. 根据权利要求19所述的稳定出液方法,其特征在于,所述第一活塞(120)在所述第一进液行程时的运动速率大于所述第二活塞(130)在所述第二出液行程时的运动速率;所述第二活塞(130)在所述第二进液行程的运动速率大于所述第一活塞(120)在所述第一出液行程时的运动速率。
  21. 根据权利要求19所述的稳定出液方法,其特征在于,所述第一活塞(120)在所述第一进液行程和所述第一出液行程分别匀速运动;所述第二活塞(130)在所述第二进液行程和所述第二出液行程分别匀速运动;
    所述第一活塞(120)在所述第一进液行程的运动速率等于所述第二活塞(130)在所述第二进液行程的运动速率,所述第一活塞(120)在所述第一出液行程的运动速率等于所述第二活塞(130)在所述第二出液行程的运动速率。
  22. 根据权利要求19所述的稳定出液方法,其特征在于,在一个工作循环中,所述第一活塞(120)到达所述第一出液行程和所述第一换向行程的交点的时刻晚于所述第二活塞(130)到达所述第三换向行程的换向点的时刻,所述第二活塞(130)到达所述第二出液行程和所述第四换向行程的交点的时刻晚于所述第一活塞(120)到达所述第二换向行程的换向点的时刻。
  23. 根据权利要求22所述的稳定出液方法,其特征在于,在一个工作循环中,所述第二活塞(130)到达所述第三换向行程和所述第二出液行程的交点的时刻晚于所述第二活塞(130)到达所述第三换向行程的换向点的时刻;所述第一活塞(120)到达所述第一出液行程和所述第一换向行程的交点的时刻晚于所述第二活塞(130)到达所述第三换向行程和所述第二出液行程的交点的时刻,或者二者同时到达;
    在一个工作循环中,所述第一活塞(120)到达所述第二换向行程和所述第一出液行程的交点的 时刻晚于所述第一活塞(120)到达所述第二换向行程的换向点的时刻;所述第二活塞(130)到达所述第二出液行程和所述第四换向行程的交点的时刻晚于所述第一活塞(120)到达所述第二换向行程和所述第一出液行程的交点的时刻,或者二者同时到达。
PCT/CN2022/077505 2021-03-03 2022-02-23 一种液体输送系统及稳定出液方法 WO2022183954A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE212022000092.7U DE212022000092U1 (de) 2021-03-03 2022-02-23 Flüssigkeitsfördersystem
JP2023600075U JP3244287U (ja) 2021-03-03 2022-02-23 輸液システム及び液体吐出安定化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110236300.X 2021-03-03
CN202110236300.XA CN115025322A (zh) 2021-03-03 2021-03-03 一种液体输送系统及稳定出液方法

Publications (1)

Publication Number Publication Date
WO2022183954A1 true WO2022183954A1 (zh) 2022-09-09

Family

ID=83118131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077505 WO2022183954A1 (zh) 2021-03-03 2022-02-23 一种液体输送系统及稳定出液方法

Country Status (4)

Country Link
JP (1) JP3244287U (zh)
CN (1) CN115025322A (zh)
DE (1) DE212022000092U1 (zh)
WO (1) WO2022183954A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101611227A (zh) * 2007-01-10 2009-12-23 阿西斯特医疗系统有限公司 容积泵
CN105188803A (zh) * 2013-03-11 2015-12-23 波士顿科学有限公司 双作用输注泵
WO2016033351A2 (en) * 2014-08-28 2016-03-03 Boston Scientific Limited Double action infusion system
CN105816943A (zh) * 2015-01-27 2016-08-03 韦贝尔Cds公司 一种无菌条件下给送流体的定量给药装置
CN108888826A (zh) * 2018-06-11 2018-11-27 杭州光启医疗科技发展有限公司 具有连续给药功能的给药泵
US20190374708A1 (en) * 2018-06-06 2019-12-12 Insulet Corporation Linear shuttle pump for drug delivery
CN111375101A (zh) * 2018-12-29 2020-07-07 韦伯斯特生物官能(以色列)有限公司 具有可变速度以提供恒定流体流的双功能冲洗泵
CN215938585U (zh) * 2021-03-03 2022-03-04 南微医学科技股份有限公司 一种液体输送系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101611227A (zh) * 2007-01-10 2009-12-23 阿西斯特医疗系统有限公司 容积泵
CN105188803A (zh) * 2013-03-11 2015-12-23 波士顿科学有限公司 双作用输注泵
WO2016033351A2 (en) * 2014-08-28 2016-03-03 Boston Scientific Limited Double action infusion system
CN105816943A (zh) * 2015-01-27 2016-08-03 韦贝尔Cds公司 一种无菌条件下给送流体的定量给药装置
US20190374708A1 (en) * 2018-06-06 2019-12-12 Insulet Corporation Linear shuttle pump for drug delivery
CN108888826A (zh) * 2018-06-11 2018-11-27 杭州光启医疗科技发展有限公司 具有连续给药功能的给药泵
CN111375101A (zh) * 2018-12-29 2020-07-07 韦伯斯特生物官能(以色列)有限公司 具有可变速度以提供恒定流体流的双功能冲洗泵
CN215938585U (zh) * 2021-03-03 2022-03-04 南微医学科技股份有限公司 一种液体输送系统

Also Published As

Publication number Publication date
CN115025322A (zh) 2022-09-09
DE212022000092U1 (de) 2023-07-19
JP3244287U (ja) 2023-10-25

Similar Documents

Publication Publication Date Title
EP0304210B1 (en) Double diaphragm pumps
ES2359159T3 (es) Bomba volumétrica con distribución continua de flujo.
KR101882723B1 (ko) 유체의 용적형 펌핑을 위한 회전-진동 서브어셈블리 및 회전-진동 용적형 펌핑 장치
US9925331B2 (en) Double action infusion system
WO2022183954A1 (zh) 一种液体输送系统及稳定出液方法
US20090196775A1 (en) Volumetric pump comprising a driving mechanism
US20080187449A1 (en) Pump system with integrated piston-valve actuation
JPS598671B2 (ja) ポンプ輸送装置
WO2016033351A2 (en) Double action infusion system
AU2009309375A1 (en) A volumetric pump and its driving mechanism
JP5914330B2 (ja) 流動性物質を圧送するための装置および方法
CN215938585U (zh) 一种液体输送系统
WO2014123178A1 (ja) チュービングポンプ
EP3693603A1 (en) Variable pre and de-compression control mechanism and method for hydraulic displacement pump
JP4644997B2 (ja) 送液ポンプシステム
KR102396192B1 (ko) 로터의 축방향 변위를 위한 캠 메커니즘을 갖는 마이크로펌프
CN110242533B (zh) 一种电磁微泵装置及其泵液方法
US20170239142A1 (en) Multiple-fluid injection pump
CN104147658A (zh) 输液泵及输液控制方法
CN103557148A (zh) 一种通过频率控制柱塞泵方法及柱塞泵
JPH02230976A (ja) 複動ピストンポンプ
US3653787A (en) Volumetric metering pump
US5163822A (en) Radial piston pump
JP5527872B2 (ja) 膜ポンプの寿命の延長方法
JPH08170584A (ja) 定量吐出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762420

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023600075

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 22762420

Country of ref document: EP

Kind code of ref document: A1