CN112044427B - 一种有序自组装中空InVO4介晶的制备方法和用途 - Google Patents

一种有序自组装中空InVO4介晶的制备方法和用途 Download PDF

Info

Publication number
CN112044427B
CN112044427B CN202010811485.8A CN202010811485A CN112044427B CN 112044427 B CN112044427 B CN 112044427B CN 202010811485 A CN202010811485 A CN 202010811485A CN 112044427 B CN112044427 B CN 112044427B
Authority
CN
China
Prior art keywords
solution
invo
preparing
assembled hollow
nitric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010811485.8A
Other languages
English (en)
Other versions
CN112044427A (zh
Inventor
周勇
韩秋彤
邹志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Kunshan Innovation Institute of Nanjing University
Original Assignee
Nanjing University
Kunshan Innovation Institute of Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University, Kunshan Innovation Institute of Nanjing University filed Critical Nanjing University
Priority to CN202010811485.8A priority Critical patent/CN112044427B/zh
Publication of CN112044427A publication Critical patent/CN112044427A/zh
Application granted granted Critical
Publication of CN112044427B publication Critical patent/CN112044427B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种有序自组装中空InVO4介晶超结构的制备方法,包括以下步骤:(1)将1.0mmol硝酸铟加入20mL 2M硝酸溶液中,磁力搅拌5min后完全溶解得到A溶液;(2)将1.0mmol偏钒酸铵加入20mL 2M氢氧化钠溶液中,超声5min后完全溶解得到B溶液;(3)A溶液在磁力搅拌的条件下,将B溶液逐滴滴入A溶液中,然后快速加入0.3mmol的柠檬酸钠,充分搅拌30min,用2M氢氧化钠或硝酸调节pH至4~5,最后将此浑浊液转移至内容积为50ml水热高压反应釜中;(4)放入电烘箱中,180℃持续加热4~6小时,自然冷却至室温。产物用去离子水和乙醇洗涤和离心,在冷冻干燥机中干燥。由此得到了有序自组装中空的InVO4介晶超结构,将其应用于光催化固氮取得了良好的效果。

Description

一种有序自组装中空InVO4介晶的制备方法和用途
技术领域
本发明涉及一种有序自组装中空InVO4介晶的制备方法以及应用于光催化氮固定,属于新材料技术领域。
背景技术
地球大气中78%的气体是氮气,将氮气转化成氨气在工业应用中有着重要意义。目前,工业合成氨技术主要使用哈柏法(Haber–Bosch),然而该反应需要在高温高压下进行(250大气压、400摄氏度),且需要大量的能耗,过程中释放出的二氧化碳气体占全球总量的3%,对环境和能源造成了巨大的影响。太阳能是最洁净而又取之不尽的自然能源。光催化固氮能够将太阳能直接转化成化学能,其是利用自然界中丰富的氮气和水借助光催化剂在太阳光照下还原成氨气,从而获得了能源和环境的双赢,是实现生态文明、可持续发展的理想途径。
氮分子具有较高的化学稳定性,开发新型高效的光催化剂用于固氮合成氨是该领域的重要课题。影响光催化活性的因素有很多,比如催化剂的尺寸、维度、暴露面以及特殊结构等,其中自组装介晶是一类新型的超结构,具有潜在优异的光学、电子和磁性能,得益于构建模块之间的电荷传输,可广泛应用于催化、传感、能量转换、光电子学和生物标记等。
在光催化领域,已经合成了越来越多的二元金属氧化物介晶,其通常表现出普通的球形、板状或棒状形态。然而,由于增加了对有序生长的动力学控制的难度,因此合成高度有序的自组装介晶化合物(例如具有多态性的三元半导体)非常复杂困难,而且目前只有少数的研究集中于这种特殊结构和性能之间的关系。没有直接和可靠的证据表明,有序的自组装介晶是否可以促进集体性质的产生,如激子离域或相邻的纳米晶耦合,以获得有效的电荷转移和增强电导率。因此,通过简单的方法合成高度有序自组装介晶超结构,并研究这种特殊结构和光催化性能之间的关系显得更加有意义。
发明内容
本发明的一个目的是,提供一种有序自组装中空结构的InVO4介晶的制备方法,该方法采用简便的水热法,在比较温和的条件下合成出高度有序中空的InVO4介晶超结构;本发明的另一目的是研究高度有序的自组装结构和性能之间的关系。即有序自组装中空结构的InVO4介晶用于光催化固氮。
本发明技术方案是:一种有序自组装中空结构的InVO4介晶的制备方法,包括以下步骤:(1)将硝酸铟加入浓度为2±0.1M的硝酸溶液中,将其磁力搅拌后完全溶解得到 A溶液;(2)将偏钒酸铵加入浓度为2±0.1M的氢氧化钠溶液中,将其超声后完全溶解得到B溶液;(3)在磁力搅拌的条件下,将B溶液逐滴滴入A溶液中,并迅速加入少量的柠檬酸钠(0.3mmol),继续搅拌10min以上;用1-3M氢氧化钠或硝酸调节pH至 4~5,然后将此混合溶液转移至50ml水热高压反应釜中;(4)180±15℃持续水热反应 4~6小时,自然冷却至室温,产物经洗涤和离心后冷冻干燥。由此得到有序自组装中空的InVO4介晶超结构;硝酸铟、偏钒酸铵的摩尔质量比为1:1。
用65%~68%wt的浓硝酸溶液和二次去离子水配置成浓度为2M的硝酸溶液,用分析纯的氢氧化钠固体和二次去离子水配置成浓度为2M的氢氧化钠溶液。
将1.0mmol硝酸铟加入20mL浓度为2±0.1M的硝酸溶液中,将其磁力搅拌5min 后完全溶解得到A溶液。
将1.0mmol偏钒酸铵加入20mL浓度为2M的氢氧化钠溶液中,超声5min后完全溶解得到B溶液。
在A溶液磁力搅拌的条件下,用滴管将B溶液逐滴滴入A溶液中,然后迅速加入0.3mmol的柠檬酸钠粉末,继续磁力搅拌30min,用2M氢氧化钠或2M硝酸调节混合浊液pH至4~5。
180℃温度下水热反应4~6小时。
反应釜自然冷却至室温,产物用去离子水和乙醇洗涤和离心,在冷冻干燥机中干燥,得到有序自组装中空的InVO4介晶超结构。
相比于单分散的InVO4纳米立方体和块材,自组装InVO4中相邻构建模块之间的电荷转移提高了光生电子空穴对的分离效率,从而延长了光激发载流子的寿命。另外,上层结构骨架中大量的中空为氮固定提供了丰富的活性催化位点,缩短了载流子在表面上的扩散距离,并实现了高效的物质传输。此外,中空结构可以充当光子捕获陷阱,通过多重散射来捕获更多的入射光子,以产生更多的电子-空穴对,从而增强光能转换。
本发明的有益效果:该合成方法简便易行,反应条件温和;这种有序自组装中空的InVO4介晶能够提高光催化固氮的活性。其中空孔隙结构有利于光渗透和载流子扩散,实现高效的物质传输。自组装InVO4中相邻构建模块之间的电荷转移提高了光生电子- 空穴对的分离效率,从而延长了光激发载流子的寿命。此外,中空结构可以充当光子捕获陷阱,通过多重散射来捕获更多的入射光子,以产生更多的电子-空穴对,从而增强光能转换。
附图说明
图1是本发明实施例的产品的X射线衍射(XRD)图;
图2是本发明实施例的产品的扫描电子显微镜图(SEM)图;其中(g)是示意图;
图3(a)、(c)和(d)是本发明实施例的产品的透射电子显微镜(TEM)图;(b) 是示意图;(e)和(f)是本发明实施例的产品的高分辨透射电子显微镜(HRTEM)图; (g)电子衍射图(SAED);
图4是对比例的产品的SEM图,其中分别为:(a)单分散InVO4小立方体(RNC); (b)InVO4块材(RSCP);
图5是本发明实施例、对比例的产品的光催化固氮性能,其中分别为:(a)氨气的产量随反应时间的变化;(b)氨气产生速率的直方图。
具体实施方式
下面结合实施例、对比例对本发明进一步说明。
实施例
有序自组装中空结构的InVO4介晶的合成:
(1)将1.0mmol硝酸铟加入20mL 2M硝酸溶液中,磁力搅拌5min后完全溶解得到A溶液。
(2)将1.0mmol偏钒酸铵加入20mL 2M氢氧化钠溶液中,超声5min后完全溶解得到B溶液。
(3)A溶液在磁力搅拌的条件下,将B溶液逐滴滴入A溶液中,然后快速加入0.3mmol的柠檬酸钠,充分搅拌30min,用2M氢氧化钠或2M硝酸调节pH至4~5,最后将此浑浊液转移至内容积为50ml水热高压反应釜中。
(4)放入电烘箱中,180℃持续加热4~6小时,自然冷却至室温。产物用去离子水和乙醇洗涤和离心,在冷冻干燥机中干燥。由此得到了有序自组装中空超级结构的InVO4介晶超结构;硝酸铟、偏钒酸铵的摩尔质量比为1:1。
对比例
为了研究高度有序的自组装超结构和性能之间的关系,我们通过不同的途径获得了另外两种不同形貌、晶相相同的InVO4纳米晶体用来作对比。
(a)单分散InVO4小颗粒(RNC)的合成如下:
在没有加入柠檬酸钠的情况下合成的,其方法和有序自组装中空InVO4介晶一致。
(b)InVO4块材(RSCP)的制备如下:
将有序自组装中空InVO4介晶在石英管中以1273K的温度烧结6小时,得到了实心的RSCP
采用扫描电子显微镜(SEM)对产品进行分析。
图1是实施例的产品的XRD图。通过XRD测定了合成的自组装InVO4样品的晶体结构,所有的x射线衍射峰与正交晶系的InVO4标准卡片(JCPDS NO.48-0898)相一致。未检测到杂质的衍射峰,表明InVO4产品为纯相。
图2是实施例的产品的SEM图。图像显示,制备的InVO4介晶直径为200-300纳米,单分散、尺寸均匀、立方构型。每个InVO4结构实际上都是由大量平均尺寸约为20-30nm 的小纳米立方体组成的。这些纳米立方体彼此紧密接触,有序地堆叠,排列整齐。从破裂痕迹可以看出其结构形态为空心(图2h)。
图3是实施例的产品的TEM图。深色边缘和浅色中心对比,进一步确定了其空心结构。如图3d所示,所有组装的纳米立方体都显示出几乎相同的空间方向,而不是常见的随机聚集。高分辨图证实了不同纳米立方体的晶格采用相同的取向(图3e和3f),表明潜在的同质外延聚集。单个超结构颗粒的相应选区电子衍射(SAED)代表了周期性良好的衍射斑点模式(图3g)。孔隙结构清晰可见,如箭头所示(图3c),其可能来自于堆叠纳米立方体之间的间隙。
图4是对比例的产品的SEM图,RNC是平均尺寸约为20-30纳米的小立方体;RSCP的平均尺寸约为200-300纳米,表面光滑,内部实心。
应用
以实施例、对比例获得的三种InVO4样品:自组装中空InVO4介晶、RNC、RSCP分别作为光催化剂进行光催化还原氮气为氨气,具体为:首先,称取10mg的催化剂粉末分散在150ml1mM亚硫酸钠溶液中,然后将此混合物转移至顶部辐照面积为50.27cm2的耐热石英玻璃反应容器中进行室温光催化固氮实验。在黑暗中搅拌催化剂悬浮液,并将高纯度的氮气以50ml/min的流量连续鼓泡至混合溶液中30分钟,以消除空气,从而得到饱和氮气的混合溶液。反应器被太阳模拟器(300w氙灯)照射。通过循环冷却水使反应溶液的温度保持在室温。最后,每隔一定时间,用带有滤头的注射器收集2毫升没有光催化剂的反应溶液。
采用靛酚蓝法测定氨气的生成。取2ml的1M氢氧化钠溶液(含有5%水杨酸和5%柠檬酸钠)加入到2毫升反应溶液中,接着加入1ml 0.05M次氯酸钠溶液,然后再加入 0.2ml1%亚硝基铁氰化钠溶液。静置2小时后,用液相紫外-可见分光光度计测定吸收光谱。用700nm波长的吸光度法测定靛酚蓝的形成。以已知浓度的氯化铵溶液为标准样品,进行产率标定。最后,计算得到实施例、对比例的产品的光催化固氮性能。
图5中(a)氨气的产量随反应时间的变化;(b)氨气产生速率的直方图。
由图5分析可知,有序自组装中空InVO4介晶的光催化性能最好,氨气的产量随反应时间的增加而增加,且转化效率最大,分别是RNC的四倍和RSCP的八倍。
所描述的实施例仅仅是本申请一部分,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。

Claims (7)

1.一种有序自组装中空结构的InVO4介晶的制备方法,其特征在于,包括以下步骤:(1)将硝酸铟加入浓度为2±0.1M的硝酸溶液中,将其磁力搅拌后完全溶解得到A溶液;(2)将偏钒酸铵加入浓度为2±0.1M的氢氧化钠溶液中,将其超声后完全溶解得到B溶液; (3)在磁力搅拌的条件下,将B溶液逐滴滴入A溶液中,并迅速加入少量的柠檬酸钠0.3mmol,继续搅拌10min以上;用1-3 M氢氧化钠或硝酸调节pH至4 ~ 5,然后将此混合溶液转移至50ml水热高压反应釜中;(4)180±15℃持续水热反应4 ~ 6小时,自然冷却至室温,产物经洗涤和离心后冷冻干燥;由此得到有序自组装中空的InVO4介晶超结构;硝酸铟、偏钒酸铵的摩尔质量比为1:1。
2.根据权利要求1所述的有序自组装中空的InVO4介晶的制备方法,其特征在于:用65%~ 68%wt的浓硝酸溶液和二次去离子水配置成浓度为2M的硝酸溶液,用分析纯的氢氧化钠固体和二次去离子水配置成浓度为2M的氢氧化钠溶液。
3.根据权利要求1或2所述的有序自组装中空的InVO4介晶的制备方法,其特征在于:将1.0mmol硝酸铟加入20mL浓度为2±0.1M的硝酸溶液中,将其磁力搅拌5min后完全溶解得到A溶液。
4.根据权利要求1或2所述的有序自组装中空的InVO4介晶的制备方法,其特征在于:将1.0mmol偏钒酸铵加入20mL浓度为 2M的氢氧化钠溶液中,超声5min后完全溶解得到B溶液。
5.根据权利要求1所述的有序自组装中空的InVO4介晶的制备方法,其特征在于:在A溶液磁力搅拌的条件下,用滴管将B溶液逐滴滴入A溶液中,然后迅速加入0.3mmol的柠檬酸钠固体,继续磁力搅拌30min,用2 M氢氧化钠或2 M硝酸调节混合浊液pH至4 ~ 5。
6.根据权利要求1或2所述的有序自组装中空的InVO4介晶的制备方法,其特征在于:180℃温度下水热反应4 ~ 6小时。
7.根据权利要求1或2所述的有序自组装中空的InVO4介晶的制备方法,其特征在于:反应釜自然冷却至室温,产物用去离子水和乙醇洗涤和离心,在冷冻干燥机中干燥,得到有序自组装中空的InVO4介晶。
CN202010811485.8A 2020-08-13 2020-08-13 一种有序自组装中空InVO4介晶的制备方法和用途 Active CN112044427B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010811485.8A CN112044427B (zh) 2020-08-13 2020-08-13 一种有序自组装中空InVO4介晶的制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010811485.8A CN112044427B (zh) 2020-08-13 2020-08-13 一种有序自组装中空InVO4介晶的制备方法和用途

Publications (2)

Publication Number Publication Date
CN112044427A CN112044427A (zh) 2020-12-08
CN112044427B true CN112044427B (zh) 2022-06-17

Family

ID=73602689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010811485.8A Active CN112044427B (zh) 2020-08-13 2020-08-13 一种有序自组装中空InVO4介晶的制备方法和用途

Country Status (1)

Country Link
CN (1) CN112044427B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115646502B (zh) * 2022-11-07 2023-07-04 深圳仕上电子科技有限公司 金属负载钒酸铟及其制备方法、光催化固氮催化剂

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109433185A (zh) * 2018-12-10 2019-03-08 北华大学 一步水热法制备钒酸铟/同质异相结钒酸铋复合光催化剂

Also Published As

Publication number Publication date
CN112044427A (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
Soni et al. Indium sulfide-based photocatalysts for hydrogen production and water cleaning: a review
Guo et al. A one-pot sealed ammonia self-etching strategy to synthesis of N-defective g-C3N4 for enhanced visible-light photocatalytic hydrogen
Chen et al. Microwave-assisted preparation of flower-like C60/BiOBr with significantly enhanced visible-light photocatalytic performance
He et al. Novel-CdS-nanorod with stacking fault structures: Preparation and properties of visible-light-driven photocatalytic hydrogen production from water
CN106964339B (zh) 碳掺杂超薄钨酸铋纳米片光催化材料及其制备方法
CN108246331B (zh) 石墨烯碳化氮量子点修饰的ZnS微米复合材料及其制备方法和应用
Zhang et al. Building {0001} and {101 1} facet heterojunctions on hexagonal pyramid CdS single crystals with high photoactivity and photostability for hydrogen evolution
Sharma et al. Insight into ZnO/carbon hybrid materials for photocatalytic reduction of CO2: An in-depth review
CN107952455A (zh) 一种具有宏观构架的三维片状BiOI光催化材料及其制备与应用
CN114392734B (zh) 一种氧化钨复合材料及其制备方法和应用
CN112076774A (zh) 一种碳化钛量子点负载碳缺陷反蛋白石氮化碳的催化剂及其制备方法
CN110560105A (zh) 磷化镍负载硫铟锌纳米微球复合材料的制备及在光催化产氢中的应用
JP2024508929A (ja) アモルファス金属酸化物の中空マルチシェル材料の製造方法及びその応用 [関連出願の相互参照] 本出願は、2021年03月04日に出願した中国特許出願第202110241311.7号の特許出願に基づく優先権を主張し、この中国特許出願の全ての内容が参照により本明細書に組み込まれる。
CN106390986A (zh) 一种钒酸铋/钛酸锶复合光催化剂的制备方法
Zhang et al. Enhanced photocatalytic activities of CdS-BiOCl/PAN composites towards photocatalytic hydrogen evolution
Jin et al. Enhanced photocatalytic performance of three-dimensional microstructure Bi2SiO5 by ionic liquid assisted hydrothermal synthesis
CN110624550A (zh) 一种原位碳包覆的铜镍合金纳米颗粒光催化剂及其制备方法和应用
CN114588888A (zh) 一种光催化剂及其制备方法与应用
Zhang et al. UV-Vis-NIR-light-driven Ag2O/Ag2S/CuBi2O4 double Z-scheme configuration for enhanced photocatalytic applications
CN113952986A (zh) 一种WO3/TpPa-1-COF复合材料及其制备方法与应用
CN112604690A (zh) 利用农林废弃物制备稀土钙钛矿/生物炭复合材料的方法及其应用
CN109382088B (zh) SnO2/α~Bi2O3/β~Bi2O3复合材料及其制备方法
CN113198496A (zh) 一种金属铟掺杂溴化铅铯钙钛矿量子点光催化剂、制备方法及其在还原二氧化碳中的应用
Wang et al. Effect of chiral-arrangement on the solar adsorption of black TiO2-SiO2 mesoporous materials for photodegradation and photolysis
Guo et al. Core-shell-like BiOBr@ BiOBr homojunction for enhanced photocatalysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant