WO2022182177A1 - Electrically-conductive contact pin assembly and manufacturing method therefor - Google Patents

Electrically-conductive contact pin assembly and manufacturing method therefor Download PDF

Info

Publication number
WO2022182177A1
WO2022182177A1 PCT/KR2022/002735 KR2022002735W WO2022182177A1 WO 2022182177 A1 WO2022182177 A1 WO 2022182177A1 KR 2022002735 W KR2022002735 W KR 2022002735W WO 2022182177 A1 WO2022182177 A1 WO 2022182177A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically conductive
conductive contact
contact pin
housing
mold
Prior art date
Application number
PCT/KR2022/002735
Other languages
French (fr)
Korean (ko)
Inventor
안범모
박승호
변성현
Original Assignee
(주)포인트엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포인트엔지니어링 filed Critical (주)포인트엔지니어링
Publication of WO2022182177A1 publication Critical patent/WO2022182177A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support

Definitions

  • the present invention relates to an electrically conductive contact pin assembly and a method for manufacturing the same.
  • a test apparatus and test socket having a plurality of electrically conductive contact pins between a connection terminal of a semiconductor package or wafer for testing and a connection terminal on the side of the test circuit board are used in a test apparatus for a semiconductor package or a wafer for an integrated circuit.
  • an inspection object semiconductor wafer or semiconductor package
  • the electrically conductive contact pins are applied to corresponding electrode pads (or solder balls or bumps) on the inspection object. This is done by making contact.
  • the electrically conductive contact pin and the electrode pad on the inspection object are brought into contact, after reaching a state in which both start to contact, a process for further approaching the inspection object is performed.
  • FIG. 11 shows an electrically conductive contact pin according to the prior art.
  • the electrically conductive contact pin shown in FIG. 11 is a slide-type electrically conductive contact pin that provides necessary contact pressure and absorbs shock at the contact position by installing the spring member 12 between the tip portions 11 at both ends.
  • Patent Document 1 Republic of Korea Patent Publication Registration No. 10-0659944
  • Patent Document 2 Republic of Korea Patent Publication No. 10-0647131
  • the present invention has been devised to solve the problems of the prior art described above, and it is possible to precisely manage a minute gap between the electrical conductivity and the housing by manufacturing an electrically conductive contact pin and a housing at once using a MEMS process.
  • An object of the present invention is to provide a conductive contact pin assembly and a method for manufacturing the same.
  • a method for manufacturing an electrically conductive contact pin assembly of the present invention includes: manufacturing an electrically conductive contact pin and a sidewall of a housing using a first mold made of an anodized film; manufacturing an upper surface portion of the housing to be connected to the sidewall portion and spaced apart from the first surface of the electrically conductive contact pin by using a second mold made of a patternable material; manufacturing a lower surface portion of the housing to be connected to the side wall portion and spaced apart from a second surface of the electrically conductive contact pin by using a third mold made of a patternable material; and removing the first mold, the second mold, and the third mold.
  • the manufacturing of the electrically conductive contact pin and the sidewall of the housing may include: forming a first opening pattern and a second opening pattern in a first mold made of the anodized film material; and filling the first opening pattern and the second opening pattern with metal to fabricate the electrically conductive contact pin and a sidewall of the housing.
  • the manufacturing of the upper surface of the housing may include: forming a patternable material and patterning it to form a second mold having a third opening pattern; and filling the third opening pattern of the second mold with metal to fabricate the upper surface of the housing.
  • the manufacturing of the lower surface of the housing may include: forming a patternable material and patterning it to form a third mold having a fourth opening pattern; and manufacturing the lower surface of the housing by filling the fourth opening pattern of the third mold with metal.
  • the electrically conductive contact pin assembly of the present invention an electrically conductive contact pin having a first surface, a second surface opposite to the first surface, and a side connecting the first surface and the second surface; and a housing in which the electrically conductive contact pin is slidable therein and has an upper surface portion opposite to the first surface, a lower surface portion opposite to the second surface, and a side wall portion opposite to the side surface;
  • the contact pin includes a plurality of first fine trenches formed in a long groove in the direction of the first surface and the second surface from the side of the contact pin formed side by side.
  • the first fine trench is not formed on the first surface and the second surface.
  • It also includes a second micro trench formed on a sidewall of the housing in the same direction as the first micro trench.
  • the second fine trenches are not formed above and below the second fine trenches.
  • the second fine trench is not formed in the upper surface portion and the lower surface portion.
  • the electrically conductive contact pin of the present invention an electrically conductive contact pin having a first surface, a second surface opposite to the first surface, and a side connecting the first surface and the second surface; and a housing in which the electrically conductive contact pin is slidable therein and has an upper surface portion opposite to the first surface, a lower surface portion opposite to the second surface, and a side wall portion opposite to the side surface; It includes a plurality of second fine trenches formed in a long groove in the direction of the first surface and the second surface from the side wall of the sidewall formed side by side.
  • the present invention provides an electrically conductive contact pin assembly capable of precisely managing a minute gap between electrical conductivity and a housing by manufacturing the electrically conductive contact pin and a housing at once using a MEMS process, and a method for manufacturing the same.
  • FIG. 1A is a plan view of an electrically conductive contact pin assembly according to a preferred embodiment of the present invention
  • FIG. 1B is a horizontal cross-sectional view of an electrically conductive contact pin assembly according to a preferred embodiment of the present invention
  • FIG. 2 is a vertical cross-sectional view of an electrically conductive contact pin assembly according to a preferred embodiment of the present invention
  • 3 to 6 are views showing a method of manufacturing an electrically conductive contact pin assembly according to a preferred embodiment of the present invention.
  • FIG. 7 is an end perspective view of an electrically conductive contact pin according to a preferred embodiment of the present invention.
  • FIG. 8 is a photograph taken at an end of an electrically conductive contact pin according to a preferred embodiment of the present invention.
  • FIG. 9 is a view showing a side view of an electrically conductive contact pin according to a preferred embodiment of the present invention.
  • FIG. 10 is a view showing a side view of a side wall portion of a housing according to a preferred embodiment of the present invention.
  • FIG. 11 is a view showing an electrically conductive contact pin assembly according to the prior art.
  • Embodiments described herein will be described with reference to cross-sectional and/or perspective views, which are ideal illustrative drawings of the present invention.
  • the thicknesses of films and regions shown in these drawings are exaggerated for effective description of technical content.
  • the shape of the illustrative drawing may be modified due to manufacturing technology and/or tolerance. Accordingly, embodiments of the present invention are not limited to the specific form shown, but also include changes in the form generated according to the manufacturing process.
  • the electrically conductive contact pin according to a preferred embodiment of the present invention is manufactured by MEMS technology, and the field of application may vary according to its use.
  • the electrically conductive contact pin according to a preferred embodiment of the present invention is provided in the inspection device and is used to electrically and physically contact the inspection object to transmit an electrical signal.
  • the inspection apparatus may be an inspection apparatus used in a semiconductor manufacturing process, and for example, may be a probe card or a test socket depending on an object to be inspected.
  • the inspection apparatus according to the preferred embodiment of the present invention is not limited thereto, and any apparatus for checking whether an object to be inspected is defective by applying electricity is included.
  • FIG 1 and 2 are views for explaining an electrically conductive contact pin assembly 100 according to a preferred embodiment of the present invention.
  • the electrically conductive contact pin assembly 100 is configured to include an electrically conductive contact pin 200 and a housing 300 in which the electrically conductive contact pin 200 is accommodated.
  • the electrically conductive contact pin 200 has a first surface 201, a second surface 202 opposite to the first surface 201, and a side connecting the first surface 201 and the second surface 202 ( 203) is provided.
  • the electrically conductive contact pin 200 is slidable inside the housing 300 and has an upper surface portion 301 opposite to the first surface 201, a lower surface portion 302 opposite to the second surface 202, and a side surface ( A side wall portion 303 opposite to 203 is provided.
  • an electrically conductive contact pin 200 includes a first contact tip 210 , a second contact tip 230 , and a first contact tip 210 and and a body part 250 connecting the second contact tip part 230 .
  • An elastic contact portion 270 is formed on at least one of the first contact tip portion 210 and the second contact tip portion 230 .
  • the first contact tip portion 210 , the second contact tip portion 230 , and the body portion 250 are integrally manufactured by MEMS technology.
  • the body part 250 may be formed in a zigzag shape to be elastically stretchable in the longitudinal direction of the electrically conductive contact pin 200 .
  • the shape of the body part 250 may be manufactured in another shape as long as it is elastically deformable other than the zigzag shape.
  • the electrically conductive contact pins 200 and the housing 300 may be formed of a conductive material.
  • the conductive material is platinum (Pt), rhodium (Ph), palladium (Pd), copper (Cu), silver (Ag), gold (Au), iridium (Ir), nickel (Ni), cobalt (Co) or these or at least one selected from a nickel-cobalt (NiCo) alloy, a palladium-cobalt (PdCo) alloy, a palladium-nickel (PdNi) alloy, or a nickel-phosphorus (NiP) alloy.
  • the electrically conductive contact pins 200 and the sidewall 303 of the housing 300 may have a multi-layered structure in which a plurality of conductive materials are stacked.
  • Each conductive layer made of a different material is platinum (Pt), rhodium (Ph), palladium (Pd), copper (Cu), silver (Ag), gold (Au), iridium (Ir), nickel (Ni) ), cobalt (Co) or an alloy thereof, or a palladium-cobalt (PdCo) alloy, a palladium-nickel (PdNi) alloy, or a nickel-phosphorus (NiP) alloy.
  • the first contact tip portion 210 is a portion that substantially contacts the pad of the inspection device or the inspection object
  • the second contact tip portion 230 is a portion that is in substantially contact with the inspection object or the pad of the inspection device, and is an electrically conductive contact pin
  • the elastic contact portion 270 is formed on at least one of the first contact tip portion 210 and the second contact tip portion 230 . 1 shows a configuration in which the elastic contact portion 270 is provided on the first contact tip portion 210 .
  • One end of the elastic contact portion 270 is connected to the first contact tip portion 400 , and the other end of the elastic contact portion 270 is a free end. Through this, the elastic contact portion 270 is elastically deformable while being supported and fixed by the first contact tip portion 400 .
  • the elastic contact portion 270 provided on the left side of the electrically conductive contact pin 200 is curved in the same shape as the English alphabet "C” shape, and the elastic contact portion 270 provided on the right side of the electrically conductive contact pin 200 . ) is formed by being curved in the same shape as the "inverted C” shape.
  • One end of the elastic contact portion 270 is a root portion connected to the first contact tip portion 400, and the thickness of the electrically conductive contact pin 200 increases from the other end to the root portion. Through this, it has an effect of preventing the stress from being concentrated and damaged in the vicinity of the electrically conductive contact pin 200 when deformed.
  • the other end of the elastic contact portion 270 is configured as a free end. If the other end of the elastic contact portion 270 is not configured as a free end but is connected to somewhere in the electrically conductive contact pin 200, the elastic contact portion 270 deforms when the first contact tip portion 210 slides. Since it is not large, the frictional resistance can act significantly. On the contrary, the elastic contact portion 270 according to the preferred embodiment of the present invention has the other end configured as a free end, so that when the first contact tip portion 210 slides, deformation of the elastic contact portion 270 easily occurs, thereby reducing frictional resistance. has the effect of reducing
  • the elastic contact portion 270 is provided on both sides of the first contact tip portion 210 .
  • the length of the width before deformation of the elastic contact portion 270 provided on both sides of the first contact tip portion 210 is smaller than the length between the inner surfaces of the housing 500 . Through this, the first contact tip 210 can always maintain a state of contact with the inner surface of the housing 500 .
  • the elastic contact part 270 has a curved shape, even when the first contact tip part 210 slides along the inner surface of the housing 500 , the normal drag force of the frictional force acting on the elastic contact part 270 is the first contact tip part It acts in the (210) direction. As a result, the first contact tip 210 can always maintain a contact state with the inner surface of the housing 500 even when sliding.
  • the elastic contact part 270 contacts the inner surface of the housing 500 made of an electrically conductive material, a current path passing through the first contact tip part 210 , the housing 500 , and the second contact tip part 230 is formed. Therefore, the elastic deformation of the electrically conductive contact pin 200 is handled by the body part 250, and the current path of the electrically conductive contact pin 200 is the first contact tip part 210, the housing 500, and the second contact tip part ( As the 230 is in charge, it is possible to form a shorter path of the current flowing through the electrically conductive contact pin 200 .
  • Locking projections 310 are provided at both ends of the housing 500 .
  • the size of the hole formed by the locking protrusion 310 is such that the electrically conductive contact pin 200 cannot easily come out.
  • the size of the hole formed by the locking protrusion 310 is larger than the width of the first contact tip portion 210 and smaller than the longest distance between the two elastic contact portions 270 .
  • the locking jaw 310 supports the root of the elastic contact part 270 . Through this, it is possible to make a clearance between the housing 500 and the locking jaw 310 during the manufacturing process, and it is possible to ensure smooth sliding movement of the first contact tip portion 210 .
  • the elastic contact part 270 since the elastic contact part 270 always maintains a state of contact with the inner surface of the housing 500 , foreign substances are prevented from penetrating into the housing 500 . Moreover, since a sufficient separation space exists between the locking jaw 310 and the first contact tip 210 on the proximal side of the elastic contact portion 270 , it is possible to easily discharge foreign substances generated during the sliding process to the outside.
  • the electrically conductive contact pin 200 and the housing 300 are simultaneously manufactured using a MEMS process.
  • a method of manufacturing the electrically conductive contact pin assembly 100 according to a preferred embodiment of the present invention will be described with reference to FIGS. 3 to 6 .
  • the manufacturing method of the electrically conductive contact pin assembly 100 comprises (i) an electrically conductive contact pin 200 and a housing 300 using a first mold 10 made of an anodized film material. manufacturing the side wall portion 303; (ii) the upper surface portion of the housing 300 so as to be connected to the side wall portion 303 using the second mold 20 made of a patternable material and spaced apart from the first surface 201 of the electrically conductive contact pin 200 ( 301) making; (iii) the lower surface of the housing 300 so as to be connected to the sidewall 303 using the third mold 30 of a patternable material and spaced apart from the second surface 202 of the electrically conductive contact pin 200 ( 302) making; and (iv) removing the first mold 10 , the second mold 20 , and the third mold 30 .
  • manufacturing the electrically conductive contact pins 200 and the sidewall portion 303 of the housing 300 includes the first opening pattern 11 and the second forming an opening pattern 12; and filling the first opening pattern 11 and the second opening pattern 12 with metal to fabricate the electrically conductive contact pin 200 and the sidewall portion 303 of the housing 300 .
  • a first mold 10 made of an anodized film material is prepared.
  • a first seed layer 15 is provided under the first mold 10 made of an anodized film material.
  • the first seed layer 15 is previously formed under the first mold 10 for subsequent electroplating.
  • the first seed layer 15 is preferably made of copper (Cu), platinum (Pt), tantalum (Ta), titanium (Ti), or an alloy thereof. There is no limit.
  • the first seed layer 15 may be made of copper (Cu).
  • the first seed layer 15 may be formed to a thickness of 10 nm or more and 1 ⁇ m or less by a sputtering process.
  • the first mold 10 made of an anodization film means a film formed by anodizing a metal, which is a base material, and the pores mean a hole formed in the process of forming an anodization film by anodizing the metal.
  • a metal which is a base material
  • the pores mean a hole formed in the process of forming an anodization film by anodizing the metal.
  • the base metal is aluminum (Al) or an aluminum alloy
  • Al 2 0 3 aluminum oxide
  • the anodic oxide film formed as described above is vertically divided into a barrier layer in which pores are not formed and a porous layer in which pores are formed.
  • the anodized film may be formed in a structure in which the barrier layer formed during anodization is removed to penetrate the top and bottom of the pores, or the barrier layer formed during anodization remains as it is and seals one end of the top and bottom of the pores.
  • the anodized film has a coefficient of thermal expansion of 2-3 ppm/°C. For this reason, when exposed to a high temperature environment, thermal deformation due to temperature is small. Therefore, even in a high-temperature environment in the manufacturing environment of the electrically conductive contact pin 200, the precise electrically conductive contact pin 200 can be manufactured without thermal deformation.
  • a first opening pattern 11 and a second opening pattern 12 are formed on the first mold 10 made of an anodized film material.
  • the first opening pattern 11 and the second opening pattern 12 may be formed by removing at least a portion of the first mold 10 made of an anodized film material.
  • the first opening pattern 11 and the second opening pattern 12 may be formed by etching the first mold 10 made of an anodized film material.
  • a photoresist is provided on the upper surface of the first mold 10 made of an anodization film and patterned. Then, the patterned and open anodization film reacts with the etching solution to form the first opening pattern 11 and the second opening.
  • a pattern 12 may be formed.
  • a photosensitive material is provided on the upper surface of the first mold 10 made of an anodization film material before the first opening pattern 11 and the second opening pattern 12 are formed, and then exposure and development processes are performed.
  • can At least a portion of the photosensitive material may be patterned and removed while forming an open area by an exposure and development process.
  • the etching process is performed on the first mold 10 made of the anodized film material through the open region from which the photosensitive material is removed by the patterning process to form the first opening pattern 11 and the second opening pattern 12 .
  • the first mold 10 made of an anodization film is wet-etched with an etching solution, a first opening pattern 11 and a second opening pattern 12 having vertical inner walls are formed.
  • the shape precision of the plating layer is improved, and the electrically conductive contact pins 200 and the sidewalls of the housing 300 have a precise microstructure. (303) can be produced.
  • a plurality of first fine trenches 250 formed in a long groove in the direction of the first surface 201 and the second surface 202 are formed side by side, and the first A second fine trench 350 is formed in the sidewall 303 of the housing 300 in the same direction as the fine trench 250 .
  • a detailed configuration of the first fine trench 250 and the second fine trench 350 will be described later.
  • an electroplating process is performed using the first seed layer 15 .
  • a plating layer is formed inside the first opening pattern 11 to form an electrically conductive contact pin 200
  • a plating layer is formed inside the second opening pattern 12 to form a sidewall portion 303 of the housing 300 .
  • a planarization process may be performed.
  • the plating layer protruding from the upper surface of the first mold 10 made of an anodized film is removed and planarized through a chemical mechanical polishing (CMP) process.
  • CMP chemical mechanical polishing
  • the upper surface of the housing 300 is connected to the side wall portion 303 using the second mold 20 made of a patternable material and spaced apart from the first surface 201 of the electrically conductive contact pin 200 .
  • a step of manufacturing the part 301 is performed.
  • the manufacturing of the upper surface portion 301 of the housing 300 may include patterning the second seed layer 17 ; forming a second mold 20 having a third opening pattern 21 by forming a patternable material and patterning it; and filling the third opening pattern 21 of the second mold 20 with a metal.
  • a second seed layer 17 is provided on the first mold 10 made of an anodized film material.
  • the second seed layer 17 is preferably made of copper (Cu), platinum (Pt), tantalum (Ta), titanium (Ti), or an alloy thereof. There is no limit.
  • the second seed layer 17 may be made of copper (Cu).
  • the second seed layer 17 may be formed to a thickness of 10 nm or more and 1 ⁇ m or less by a sputtering process.
  • the second seed layer 17 is patterned.
  • the patterned second seed layer 17 is formed between the upper surface of the first surface 201 of the electrically conductive contact pin 200 and the side wall portion 303 of the housing 300 and the electrically conductive contact pin 200 . It is formed on the upper surface of the mold 10 .
  • the second seed layer 17 is not formed on the upper surface of the side wall portion 303 of the housing 300 .
  • a patternable material is formed on the upper surface of the first mold 10 .
  • the patternable material is a material capable of exposure and development processes, and may preferably be a photoresist material.
  • the patternable material is exposed and developed to form the third opening pattern 21 .
  • the second mold 20 having the third opening pattern 21 is formed.
  • the second seed layer 17 and the upper surface of the sidewall 303 of the housing 300 are exposed inside the third opening pattern 21 .
  • electroplating is performed using the first seed layer 15 , the second seed layer 17 , and the already formed plating layer to be connected to the sidewall 303 and electrically conductive contact.
  • the upper surface portion 301 of the housing 300 spaced apart from the first surface 201 of the pin 200 is manufactured.
  • the upper surface 301 of the housing 300 is spaced apart from the first surface 201 of the electrically conductive contact pin 200 by the thickness of the second seed layer 17 . Since the thickness of the second seed layer 17 is formed to a thickness of 10 nm or more and 1 ⁇ m or less, the upper surface 301 of the housing 300 is separated from the electrically conductive contact pins 200 by a distance of 10 nm or more and 1 ⁇ m or less. It is spaced apart from the first surface 201 .
  • the housing 300 is connected to the sidewall 303 and spaced apart from the second surface 202 of the electrically conductive contact pin 200.
  • a step of manufacturing the lower surface portion 302 is performed.
  • the manufacturing of the lower surface portion 302 of the housing 300 includes: patterning the first seed layer 17 ; forming a third mold 30 having a fourth opening pattern 31 by forming a patternable material and patterning it; and filling the fourth opening pattern 31 of the third mold 30 with a metal.
  • the one manufactured in the step of FIG. 5A is inverted by 180°.
  • the first seed layer 15 is patterned.
  • the patterned first seed layer 15 includes the upper surface (based on the drawing) of the second surface 202 of the electrically conductive contact pin 200 , the side wall portion 303 of the housing 300 and the electrically conductive contact pin 200 . It is formed on the upper surface (based on the drawing) of the first mold 10 in between.
  • the first seed layer 15 is not formed on the upper surface (based on the drawing) of the side wall portion 303 of the housing 300 .
  • a patternable material is formed on the upper surface (based on the drawing) of the first mold 10 .
  • the patternable material is a material capable of exposure and development processes, and may preferably be a photoresist material.
  • the patternable material is exposed and developed to form the fourth opening pattern 31 .
  • the third mold 30 having the fourth opening pattern 31 is formed.
  • the first seed layer 15 and the upper surface (based on the drawing) of the sidewall 303 of the housing 300 are exposed inside the fourth opening pattern 31 .
  • the lower surface 302 of the housing 300 is manufactured to be spaced apart from the second surface 202 of the pin 200 .
  • the lower surface 302 of the housing 300 is spaced apart from the second surface 202 of the electrically conductive contact pin 200 by the thickness of the first seed layer 15 . Since the thickness of the first seed layer 17 is formed to a thickness of 10 nm or more and 1 ⁇ m or less, the lower surface 302 of the housing 300 is separated from the electrically conductive contact pin 200 by a distance of 10 nm or more and 1 ⁇ m or less. It is spaced apart from the second surface 202 .
  • first mold 10 is made of an anodized film material
  • first mold 10 is removed using an etching solution that selectively reacts only to the anodized film.
  • second mold 20 and the third mold 30 are made of a photoresist material
  • the second mold 20 and the third mold 30 are removed using an etching solution that selectively reacts only with the photoresist.
  • the electrically conductive contact pin 200 and the housing 300 are manufactured at once, so the housing 300 and the electrically conductive contact pin 200 .
  • the inconvenience of the prior art of having to separately manufacture and then combine them is eliminated.
  • the electrically conductive contact pin 200 and the housing 300 are determined by the thickness of the anodization film and the first and second seed layers 15 and 17 present therebetween during the manufacturing process, the electrically conductive contact pin ( It is possible to make the gap between the 200 and the housing 300 fine. As a result, by minimizing the large flow of the electrically conductive contact pin 200 in the housing 300 , the problem of the prior art in which the electrically conductive contact pin 200 has a large flow in the housing 300 is solved. .
  • the distance between the electrically conductive contact pin 200 and the sidewall 303 of the housing 300 is determined by the width of the anodized film material, and the anodized film material positioned therebetween is the electrically conductive contact pin 200 and the housing. Refining the distance between the electrically conductive contact pin 200 and the sidewall 303 of the housing 300 is to reduce the gap between the electrically conductive contact pin 200 and the sidewall 303 of the housing 300 because it exists before the sidewall portion 303 of the 300 is manufactured and is not a configuration that is separately filled in the interspace. It is possible. Through this, a vertical glide that substantially satisfies the design contact position between the first contact tip part 210 and the second contact tip part 230 with the contact object is possible.
  • the first micro-trench 250 is formed in the direction of the first surface 201 and the second surface 202 from the side of the electrically conductive contact pin 200 , and the housing in the same direction as the first micro-trench 250 .
  • a second micro trench 350 is formed in the side wall portion 303 of the 300 .
  • the electrically conductive contact pin 200 includes a plurality of first micro trenches 250 formed on at least one surface of the electrically conductive contact pin 200 .
  • the first micro trenches 250 are formed on the side surfaces 203 of the electrically conductive contact pins 200 .
  • the first micro-trench 250 is formed to extend long in the thickness direction of the electrically conductive contact pin 200 from the side surface 203 of the electrically conductive contact pin 200 .
  • the thickness direction of the electrically conductive contact pin 200 refers to a direction in which the plating layer grows during electroplating.
  • the first fine trench 250 has a depth of 20 nm or more and 3 ⁇ m or less, and a width of 20 nm or more and 3 ⁇ m or less.
  • the width and depth of the first fine trench 250 is the first mold 10 made of the anodized film material.
  • the width and depth of the first fine trench 250 is the first mold 10 made of the anodized film material.
  • a part of the pores of the first mold 10 made of an anodization film are crushed by the etching solution during anodization. At least a portion of the first fine trenches 250 having a depth larger than a diameter range of the formed pores may be formed.
  • the first mold 10 made of an anodized film material includes a number of pores, and at least a portion of the first mold 10 made of the anodized film material is etched to form a first opening pattern 11, and the first opening pattern ( 11) Since the plating layer is formed inside by electroplating, the first micro trench 250 formed while in contact with the pores of the first mold 10 made of an anodized film material is provided on the side of the electrically conductive contact pin 200 .
  • the electrically conductive contact pin 200 is a first surface 201, a second surface 202 opposite to the first surface 201, a side ( 203), a plurality of first fine trenches ( 250).
  • the first micro-trench 250 is formed entirely over the side surface 203 of the electrically conductive contact pin 200 , but is not formed on the first surface 201 and the second surface 202 except for the side surface 203 .
  • the first fine trench 250 as described above has the effect of increasing the surface area on the side of the electrically conductive contact pin 200 .
  • the electrically conductive contact pin 200 according to the preferred embodiment of the present invention has the same shape dimensions as the conventional electrically conductive contact pin 200, the surface area at the side surface 203 of the electrically conductive contact pin 200 can be made larger.
  • the contact resistance of the electrically conductive contact pin 200 when contacting the contact object is reduced.
  • the first mold 10 made of the anodized film material may include a barrier layer and a pore layer formed during the manufacturing process of the anodized film.
  • the barrier layer may have a thickness of 10 nm or more and 500 nm or less.
  • the illuminance range of the side surface 203 is different from the illuminance range of the first surface 201 and the second surface 202 .
  • the roughness range of the side surface 203 of the electrically conductive contact pin 200 is the first of the electrically conductive contact pin 200 . greater than the illuminance range of the face 201 and the second face 202 .
  • the electrically conductive contact pin 200 is formed by stacking a plurality of layers in the thickness direction of the electrically conductive contact pin 200 , and the same layer may be formed of the same metal material. Referring to FIG. 8 , the electrically conductive contact pins 200 may be provided in a form in which a total of three metal layers are stacked.
  • the first layer 291 and the third layer 293 have excellent hardness properties to provide excellent mechanical elasticity to the electrically conductive contact pin 200 , and the second layer 292 provides excellent electrical properties for electrical conductivity.
  • the first layer 291 and the third layer 293 may be made of nickel (Ni) or a nickel (Ni) alloy material, and the second layer 292 may be made of copper (Cu) or a copper (Cu) alloy material. can be Through this, it is possible to provide a contact pin having excellent mechanical properties and at the same time having excellent electrical properties.
  • the side wall portion 303 of the housing 300 is formed in the side wall portion 303 of the housing 300 in the same direction as the first micro trench 250 . It includes a second fine trench 350 .
  • the second fine trench 350 is formed on the side surface of the side wall portion 303 .
  • the second fine trench 350 is formed to extend long in the thickness direction of the side wall portion 303 from the side surface of the side wall portion 303 of the housing 300 .
  • the thickness direction of the side wall portion 303 refers to a direction in which the plating layer grows during electroplating.
  • the second fine trench 350 has a depth of 20 nm or more and 3 ⁇ m or less, and a width of 20 nm or more and 3 ⁇ m or less.
  • the width and depth of the second fine trench 350 are the first mold 10 made of the anodized film material.
  • a part of the pores of the first mold 10 made of the anodization film are crushed by the etching solution during anodization. At least a portion of the second fine trench 350 having a depth greater than a diameter range of the formed pores may be formed.
  • the first mold 10 made of an anodized film material includes numerous pores, and at least a portion of the first mold 10 made of the anodized film material is etched to form a second opening pattern 12 , and the second opening pattern 11 ), since the plating layer is formed inside by electroplating, the sidewall portion 303 is provided with a second fine trench 350 formed while making contact with the pores of the first mold 10 made of an anodized film material.
  • the second fine trenches 350 are formed as long grooves in the direction from the first surface 201 to the second surface 202 in the sidewall 303 of the housing 300 , and a plurality of trenches are formed side by side.
  • the second fine trench 350 is formed on the side surface 203 of the side wall part 350 , but is not formed on the upper surface part 301 and the lower surface part 3022 except for the side wall part 303 .
  • the second fine trench 350 is not formed on the upper portion of the second fine trench 350 among the side surfaces of the sidewall part 350 and the second fine trench 350 is not formed. That is, the second fine trenches 350 are spaced apart by a predetermined distance from the upper portion and spaced apart from the lower portion by a predetermined distance based on the side surface of the sidewall part 350 .
  • the distance at which the second fine trench 350 is spaced apart from the upper portion of the side surface of the sidewall part 350 is the same as the thickness of the second seed layer 17 , and the second fine trench 350 is the side surface of the sidewall part 350 .
  • the distance spaced apart from the lower part of is equal to the thickness of the first seed layer 15 .
  • the second fine trench 350 as described above has an effect of increasing the surface area of the side wall portion 303 of the housing 300 .
  • the surface area of the side wall portion 303 of the housing 300 can be made larger.
  • the electrically conductive contact pin 200 and the housing 300 are separated from each other has been described as an example, but at least a portion of the electrically conductive contact pin 200 may be integrally configured with the housing 300 . have.
  • the first contact tip portion 210 or the second contact tip portion 230 of the electrically conductive contact pin 200 may be integrally configured with the housing 300, and more preferably, the elastic contact portion 270 is not provided.
  • the second contact tip 230 may be integrally formed with the housing 300 .

Abstract

The present invention provides an electrically-conductive contact pin assembly and a manufacturing method therefor, in which an electrically-conductive contact pin and a housing are manufactured at once by using a MEMS process, such that a minute gap between the electrically-conductive contact pin and the housing may be precisely managed.

Description

전기 전도성 접촉핀 어셈블리 및 그 제조방법Electrically conductive contact pin assembly and manufacturing method thereof
본 발명은 전기 전도성 접촉핀 어셈블리 및 그 제조방법에 관한 것이다.The present invention relates to an electrically conductive contact pin assembly and a method for manufacturing the same.
반도체 패키지 또는 집적 회로를 위한 웨이퍼의 시험 장치에는 테스트를 위한 반도체 패키지나 웨이퍼의 접속 단자와 테스트 회로 기판 측의 접속 단자 사이에 복수의 전기 전도성 접촉핀을 구비한 시험용 장치 및 검사용 소켓이 사용되고 있다. 반도체 소자의 전기적 특성 시험은 다수의 전기 전도성 접촉핀을 구비한 검사장치에 검사 대상물(반도체 웨이퍼 또는 반도체 패키지)을 접근시켜 전기 전도성 접촉핀을 검사 대상물상의 대응하는 전극 패드(또는 솔더볼 또는 범프)에 접촉시킴으로써 수행된다. 전기 전도성 접촉핀과 검사 대상물 상의 전극 패드를 접촉시킬 때, 양자가 접촉하기 시작하는 상태에 도달한 이후, 검사 대상물을 추가로 접근하는 처리가 이루어진다.A test apparatus and test socket having a plurality of electrically conductive contact pins between a connection terminal of a semiconductor package or wafer for testing and a connection terminal on the side of the test circuit board are used in a test apparatus for a semiconductor package or a wafer for an integrated circuit. . In the electrical property test of a semiconductor device, an inspection object (semiconductor wafer or semiconductor package) is approached to an inspection device having a plurality of electrically conductive contact pins, and the electrically conductive contact pins are applied to corresponding electrode pads (or solder balls or bumps) on the inspection object. This is done by making contact. When the electrically conductive contact pin and the electrode pad on the inspection object are brought into contact, after reaching a state in which both start to contact, a process for further approaching the inspection object is performed.
도 11은 종래기술에 따른 전기 전도성 접촉핀을 도시한다. 도 11에 도시된 전기 전도성 접촉핀은 양단의 팁부(11) 사이에 스프링 부재(12)를 설치함으로써 필요한 접촉압 부여 및 접촉 위치의 충격 흡수가 가능하게 하는 슬라이드형 전기 전도성 접촉핀이다. 11 shows an electrically conductive contact pin according to the prior art. The electrically conductive contact pin shown in FIG. 11 is a slide-type electrically conductive contact pin that provides necessary contact pressure and absorbs shock at the contact position by installing the spring member 12 between the tip portions 11 at both ends.
전기 전도성 접촉핀이 하우징(13) 내에서 슬라이드 이동하기 위해서는 전기 전도성 접촉핀의 외면과 하우징(13) 내면 사이에는 틈새가 존재해야 한다. 하지만, 종래 슬라이드형 전기 전도성 접촉핀은 하우징(13)과 전기 전도성 접촉핀을 별도로 제작한 후 이들을 결합하여 사용하기 때문에, 필요 이상으로 전기 전도성 접촉핀의 외면이 하우징(13)의 내면과 이격되는 등 틈새 관리를 정밀하게 수행할 수 없다.In order for the electrically conductive contact pin to slide within the housing 13 , a gap must exist between the outer surface of the electrically conductive contact pin and the inner surface of the housing 13 . However, in the conventional slide-type electrically conductive contact pin, since the housing 13 and the electrically conductive contact pin are separately manufactured and then used by combining them, the outer surface of the electrically conductive contact pin is spaced apart from the inner surface of the housing 13 more than necessary. It is not possible to precisely perform niche management.
따라서 전기 신호가 팁부(11)를 경유하여 하우징으로 전달되는 과정에서 전기 신호의 손실 및 왜곡이 발생되므로 검사 신뢰도가 감소하는 문제가 발생하게 된다.Accordingly, loss and distortion of the electrical signal are generated in the process in which the electrical signal is transmitted to the housing via the tip portion 11 , so that the inspection reliability is reduced.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 1) 대한민국 등록특허공보 등록번호 제10-0659944호(Patent Document 1) Republic of Korea Patent Publication Registration No. 10-0659944
(특허문헌 2) 대한민국 등록특허공보 등록번호 제10-0647131호(Patent Document 2) Republic of Korea Patent Publication No. 10-0647131
본 발명은 상술한 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 전기 전도성 접촉핀과 하우징을 멤스(MEMS)공정을 이용하여 한꺼번에 제작함으로써 전기 전도성과 하우징간의 미세한 틈새를 정밀하게 관리할 수 있는 전기 전도성 접촉핀 어셈블리 및 그 제조방법을 제공하는 것을 그 목적으로 한다.The present invention has been devised to solve the problems of the prior art described above, and it is possible to precisely manage a minute gap between the electrical conductivity and the housing by manufacturing an electrically conductive contact pin and a housing at once using a MEMS process. An object of the present invention is to provide a conductive contact pin assembly and a method for manufacturing the same.
이러한 본 발명의 목적을 달성하기 위해, 본 발명의 전기 전도성 접촉핀 어셈블리의 제조방법은, 양극산화막 재질의 제1몰드를 이용하여 전기 전도성 접촉핀과 하우징의 측벽부를 제작하는 단계; 패터닝 가능한 재질의 제2몰드를 이용하여 상기 측벽부와 연결되고 상기 전기 전도성 접촉핀의 제1면과는 이격되도록 상기 하우징의 상면부를 제작하는 단계; 패터닝 가능한 재질의 제3몰드를 이용하여 상기 측벽부와 연결되고 상기 전기 전도성 접촉핀의 제2면과는 이격되도록 상기 하우징의 하면부를 제작하는 단계; 및 상기 제1몰드, 제2몰드 및 제3몰드를 제거하는 단계;를 포함한다.In order to achieve the object of the present invention, a method for manufacturing an electrically conductive contact pin assembly of the present invention includes: manufacturing an electrically conductive contact pin and a sidewall of a housing using a first mold made of an anodized film; manufacturing an upper surface portion of the housing to be connected to the sidewall portion and spaced apart from the first surface of the electrically conductive contact pin by using a second mold made of a patternable material; manufacturing a lower surface portion of the housing to be connected to the side wall portion and spaced apart from a second surface of the electrically conductive contact pin by using a third mold made of a patternable material; and removing the first mold, the second mold, and the third mold.
또한, 상기 전기 전도성 접촉핀과 상기 하우징의 측벽부를 제작하는 단계는, 상기 양극산화막 재질의 제1몰드에 제1개구 패턴 및 제2개구 패턴을 형성하는 단계; 및 상기 제1개구 패턴 및 상기 제2개구 패턴에 금속을 충진하여 상기 전기 전도성 접촉핀과 상기 하우징의 측벽부를 제작하는 단계를 포함한다.The manufacturing of the electrically conductive contact pin and the sidewall of the housing may include: forming a first opening pattern and a second opening pattern in a first mold made of the anodized film material; and filling the first opening pattern and the second opening pattern with metal to fabricate the electrically conductive contact pin and a sidewall of the housing.
또한, 상기 하우징의 상면부를 제작하는 단계는, 패터닝 가능 재질을 형성하고 이를 패터닝하여 제3개구 패턴을 구비하는 제2몰드를 형성하는 단계; 및 상기 제2몰드의 제3개구 패턴에 금속을 충진하여 상기 하우징의 상면부를 제작하는 단계;를 포함한다.In addition, the manufacturing of the upper surface of the housing may include: forming a patternable material and patterning it to form a second mold having a third opening pattern; and filling the third opening pattern of the second mold with metal to fabricate the upper surface of the housing.
또한, 상기 하우징의 하면부를 제작하는 단계는, 패터닝 가능 재질을 형성하고 이를 패터닝하여 제4개구 패턴을 구비하는 제3몰드를 형성하는 단계; 및 상기 제3몰드의 제4개구 패턴에 금속을 충진하여 상기 하우징의 하면부를 제작하는 단계를 포함한다.In addition, the manufacturing of the lower surface of the housing may include: forming a patternable material and patterning it to form a third mold having a fourth opening pattern; and manufacturing the lower surface of the housing by filling the fourth opening pattern of the third mold with metal.
한편, 본 발명의 전기 전도성 접촉핀 어셈블리는, 제1면, 상기 제1면에 대향되는 제2면 및 상기 제1면 및 제2면을 연결하는 측면을 구비하는 전기 전도성 접촉핀; 및 상기 전기 전도성 접촉핀이 내부에서 슬라이딩 가능하고 상기 제1면에 대향하는 상면부, 상기 제2면에 대향하는 하면부 및 상기 측면에 대향하는 측벽부를 구비하는 하우징;을 포함하고, 상기 전기 전도성 접촉핀의 측면에서 상기 제1면 및 상기 제2면 방향으로 길게 파인 홈으로 형성되되 복수 개가 나란하게 형성된 제1미세 트렌치를 포함한다.On the other hand, the electrically conductive contact pin assembly of the present invention, an electrically conductive contact pin having a first surface, a second surface opposite to the first surface, and a side connecting the first surface and the second surface; and a housing in which the electrically conductive contact pin is slidable therein and has an upper surface portion opposite to the first surface, a lower surface portion opposite to the second surface, and a side wall portion opposite to the side surface; The contact pin includes a plurality of first fine trenches formed in a long groove in the direction of the first surface and the second surface from the side of the contact pin formed side by side.
또한, 상기 제1미세 트렌치는 상기 제1면과 상기 제2면에는 형성되지 않는다.In addition, the first fine trench is not formed on the first surface and the second surface.
또한, 상기 제1미세 트렌치와 동일 방향으로 상기 하우징의 측벽부에 형성된 제2미세 트렌치를 포함한다.It also includes a second micro trench formed on a sidewall of the housing in the same direction as the first micro trench.
또한, 상기 제2미세 트렌치의 상, 하부에는 제2미세 트렌치가 형성되지 않는다.In addition, the second fine trenches are not formed above and below the second fine trenches.
또한, 상기 제2미세 트렌치는 상기 상면부 및 상기 하면부에는 형성되지 않는다.In addition, the second fine trench is not formed in the upper surface portion and the lower surface portion.
한편, 본 발명의 전기 전도성 접촉핀은, 제1면, 상기 제1면에 대향되는 제2면 및 상기 제1면 및 제2면을 연결하는 측면을 구비하는 전기 전도성 접촉핀; 및 상기 전기 전도성 접촉핀이 내부에서 슬라이딩 가능하고 상기 제1면에 대향하는 상면부, 상기 제2면에 대향하는 하면부 및 상기 측면에 대향하는 측벽부를 구비하는 하우징;을 포함하고, 상기 하우징의 측벽부의 측면에서 상기 제1면 및 상기 제2면 방향으로 길게 파인 홈으로 형성되되 복수 개가 나란하게 형성된 제2미세 트렌치를 포함한다.On the other hand, the electrically conductive contact pin of the present invention, an electrically conductive contact pin having a first surface, a second surface opposite to the first surface, and a side connecting the first surface and the second surface; and a housing in which the electrically conductive contact pin is slidable therein and has an upper surface portion opposite to the first surface, a lower surface portion opposite to the second surface, and a side wall portion opposite to the side surface; It includes a plurality of second fine trenches formed in a long groove in the direction of the first surface and the second surface from the side wall of the sidewall formed side by side.
본 발명은 전기 전도성 접촉핀과 하우징으로 멤스(MEMS)공정을 이용하여 한꺼번에 제작함으로써 전기 전도성과 하우징간의 미세한 틈새를 정밀하게 관리할 수 있는 전기 전도성 접촉핀 어셈블리 및 그 제조방법을 제공한다.The present invention provides an electrically conductive contact pin assembly capable of precisely managing a minute gap between electrical conductivity and a housing by manufacturing the electrically conductive contact pin and a housing at once using a MEMS process, and a method for manufacturing the same.
도 1a는 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀 어셈블리의 평면도.1A is a plan view of an electrically conductive contact pin assembly according to a preferred embodiment of the present invention;
도 1b는 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀 어셈블리의 수평 단면도.1B is a horizontal cross-sectional view of an electrically conductive contact pin assembly according to a preferred embodiment of the present invention;
도 2는 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀 어셈블리의 수직 단면도.2 is a vertical cross-sectional view of an electrically conductive contact pin assembly according to a preferred embodiment of the present invention;
도 3 내지 도 6은 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀 어셈블리의 제조방법을 나타낸 도면.3 to 6 are views showing a method of manufacturing an electrically conductive contact pin assembly according to a preferred embodiment of the present invention.
도 7은 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀의 단부 사시도.7 is an end perspective view of an electrically conductive contact pin according to a preferred embodiment of the present invention;
도 8은 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀의 단부를 촬영한 사진.8 is a photograph taken at an end of an electrically conductive contact pin according to a preferred embodiment of the present invention.
도 9는 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀의 측면을 도시한 도면.9 is a view showing a side view of an electrically conductive contact pin according to a preferred embodiment of the present invention.
도 10은 본 발명의 바람직한 실시예에 따른 하우징의 측벽부의 측면을 도시한 도면.10 is a view showing a side view of a side wall portion of a housing according to a preferred embodiment of the present invention.
도 11은 종래기술에 따른 전기 전도성 접촉핀 어셈블리를 도시한 도면.11 is a view showing an electrically conductive contact pin assembly according to the prior art.
이하의 내용은 단지 발명의 원리를 예시한다. 그러므로 당업자는 비록 본 명세서에 명확히 설명되거나 도시되지 않았지만 발명의 원리를 구현하고 발명의 개념과 범위에 포함된 다양한 장치를 발명할 수 있는 것이다. 또한, 본 명세서에 열거된 모든 조건부 용어 및 실시 예들은 원칙적으로, 발명의 개념이 이해되도록 하기 위한 목적으로만 명백히 의도되고, 이와 같이 특별히 열거된 실시 예들 및 상태들에 제한적이지 않는 것으로 이해되어야 한다.The following is merely illustrative of the principles of the invention. Therefore, those skilled in the art will be able to devise various devices that, although not explicitly described or shown herein, embody the principles of the invention and are included in the spirit and scope of the invention. In addition, it should be understood that all conditional terms and examples listed herein are, in principle, expressly intended only for the purpose of understanding the inventive concept and are not limited to the specifically enumerated embodiments and states as such. .
상술한 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해질 것이며, 그에 따라 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다.The above-described objects, features, and advantages will become more apparent through the following detailed description in relation to the accompanying drawings, and accordingly, those of ordinary skill in the art to which the invention pertains will be able to easily practice the technical idea of the invention. .
본 명세서에서 기술하는 실시 예들은 본 발명의 이상적인 예시 도인 단면도 및/또는 사시도들을 참고하여 설명될 것이다. 이러한 도면들에 도시된 막 및 영역들의 두께 등은 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 따라서, 본 발명의 실시 예들은 도시된 특정 형태로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형태의 변화도 포함하는 것이다. Embodiments described herein will be described with reference to cross-sectional and/or perspective views, which are ideal illustrative drawings of the present invention. The thicknesses of films and regions shown in these drawings are exaggerated for effective description of technical content. The shape of the illustrative drawing may be modified due to manufacturing technology and/or tolerance. Accordingly, embodiments of the present invention are not limited to the specific form shown, but also include changes in the form generated according to the manufacturing process.
다양한 실시예들을 설명함에 있어서, 동일한 기능을 수행하는 구성요소에 대해서는 실시예가 다르더라도 편의상 동일한 명칭 및 동일한 참조번호를 부여하기로 한다. 또한, 이미 다른 실시예에서 설명된 구성 및 작동에 대해서는 편의상 생략하기로 한다.In describing various embodiments, components performing the same function will be given the same names and the same reference numbers for convenience even if the embodiments are different. In addition, configurations and operations already described in other embodiments will be omitted for convenience.
본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀은 MEMS 기술에 의해 제작되며 그 용도에 따라 적용분야가 달라질 수 있다. 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀은, 검사장치에 구비되어 검사 대상물과 전기적, 물리적으로 접촉하여 전기적 신호를 전달하는데 사용된다. 검사장치는 반도체 제조공정에 사용되는 검사장치일 수 있으며, 그 일례로 검사 대상물에 따라 프로브 카드일 수 있고, 테스트 소켓일 수 있다. 본 발명의 바람직한 실시예에 따른 검사장치는 이에 한정되는 것은 아니며, 전기를 인가하여 검사 대상물의 불량 여부를 확인하기 위한 장치라면 모두 포함된다. The electrically conductive contact pin according to a preferred embodiment of the present invention is manufactured by MEMS technology, and the field of application may vary according to its use. The electrically conductive contact pin according to a preferred embodiment of the present invention is provided in the inspection device and is used to electrically and physically contact the inspection object to transmit an electrical signal. The inspection apparatus may be an inspection apparatus used in a semiconductor manufacturing process, and for example, may be a probe card or a test socket depending on an object to be inspected. The inspection apparatus according to the preferred embodiment of the present invention is not limited thereto, and any apparatus for checking whether an object to be inspected is defective by applying electricity is included.
이하, 첨부된 도면에 기초하여 본 발명의 바람직한 실시예에 대해 설명한다.Hereinafter, a preferred embodiment of the present invention will be described based on the accompanying drawings.
도 1 및 도 2는 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀 어셈블리(100)를 설명하기 위한 도면이다.1 and 2 are views for explaining an electrically conductive contact pin assembly 100 according to a preferred embodiment of the present invention.
본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀 어셈블리(100)는 전기 전도성 접촉핀(200)과 전기 전도성 접촉핀(200)이 수용되는 하우징(300)을 포함하여 구성된다. 전기 전도성 접촉핀(200)은 제1면(201), 제1면(201)에 대향되는 제2면(202)와, 제1면(201)과 제2면(202)을 연결하는 측면(203)을 구비한다. 전기 전도성 접촉핀(200)은 하우징(300) 내부에서 슬라이딩 가능하고 제1면(201)에 대향하는 상면부(301), 제2면(202)에 대향하는 하면부(302)와, 측면(203)에 대향하는 측벽부(303)를 구비한다.The electrically conductive contact pin assembly 100 according to a preferred embodiment of the present invention is configured to include an electrically conductive contact pin 200 and a housing 300 in which the electrically conductive contact pin 200 is accommodated. The electrically conductive contact pin 200 has a first surface 201, a second surface 202 opposite to the first surface 201, and a side connecting the first surface 201 and the second surface 202 ( 203) is provided. The electrically conductive contact pin 200 is slidable inside the housing 300 and has an upper surface portion 301 opposite to the first surface 201, a lower surface portion 302 opposite to the second surface 202, and a side surface ( A side wall portion 303 opposite to 203 is provided.
도 1 및 도 2를 참조하면, 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀(200)은 제1접촉 팁부(210), 제2접촉 팁부(230)와, 제1접촉 팁부(210)와 제2접촉 팁부(230)를 연결하는 바디부(250)를 포함한다. 제1접촉 팁부(210) 및 제2접촉 팁부(230) 중 적어도 어느 하나에는 탄성 접촉부(270)가 형성된다. 1 and 2 , an electrically conductive contact pin 200 according to a preferred embodiment of the present invention includes a first contact tip 210 , a second contact tip 230 , and a first contact tip 210 and and a body part 250 connecting the second contact tip part 230 . An elastic contact portion 270 is formed on at least one of the first contact tip portion 210 and the second contact tip portion 230 .
전기 전도성 접촉핀(200)은 제1접촉 팁부(210), 제2접촉 팁부(230) 및 바디부(250)가 멤스(MEMS) 기술에 의해 일체형으로 제작된다. In the electrically conductive contact pin 200 , the first contact tip portion 210 , the second contact tip portion 230 , and the body portion 250 are integrally manufactured by MEMS technology.
바디부(250)는 지그재그 상으로 형성되어 전기 전도성 접촉핀(200)의 길이 방향으로 탄력적으로 신축 가능하게 제작될 수 있다. 바디부(250)의 형상은 지그재그 형상 이외에 탄성 변형 가능한 형상이라면 다른 형상으로 제작될 수 있다.The body part 250 may be formed in a zigzag shape to be elastically stretchable in the longitudinal direction of the electrically conductive contact pin 200 . The shape of the body part 250 may be manufactured in another shape as long as it is elastically deformable other than the zigzag shape.
전기 전도성 접촉핀(200)과 하우징(300)은 전도성 재료로 형성될 수 있다. 여기서 전도성 재료는 백금(Pt), 로듐(Ph), 팔라듐(Pd), 구리(Cu), 은(Ag), 금(Au), 이리듐(Ir), 니켈(Ni), 코발트(Co)나 이들의 합금, 또는 니켈-코발트(NiCo)합금, 팔라듐-코발트(PdCo)합금, 팔라듐-니켈(PdNi)합금 또는 니켈-인(NiP)합금 중에서 적어도 하나 선택될 수 있다. The electrically conductive contact pins 200 and the housing 300 may be formed of a conductive material. Here, the conductive material is platinum (Pt), rhodium (Ph), palladium (Pd), copper (Cu), silver (Ag), gold (Au), iridium (Ir), nickel (Ni), cobalt (Co) or these or at least one selected from a nickel-cobalt (NiCo) alloy, a palladium-cobalt (PdCo) alloy, a palladium-nickel (PdNi) alloy, or a nickel-phosphorus (NiP) alloy.
전기 전도성 접촉핀(200)과 하우징(300)의 측벽부(303)는 복수 개의 전도성 재료가 적층된 다층 구조를 가질 수 있다. 서로 다른 재질로 구성되는 각각의 전도층은, 백금(Pt), 로듐(Ph), 팔라듐(Pd), 구리(Cu), 은(Ag), 금(Au), 이리듐(Ir), 니켈(Ni), 코발트(Co)나 이들의 합금, 또는 팔라듐-코발트(PdCo)합금, 팔라듐-니켈(PdNi)합금 또는 니켈-인(NiP)합금 중에서 선택될 수 있다. The electrically conductive contact pins 200 and the sidewall 303 of the housing 300 may have a multi-layered structure in which a plurality of conductive materials are stacked. Each conductive layer made of a different material is platinum (Pt), rhodium (Ph), palladium (Pd), copper (Cu), silver (Ag), gold (Au), iridium (Ir), nickel (Ni) ), cobalt (Co) or an alloy thereof, or a palladium-cobalt (PdCo) alloy, a palladium-nickel (PdNi) alloy, or a nickel-phosphorus (NiP) alloy.
제1접촉 팁부(210)는 검사 장치의 패드 또는 검사 대상물에 실질적으로 접촉하는 부위이고, 제2접촉 팁부(230)는 검사 대상물 또는 검사 장치의 패드에 실질적으로 접촉하는 부위로서 전기 전도성 접촉핀(200)의 양단에 가해지는 압축력에 의해 바디부(250)는 길이 방향으로 탄력적으로 압축되고 양단에 가해지는 압축력이 해제되면 바디부(250)는 다시 원래 상태로 복원된다. The first contact tip portion 210 is a portion that substantially contacts the pad of the inspection device or the inspection object, and the second contact tip portion 230 is a portion that is in substantially contact with the inspection object or the pad of the inspection device, and is an electrically conductive contact pin ( The body part 250 is elastically compressed in the longitudinal direction by the compressive force applied to both ends of the 200), and when the compressive force applied to both ends is released, the body part 250 is restored to its original state again.
탄성 접촉부(270)는 제1접촉 팁부(210) 및 제2접촉 팁부(230) 중 적어도 어느 하나에 형성된다. 도 1에는 탄성 접촉부(270)가 제1접촉 팁부(210)에 구비된 구성이 도시되어 있다. The elastic contact portion 270 is formed on at least one of the first contact tip portion 210 and the second contact tip portion 230 . 1 shows a configuration in which the elastic contact portion 270 is provided on the first contact tip portion 210 .
탄성 접촉부(270)의 일단은 제1접촉 팁부(400)에 연결되고, 탄성 접촉부(270)의 타단은 자유단이다. 이를 통해 탄성 접촉부(270)는 제1접촉 팁부(400)에 의해 지지 및 고정되면서 탄성 변형가능하다.One end of the elastic contact portion 270 is connected to the first contact tip portion 400 , and the other end of the elastic contact portion 270 is a free end. Through this, the elastic contact portion 270 is elastically deformable while being supported and fixed by the first contact tip portion 400 .
전기 전도성 접촉핀(200)의 좌측에 구비된 탄성 접촉부(270)는 영어 알파벳 "C"자 형상과 같은 형상으로 만곡되어 형성되고, 전기 전도성 접촉핀(200)의 우측에 구비된 탄성 접촉부(270)는 "역 C"자 형성과 같은 형상으로 만곡되어 형성된다. The elastic contact portion 270 provided on the left side of the electrically conductive contact pin 200 is curved in the same shape as the English alphabet "C" shape, and the elastic contact portion 270 provided on the right side of the electrically conductive contact pin 200 . ) is formed by being curved in the same shape as the "inverted C" shape.
탄성 접촉부(270)의 일단은 제1접촉 팁부(400)에 연결되는 근부로서, 타단에서 근부로 갈수록 전기 전도성 접촉핀(200)의 두께는 두껍게 형성된다. 이를 통해 변형시 전기 전도성 접촉핀(200)의 근부로 응력이 집중되어 파손되는 것을 방지하는 효과를 가진다.One end of the elastic contact portion 270 is a root portion connected to the first contact tip portion 400, and the thickness of the electrically conductive contact pin 200 increases from the other end to the root portion. Through this, it has an effect of preventing the stress from being concentrated and damaged in the vicinity of the electrically conductive contact pin 200 when deformed.
탄성 접촉부(270)의 타단은 자유단으로 구성된다. 탄성 접촉부(270)의 타단이 자유단으로 구성되지 않고 전기 전도성 접촉핀(200)의 어딘가에 연결되는 구성을 채택할 경우에는, 제1접촉 팁부(210)의 슬라이드 이동시 탄성 접촉부(270)가 변형량이 크지 않아 오히려 마찰저항이 크게 작용할 수 있게 된다. 이와는 다르게 본 발명의 바람직한 실시예에 따른 탄성 접촉부(270)는 그 타단이 자유단으로 구성됨에 따라 제1접촉 팁부(210)의 슬라이드 이동시 탄성 접촉부(270)의 변형이 쉽게 일어나게 함으로써 마찰저항을 상대적으로 줄일 수 있는 효과를 가지게 된다. The other end of the elastic contact portion 270 is configured as a free end. If the other end of the elastic contact portion 270 is not configured as a free end but is connected to somewhere in the electrically conductive contact pin 200, the elastic contact portion 270 deforms when the first contact tip portion 210 slides. Since it is not large, the frictional resistance can act significantly. On the contrary, the elastic contact portion 270 according to the preferred embodiment of the present invention has the other end configured as a free end, so that when the first contact tip portion 210 slides, deformation of the elastic contact portion 270 easily occurs, thereby reducing frictional resistance. has the effect of reducing
탄성 접촉부(270)는 제1접촉 팁부(210)의 양측에 구비된다. 제1접촉 팁부(210)의 양측에 구비되는 탄성 접촉부(270)의 변형 전 폭의 길이는 하우징(500)의 내면간의 길이보다 작게 형성된다. 이를 통해 제1접촉 팁부(210)는 하우징(500)의 내면과 항시 접촉 상태를 유지할 수 있게 된다. The elastic contact portion 270 is provided on both sides of the first contact tip portion 210 . The length of the width before deformation of the elastic contact portion 270 provided on both sides of the first contact tip portion 210 is smaller than the length between the inner surfaces of the housing 500 . Through this, the first contact tip 210 can always maintain a state of contact with the inner surface of the housing 500 .
또한 탄성 접촉부(270)는 만곡진 형상을 가지므로, 제1접촉 팁부(210)가 하우징(500)의 내면을 따라 슬라이드 이동시에도 탄성 접촉부(270)에 작용하는 마찰력의 수직항력이 제1접촉 팁부(210) 방향으로 작용한다. 그 결과 제1접촉 팁부(210)은 슬라이드 이동시에도 하우징(500)의 내면과 항시 접촉 상태를 유지할 수 있게 한다.In addition, since the elastic contact part 270 has a curved shape, even when the first contact tip part 210 slides along the inner surface of the housing 500 , the normal drag force of the frictional force acting on the elastic contact part 270 is the first contact tip part It acts in the (210) direction. As a result, the first contact tip 210 can always maintain a contact state with the inner surface of the housing 500 even when sliding.
탄성 접촉부(270)가 전기 전도성 재질의 하우징(500) 내면에 접촉함에 따라 제1접촉 팁부(210), 하우징(500) 및 제2접촉 팁부(230)를 지나는 전류 경로가 형성된다. 따라서 전기 전도성 접촉핀(200)의 탄성 변형은 바디부(250)가 담당하고, 전기 전도성 접촉핀(200)의 전류 경로는 제1접촉 팁부(210), 하우징(500) 및 제2접촉 팁부(230)가 담당함으로써, 전기 전도성 접촉핀(200)을 흐르는 전류의 경로를 보다 짧게 형성하는 것이 가능하게 된다.As the elastic contact part 270 contacts the inner surface of the housing 500 made of an electrically conductive material, a current path passing through the first contact tip part 210 , the housing 500 , and the second contact tip part 230 is formed. Therefore, the elastic deformation of the electrically conductive contact pin 200 is handled by the body part 250, and the current path of the electrically conductive contact pin 200 is the first contact tip part 210, the housing 500, and the second contact tip part ( As the 230 is in charge, it is possible to form a shorter path of the current flowing through the electrically conductive contact pin 200 .
하우징(500)의 양단부에는 걸림턱(310)이 구비된다. 걸림턱(310)에 의해 형성되는 구멍의 크기는 전기 전도성 접촉핀(200)이 손쉽게 빠져나오지 못할 정도의 크기를 가진다. 걸림턱(310)에 의해 형성되는 구멍의 크기는 제1접촉 팁부(210)의 폭보다 크고 2개의 탄성 접촉부(270)간의 최장 거리보다 작다. 바디부(250)가 최대 길이로 신장되었을 때, 걸림턱(310)은 탄성 접촉부(270)의 근부를 지지한다. 이를 통해 제작과정에서 하우징(500)과 걸림턱(310) 사이의 틈새를 여유있게 하는 것이 가능하고, 제1접촉 팁부(210)의 원활한 슬라이드 이동을 보장할 수 있다. Locking projections 310 are provided at both ends of the housing 500 . The size of the hole formed by the locking protrusion 310 is such that the electrically conductive contact pin 200 cannot easily come out. The size of the hole formed by the locking protrusion 310 is larger than the width of the first contact tip portion 210 and smaller than the longest distance between the two elastic contact portions 270 . When the body part 250 is extended to its maximum length, the locking jaw 310 supports the root of the elastic contact part 270 . Through this, it is possible to make a clearance between the housing 500 and the locking jaw 310 during the manufacturing process, and it is possible to ensure smooth sliding movement of the first contact tip portion 210 .
또한 탄성 접촉부(270)는 하우징(500)의 내면과 항시 접촉 상태를 유지하므로 이물질이 하우징(500) 내부로 침투하는 것을 방지한다. 더욱이, 탄성 접촉부(270)의 근부 측에서는 걸림턱(310)와 제1접촉 팁부(210) 사이에 충분한 이격 공간이 존재하므로 슬라이딩 과정에서 발생한 이물질을 외부로 용이하게 배출할 수 있게 된다. In addition, since the elastic contact part 270 always maintains a state of contact with the inner surface of the housing 500 , foreign substances are prevented from penetrating into the housing 500 . Moreover, since a sufficient separation space exists between the locking jaw 310 and the first contact tip 210 on the proximal side of the elastic contact portion 270 , it is possible to easily discharge foreign substances generated during the sliding process to the outside.
본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀 어셈블리(100)는 멤스(MEMS) 공정을 이용하여 전기 전도성 접촉핀(200)과 하우징(300)을 한꺼번에 제작하게 된다. 이하에서는 도 3 내지 도 6을 참조하여, 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀 어셈블리(100)의 제조방법에 대해 설명한다.In the electrically conductive contact pin assembly 100 according to a preferred embodiment of the present invention, the electrically conductive contact pin 200 and the housing 300 are simultaneously manufactured using a MEMS process. Hereinafter, a method of manufacturing the electrically conductive contact pin assembly 100 according to a preferred embodiment of the present invention will be described with reference to FIGS. 3 to 6 .
본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀 어셈블리(100)의 제조방법은, (i)양극산화막 재질의 제1몰드(10)를 이용하여 전기 전도성 접촉핀(200)과 하우징(300)의 측벽부(303)를 제작하는 단계; (ii)패터닝 가능한 재질의 제2몰드(20)를 이용하여 측벽부(303)와 연결되고 전기 전도성 접촉핀(200)의 제1면(201)과는 이격되도록 하우징(300)의 상면부(301)를 제작하는 단계; (iii)패터닝 가능한 재질의 제3몰드(30)를 이용하여 측벽부(303)와 연결되고 전기 전도성 접촉핀(200)의 제2면(202)과는 이격되도록 하우징(300)의 하면부(302)를 제작하는 단계; 및 (iv)제1몰드(10), 제2몰드(20) 및 제3몰드(30)를 제거하는 단계;를 포함한다.The manufacturing method of the electrically conductive contact pin assembly 100 according to a preferred embodiment of the present invention comprises (i) an electrically conductive contact pin 200 and a housing 300 using a first mold 10 made of an anodized film material. manufacturing the side wall portion 303; (ii) the upper surface portion of the housing 300 so as to be connected to the side wall portion 303 using the second mold 20 made of a patternable material and spaced apart from the first surface 201 of the electrically conductive contact pin 200 ( 301) making; (iii) the lower surface of the housing 300 so as to be connected to the sidewall 303 using the third mold 30 of a patternable material and spaced apart from the second surface 202 of the electrically conductive contact pin 200 ( 302) making; and (iv) removing the first mold 10 , the second mold 20 , and the third mold 30 .
먼저, (i) 전기 전도성 접촉핀(200)과 하우징(300)의 측벽부(303)를 제작하는 단계는, 양극산화막 재질의 제1몰드(10)에 제1개구 패턴(11) 및 제2개구 패턴(12)을 형성하는 단계; 및 제1개구 패턴(11) 및 제2개구 패턴(12)에 금속을 충진하여 전기 전도성 접촉핀(200)과 하우징(300)의 측벽부(303)를 제작하는 단계를 포함한다.First, (i) manufacturing the electrically conductive contact pins 200 and the sidewall portion 303 of the housing 300 includes the first opening pattern 11 and the second forming an opening pattern 12; and filling the first opening pattern 11 and the second opening pattern 12 with metal to fabricate the electrically conductive contact pin 200 and the sidewall portion 303 of the housing 300 .
도 3a를 참조하면, 먼저 양극산화막 재질의 제1몰드(10)를 준비한다. 양극산화막 재질의 제1몰드(10)의 하부에는 제1 시드층(15)이 구비된다. 제1 시드층(15)은 추후 전기 도금을 위해 제1몰드(10)의 하부에 미리 형성된다. 제1 시드층(15)은 구리(Cu), 백금(Pt), 탄탈륨(Ta), 티타늄(Ti) 또는 이들의 합금 재질인 것이 바람직하나, 전기 도금을 위한 시드층으로 기능하는 재질이라면 이에 대한 한정은 없다. 바람직하게는 제1시드층(15)은 구리(Cu)일 수 있다. 제1시드층(15)은 스퍼터링 공정에 의해 10㎚이상 1㎛이하의 두께로 형성될 수 있다.Referring to FIG. 3A , first, a first mold 10 made of an anodized film material is prepared. A first seed layer 15 is provided under the first mold 10 made of an anodized film material. The first seed layer 15 is previously formed under the first mold 10 for subsequent electroplating. The first seed layer 15 is preferably made of copper (Cu), platinum (Pt), tantalum (Ta), titanium (Ti), or an alloy thereof. There is no limit. Preferably, the first seed layer 15 may be made of copper (Cu). The first seed layer 15 may be formed to a thickness of 10 nm or more and 1 μm or less by a sputtering process.
양극산화막 재질의 제1몰드(10)는, 모재인 금속을 양극산화하여 형성된 막을 의미하고, 포어는 금속을 양극산화하여 양극산화막을 형성하는 과정에서 형성되는 구멍을 의미한다. 예컨대, 모재인 금속이 알루미늄(Al) 또는 알루미늄 합금인 경우, 모재를 양극산화하면 모재의 표면에 알루미늄 산화물(Al203) 재질의 양극산화막이 형성된다. 위와 같이 형성된 양극산화막은 수직적으로 내부에 포어(pore)가 형성되지 않은 배리어층과, 내부에 포어가 형성된 다공층으로 구분된다. 배리어층과 다공층을 갖는 양극산화막이 표면에 형성된 모재에서, 모재를 제거하게 되면, 알루미늄 산화물(Al203) 재질의 양극산화막만이 남게 된다. 양극산화막은 양극산화시 형성된 배리어층이 제거되어 포어의 상, 하로 관통되는 구조로 형성되거나 양극산화시 형성된 배리어층이 그대로 남아 포어의 상, 하 중 일단부를 밀폐하는 구조로 형성될 수 있다. 양극산화막은 2~3ppm/℃의 열팽창 계수를 갖는다. 이로 인해 고온의 환경에 노출될 경우, 온도에 의한 열변형이 적다. 따라서 전기 전도성 접촉핀(200)의 제작 환경에 비록 고온 환경이라 하더라도 열 변형없이 정밀한 전기 전도성 접촉핀(200)을 제작할 수 있다. The first mold 10 made of an anodization film means a film formed by anodizing a metal, which is a base material, and the pores mean a hole formed in the process of forming an anodization film by anodizing the metal. For example, when the base metal is aluminum (Al) or an aluminum alloy, when the base material is anodized, an anodization film made of aluminum oxide (Al 2 0 3 ) material is formed on the surface of the base material. The anodic oxide film formed as described above is vertically divided into a barrier layer in which pores are not formed and a porous layer in which pores are formed. When the base material is removed from the base material on which the anodized film having a barrier layer and a porous layer is formed on the surface, only the anodized film made of aluminum oxide (Al 2 0 3 ) material remains. The anodized film may be formed in a structure in which the barrier layer formed during anodization is removed to penetrate the top and bottom of the pores, or the barrier layer formed during anodization remains as it is and seals one end of the top and bottom of the pores. The anodized film has a coefficient of thermal expansion of 2-3 ppm/°C. For this reason, when exposed to a high temperature environment, thermal deformation due to temperature is small. Therefore, even in a high-temperature environment in the manufacturing environment of the electrically conductive contact pin 200, the precise electrically conductive contact pin 200 can be manufactured without thermal deformation.
다음으로 도 3b를 참조하면, 양극산화막 재질의 제1몰드(10)에 제1개구 패턴(11)과 제2개구 패턴(12)을 형성한다. 제1개구 패턴(11)과 제2개구 패턴(12)은 양극산화막 재질의 제1몰드(10)의 적어도 일부를 제거함으로써 형성될 수 있다. 제1개구 패턴(11)과 제2개구 패턴(12)은 양극산화막 재질의 제1몰드(10)를 에칭하여 형성될 수 있다. 이를 위해 양극산화막 재질의 제1몰드(10)의 상면에 포토 레지스트를 구비하고 이를 패터닝한 다음, 패터닝되어 오픈된 영역의 양극산화막이 에칭 용액과 반응하여 제1개구 패턴(11)과 제2개구 패턴(12)이 형성될 수 있다. Next, referring to FIG. 3B , a first opening pattern 11 and a second opening pattern 12 are formed on the first mold 10 made of an anodized film material. The first opening pattern 11 and the second opening pattern 12 may be formed by removing at least a portion of the first mold 10 made of an anodized film material. The first opening pattern 11 and the second opening pattern 12 may be formed by etching the first mold 10 made of an anodized film material. To this end, a photoresist is provided on the upper surface of the first mold 10 made of an anodization film and patterned. Then, the patterned and open anodization film reacts with the etching solution to form the first opening pattern 11 and the second opening. A pattern 12 may be formed.
구체적으로 설명하면, 제1개구 패턴(11)과 제2개구 패턴(12)을 형성하기 전의 양극산화막 재질의 제1몰드(10)의 상면에 감광성 재료를 구비한 다음 노광 및 현상 공정이 수행될 수 있다. 감광성 재료는 노광 및 현상 공정에 의해 오픈영역을 형성하면서 적어도 일부가 패터닝되어 제거될 수 있다. 양극산화막 재질의 제1몰드(10)는 패터닝 과정에 의해 감광성 재료가 제거된 오픈영역을 통해 에칭 공정이 수행되어 제1개구 패턴(11)과 제2개구 패턴(12)을 형성하게 된다. 또한, 양극산화막 재질의 제1몰드(10)를 에칭 용액으로 습식 에칭하면 수직한 내벽을 가지는 제1개구 패턴(11)과 제2개구 패턴(12)이 형성된다. Specifically, a photosensitive material is provided on the upper surface of the first mold 10 made of an anodization film material before the first opening pattern 11 and the second opening pattern 12 are formed, and then exposure and development processes are performed. can At least a portion of the photosensitive material may be patterned and removed while forming an open area by an exposure and development process. The etching process is performed on the first mold 10 made of the anodized film material through the open region from which the photosensitive material is removed by the patterning process to form the first opening pattern 11 and the second opening pattern 12 . In addition, when the first mold 10 made of an anodization film is wet-etched with an etching solution, a first opening pattern 11 and a second opening pattern 12 having vertical inner walls are formed.
포토 레지스트를 몰드로 이용하는 구성에 비해, 양극산화막을 몰드로 이용하여 도금층을 형성하게 되면, 도금층의 형상 정밀도가 향상되어 정밀한 미세 구조를 가지는 전기 전도성 접촉핀(200) 및 하우징(300)의 측벽부(303)의 제작이 가능하게 된다. 또한 전기 전도성 접촉핀(200)의 측면에서는 제1면(201) 및 제2면(202) 방향으로 길게 파인 홈으로 형성되되 복수 개가 나란하게 형성된 제1미세 트렌치(250)가 형성되고, 제1미세 트렌치(250)와 동일 방향으로 하우징(300)의 측벽부(303)에 제2미세 트렌치(350)가 형성된다. 제1미세 트렌치(250)와 제2미세 트렌치(350)의 구체적 구성은 후술한다.Compared to the configuration using photoresist as a mold, when the plating layer is formed using an anodized film as a mold, the shape precision of the plating layer is improved, and the electrically conductive contact pins 200 and the sidewalls of the housing 300 have a precise microstructure. (303) can be produced. In addition, on the side of the electrically conductive contact pin 200 , a plurality of first fine trenches 250 formed in a long groove in the direction of the first surface 201 and the second surface 202 are formed side by side, and the first A second fine trench 350 is formed in the sidewall 303 of the housing 300 in the same direction as the fine trench 250 . A detailed configuration of the first fine trench 250 and the second fine trench 350 will be described later.
다음으로 도 3c를 참조하면, 제1시드층(15)을 이용하여 전기 도금 공정을 수행한다. 제1개구 패턴(11)의 내부에는 도금층이 형성되어 전기 전도성 접촉핀(200)이 형성을 하고, 제2개구 패턴(12)의 내부에는 도금층이 형성되어 하우징(300)의 측벽부(303)를 형성한다. 도금 공정이 완료되면 평탄화 공정이 수행될 수 있다. 화학적 기계적 연마(CMP) 공정을 통해 양극산화막 재질의 제1몰드(10)의 상면으로 돌출된 도금층을 제거하면서 평탄화시킨다. Next, referring to FIG. 3C , an electroplating process is performed using the first seed layer 15 . A plating layer is formed inside the first opening pattern 11 to form an electrically conductive contact pin 200 , and a plating layer is formed inside the second opening pattern 12 to form a sidewall portion 303 of the housing 300 . to form When the plating process is completed, a planarization process may be performed. The plating layer protruding from the upper surface of the first mold 10 made of an anodized film is removed and planarized through a chemical mechanical polishing (CMP) process.
다음으로 (ii)패터닝 가능한 재질의 제2몰드(20)를 이용하여 측벽부(303)와 연결되고 전기 전도성 접촉핀(200)의 제1면(201)과는 이격되도록 하우징(300)의 상면부(301)를 제작하는 단계를 수행한다. 여기서, 하우징(300)의 상면부(301)를 제작하는 단계는, 제2시드층(17)을 패터닝하는 단계; 패터닝 가능 재질을 형성하고 이를 패터닝하여 제3개구 패턴(21)을 구비하는 제2몰드(20)를 형성하는 단계; 및 제2몰드(20)의 제3개구 패턴(21)에 금속을 충진하는 단계를 포함한다. Next, (ii) the upper surface of the housing 300 is connected to the side wall portion 303 using the second mold 20 made of a patternable material and spaced apart from the first surface 201 of the electrically conductive contact pin 200 . A step of manufacturing the part 301 is performed. Here, the manufacturing of the upper surface portion 301 of the housing 300 may include patterning the second seed layer 17 ; forming a second mold 20 having a third opening pattern 21 by forming a patternable material and patterning it; and filling the third opening pattern 21 of the second mold 20 with a metal.
도 4a를 참조하면, 양극산화막 재질의 제1몰드(10)의 상부에는 제2 시드층(17)이 구비된다. 제2 시드층(17)은 구리(Cu), 백금(Pt), 탄탈륨(Ta), 티타늄(Ti) 또는 이들의 합금 재질인 것이 바람직하나, 전기 도금을 위한 시드층으로 기능하는 재질이라면 이에 대한 한정은 없다. 바람직하게는 제2시드층(17)은 구리(Cu)일 수 있다. 제2시드층(17)은 스퍼터링 공정에 의해 10㎚이상 1㎛이하의 두께로 형성될 수 있다.Referring to FIG. 4A , a second seed layer 17 is provided on the first mold 10 made of an anodized film material. The second seed layer 17 is preferably made of copper (Cu), platinum (Pt), tantalum (Ta), titanium (Ti), or an alloy thereof. There is no limit. Preferably, the second seed layer 17 may be made of copper (Cu). The second seed layer 17 may be formed to a thickness of 10 nm or more and 1 μm or less by a sputtering process.
다음으로 도 4b를 참조하면 제2시드층(17)을 패터닝한다. 패터닝된 제2시드층(17)은 전기 전도성 접촉핀(200)의 제1면(201)의 상면과, 하우징(300)의 측벽부(303)와 전기 전도성 접촉핀(200) 사이의 제1몰드(10)의 상면에 형성된다. 제2시드층(17)은 하우징(300)의 측벽부(303)의 상면에는 형성되지 않는다. Next, referring to FIG. 4B , the second seed layer 17 is patterned. The patterned second seed layer 17 is formed between the upper surface of the first surface 201 of the electrically conductive contact pin 200 and the side wall portion 303 of the housing 300 and the electrically conductive contact pin 200 . It is formed on the upper surface of the mold 10 . The second seed layer 17 is not formed on the upper surface of the side wall portion 303 of the housing 300 .
다음으로 도 4c를 참조하면, 제1몰드(10)의 상면에 패터닝 가능한 재질을 형성한다. 여기서 패터닝 가능한 재질은 노광 및 현상 공정이 가능한 재질로서 바람직하게는 포토 레지스트 재질일 수 있다. 제1몰드(10)의 상면에 패터닝 가능한 재질을 형성한 이후에 패터닝 가능한 재질을 노광 및 현상하여 제3개구 패턴(21)을 형성한다. 이를 통해 제3개구 패턴(21)를 구비하는 제2몰드(20)를 형성한다. 제3개구 패턴(21)의 내부에는 제2시드층(17)과 하우징(300)의 측벽부(303)의 상면이 노출되어 구비된다. Next, referring to FIG. 4C , a patternable material is formed on the upper surface of the first mold 10 . Here, the patternable material is a material capable of exposure and development processes, and may preferably be a photoresist material. After the patternable material is formed on the upper surface of the first mold 10 , the patternable material is exposed and developed to form the third opening pattern 21 . Through this, the second mold 20 having the third opening pattern 21 is formed. The second seed layer 17 and the upper surface of the sidewall 303 of the housing 300 are exposed inside the third opening pattern 21 .
다음으로 도 5a를 참조하면, 제1시드층(15), 제2시드층(17) 및 이미 형성된 도금층을 이용하여 전기 도금을 수행하여 기존에 제작된 측벽부(303)와 연결되고 전기 전도성 접촉핀(200)의 제1면(201)과는 이격되는 하우징(300)의 상면부(301)를 제작한다. 하우징(300)의 상면부(301)는 제2시드층(17)의 두께만큼 전기 전도성 접촉핀(200)의 제1면(201)과 이격되게 된다. 제2시드층(17)의 두께는 10㎚이상 1㎛이하의 두께로 형성되므로, 하우징(300)의 상면부(301)는 10㎚이상 1㎛이하의 거리만큼 전기 전도성 접촉핀(200)의 제1면(201)과 이격된다.Next, referring to FIG. 5A , electroplating is performed using the first seed layer 15 , the second seed layer 17 , and the already formed plating layer to be connected to the sidewall 303 and electrically conductive contact. The upper surface portion 301 of the housing 300 spaced apart from the first surface 201 of the pin 200 is manufactured. The upper surface 301 of the housing 300 is spaced apart from the first surface 201 of the electrically conductive contact pin 200 by the thickness of the second seed layer 17 . Since the thickness of the second seed layer 17 is formed to a thickness of 10 nm or more and 1 μm or less, the upper surface 301 of the housing 300 is separated from the electrically conductive contact pins 200 by a distance of 10 nm or more and 1 μm or less. It is spaced apart from the first surface 201 .
다음으로, (iii)패터닝 가능한 재질의 제3몰드(30)를 이용하여 측벽부(303)와 연결되고 전기 전도성 접촉핀(200)의 제2면(202)과는 이격되도록 하우징(300)의 하면부(302)를 제작하는 단계를 수행한다. 여기서 하우징(300)의 하면부(302)를 제작하는 단계는, 제1시드층(17)을 패터닝하는 단계; 패터닝 가능 재질을 형성하고 이를 패터닝하여 제4개구 패턴(31)을 구비하는 제3몰드(30)를 형성하는 단계; 및 제3몰드(30)의 제4개구 패턴(31)에 금속을 충진하는 단계를 포함한다.Next, (iii) using the third mold 30 of a patternable material, the housing 300 is connected to the sidewall 303 and spaced apart from the second surface 202 of the electrically conductive contact pin 200. A step of manufacturing the lower surface portion 302 is performed. Here, the manufacturing of the lower surface portion 302 of the housing 300 includes: patterning the first seed layer 17 ; forming a third mold 30 having a fourth opening pattern 31 by forming a patternable material and patterning it; and filling the fourth opening pattern 31 of the third mold 30 with a metal.
도 5b를 참조하면, 도 5a단계에서 제작된 것을 180°반전시킨다. 다음으로 도 5c를 참조하면, 제1시드층(15)을 패터닝한다. 패터닝된 제1시드층(15)은 전기 전도성 접촉핀(200)의 제2면(202)의 상면(도면 기준)과, 하우징(300)의 측벽부(303)와 전기 전도성 접촉핀(200) 사이의 제1몰드(10)의 상면(도면 기준)에 형성된다. 제1시드층(15)은 하우징(300)의 측벽부(303)의 상면(도면 기준)에는 형성되지 않는다. Referring to FIG. 5B , the one manufactured in the step of FIG. 5A is inverted by 180°. Next, referring to FIG. 5C , the first seed layer 15 is patterned. The patterned first seed layer 15 includes the upper surface (based on the drawing) of the second surface 202 of the electrically conductive contact pin 200 , the side wall portion 303 of the housing 300 and the electrically conductive contact pin 200 . It is formed on the upper surface (based on the drawing) of the first mold 10 in between. The first seed layer 15 is not formed on the upper surface (based on the drawing) of the side wall portion 303 of the housing 300 .
다음으로 6a를 참조하면, 제1몰드(10)의 상면(도면 기준)에 패터닝 가능한 재질을 형성한다. 여기서 패터닝 가능한 재질은 노광 및 현상 공정이 가능한 재질로서 바람직하게는 포토 레지스트 재질일 수 있다. 제1몰드(10)의 상면에 패터닝 가능한 재질을 형성한 이후에 패터닝 가능한 재질을 노광 및 현상하여 제4개구 패턴(31)을 형성한다. 이를 통해 제4개구 패턴(31)를 구비하는 제3몰드(30)를 형성한다. 제4개구 패턴(31)의 내부에는 제1시드층(15)과 하우징(300)의 측벽부(303)의 상면(도면 기준)이 노출되어 구비된다. Next, referring to 6a, a patternable material is formed on the upper surface (based on the drawing) of the first mold 10 . Here, the patternable material is a material capable of exposure and development processes, and may preferably be a photoresist material. After the patternable material is formed on the upper surface of the first mold 10 , the patternable material is exposed and developed to form the fourth opening pattern 31 . Through this, the third mold 30 having the fourth opening pattern 31 is formed. The first seed layer 15 and the upper surface (based on the drawing) of the sidewall 303 of the housing 300 are exposed inside the fourth opening pattern 31 .
다음으로 도 6b를 참조하면, 제1시드층(15), 제2시드층(17) 및 이미 형성된 도금층을 이용하여 전기 도금을 수행하여 기존에 제작된 측벽부(303)와 연결되고 전기 전도성 접촉핀(200)의 제2면(202)과는 이격되도록 하우징(300)의 하면부(302)를 제작한다. 하우징(300)의 하면부(302)는 제1시드층(15)의 두께만큼 전기 전도성 접촉핀(200)의 제2면(202)과 이격되게 된다. 제1시드층(17)의 두께는 10㎚이상 1㎛이하의 두께로 형성되므로, 하우징(300)의 하면부(302)는 10㎚이상 1㎛이하의 거리만큼 전기 전도성 접촉핀(200)의 제2면(202)과 이격된다.Next, referring to FIG. 6B , electroplating is performed using the first seed layer 15 , the second seed layer 17 , and the already formed plating layer to connect to the sidewall 303 and electrically conductive contact. The lower surface 302 of the housing 300 is manufactured to be spaced apart from the second surface 202 of the pin 200 . The lower surface 302 of the housing 300 is spaced apart from the second surface 202 of the electrically conductive contact pin 200 by the thickness of the first seed layer 15 . Since the thickness of the first seed layer 17 is formed to a thickness of 10 nm or more and 1 μm or less, the lower surface 302 of the housing 300 is separated from the electrically conductive contact pin 200 by a distance of 10 nm or more and 1 μm or less. It is spaced apart from the second surface 202 .
다음으로 (iv)제1몰드(10), 제2몰드(20) 및 제3몰드(30)를 제거하는 단계를 수행한다. 제1몰드(10)가 양극산화막 재질로 구성되는 경우 양극산화막에만 선택적으로 반응하는 에칭용액을 이용하여 제1몰드(10)가 제거된다. 제2몰드(20) 및 제3몰드(30)가 포토 레지스트 재질로 구성되는 경우 포토 레지스트에만 선택적으로 반응하는 에칭용액을 이용하여 제2몰드(20) 및 제3몰드(30)가 제거된다. 이를 통해 도 6c에 도시된 바와 같은 전기 전도성 접촉핀 어셈블리(100)를 제작하게 된다. Next, (iv) removing the first mold 10 , the second mold 20 , and the third mold 30 is performed. When the first mold 10 is made of an anodized film material, the first mold 10 is removed using an etching solution that selectively reacts only to the anodized film. When the second mold 20 and the third mold 30 are made of a photoresist material, the second mold 20 and the third mold 30 are removed using an etching solution that selectively reacts only with the photoresist. Through this, the electrically conductive contact pin assembly 100 as shown in FIG. 6c is manufactured.
이처럼 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀 어셈블리(100)의 제조방법은 전기 전도성 접촉핀(200)과 하우징(300)을 한꺼번에 제작하기 때문에 하우징(300)과 전기 전도성 접촉핀(200)을 별도로 제작한 후 이들을 결합해야 하는 종래 기술의 번거로움이 해소된다. As described above, in the method of manufacturing the electrically conductive contact pin assembly 100 according to the preferred embodiment of the present invention, the electrically conductive contact pin 200 and the housing 300 are manufactured at once, so the housing 300 and the electrically conductive contact pin 200 . The inconvenience of the prior art of having to separately manufacture and then combine them is eliminated.
또한, 전기 전도성 접촉핀(200)과 하우징(300)간의 틈새는 제조 과정에서 그 사이에 존재하는 양극산화막과 제1,2시드층(15,17)의 두께에 의해 결정되므로 전기 전도성 접촉핀(200)과 하우징(300)간의 틈새를 미세하게 하는 것이 가능하게 된다. 그 결과 전기 전도성 접촉핀(200)이 하우징(300) 내에서 크게 유동하는 것을 최소화함으로써, 전기 전도성 접촉핀(200)이 하우징(300)내에서 큰 유동을 하게 되는 종래 기술의 문제점을 해소하게 된다. In addition, since the gap between the electrically conductive contact pin 200 and the housing 300 is determined by the thickness of the anodization film and the first and second seed layers 15 and 17 present therebetween during the manufacturing process, the electrically conductive contact pin ( It is possible to make the gap between the 200 and the housing 300 fine. As a result, by minimizing the large flow of the electrically conductive contact pin 200 in the housing 300 , the problem of the prior art in which the electrically conductive contact pin 200 has a large flow in the housing 300 is solved. .
특히 전기 전도성 접촉핀(200)과 하우징(300)의 측벽부(303) 사이 간격은 양극산화막 재질의 폭에 의해 결정되는데, 그 사이에 위치하는 양극산화막 재질은 전기 전도성 접촉핀(200)과 하우징(300)의 측벽부(303)를 제조하기 전부터 존재하는 것이고 별도로 사이 공간에 채워넣은 구성이 아니기 때문에 전기 전도성 접촉핀(200)과 하우징(300)의 측벽부(303) 사이 간격을 미세화하는 것이 가능하다. 이를 통해 제1접촉팁부(210)와 제2접촉팁부(230)가 접촉 대상물과의 설계상의 접촉 위치를 실질적으로 만족시키는 수직 활강이 가능하다. In particular, the distance between the electrically conductive contact pin 200 and the sidewall 303 of the housing 300 is determined by the width of the anodized film material, and the anodized film material positioned therebetween is the electrically conductive contact pin 200 and the housing. Refining the distance between the electrically conductive contact pin 200 and the sidewall 303 of the housing 300 is to reduce the gap between the electrically conductive contact pin 200 and the sidewall 303 of the housing 300 because it exists before the sidewall portion 303 of the 300 is manufactured and is not a configuration that is separately filled in the interspace. It is possible. Through this, a vertical glide that substantially satisfies the design contact position between the first contact tip part 210 and the second contact tip part 230 with the contact object is possible.
또한, 전기 전도성 접촉핀(200)과 하우징(300)의 측벽부(303)을 제조하는 과정에서 전기 전도성 접촉핀(200)과 하우징(300)의 측벽부(303)사이에는 양극산화막 재질이 존재하므로, 전기 전도성 접촉핀(200)의 측면에서 제1면(201) 및 제2면(202) 방향으로 제1미세 트렌치(250)가 형성되고, 제1미세 트렌치(250)와 동일 방향으로 하우징(300)의 측벽부(303)에는 제2미세 트렌치(350)가 형성된다In addition, in the process of manufacturing the electrically conductive contact pin 200 and the side wall portion 303 of the housing 300 , an anodized film material is present between the electrically conductive contact pin 200 and the side wall portion 303 of the housing 300 . Therefore, the first micro-trench 250 is formed in the direction of the first surface 201 and the second surface 202 from the side of the electrically conductive contact pin 200 , and the housing in the same direction as the first micro-trench 250 . A second micro trench 350 is formed in the side wall portion 303 of the 300 .
이하에서는 도 7 내지 도 10을 참조하여 제1미세 트렌치(250)와 제2미세 트렌치(350)의 구성에 대해 구체적으로 설명한다.Hereinafter, the configuration of the first micro-trench 250 and the second micro-trench 350 will be described in detail with reference to FIGS. 7 to 10 .
본 발명의 바람직한 일 실시예에 따른 전기 전도성 접촉핀(200)은, 전기 전도성 접촉핀(200)의 적어도 일면에 형성된 복수 개의 제1미세 트렌치(250)를 포함한다. 보다 자세하게는 제1미세 트렌치(250)는 전기 전도성 접촉핀(200)의 측면(203)에 형성된다. 제1미세 트렌치(250)는 전기 전도성 접촉핀(200)의 측면(203)에서 전기 전도성 접촉핀(200)의 두께 방향으로 길게 연장되어 형성된다. 여기서 전기 전도성 접촉핀(200)의 두께 방향은 전기 도금 시 도금층이 성장하는 방향을 의미한다. The electrically conductive contact pin 200 according to a preferred embodiment of the present invention includes a plurality of first micro trenches 250 formed on at least one surface of the electrically conductive contact pin 200 . In more detail, the first micro trenches 250 are formed on the side surfaces 203 of the electrically conductive contact pins 200 . The first micro-trench 250 is formed to extend long in the thickness direction of the electrically conductive contact pin 200 from the side surface 203 of the electrically conductive contact pin 200 . Here, the thickness direction of the electrically conductive contact pin 200 refers to a direction in which the plating layer grows during electroplating.
제1미세 트렌치(250)는 그 깊이가 20㎚ 이상 3㎛이하의 범위를 가지며, 그 폭 역시 20㎚ 이상 3㎛이하의 범위를 가진다. 여기서 제1미세 트렌치(250)는 양극산화막 재질의 제1몰드(10)의 제조시 형성된 포어에 기인한 것이기 때문에 제1미세 트렌치(250)의 폭과 깊이는 양극산화막 재질의 제1몰드(10)의 포어의 직경의 범위 이하의 값을 가진다. 한편, 양극산화막 재질의 제1몰드(10)에 제1개구 패턴(11)을 형성하는 과정에서 에칭용액에 의해 양극산화막 재질의 제1몰드(10)의 포어의 일부가 서로 뭉개지면서 양극산화시 형성된 포어의 직경의 범위보다 보다 큰 범위의 깊이를 가지는 제1미세 트렌치(250)가 적어도 일부 형성될 수 있다. The first fine trench 250 has a depth of 20 nm or more and 3 μm or less, and a width of 20 nm or more and 3 μm or less. Here, since the first fine trench 250 is due to the pores formed during the manufacture of the first mold 10 made of the anodized film material, the width and depth of the first fine trench 250 is the first mold 10 made of the anodized film material. ) has a value less than or equal to the range of pore diameters. On the other hand, in the process of forming the first opening pattern 11 on the first mold 10 made of an anodization film, a part of the pores of the first mold 10 made of an anodization film are crushed by the etching solution during anodization. At least a portion of the first fine trenches 250 having a depth larger than a diameter range of the formed pores may be formed.
양극산화막 재질의 제1몰드(10)는 수 많은 포어들을 포함하고 이러한 양극산화막 재질의 제1몰드(10)의 적어도 일부를 에칭하여 제1개구 패턴(11)을 형성하고, 제1개구 패턴(11) 내부로 전기 도금으로 도금층을 형성하므로, 전기 전도성 접촉핀(200)의 측면에는 양극산화막 재질의 제1몰드(10)의 포어과 접촉하면서 형성되는 제1미세 트렌치(250)가 구비되는 것이다. The first mold 10 made of an anodized film material includes a number of pores, and at least a portion of the first mold 10 made of the anodized film material is etched to form a first opening pattern 11, and the first opening pattern ( 11) Since the plating layer is formed inside by electroplating, the first micro trench 250 formed while in contact with the pores of the first mold 10 made of an anodized film material is provided on the side of the electrically conductive contact pin 200 .
이처럼 전기 전도성 접촉핀(200)은 제1면(201), 제1면(201)에 대향되는 제2면(202), 제1면(201) 및 제2면(202)을 연결하는 측면(203)을 구비하며, 전기 전도성 접촉핀(200)의 측면(203)에서 제1면(201) 및 제2면(202) 방향으로 길게 파인 홈으로 형성되되 복수 개가 나란하게 형성된 제1미세 트렌치(250)를 포함한다. 제1미세 트렌치(250)는 전기 전도성 접촉핀(200)의 측면(203) 전체에 걸쳐 전체적으로 형성되지만 측면(203)을 제외한 제1면(201)과 제2면(202)에는 형성되지 않는다. As such, the electrically conductive contact pin 200 is a first surface 201, a second surface 202 opposite to the first surface 201, a side ( 203), a plurality of first fine trenches ( 250). The first micro-trench 250 is formed entirely over the side surface 203 of the electrically conductive contact pin 200 , but is not formed on the first surface 201 and the second surface 202 except for the side surface 203 .
위와 같은 제1미세 트렌치(250)는, 전기 전도성 접촉핀(200)의 측면에 있어서 표면적으로 크게 할 수 있는 효과를 가진다. 다시 말해 본 발명의 바람직한 일 실시예에 따른 전기 전도성 접촉핀(200)이 종래의 전기 전도성 접촉핀(200)과 동일한 형상 치수를 가지더라도 전기 전도성 접촉핀(200)의 측면(203)에서의 표면적을 더욱 크게 할 수 있게 된다. The first fine trench 250 as described above has the effect of increasing the surface area on the side of the electrically conductive contact pin 200 . In other words, although the electrically conductive contact pin 200 according to the preferred embodiment of the present invention has the same shape dimensions as the conventional electrically conductive contact pin 200, the surface area at the side surface 203 of the electrically conductive contact pin 200 can be made larger.
또한, 전기 전도성 접촉핀(200)의 측면(203)에 형성되는 제1미세 트렌치(250)의 구성을 통해, 전기 전도성 접촉핀(200)의 변형 시 탄성 복원 능력을 향상시킬 수 있게 된다. In addition, through the configuration of the first micro-trench 250 formed in the side 203 of the electrically conductive contact pin 200 , it is possible to improve the elastic recovery ability when the electrically conductive contact pin 200 is deformed.
또한, 전기 전도성 접촉핀(200)의 측면(203)에 형성되는 제1미세 트렌치(250)의 구성을 통해, 전기 전도성 접촉핀(200)에서 발생한 열을 빠르게 방출할 수 있으므로 전기 전도성 접촉핀(200)의 온도 상승을 억제할 수 있게 된다. In addition, through the configuration of the first micro-trench 250 formed on the side 203 of the electrically conductive contact pin 200, heat generated from the electrically conductive contact pin 200 can be rapidly discharged, so the electrically conductive contact pin ( 200) can be suppressed.
또한, 접촉 대상물과 접촉하는 양단부의 측면(203)에 제1미세 트렌치(250)가 구비되는 구성에 의하여, 접촉 대상물과의 접촉 시 전기 전도성 접촉핀(200)의 접촉저항이 감소하는 효과를 가진다. In addition, due to the configuration in which the first fine trenches 250 are provided on the side surfaces 203 of both ends in contact with the contact object, the contact resistance of the electrically conductive contact pin 200 when contacting the contact object is reduced. .
한편, 제1미세 트렌치(250)의 적어도 일단부는 인접하는 제1면(201) 또는 제2면(202)으로부터 10nmm 이상 500nm이하의 거리로 이격되어 구비될 수 있다. 양극산화막 재질의 제1몰드(10)는 양극산화막의 제조 과정에서 형성되는 배리어층과 포어층을 포함할 수 있다. 이 경우 배리어층의 두께는 10nmm 이상 500nm 이하의 두께로 형성될 수 있다. 배리어층이 포어층의 상부에 위치하도록 양극산화막 재질의 제1몰드(10)를 배치하고, 배리어층의 상면에 패터닝된 포토 레지스트를 구비하여 에칭하여 개구부(210)를 형성하는 구성에 따르면, 도 9에 도시된 바와 같이, 배리어층의 존재로 인해 제1미세 트렌치(250)는 상면으로부터 10nmm 이상 500nm 이하의 거리로 이격되어 형성될 수 있다. Meanwhile, at least one end of the first fine trench 250 may be provided to be spaced apart from the adjacent first surface 201 or the second surface 202 by a distance of 10 nm or more and 500 nm or less. The first mold 10 made of the anodized film material may include a barrier layer and a pore layer formed during the manufacturing process of the anodized film. In this case, the barrier layer may have a thickness of 10 nm or more and 500 nm or less. According to the configuration in which the first mold 10 made of an anodized film material is disposed so that the barrier layer is located on the pore layer, and the photoresist patterned on the upper surface of the barrier layer is etched to form the opening 210, FIG. 9 , due to the presence of the barrier layer, the first fine trenches 250 may be formed to be spaced apart from the upper surface by a distance of 10 nm or more and 500 nm or less.
전기 전도성 접촉핀(200)은 그 측면(203)의 조도 범위가 제1면(201) 및 제2면(202)의 조도 범위와 차이가 있다. 수십 나노 크기의 폭과 깊이를 가지는 수많은 제1미세 트렌치(250)가 형성되는 구성에 따르면, 전기 전도성 접촉핀(200)의 측면(203)의 조도 범위는 전기 전도성 접촉핀(200)의 제1면(201) 및 제2면(202)의 조도 범위보다 크다. In the electrically conductive contact pin 200 , the illuminance range of the side surface 203 is different from the illuminance range of the first surface 201 and the second surface 202 . According to the configuration in which numerous first fine trenches 250 having a width and depth of several tens of nanometers are formed, the roughness range of the side surface 203 of the electrically conductive contact pin 200 is the first of the electrically conductive contact pin 200 . greater than the illuminance range of the face 201 and the second face 202 .
전기 전도성 접촉핀(200)은, 전기 전도성 접촉핀(200)의 두께 방향으로 복수 개의 층이 적층되어 형성되되 동일 층은 동일의 금속 재질로 형성될 수 있다. 도 8을 참조하면, 전기 전도성 접촉핀(200)은 총 3개의 금속 재질의 층이 적층되는 형태로 구비될 수 있다. 제1층(291) 및 제3층(293)은 경도 특성이 우수하여 전기 전도성 접촉핀(200)에 우수한 기계적 탄성을 제공하며 제2층(292)은 우수한 전기 전도도의 전기적 특성을 제공한다. 제1층(291) 및 제3층(293)은 니켈(Ni) 또는 니켈(Ni) 합금 재질로 구성될 수 있고 제2층(292)은 구리(Cu) 또는 구리(Cu) 합금 재질로 구성될 수 있다. 이를 통해 기계적 특성이 우수하면서, 이와 동시에 전기적 특성이 우수한 접촉핀을 제공할 수 있다.The electrically conductive contact pin 200 is formed by stacking a plurality of layers in the thickness direction of the electrically conductive contact pin 200 , and the same layer may be formed of the same metal material. Referring to FIG. 8 , the electrically conductive contact pins 200 may be provided in a form in which a total of three metal layers are stacked. The first layer 291 and the third layer 293 have excellent hardness properties to provide excellent mechanical elasticity to the electrically conductive contact pin 200 , and the second layer 292 provides excellent electrical properties for electrical conductivity. The first layer 291 and the third layer 293 may be made of nickel (Ni) or a nickel (Ni) alloy material, and the second layer 292 may be made of copper (Cu) or a copper (Cu) alloy material. can be Through this, it is possible to provide a contact pin having excellent mechanical properties and at the same time having excellent electrical properties.
도 10을 참조하면, 본 발명의 바람직한 일 실시예에 따른 하우징(300)의 측벽부(303)는, 제1미세 트렌치(250)와 동일 방향으로 하우징(300)의 측벽부(303)에 형성된 제2미세 트렌치(350)를 포함한다. 보다 자세하게는 제2미세 트렌치(350)는 측벽부(303)의 측면에 형성된다. 제2미세 트렌치(350)는 하우징(300)의 측벽부(303)의 측면에서 측벽부(303)의 두께 방향으로 길게 연장되어 형성된다. 여기서 측벽부(303)의 두께 방향은 전기 도금 시 도금층이 성장하는 방향을 의미한다. Referring to FIG. 10 , the side wall portion 303 of the housing 300 according to the preferred embodiment of the present invention is formed in the side wall portion 303 of the housing 300 in the same direction as the first micro trench 250 . It includes a second fine trench 350 . In more detail, the second fine trench 350 is formed on the side surface of the side wall portion 303 . The second fine trench 350 is formed to extend long in the thickness direction of the side wall portion 303 from the side surface of the side wall portion 303 of the housing 300 . Here, the thickness direction of the side wall portion 303 refers to a direction in which the plating layer grows during electroplating.
제2미세 트렌치(350)는 그 깊이가 20㎚ 이상 3㎛이하의 범위를 가지며, 그 폭 역시 20㎚ 이상 3㎛이하의 범위를 가진다. 여기서 제2미세 트렌치(350)는 양극산화막 재질의 제1몰드(10)의 제조시 형성된 포어에 기인한 것이기 때문에 제2미세 트렌치(350)의 폭과 깊이는 양극산화막 재질의 제1몰드(10)의 포어의 직경의 범위 이하의 값을 가진다. 한편, 양극산화막 재질의 제1몰드(10)에 제2개구 패턴(12)을 형성하는 과정에서 에칭용액에 의해 양극산화막 재질의 제1몰드(10)의 포어의 일부가 서로 뭉개지면서 양극산화시 형성된 포어의 직경의 범위보다 보다 큰 범위의 깊이를 가지는 제2미세 트렌치(350)가 적어도 일부 형성될 수 있다. The second fine trench 350 has a depth of 20 nm or more and 3 μm or less, and a width of 20 nm or more and 3 μm or less. Here, since the second fine trench 350 is due to pores formed during the manufacture of the first mold 10 made of the anodized film material, the width and depth of the second fine trench 350 are the first mold 10 made of the anodized film material. ) has a value less than or equal to the range of pore diameters. On the other hand, in the process of forming the second opening pattern 12 on the first mold 10 made of the anodization film, a part of the pores of the first mold 10 made of the anodization film are crushed by the etching solution during anodization. At least a portion of the second fine trench 350 having a depth greater than a diameter range of the formed pores may be formed.
양극산화막 재질의 제1몰드(10)는 수많은 포어들을 포함하고 이러한 양극산화막 재질의 제1몰드(10)의 적어도 일부를 에칭하여 제2개구 패턴(12)을 형성하고, 제2개구 패턴(11) 내부로 전기 도금으로 도금층을 형성하므로, 측벽부(303)의 측면에는 양극산화막 재질의 제1몰드(10)의 포어과 접촉하면서 형성되는 제2미세 트렌치(350)가 구비되는 것이다. 제2미세 트렌치(350)는 하우징(300)의 측벽부(303)의 측면에서 제1면(201)에서 제2면(202) 방향으로 길게 파인 홈으로 형성되되 복수 개가 나란하게 형성된다.The first mold 10 made of an anodized film material includes numerous pores, and at least a portion of the first mold 10 made of the anodized film material is etched to form a second opening pattern 12 , and the second opening pattern 11 ), since the plating layer is formed inside by electroplating, the sidewall portion 303 is provided with a second fine trench 350 formed while making contact with the pores of the first mold 10 made of an anodized film material. The second fine trenches 350 are formed as long grooves in the direction from the first surface 201 to the second surface 202 in the sidewall 303 of the housing 300 , and a plurality of trenches are formed side by side.
제2미세 트렌치(350)는 측벽부(350)의 측면(203)에 형성되지만 측벽부(303)을 제외한 상면부(301)와 하면부(3022)에는 형성되지 않는다. 또한 측벽부(350)의 측면 중에서도 제2미세 트렌치(350)의 상부에는 제2미세 트렌치(350)가 형성되지 않고 제2미세 트렌치(350)가 형성되지 않는다. 즉 측벽부(350)의 측면을 기준으로 제2미세 트렌치(350)는 상부에서 소정거리만큼 이격되고 하부에서 소정거리 만큼 이격된다. 제2미세 트렌치(350)가 측벽부(350)의 측면의 상부에서 이격된 거리는 제2시드층(17)의 두께만큼의 거리이고, 제2미세 트렌치(350)가 측벽부(350)의 측면의 하부에서 이격된 거리는 제1시드층(15)의 두께만큼의 거리이다. The second fine trench 350 is formed on the side surface 203 of the side wall part 350 , but is not formed on the upper surface part 301 and the lower surface part 3022 except for the side wall part 303 . In addition, the second fine trench 350 is not formed on the upper portion of the second fine trench 350 among the side surfaces of the sidewall part 350 and the second fine trench 350 is not formed. That is, the second fine trenches 350 are spaced apart by a predetermined distance from the upper portion and spaced apart from the lower portion by a predetermined distance based on the side surface of the sidewall part 350 . The distance at which the second fine trench 350 is spaced apart from the upper portion of the side surface of the sidewall part 350 is the same as the thickness of the second seed layer 17 , and the second fine trench 350 is the side surface of the sidewall part 350 . The distance spaced apart from the lower part of is equal to the thickness of the first seed layer 15 .
위와 같은 제2미세 트렌치(350)는, 하우징(300)의 측벽부(303)에 있어서 표면적으로 크게 할 수 있는 효과를 가진다. 다시 말해 본 발명의 바람직한 일 실시예에 따른 하우징(300)의 측벽부(303)가 종래의 하우징과 동일한 형상 치수를 가지더라도 하우징(300)의 측벽부(303)에서의 표면적을 더욱 크게 할 수 있게 된다. The second fine trench 350 as described above has an effect of increasing the surface area of the side wall portion 303 of the housing 300 . In other words, even if the side wall portion 303 of the housing 300 according to the preferred embodiment of the present invention has the same shape dimensions as the conventional housing, the surface area of the side wall portion 303 of the housing 300 can be made larger. there will be
또한, 하우징(300)의 측벽부(303)에 형성되는 제2미세 트렌치(350)의 구성을 통해, 하우징(300)의 측벽부(303)에서 발생한 열을 빠르게 방출할 수 있으므로 하우징(300)의 온도 상승을 억제할 수 있게 된다. In addition, through the configuration of the second micro trench 350 formed in the side wall portion 303 of the housing 300, heat generated in the side wall portion 303 of the housing 300 can be rapidly dissipated, so that the housing 300 temperature rise can be suppressed.
한편, 앞선 설명에서는 전기 전도성 접촉핀(200)과 하우징(300)이 서로 분리되는 분리형 구조만을 예시하여 설명하였으나, 전기 전도성 접촉핀(200)의 적어도 일부는 하우징(300)과 일체형으로 구성될 수 있다. 이 경우 전기 전도성 접촉핀(200)의 제1접촉팁부(210) 또는 제2접촉팁부(230)가 하우징(300)과 일체형으로 구성될 수 있고 보다 바람직하게는 탄성 접촉부(270)가 구비되지 않은 제2접촉팁부(230)가 하우징(300)과 일체형으로 구성될 수 있다.Meanwhile, in the previous description, only a separate structure in which the electrically conductive contact pin 200 and the housing 300 are separated from each other has been described as an example, but at least a portion of the electrically conductive contact pin 200 may be integrally configured with the housing 300 . have. In this case, the first contact tip portion 210 or the second contact tip portion 230 of the electrically conductive contact pin 200 may be integrally configured with the housing 300, and more preferably, the elastic contact portion 270 is not provided. The second contact tip 230 may be integrally formed with the housing 300 .
전술한 바와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술분야의 통상의 기술자는 하기의 특허 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다.As described above, although described with reference to preferred embodiments of the present invention, those skilled in the art can variously modify the present invention within the scope without departing from the spirit and scope of the present invention described in the claims below. Or it can be carried out by modification.
[부호의 설명][Explanation of code]
10: 제1몰드10: first mold
20: 제2몰드20: second mold
30: 제3몰드30: third mold
100: 전기 전도성 접촉핀 어셈블리100: electrically conductive contact pin assembly
200: 전기 전도성 접촉핀200: electrically conductive contact pin
300: 하우징300: housing

Claims (10)

  1. 양극산화막 재질의 제1몰드를 이용하여 전기 전도성 접촉핀과 하우징의 측벽부를 제작하는 단계;manufacturing an electrically conductive contact pin and a sidewall of the housing using a first mold made of an anodized material;
    패터닝 가능한 재질의 제2몰드를 이용하여 상기 측벽부와 연결되고 상기 전기 전도성 접촉핀의 제1면과는 이격되도록 상기 하우징의 상면부를 제작하는 단계; manufacturing an upper surface portion of the housing to be connected to the sidewall portion and spaced apart from the first surface of the electrically conductive contact pin by using a second mold made of a patternable material;
    패터닝 가능한 재질의 제3몰드를 이용하여 상기 측벽부와 연결되고 상기 전기 전도성 접촉핀의 제2면과는 이격되도록 상기 하우징의 하면부를 제작하는 단계; 및manufacturing a lower surface portion of the housing to be connected to the side wall portion and spaced apart from a second surface of the electrically conductive contact pin by using a third mold made of a patternable material; and
    상기 제1몰드, 제2몰드 및 제3몰드를 제거하는 단계;를 포함하는, 전기 전도성 접촉핀 어셈블리의 제조방법.The method of manufacturing an electrically conductive contact pin assembly, including; removing the first mold, the second mold, and the third mold.
  2. 제1항에 있어서,According to claim 1,
    상기 전기 전도성 접촉핀과 상기 하우징의 측벽부를 제작하는 단계는,The manufacturing of the electrically conductive contact pin and the sidewall of the housing comprises:
    상기 양극산화막 재질의 제1몰드에 제1개구 패턴 및 제2개구 패턴을 형성하는 단계; 및forming a first opening pattern and a second opening pattern on a first mold made of the material of the anodized film; and
    상기 제1개구 패턴 및 상기 제2개구 패턴에 금속을 충진하여 상기 전기 전도성 접촉핀과 상기 하우징의 측벽부를 제작하는 단계를 포함하는, 전기 전도성 접촉핀 어셈블리의 제조방법.and filling the first opening pattern and the second opening pattern with metal to fabricate the electrically conductive contact pin and a sidewall portion of the housing.
  3. 제1항에 있어서,According to claim 1,
    상기 하우징의 상면부를 제작하는 단계는,The step of manufacturing the upper surface part of the housing,
    패터닝 가능 재질을 형성하고 이를 패터닝하여 제3개구 패턴을 구비하는 제2몰드를 형성하는 단계; 및forming a second mold having a third opening pattern by forming a patternable material and patterning it; and
    상기 제2몰드의 제3개구 패턴에 금속을 충진하여 상기 하우징의 상면부를 제작하는 단계;를 포함하는, 전기 전도성 접촉핀 어셈블리의 제조방법.and filling the third opening pattern of the second mold with a metal to fabricate the upper surface of the housing.
  4. 제1항에 있어서,According to claim 1,
    상기 하우징의 하면부를 제작하는 단계는,The step of manufacturing the lower surface of the housing,
    패터닝 가능 재질을 형성하고 이를 패터닝하여 제4개구 패턴을 구비하는 제3몰드를 형성하는 단계; 및forming a patternable material and patterning it to form a third mold having a fourth opening pattern; and
    상기 제3몰드의 제4개구 패턴에 금속을 충진하여 상기 하우징의 하면부를 제작하는 단계를 포함하는, 전기 전도성 접촉핀 어셈블리의 제조방법.and filling the fourth opening pattern of the third mold with metal to fabricate the lower surface of the housing.
  5. 제1면, 상기 제1면에 대향되는 제2면 및 상기 제1면 및 제2면을 연결하는 측면을 구비하는 전기 전도성 접촉핀; 및an electrically conductive contact pin having a first surface, a second surface opposite to the first surface, and a side surface connecting the first surface and the second surface; and
    상기 전기 전도성 접촉핀이 내부에서 슬라이딩 가능하고 상기 제1면에 대향하는 상면부, 상기 제2면에 대향하는 하면부 및 상기 측면에 대향하는 측벽부를 구비하는 하우징;을 포함하고,and a housing in which the electrically conductive contact pin is slidable therein and has an upper surface portion opposite to the first surface, a lower surface portion opposite to the second surface, and a sidewall portion opposite to the side surface; and
    상기 전기 전도성 접촉핀의 측면에서 상기 제1면 및 상기 제2면 방향으로 길게 파인 홈으로 형성되되 복수 개가 나란하게 형성된 제1미세 트렌치를 포함하는, 전기 전도성 접촉핀 어셈블리.An electrically conductive contact pin assembly comprising a plurality of first fine trenches formed in a long groove in the direction of the first surface and the second surface from the side of the electrically conductive contact pin and formed side by side.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 제1미세 트렌치는 상기 제1면과 상기 제2면에는 형성되지 않은, 전기 전도성 접촉핀 어셈블리.The first micro-trench is not formed in the first surface and the second surface, an electrically conductive contact pin assembly.
  7. 제5항에 있어서,6. The method of claim 5,
    상기 제1미세 트렌치와 동일 방향으로 상기 하우징의 측벽부에 형성된 제2미세 트렌치를 포함하는, 전기 전도성 접촉핀 어셈블리.and a second micro trench formed on a sidewall of the housing in the same direction as the first micro trench.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 제2미세 트렌치의 상, 하부에는 제2미세 트렌치가 형성되지 않은, 전기 전도성 접촉핀 어셈블리.The electrically conductive contact pin assembly, wherein the second fine trenches are not formed above and below the second fine trenches.
  9. 제7항에 있어서,8. The method of claim 7,
    상기 제2미세 트렌치는 상기 상면부 및 상기 하면부에는 형성되지 않은, 전기 전도성 접촉핀 어셈블리.The second fine trench is not formed in the upper surface portion and the lower surface portion, an electrically conductive contact pin assembly.
  10. 제1면, 상기 제1면에 대향되는 제2면 및 상기 제1면 및 제2면을 연결하는 측면을 구비하는 전기 전도성 접촉핀; 및an electrically conductive contact pin having a first surface, a second surface opposite to the first surface, and a side surface connecting the first surface and the second surface; and
    상기 전기 전도성 접촉핀이 내부에서 슬라이딩 가능하고 상기 제1면에 대향하는 상면부, 상기 제2면에 대향하는 하면부 및 상기 측면에 대향하는 측벽부를 구비하는 하우징;을 포함하고,and a housing in which the electrically conductive contact pin is slidable therein and has an upper surface portion opposite to the first surface, a lower surface portion opposite to the second surface, and a sidewall portion opposite to the side surface;
    상기 하우징의 측벽부의 측면에서 상기 제1면에서 상기 제2면 방향으로 길게 파인 홈으로 형성되되 복수 개가 나란하게 형성된 제2미세 트렌치를 포함하는, 전기 전도성 접촉핀 어셈블리.An electrically conductive contact pin assembly comprising a plurality of second fine trenches formed in a sidewall of the housing from the first surface to the second surface in the direction of the second surface in the sidewall of the housing, the plurality of second fine trenches being formed side by side.
PCT/KR2022/002735 2021-02-26 2022-02-24 Electrically-conductive contact pin assembly and manufacturing method therefor WO2022182177A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210026551A KR102517778B1 (en) 2021-02-26 2021-02-26 The Electro-conductive Contact Pin Assembly and Method for Manufacturing Thereof
KR10-2021-0026551 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022182177A1 true WO2022182177A1 (en) 2022-09-01

Family

ID=83049508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002735 WO2022182177A1 (en) 2021-02-26 2022-02-24 Electrically-conductive contact pin assembly and manufacturing method therefor

Country Status (3)

Country Link
KR (1) KR102517778B1 (en)
TW (1) TWI818449B (en)
WO (1) WO2022182177A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243411A (en) * 2009-04-08 2010-10-28 Japan Electronic Materials Corp Vertical type probe
JP6029764B2 (en) * 2013-08-30 2016-11-24 富士フイルム株式会社 Method for producing metal-filled microstructure
KR101712367B1 (en) * 2015-12-04 2017-03-07 한국기계연구원 Probe having Hierarchical Structure for Semiconductor Inspection and Manufacturing Method of the Same
KR102018784B1 (en) * 2013-08-13 2019-09-05 (주)위드멤스 Method for testing electrode circuit pin and electrode circuit testing pin using the same
KR102147699B1 (en) * 2020-04-29 2020-08-26 (주)피티앤케이 Probe pin and manufacturing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647131B1 (en) 2005-07-12 2006-11-23 리노공업주식회사 probe and manufacturing method thereof
KR100659944B1 (en) 2005-12-23 2006-12-21 리노공업주식회사 A plunger and a probe employing that
JP5133196B2 (en) * 2008-10-10 2013-01-30 モレックス インコーポレイテド Probe connector
SG11201704433TA (en) * 2014-12-30 2017-07-28 Technoprobe Spa Contact probe for testing head
KR101724636B1 (en) * 2015-03-17 2017-04-10 (주)엠투엔 Method for manufacturing plate and probe card
KR101766261B1 (en) * 2015-08-05 2017-08-23 (주)엠투엔 Probe pin and method for manufacturing the same
KR101823527B1 (en) * 2016-06-09 2018-01-30 (주)포인트엔지니어링 Substrate for probe card and Probe card using the same
JP2018072283A (en) * 2016-11-04 2018-05-10 エス・ブイ・プローブ・プライベート・リミテッドSv Probe Pte Ltd. Probe needle, and manufacturing method for insulation-coated probe needle
KR20200104061A (en) * 2019-02-26 2020-09-03 (주)포인트엔지니어링 Guide plate for probe card and probe card having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243411A (en) * 2009-04-08 2010-10-28 Japan Electronic Materials Corp Vertical type probe
KR102018784B1 (en) * 2013-08-13 2019-09-05 (주)위드멤스 Method for testing electrode circuit pin and electrode circuit testing pin using the same
JP6029764B2 (en) * 2013-08-30 2016-11-24 富士フイルム株式会社 Method for producing metal-filled microstructure
KR101712367B1 (en) * 2015-12-04 2017-03-07 한국기계연구원 Probe having Hierarchical Structure for Semiconductor Inspection and Manufacturing Method of the Same
KR102147699B1 (en) * 2020-04-29 2020-08-26 (주)피티앤케이 Probe pin and manufacturing method thereof

Also Published As

Publication number Publication date
KR102517778B1 (en) 2023-04-04
TWI818449B (en) 2023-10-11
TW202234072A (en) 2022-09-01
KR20220122212A (en) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2019216503A1 (en) Semiconductor device test socket
WO2012002763A2 (en) Test probe for test and fabrication method thereof
WO2022182177A1 (en) Electrically-conductive contact pin assembly and manufacturing method therefor
WO2019004661A1 (en) Probe member for pogo pin, manufacturing method therefor and pogo pin comprising same
WO2022181951A1 (en) Alignment module and alignment transfer method for electrically conductive contact pins
WO2017061656A1 (en) Kelvin test probe, kelvin test probe module, and manufacturing method therefor
WO2022177390A1 (en) Electro-conductive contact pin and manufacturing method therefor
WO2022177388A1 (en) Electrically conductive contact pin assembly
WO2022169196A1 (en) Electrically conductive contact pin
WO2022045787A1 (en) Conductive particle and electrical connection connector including same
WO2021215786A1 (en) Probe card
WO2023090746A1 (en) Electrically conductive contact pin and inspection device having same
WO2022177389A1 (en) Electrically conductive contact pin and assembly thereof
WO2023140617A1 (en) Electro-conductive contact pin and inspection device having same
WO2023059013A1 (en) Electrically conductive contact pin and test device comprising same
TWI274165B (en) Probe card interposer
WO2022215906A1 (en) Electrically conductive contact pin, inspection device comprising same, and method for manufacturing electrically conductive contact pin
WO2023033452A1 (en) Cantilever probe pin
WO2020141826A1 (en) Contactor block of self-aligning vertical probe card and manufacturing method therefor
WO2023059014A1 (en) Electrically conductive contact pin
WO2020222327A1 (en) Pin for testing microelectrode circuit
WO2023059130A1 (en) Electrically conductive contact pin array
KR102498038B1 (en) The Electro-conductive Contact Pin, Manufacturing Method thereof And Electro-conductive Contact Pin Module
WO2023172046A1 (en) Metal molded article, manufacturing method therefor, and inspection device having same
WO2023277407A1 (en) Electrically conductive contact pin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22760093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22760093

Country of ref document: EP

Kind code of ref document: A1