WO2022183640A1 - 一种非晶金属氧化物中空多壳层材料的制备方法及其应用 - Google Patents

一种非晶金属氧化物中空多壳层材料的制备方法及其应用 Download PDF

Info

Publication number
WO2022183640A1
WO2022183640A1 PCT/CN2021/102381 CN2021102381W WO2022183640A1 WO 2022183640 A1 WO2022183640 A1 WO 2022183640A1 CN 2021102381 W CN2021102381 W CN 2021102381W WO 2022183640 A1 WO2022183640 A1 WO 2022183640A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
metal oxide
solution
metal salt
salt solution
Prior art date
Application number
PCT/CN2021/102381
Other languages
English (en)
French (fr)
Inventor
王丹
陈宣伯
杨乃亮
Original Assignee
中国科学院过程工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所 filed Critical 中国科学院过程工程研究所
Priority to US18/547,403 priority Critical patent/US20240140818A1/en
Priority to EP21928718.2A priority patent/EP4303189A1/en
Priority to AU2021430980A priority patent/AU2021430980A1/en
Priority to JP2023553742A priority patent/JP2024508929A/ja
Priority to KR1020237030047A priority patent/KR20230166077A/ko
Publication of WO2022183640A1 publication Critical patent/WO2022183640A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0029Use of radiation
    • B01D1/0035Solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of functional materials, in particular to an amorphous metal oxide hollow multi-shell material, a preparation method and application thereof.
  • solar energy As a clean energy that can be used permanently, solar energy has great potential for development. However, due to the factors of low energy density and instability, it is necessary to design more effective light conversion materials to achieve efficient acquisition and utilization of solar energy.
  • the solar-driven photothermal interface water evaporation system is an efficient and convenient water purification technology emerging in recent years. It only uses sunlight to heat the photothermal material to a temperature close to the boiling point of water, and then guide the water source to the surface of the material. , through surface evaporation and recovery of condensed water to achieve the effect of purification and sterilization.
  • the surface heating system can reduce the heating volume, enhance the heat transfer efficiency, and reduce heat loss; second, the energy consumed by the production of unit volume of steam significantly reduced.
  • the solar-driven photothermal interface water distillation system has the characteristics of low water quality requirements, high photothermal conversion efficiency, fast water distillation rate, remarkable sterilization and water purification effect, and convenient device carrying. It can be used for seawater desalination, Convert sewage into drinking water, purify bacteria-containing wastewater, and can also be used to quickly make drinking water in extremely harsh environments.
  • Multi-shell hollow micro/nanostructures have the characteristics of large specific surface area, light density, special internal cavity structure, and adjustable shell walls composed of low-dimensional nanoparticles or nanorods, so they have been widely used in many fields, such as Drug release, catalysis, sensors, water pollution control, nanoreactors and energy storage systems, etc.
  • the metal oxide hollow multi-shell material can make the incident light scatter multiple times between the shell layers, effectively prolong the light path, enhance the capture of light by the material, and is conducive to the efficient absorption of sunlight in the full spectrum, improving the efficiency of light. heat transfer efficiency.
  • the metal oxide hollow multi-shell material can provide more effective specific surface area, which is conducive to the rapid transportation and evaporation of water, and further improves the reaction efficiency.
  • the preparation methods of multi-shell oxide hollow spheres mainly include soft template method and hard template method.
  • the soft template method refers to the use of micelles or emulsion droplets as templates in solution, chemical reactions occur at the two-phase interface, and finally separated and dried to prepare hollow microspheres.
  • the currently reported soft template method is only suitable for the preparation of multi-shell hollow spheres of specific compounds, and the synthesized products have poor morphological uniformity, requiring the use of a large amount of organic solvents to prepare reversed-phase micelles or reversed-phase microemulsions, which are not suitable for large-scale Production, it is difficult to have universality.
  • the hard template method refers to using monodisperse inorganic, high molecular polymer or resin micro-nano particles as a template, depositing various chemical materials on its surface, and then extracting the template through calcination or solvent extraction to form a uniform hollow sphere material.
  • the core-shell materials prepared by the hard template method have the advantages of good monodispersity, high repeatability and stable product morphology, which have attracted extensive attention of researchers.
  • CN102464304A discloses a multi-shell metal oxide hollow sphere and a preparation method thereof.
  • a carbon sphere template is prepared by a hydrothermal method; a metal salt is dissolved in a carbon sphere suspension, and the concentration of the metal salt, the pH value of the solution, the immersion and the The adsorption conditions such as temperature and time are used to control the quantity, depth and gradient distribution of metal salts entering the carbon spheres; multi-shell metal oxide hollow spheres can be obtained by heat-treating the carbon spheres adsorbed with metal ions.
  • the hollow sphere prepared by this method has a shell layer formed by stacking nanocrystalline grains of metal oxides, the number of shell layers can be adjusted between two and four layers, and the size and thickness of the hollow sphere are controllable.
  • the method of the invention is simple and easy to implement, has high controllability, low pollution, low cost and universality.
  • the prepared product has a hollow structure and a shell layer with a thickness in the nanometer scale.
  • the multi-layer structure can effectively utilize the internal space, which can be applied to gas sensing and photocatalysis, showing better performance than traditional nanomaterials and single-layer hollow spheres. .
  • CN103247777A discloses a tricobalt tetroxide multi-shell hollow spherical negative electrode material applied to lithium ion batteries and a preparation method thereof.
  • the carbon spheres prepared by the hydrothermal method as a template, by controlling the ratio of water to ethanol in the cobalt salt solution, the temperature of the solution, and the adsorption capacity of the carbon spheres, the number of cobalt ions in the carbon spheres and the depth of their entry were controlled.
  • Single, double, triple and quadruple shell cobalt tetroxide hollow spheres are used to make negative electrode materials for lithium ion batteries, and there are still limitations in the application in the field of photothermal.
  • the present invention provides a preparation method and application of an amorphous metal oxide hollow multi-shell material.
  • the metal ions in the adsorbed carbon sphere template have an obvious concentration gradient, thereby After calcination, an amorphous metal oxide hollow multi-shell material capable of efficiently absorbing the solar spectrum is obtained.
  • the present invention has adopted the following technical scheme:
  • the invention provides a preparation method of an amorphous metal oxide hollow multi-shell material, comprising the following steps:
  • step 2) the carbon ball template obtained in step 1) is dispersed in the first metal salt solution, and the first solid precursor is obtained after heating, adsorption and drying;
  • step 2) Dispersing the solid precursor obtained in step 2) in the second metal salt solution again, adsorbing and drying to obtain the second solid precursor;
  • step 4) calcining the second solid precursor obtained in step 3) to obtain an amorphous metal oxide hollow multi-shell material;
  • the hydrated ion concentration in the second metal salt solution is greater than or equal to the hydrated ion concentration in the first metal salt solution.
  • the calcination temperature and calcination atmosphere are the main factors for synthesizing amorphous oxides and regulating the content of defect states in the amorphous interior.
  • Select metal oxide materials with high melting point In metal oxides, the diffusion and migration energy of oxygen atoms is low, and a network structure of oxygen atoms can be formed at low temperatures. Compared with oxygen atoms, the diffusion of these high melting point metal ions The migration energy is very high, and when the migration distance is less than the size of a unit cell within a certain time, amorphous oxides are formed.
  • amorphous oxides will be formed.
  • the atmosphere oxygen partial pressure
  • the general rule is that the lower the oxygen partial pressure, the higher the defect state content of the obtained amorphous oxide.
  • the defect state content of amorphous oxides is the main way to obtain high-efficiency light-absorbing materials with wide absorption range and high absorption intensity.
  • the choice of solvent for the adsorption of metal salts by carbon spheres is also very important.
  • the selection of different solvents as precursor solutions makes the adsorption depth of metal ions in the adsorbed carbon sphere template significantly different.
  • the ability of different solvents to dissolve and disperse metal salts varies, and the aggregate size of metal cations in solvents varies greatly.
  • step (2) through dispersion and stirring adsorption operations, the metal salt solution with a smaller ion aggregation radius can be adsorbed more deeply into the carbon sphere; in step (3), through dispersion and adsorption operations, the larger ions are The metal salt solution of the aggregation radius is mainly aggregated on the surface of the carbon sphere, so that the solid obtained in step (3) has a larger metal adsorption amount and concentration gradient, and the metal oxide hollow sphere obtained after calcination has more shell layers. .
  • the defect content of each layer in the amorphous multi-shell layer is different, the light absorption efficiency of each layer can be superimposed, and a relatively closed spherical shape is formed inside the multi-shell layer.
  • the effect of confinement of light is remarkable, and the effect of efficient light absorption is achieved.
  • Amorphous oxides such as tantalum oxide are indirect bandgap semiconductors, and phonon-assisted heat generation is involved in the photothermal conversion process, that is, mutual vibrational heat transfer between unit cells.
  • high levels of defects increase the level of phonon scattering.
  • the photothermal conversion efficiency is enhanced.
  • the carbon-containing precursor aqueous solution is loaded into the reactor for hydrothermal reaction, and the carbon ball template is obtained after cooling, filtration, washing and drying.
  • the carbon ball prepared by the hydrothermal method is The particle size is uniform, the size is controllable, and the surface contains a large number of active functional groups, which has excellent hydrophilicity and surface reactivity, which is more conducive to the adsorption of metal ions, and is a common template for preparing core-shell structural materials.
  • the adsorption described in step 2) of the present invention is enhanced adsorption, and enhanced adsorption refers to placing the carbon sphere template and the metal salt solution into a beaker for two heating adsorption, and the enhanced carbon sphere template under the heating state adsorbs the metal ions, after cooling A method for obtaining a solid precursor rich in metal salt ions after centrifugation, washing and drying.
  • the carbon source in the step 1) includes one or more of glucose, fructose, sucrose, maltose, starch and citric acid; more preferably, sucrose.
  • the concentration of the carbon source in the carbon source aqueous solution is 0.1-6M, such as 0.1M, 0.5M, 1M, 1.5M, 2M, 2.5M, 3M, 3.5M, 4M, 4.5M, 5M, 5.5M or 6M , preferably 1-5M, more preferably 2-3M.
  • the heating reaction in the step 1) is a hydrothermal reaction
  • the temperature of the hydrothermal reaction is 175-220°C, such as 175°C, 180°C, 185°C, 190°C, 195°C or 200°C , more preferably 190-205°C, even more preferably 195-200°C;
  • the time of hydrothermal reaction is 100-180min, such as can be 100min, 110min, 120min, 130min, 140min, 150min, 160min, 170min or 180min, more preferably 120-140min, more preferably 125-135min;
  • the drying temperature is 60-100°C, such as 60°C, 65°C, 70°C, 75°C, 80°C, 85°C, 90°C, 95°C or 100°C, more preferably 70-90°C, even more preferably 75-85°C;
  • the drying time is 6-24h, for example, it can be 6h, 8h, 10h, 12h, 14h, 16h, 18h, 20h, 22h or 24h, more preferably 15-24h, more preferably 18-20h;
  • One or a combination of deionized water, methanol, or ethanol is used for washing; for example, it can be deionized water, methanol, ethanol, a combination of deionized water and methanol, a combination of deionized water and ethanol, or methanol and A combination of ethanol.
  • the washing times are 2-5 times, such as 2 times, 3 times, 4 times or 5 times, preferably 3-4 times.
  • the first metal salt solution and the second metal salt solution in the steps 2) and 3) both include tantalum chloride solution, tantalum nitrate solution, tantalum sulfate solution, tantalum acetylacetonate solution, tantalum oxalate solution and One or more of the tantalum ethoxide solution; further preferably one or a combination of at least two of the tantalum chloride solution, the tantalum acetylacetonate solution, and the tantalum oxalate solution;
  • the metal salt of hydrated ionic radius enhances the adsorption depth of the metal in the carbon sphere, and is used for multiple absorption of the visible and infrared parts of the solar spectrum.
  • the concentration of the first metal salt solution is 0.01-0.5M, such as 0.01M, 0.1M, 0.15M, 0.2M, 0.25M, 0.3M, 0.35M, 0.4M, 0.45M or 0.5M, more preferably 0.05M -0.2M, more preferably 0.1-0.15M;
  • the concentration of the second metal salt solution is 0.5-5M, such as 1M, 1.5M, 2M, 2.5M, 3M, 3.5M, 4M, 4.5M or 5M, more preferably 1-3M, still more preferably 1.5- 2.5M;
  • the solvent of the first metal salt solution includes one or more of water, acetone and ethanol.
  • the solvent of the first metal salt solution includes acetone and/or ethanol, and the solvent of the first metal salt solution is more preferably ethanol,
  • the solvent of the second metal salt solution includes water, ethanol or a mixture thereof, and the solvent of the second metal salt solution is more preferably water.
  • the adsorption described in the step 2) is medium temperature stirring adsorption
  • the adsorption temperature is 20-60°C, for example, it can be 20°C, 25°C, 30°C, 35°C, 40°C, 45°C or 60°C, more preferably 30-60°C, still more preferably 40-50°C ;
  • the adsorption time is 1-48h, more preferably 3-36h, more preferably 6-24h;
  • the mixed solution obtained by adsorption is centrifuged, and the lower layer solid is taken out and washed; one or a combination of any two in deionized water, methanol or ethanol is used for washing; for example, it can be deionized water, methanol, ethanol , a combination of deionized water and methanol, a combination of deionized water and ethanol, or a combination of methanol and ethanol.
  • the washing times are 2-5 times, such as 2 times, 3 times, 4 times or 5 times, more preferably 3-4 times;
  • the drying temperature is 60-100°C, for example, it can be 60°C, 65°C, 70°C, 75°C, 80°C, 85°C, 90°C, 95°C or 100°C, more preferably 70-90°C, even more preferably 75-85°C;
  • the drying time is 6-24h, for example, 6h, 8h, 10h, 12h, 14h, 16h, 18h, 20h, 22h or 24h, more preferably 15-24h, still more preferably 18-20h.
  • the adsorption described in the described step 3) is the medium-temperature heating enhanced stirring adsorption
  • the adsorption temperature is 20-60°C, for example, it can be 20°C, 25°C, 30°C, 35°C, 40°C, 45°C, 50°C, 55°C or 60°C, more preferably 30-50°C, still more preferably 35°C -45°C;
  • the adsorption time is 4-24h, for example, it can be 4h, 6h, 8h, 10h, 12h, 14h, 16h, 18h, 20h, 22h or 24h, more preferably 8-20h, more preferably 10-18h;
  • the mixed solution obtained by adsorption is suction filtered and cleaned; one or a combination of any two in deionized water, methanol or ethanol is used for cleaning; for example, it can be deionized water, methanol, ethanol, deionized water
  • the cleaning times are 2-5 times, such as 2 times, 3 times, 4 times or 5 times, more preferably 3-4 times times;
  • the cleaning time is 0.5-24h, for example, can be 2h, 4h, 6h, 8h, 10h, 11h, 14h, 16h, 18h, 20h, 22h or 24h, more preferably 5-20h, more preferably 10-15h ;
  • the drying temperature is 60-100°C, for example, it can be 60°C, 65°C, 70°C, 75°C, 80°C, 85°C, 90°C, 95°C or 100°C, more preferably 70-90°C, even more preferably 75-85°C,
  • the drying time is 6-24h, for example, 6h, 8h, 10h, 12h, 14h, 16h, 18h, 20h, 22h or 24h, more preferably 15-24h, still more preferably 18-20h.
  • roasting is carried out in muffle furnace, tube furnace or kiln;
  • the calcination temperature is 200-600°C, such as 200°C, 250°C, 300°C, 350°C, 400°C, 450°C, 500°C, 550°C or 600°C, more preferably 300-550°C, further Preferably 400-500°C
  • the roasting time is 0.5-10h, for example, it can be 0.5h, 1h, 1.5h, 2h, 2.5h, 3h, 3.5h, 4h, 4.5h, 5h, 5.5h, 6h, 6.5h, 7h, 7.5h, 8h, 8.5h, 9h, 9.5h or 10h, more preferably 1-6h, more preferably 2-4h;
  • the heating rate of calcination is 0.1-20°C/min, for example, it can be 0.5°C/min, 1°C/min, 1.5°C/min, 2°C/min, 2.5°C/min, 3°C/min, 3.5°C/min, 4°C/min, 4.5°C/min, 5°C/min, 5.5°C/min, 6°C/min, 6.5°C/min, 7°C/min, 7.5°C/min, 8°C/min, 8.5°C/min, 9°C/min, 9.5°C/min or 10°C/min, more preferably 0.5-10°C/min, still more preferably 1-10°C/min;
  • the roasting atmosphere is air, or a mixture of nitrogen and oxygen, and the oxygen ratio in the mixture of nitrogen and oxygen is 5%-40%, such as 5%, 8%, 10%, 12%, 15%, 18%, 20%, 25%, 30%, 35%, 40%. More preferably, the oxygen ratio in the mixed gas of nitrogen and oxygen is 10%-30%, and even more preferably, the oxygen ratio in the mixed gas of nitrogen and oxygen is 15%-25%.
  • the invention prepares the hollow multi-shelled hollow sphere by adopting the nitrogen-oxygen mixed atmosphere calcination, and regulating and controlling, and also regulates the defect state content of the multi-shelling layer.
  • the absorption capacity of the hollow multi-shell layer to the solar light spectrum is regulated in a wide range, and the photothermal conversion efficiency and water evaporation rate are optimized.
  • steps 1) and 2) may be repeated 1-5 times before firing, thereby obtaining an amorphous metal oxide hollow multi-shell material with a shell layer between 2-4 layers.
  • the present invention can change the content of different metal oxides in the shell layer by adjusting the concentration of two kinds of metal salts with different hydration ion radii, adsorption temperature, repeated adsorption times, calcination atmosphere and other synthesis conditions, thereby realizing different shells.
  • the layer can efficiently absorb light of different wavelengths, further realize the effect of sequential absorption of the full spectrum in the solar spectrum, and enhance the light absorption ability of the prepared multi-shell hollow sphere photothermal material, thereby improving its photothermal conversion efficiency.
  • the present invention provides an amorphous metal oxide hollow multi-shell material obtained by the preparation method, wherein the amorphous metal oxide hollow multi-shell material comprises at least one cavity and at least one shell wall, wherein, Two or more metal oxides are deposited on the surface of the shell wall, and the metal oxides are nanoparticles or nanorods; metal oxides, preferably but not limited to, include tantalum oxide, niobium oxide, hafnium oxide, and rhenium oxide , one or more of titanium oxide and tungsten oxide.
  • the shell wall is 2 to 4 layers, for example, it can be 2 layers, 3 layers or 4 layers;
  • the shell wall can absorb the solar spectrum in multi-level order; the defect content of the metal oxide deposited on the outer shell wall surface of the shell wall is smaller than the defect content of the metal oxide deposited on the inner shell wall surface.
  • the metal oxide deposited on the surface of the shell wall has controllable defects
  • the multi-level sequence absorbs the ultraviolet, visible, near-infrared and mid-infrared parts of the solar spectrum.
  • the absorbance of the metal oxide of the shell wall is adjustable within 10-95%.
  • the present invention provides a metal oxide material for photothermal evaporation, the metal oxide material for photothermal evaporation comprises the amorphous metal oxide hollow multi-shell material;
  • the metal oxide material for photothermal water evaporation performed efficient surface water evaporation at an evaporation rate of 1.6 kg/m 2 h under the irradiation of a solar simulator of 100 mW/cm 2 .
  • the present invention has the following beneficial effects:
  • the composite metal oxide hollow multi-shell material prepared by the present invention has stronger light absorption capacity, and the complex multi-level structure of the multi-shell layer can significantly extend the optical path of the incident light inside the material.
  • the characteristics of the multi-shell layer itself make the material have a larger specific surface area, which makes the material in contact with water more fully.
  • the above hollow spheres are applied to photothermal hot water evaporation, which can achieve high-efficiency absorption of the full spectrum of the solar spectrum, at 100mW Efficient surface water evaporation can be carried out at an evaporation rate of 1.6 kg/m 2 h under the irradiation of solar simulator /cm 2 . And the reaction stability of more than 48h can be obtained, and its performance is much higher than that of nanoparticles of the same composition.
  • the present invention enables the metal oxide hollow spheres to introduce defect-controllable doping energy levels through a two-step enhanced adsorption method, thereby achieving efficient absorption of various wavelength bands in the solar spectrum.
  • Fig. 1 is the transmission electron microscope photograph of amorphous triple shell Ta 2 O 5 hollow spheres prepared in Example 1 of the present invention
  • Fig. 2 is the transmission electron microscope photograph of amorphous two-shell Ta 2 O 5 hollow spheres prepared in Example 2 of the present invention
  • Fig. 3 is the X-ray diffraction pattern of amorphous Ta 2 O 5 hollow spheres under different shell layers of the present invention.
  • Fig. 4 is the ultraviolet-visible light absorption spectrum of tri-shell Ta 2 O 5 calcined at different temperatures of the present invention
  • Fig. 5 is the electron paramagnetic resonance spectrum of the amorphous triple-shell Ta 2 O 5 hollow sphere prepared in Example 1 of the present invention
  • Example 6 is a performance diagram of the photothermal evaporation of the multi-shelled Ta 2 O 5 hollow spheres prepared in Example 1 of the present invention
  • Example 7 is a comparison diagram of the concentration of the amorphous triple-shell Ta 2 O 5 hollow spheres prepared in Example 1 of the present invention before and after being used for photothermal evaporation and purification of a uranium-containing solution;
  • Example 8 is a comparison diagram of the concentration of the amorphous triple-shell Ta 2 O 5 hollow spheres prepared in Example 1 of the present invention before and after being used for photothermal evaporation and purification of a pseudovirus-containing SC2-P solution.
  • the present invention provides a method for preparing an amorphous metal oxide hollow multi-shell material, the method comprising:
  • step (b) dispersing the carbon sphere template obtained in step (a) in a first metal salt solution with a concentration of 0.01-0.5M, wherein the first metal salt solution is tantalum chloride solution, tantalum nitrate solution, tantalum sulfate solution, acetyl Acetone tantalum solution, tantalum oxalate solution, and tantalum ethoxide solution, one or a combination of at least two, heated and adsorbed at 20-60 ° C for 1-48 h, the adsorbed mixed solution was centrifuged, the lower solid was taken out, and deionized water, Washing with methanol or ethanol for 2-5 times, and drying at 60-100 ° C for 6-24 h to obtain the first solid precursor;
  • the first metal salt solution is tantalum chloride solution, tantalum nitrate solution, tantalum sulfate solution, acetyl Acetone tantalum solution, tantalum oxalate solution, and tantalum eth
  • step (c) dispersing the first solid precursor obtained in step (b) in a second metal salt solution with a concentration of 0.5-5M, wherein the second metal salt solution is a tantalum chloride solution, a tantalum nitrate solution, and a tantalum sulfate solution , tantalum acetylacetonate solution, tantalum oxalate solution, and tantalum ethoxide solution, one or a combination of at least two, stirring and adsorbing at 20-60°C for 4-24h, suction filtration, and washing with deionized water, methanol or ethanol for 2- 5 times, washed for 0.5-24h, and dried at 60-100°C for 6-24h to obtain a solid precursor;
  • the second metal salt solution is a tantalum chloride solution, a tantalum nitrate solution, and a tantalum sulfate solution , tantalum acetylacetonate solution, tantalum oxalate solution
  • step (d) placing the solid precursor obtained in step (c) in a muffle furnace or a kiln for 0.5-10h in air, or in an atmosphere with an oxygen ratio of 5%-40% in a mixed gas of oxygen and nitrogen,
  • the calcination temperature is 200-600° C.
  • the heating rate is 0.1-20° C./min
  • the amorphous metal oxide hollow multi-shell layer material is obtained after cooling.
  • a method for preparing an amorphous metal oxide hollow multi-shell material comprising:
  • sucrose aqueous solution with a concentration of 1.5M was charged into a reaction kettle at 200°C for hydrothermal reaction for 135min, filtered with suction after natural cooling, and washed with water for 3 times. is a 2.9 ⁇ m carbon sphere template;
  • step (2) Disperse the carbon sphere template obtained in step (1) in 30 mL of TaCl 5 solution with a concentration of 0.1 M, ultrasonically disperse the carbon spheres uniformly, put them into a beaker, and place them in a 30°C water bath for heating and adsorption for 4 hours.
  • the mixed solution was centrifuged, the lower solid was taken out, washed three times with deionized water, and dried in an oven at 60 °C for 24 h to obtain the first solid precursor;
  • step ( 2 ) Disperse the first solid precursor obtained in step ( 2 ) in a TaCl5 solution with a concentration of 0.5M, stir and adsorb at 40°C for 24h, filter with suction, wash with deionized water 3 times, and put it into 60°C Dry in the oven for 24h to obtain the second solid precursor;
  • step (3) placing the solid precursor obtained in step (3) in a muffle furnace, heating up to 500°C at 0.5°C/min, and the calcining atmosphere is a mixture of nitrogen and oxygen, wherein the oxygen in the mixture of nitrogen and oxygen The ratio is 15%, calcined at constant temperature for 2 h, and after natural cooling, three-shell Ta 2 O 5 hollow spheres are obtained, and the shell size is about 0.8 ⁇ m.
  • the TEM photo of the product is shown in Figure 1, which is an amorphous triple-shell hollow sphere.
  • the results of the absorption spectrum in Figure 4 are consistent with the above rules, and the UV-visible-near-infrared absorption rate reaches the maximum at 500 °C. And as shown in Fig.
  • the evaporation water source was expanded to include uranium-containing radioactive wastewater and culture medium containing pseudovirus (SC2-P).
  • S2-P uranium-containing radioactive wastewater and culture medium containing pseudovirus
  • the uranium content in water before and after evaporation was characterized by ICP, and the characterization results are shown in Figure 7. Dropped from 200ppm to 8*10 -5 ppm. The uranium concentration dropped by nearly 6 orders of magnitude, fully in line with WHO standards.
  • the concentration of SC2-P containing solutions before and after evaporation was quantified by PCR amplification.
  • the characterization results are shown in Figure 8.
  • the virus concentration decreased by 6 orders of magnitude from 10 7 particles/mL to 11.8 particles/mL after evaporation (the result of concentrating the solution collected after evaporation by 100 times).
  • a method for preparing an amorphous metal oxide hollow multi-shell material comprising:
  • sucrose aqueous solution with a concentration of 2.5M was charged into a reactor at 180°C for hydrothermal reaction for 130min, and after natural cooling, suction filtration was performed, and washed twice with water, and the product was placed in a 70°C oven for drying for 24h to obtain a diameter is a 2.7 ⁇ m carbon sphere template;
  • step (2) Disperse the carbon sphere template obtained in step (1) in 30 mL of tantalum acetylacetonate solution with a concentration of 0.2M, ultrasonically disperse the carbon spheres uniformly, put them into a beaker, and place them in a 40°C water bath for heating and adsorption for 3 hours. The resulting mixture was centrifuged, the lower solid was taken out, washed three times with deionized water, and dried in an oven at 60°C for 24 hours to obtain the first solid precursor;
  • step (3) Disperse the first solid precursor obtained in step (2) in a TaCl solution with a concentration of 1M, stir and adsorb at 60°C for 12h, filter with suction, wash with deionized water 3 times, and put it in a 70°C oven Dry for 12h to obtain the second solid precursor;
  • step (3) The second solid precursor obtained in step (3) is placed in a muffle furnace, heated to 600°C at 3°C/min in air, calcined at a constant temperature for 1h, and naturally cooled to obtain three-shell Ta 2 O 5 Hollow spheres with a shell size of about 0.8 ⁇ m.
  • Efficient surface water evaporation can be carried out at an evaporation rate of 1.4 kg/m 2 h under the irradiation of 100 mW/cm 2 solar simulator.
  • a method for preparing an amorphous metal oxide hollow multi-shell material comprising:
  • sucrose aqueous solution with a concentration of 1.5M was placed in a reactor at 195°C for hydrothermal reaction for 150min, and after natural cooling, suction filtration was performed, and washed with water for 4 times, and the product was placed in a 70°C oven for drying for 18h to obtain a diameter of 2.5 ⁇ m carbon sphere template;
  • step (2) Disperse the carbon sphere template obtained in step (1) in 30 mL of tantalum oxalate solution with a concentration of 0.2M, ultrasonically disperse the carbon spheres uniformly, put them into a beaker, and place them in a 20°C water bath for heating and adsorption for 10 hours.
  • the mixed solution was centrifuged, the lower solid was taken out, washed three times with deionized water, and dried in an oven at 60 °C for 24 h to obtain the first solid precursor;
  • step (3) Disperse the first solid precursor obtained in step (2) in a solution of tantalum acetylacetonate with a concentration of 1M, stir and adsorb at 60°C for 12h, filter with suction, wash three times with deionized water, and put it into 70°C Dry in the oven for 12h to obtain the second solid precursor;
  • step (3) placing the second solid precursor obtained in step (3) in a muffle furnace, heating it up to 600°C at 16°C/min in an atmosphere where oxygen accounts for 35% in a nitrogen-oxygen mixture, and calcining at a constant temperature for 1h , three-shell Ta 2 O 5 hollow spheres were obtained after natural cooling, and the shell size was about 0.8 ⁇ m.
  • Efficient surface water evaporation can be carried out at an evaporation rate of 1.3 kg/m 2 h under the irradiation of 100 mW/cm 2 solar simulator.
  • a method for preparing an amorphous metal oxide hollow multi-shell material comprising:
  • sucrose aqueous solution with a concentration of 5M was charged into a reactor at 200°C for hydrothermal reaction for 110min, and after natural cooling, suction filtration was performed, and washed with water 3 times. 2.5 ⁇ m carbon sphere template;
  • step (2) Disperse the carbon sphere template obtained in step (1) in 30 mL of a 0.1M tantalum ethoxide solution, ultrasonically disperse the carbon spheres uniformly, put them into a beaker, and place them in a 20°C water bath for heating and adsorption for 4 hours.
  • the mixed solution was centrifuged, the lower solid was taken out, washed three times with deionized water, and dried in an oven at 60 °C for 24 h to obtain the first solid precursor;
  • step (3) Disperse the first solid precursor obtained in step (2) in a solution of tantalum pentachloride with a concentration of 3M, stir and adsorb at 50°C for 12h, filter with suction, wash with deionized water 3 times, put in 70 drying in an oven for 12 h to obtain the second solid precursor;
  • step (3) (4) placing the second solid precursor obtained in step (3) in a muffle furnace, heating it to 400° C. at 2° C./min in an atmosphere where oxygen accounts for 40% in a nitrogen-oxygen mixture, and calcining at a constant temperature for 1 h , three-shell Ta 2 O 5 hollow spheres were obtained after natural cooling, and the shell size was about 0.8 ⁇ m.
  • Efficient surface water evaporation can be carried out at an evaporation rate of 1.5 kg/m 2 h under the irradiation of a 100 mW/cm 2 solar simulator.
  • a method for preparing an amorphous metal oxide hollow multi-shell material comprising:
  • sucrose aqueous solution with a concentration of 3M was charged into a reaction kettle at 210°C for hydrothermal reaction for 130min, and after natural cooling, suction filtration was performed, and washed with water for 5 times, and the product was placed in a 90°C oven and dried for 10h to obtain a diameter of 3 ⁇ m carbon sphere template;
  • step (2) Disperse the carbon sphere template obtained in step (1) in 30 mL of tantalum sulfate acetone solution with a concentration of 0.3M, ultrasonically disperse the carbon spheres uniformly, put them into a beaker, and place them in a 50°C water bath for heating and adsorption for 4 hours. The resulting mixture was centrifuged, the lower solid was taken out, washed three times with deionized water, and dried in an oven at 60°C for 24 hours to obtain the first solid precursor;
  • step (3) Disperse the first solid precursor obtained in step (2) in a solution of tantalum pentachloride with a concentration of 3M, stir and adsorb at 50°C for 12h, filter with suction, wash with deionized water 3 times, put in 70 drying in an oven for 12 h to obtain the second solid precursor;
  • step (3) placing the second solid precursor obtained in step (3) in a muffle furnace, heating it up to 250°C at 5°C/min in an atmosphere where oxygen accounts for 30% in a mixture of nitrogen and oxygen, and calcining at a constant temperature for 1h , three-shell Ta 2 O 5 hollow spheres were obtained after natural cooling, and the shell size was about 1 ⁇ m.
  • Efficient surface water evaporation can be carried out at an evaporation rate of 1.2 kg/m 2 h under the irradiation of a 100 mW/cm 2 solar simulator.
  • a method for preparing an amorphous metal oxide hollow multi-shell material comprising:
  • sucrose aqueous solution with a concentration of 2M was charged into a reactor at 200°C for hydrothermal reaction for 160min, and after natural cooling, suction filtration was performed, and washed with water for 3 times, and the product was placed in a 60°C oven and dried for 24h to obtain a diameter of 2.8 ⁇ m carbon sphere template;
  • step (2) Disperse the carbon sphere template obtained in step (1) in 30 mL of tantalum pentachloride acetone solution with a concentration of 0.5M, ultrasonically disperse the carbon spheres uniformly, put them into a beaker, and place them in a 30°C water bath for heating and adsorption for 12 hours.
  • the adsorbed mixed solution was centrifuged, the lower solid was taken out, washed three times with deionized water, and dried in a 60°C oven for 24 hours to obtain the first solid precursor;
  • step (3) Disperse the first solid precursor obtained in step (2) in a tantalum pentachloride acetone solution with a concentration of 4M, stir and adsorb at 40° C. for 24h, filter with suction, wash with deionized water for 3 times, put in Dry in an oven at 70°C for 12h to obtain the second solid precursor;
  • step (3) placing the second solid precursor obtained in step (3) in a muffle furnace, heating it up to 550°C at 10°C/min in an atmosphere where oxygen accounts for 10% in a mixture of nitrogen and oxygen, and calcining at a constant temperature for 1h , three-shell Ta 2 O 5 hollow spheres were obtained after natural cooling, and the shell size was about 1 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及功能材料技术领域,具体的说,涉及一种非晶金属氧化物中空多壳层材料及其制备方法和应用,所述方法包括以下步骤:1)将碳源水溶液进行加热反应,经过滤、洗涤和干燥后得到碳球模板;2)步骤1)得到的碳球模板分散于第一金属盐溶液中,加热吸附、烘干后得到第一固体前驱体;3)将步骤2)得到的固体前驱体再次分散于第二金属盐溶液中,吸附、烘干后得到第二固体前驱体;4)将步骤3)得到的第二固体前驱体焙烧,得到非晶金属氧化物中空多壳层材料;本发明通过两步强化吸附法使得金属氧化物空心球引入缺陷可控的掺杂能级,从而实现对太阳光谱中各个波段的高效吸收。

Description

一种非晶金属氧化物中空多壳层材料的制备方法及其应用
相关申请的交叉参考
该申请要求2021年03月04日提交的中国专利申请号为202110241311.7的专利申请的优先权,该专利申请在此被完全引入作为参考。
技术领域
本发明涉及功能材料技术领域,具体的说,涉及一种非晶金属氧化物中空多壳层材料及其制备方法和应用。
背景技术
太阳能作为一种可永久利用的清洁能源,具有巨大的开发潜力,但由于存在能量密度低、不稳定的因素,需要设计出更为有效的光转换材料,实现太阳能的高效获取与利用。太阳光驱动的光热界面水蒸发系统是近几年来新兴的一种高效便捷的净水技术,它仅利用太阳光将光热材料加热至接近于水的沸点温度,再将水源引导到材料表面,通过表面蒸发和回收冷凝水达到净化杀菌的效果。相比于传统体相加热水具有独特的优势,主要体现在:其一,表面加热系统能够降低受热体积,增强传热效率,降低热量损失;其二,生产单位体积蒸汽量所消耗的能量显著降低。此外,太阳光驱动的光热界面蒸水系统具有对水源质量要求低,高效的光热转化效率,蒸水速率快,杀菌净水效果显著,以及器件携带便捷等特点,可以用于海水淡化,污水转换成饮用水,含菌废水的净化,也可用于极端恶劣环境中快速自制饮用水。
多壳层空心微米/纳米结构具有比表面积大、密度轻、特殊内部空腔结构以及由低维纳米颗粒或者纳米棒构成的可调节壳壁等特点,因而在很多领域都实现了广泛使用,比如药物缓释、催化、传感器、水污染治理、纳米反应器以及储能系统等。应用于光热水蒸发领域,金属氧化物中空多壳层材料能够使入射光在壳层间多次散射,有效延长光路,增强材料对光的捕获,有利于全光谱高效吸收太阳光,提高光热转换效率。此外,金属氧化物中空多壳层材料能够提供较多有效比表面积,有利于水的快速输运和蒸发,进一步提高反应效率。
目前,多壳层氧化物空心球的制备方法主要有软模板法和硬模板法两种。软模板法是指在溶液中,利用胶束或乳液液滴作为模板,在两相界面发生化学反应,最后分离干燥,制备得到中空微球。目前报道的软模板法仅适用于特定化合物多壳层空心球的制备,且合成的产品形态均匀性较差,需要使用大量的有机溶剂制备反相胶束或反相微乳液,不适合大规模生产,难以具有普适性。硬模板法是指用单分散的无机物、高分子聚合物或树脂微纳米粒子作为模板,在其表面沉积各种化学材料,再通过煅烧或溶剂萃取取出模板,形成均一的空心球材料。硬模板法制备的核壳材料具有单分散性好、可重复性高且产品形态稳定等优势,得到研究人员的广泛关注。
CN102464304A公开了一种多壳层金属氧化物空心球及其制备方法,利用水热法制备碳球模板;将金属盐溶于碳球悬浮液中,通过调变金属盐浓度,溶液pH值、浸泡温度与时间等吸附条件,控制金属盐进入碳球的数量、深度和梯度分布;对吸附了金属离子的碳球进行热处理,即可获得多壳层金属氧化物空心球。采用该方法制备的空心球,其壳层由金属氧化物的纳米晶粒堆积而成,壳层数可在二到四层之间调变,空心球的尺寸及壳层厚度均可控。本发明方法简单易行、可控性高、污染小、成本低且具有普适性。所制备的产品具有中空结构,以及厚度在纳米尺度的壳层,同时多层结构能有效利用内部空间,应用于气敏和光催化,显示了相比传统纳米材料和单层空心球更优异的性能。
CN103247777A公开了一种应用于锂离子电池的四氧化三钴多壳层空心球负极材料及其制备方法。利用水热法制备的碳球作为模板,通过控制钴盐溶液中水与乙醇的比例,溶液的温度,以及碳球的吸附能力,从而控制碳球中钴离子的数量及其进入深度,制备出了单、双、三及四壳层四氧化三钴空心球。但该方法制备的多壳层空心球用于制作锂离子电池的负极材料,在光热领域的应用仍存在局限。
上述制备方法得到的均为金属氧化物晶体。此外,对于多壳层空心球用于光热的研究尚无实例,对于半导体的光热研究也仅限于氧化铜、硫化铜等窄带隙半导体纳米粒子、纳米线阵列。因此,利用多壳层空心球在纳米空间尺度纵深上的优势,可控合成具有不同缺陷含量的非晶多壳层空心球,进而通过调控非晶内部缺陷态含量提高金属氧化物光热性能的研究依然缺乏。
发明内容
基于上述不足,本发明提供了一种非晶金属氧化物中空多壳层材料的制备方法和应用,通过两步增强吸附,使吸附后的碳球模板中的金属离子有明显的浓度梯度,从而在焙烧后得到能高效吸收太阳光谱的非晶金属氧化物中空多壳层材料。
为达到上述目的,本发明采用了如下的技术方案:
本发明提供了一种非晶金属氧化物中空多壳层材料的制备方法,包括以下步骤:
1)将碳源水溶液装入反应釜中进行加热反应,经过滤、洗涤和干燥后得到碳球模板;
2)步骤1)得到的碳球模板分散于第一金属盐溶液中,加热吸附、烘干后得到第一固体前驱体;
3)将步骤2)得到的固体前驱体再次分散于第二金属盐溶液中,吸附、烘干后得到第二固体前驱体;
4)将步骤3)得到的第二固体前驱体焙烧,得到非晶金属氧化物中空多壳层材料;
其中,所述第二金属盐溶液中的水合离子浓度大于等于所述第一金属盐溶液中的水合离子浓度。
在该方法中,煅烧温度和煅烧气氛是合成非晶氧化物和调控非晶内部缺陷态含量的主要因素。选择具有高熔点的金属氧化物材料,在金属氧化物中,氧原子的扩散迁移能低,在低温下即可形成氧原子的网络结构,相比于氧原子,这些高熔点的金属离子的扩散迁移能很高,当在一定时间内迁移距离小于一个晶胞的大小时,即会形成非晶氧化物。因此,将煅烧温度控制在金属氧化物结晶温度以下,即煅烧热量达不到金属离子扩散迁移能时,则会形成非晶氧化物。煅烧时气氛(氧分压)直接控制非晶态氧化物缺陷态含量,一般规律是氧分压越低,得到的非晶氧化物的缺陷态含量越高。非晶态氧化物的缺陷态含量是获得宽的吸收范围和高的吸收强度的高效吸光材料的主要调控方式。
另一方面,碳球吸附金属盐的溶剂选择也非常重要,选择不同的溶剂作为前驱体溶液,使吸附后的碳球模板中金属离子吸附深度产生明显的差异。首先,不同溶剂溶解分散金属盐的能力各不相同,并且金属阳离子在溶剂中聚集大小差异很大。步骤(2)中通过分散和搅拌吸附操作,使得具有较小离子聚集半径的金属盐溶液能够更深入的吸附到碳球内部;在步骤(3)中通过分散和吸附操作,使具有较大离子聚集半径的金属盐溶液主要聚集在碳球表面,这样步骤(3)得到的固体具有更大的金属吸附量和浓度梯度,在焙烧后得到的金属氧化物空心球的具有更多的壳层数。同时,在将其应用于表面光热水蒸发领域时,非晶多壳层中各层的缺陷含量存在差异,各层的吸光效率可以得到叠加,且在多壳层内部形成相对封闭的圆球形。对光的限域的效果显著,达到了高效光吸收的效果。非晶氧化物如氧化钽是间接带隙半导体,光热转换过程中涉及声子辅助产热,即晶胞间相互振动传热。第二,高含量的缺陷提高声子散射的水平。最终增强了光热转换效率。
本发明将含碳前驱体水溶液装入反应釜中进行水热反应,经冷却、过滤、洗涤、干燥后得到碳球模板的方法,与传统的机械球磨法相比,通过水热法制备的碳球粒径均匀,大小可控,同时表面含有大量活性官能团,具有优良的亲水性和表面反应活性,更利于金属离子的吸附,是制备核壳结构材料的常用模板。
本发明步骤2)所述的吸附为增强吸附,增强吸附是指将碳球模板和金属盐溶液放入烧杯中两次加热吸附,加热状态下的增强碳球模板对金属离子的吸附,经冷却、离心、洗涤、干燥后得到富含金属盐离子的固体前驱体的方法。
作为优选,所述步骤1)中的碳源包括葡萄糖、果糖、蔗糖、麦芽糖、淀粉和柠檬酸中的一种或两种以上;进一步优选为蔗糖。
所述碳源水溶液中碳源的浓度为0.1-6M,例如可以是0.1M、0.5M、1M、1.5M、2M、2.5M、3M、3.5M、4M、4.5M、5M、5.5M或6M,优选为1-5M,进一步优选2-3M。
作为优选,所述步骤1)中的加热反应为水热反应,所述水热反应的温度为175-220℃, 例如可以是175℃、180℃、185℃、190℃、195℃或200℃,进一步优选为190-205℃,更进一步优选为195-200℃;
水热反应的时间为100-180min,例如可以是100min、110min、120min、130min、140min、150min、160min、170min或180min,进一步优选为120-140min,更进一步优选为125-135min;
干燥的温度为60-100℃,例如可以是60℃、65℃、70℃、75℃、80℃、85℃、90℃、95℃或100℃,进一步优选为70-90℃,更进一步优选为75-85℃;
干燥的时间为6-24h,例如可以是6h、8h、10h、12h、14h、16h、18h、20h、22h或24h,进一步优选为15-24h,更进一步优选为18-20h;
采用去离子水、甲醇或乙醇中的一种或任意两种的组合进行洗涤;例如可以是去离子水、甲醇、乙醇、去离子水和甲醇的组合、去离子水和乙醇的组合或甲醇和乙醇的组合。
所述洗涤次数为2-5次,例如可以是2次、3次、4次或5次,优选3-4次。
作为优选,所述的步骤2)和步骤3)中的第一金属盐溶液和第二金属盐溶液均包括氯化钽溶液、硝酸钽溶液、硫酸钽溶液、乙酰丙酮钽溶液、草酸钽溶液和乙醇钽溶液中的一种或两种以上;进一步优选为氯化钽溶液、乙酰丙酮钽溶液、草酸钽溶液中的一种或至少两种的组合;本发明选择的金属盐溶液为具有较小水合离子半径的金属盐,增强金属在碳球中的吸附深度,用于多次吸收太阳光谱中可见光和红外光的部分。
第一金属盐溶液的浓度为0.01-0.5M,例如可以是0.01M、0.1M、0.15M、0.2M、0.25M、0.3M、0.35M、0.4M、0.45M或0.5M,进一步优选为0.05-0.2M,更进一步优选为0.1-0.15M;
第二金属盐溶液的浓度为0.5-5M,例如可以是1M、1.5M、2M、2.5M、3M、3.5M、4M、4.5M或5M,进一步优选为1-3M,更进一步优选为1.5-2.5M;
其中,所述的第一金属盐溶液的溶剂包括水、丙酮和乙醇中的一种或两种以上种。
作为优选,所述的第一金属盐溶液的溶剂包括丙酮和/或乙醇,第一金属盐溶液的溶剂进一步优选为乙醇,
第二金属盐溶液的溶剂包括水、乙醇或其混合物,第二金属盐溶液的溶剂进一步优选为水。
作为优选,所述的步骤2)中所述吸附为中温搅拌吸附;
所述吸附温度为20-60℃,例如可以是20℃、25℃、30℃、35℃、40℃、45℃或60℃,进一步优选为30-60℃,更进一步优选为40-50℃;
吸附时间为1-48h,进一步优选3-36h,更进一步优选6-24h;
在吸附后对吸附得到的混合液进行离心,取出下层固体,进行洗涤;采用去离子水、甲醇或乙醇中的一种或任意两种的组合进行洗涤;例如可以是去离子水、甲醇、乙醇、去离子 水和甲醇的组合、去离子水和乙醇的组合或甲醇和乙醇的组合。
所述洗涤次数为2-5次,例如可以是2次、3次、4次或5次,进一步优选为3-4次;
干燥温度为60-100℃,例如可以是60℃、65℃、70℃、75℃、80℃、85℃、90℃、95℃或100℃,进一步优选为70-90℃,更进一步优选为75-85℃;
干燥时间为6-24h,例如可以是6h、8h、10h、12h、14h、16h、18h、20h、22h或24h,进一步优选为15-24h,更进一步优选18-20h。
所述的步骤3)中所述吸附为中温加热增强搅拌吸附;
吸附温度为20-60℃,例如可以是20℃、25℃、30℃、35℃、40℃、45℃、50℃、55℃或60℃,进一步优选30-50℃,更进一步优选为35-45℃;
所述吸附时间为4-24h,例如可以是4h、6h、8h、10h、12h、14h、16h、18h、20h、22h或24h,进一步优选8-20h,更进一步优选10-18h;
在吸附后对吸附得到的混合液进行抽滤和清洗;采用去离子水、甲醇或乙醇中的一种或任意两种的组合进行清洗;例如可以是去离子水、甲醇、乙醇、去离子水和甲醇的组合、去离子水和乙醇的组合或甲醇和乙醇的组合;所述清洗次数为2-5次,例如可以是2次、3次、4次或5次,进一步优选为3-4次;所述清洗时间为0.5-24h,例如可以是2h、4h、6h、8h、10h、11h、14h、16h、18h、20h、22h或24h,进一步优选5-20h,更进一步优选10-15h;
干燥温度为60-100℃,例如可以是60℃、65℃、70℃、75℃、80℃、85℃、90℃、95℃或100℃,进一步优选为70-90℃,更进一步优选为75-85℃,
干燥时间为6-24h,例如可以是6h、8h、10h、12h、14h、16h、18h、20h、22h或24h,进一步优选为15-24h,更进一步优选为18-20h。
作为优选,所述步骤4)中焙烧在马弗炉、管式炉或窑炉中进行;
所述焙烧温度为200-600℃,例如可以是200℃、250℃、300℃、350℃、400℃、450℃、500℃、550℃或600℃,进一步优选为300-550℃,更进一步优选400-500℃
焙烧时间为0.5-10h,例如可以是0.5h、1h、1.5h、2h、2.5h、3h、3.5h、4h、4.5h、5h、5.5h、6h、6.5h、7h、7.5h、8h、8.5h、9h、9.5h或10h,进一步优选为1-6h,更进一步优选2-4h;
焙烧的升温速率为0.1-20℃/min,例如可以是0.5℃/min、1℃/min、1.5℃/min、2℃/min、2.5℃/min、3℃/min、3.5℃/min、4℃/min、4.5℃/min、5℃/min、5.5℃/min、6℃/min、6.5℃/min、7℃/min、7.5℃/min、8℃/min、8.5℃/min、9℃/min、9.5℃/min或10℃/min,进一步优选为0.5-10℃/min,更进一步优选1-10℃/min;
所述焙烧的气氛为空气,或氮气和氧气的混合气,氮气和氧气的混合气中氧气比例为 5%-40%,例如可以是5%、8%、10%、12%、15%、18%、20%、25%、30%、35%、40%。进一步优选为氮气和氧气的混合气中氧气比例是10%-30%,更进一步优选氮气和氧气的混合气中氧气比例15%-25%。本发明通过采用氮气氧气混合气氛煅烧,及调控制备出中空多壳层空心球,又调控了多壳层的缺陷态含量。大范围调控中空多壳层对太阳光光谱的吸收能力,优化了光热转换效率和水蒸发速率。
在本发明的制备方法中,焙烧前可以重复步骤1)和步骤2)1-5次,从而得到壳层在2-4层之间的非晶金属氧化物中空多壳层材料。
本发明通过调整两种具有不同水合离子半径的一种金属盐的浓度,吸附温度、重复吸附次数、煅烧气氛等合成条件,能够使壳层中不同金属氧化物的含量发生变化,从而实现不同壳层对不同波长的光产生高效吸收,进一步实现对太阳光谱中全光谱产生次序吸收的效应,增强了所制备的多壳层空心球光热材料的吸光能力,进而提高其光热转换效率。
本发明提供一种由所述的制备方法得到的非晶金属氧化物中空多壳层材料,所述非晶金属氧化物中空多壳层材料包括至少一个空腔和至少一层壳壁,其中,所述壳壁表面堆积有两种或两种以上金属氧化物,所述金属氧化物为纳米颗粒或纳米棒;金属氧化物,优选但不限于,包括氧化钽,氧化铌,氧化铪,氧化铼,氧化钛和氧化钨中的一种或两种以上。
壳壁为2~4层,例如可以是2层、3层或4层;
壳壁能多级次序吸收太阳光谱;所述壳壁的外壳壁表面堆积的金属氧化物的缺陷含量小于内壳壁表面堆积的金属氧化物的缺陷含量。
其中,
壳壁表面堆积的金属氧化物具有缺陷可控;
所述的多级次序吸收太阳光谱中的紫外光部分,可见光部分,近红外光和中红外光部分。
所述壳壁的金属氧化物的吸光度在10-95%内可调。
本发明提供一种用于光热水蒸发的金属氧化物材料,所述用于光热水蒸发的金属氧化物材料包括所述的非晶金属氧化物中空多壳层材料;
所述用于光热水蒸发的金属氧化物材料在100mW/cm 2的太阳光模拟器照射下以1.6kg/m 2h的蒸发速度进行高效的表面水蒸发。
与现有技术相比,本发明具有如下有益效果:
1)本发明制备得到的复合金属氧化物中空多壳层材料更强的光吸收能力,多壳层复杂的多级结构能够明显延长入射光在材料内部的光路路径。此外,多壳层本身的特点使材料具有更大的比表面积,使材料与水的接触更加充分,将上述空心球应用于光热水蒸发,能够实现对太阳光谱的全光谱高效吸收,在100mW/cm 2太阳光模拟器照射下能够以1.6kg/m 2h的 蒸发速度进行高效的表面水蒸发。并能够获得超过48h的反应稳定性,其性能远远高于相同组分的纳米颗粒。
2)本发明通过两步强化吸附法使得金属氧化物空心球引入缺陷可控的掺杂能级,从而实现对太阳光谱中各个波段的高效吸收。
附图说明
图1为本发明实施例1制备的非晶三壳层Ta 2O 5空心球的透射电镜照片;
图2为本发明实施例2制备的非晶两壳层Ta 2O 5空心球的透射电镜照片;
图3是本发明不同壳层下的非晶Ta 2O 5空心球的X射线衍射图。
图4为本发明不同温度煅烧下的三壳层Ta 2O 5的紫外-可见光吸收谱图;
图5为本发明实施例1制备的非晶三壳层Ta 2O 5空心球的电子顺磁共振谱图;
图6为本发明实施例1制备的多壳层Ta 2O 5空心球的光热水蒸发的性能图;
图7为本发明实施例1制备的非晶三壳层Ta 2O 5空心球用于含铀溶液光热蒸发净化前后浓度的对比图;
图8为本发明实施例1制备的非晶三壳层Ta 2O 5空心球用于含假病毒SC2-P溶液光热蒸发净化前后浓度的对比图。
具体实施方式
下面以具体实施方式对本发明作进一步详细的说明。
本发明提供一种非晶金属氧化物中空多壳层材料的制备方法,所述方法包括:
(a)将浓度为0.1-6M的碳源水溶液装入175-220℃的反应釜中水热反应100-180min,自然冷却后抽滤,并经2-5次洗涤后,将产物于60-100℃下干燥6-24h,得到碳球模板;
(b)将步骤(a)得到的碳球模板分散于浓度为0.01-0.5M的第一金属盐溶液中,其中第一金属盐溶液为氯化钽溶液、硝酸钽溶液、硫酸钽溶液、乙酰丙酮钽溶液草酸钽溶液,乙醇钽溶液中的一种或至少两种的组合,在20-60℃下加热吸附1-48h,将吸附后的混合液离心,取出下层固体,用去离子水、甲醇或乙醇洗涤2-5次,于60-100℃下干燥6-24h,得到第一固体前驱体;
(c)将步骤(b)得到的第一固体前驱体分散于浓度为0.5-5M的第二金属盐溶液中,其中,第二金属盐溶液为氯化钽溶液、硝酸钽溶液、硫酸钽溶液、乙酰丙酮钽溶液、草酸钽溶液,乙醇钽溶液中的一种或至少两种的组合,在20-60℃下搅拌吸附4-24h后抽滤,用去离子水、甲醇或乙醇洗涤2-5次,洗涤0.5-24h,于60-100℃下干燥6-24h,得到固体前驱体;
(d)将步骤(c)得到的固体前驱体置于马弗炉或窑炉中在空气,或在氧气和氮气的混 合气中氧气比例为5%-40%的气氛中焙烧0.5-10h,焙烧温度为200-600℃,升温速率为0.1-20℃/min,冷却后得到所述非晶金属氧化物中空多壳层材料。
实施例1
一种非晶金属氧化物中空多壳层材料的制备方法,所述方法包括:
(1)将浓度为1.5M的蔗糖水溶液装入200℃的反应釜中水热反应135min,自然冷却后抽滤,并经水洗涤3次,将产物置于60℃烘箱中干燥24h,得到直径为2.9μm的碳球模板;
(2)将步骤(1)得到的碳球模板分散于30mL浓度为0.1M的TaCl 5溶液中,超声使碳球分散均匀,装入烧杯中,置于30℃水浴加热吸附4h,将吸附后的混合液离心,取出下层固体,用去离子水洗涤3次,放入60℃烘箱中干燥24h,得到第一固体前驱体;
(3)将步骤(2)得到的第一固体前驱体分散于浓度为0.5M的TaCl 5溶液中,在40℃下搅拌吸附24h后抽滤,用去离子水洗涤3次,放入60℃烘箱中干燥24h得到第二固体前驱体;
(4)将步骤(3)得到的固体前驱体置于马弗炉中,以0.5℃/min升温到500℃,煅烧气氛是氮气和氧气的混合气,其中,氮气和氧气的混合气中氧气比例是15%,恒温焙烧2h,自然冷却后得到三壳层Ta 2O 5空心球,壳层尺寸约为0.8μm。
产物的透射电镜照片如图1所示,为非晶三壳层空心球。如图5所示,不同煅烧温度下形成的三壳层空心球的电子顺磁共振谱图,400℃,500℃,600℃煅烧下形成非晶多壳层在g=2.002处积分面积先增加后减少,缺陷态含量先增加后减少。由图4吸收光谱的结果和以上规律一致,在500℃时紫外可见近红外吸收率达到最大。并且如图6所示,在100mW/cm 2太阳光模拟器照射下能够以1.6kg/m 2h的蒸发速度进行高效的表面水蒸发。并能够获得超过48h的反应稳定性,其性能远远高于报道中的纳米颗粒。进一步,将蒸发水源拓宽为含铀的放射性废水和含有假病毒(SC2-P)的培养液。蒸发前后水中铀的含量采用ICP表征,表征结果如图7所示。由200ppm下降至8*10 -5ppm。铀浓度下降了近6个数量级,完全符合WHO的标准。蒸发前后含SC2-P溶液的浓度采用PCR扩增定量病毒数量。表征结果如图8所示。由10 7particles/mL经蒸发后降至11.8particles/mL(蒸发后收集的溶液经浓缩100倍后的结果)病毒浓度下降了6个数量级。
实施例2
一种非晶金属氧化物中空多壳层材料的制备方法,所述方法包括:
(1)将浓度为2.5M的蔗糖水溶液装入180℃的反应釜中水热反应130min,自然冷却后抽滤,并经水洗涤2次,将产物置于70℃烘箱中干燥24h,得到直径为2.7μm的碳球模 板;
(2)将步骤(1)得到的碳球模板分散于30mL浓度为0.2M的乙酰丙酮钽溶液中,超声使碳球分散均匀,装入烧杯中,置于40℃水浴加热吸附3h,将吸附后的混合液离心,取出下层固体,用去离子水洗涤3次,放入60℃烘箱中干燥24h,得到第一固体前驱体;
(3)将步骤(2)得到的第一固体前驱体分散于浓度为1M的TaCl 5溶液中,在60℃下搅拌吸附12h后抽滤,用去离子水洗涤3次,放入70℃烘箱中干燥12h得到第二固体前驱体;
(4)将步骤(3)得到的第二固体前驱体置于马弗炉中,在空气中以3℃/min升温到600℃,恒温焙烧1h,自然冷却后得到三壳层Ta 2O 5空心球,壳层尺寸约为0.8μm。
在100mW/cm 2太阳光模拟器照射下能够以1.4kg/m 2h的蒸发速度进行高效的表面水蒸发。
实施例3
一种非晶金属氧化物中空多壳层材料的制备方法,所述方法包括:
(1)将浓度为1.5M的蔗糖水溶液装195℃的反应釜中水热反应150min,自然冷却后抽滤,并经水洗涤4次,将产物置于70℃烘箱中干燥18h,得到直径为2.5μm的碳球模板;
(2)将步骤(1)得到的碳球模板分散于30mL浓度为0.2M的草酸钽溶液中,超声使碳球分散均匀,装入烧杯中,置于20℃水浴加热吸附10h,将吸附后的混合液离心,取出下层固体,用去离子水洗涤3次,放入60℃烘箱中干燥24h,得到第一固体前驱体;
(3)将步骤(2)得到的第一固体前驱体分散于浓度为1M的乙酰丙酮钽溶液中,在60℃下搅拌吸附12h后抽滤,用去离子水洗涤3次,放入70℃烘箱中干燥12h得到第二固体前驱体;
(4)将步骤(3)得到的第二固体前驱体置于马弗炉中,在氮气和氧气混合气中氧气占比35%的气氛下以16℃/min升温到600℃,恒温焙烧1h,自然冷却后得到三壳层Ta 2O 5空心球,壳层尺寸约为0.8μm。
在100mW/cm 2太阳光模拟器照射下能够以1.3kg/m 2h的蒸发速度进行高效的表面水蒸发。
实施例4
一种非晶金属氧化物中空多壳层材料的制备方法,所述方法包括:
(1)将浓度为5M的蔗糖水溶液装入200℃的反应釜中水热反应110min,自然冷却后抽滤,并经水洗涤3次,将产物置于80℃烘箱中干燥24h,得到直径为2.5μm的碳球模板;
(2)将步骤(1)得到的碳球模板分散于30mL浓度为0.1M的乙醇钽溶液中,超声使 碳球分散均匀,装入烧杯中,置于20℃水浴加热吸附4h,将吸附后的混合液离心,取出下层固体,用去离子水洗涤3次,放入60℃烘箱中干燥24h,得到第一固体前驱体;
(3)将步骤(2)得到的第一固体前驱体分散于浓度为3M的五氯化钽溶液中,在50℃下搅拌吸附12h后抽滤,用去离子水洗涤3次,放入70℃烘箱中干燥12h得到第二固体前驱体;
(4)将步骤(3)得到的第二固体前驱体置于马弗炉中,在氮气和氧气混合气中氧气占比40%的气氛下以2℃/min升温到400℃,恒温焙烧1h,自然冷却后得到三壳层Ta 2O 5空心球,壳层尺寸约为0.8μm。
在100mW/cm 2太阳光模拟器照射下能够以1.5kg/m 2h的蒸发速度进行高效的表面水蒸发。
实施例5
一种非晶金属氧化物中空多壳层材料的制备方法,所述方法包括:
(1)将浓度为3M的蔗糖水溶液装入210℃的反应釜中水热反应130min,自然冷却后抽滤,并经水洗涤5次,将产物置于90℃烘箱中干燥10h,得到直径为3μm的碳球模板;
(2)将步骤(1)得到的碳球模板分散于30mL浓度为0.3M的硫酸钽丙酮溶液中,超声使碳球分散均匀,装入烧杯中,置于50℃水浴加热吸附4h,将吸附后的混合液离心,取出下层固体,用去离子水洗涤3次,放入60℃烘箱中干燥24h,得到第一固体前驱体;
(3)将步骤(2)得到的第一固体前驱体分散于浓度为3M的五氯化钽溶液中,在50℃下搅拌吸附12h后抽滤,用去离子水洗涤3次,放入70℃烘箱中干燥12h得到第二固体前驱体;
(4)将步骤(3)得到的第二固体前驱体置于马弗炉中,在氮气和氧气混合气中氧气占比30%的气氛下以5℃/min升温到250℃,恒温焙烧1h,自然冷却后得到三壳层Ta 2O 5空心球,壳层尺寸约为1μm。
在100mW/cm 2太阳光模拟器照射下能够以1.2kg/m 2h的蒸发速度进行高效的表面水蒸发。
实施例6
一种非晶金属氧化物中空多壳层材料的制备方法,所述方法包括:
(1)将浓度为2M的蔗糖水溶液装入200℃的反应釜中水热反应160min,自然冷却后抽滤,并经水洗涤3次,将产物置于60℃烘箱中干燥24h,得到直径为2.8μm的碳球模板;
(2)将步骤(1)得到的碳球模板分散于30mL浓度为0.5M的五氯化钽丙酮溶液中,超声使碳球分散均匀,装入烧杯中,置于30℃水浴加热吸附12h,将吸附后的混合液离心, 取出下层固体,用去离子水洗涤3次,放入60℃烘箱中干燥24h,得到第一固体前驱体;
(3)将步骤(2)得到的第一固体前驱体分散于浓度为4M的五氯化钽丙酮溶液中,在40℃下搅拌吸附24h后抽滤,用去离子水洗涤3次,放入70℃烘箱中干燥12h得到第二固体前驱体;
(4)将步骤(3)得到的第二固体前驱体置于马弗炉中,在氮气和氧气混合气中氧气占比10%的气氛下以10℃/min升温到550℃,恒温焙烧1h,自然冷却后得到三壳层Ta 2O 5空心球,壳层尺寸约为1μm。
本发明未详细说明的内容均可采用本领域的常规技术知识。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 一种非晶金属氧化物中空多壳层材料的制备方法,包括以下步骤:
    1)将碳源水溶液进行加热反应,经过滤、洗涤和干燥后得到碳球模板;
    2)步骤1)得到的碳球模板分散于第一金属盐溶液中,加热吸附、烘干后得到第一固体前驱体;
    3)将步骤2)得到的固体前驱体再次分散于第二金属盐溶液中,吸附、烘干后得到第二固体前驱体;
    4)将步骤3)得到的第二固体前驱体焙烧,得到非晶金属氧化物中空多壳层材料;
    其中,所述第二金属盐溶液中的水合离子浓度大于等于所述第一金属盐溶液中的水合离子浓度。
  2. 根据权利要求1所述的制备方法,其特征在于,所述步骤1)中的碳源包括葡萄糖、果糖、蔗糖、麦芽糖、淀粉和柠檬酸中的一种或两种以上;所述碳源水溶液中碳源的浓度为0.1-6M。
  3. 根据权利要求1所述的制备方法,其特征在于,所述步骤1)中加热反应为水热反应,所述水热反应在反应釜中进行,水热反应的温度为175-220℃,水热反应的时间为100-180min;干燥的温度为60-100℃,干燥的时间为6-24h。
  4. 根据权利要求1所述的制备方法,其特征在于,所述的步骤2)和步骤3)中的第一金属盐溶液和第二金属盐溶液均包括氯化钽溶液、硝酸钽溶液、硫酸钽溶液、乙酰丙酮钽溶液、草酸钽溶液和乙醇钽溶液中的一种或两种以上;
    第一金属盐溶液的浓度为0.01-0.5M;第二金属盐溶液的浓度为0.5-5M;
    其中,所述的第一金属盐溶液的溶剂包括水、丙酮和乙醇中的一种或两种以上;第二金属盐溶液的溶剂包括水和/或乙醇。
  5. 根据权利要求4所述的制备方法,其特征在于,所述的第一金属盐溶液的溶剂包括丙酮和/或乙醇;第二金属盐溶液的溶剂为水。
  6. 根据权利要求1所述的制备方法,其特征在于,所述的步骤2)中所述吸附温度为20-60℃;吸附时间为1-48h;干燥温度为60-100℃;干燥时间为6-24h;
    所述的步骤3)中吸附温度为20-60℃;所述吸附时间为4-24h;干燥温度为60-100℃,干燥时间为6-24h。
  7. 根据权利要求1所述的制备方法,其特征在于,所述步骤4)中焙烧在马弗炉、管式炉或窑炉中进行;
    所述焙烧温度为200-600℃,焙烧时间为0.5-10h,焙烧的升温速率为0.1-20℃/min;
    所述焙烧的气氛为空气,或氮气和氧气的混合气,其中,氮气和氧气的混合气中氧气的比例为5%-40%。
  8. 一种非晶金属氧化物中空多壳层材料,其特征在于,所述非晶金属氧化物中空多壳层材料由权利要求1-8任一项所述的制备方法得到的。
  9. 根据权利要求8所述非晶金属氧化物中空多壳层材料,其特征在于,所述非晶金属氧化物中空多壳层材料包括至少一个空腔和至少一层壳壁,其中,所述壳壁表面堆积有两种或两种以上金属氧化物,所述金属氧化物为纳米颗粒或纳米棒;金属氧化物包括氧化钽,氧化铌,氧化铪,氧化铼,氧化钛和氧化钨中的一种或两种以上;
    壳壁为2~4层;壳壁能多级次序吸收太阳光谱;
    其中,
    壳壁表面堆积的金属氧化物具有缺陷可控;
    所述的多级次序吸收太阳光谱中的紫外光部分,可见光部分,近红外光和中红外光部分;
    所述壳壁的金属氧化物的吸光度在10-95%内。
  10. 一种用于光热水蒸发的金属氧化物材料,其特征在于,所述用于光热水蒸发的金属氧化物材料包括如权利要求8或9所述的非晶金属氧化物中空多壳层材料。
PCT/CN2021/102381 2021-03-04 2021-06-25 一种非晶金属氧化物中空多壳层材料的制备方法及其应用 WO2022183640A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/547,403 US20240140818A1 (en) 2021-03-04 2021-06-25 Preparation method and application of amorphous metal oxide hollow multi-shell material
EP21928718.2A EP4303189A1 (en) 2021-03-04 2021-06-25 Preparation method and application of amorphous metal oxide hollow multi-shell material
AU2021430980A AU2021430980A1 (en) 2021-03-04 2021-06-25 Preparation method and application of amorphous metal oxide hollow multi-shell material
JP2023553742A JP2024508929A (ja) 2021-03-04 2021-06-25 アモルファス金属酸化物の中空マルチシェル材料の製造方法及びその応用 [関連出願の相互参照] 本出願は、2021年03月04日に出願した中国特許出願第202110241311.7号の特許出願に基づく優先権を主張し、この中国特許出願の全ての内容が参照により本明細書に組み込まれる。
KR1020237030047A KR20230166077A (ko) 2021-03-04 2021-06-25 비정질 금속 산화물 중공 다중 쉘 재료의 제조 방법 및 이의 응용

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110241311.7 2021-03-04
CN202110241311.7A CN113149077B (zh) 2021-03-04 2021-03-04 一种非晶金属氧化物中空多壳层材料的制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2022183640A1 true WO2022183640A1 (zh) 2022-09-09

Family

ID=76884401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102381 WO2022183640A1 (zh) 2021-03-04 2021-06-25 一种非晶金属氧化物中空多壳层材料的制备方法及其应用

Country Status (7)

Country Link
US (1) US20240140818A1 (zh)
EP (1) EP4303189A1 (zh)
JP (1) JP2024508929A (zh)
KR (1) KR20230166077A (zh)
CN (1) CN113149077B (zh)
AU (1) AU2021430980A1 (zh)
WO (1) WO2022183640A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115449834A (zh) * 2022-10-28 2022-12-09 国家电投集团氢能科技发展有限公司 一种具有非晶壳层的催化剂及其制备方法和应用
CN115925001A (zh) * 2022-12-22 2023-04-07 浙江大学山东工业技术研究院 Ta2O5/NiO复合空心纳米球材料及其制备方法和应用
CN117169293A (zh) * 2023-11-01 2023-12-05 之江实验室 一种mos基气敏材料及其制备方法和应用
CN115925001B (zh) * 2022-12-22 2024-06-04 浙江大学山东工业技术研究院 Ta2O5/NiO复合空心纳米球材料及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114314651B (zh) * 2021-11-05 2024-05-14 中科纳迪(苏州)科技有限公司 一种含有非晶成分的中空多壳层材料的制备方法及应用
CN116216763A (zh) * 2021-12-02 2023-06-06 中国科学院过程工程研究所 一种多重价态金属氧化物中空多壳层复合材料及其制备方法和应用
CN114260009A (zh) * 2021-12-24 2022-04-01 复旦大学 一种贵金属负载的双壳层非对称半导体材料及其超组装方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264016A (ja) * 1988-08-30 1990-03-05 Tosoh Corp ジルコニア質微小中空球状粒子及びその製造方法
CN102464304A (zh) 2010-11-12 2012-05-23 中国科学院过程工程研究所 多壳层金属氧化物空心球及其制备方法
CN103247777A (zh) 2013-05-03 2013-08-14 中国科学院过程工程研究所 锂离子电池用四氧化三钴多壳层空心球负极材料及其制备方法
CN104098134A (zh) * 2014-07-07 2014-10-15 北京大学 一种无定形层包覆的TiO2纳米管的制备方法及其用途
CN109876809A (zh) * 2019-04-01 2019-06-14 中国科学院过程工程研究所 一种复合金属氧化物中空多壳层材料及其制备方法和用途

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101567388B1 (ko) * 2013-07-02 2015-11-10 한국과학기술연구원 중공코어 및 기공성 쉘층을 가지는 금속산화물 복합체 및 그 제조방법
CN106328914A (zh) * 2016-09-10 2017-01-11 天津大学 利用碳纳米微球为模板制备多壳层中空二氧化锡材料的方法及应用
CN111039329A (zh) * 2019-01-16 2020-04-21 中国科学院过程工程研究所 一种中空多壳层金属氧化物复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264016A (ja) * 1988-08-30 1990-03-05 Tosoh Corp ジルコニア質微小中空球状粒子及びその製造方法
CN102464304A (zh) 2010-11-12 2012-05-23 中国科学院过程工程研究所 多壳层金属氧化物空心球及其制备方法
CN103247777A (zh) 2013-05-03 2013-08-14 中国科学院过程工程研究所 锂离子电池用四氧化三钴多壳层空心球负极材料及其制备方法
CN104098134A (zh) * 2014-07-07 2014-10-15 北京大学 一种无定形层包覆的TiO2纳米管的制备方法及其用途
CN109876809A (zh) * 2019-04-01 2019-06-14 中国科学院过程工程研究所 一种复合金属氧化物中空多壳层材料及其制备方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LOU ZIRUI, LI YAGUANG, ZHU LIPING, XIE WEIYU, NIU WENZHE, SONG HUI, YE ZHIZHEN, ZHANG SHENGBAI: "The crystalline/amorphous contact in Cu 2 O/Ta 2 O 5 heterostructures: increasing its sunlight-driven overall water splitting efficiency", JOURNAL OF MATERIALS CHEMISTRY A, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 5, no. 6, 1 January 2017 (2017-01-01), GB , pages 2732 - 2738, XP055962944, ISSN: 2050-7488, DOI: 10.1039/C6TA10728A *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115449834A (zh) * 2022-10-28 2022-12-09 国家电投集团氢能科技发展有限公司 一种具有非晶壳层的催化剂及其制备方法和应用
CN115925001A (zh) * 2022-12-22 2023-04-07 浙江大学山东工业技术研究院 Ta2O5/NiO复合空心纳米球材料及其制备方法和应用
CN115925001B (zh) * 2022-12-22 2024-06-04 浙江大学山东工业技术研究院 Ta2O5/NiO复合空心纳米球材料及其制备方法和应用
CN117169293A (zh) * 2023-11-01 2023-12-05 之江实验室 一种mos基气敏材料及其制备方法和应用
CN117169293B (zh) * 2023-11-01 2024-02-27 之江实验室 一种mos基气敏材料及其制备方法和应用

Also Published As

Publication number Publication date
JP2024508929A (ja) 2024-02-28
US20240140818A1 (en) 2024-05-02
CN113149077B (zh) 2023-02-17
KR20230166077A (ko) 2023-12-06
CN113149077A (zh) 2021-07-23
EP4303189A1 (en) 2024-01-10
AU2021430980A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
WO2022183640A1 (zh) 一种非晶金属氧化物中空多壳层材料的制备方法及其应用
CN109876809B (zh) 一种复合金属氧化物中空多壳层材料及其制备方法和用途
Wang et al. Precursor-induced fabrication of β-Bi 2 O 3 microspheres and their performance as visible-light-driven photocatalysts
CN110124692A (zh) 一种不同形貌的硫化锌镉固溶体的制备方法
CN105921149A (zh) 一种溶剂热制备铜修饰二氧化钛纳米棒的方法
Bian et al. CaO/Ca (OH) 2 heat storage performance of hollow nanostructured CaO-based material from Ca-looping cycles for CO2 capture
Hou et al. Construction of an all-solid-state Z-scheme Ag@ Ag3PO4/TiO2-(F2) heterostructure with enhanced photocatalytic activity, photocorrosion resistance and mechanism insight
CN106378158A (zh) 一种在可见光下具有高催化降解活性的硫化铋/二氧化钛/石墨烯复合物的制法
Hu et al. gC 3 N 4/TiO 2 composite microspheres: in situ growth and high visible light catalytic activity
CN112371113A (zh) 一种Bi2WO6-rGO可见光催化剂的制备方法和应用
CN111250077A (zh) 一种复合金属氧化物催化剂及其应用
CN109485093B (zh) 一种球形完好的锐钛矿型二氧化钛空心球壳及其制备方法
Yang et al. Synthesis and photocatalysis of Al doped CdS templated by non-surfactant hypocrellins
CN110227458A (zh) 一种铜掺杂介孔二氧化钛的复合材料及其应用
CN113877556B (zh) 羟基氧化铟/改性凹凸棒石光催化复合材料及其制备方法和应用
Xue et al. Construction of Cu 2+-doped CeO 2 nanocrystals hierarchical hollow structure and its enhanced photocatalytic performance
CN112044427B (zh) 一种有序自组装中空InVO4介晶的制备方法和用途
Wang et al. Broad-spectrum solar conversion towards photothermal catalytic reforming hydrogen production with in-situ thermal regulation over core-shell nanocomposites
CN108620104B (zh) 一种超微纳米磷酸银/二氧化钛纳米花复合材料及其制备方法与应用
Zhang et al. Synthesis of Bi2O3 nanosheets and photocatalysis for rhodamine B
CN115140727A (zh) 一种非晶碳复合金属氧化物Yolk-Shell材料及其制备方法及其应用
CN105502520A (zh) 一种在氧化铝陶瓷管上生长四氧化三钴纳米片的方法
CN111003727A (zh) 一种快速制备λ-Ti3O5粉体的装置及方法
Du et al. Study on the Preparation of Zn-Doped NaA Molecular Sieve and Its Photocatalytic Performance
CN116216763A (zh) 一种多重价态金属氧化物中空多壳层复合材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928718

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18547403

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021430980

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2023553742

Country of ref document: JP

Ref document number: 1020237030047

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2021430980

Country of ref document: AU

Date of ref document: 20210625

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021928718

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021928718

Country of ref document: EP

Effective date: 20231004