WO2022215906A1 - Electrically conductive contact pin, inspection device comprising same, and method for manufacturing electrically conductive contact pin - Google Patents

Electrically conductive contact pin, inspection device comprising same, and method for manufacturing electrically conductive contact pin Download PDF

Info

Publication number
WO2022215906A1
WO2022215906A1 PCT/KR2022/004039 KR2022004039W WO2022215906A1 WO 2022215906 A1 WO2022215906 A1 WO 2022215906A1 KR 2022004039 W KR2022004039 W KR 2022004039W WO 2022215906 A1 WO2022215906 A1 WO 2022215906A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
electrically conductive
conductive contact
contact pin
palladium
Prior art date
Application number
PCT/KR2022/004039
Other languages
French (fr)
Korean (ko)
Inventor
안범모
박승호
변성현
Original Assignee
(주)포인트엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포인트엔지니어링 filed Critical (주)포인트엔지니어링
Publication of WO2022215906A1 publication Critical patent/WO2022215906A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • G01R1/06761Material aspects related to layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips

Definitions

  • the present invention relates to an electrically conductive contact pin, an inspection device having the same, and a method for manufacturing the electrically conductive contact pin.
  • the electrically conductive contact pin is a contact pin that can be used in a probe card or a test socket that is in contact with an object to inspect the object.
  • the contact pins of the probe card will be described as an example.
  • the electrical property test of a semiconductor device is performed by approaching a semiconductor wafer to a probe card having a plurality of electrically conductive contact pins and bringing the electrically conductive contact pins into contact with corresponding electrode pads on the semiconductor wafer.
  • a process for further accessing the semiconductor wafer to the probe card is performed. This process is called overdrive.
  • Overdrive is a process of elastically deforming the electrically conductive contact pins, and by performing overdrive, all electrically conductive contact pins can be reliably brought into contact with the electrode pads even if there is a deviation in the height of the electrode pad or the height of the electrically conductive contact pin.
  • the electrically conductive contact pin elastically deforms during overdrive, and the tip moves on the electrode pad, thereby performing scrubbing.
  • the oxide film on the surface of the electrode pad can be removed and the contact resistance can be reduced.
  • Such electrically conductive contact pins may be manufactured using a MEMS process. Looking at the process of manufacturing an electrically conductive contact pin using the MEMS process, first, a photoresist is applied to the surface of a conductive substrate, and then the photoresist is patterned. Thereafter, a metal material is deposited in the opening by an electroplating method using a photoresist as a mold, and an electrically conductive contact pin is obtained by removing the photoresist sheet and the conductive substrate.
  • the electrically conductive contact pins are formed by stacking a plurality of metal materials on top and bottom. In the case of a metal material having relatively high wear resistance, since electrical conductivity is relatively low, when an electrically conductive contact pin is manufactured by stacking a plurality of metal materials, there is a trade-off relationship between wear resistance and electrical conductivity.
  • electrically conductive contact pins are inserted into the guide holes of the guide plate to constitute the probe head of the probe card. During inspection, the electrically conductive contact pins are in continuous sliding contact with the inner wall of the guide hole of the guide plate. Due to this, the side of the electrically conductive contact pin in contact with the inner wall of the guide hole is worn out, which reduces durability and causes a problem that a part of the side is slightly dented when used for a long time.
  • Patent Document 1 Republic of Korea Registration No. 10-0449308 Patent Publication
  • the present invention has been devised to solve the problems of the prior art, and the present invention is an electrically conductive contact pin with improved wear resistance on the side of the electrically conductive contact pin in an electrically conductive contact pin formed by laminating a plurality of metal layers.
  • An object of the present invention is to provide an inspection device having the same, and a method for manufacturing an electrically conductive contact pin.
  • the electrically conductive contact pin according to the present invention is an electrically conductive contact pin including a stacking part formed by stacking a plurality of metal layers, which is provided on a side surface of the electrically conductive contact pin. Includes reinforcement.
  • the stacked portion includes a first metal and a second metal, wherein the first metal is a metal having relatively high wear resistance compared to the second metal, and the second metal has relatively high electrical conductivity compared to the first metal.
  • a metal, and the reinforcing part is formed of the first metal.
  • the first metal is rhodium (Rd), platinum (platinum, Pt), iridium (iridium, Ir), palladium (palladium) or alloys thereof, or palladium-cobalt (palladium-cobalt, PdCo) alloy, palladium-nickel (PdNi) alloy or nickel-phosphor (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo) or nickel-tungsten ( It is formed of a metal selected from a nickel-tungsten, NiW alloy, and the second metal is formed of a metal selected from copper (Cu), silver (Ag), gold (Au), or an alloy thereof.
  • the electrically conductive contact pin includes a first region and a second region formed separately in a longitudinal direction, wherein the first region includes the lamination portion, and the second region includes the lamination portion and the reinforcement portion. do.
  • At least two second regions are formed in the longitudinal direction of the electrically conductive contact pins.
  • the first area is provided between the second area.
  • the reinforcement part is formed of the same material as at least one of the metal layers constituting the stacking part.
  • the reinforcement portion is formed of a material different from the metal layer constituting the stacking portion.
  • the reinforcement portion is continuously formed on the side surface of the electrically conductive contact pin from the lower surface portion to the upper surface portion in the thickness direction of the electrically conductive contact pin.
  • the electrically conductive contact pin according to the present invention in the electrically conductive contact pin, includes a first region and a second region formed separately in the longitudinal direction of the electrically conductive contact pin, wherein the first region includes a plurality of It includes a lamination part provided with a stacked metal layer, and the second region includes the lamination part and a reinforcement part, wherein the reinforcement part is provided on at least one side of the laminate part while having a higher wear resistance than the average wear resistance of the laminate part.
  • the stacked portion includes a first metal and a second metal, wherein the first metal is a metal having relatively high wear resistance compared to the second metal, and the second metal has relatively high electrical conductivity compared to the first metal.
  • a metal, and the reinforcing part is formed of the first metal.
  • the first metal is rhodium (Rd), platinum (platinum, Pt), iridium (iridium, Ir), palladium (palladium) or alloys thereof, or palladium-cobalt (palladium-cobalt, PdCo) alloy, palladium-nickel (PdNi) alloy or nickel-phosphor (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo) or nickel-tungsten ( It is formed of a metal selected from a nickel-tungsten, NiW alloy, and the second metal is formed of a metal selected from copper (Cu), silver (Ag), gold (Au), or an alloy thereof.
  • the inspection apparatus is an inspection apparatus comprising a guide plate into which a plurality of electrically conductive contact pins are inserted, wherein the electrically conductive contact pins include a stacking part formed by stacking a plurality of metal layers, and the electrical A reinforcing part provided on a side surface of the conductive contact pin, wherein the stacking part includes a first metal and a second metal, wherein the first metal is a metal having relatively high wear resistance compared to the second metal, and the second metal is the A metal having relatively high electrical conductivity compared to the first metal, the reinforcing portion is formed of the first metal, and the reinforcing portion is provided at a position corresponding to the position of the guide hole of the guide plate.
  • the electrically conductive contact pin includes a first region and a second region formed separately in a longitudinal direction, wherein the first region includes the lamination portion, and the second region includes the lamination portion and the reinforcement portion. do.
  • the manufacturing method of the electrically conductive contact pin a first plating step of forming a laminate in which a plurality of metal layers are laminated; and a second plating step of forming a reinforcement part on at least one side of the laminated part with a metal having a higher wear resistance than the average wear resistance of the laminated part by a plating process separate from the first plating step.
  • the first plating step is a step of forming the lamination part in a first internal space of the mold
  • the second plating step is a step of forming a reinforcement part in the second internal space formed in the mold in a lateral direction of the lamination part.
  • the mold is made of an anodized film material.
  • the present invention provides an electrically conductive contact pin having improved abrasion resistance on the side of the electrically conductive contact pin in an electrically conductive contact pin formed by laminating a plurality of metal layers, an inspection device having the same, and a method for manufacturing the electrically conductive contact pin .
  • FIG. 1 is a view showing a state in which an electrically conductive contact pin is inserted into a guide plate according to a first preferred embodiment of the present invention.
  • FIGS. 2 to 6 are views showing a method of manufacturing an electrically conductive contact pin according to a first preferred embodiment of the present invention.
  • FIG. 7 (a) is a front view of a state in which an electrically conductive contact pin is inserted into a guide hole of a guide plate according to a first preferred embodiment of the present invention
  • FIG. 7 (b) is a side view of the electrically conductive contact pin.
  • FIG. 8 is a view showing a state in which an electrically conductive contact pin is inserted into a guide plate according to a second preferred embodiment of the present invention.
  • 9 to 13 are views showing a method of manufacturing an electrically conductive contact pin according to a second preferred embodiment of the present invention.
  • FIG. 14 (a) is a front view of a state in which an electrically conductive contact pin is inserted into a guide hole of a guide plate according to a second preferred embodiment of the present invention
  • FIG. 14 (b) is a side view of the electrically conductive contact pin.
  • Embodiments described herein will be described with reference to cross-sectional and/or perspective views, which are ideal illustrative drawings of the present invention.
  • the thicknesses of films and regions shown in these drawings are exaggerated for effective description of technical content.
  • the shape of the illustrative drawing may be modified due to manufacturing technology and/or tolerance.
  • the number of electrically conductive contact pins shown in the drawings is only partially shown in the drawings by way of example. Accordingly, embodiments of the present invention are not limited to the specific form shown, but also include changes in the form generated according to the manufacturing process.
  • the technical terms used herein are used only to describe specific embodiments, and are not intended to limit the present invention.
  • the singular expression includes the plural expression unless the context clearly dictates otherwise.
  • the electrically conductive contact pin 100 is provided in the inspection device and is used to electrically and physically contact the inspection object to transmit an electrical signal.
  • the inspection apparatus may be an inspection apparatus used in a semiconductor manufacturing process, and for example, may be a probe card or a test socket.
  • the inspection device according to the preferred embodiment of the present invention is not limited thereto, and any device for checking whether the inspection object is defective by applying electricity is included.
  • a probe card will be exemplified as an example of the inspection device.
  • the semiconductor wafer (W) is approached to the probe card on which a plurality of electrically conductive contact pins (100) are formed, and each electrically conductive contact pin (100) is applied to the corresponding electrode pad (W) on the semiconductor wafer (W). WP).
  • the wafer W may be further raised to a predetermined height toward the probe card.
  • the electrically conductive contact pins 100 are inserted into the guide holes 11 of the guide plate 10 to elastically deform, and the electrically conductive contact pins 100 are adopted to form a vertical probe card.
  • the electrically conductive contact pin 100 has a pre-deformed structure, that is, a structure in which the straight pin is deformed by moving the upper, lower, or additional guide plate or having the shape of a cobra pin. do.
  • each guide plate 10 is provided vertically spaced apart from each other.
  • each guide plate may be a laminated guide plate in which a plurality of thin plates are closely stacked.
  • the electrically conductive contact pin 100 is provided by being inserted into the guide hole 11 of the guide plate 10 , and during inspection, the electrically conductive contact pin 100 is in sliding contact with the inner wall of the guide hole 11 .
  • the electrically conductive contact pin 100 is bent in the direction of the side surface 103 and gives a large force to the inner wall of the guide hole 11, so that the friction force is increased.
  • the electrically conductive contact pin 100 according to the preferred embodiment of the present invention is provided with the reinforcing part 120 with high wear resistance on the side surface 103, so that wear due to friction is minimized.
  • the durability of the electrically conductive contact pin 100 is improved.
  • a first plating step of forming the stacked portion 111 provided by stacking a plurality of metal layers and a plating separate from the first plating step includes a second plating step of forming the reinforcing part 120 on at least one side of the laminated part 111 with a metal having a higher wear resistance than the average wear resistance of the laminated part 111 .
  • FIGS. 1 to 7 are views showing a state in which an electrically conductive contact pin 100 according to a first preferred embodiment of the present invention is inserted into the guide plate 10, and FIGS. 2 to 6 are a first preferred embodiment of the present invention.
  • Figure 7 (a) is an electrically conductive contact pin 100 according to the first preferred embodiment of the present invention is a guide hole of the guide plate (10) (11) is a front view of the inserted state
  • Figure 7 (b) is a side view of the electrically conductive contact pin (100).
  • the electrically conductive contact pin 100 includes an upper surface 101 , and the opposite surface of the upper surface 101 is a lower surface and a side surface 103 .
  • the electrically conductive contact pin 100 includes a stacking part 110 formed by stacking a plurality of metal layers.
  • the electrically conductive contact pin 100 includes a reinforcing part 120 provided on the side surface 103 of the electrically conductive contact pin 100 .
  • the reinforcement portion 120 is continuously formed on the side surface 103 of the electrically conductive contact pin 100 from the lower surface to the upper surface in the thickness direction of the electrically conductive contact pin 100 .
  • the guide hole 11 is in the form of a hole into which the electrically conductive contact pin 100 is inserted, only a part of the guide plate 10 is shown in FIG. 1 for convenience of explanation.
  • the stacked part 110 includes a first metal 111 and a second metal 112 .
  • the first metal 111 is a metal having relatively high wear resistance compared to the second metal 112
  • the second metal 112 is a metal having relatively high electrical conductivity compared to the first metal 111 .
  • the first metal 111 is rhodium (Rd), platinum (platinum, Pt), iridium (iridium, Ir), palladium (palladium) or alloys thereof, or palladium-cobalt (palladium-cobalt, PdCo) alloy, palladium-nickel (PdNi) alloy or nickel-phosphor (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo) or nickel-tungsten ( It is formed of a metal selected from nickel-tungsten, NiW alloy, and the second metal 112 is formed of a metal selected from copper (Cu), silver (Ag), gold (Au), or an alloy thereof.
  • the reinforcing part 120 is formed of the first metal 111 .
  • the reinforcement unit 120 may be formed of the same material as at least one of the metal layers constituting the lamination unit 110 , or may be formed of a material different from the metal layer constituting the lamination unit 110 .
  • the stacking unit 110 may be formed by alternately stacking a first metal 111 made of a palladium-cobalt (PdCo) alloy and a second metal 112 made of a copper (Cu) material.
  • the reinforcing part 120 may be a first metal 111 made of a palladium-cobalt (PdCo) alloy or a first metal 111 made of a rhodium (Rd) material.
  • the electrically conductive contact pin 100 includes a first region 210 and a second region 220 that are formed separately in the longitudinal direction of the electrically conductive contact pin 100 .
  • the first region 210 includes the stacking part 110
  • the second region 220 includes the stacking part 110 and the reinforcement part 120 .
  • the reinforcing part 120 is provided on at least one side of the stacking part 110 while having a higher wear resistance than the average wear resistance of the stacking part 110 .
  • the reinforcing part 120 is a portion in sliding contact with the inner wall of the guide hole 11 of the guide plate 10 .
  • the durability of the electrically conductive contact pin 100 can be improved by allowing the reinforcing part 120 , which is a portion with high wear resistance of the electrically conductive contact pin 100 , to contact the inner wall of the guide hole 11 .
  • two second regions 220 are formed in the longitudinal direction of the electrically conductive contact pins 100 . This is considering that the number of guide plates 10 is two, and when the number of guide plates is two or more, two or more second regions 220 are formed in the longitudinal direction of the electrically conductive contact pins 100 .
  • a first area 210 is provided between the two second areas 220 . Since the first region 210 is a region containing a metal having high electrical conductivity, the content of the metal having high electrical conductivity is increased in an area where there is little risk of sliding contact with the inner wall of the guide hole 11, so that the electrically conductive contact pin 100 ) can improve the overall current carrying capacity.
  • the method of manufacturing the electrically conductive contact pin 100 according to the first preferred embodiment of the present invention is separate from the first plating step and the first plating step of forming the stacked portion 111 provided by stacking a plurality of metal layers.
  • FIG. 2 (a) is a plan view of the mold 20 provided with the first internal space 21, and FIG. 2 (b) is a cross-sectional view taken along line A-A' of FIG. 2 (a).
  • FIG. 2(c) is a sectional view taken along line B-B' of FIG. 2(a)
  • FIG. 2(d) is a cross-sectional view of FIG. D-D' is a cross-sectional view.
  • a first internal space 21 is formed in the mold 20 , and a seed layer 30 is provided under the mold 20 .
  • the mold 20 may be made of an anodized film, photoresist, silicon wafer, or a similar material. However, preferably, the mold 20 may be made of an anodized film material.
  • the anodization film refers to a film formed by anodizing a metal as a base material, and the pores refer to a hole formed in the process of forming an anodization film by anodizing the metal.
  • the base metal is aluminum (Al) or an aluminum alloy
  • Al 2 0 3 aluminum oxide
  • the base metal is not limited thereto, and includes Ta, Nb, Ti, Zr, Hf, Zn, W, Sb, or alloys thereof.
  • the anodized film formed as described above is vertically divided into a barrier layer in which pores are not formed and a porous layer in which pores are formed.
  • the base material is removed from the base material on which the anodized film having a barrier layer and a porous layer is formed on the surface, only the anodized film made of aluminum oxide (Al 2 O 3 ) material remains.
  • the anodization film may be formed in a structure in which the barrier layer formed during anodization is removed to penetrate the top and bottom of the pores, or the barrier layer formed during anodization remains as it is and seals one end of the top and bottom of the pores.
  • the anodized film has a coefficient of thermal expansion of 2-3 ppm/°C. For this reason, when exposed to a high temperature environment, thermal deformation due to temperature is small. Therefore, even if the manufacturing environment of the electrically conductive contact pin 100 is a high temperature environment, it is possible to manufacture the precise electrically conductive contact pin 100 without thermal deformation.
  • the electrically conductive contact pin 100 is manufactured using a mold 20 made of an anodized film material instead of a photoresist mold, so the precision of the shape was limited in realization with the photoresist mold; It becomes possible to exhibit the effect of realization of a micro-shape.
  • an electrically conductive contact pin having a thickness of 40 ⁇ m can be manufactured, but when using a mold made of an anodized film material, an electrically conductive contact pin 100 having a thickness of 100 ⁇ m or more and 200 ⁇ m or less is used. can be crafted.
  • a seed layer 30 is provided on a lower surface of the mold 20 .
  • the seed layer 30 may be provided on the lower surface of the mold 20 before the first internal space 21 is formed in the mold 20 .
  • a support substrate (not shown) is formed under the mold 20 to improve handling of the mold 20 .
  • the seed layer 30 is formed on the upper surface of the support substrate (not shown), and the mold 20 in which the first internal space 21 is formed may be used by coupling the mold 20 to the support substrate (not shown).
  • the seed layer 30 may be formed of a copper (Cu) material, and may be formed by a deposition method. The seed layer 30 is used to improve the plating quality of the lamination part 110 and the reinforcement part 120 when forming the laminated part 110 and the reinforcement part 120 using the electroplating method.
  • Cu copper
  • the first inner space 21 may be formed by wet etching the mold 20 made of an anodized film material.
  • a photoresist is provided on the upper surface of the mold 20 and patterned, and then the anodized film in the patterned and open area reacts with the etching solution to form the first internal space 21 .
  • the photosensitive material may be provided on the upper surface of the mold 20 before the first internal space 21 is formed, and then exposure and development processes may be performed. At least a portion of the photosensitive material may be patterned and removed while forming an open area by an exposure and development process.
  • the mold 20 made of the anodized film material is etched through the open region from which the photosensitive material has been removed by the patterning process, and the anodized film at the position corresponding to the first internal space 21 is removed by the etching solution to form the first mold 20 . 1
  • the inner space 21 is formed.
  • FIG. 3 ( a ) is a plan view of the mold 20 in which the stacking part 110 is formed in the first internal space 21
  • FIG. 3 ( b ) is a diagram of FIG. 3 ( a ).
  • A-A' cross-sectional view Fig. 3(c) is a B-B' cross-sectional view of Fig. 3(a)
  • Fig. 3(d) is a C-C' cross-sectional view of Fig. 3(a)
  • Fig. 3(e) ) is a D-D' cross-sectional view of FIG. 3(a).
  • An electroplating process is performed in the first inner space 21 of the mold 20 to form the stacked part 110 .
  • a plurality of metal layers are stacked and formed in the thickness direction of the electrically conductive contact pin 100 by performing a plurality of electroplating processes.
  • the stacked part 110 is rhodium (Rd), platinum (platinum, Pt), iridium (iridium, Ir), palladium (palladium) or an alloy thereof, or palladium-cobalt (palladium-cobalt, PdCo) alloy, palladium -Nickel (palladium-nickel, PdNi) alloy or nickel-phosphor (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo) or nickel-tungsten (nickel)
  • a first metal 111 selected from -tungsten, NiW alloy and a second metal 112 selected from copper (Cu), silver (Ag), and gold (Au) are provided.
  • the first metal 210 made of a palladium-cobalt (PdCo) alloy and the second metal 230 made of copper (Cu) may be alternately stacked and formed.
  • the first metal 210 allows the electrically conductive contact pin 100 to be elastically deformed
  • the second metal 230 allows the current carrying capacity (CCC) of the electrically conductive contact pin 100 to be improved.
  • a planarization process may be performed.
  • the metal protruding from the upper surface of the mold 20 is removed and planarized through a chemical mechanical polishing (CMP) process.
  • CMP chemical mechanical polishing
  • FIG. 4 (a) is a plan view of the mold 20 forming the second inner space 22
  • FIG. 4 (b) is a cross-sectional view taken along line A-A' of FIG. 4 (a).
  • FIG. 4(c) is a sectional view taken along line B-B' of FIG. 4(a)
  • FIG. 4(d) is a cross-sectional view taken from FIG. D-D' is a cross-sectional view.
  • a process of removing a portion of the mold 20 is performed.
  • a portion of the mold 20 is removed to form the second inner space 22 in the mold 20 .
  • an exposure and development process may be performed.
  • At least a portion of the photosensitive material may be patterned and removed while forming an open area by an exposure and development process.
  • An etching process is performed through the open region from which the photosensitive material has been removed by the patterning process, and a portion of the mold 20 is removed by the etching solution to form the second internal space 22 .
  • At least four second internal spaces 22 are formed adjacent to the side surface of the stacking part 110 to correspond to the position of the reinforcing part 120 .
  • a plurality of stacked parts 111 are exposed on three side surfaces of each of the second internal spaces 22 , and the mold 20 is exposed on one side surface.
  • FIG. 5(a) is a plan view of the mold 20 in which the reinforcement part 120 is formed in the second inner space 22, and FIG. 5(b) is a view of FIG. 5(a).
  • A-A' cross-sectional view Fig. 5(c) is a B-B' cross-sectional view of Fig. 5(a)
  • Fig. 5(d) is a C-C' cross-sectional view of Fig. 5(a)
  • Fig. 5(e) is a D-D' cross-sectional view of FIG. 5(a).
  • a step of forming the reinforcement part 120 is performed.
  • the reinforcement part 120 is formed in the second internal space 22 formed in the previous step by using an electroplating process.
  • the reinforcement part 120 is integrated with the stacking part 110 manufactured in the previous step. As described above, the stacked part 110 is exposed on three side surfaces of the second internal space 22 . In this side, the reinforcement part 120 is integrated with the stacked part 110 .
  • Reinforcing unit 120 is rhodium (rhodium, Rd), platinum (platinum, Pt), iridium (iridium, Ir), palladium (palladium) or alloys thereof, or palladium-cobalt (palladium-cobalt, PdCo) alloy, palladium -Nickel (palladium-nickel, PdNi) alloy or nickel-phosphor (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo) or nickel-tungsten (nickel) -tungsten, NiW) may be a metal selected from an alloy, and preferably, the reinforcing part 120 may be formed of the same material as the first metal 210 constituting the stacking part 110 .
  • the reinforced part 120 is also palladium-cobalt (PdCo). It may be an alloy material. Alternatively, the reinforcing part 120 may be formed of a material different from that of the first metal 210 constituting the stacking part 110 .
  • the reinforced part 120 may be made of a rhodium (Rd) material. .
  • FIG. 6(a) is a plan view of the electrically conductive contact pin 100
  • FIG. 6(b) is a cross-sectional view taken along line A-A' of FIG. 6(a)
  • FIG. 6(c) is 6(a) is a cross-sectional view B-B'
  • FIG. 6(d) is a C-C' cross-sectional view of FIG. 6(a)
  • FIG. 6(e) is a sectional view D-D' of FIG. 6(a).
  • a process of removing the mold 20 and the seed layer 30 is performed.
  • the mold 20 is made of an anodized film material
  • the mold 20 is removed using a solution that selectively reacts to the anodized film material.
  • the seed layer 30 is made of copper (Cu)
  • the seed layer 30 is removed using a solution that selectively reacts with copper (Cu).
  • the step of forming the laminated part 110 by plating the first internal space 21 using the mold 20 in which the first internal space 21 is formed is first performed, and then the mold 20 is formed.
  • the steps of forming the second inner space 22 by removing a part and forming the reinforcing part 120 by plating the second inner space 22 are performed, according to the first preferred embodiment of the present invention
  • a step of forming the second inner space 22 by removing a part of the mold 20 and plating the second inner space 22 to form the reinforcement part 120 is performed first. and then plating the first internal space 21 using the mold 20 in which the first internal space 21 is formed to form a plurality of stacked parts 110 .
  • Figure 7 (a) is a view from the front in a state in which the electrically conductive contact pin 100 is inserted into the guide hole 11 of the guide plate 10 as a part of the inspection device according to the first preferred embodiment of the present invention.
  • Figure 7 (b) is a side view of the electrically conductive contact pin 100 according to the first preferred embodiment of the present invention.
  • the inspection apparatus includes a guide plate 10 into which a plurality of electrically conductive contact pins 100 are inserted.
  • the electrically conductive contact pin 100 provided in the inspection device includes a stacking part 110 formed by stacking a plurality of metal layers, and a strengthening part 120 provided on the side surface 103 of the electrically conductive contact pin 100 . ) is included.
  • the stacking part 110 includes a first metal 111 and a second metal 112, but the first metal 111 is a metal having relatively high wear resistance compared to the second metal 112, and the second metal ( 112 is a metal having relatively high electrical conductivity compared to the first metal 111 , the reinforcing part 120 is formed of the first metal 111 , and the reinforcing part 120 is a guide hole of the guide plate 10 . It is provided at a position corresponding to the position of (11).
  • the electrically conductive contact pin 100 is provided with a reinforcing portion 120 corresponding to the positions of the guide holes 11 of the two guide plates 10 . Accordingly, the side 103 of the electrically conductive contact pin 100 is provided with two reinforcement portions 120 . A stacking part 110 is provided between the two reinforcement parts 120 . Except for only the region where the reinforcement part 120 is provided, the stacked part 110 is entirely formed on the electrically conductive contact pin 100 .
  • the stacking part 110 is a configuration formed by stacking a plurality of metal layers, and the metal layer includes a metal having higher electrical conductivity than the metal constituting the reinforcement part 120 . Through the configuration of the stacking part 110 provided between the two reinforcing parts 120 , it is possible to prevent a decrease in the current carrying capacity of the electrically conductive contact pin 100 .
  • the electrically conductive contact pin 100 includes a first metal 111 made of palladium-cobalt (PdCo) and a second metal 112 made of copper (Cu). It may be configured by being alternately stacked. For example, in the thickness direction of the electrically conductive contact pin 100, the first metal 111 made of palladium-cobalt (PdCo), the second metal 112 made of copper (Cu), palladium-cobalt ( First metal 111 made of palladium-cobalt, PdCo, second metal 112 made of copper (Cu), first metal 111 made of palladium-cobalt (PdCo), 5 in order The layers may be alternately stacked.
  • the same number of layers may be stacked in the same alternating stacking pattern.
  • the first metal 111 made of palladium-cobalt (PdCo) material may be positioned on the lowermost layer and the uppermost layer of the electrically conductive contact pin 100 .
  • the reinforcing unit 120 may be formed of the first metal 111 made of palladium-cobalt (PdCo).
  • the first metal 111 made of palladium-cobalt (PdCo) is continuously continuous through a plating process to form an integral type. Since it is formed, it is possible to improve durability by minimizing delamination between layers during elastic deformation behavior of the electrically conductive contact pin 100 .
  • the content of the second metal 112 selected from among copper (Cu), silver (Ag), and gold (Au) having relatively high electrical conductivity can be increased through the configuration of the stacking unit 110 in which a plurality of metal layers are stacked. Therefore, it is possible to prevent a decrease in the current carrying capacity (Current Carrying Capacity) of the electrically conductive contact pin (100).
  • the metal constituting the reinforcing part 120 has a higher hardness than the second metal 112 selected from copper (Cu), silver (Ag), and gold (Au) constituting the stacking part 110 , the guide hole When in contact with the inner wall of (11), the side 103 of the electrically conductive contact pin 100 is plastically deformed to prevent a dent. Through this, the behavior pattern of the electrically conductive contact pin 100 can be constantly maintained.
  • FIGS. 8 to 14 is a view showing a state in which an electrically conductive contact pin 100 according to a second preferred embodiment of the present invention is inserted into the guide plate 10, and FIGS. 9 to 13 are a second preferred embodiment of the present invention.
  • Figure 14 (a) is an electrically conductive contact pin 100 according to a second preferred embodiment of the present invention is a guide hole of the guide plate (10) (11) is a front view of the inserted state
  • Figure 14 (b) is a side view of the electrically conductive contact pin (100).
  • the electrically conductive contact pin 100 includes an upper surface 101 , and the opposite surface of the upper surface 101 is a lower surface and a side surface 103 .
  • the electrically conductive contact pin 100 includes a stacking part 110 formed by stacking a plurality of metal layers.
  • the electrically conductive contact pin 100 includes a reinforcing part 120 provided on the side surface 103 of the electrically conductive contact pin 100 .
  • the reinforcement portion 120 is continuously formed on the side surface 103 of the electrically conductive contact pin 100 from the lower surface to the upper surface in the thickness direction of the electrically conductive contact pin 100 .
  • the guide hole 11 is in the form of a hole into which the electrically conductive contact pin 100 is inserted, only a part of the guide plate 10 is illustrated in FIG. 8 for convenience of explanation.
  • the reinforcing part 120 is the electrically conductive contact pin 100 .
  • the reinforcing part 120 is the electrically conductive contact pin 100 .
  • the stacked part 110 includes a first metal 111 and a second metal 112 .
  • the first metal 111 is a metal having relatively high wear resistance compared to the second metal 112
  • the second metal 112 is a metal having relatively high electrical conductivity compared to the first metal 111 .
  • the first metal 111 is rhodium (Rd), platinum (platinum, Pt), iridium (iridium, Ir), palladium (palladium) or alloys thereof, or palladium-cobalt (palladium-cobalt, PdCo) alloy, palladium-nickel (PdNi) alloy or nickel-phosphor (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo) or nickel-tungsten ( It is formed of a metal selected from nickel-tungsten, NiW alloy, and the second metal 112 is formed of a metal selected from copper (Cu), silver (Ag), gold (Au), or an alloy thereof.
  • the reinforcing part 120 is formed of the first metal 111 .
  • the reinforcement unit 120 may be formed of the same material as at least one of the metal layers constituting the lamination unit 110 , or may be formed of a material different from the metal layer constituting the lamination unit 110 .
  • the stacking unit 110 may be formed by alternately stacking a first metal 111 made of a palladium-cobalt (PdCo) alloy and a second metal 112 made of a copper (Cu) material.
  • the reinforcing part 120 may be a first metal 111 made of a palladium-cobalt (PdCo) alloy or a first metal 111 made of a rhodium (Rd) material.
  • the manufacturing method of the electrically conductive contact pin 100 according to the second preferred embodiment of the present invention is separate from the first plating step and the first plating step of forming the stacked portion 111 provided by stacking a plurality of metal layers.
  • a second plating step of forming the reinforced part 120 with a metal having a higher wear resistance than the average wear resistance of the laminated part 111 on the entire side surface of the laminated part 111 by the plating process of the laminated part 111 It will be described in detail below.
  • FIG. 9 (a) is a plan view of the mold 20 provided with the first internal space 21, and FIG. 9 (b) is a cross-sectional view taken along line A-A' of FIG. , FIG. 9(c) is a cross-sectional view taken along line B-B' of FIG. 9(a), and FIG. 9(d) is a cross-sectional view taken along line C-C' of FIG.
  • a first internal space 21 is formed in the mold 20 , and a seed layer 30 is provided under the mold 20 .
  • the mold 20 may be made of an anodized film, photoresist, silicon wafer, or a similar material. However, preferably, the mold 20 may be made of an anodized film material.
  • the electrically conductive contact pin 100 is manufactured using a mold 20 made of an anodized film material instead of a photoresist mold, so the precision of the shape was limited in realization with the photoresist mold; It becomes possible to exhibit the effect of realization of a micro-shape.
  • a seed layer 30 is provided on a lower surface of the mold 20 .
  • the seed layer 30 may be provided on the lower surface of the mold 20 before the first internal space 21 is formed in the mold 20 .
  • a support substrate (not shown) is formed under the mold 20 to improve handling of the mold 20 .
  • the seed layer 30 is formed on the upper surface of the support substrate (not shown), and the mold 20 in which the first internal space 21 is formed may be used by coupling the mold 20 to the support substrate (not shown).
  • the seed layer 30 may be formed of a copper (Cu) material, and may be formed by a deposition method. The seed layer 30 is used to improve the plating quality of the lamination part 110 and the reinforcement part 120 when forming the laminated part 110 and the reinforcement part 120 using the electroplating method.
  • Cu copper
  • the first inner space 21 may be formed by wet etching the mold 20 made of an anodized film material.
  • a photoresist is provided on the upper surface of the mold 20 and patterned, and then the anodized film in the patterned and open area reacts with the etching solution to form the first internal space 21 .
  • the photosensitive material may be provided on the upper surface of the mold 20 before the first internal space 21 is formed, and then exposure and development processes may be performed. At least a portion of the photosensitive material may be patterned and removed while forming an open area by an exposure and development process.
  • the mold 20 made of the anodized film material is etched through the open region from which the photosensitive material has been removed by the patterning process, and the anodized film at the position corresponding to the first internal space 21 is removed by the etching solution to form the first mold 20 . 1
  • the inner space 21 is formed.
  • FIG. 10 ( a ) is a plan view of the mold 20 in which the stacking part 110 is formed in the first internal space 21
  • FIG. 10 ( b ) is a view of FIG. 10 ( a ).
  • FIG. 10(c) is a B-B' cross-sectional view of FIG. 10(a)
  • FIG. 10(d) is a C-C' cross-sectional view of FIG. 10(a).
  • An electroplating process is performed in the first inner space 21 of the mold 20 to form the stacked part 110 .
  • a plurality of metal layers are stacked and formed in the thickness direction of the electrically conductive contact pin 100 by performing a plurality of electroplating processes.
  • the stacked part 110 is rhodium (Rd), platinum (platinum, Pt), iridium (iridium, Ir), palladium (palladium) or an alloy thereof, or palladium-cobalt (palladium-cobalt, PdCo) alloy, palladium -Nickel (palladium-nickel, PdNi) alloy or nickel-phosphor (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo) or nickel-tungsten (nickel)
  • a first metal 111 selected from -tungsten, NiW alloy and a second metal 112 selected from copper (Cu), silver (Ag), and gold (Au) are provided.
  • the first metal 210 made of a palladium-cobalt (PdCo) alloy and the second metal 230 made of copper (Cu) may be alternately stacked and formed.
  • the first metal 210 allows the electrically conductive contact pin 100 to be elastically deformed
  • the second metal 230 allows the current carrying capacity (CCC) of the electrically conductive contact pin 100 to be improved.
  • a planarization process may be performed.
  • the metal protruding from the upper surface of the mold 20 is removed and planarized through a chemical mechanical polishing (CMP) process.
  • CMP chemical mechanical polishing
  • FIG. 11 (a) is a plan view of the mold 20 forming the second inner space 22
  • FIG. 11(b) is A-A of FIG. 11(a) 'It is a cross-sectional view
  • FIG. 11 ( c) is a sectional view taken along line B-B' of FIG.
  • a process of removing a portion of the mold 20 is performed.
  • a portion of the mold 20 is removed to form the second inner space 22 in the mold 20 .
  • an exposure and development process may be performed.
  • At least a portion of the photosensitive material may be patterned and removed while forming an open area by an exposure and development process.
  • An etching process is performed through the open region from which the photosensitive material has been removed by the patterning process, and a portion of the mold 20 is removed by the etching solution to form the second internal space 22 .
  • Two second internal spaces 22 are formed along the side surface of the stacking part 110 to correspond to the position of the reinforcing part 120 .
  • a plurality of stacked parts 111 are exposed on one side surface of each of the second internal spaces 22 , and the mold 20 is exposed on three side surfaces.
  • FIG. 12 ( a ) is a plan view of the mold 20 in which the reinforcement part 120 is formed in the second inner space 22
  • FIG. 12 ( b ) is a view of FIG. 12 ( a ).
  • FIG. 12(c) is a B-B' cross-sectional view of FIG. 12(a)
  • FIG. 12(d) is a C-C' cross-sectional view of FIG. 12(a).
  • a step of forming the reinforcement part 120 is performed.
  • the reinforcement part 120 is formed in the second internal space 22 formed in the previous step by using an electroplating process.
  • the reinforcement part 120 is integrated with the stacking part 110 manufactured in the previous step. As described above, the stacked part 110 is exposed on one side of the second internal space 22 , and the reinforcement part 120 is integrated with the stacked part 110 on this side.
  • Reinforcing unit 120 is rhodium (rhodium, Rd), platinum (platinum, Pt), iridium (iridium, Ir), palladium (palladium) or alloys thereof, or palladium-cobalt (palladium-cobalt, PdCo) alloy, palladium -Nickel (palladium-nickel, PdNi) alloy or nickel-phosphor (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo) or nickel-tungsten (nickel) -tungsten, NiW) may be a metal selected from an alloy, and preferably, the reinforcing part 120 may be formed of the same material as the first metal 210 constituting the stacking part 110 .
  • the reinforced part 120 is also palladium-cobalt (PdCo). It may be an alloy material. Alternatively, the reinforcing part 120 may be formed of a material different from that of the first metal 210 constituting the stacking part 110 .
  • the reinforced part 120 may be made of a rhodium (Rd) material. .
  • FIG. 13(a) is a plan view of the electrically conductive contact pin 100
  • FIG. 13(b) is a cross-sectional view taken along line A-A' of FIG. 13(a)
  • FIG. 13(c) is 13(a) is a sectional view taken along line B-B'
  • FIG. 13(d) is a cross-sectional view taken along line C-C' of FIG. 13(a).
  • a process of removing the mold 20 and the seed layer 30 is performed.
  • the mold 20 is made of an anodized film material
  • the mold 20 is removed using a solution that selectively reacts to the anodized film material.
  • the seed layer 30 is made of copper (Cu)
  • the seed layer 30 is removed using a solution that selectively reacts with copper (Cu).
  • the step of forming the laminated part 110 by plating the first internal space 21 using the mold 20 in which the first internal space 21 is formed is first performed, and then the mold 20 is formed.
  • the step of forming the second inner space 22 is formed by removing a part and the step of forming the reinforcing part 120 is performed by plating the second inner space 22, according to the second preferred embodiment of the present invention
  • a step of forming the second inner space 22 by removing a part of the mold 20 and plating the second inner space 22 to form the reinforcement part 120 is performed first. and then plating the first internal space 21 using the mold 20 in which the first internal space 21 is formed to form a plurality of stacked parts 110 .
  • Figure 14 (a) is a view from the front of a state in which the electrically conductive contact pin 100 is inserted into the guide hole 11 of the guide plate 10 as a part of the inspection device according to the second preferred embodiment of the present invention.
  • Figure 14 (b) is a side view of the electrically conductive contact pin 100 according to the first preferred embodiment of the present invention.
  • the inspection apparatus includes a guide plate 10 into which a plurality of electrically conductive contact pins 100 are inserted.
  • the electrically conductive contact pin 100 provided in the inspection device includes a stacking part 110 formed by stacking a plurality of metal layers, and a strengthening part 120 provided on the side surface 103 of the electrically conductive contact pin 100 . ) is included.
  • the stacking part 110 includes a first metal 111 and a second metal 112, but the first metal 111 is a metal having relatively high wear resistance compared to the second metal 112, and the second metal ( 112 is a metal having relatively high electrical conductivity compared to the first metal 111 , the reinforcing part 120 is formed of the first metal 111 , and the reinforcing part 120 is a guide hole of the guide plate 10 . It is provided at a position corresponding to the position of (11).
  • the reinforcing part 120 is provided on the entire side surface 103 of the electrically conductive contact pin 100 .
  • the electrically conductive contact pin 100 is provided by being inserted into the guide hole 11 of the guide plate 10 , and during inspection, the electrically conductive contact pin 100 is in sliding contact with the inner wall of the guide hole 11 .
  • the electrically conductive contact pin 100 since the electrically conductive contact pin 100 is bent in the lateral direction to apply a large force to the inner wall of the guide hole 11, the frictional force is increased.
  • the electrically conductive contact pin 100 according to the second preferred embodiment of the present invention is provided with the reinforcing portion 120 having high wear resistance on the entire side surface 103, thereby minimizing wear due to friction.
  • the durability of the electrically conductive contact pin 100 is improved.
  • the electrically conductive contact pin 100 includes a first metal 111 made of palladium-cobalt (PdCo) and a second metal 112 made of copper (Cu). It may be configured by being alternately stacked. For example, in the thickness direction of the electrically conductive contact pin 100, the first metal 111 made of palladium-cobalt (PdCo), the second metal 112 made of copper (Cu), palladium-cobalt ( First metal 111 made of palladium-cobalt, PdCo, second metal 112 made of copper (Cu), first metal 111 made of palladium-cobalt (PdCo), 5 in order The layers may be alternately stacked.
  • the same number of layers may be stacked in the same alternating stacking pattern.
  • the first metal 111 made of palladium-cobalt (PdCo) material may be positioned on the lowermost layer and the uppermost layer of the electrically conductive contact pin 100 .
  • the reinforcing unit 120 may be formed of the first metal 111 made of palladium-cobalt (PdCo).
  • the first metal 111 made of palladium-cobalt (PdCo) is continuously continuous through a plating process to form an integral type. Since it is formed, it is possible to improve durability by minimizing delamination between layers during elastic deformation behavior of the electrically conductive contact pin 100 .
  • the metal constituting the reinforcing part 120 has a higher hardness than the second metal 112 selected from copper (Cu), silver (Ag), and gold (Au) constituting the stacking part 110 , the guide hole When in contact with the inner wall of (11), the side 103 of the electrically conductive contact pin 100 is plastically deformed to prevent a dent. Through this, the behavior pattern of the electrically conductive contact pin 100 can be constantly maintained.
  • a plating film made of a gold (Au) material may be additionally formed on the surface of the electrically conductive contact pin 100 according to the first and second embodiments described above in order to further improve the current carrying capacity.
  • Au gold

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Measuring Leads Or Probes (AREA)
  • Manufacture Of Switches (AREA)
  • Contacts (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention provides an electrically conductive contact pin, an inspection device comprising same, and a method for manufacturing an electrically conductive contact pin, wherein the electrically conductive contact pin is formed by stacking a plurality of metal layers and has improved wear resistance on side surfaces thereof.

Description

전기 전도성 접촉핀, 이를 구비하는 검사장치 및 전기 전도성 접촉핀의 제조방법Electrically conductive contact pin, inspection device having same, and manufacturing method of electrically conductive contact pin
본 발명은 전기 전도성 접촉핀, 이를 구비하는 검사장치 및 전기 전도성 접촉핀의 제조방법에 관한 것이다.The present invention relates to an electrically conductive contact pin, an inspection device having the same, and a method for manufacturing the electrically conductive contact pin.
전기 전도성 접촉핀은 검사대상물과 접촉하여 검사대상물을 검사하는 프로브 카드 또는 테스트 소켓에서 사용될 수 있는 접촉핀이다. 이하에서는 일례로 프로브 카드의 접촉핀을 예시하여 설명한다. The electrically conductive contact pin is a contact pin that can be used in a probe card or a test socket that is in contact with an object to inspect the object. Hereinafter, the contact pins of the probe card will be described as an example.
반도체 소자의 전기적 특성 시험은 다수의 전기 전도성 접촉핀을 구비한 프로브 카드에 반도체 웨이퍼를 접근시켜 전기 전도성 접촉핀을 반도체 웨이퍼상의 대응하는 전극 패드에 접촉시킴으로써 수행된다. 전기 전도성 접촉핀과 반도체 웨이퍼 상의 전극 패드를 접촉시킬 때, 양자가 접촉하기 시작하는 상태에 도달한 이후, 프로브 카드에 반도체 웨이퍼를 추가로 접근하는 처리가 이루어진다. 이러한 처리를 오버 드라이브라고 부른다. 오버 드라이브는 전기 전도성 접촉핀을 탄성 변형시키는 처리이며 오버 드라이브를 함으로써, 전극 패드의 높이나 전기 전도성 접촉핀의 높이에 편차가 있어도, 모든 전기 전도성 접촉핀을 전극 패드와 확실하게 접촉시킬 수 있다. 또한 오버 드라이브 시에 전기 전도성 접촉핀이 탄성 변형하고, 그 선단이 전극 패드상에서 이동함으로써, 스크러브가 이루어진다. 이 스크러브에 의해 전극 패드 표면의 산화막이 제거되고 접촉 저항을 감소시킬 수 있다.The electrical property test of a semiconductor device is performed by approaching a semiconductor wafer to a probe card having a plurality of electrically conductive contact pins and bringing the electrically conductive contact pins into contact with corresponding electrode pads on the semiconductor wafer. When the electrically conductive contact pin and the electrode pad on the semiconductor wafer are brought into contact, after reaching a state in which both start to contact, a process for further accessing the semiconductor wafer to the probe card is performed. This process is called overdrive. Overdrive is a process of elastically deforming the electrically conductive contact pins, and by performing overdrive, all electrically conductive contact pins can be reliably brought into contact with the electrode pads even if there is a deviation in the height of the electrode pad or the height of the electrically conductive contact pin. In addition, the electrically conductive contact pin elastically deforms during overdrive, and the tip moves on the electrode pad, thereby performing scrubbing. By this scrubbing, the oxide film on the surface of the electrode pad can be removed and the contact resistance can be reduced.
이러한 전기 전도성 접촉핀은 MEMS 공정을 이용하여 제작될 수 있다. MEMS 공정을 이용하여 전기 전도성 접촉핀을 제작하는 과정을 살펴보면 먼저, 도전성 기재 표면에 포토 레지스트를 도포한 후 포토 레지스트를 패터닝한다. 이후 포토 레지스트를 몰드로 이용하여 전기 도금법에 의해 개구 내에서 금속재료를 석출시키고, 포토 레지시트와 도전성 기재를 제거하여 전기 전도성 접촉핀을 얻는다. 여기서 전기 전도성 접촉핀은 복수개의 금속재료가 상,하로 적층되면서 형성된다. 내마모성이 상대적으로 높은 금속재료의 경우에는 전기 전도도가 상대적으로 낮기 때문에 복수개의 금속 재료를 적층하여 전기 전도성 접촉핀을 제작할 경우에는 내마모도와 전기 전도도는 트레이드 오프(trade off) 관계에 있게 된다. Such electrically conductive contact pins may be manufactured using a MEMS process. Looking at the process of manufacturing an electrically conductive contact pin using the MEMS process, first, a photoresist is applied to the surface of a conductive substrate, and then the photoresist is patterned. Thereafter, a metal material is deposited in the opening by an electroplating method using a photoresist as a mold, and an electrically conductive contact pin is obtained by removing the photoresist sheet and the conductive substrate. Here, the electrically conductive contact pins are formed by stacking a plurality of metal materials on top and bottom. In the case of a metal material having relatively high wear resistance, since electrical conductivity is relatively low, when an electrically conductive contact pin is manufactured by stacking a plurality of metal materials, there is a trade-off relationship between wear resistance and electrical conductivity.
이러한 전기 전도성 접촉핀은 가이드 플레이트의 가이드 구멍에 삽입되어 프로브 카드의 프로브 헤드를 구성한다. 검사 시에 전기 전도성 접촉핀은 가이드 플레이트의 가이드 구멍의 내벽과 지속적으로 슬라이딩 접촉하게 된다. 이로 인해 가이드 구멍의 내벽과 접촉하는 전기 전도성 접촉핀의 측면이 마모되어 내구성이 저하되고 장시간 사용시 측면 일부가 미세하게 움푹 파이는 문제가 발생한다These electrically conductive contact pins are inserted into the guide holes of the guide plate to constitute the probe head of the probe card. During inspection, the electrically conductive contact pins are in continuous sliding contact with the inner wall of the guide hole of the guide plate. Due to this, the side of the electrically conductive contact pin in contact with the inner wall of the guide hole is worn out, which reduces durability and causes a problem that a part of the side is slightly dented when used for a long time.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 1) 대한민국 등록번호 제10-0449308호 등록특허공보(Patent Document 1) Republic of Korea Registration No. 10-0449308 Patent Publication
본 발명은 상술한 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명은 복수개의 금속층을 적층하여 형성되는 전기 전도성 접촉핀에 있어서 전기 전도성 접촉핀의 측면에서의 내마모성을 향상시킨 전기 전도성 접촉핀, 이를 구비하는 검사장치 및 전기 전도성 접촉핀의 제조방법을 제공하는 것을 목적으로 한다.The present invention has been devised to solve the problems of the prior art, and the present invention is an electrically conductive contact pin with improved wear resistance on the side of the electrically conductive contact pin in an electrically conductive contact pin formed by laminating a plurality of metal layers. An object of the present invention is to provide an inspection device having the same, and a method for manufacturing an electrically conductive contact pin.
본 발명은 상술한 목적을 달성하기 위해, 본 발명에 따른 전기 전도성 접촉핀은, 복수개의 금속층이 적층되어 형성되는 적층부를 포함하는 전기 전도성 접촉핀에 있어서, 상기 전기 전도성 접촉핀의 측면에 구비되는 강화부를 포함한다.In order to achieve the above object, the electrically conductive contact pin according to the present invention is an electrically conductive contact pin including a stacking part formed by stacking a plurality of metal layers, which is provided on a side surface of the electrically conductive contact pin. Includes reinforcement.
또한, 상기 적층부는 제1금속과 제2금속을 포함하되 상기 제1금속은 상기 제2금속에 비해 상대적으로 내마모성이 높은 금속이고 상기 제2금속은 상기 제1금속에 비해 상대적으로 전기 전도도가 높은 금속이며, 상기 강화부는 상기 제1금속으로 형성된다.In addition, the stacked portion includes a first metal and a second metal, wherein the first metal is a metal having relatively high wear resistance compared to the second metal, and the second metal has relatively high electrical conductivity compared to the first metal. a metal, and the reinforcing part is formed of the first metal.
또한, 상기 제1금속은 로듐(rhodium, Rd), 백금 (platinum, Pt), 이리듐(iridium, Ir), 팔라듐(palladium) 이나 이들의 합금, 또는 팔라듐-코발트(palladium-cobalt, PdCo) 합금, 팔라듐-니켈(palladium-nickel, PdNi) 합금 또는 니켈-인(nickel-phosphor, NiPh) 합금, 니켈-망간(nickel-manganese, NiMn), 니켈-코발트(nickel-cobalt, NiCo) 또는 니켈-텅스텐(nickel-tungsten, NiW) 합금 중에서 선택된 금속으로 형성되고, 상기 제2금속은 구리(Cu), 은(Ag), 금(Au) 또는 이들의 합금 중에서 선택된 금속으로 형성된다.In addition, the first metal is rhodium (Rd), platinum (platinum, Pt), iridium (iridium, Ir), palladium (palladium) or alloys thereof, or palladium-cobalt (palladium-cobalt, PdCo) alloy, palladium-nickel (PdNi) alloy or nickel-phosphor (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo) or nickel-tungsten ( It is formed of a metal selected from a nickel-tungsten, NiW alloy, and the second metal is formed of a metal selected from copper (Cu), silver (Ag), gold (Au), or an alloy thereof.
또한, 상기 전기 전도성 접촉핀의 길이 방향으로 구분되어 형성되는 제1영역과 제2영역을 포함하되, 상기 제1영역은 상기 적층부를 포함하고, 상기 제2영역은 상기 적층부와 상기 강화부를 포함한다.In addition, the electrically conductive contact pin includes a first region and a second region formed separately in a longitudinal direction, wherein the first region includes the lamination portion, and the second region includes the lamination portion and the reinforcement portion. do.
또한, 상기 제2영역은 상기 전기 전도성 접촉핀의 길이 방향으로 적어도 2개 이상 형성된다.In addition, at least two second regions are formed in the longitudinal direction of the electrically conductive contact pins.
또한, 상기 제2영역 사이에 상기 제1영역이 구비된다.In addition, the first area is provided between the second area.
또한, 상기 강화부는 상기 적층부를 구성하는 금속층 중 적어도 어느 하나와 동일 재질로 형성된다.In addition, the reinforcement part is formed of the same material as at least one of the metal layers constituting the stacking part.
또한, 상기 강화부는 상기 적층부를 구성하는 금속층과 다른 재질로 형성된다.In addition, the reinforcement portion is formed of a material different from the metal layer constituting the stacking portion.
또한, 상기 강화부는 상기 전기 전도성 접촉핀의 두께 방향으로 하면부에서 상면부에 이르기까지 연속적으로 상기 전기 전도성 접촉핀의 측면에 형성된다.In addition, the reinforcement portion is continuously formed on the side surface of the electrically conductive contact pin from the lower surface portion to the upper surface portion in the thickness direction of the electrically conductive contact pin.
한편, 본 발명에 따른 전기 전도성 접촉핀은, 전기 전도성 접촉핀에 있어서, 상기 전기 전도성 접촉핀의 길이 방향으로 구분되어 형성되는 제1영역과 제2영역을 포함하되, 상기 제1영역은 복수개의 금속층이 적층되어 구비되는 적층부를 포함하고, 상기 제2영역은 상기 적층부와 강화부를 포함하되, 상기 강화부는 상기 적층부의 평균적인 내마모성 보다 높은 내마모성을 가지면서 상기 적층부의 적어도 일측면에 구비된다.On the other hand, the electrically conductive contact pin according to the present invention, in the electrically conductive contact pin, includes a first region and a second region formed separately in the longitudinal direction of the electrically conductive contact pin, wherein the first region includes a plurality of It includes a lamination part provided with a stacked metal layer, and the second region includes the lamination part and a reinforcement part, wherein the reinforcement part is provided on at least one side of the laminate part while having a higher wear resistance than the average wear resistance of the laminate part.
또한, 상기 적층부는 제1금속과 제2금속을 포함하되 상기 제1금속은 상기 제2금속에 비해 상대적으로 내마모성이 높은 금속이고 상기 제2금속은 상기 제1금속에 비해 상대적으로 전기 전도도가 높은 금속이며, 상기 강화부는 상기 제1금속으로 형성된다.In addition, the stacked portion includes a first metal and a second metal, wherein the first metal is a metal having relatively high wear resistance compared to the second metal, and the second metal has relatively high electrical conductivity compared to the first metal. a metal, and the reinforcing part is formed of the first metal.
또한, 상기 제1금속은 로듐(rhodium, Rd), 백금 (platinum, Pt), 이리듐(iridium, Ir), 팔라듐(palladium) 이나 이들의 합금, 또는 팔라듐-코발트(palladium-cobalt, PdCo) 합금, 팔라듐-니켈(palladium-nickel, PdNi) 합금 또는 니켈-인(nickel-phosphor, NiPh) 합금, 니켈-망간(nickel-manganese, NiMn), 니켈-코발트(nickel-cobalt, NiCo) 또는 니켈-텅스텐(nickel-tungsten, NiW) 합금 중에서 선택된 금속으로 형성되고, 상기 제2금속은 구리(Cu), 은(Ag), 금(Au) 또는 이들의 합금 중에서 선택된 금속으로 형성된다.In addition, the first metal is rhodium (Rd), platinum (platinum, Pt), iridium (iridium, Ir), palladium (palladium) or alloys thereof, or palladium-cobalt (palladium-cobalt, PdCo) alloy, palladium-nickel (PdNi) alloy or nickel-phosphor (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo) or nickel-tungsten ( It is formed of a metal selected from a nickel-tungsten, NiW alloy, and the second metal is formed of a metal selected from copper (Cu), silver (Ag), gold (Au), or an alloy thereof.
한편, 본 발명에 따른 검사 장치는, 복수개의 전기 전도성 접촉핀이 삽입되는 가이드 플레이트를 포함하는 검사장치에 있어서, 상기 전기 전도성 접촉핀은 복수개의 금속층이 적층되어 형성되는 적층부를 포함하고, 상기 전기 전도성 접촉핀의 측면에 구비되는 강화부를 포함하되, 상기 적층부는 제1금속과 제2금속을 포함하되 상기 제1금속은 상기 제2금속에 비해 상대적으로 내마모성이 높은 금속이고 상기 제2금속은 상기 제1금속에 비해 상대적으로 전기 전도도가 높은 금속이며, 상기 강화부는 상기 제1금속으로 형성되고, 상기 강화부는 상기 가이드 플레이트의 가이드 구멍의 위치에 대응되는 위치에 구비된다.On the other hand, the inspection apparatus according to the present invention is an inspection apparatus comprising a guide plate into which a plurality of electrically conductive contact pins are inserted, wherein the electrically conductive contact pins include a stacking part formed by stacking a plurality of metal layers, and the electrical A reinforcing part provided on a side surface of the conductive contact pin, wherein the stacking part includes a first metal and a second metal, wherein the first metal is a metal having relatively high wear resistance compared to the second metal, and the second metal is the A metal having relatively high electrical conductivity compared to the first metal, the reinforcing portion is formed of the first metal, and the reinforcing portion is provided at a position corresponding to the position of the guide hole of the guide plate.
또한, 상기 전기 전도성 접촉핀의 길이 방향으로 구분되어 형성되는 제1영역과 제2영역을 포함하되, 상기 제1영역은 상기 적층부를 포함하고, 상기 제2영역은 상기 적층부와 상기 강화부를 포함한다.In addition, the electrically conductive contact pin includes a first region and a second region formed separately in a longitudinal direction, wherein the first region includes the lamination portion, and the second region includes the lamination portion and the reinforcement portion. do.
한편, 본 발명에 따른 전기 전도성 접촉핀의 제조방법은, 복수개의 금속층이 적층되어 구비되는 적층부를 형성하는 제1도금 단계; 및 상기 제1도금 단계와는 별도의 도금 공정으로 상기 적층부의 적어도 일측면에 상기 적층부의 평균적인 내마모성 보다 높은 내마모성을 가지는 금속으로 강화부를 형성하는 제2도금 단계를 포함한다.On the other hand, the manufacturing method of the electrically conductive contact pin according to the present invention, a first plating step of forming a laminate in which a plurality of metal layers are laminated; and a second plating step of forming a reinforcement part on at least one side of the laminated part with a metal having a higher wear resistance than the average wear resistance of the laminated part by a plating process separate from the first plating step.
또한, 상기 제1도금 단계는 몰드의 제1내부공간에 상기 적층부를 형성하는 단계이고, 상기 제2도금 단계는 상기 적층부의 측면 방향으로 상기 몰드에 형성된 제2내부공간에 강화부를 형성하는 단계이다.In addition, the first plating step is a step of forming the lamination part in a first internal space of the mold, and the second plating step is a step of forming a reinforcement part in the second internal space formed in the mold in a lateral direction of the lamination part. .
또한, 상기 몰드는 양극산화막 재질로 구성된다.In addition, the mold is made of an anodized film material.
본 발명은 복수개의 금속층을 적층하여 형성되는 전기 전도성 접촉핀에 있어서 전기 전도성 접촉핀의 측면에서의 내마모성을 향상시킨 전기 전도성 접촉핀, 이를 구비하는 검사장치 및 전기 전도성 접촉핀의 제조방법을 제공한다.The present invention provides an electrically conductive contact pin having improved abrasion resistance on the side of the electrically conductive contact pin in an electrically conductive contact pin formed by laminating a plurality of metal layers, an inspection device having the same, and a method for manufacturing the electrically conductive contact pin .
도 1은 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀이 가이드 플레이트에 삽입된 상태를 도시한 도면.1 is a view showing a state in which an electrically conductive contact pin is inserted into a guide plate according to a first preferred embodiment of the present invention.
도 2 내지 도 6은 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀의 제조방법을 도시한 도면.2 to 6 are views showing a method of manufacturing an electrically conductive contact pin according to a first preferred embodiment of the present invention.
도 7(a)은 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀이 가이드 플레이트의 가이드 구멍에 삽입된 상태의 정면도이고, 도 7(b)는 전기 전도성 접촉핀의 측면도. 7 (a) is a front view of a state in which an electrically conductive contact pin is inserted into a guide hole of a guide plate according to a first preferred embodiment of the present invention, and FIG. 7 (b) is a side view of the electrically conductive contact pin.
도 8은 본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀이 가이드 플레이트에 삽입된 상태를 도시한 도면8 is a view showing a state in which an electrically conductive contact pin is inserted into a guide plate according to a second preferred embodiment of the present invention;
도 9 내지 도 13은 본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀의 제조방법을 도시한 도면.9 to 13 are views showing a method of manufacturing an electrically conductive contact pin according to a second preferred embodiment of the present invention.
도 14(a)은 본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀이 가이드 플레이트의 가이드 구멍에 삽입된 상태의 정면도이고, 도 14(b)는 전기 전도성 접촉핀의 측면도.14 (a) is a front view of a state in which an electrically conductive contact pin is inserted into a guide hole of a guide plate according to a second preferred embodiment of the present invention, and FIG. 14 (b) is a side view of the electrically conductive contact pin.
이하의 내용은 단지 발명의 원리를 예시한다. 그러므로 당업자는 비록 본 명세서에 명확히 설명되거나 도시되지 않았지만 발명의 원리를 구현하고 발명의 개념과 범위에 포함된 다양한 장치를 발명할 수 있는 것이다. 또한, 본 명세서에 열거된 모든 조건부 용어 및 실시 예들은 원칙적으로, 발명의 개념이 이해되도록 하기 위한 목적으로만 명백히 의도되고, 이와 같이 특별히 열거된 실시 예들 및 상태들에 제한적이지 않는 것으로 이해되어야 한다.The following is merely illustrative of the principles of the invention. Therefore, those skilled in the art will be able to devise various devices that, although not explicitly described or shown herein, embody the principles of the invention and are included in the spirit and scope of the invention. In addition, it should be understood that all conditional terms and examples listed herein are, in principle, expressly intended only for the purpose of understanding the inventive concept and are not limited to the specifically enumerated embodiments and states as such. .
상술한 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해질 것이며, 그에 따라 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다.The above-described objects, features, and advantages will become more apparent through the following detailed description in relation to the accompanying drawings, and accordingly, those of ordinary skill in the art to which the invention pertains will be able to easily practice the technical idea of the invention. .
본 명세서에서 기술하는 실시 예들은 본 발명의 이상적인 예시 도인 단면도 및/또는 사시도들을 참고하여 설명될 것이다. 이러한 도면들에 도시된 막 및 영역들의 두께 등은 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 또한 도면에 도시된 전기 전도성 접촉핀의 개수는 예시적으로 일부만을 도면에 도시한 것이다. 따라서, 본 발명의 실시 예들은 도시된 특정 형태로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형태의 변화도 포함하는 것이다. 본 명세서에서 사용한 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "구비하다" 등의 용어는 본 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Embodiments described herein will be described with reference to cross-sectional and/or perspective views, which are ideal illustrative drawings of the present invention. The thicknesses of films and regions shown in these drawings are exaggerated for effective description of technical content. The shape of the illustrative drawing may be modified due to manufacturing technology and/or tolerance. In addition, the number of electrically conductive contact pins shown in the drawings is only partially shown in the drawings by way of example. Accordingly, embodiments of the present invention are not limited to the specific form shown, but also include changes in the form generated according to the manufacturing process. The technical terms used herein are used only to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present specification, terms such as "comprises" or "comprises" are intended to designate that the features, numbers, steps, operations, components, parts, or combinations thereof described herein exist, and include one or more other It should be understood that it does not preclude the possibility of addition or presence of features or numbers, steps, operations, components, parts, or combinations thereof.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들에 대해 구체적으로 설명한다. 이하에서 다양한 실시예들을 설명함에 있어서, 동일한 기능을 수행하는 구성요소에 대해서는 실시예가 다르더라도 편의상 동일한 명칭 및 동일한 참조번호를 부여하기로 한다. 또한, 이미 다른 실시예에서 설명된 구성 및 작동에 대해서는 편의상 생략하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description of various embodiments, components performing the same function will be given the same names and same reference numbers for convenience even if the embodiments are different. In addition, configurations and operations already described in other embodiments will be omitted for convenience.
본 발명의 바람직한 일 실시예에 따른 전기 전도성 접촉핀(100)은, 검사장치에 구비되어 검사대상물과 전기적, 물리적으로 접촉하여 전기적 신호를 전달하는데 사용된다. 검사장치는 반도체 제조공정에 사용되는 검사장치일 수 있으며, 그 일례로 프로브 카드일 수 있고, 테스트 소켓일 수 있다. 다만 본 발명의 바람직한 실시예에 따른 검사장치는 이에 한정되는 것은 아니며, 전기를 인가하여 검사대상물의 불량 여부를 확인하기 위한 장치라면 모두 포함된다. 다만, 이하에서는 검사장치의 일례로서 프로브 카드를 예시하여 설명한다. The electrically conductive contact pin 100 according to a preferred embodiment of the present invention is provided in the inspection device and is used to electrically and physically contact the inspection object to transmit an electrical signal. The inspection apparatus may be an inspection apparatus used in a semiconductor manufacturing process, and for example, may be a probe card or a test socket. However, the inspection device according to the preferred embodiment of the present invention is not limited thereto, and any device for checking whether the inspection object is defective by applying electricity is included. However, in the following description, a probe card will be exemplified as an example of the inspection device.
반도체 소자의 전기적 특성 시험은 다수의 전기 전도성 접촉핀(100)을 형성한 프로브 카드에 반도체 웨이퍼(W)를 접근시켜 각 전기 전도성 접촉핀(100)을 반도체 웨이퍼(W)상의 대응하는 전극 패드(WP)에 접촉시킴으로써 수행된다. 전기 전도성 접촉핀(100)이 전극 패드(WP)에 접촉되는 위치까지 도달한 다음, 프로브 카드 측으로 웨이퍼(W)를 소정높이 추가 상승시킬 수 있다. 전기 전도성 접촉핀(100)은 가이드 플레이트(10)의 가이드 구멍(11)에 삽입되어 탄성 변형하는 구조로서, 이러한 전기 전도성 접촉핀(100)을 채택하여 수직형 프로브 카드가 된다. 본 발명의 바람직한 실시예로서 전기 전도성 접촉핀(100)은 미리 변형된(pre-deformed) 구조 즉 코브라 핀의 형태를 가지거나 상부, 하부 또는 추가적인 가이드 플레이트를 이동시켜 일자형 핀을 변형시키는 구조도 포함된다.In the electrical property test of the semiconductor device, the semiconductor wafer (W) is approached to the probe card on which a plurality of electrically conductive contact pins (100) are formed, and each electrically conductive contact pin (100) is applied to the corresponding electrode pad (W) on the semiconductor wafer (W). WP). After reaching a position where the electrically conductive contact pin 100 contacts the electrode pad WP, the wafer W may be further raised to a predetermined height toward the probe card. The electrically conductive contact pins 100 are inserted into the guide holes 11 of the guide plate 10 to elastically deform, and the electrically conductive contact pins 100 are adopted to form a vertical probe card. As a preferred embodiment of the present invention, the electrically conductive contact pin 100 has a pre-deformed structure, that is, a structure in which the straight pin is deformed by moving the upper, lower, or additional guide plate or having the shape of a cobra pin. do.
수직형 프로브 카드의 경우에는 적어도 2개의 가이드 플레이트(10)가 상, 하로 서로 이격되어 구비된다. 또한 각각의 가이드 플레이트는 복수개의 박판이 밀착 적층되는 적층형 가이드 플레이트일 수 있다. In the case of a vertical probe card, at least two guide plates 10 are provided vertically spaced apart from each other. In addition, each guide plate may be a laminated guide plate in which a plurality of thin plates are closely stacked.
전기 전도성 접촉핀(100)는 가이드 플레이트(10)의 가이드 구멍(11)에 삽입되어 구비되는데, 검사 시 전기 전도성 접촉핀(100)은 가이드 구멍(11)의 내벽에 슬라이딩 접촉하게 된다. 특히 검사 중에는 전기 전도성 접촉핀(100)은 측면(103) 방향으로 굴곡되면서 가이드 구멍(11)의 내벽에 큰 힘을 부여하기 때문에 마찰력이 높아지게 된다. 이런 상황에서 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀(100)은 그 측면(103)에 내 마모성이 높은 강화부(120)를 구비함으로써 마찰에 따른 마모가 최소화된다. 그 결과 전기 전도성 접촉핀(100)의 내구성이 향상된다. 또한 마찰에 따른 이물질 발생을 최소화할 수 있게 된다. The electrically conductive contact pin 100 is provided by being inserted into the guide hole 11 of the guide plate 10 , and during inspection, the electrically conductive contact pin 100 is in sliding contact with the inner wall of the guide hole 11 . In particular, during the inspection, the electrically conductive contact pin 100 is bent in the direction of the side surface 103 and gives a large force to the inner wall of the guide hole 11, so that the friction force is increased. In this situation, the electrically conductive contact pin 100 according to the preferred embodiment of the present invention is provided with the reinforcing part 120 with high wear resistance on the side surface 103, so that wear due to friction is minimized. As a result, the durability of the electrically conductive contact pin 100 is improved. In addition, it is possible to minimize the generation of foreign substances due to friction.
본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀(100)의 제조방법은, 복수개의 금속층이 적층되어 구비되는 적층부(111)를 형성하는 제1도금 단계 및 제1도금 단계와는 별도의 도금 공정으로 적층부(111)의 적어도 일측면에 적층부(111)의 평균적인 내마모성 보다 높은 내마모성을 가지는 금속으로 강화부(120)를 형성하는 제2도금 단계를 포함한다.In the method for manufacturing the electrically conductive contact pin 100 according to a preferred embodiment of the present invention, a first plating step of forming the stacked portion 111 provided by stacking a plurality of metal layers and a plating separate from the first plating step The process includes a second plating step of forming the reinforcing part 120 on at least one side of the laminated part 111 with a metal having a higher wear resistance than the average wear resistance of the laminated part 111 .
이하, 도 1 내지 도 7을 참조하여 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀(100)에 대해 설명한다. 도 1은 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀(100)이 가이드 플레이트(10)에 삽입된 상태를 도시한 도면이고, 도 2 내지 도 6은 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀(100)의 제조방법을 도시한 도면이며, 도 7(a)은 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀(100)이 가이드 플레이트(10)의 가이드 구멍(11)에 삽입된 상태의 정면도이고, 도 7(b)는 전기 전도성 접촉핀(100)의 측면도이다. Hereinafter, an electrically conductive contact pin 100 according to a first preferred embodiment of the present invention will be described with reference to FIGS. 1 to 7 . 1 is a view showing a state in which an electrically conductive contact pin 100 according to a first preferred embodiment of the present invention is inserted into the guide plate 10, and FIGS. 2 to 6 are a first preferred embodiment of the present invention. It is a view showing a manufacturing method of the electrically conductive contact pin 100 according to, Figure 7 (a) is an electrically conductive contact pin 100 according to the first preferred embodiment of the present invention is a guide hole of the guide plate (10) (11) is a front view of the inserted state, Figure 7 (b) is a side view of the electrically conductive contact pin (100).
도 1 및 도 7을 참조하면, 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀(100)은 상면(101), 상면(101)의 반대면이 하면 및 측면(103)으로 구성된다. 전기 전도성 접촉핀(100)은 복수개의 금속층이 적층되어 형성되는 적층부(110)를 포함한다. 또한, 전기 전도성 접촉핀(100)은, 전기 전도성 접촉핀(100)의 측면(103)에 구비되는 강화부(120)를 포함한다. 강화부(120)는 전기 전도성 접촉핀(100)의 두께 방향으로 하면부에서 상면부에 이르기까지 연속적으로 전기 전도성 접촉핀(100)의 측면(103)에 형성된다.Referring to FIGS. 1 and 7 , the electrically conductive contact pin 100 according to the first preferred embodiment of the present invention includes an upper surface 101 , and the opposite surface of the upper surface 101 is a lower surface and a side surface 103 . The electrically conductive contact pin 100 includes a stacking part 110 formed by stacking a plurality of metal layers. In addition, the electrically conductive contact pin 100 includes a reinforcing part 120 provided on the side surface 103 of the electrically conductive contact pin 100 . The reinforcement portion 120 is continuously formed on the side surface 103 of the electrically conductive contact pin 100 from the lower surface to the upper surface in the thickness direction of the electrically conductive contact pin 100 .
가이드 구멍(11)은 전기 전도성 접촉핀(100)이 삽입되는 구멍의 형태이지만설명의 편의상 도 1에서는 가이드 플레이트(10)의 일부만을 도시한 것이다.Although the guide hole 11 is in the form of a hole into which the electrically conductive contact pin 100 is inserted, only a part of the guide plate 10 is shown in FIG. 1 for convenience of explanation.
적층부(110)는 제1금속(111)과 제2금속(112)을 포함한다. 제1금속(111)은 제2금속(112)에 비해 상대적으로 내마모성이 높은 금속이고 제2금속(112)은 제1금속(111)에 비해 상대적으로 전기 전도도가 높은 금속이다. The stacked part 110 includes a first metal 111 and a second metal 112 . The first metal 111 is a metal having relatively high wear resistance compared to the second metal 112 , and the second metal 112 is a metal having relatively high electrical conductivity compared to the first metal 111 .
제1금속(111)은 로듐(rhodium, Rd), 백금 (platinum, Pt), 이리듐(iridium, Ir), 팔라듐(palladium) 이나 이들의 합금, 또는 팔라듐-코발트(palladium-cobalt, PdCo) 합금, 팔라듐-니켈(palladium-nickel, PdNi) 합금 또는 니켈-인(nickel-phosphor, NiPh) 합금, 니켈-망간(nickel-manganese, NiMn), 니켈-코발트(nickel-cobalt, NiCo) 또는 니켈-텅스텐(nickel-tungsten, NiW) 합금 중에서 선택된 금속으로 형성되고, 제2금속(112)은 구리(Cu), 은(Ag), 금(Au) 또는 이들의 합금 중에서 선택된 금속으로 형성된다. The first metal 111 is rhodium (Rd), platinum (platinum, Pt), iridium (iridium, Ir), palladium (palladium) or alloys thereof, or palladium-cobalt (palladium-cobalt, PdCo) alloy, palladium-nickel (PdNi) alloy or nickel-phosphor (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo) or nickel-tungsten ( It is formed of a metal selected from nickel-tungsten, NiW alloy, and the second metal 112 is formed of a metal selected from copper (Cu), silver (Ag), gold (Au), or an alloy thereof.
강화부(120)는 제1금속(111)으로 형성된다. 강화부(120)는 적층부(110)를 구성하는 금속층 중 적어도 어느 하나와 동일 재질로 형성되거나 적층부(110)를 구성하는 금속층과 다른 재질로 형성될 수 있다. The reinforcing part 120 is formed of the first metal 111 . The reinforcement unit 120 may be formed of the same material as at least one of the metal layers constituting the lamination unit 110 , or may be formed of a material different from the metal layer constituting the lamination unit 110 .
예를 들어 적층부(110)는 팔라듐-코발트(palladium-cobalt, PdCo) 합금 재질의 제1금속(111)과 구리(Cu) 재질의 제2금속(112)이 교번적으로 적층되어 형성될 수 있다. 이 경우 강화부(120)는 팔라듐-코발트(palladium-cobalt, PdCo) 합금 재질의 제1금속(111)이거나, 로듐(rhodium, Rd) 재질의 제1금속(111)일 수 있다. For example, the stacking unit 110 may be formed by alternately stacking a first metal 111 made of a palladium-cobalt (PdCo) alloy and a second metal 112 made of a copper (Cu) material. have. In this case, the reinforcing part 120 may be a first metal 111 made of a palladium-cobalt (PdCo) alloy or a first metal 111 made of a rhodium (Rd) material.
전기 전도성 접촉핀(100)은 전기 전도성 접촉핀(100)의 길이 방향으로 구분되어 형성되는 제1영역(210)과 제2영역(220)을 포함한다. 제1영역(210)은 적층부(110)를 포함하고, 제2영역(220)은 적층부(110)와 강화부(120)를 포함한다. 강화부(120)는 적층부(110)의 평균적인 내마모성 보다 높은 내마모성을 가지면서 적층부(110)의 적어도 일측면에 구비된다. 강화부(120)는 가이드 플레이트(10)의 가이드 구멍(11)의 내벽과 슬라이딩 접촉하는 부위이다. 전기 전도성 접촉핀(100)의 내마모성이 높은 부위인 강화부(120)가 가이드 구멍(11)의 내벽과 접촉하도록 함으로써 전기 전도성 접촉핀(100)의 내구성을 향상시킬 수 있게 된다.The electrically conductive contact pin 100 includes a first region 210 and a second region 220 that are formed separately in the longitudinal direction of the electrically conductive contact pin 100 . The first region 210 includes the stacking part 110 , and the second region 220 includes the stacking part 110 and the reinforcement part 120 . The reinforcing part 120 is provided on at least one side of the stacking part 110 while having a higher wear resistance than the average wear resistance of the stacking part 110 . The reinforcing part 120 is a portion in sliding contact with the inner wall of the guide hole 11 of the guide plate 10 . The durability of the electrically conductive contact pin 100 can be improved by allowing the reinforcing part 120 , which is a portion with high wear resistance of the electrically conductive contact pin 100 , to contact the inner wall of the guide hole 11 .
도 1을 참조하면, 제2영역(220)은 전기 전도성 접촉핀(100)의 길이 방향으로 2개 형성된다. 이는 가이드 플레이트(10)의 개수가 2개인 것을 고려한 것으로서 가이드 플레이트의 개수가 2개 이상인 경우에는 제2영역(220)은 전기 전도성 접촉핀(100)의 길이 방향으로 2개 이상 형성된다. Referring to FIG. 1 , two second regions 220 are formed in the longitudinal direction of the electrically conductive contact pins 100 . This is considering that the number of guide plates 10 is two, and when the number of guide plates is two or more, two or more second regions 220 are formed in the longitudinal direction of the electrically conductive contact pins 100 .
2개의 제2영역(220) 사이에는 제1영역(210)이 구비된다. 제1영역(210)은 전기 전도도가 높은 금속이 포함되어 있는 영역이기 때문에 가이드 구멍(11)의 내벽과 슬라이딩 접촉 우려가 적은 영역에 전기 전도도가 높은 금속의 함량을 높임으로써 전기 전도성 접촉핀(100)의 전체적인 전류 운반 용량(Current Carrying Capacity)을 향상시킬 수 있게 된다. A first area 210 is provided between the two second areas 220 . Since the first region 210 is a region containing a metal having high electrical conductivity, the content of the metal having high electrical conductivity is increased in an area where there is little risk of sliding contact with the inner wall of the guide hole 11, so that the electrically conductive contact pin 100 ) can improve the overall current carrying capacity.
이하에서는 도 2 내지 도 6을 참조하여 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀(100)의 제조방법에 대해 설명한다. Hereinafter, a method of manufacturing the electrically conductive contact pin 100 according to the first preferred embodiment of the present invention will be described with reference to FIGS. 2 to 6 .
본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀(100)의 제조방법은, 복수개의 금속층이 적층되어 구비되는 적층부(111)를 형성하는 제1도금 단계 및 제1도금 단계와는 별도의 도금 공정으로 적층부(111)의 측면(103) 일부에 적층부(111)의 평균적인 내마모성 보다 높은 내마모성을 가지는 금속으로 강화부(120)를 형성하는 제2도금 단계를 포함한다. 이하에서 구체적으로 설명한다.The method of manufacturing the electrically conductive contact pin 100 according to the first preferred embodiment of the present invention is separate from the first plating step and the first plating step of forming the stacked portion 111 provided by stacking a plurality of metal layers. a second plating step of forming the reinforcement part 120 with a metal having a higher wear resistance than the average wear resistance of the laminated part 111 on a part of the side 103 of the laminated part 111 by the plating process of the laminated part 111 . It will be described in detail below.
먼저, 도 2를 참조하면, 도 2(a)는 제1내부공간(21)이 구비된 몰드(20)의 평면도이고, 도 2(b)는 도 2(a)의 A-A’단면도이고, 도 2(c)는 도 2(a)의 B-B’단면도이며, 도 2(d)는 도 2(a)의 C-C’단면도이고, 도 2(e)는 도 2(a)의 D-D’단면도이다. First, referring to FIG. 2, FIG. 2 (a) is a plan view of the mold 20 provided with the first internal space 21, and FIG. 2 (b) is a cross-sectional view taken along line A-A' of FIG. 2 (a). , FIG. 2(c) is a sectional view taken along line B-B' of FIG. 2(a), FIG. 2(d) is a cross-sectional view of FIG. D-D' is a cross-sectional view.
도 2를 참조하면, 몰드(20)에는 제1내부 공간(21)이 형성되고 있고, 몰드(20)의 하부에는 시드층(30)이 구비되어 있다. Referring to FIG. 2 , a first internal space 21 is formed in the mold 20 , and a seed layer 30 is provided under the mold 20 .
몰드(20)는 양극산화막, 포토레지스트, 실리콘 웨이퍼 또는 이와 유사한 재질로 구성될 있다. 다만, 바람직하게는 몰드(20)은 양극산화막 재질로 구성될 수 있다. 양극산화막은 모재인 금속을 양극산화하여 형성된 막을 의미하고, 포어는 금속을 양극산화하여 양극산화막을 형성하는 과정에서 형성되는 구멍을 의미한다. 예컨대, 모재인 금속이 알루미늄(Al) 또는 알루미늄 합금인 경우, 모재를 양극산화하면 모재의 표면에 알루미늄 산화물(Al203) 재질의 양극산화막이 형성된다. 다만 모재 금속은 이에 한정되는 것은 아니며, Ta, Nb, Ti, Zr, Hf, Zn, W, Sb 또는 이들의 합금을 포함한다. 위와 같이 형성된 양극산화막은 수직적으로 내부에 포어가 형성되지 않은 배리어층과, 내부에 포어가 형성된 다공층으로 구분된다. 배리어층과 다공층을 갖는 양극산화막이 표면에 형성된 모재에서, 모재를 제거하게 되면, 알루미늄 산화물(Al203) 재질의 양극산화막만이 남게 된다. 양극산화막은 양극산화시 형성된 배리어층이 제거되어 포어의 상, 하로 관통되는 구조로 형성되거나 양극산화시 형성된 배리어층이 그대로 남아 포어의 상, 하 중 일단부를 밀폐하는 구조로 형성될 수 있다. The mold 20 may be made of an anodized film, photoresist, silicon wafer, or a similar material. However, preferably, the mold 20 may be made of an anodized film material. The anodization film refers to a film formed by anodizing a metal as a base material, and the pores refer to a hole formed in the process of forming an anodization film by anodizing the metal. For example, when the base metal is aluminum (Al) or an aluminum alloy, when the base material is anodized, an anodization film made of aluminum oxide (Al 2 0 3 ) material is formed on the surface of the base material. However, the base metal is not limited thereto, and includes Ta, Nb, Ti, Zr, Hf, Zn, W, Sb, or alloys thereof. The anodized film formed as described above is vertically divided into a barrier layer in which pores are not formed and a porous layer in which pores are formed. When the base material is removed from the base material on which the anodized film having a barrier layer and a porous layer is formed on the surface, only the anodized film made of aluminum oxide (Al 2 O 3 ) material remains. The anodization film may be formed in a structure in which the barrier layer formed during anodization is removed to penetrate the top and bottom of the pores, or the barrier layer formed during anodization remains as it is and seals one end of the top and bottom of the pores.
양극산화막은 2~3ppm/℃의 열팽창 계수를 갖는다. 이로 인해 고온의 환경에 노출될 경우, 온도에 의한 열변형이 적다. 따라서 전기 전도성 접촉핀(100)의 제작 환경이 비록 고온 환경이라 하더라도 열 변형없이 정밀한 전기 전도성 접촉핀(100)을 제작할 수 있다. The anodized film has a coefficient of thermal expansion of 2-3 ppm/°C. For this reason, when exposed to a high temperature environment, thermal deformation due to temperature is small. Therefore, even if the manufacturing environment of the electrically conductive contact pin 100 is a high temperature environment, it is possible to manufacture the precise electrically conductive contact pin 100 without thermal deformation.
본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀(100)은 포토 레지스트 몰드 대신에 양극산화막 재질의 몰드(20)를 이용하여 제조된다는 점에서 포토 레지스트 몰드로는 구현하는데 한계가 있었던 형상의 정밀도, 미세 형상의 구현의 효과를 발휘할 수 있게 된다. 또한 기존의 포토 레지스트 몰드의 경우에는 40㎛ 두께 수준의 전기 전도성 접촉핀을 제작할 수 있으나 양극산화막 재질의 몰드를 이용할 경우에는 100㎛ 이상에서 200㎛ 이하의 두께를 가지는 전기 전도성 접촉핀(100)을 제작할 수 있게 된다. The electrically conductive contact pin 100 according to a preferred embodiment of the present invention is manufactured using a mold 20 made of an anodized film material instead of a photoresist mold, so the precision of the shape was limited in realization with the photoresist mold; It becomes possible to exhibit the effect of realization of a micro-shape. In addition, in the case of a conventional photoresist mold, an electrically conductive contact pin having a thickness of 40 μm can be manufactured, but when using a mold made of an anodized film material, an electrically conductive contact pin 100 having a thickness of 100 μm or more and 200 μm or less is used. can be crafted.
몰드(20)의 하면에는 시드층(30)이 구비된다. 시드층(30)은 몰드(20)에 제1내부 공간(21)을 형성하기 이전에 몰드(20)의 하면에 구비될 수 있다. 한편 몰드(20)의 하부에는 지지기판(미도시)이 형성되어 몰드(20)의 취급성을 향상시킬 수 있다. 또한 이 경우 지지기판(미도시)의 상면에 시드층(30)을 형성하고 제1내부 공간(21)이 형성된 몰드(20)을 지지기판(미도시)에 결합하여 사용할 수도 있다. 시드층(30)은 구리(Cu)재질로 형성될 수 있고, 증착 방법에 의해 형성될 수 있다. 시드층(30)은 적층부(110)와 강화부(120)을 전기 도금법을 이용하여 형성할 때 이들의 도금 품질을 향상시키기 위해 사용된다.A seed layer 30 is provided on a lower surface of the mold 20 . The seed layer 30 may be provided on the lower surface of the mold 20 before the first internal space 21 is formed in the mold 20 . Meanwhile, a support substrate (not shown) is formed under the mold 20 to improve handling of the mold 20 . In addition, in this case, the seed layer 30 is formed on the upper surface of the support substrate (not shown), and the mold 20 in which the first internal space 21 is formed may be used by coupling the mold 20 to the support substrate (not shown). The seed layer 30 may be formed of a copper (Cu) material, and may be formed by a deposition method. The seed layer 30 is used to improve the plating quality of the lamination part 110 and the reinforcement part 120 when forming the laminated part 110 and the reinforcement part 120 using the electroplating method.
제1내부 공간(21)은 양극산화막 재질의 몰드(20)을 습식 에칭하여 형성될 수 있다. 이를 위해 몰드(20)의 상면에 포토 레지스트를 구비하고 이를 패터닝한 다음, 패터닝되어 오픈된 영역의 양극산화막이 에칭 용액과 반응하여 제1내부 공간(21)이 형성될 수 있다. 구체적으로 설명하면, 제1내부 공간(21)을 형성하기 전의 몰드(20)의 상면에 감광성 재료를 구비한 다음 노광 및 현상 공정이 수행될 수 있다. 감광성 재료는 노광 및 현상 공정에 의해 오픈영역을 형성하면서 적어도 일부가 패터닝되어 제거될 수 있다. 양극산화막 재질의 몰드(20)는 패터닝 과정에 의해 감광성 재료가 제거된 오픈영역을 통해 에칭 공정이 수행되며, 에칭 용액에 의해 제1내부 공간(21)에 대응되는 위치의 양극산화막이 제거되어 제1내부 공간(21)을 형성하게 된다.The first inner space 21 may be formed by wet etching the mold 20 made of an anodized film material. To this end, a photoresist is provided on the upper surface of the mold 20 and patterned, and then the anodized film in the patterned and open area reacts with the etching solution to form the first internal space 21 . Specifically, the photosensitive material may be provided on the upper surface of the mold 20 before the first internal space 21 is formed, and then exposure and development processes may be performed. At least a portion of the photosensitive material may be patterned and removed while forming an open area by an exposure and development process. The mold 20 made of the anodized film material is etched through the open region from which the photosensitive material has been removed by the patterning process, and the anodized film at the position corresponding to the first internal space 21 is removed by the etching solution to form the first mold 20 . 1 The inner space 21 is formed.
다음으로 도 3을 참조하면, 도 3(a)는 제1내부 공간(21)에 적층부(110)을 형성한 몰드(20)의 평면도이고, 도 3(b)는 도 3(a)의 A-A’단면도이고, 도 3(c)는 도 3(a))의 B-B’단면도이며, 도 3(d)는 도 3(a)의 C-C’단면도이고, 도 3(e)는 도 3(a)의 D-D’단면도이다. Next, referring to FIG. 3 , FIG. 3 ( a ) is a plan view of the mold 20 in which the stacking part 110 is formed in the first internal space 21 , and FIG. 3 ( b ) is a diagram of FIG. 3 ( a ). A-A' cross-sectional view, Fig. 3(c) is a B-B' cross-sectional view of Fig. 3(a)), Fig. 3(d) is a C-C' cross-sectional view of Fig. 3(a), and Fig. 3(e) ) is a D-D' cross-sectional view of FIG. 3(a).
몰드(20)의 제1내부 공간(21)에 전기 도금 공정을 수행하여 적층부(110)를 형성하는 단계를 수행한다. 복수회의 전기 도금 공정을 수행하여 전기 전도성 접촉핀(100)의 두께 방향으로 복수개의 금속층이 적층되어 형성된다. 적층부(110)는 로듐(rhodium, Rd), 백금 (platinum, Pt), 이리듐(iridium, Ir), 팔라듐(palladium) 이나 이들의 합금, 또는 팔라듐-코발트(palladium-cobalt, PdCo) 합금, 팔라듐-니켈(palladium-nickel, PdNi) 합금 또는 니켈-인(nickel-phosphor, NiPh) 합금, 니켈-망간(nickel-manganese, NiMn), 니켈-코발트(nickel-cobalt, NiCo) 또는 니켈-텅스텐(nickel-tungsten, NiW) 합금 중에서 선택된 제1금속(111)과, 구리(Cu), 은(Ag), 금(Au) 중에서 선택된 제2금속(112)을 포함하여 구비된다. 예를 들어, 팔라듐-코발트(palladium-cobalt, PdCo) 합금 재질의 제1금속(210)과 구리(Cu) 재질의 제2금속(230)이 교번적으로 적층되어 형성될 수 있다. 여기서 제1금속(210)은 전기 전도성 접촉핀(100)이 탄성 변형될 수 있도록 하며, 제2금속(230)은 전기 전도성 접촉핀(100)의 전류 운반 용량(CCC)이 향상되도록 한다.An electroplating process is performed in the first inner space 21 of the mold 20 to form the stacked part 110 . A plurality of metal layers are stacked and formed in the thickness direction of the electrically conductive contact pin 100 by performing a plurality of electroplating processes. The stacked part 110 is rhodium (Rd), platinum (platinum, Pt), iridium (iridium, Ir), palladium (palladium) or an alloy thereof, or palladium-cobalt (palladium-cobalt, PdCo) alloy, palladium -Nickel (palladium-nickel, PdNi) alloy or nickel-phosphor (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo) or nickel-tungsten (nickel) A first metal 111 selected from -tungsten, NiW alloy and a second metal 112 selected from copper (Cu), silver (Ag), and gold (Au) are provided. For example, the first metal 210 made of a palladium-cobalt (PdCo) alloy and the second metal 230 made of copper (Cu) may be alternately stacked and formed. Here, the first metal 210 allows the electrically conductive contact pin 100 to be elastically deformed, and the second metal 230 allows the current carrying capacity (CCC) of the electrically conductive contact pin 100 to be improved.
도금 공정이 완료되면 평탄화 공정이 수행될 수 있다. 화학적 기계적 연마(CMP) 공정을 통해 몰드(20)의 상면으로 돌출된 금속을 제거하면서 평탄화시킨다.When the plating process is completed, a planarization process may be performed. The metal protruding from the upper surface of the mold 20 is removed and planarized through a chemical mechanical polishing (CMP) process.
다음으로 도 4를 참조하면, 도 4(a)는 제2내부공간(22)을 형성한 몰드(20)의 평면도이고, 도 4(b)는 도 4(a)의 A-A’단면도이고, 도 4(c)는 도 4(a)의 B-B’단면도이며, 도 4(d)는 도 4(a)의 C-C’단면도이고, 도 4(e)는 도 4(a)의 D-D’단면도이다. Next, referring to FIG. 4, FIG. 4 (a) is a plan view of the mold 20 forming the second inner space 22, and FIG. 4 (b) is a cross-sectional view taken along line A-A' of FIG. 4 (a). , FIG. 4(c) is a sectional view taken along line B-B' of FIG. 4(a), FIG. 4(d) is a cross-sectional view taken from FIG. D-D' is a cross-sectional view.
몰드(20)의 일부분을 제거하는 공정을 수행한다. 몰드(20)의 일부분을 제거하여 제2내부 공간(22)을 몰드(20)에 형성한다. 구체적으로 설명하면, 몰드(20)의 상면에 감광성 재료를 구비한 다음 노광 및 현상 공정이 수행될 수 있다. 감광성 재료는 노광 및 현상 공정에 의해 오픈영역을 형성하면서 적어도 일부가 패터닝되어 제거될 수 있다. 패터닝 과정에 의해 감광성 재료가 제거된 오픈영역을 통해 에칭 공정이 수행되며, 에칭 용액에 의해 몰드(20)의 일부분이 제거되어 제2내부 공간(22)을 형성하게 된다. A process of removing a portion of the mold 20 is performed. A portion of the mold 20 is removed to form the second inner space 22 in the mold 20 . Specifically, after the photosensitive material is provided on the upper surface of the mold 20 , an exposure and development process may be performed. At least a portion of the photosensitive material may be patterned and removed while forming an open area by an exposure and development process. An etching process is performed through the open region from which the photosensitive material has been removed by the patterning process, and a portion of the mold 20 is removed by the etching solution to form the second internal space 22 .
제2내부공간(22)은 강화부(120)의 위치에 대응하여 적층부(110)의 측면에 인접하여 적어도 4개 이상 형성된다. 각각의 제2내부 공간(22)의 3개의 측면으로는 복수개로 적층된 적층부(111)가 노출되고, 1개의 측면으로는 몰드(20)가 노출되게 된다. At least four second internal spaces 22 are formed adjacent to the side surface of the stacking part 110 to correspond to the position of the reinforcing part 120 . A plurality of stacked parts 111 are exposed on three side surfaces of each of the second internal spaces 22 , and the mold 20 is exposed on one side surface.
다음으로 도 5를 참조하면, 도 5(a)는 제2내부공간(22)에 강화부(120)를 형성한 몰드(20)의 평면도이고, 도 5(b)는 도5(a)의 A-A’단면도이고, 도 5(c)는 도 5(a)의 B-B’단면도이며, 도 5(d)는 도 5(a)의 C-C’단면도이고, 도 5(e)는 도 5(a)의 D-D’단면도이다. Next, referring to FIG. 5, FIG. 5(a) is a plan view of the mold 20 in which the reinforcement part 120 is formed in the second inner space 22, and FIG. 5(b) is a view of FIG. 5(a). A-A' cross-sectional view, Fig. 5(c) is a B-B' cross-sectional view of Fig. 5(a), Fig. 5(d) is a C-C' cross-sectional view of Fig. 5(a), Fig. 5(e) is a D-D' cross-sectional view of FIG. 5(a).
강화부(120)를 형성하는 단계를 수행한다. 이전 단계에서 형성된 제2내부 공간(22)에 전기 도금 공정을 이용하여 강화부(120)를 형성한다. A step of forming the reinforcement part 120 is performed. The reinforcement part 120 is formed in the second internal space 22 formed in the previous step by using an electroplating process.
강화부(120)는 전 단계에서 제작된 적층부(110)와 일체화된다. 앞서 설명한 바와 같이 제2내부 공간(22)의 3개의 측면에는 적층부(110)이 노출되는데 이 측면에서 강화부(120)는 적층부(110)와 일체화된다.The reinforcement part 120 is integrated with the stacking part 110 manufactured in the previous step. As described above, the stacked part 110 is exposed on three side surfaces of the second internal space 22 . In this side, the reinforcement part 120 is integrated with the stacked part 110 .
강화부(120)는 로듐(rhodium, Rd), 백금 (platinum, Pt), 이리듐(iridium, Ir), 팔라듐(palladium) 이나 이들의 합금, 또는 팔라듐-코발트(palladium-cobalt, PdCo) 합금, 팔라듐-니켈(palladium-nickel, PdNi) 합금 또는 니켈-인(nickel-phosphor, NiPh) 합금, 니켈-망간(nickel-manganese, NiMn), 니켈-코발트(nickel-cobalt, NiCo) 또는 니켈-텅스텐(nickel-tungsten, NiW) 합금 중에서 선택된 금속 일 수 있으며, 바람직하게는 강화부(120)는 적층부(110)을 구성하는 제1금속(210)과 동일 재질로 형성될 수 있다. 예를 들어 적층부(110)가 제1금속(111) 중에서 팔라듐-코발트(palladium-cobalt, PdCo) 합금 재질로 형성되는 경우에, 강화부(120) 역시 팔라듐-코발트(palladium-cobalt, PdCo) 합금 재질일 수 있다. 이와는 다르게 강화부(120)는 적층부(110)을 구성하는 제1금속(210)과 다른 재질로 형성될 수 있다. 예를 들어 적층부(110)가 제1금속(111) 중에서 팔라듐-코발트(palladium-cobalt, PdCo) 합금 재질로 형성되는 경우에, 강화부(120)는 로듐(rhodium, Rd) 재질일 수 있다.Reinforcing unit 120 is rhodium (rhodium, Rd), platinum (platinum, Pt), iridium (iridium, Ir), palladium (palladium) or alloys thereof, or palladium-cobalt (palladium-cobalt, PdCo) alloy, palladium -Nickel (palladium-nickel, PdNi) alloy or nickel-phosphor (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo) or nickel-tungsten (nickel) -tungsten, NiW) may be a metal selected from an alloy, and preferably, the reinforcing part 120 may be formed of the same material as the first metal 210 constituting the stacking part 110 . For example, when the stacked part 110 is formed of a palladium-cobalt (PdCo) alloy material among the first metal 111 , the reinforced part 120 is also palladium-cobalt (PdCo). It may be an alloy material. Alternatively, the reinforcing part 120 may be formed of a material different from that of the first metal 210 constituting the stacking part 110 . For example, when the stacked part 110 is formed of a palladium-cobalt (PdCo) alloy material among the first metal 111, the reinforced part 120 may be made of a rhodium (Rd) material. .
다음으로 도 6을 참조하면, 도 6(a)는 전기 전도성 접촉핀(100)의 평면도이고, 도 6(b)는 도 6(a)의 A-A’단면도이고, 도 6(c)는 도 6(a)의 B-B’단면도이며, 도 6(d)는 도 6(a)의 C-C’단면도이고, 도 6(e)는 도 6(a)의 D-D’단면도이다. Next, referring to FIG. 6, FIG. 6(a) is a plan view of the electrically conductive contact pin 100, FIG. 6(b) is a cross-sectional view taken along line A-A' of FIG. 6(a), and FIG. 6(c) is 6(a) is a cross-sectional view B-B', FIG. 6(d) is a C-C' cross-sectional view of FIG. 6(a), and FIG. 6(e) is a sectional view D-D' of FIG. 6(a). .
이전 단계 이후에 몰드(20)와 시드층(30)를 제거하는 공정을 수행한다. 몰드(20)가 양극산화막 재질인 경우에는 양극산화막 재질에 선택적으로 반응하는 용액을 이용하여 몰드(20)를 제거한다. 또한 시드층(30)이 구리(Cu) 재질인 경우에는 구리(Cu)에 선택적으로 반응하는 용액을 이용하여 시드층(30)을 제거한다. After the previous step, a process of removing the mold 20 and the seed layer 30 is performed. When the mold 20 is made of an anodized film material, the mold 20 is removed using a solution that selectively reacts to the anodized film material. Also, when the seed layer 30 is made of copper (Cu), the seed layer 30 is removed using a solution that selectively reacts with copper (Cu).
앞선 설명에서는 제1내부 공간(21)이 형성된 몰드(20)를 이용하여 제1내부 공간(21)에 도금하여 적층부(110)를 형성하는 단계를 먼저 수행하고 그 다음에 몰드(20)의 일부를 제거하여 제2내부 공간(22)을 형성하고 제2내부 공간(22)에 도금하여 강화부(120)를 형성하는 단계를 수행하는 것으로 설명하였으나, 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀의 제조방법은, 몰드(20)의 일부를 제거하여 제2내부 공간(22)을 형성하고 제2내부 공간(22)에 도금하여 강화부(120)를 형성하는 단계를 먼저 수행하고 그 다음에 제1내부 공간(21)이 형성된 몰드(20)를 이용하여 제1내부 공간(21)에 도금하여 복수개의 적층부(110)를 형성하는 단계를 수행하는 것도 포함한다. In the previous description, the step of forming the laminated part 110 by plating the first internal space 21 using the mold 20 in which the first internal space 21 is formed is first performed, and then the mold 20 is formed. Although it has been described that the steps of forming the second inner space 22 by removing a part and forming the reinforcing part 120 by plating the second inner space 22 are performed, according to the first preferred embodiment of the present invention In the method of manufacturing the electrically conductive contact pin, a step of forming the second inner space 22 by removing a part of the mold 20 and plating the second inner space 22 to form the reinforcement part 120 is performed first. and then plating the first internal space 21 using the mold 20 in which the first internal space 21 is formed to form a plurality of stacked parts 110 .
도 7(a)는 본 발명의 바람직한 제1실시예에 따른 검사장치의 일부로서 전기 전도성 접촉핀(100)이 가이드 플레이트(10)의 가이드 구멍(11)에 삽입된 상태를 정면에서 바라본 도면이고, 도 7(b)는 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀(100)측면도이다.7 (a) is a view from the front in a state in which the electrically conductive contact pin 100 is inserted into the guide hole 11 of the guide plate 10 as a part of the inspection device according to the first preferred embodiment of the present invention. , Figure 7 (b) is a side view of the electrically conductive contact pin 100 according to the first preferred embodiment of the present invention.
본 발명의 바람직한 제1실시예에 따른 검사장치는 복수개의 전기 전도성 접촉핀(100)이 삽입되는 가이드 플레이트(10)를 포함한다. 또한 검사장치에 구비되는 전기 전도성 접촉핀(100)은 복수개의 금속층이 적층되어 형성되는 적층부(110)를 포함하고, 전기 전도성 접촉핀(100)의 측면(103)에 구비되는 강화부(120)를 포함한다. 또한, 적층부(110)는 제1금속(111)과 제2금속(112)을 포함하되 제1금속(111)은 제2금속(112)에 비해 상대적으로 내마모성이 높은 금속이고 제2금속(112)은 제1금속(111)에 비해 상대적으로 전기 전도도가 높은 금속이며, 강화부(120)는 제1금속(111)으로 형성되고, 강화부(120)는 가이드 플레이트(10)의 가이드 구멍(11)의 위치에 대응되는 위치에 구비된다.The inspection apparatus according to the first preferred embodiment of the present invention includes a guide plate 10 into which a plurality of electrically conductive contact pins 100 are inserted. In addition, the electrically conductive contact pin 100 provided in the inspection device includes a stacking part 110 formed by stacking a plurality of metal layers, and a strengthening part 120 provided on the side surface 103 of the electrically conductive contact pin 100 . ) is included. In addition, the stacking part 110 includes a first metal 111 and a second metal 112, but the first metal 111 is a metal having relatively high wear resistance compared to the second metal 112, and the second metal ( 112 is a metal having relatively high electrical conductivity compared to the first metal 111 , the reinforcing part 120 is formed of the first metal 111 , and the reinforcing part 120 is a guide hole of the guide plate 10 . It is provided at a position corresponding to the position of (11).
본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀(100)은, 2개의 가이드 플레이트(10)의 가이드 구멍(11)의 위치에 대응하여 강화부(120)가 구비된다. 따라서 전기 전도성 접촉핀(100)의 측면(103)에는 2개의 강화부(120)가 구비된다. 2개의 강화부(120) 사이에는 적층부(110)가 구비된다. 강화부(120)가 구비되는 영역만으로 제외하고, 적층부(110)는 전기 전도성 접촉핀(100)에 전체적으로 형성된다. 적층부(110)는 복수개의 금속층이 적층되어 형성되는 구성인데, 이러한 금속층에는 강화부(120)를 구성하는 금속에 비해 전기 전도도가 높은 금속을 포함하고 있다. 2개의 강화부(120) 사이에 구비되는 적층부(110)의 구성을 통해, 전기 전도성 접촉핀(100)의 전류 운반 용량(Current Carrying Capacity)의 저하를 방지할 수 있게 된다. The electrically conductive contact pin 100 according to a preferred embodiment of the present invention is provided with a reinforcing portion 120 corresponding to the positions of the guide holes 11 of the two guide plates 10 . Accordingly, the side 103 of the electrically conductive contact pin 100 is provided with two reinforcement portions 120 . A stacking part 110 is provided between the two reinforcement parts 120 . Except for only the region where the reinforcement part 120 is provided, the stacked part 110 is entirely formed on the electrically conductive contact pin 100 . The stacking part 110 is a configuration formed by stacking a plurality of metal layers, and the metal layer includes a metal having higher electrical conductivity than the metal constituting the reinforcement part 120 . Through the configuration of the stacking part 110 provided between the two reinforcing parts 120 , it is possible to prevent a decrease in the current carrying capacity of the electrically conductive contact pin 100 .
본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀(100)은 팔라듐-코발트(palladium-cobalt, PdCo) 재질의 제1금속(111)과 구리(Cu) 재질의 제2금속(112)이 교번적으로 적층되어 구성될 수 있다. 예를 들어 전기 전도성 접촉핀(100)의 두께 방향으로 팔라듐-코발트(palladium-cobalt, PdCo) 재질의 제1금속(111), 구리(Cu) 재질의 제2금속(112), 팔라듐-코발트(palladium-cobalt, PdCo) 재질의 제1금속(111), 구리(Cu) 재질의 제2금속(112), 팔라듐-코발트(palladium-cobalt, PdCo) 재질의 제1금속(111) 순으로 5개 층이 교번적으로 적층되어 구성될 수 있다. 물론 동일한 교번 적층 패턴으로 그 이상의 적층수로 적층될 수 있다. 다만 이 경우 전기 전도성 접촉핀(100)의 최하층과 최상층은 팔라듐-코발트(palladium-cobalt, PdCo) 재질의 제1금속(111)이 위치할 수 있다. 이 경우 강화부(120)는 팔라듐-코발트(palladium-cobalt, PdCo) 재질의 제1금속(111)으로 구성될 수 있다. 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀(100)은 팔라듐-코발트(palladium-cobalt, PdCo) 재질의 제1금속(111)이 도금 공정을 통해 전체적으로 연속되어 일체(一體)형으로 형성되므로 전기 전도성 접촉핀(100)의 탄성 변형 거동 시 층간 박리를 최소화하여 내구성을 향상시킬 수 있게 된다. The electrically conductive contact pin 100 according to the first preferred embodiment of the present invention includes a first metal 111 made of palladium-cobalt (PdCo) and a second metal 112 made of copper (Cu). It may be configured by being alternately stacked. For example, in the thickness direction of the electrically conductive contact pin 100, the first metal 111 made of palladium-cobalt (PdCo), the second metal 112 made of copper (Cu), palladium-cobalt ( First metal 111 made of palladium-cobalt, PdCo, second metal 112 made of copper (Cu), first metal 111 made of palladium-cobalt (PdCo), 5 in order The layers may be alternately stacked. Of course, the same number of layers may be stacked in the same alternating stacking pattern. However, in this case, the first metal 111 made of palladium-cobalt (PdCo) material may be positioned on the lowermost layer and the uppermost layer of the electrically conductive contact pin 100 . In this case, the reinforcing unit 120 may be formed of the first metal 111 made of palladium-cobalt (PdCo). In the electrically conductive contact pin 100 according to the first preferred embodiment of the present invention, the first metal 111 made of palladium-cobalt (PdCo) is continuously continuous through a plating process to form an integral type. Since it is formed, it is possible to improve durability by minimizing delamination between layers during elastic deformation behavior of the electrically conductive contact pin 100 .
또한 복수개의 금속층이 적층되는 적층부(110)의 구성을 통해 전기 전도성이 상대적으로 높은 구리(Cu), 은(Ag), 금(Au) 중에서 선택된 제2금속(112)의 함량을 높일 수 있게 되므로, 전기 전도성 접촉핀(100)의 전류 운반 용량(Current Carrying Capacity)의 저하를 방지할 수 있게 된다.In addition, the content of the second metal 112 selected from among copper (Cu), silver (Ag), and gold (Au) having relatively high electrical conductivity can be increased through the configuration of the stacking unit 110 in which a plurality of metal layers are stacked. Therefore, it is possible to prevent a decrease in the current carrying capacity (Current Carrying Capacity) of the electrically conductive contact pin (100).
또한, 강화부(120)를 구성하는 금속은 적층부(110)을 구성하는 구리(Cu), 은(Ag), 금(Au) 중에서 선택된 제2금속(112)에 비해 경도가 높기 때문에 가이드 구멍(11)의 내벽과 접촉 시 전기 전도성 접촉핀(100)의 측면(103)이 소성 변형되어 움푹 파이는 현상을 방지할 수 있다. 이를 통해 전기 전도성 접촉핀(100)의 거동 패턴을 일정하게 유지할 수 있게 된다.In addition, since the metal constituting the reinforcing part 120 has a higher hardness than the second metal 112 selected from copper (Cu), silver (Ag), and gold (Au) constituting the stacking part 110 , the guide hole When in contact with the inner wall of (11), the side 103 of the electrically conductive contact pin 100 is plastically deformed to prevent a dent. Through this, the behavior pattern of the electrically conductive contact pin 100 can be constantly maintained.
이하, 도 8 내지 도 14를 참조하여 본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀(100)에 대해 설명한다. 도 8은 본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀(100)이 가이드 플레이트(10)에 삽입된 상태를 도시한 도면이고, 도 9 내지 도 13은 본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀(100)의 제조방법을 도시한 도면이며, 도 14(a)은 본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀(100)이 가이드 플레이트(10)의 가이드 구멍(11)에 삽입된 상태의 정면도이고, 도 14(b)는 전기 전도성 접촉핀(100)의 측면도이다. Hereinafter, an electrically conductive contact pin 100 according to a second preferred embodiment of the present invention will be described with reference to FIGS. 8 to 14 . 8 is a view showing a state in which an electrically conductive contact pin 100 according to a second preferred embodiment of the present invention is inserted into the guide plate 10, and FIGS. 9 to 13 are a second preferred embodiment of the present invention. It is a view showing a manufacturing method of the electrically conductive contact pin 100 according to, Figure 14 (a) is an electrically conductive contact pin 100 according to a second preferred embodiment of the present invention is a guide hole of the guide plate (10) (11) is a front view of the inserted state, Figure 14 (b) is a side view of the electrically conductive contact pin (100).
도 8을 참조하면, 본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀(100)은 상면(101), 상면(101)의 반대면이 하면 및 측면(103)으로 구성된다. 전기 전도성 접촉핀(100)은 복수개의 금속층이 적층되어 형성되는 적층부(110)를 포함한다. 또한, 전기 전도성 접촉핀(100)은, 전기 전도성 접촉핀(100)의 측면(103)에 구비되는 강화부(120)를 포함한다. 강화부(120)는 전기 전도성 접촉핀(100)의 두께 방향으로 하면부에서 상면부에 이르기까지 연속적으로 전기 전도성 접촉핀(100)의 측면(103)에 형성된다. 가이드 구멍(11)은 전기 전도성 접촉핀(100)이 삽입되는 구멍의 형태이지만설명의 편의상 도 8에서는 가이드 플레이트(10)의 일부만을 도시한 것이다.Referring to FIG. 8 , the electrically conductive contact pin 100 according to the second preferred embodiment of the present invention includes an upper surface 101 , and the opposite surface of the upper surface 101 is a lower surface and a side surface 103 . The electrically conductive contact pin 100 includes a stacking part 110 formed by stacking a plurality of metal layers. In addition, the electrically conductive contact pin 100 includes a reinforcing part 120 provided on the side surface 103 of the electrically conductive contact pin 100 . The reinforcement portion 120 is continuously formed on the side surface 103 of the electrically conductive contact pin 100 from the lower surface to the upper surface in the thickness direction of the electrically conductive contact pin 100 . Although the guide hole 11 is in the form of a hole into which the electrically conductive contact pin 100 is inserted, only a part of the guide plate 10 is illustrated in FIG. 8 for convenience of explanation.
본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀(100)은 제1실시예에 따른 전기 전도성 접촉핀(100)의 구성과는 달리 강화부(120)가 전기 전도성 접촉핀(100)의 측면(103) 전체에 구비된다는 점에서 구성상의 차이가 있다. In the electrically conductive contact pin 100 according to the second preferred embodiment of the present invention, unlike the configuration of the electrically conductive contact pin 100 according to the first embodiment, the reinforcing part 120 is the electrically conductive contact pin 100 . There is a difference in configuration in that it is provided on the entire side 103 .
적층부(110)는 제1금속(111)과 제2금속(112)을 포함한다. 제1금속(111)은 제2금속(112)에 비해 상대적으로 내마모성이 높은 금속이고 제2금속(112)은 제1금속(111)에 비해 상대적으로 전기 전도도가 높은 금속이다. The stacked part 110 includes a first metal 111 and a second metal 112 . The first metal 111 is a metal having relatively high wear resistance compared to the second metal 112 , and the second metal 112 is a metal having relatively high electrical conductivity compared to the first metal 111 .
제1금속(111)은 로듐(rhodium, Rd), 백금 (platinum, Pt), 이리듐(iridium, Ir), 팔라듐(palladium) 이나 이들의 합금, 또는 팔라듐-코발트(palladium-cobalt, PdCo) 합금, 팔라듐-니켈(palladium-nickel, PdNi) 합금 또는 니켈-인(nickel-phosphor, NiPh) 합금, 니켈-망간(nickel-manganese, NiMn), 니켈-코발트(nickel-cobalt, NiCo) 또는 니켈-텅스텐(nickel-tungsten, NiW) 합금 중에서 선택된 금속으로 형성되고, 제2금속(112)은 구리(Cu), 은(Ag), 금(Au) 또는 이들의 합금 중에서 선택된 금속으로 형성된다. The first metal 111 is rhodium (Rd), platinum (platinum, Pt), iridium (iridium, Ir), palladium (palladium) or alloys thereof, or palladium-cobalt (palladium-cobalt, PdCo) alloy, palladium-nickel (PdNi) alloy or nickel-phosphor (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo) or nickel-tungsten ( It is formed of a metal selected from nickel-tungsten, NiW alloy, and the second metal 112 is formed of a metal selected from copper (Cu), silver (Ag), gold (Au), or an alloy thereof.
강화부(120)는 제1금속(111)으로 형성된다. 강화부(120)는 적층부(110)를 구성하는 금속층 중 적어도 어느 하나와 동일 재질로 형성되거나 적층부(110)를 구성하는 금속층과 다른 재질로 형성될 수 있다. The reinforcing part 120 is formed of the first metal 111 . The reinforcement unit 120 may be formed of the same material as at least one of the metal layers constituting the lamination unit 110 , or may be formed of a material different from the metal layer constituting the lamination unit 110 .
예를 들어 적층부(110)는 팔라듐-코발트(palladium-cobalt, PdCo) 합금 재질의 제1금속(111)과 구리(Cu) 재질의 제2금속(112)이 교번적으로 적층되어 형성될 수 있다. 이 경우 강화부(120)는 팔라듐-코발트(palladium-cobalt, PdCo) 합금 재질의 제1금속(111)이거나, 로듐(rhodium, Rd) 재질의 제1금속(111)일 수 있다. For example, the stacking unit 110 may be formed by alternately stacking a first metal 111 made of a palladium-cobalt (PdCo) alloy and a second metal 112 made of a copper (Cu) material. have. In this case, the reinforcing part 120 may be a first metal 111 made of a palladium-cobalt (PdCo) alloy or a first metal 111 made of a rhodium (Rd) material.
이하에서는 도 9 내지 도 13을 참조하여 본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀(100)의 제조방법에 대해 설명한다. Hereinafter, a method of manufacturing the electrically conductive contact pin 100 according to a second preferred embodiment of the present invention will be described with reference to FIGS. 9 to 13 .
본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀(100)의 제조방법은, 복수개의 금속층이 적층되어 구비되는 적층부(111)를 형성하는 제1도금 단계 및 제1도금 단계와는 별도의 도금 공정으로 적층부(111)의 측면 전체에 적층부(111)의 평균적인 내마모성 보다 높은 내마모성을 가지는 금속으로 강화부(120)를 형성하는 제2도금 단계를 포함한다. 이하에서 구체적으로 설명한다.The manufacturing method of the electrically conductive contact pin 100 according to the second preferred embodiment of the present invention is separate from the first plating step and the first plating step of forming the stacked portion 111 provided by stacking a plurality of metal layers. a second plating step of forming the reinforced part 120 with a metal having a higher wear resistance than the average wear resistance of the laminated part 111 on the entire side surface of the laminated part 111 by the plating process of the laminated part 111 . It will be described in detail below.
먼저, 도 9를 참조하면, 도 9(a)는 제1내부공간(21)이 구비된 몰드(20)의 평면도이고, 도 9(b)는 도 9(a)의 A-A’단면도이고, 도 9(c)는 도 9(a)의 B-B’단면도이며, 도 9(d)는 도 9(a)의 C-C’단면도이다. First, referring to FIG. 9, FIG. 9 (a) is a plan view of the mold 20 provided with the first internal space 21, and FIG. 9 (b) is a cross-sectional view taken along line A-A' of FIG. , FIG. 9(c) is a cross-sectional view taken along line B-B' of FIG. 9(a), and FIG. 9(d) is a cross-sectional view taken along line C-C' of FIG.
도 9를 참조하면, 몰드(20)에는 제1내부 공간(21)이 형성되고 있고, 몰드(20)의 하부에는 시드층(30)이 구비되어 있다. Referring to FIG. 9 , a first internal space 21 is formed in the mold 20 , and a seed layer 30 is provided under the mold 20 .
몰드(20)는 양극산화막, 포토레지스트, 실리콘 웨이퍼 또는 이와 유사한 재질로 구성될 있다. 다만, 바람직하게는 몰드(20)은 양극산화막 재질로 구성될 수 있다. The mold 20 may be made of an anodized film, photoresist, silicon wafer, or a similar material. However, preferably, the mold 20 may be made of an anodized film material.
본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀(100)은 포토 레지스트 몰드 대신에 양극산화막 재질의 몰드(20)를 이용하여 제조된다는 점에서 포토 레지스트 몰드로는 구현하는데 한계가 있었던 형상의 정밀도, 미세 형상의 구현의 효과를 발휘할 수 있게 된다.The electrically conductive contact pin 100 according to a preferred embodiment of the present invention is manufactured using a mold 20 made of an anodized film material instead of a photoresist mold, so the precision of the shape was limited in realization with the photoresist mold; It becomes possible to exhibit the effect of realization of a micro-shape.
몰드(20)의 하면에는 시드층(30)이 구비된다. 시드층(30)은 몰드(20)에 제1내부 공간(21)을 형성하기 이전에 몰드(20)의 하면에 구비될 수 있다. 한편 몰드(20)의 하부에는 지지기판(미도시)이 형성되어 몰드(20)의 취급성을 향상시킬 수 있다. 또한 이 경우 지지기판(미도시)의 상면에 시드층(30)을 형성하고 제1내부 공간(21)이 형성된 몰드(20)을 지지기판(미도시)에 결합하여 사용할 수도 있다. 시드층(30)은 구리(Cu)재질로 형성될 수 있고, 증착 방법에 의해 형성될 수 있다. 시드층(30)은 적층부(110)와 강화부(120)을 전기 도금법을 이용하여 형성할 때 이들의 도금 품질을 향상시키기 위해 사용된다.A seed layer 30 is provided on a lower surface of the mold 20 . The seed layer 30 may be provided on the lower surface of the mold 20 before the first internal space 21 is formed in the mold 20 . Meanwhile, a support substrate (not shown) is formed under the mold 20 to improve handling of the mold 20 . In addition, in this case, the seed layer 30 is formed on the upper surface of the support substrate (not shown), and the mold 20 in which the first internal space 21 is formed may be used by coupling the mold 20 to the support substrate (not shown). The seed layer 30 may be formed of a copper (Cu) material, and may be formed by a deposition method. The seed layer 30 is used to improve the plating quality of the lamination part 110 and the reinforcement part 120 when forming the laminated part 110 and the reinforcement part 120 using the electroplating method.
제1내부 공간(21)은 양극산화막 재질의 몰드(20)을 습식 에칭하여 형성될 수 있다. 이를 위해 몰드(20)의 상면에 포토 레지스트를 구비하고 이를 패터닝한 다음, 패터닝되어 오픈된 영역의 양극산화막이 에칭 용액과 반응하여 제1내부 공간(21)이 형성될 수 있다. 구체적으로 설명하면, 제1내부 공간(21)을 형성하기 전의 몰드(20)의 상면에 감광성 재료를 구비한 다음 노광 및 현상 공정이 수행될 수 있다. 감광성 재료는 노광 및 현상 공정에 의해 오픈영역을 형성하면서 적어도 일부가 패터닝되어 제거될 수 있다. 양극산화막 재질의 몰드(20)는 패터닝 과정에 의해 감광성 재료가 제거된 오픈영역을 통해 에칭 공정이 수행되며, 에칭 용액에 의해 제1내부 공간(21)에 대응되는 위치의 양극산화막이 제거되어 제1내부 공간(21)을 형성하게 된다.The first inner space 21 may be formed by wet etching the mold 20 made of an anodized film material. To this end, a photoresist is provided on the upper surface of the mold 20 and patterned, and then the anodized film in the patterned and open area reacts with the etching solution to form the first internal space 21 . Specifically, the photosensitive material may be provided on the upper surface of the mold 20 before the first internal space 21 is formed, and then exposure and development processes may be performed. At least a portion of the photosensitive material may be patterned and removed while forming an open area by an exposure and development process. The mold 20 made of the anodized film material is etched through the open region from which the photosensitive material has been removed by the patterning process, and the anodized film at the position corresponding to the first internal space 21 is removed by the etching solution to form the first mold 20 . 1 The inner space 21 is formed.
다음으로 도 10을 참조하면, 도 10(a)는 제1내부 공간(21)에 적층부(110)을 형성한 몰드(20)의 평면도이고, 도 10(b)는 도 10(a)의 A-A’단면도이고, 도 10(c)는 도 10(a)의 B-B’단면도이며, 도 10(d)는 도 10(a)의 C-C’단면도이다. Next, referring to FIG. 10 , FIG. 10 ( a ) is a plan view of the mold 20 in which the stacking part 110 is formed in the first internal space 21 , and FIG. 10 ( b ) is a view of FIG. 10 ( a ). A-A' cross-sectional view, FIG. 10(c) is a B-B' cross-sectional view of FIG. 10(a), and FIG. 10(d) is a C-C' cross-sectional view of FIG. 10(a).
몰드(20)의 제1내부 공간(21)에 전기 도금 공정을 수행하여 적층부(110)를 형성하는 단계를 수행한다. 복수회의 전기 도금 공정을 수행하여 전기 전도성 접촉핀(100)의 두께 방향으로 복수개의 금속층이 적층되어 형성된다. 적층부(110)는 로듐(rhodium, Rd), 백금 (platinum, Pt), 이리듐(iridium, Ir), 팔라듐(palladium) 이나 이들의 합금, 또는 팔라듐-코발트(palladium-cobalt, PdCo) 합금, 팔라듐-니켈(palladium-nickel, PdNi) 합금 또는 니켈-인(nickel-phosphor, NiPh) 합금, 니켈-망간(nickel-manganese, NiMn), 니켈-코발트(nickel-cobalt, NiCo) 또는 니켈-텅스텐(nickel-tungsten, NiW) 합금 중에서 선택된 제1금속(111)과, 구리(Cu), 은(Ag), 금(Au) 중에서 선택된 제2금속(112)을 포함하여 구비된다. 예를 들어, 팔라듐-코발트(palladium-cobalt, PdCo) 합금 재질의 제1금속(210)과 구리(Cu) 재질의 제2금속(230)이 교번적으로 적층되어 형성될 수 있다. 여기서 제1금속(210)은 전기 전도성 접촉핀(100)이 탄성 변형될 수 있도록 하며, 제2금속(230)은 전기 전도성 접촉핀(100)의 전류 운반 용량(CCC)이 향상되도록 한다.An electroplating process is performed in the first inner space 21 of the mold 20 to form the stacked part 110 . A plurality of metal layers are stacked and formed in the thickness direction of the electrically conductive contact pin 100 by performing a plurality of electroplating processes. The stacked part 110 is rhodium (Rd), platinum (platinum, Pt), iridium (iridium, Ir), palladium (palladium) or an alloy thereof, or palladium-cobalt (palladium-cobalt, PdCo) alloy, palladium -Nickel (palladium-nickel, PdNi) alloy or nickel-phosphor (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo) or nickel-tungsten (nickel) A first metal 111 selected from -tungsten, NiW alloy and a second metal 112 selected from copper (Cu), silver (Ag), and gold (Au) are provided. For example, the first metal 210 made of a palladium-cobalt (PdCo) alloy and the second metal 230 made of copper (Cu) may be alternately stacked and formed. Here, the first metal 210 allows the electrically conductive contact pin 100 to be elastically deformed, and the second metal 230 allows the current carrying capacity (CCC) of the electrically conductive contact pin 100 to be improved.
도금 공정이 완료되면 평탄화 공정이 수행될 수 있다. 화학적 기계적 연마(CMP) 공정을 통해 몰드(20)의 상면으로 돌출된 금속을 제거하면서 평탄화시킨다.When the plating process is completed, a planarization process may be performed. The metal protruding from the upper surface of the mold 20 is removed and planarized through a chemical mechanical polishing (CMP) process.
다음으로 도 11을 참조하면, 도 11(a)는 제2내부공간(22)을 형성한 몰드(20)의 평면도이고, 도 11(b)는 도 11(a)의 A-A’단면도이고, 도 11(c)는 도 11(a)의 B-B’단면도이며, 도 11(d)는 도 11(a)의 C-C’단면도이다. Next, referring to FIG. 11, FIG. 11 (a) is a plan view of the mold 20 forming the second inner space 22, and FIG. 11(b) is A-A of FIG. 11(a) 'It is a cross-sectional view, and FIG. 11 ( c) is a sectional view taken along line B-B' of FIG.
몰드(20)의 일부분을 제거하는 공정을 수행한다. 몰드(20)의 일부분을 제거하여 제2내부 공간(22)을 몰드(20)에 형성한다. 구체적으로 설명하면, 몰드(20)의 상면에 감광성 재료를 구비한 다음 노광 및 현상 공정이 수행될 수 있다. 감광성 재료는 노광 및 현상 공정에 의해 오픈영역을 형성하면서 적어도 일부가 패터닝되어 제거될 수 있다. 패터닝 과정에 의해 감광성 재료가 제거된 오픈영역을 통해 에칭 공정이 수행되며, 에칭 용액에 의해 몰드(20)의 일부분이 제거되어 제2내부 공간(22)을 형성하게 된다. A process of removing a portion of the mold 20 is performed. A portion of the mold 20 is removed to form the second inner space 22 in the mold 20 . Specifically, after the photosensitive material is provided on the upper surface of the mold 20 , an exposure and development process may be performed. At least a portion of the photosensitive material may be patterned and removed while forming an open area by an exposure and development process. An etching process is performed through the open region from which the photosensitive material has been removed by the patterning process, and a portion of the mold 20 is removed by the etching solution to form the second internal space 22 .
제2내부 공간(22)은 강화부(120)의 위치에 대응하여 적층부(110)의 측면을 따라 길게 2개가 형성된다. 각각의 제2내부 공간(22)의 1개의 측면으로는 복수개로 적층된 적층부(111)가 노출되고, 3개의 측면으로는 몰드(20)가 노출되게 된다. Two second internal spaces 22 are formed along the side surface of the stacking part 110 to correspond to the position of the reinforcing part 120 . A plurality of stacked parts 111 are exposed on one side surface of each of the second internal spaces 22 , and the mold 20 is exposed on three side surfaces.
다음으로 도 12를 참조하면, 도 12(a)는 제2내부공간(22)에 강화부(120)를 형성한 몰드(20)의 평면도이고, 도 12(b)는 도 12(a)의 A-A’단면도이고, 도 12(c)는 도 12(a)의 B-B’단면도이며, 도 12(d)는 도 12(a)의 C-C’단면도이다. Next, referring to FIG. 12 , FIG. 12 ( a ) is a plan view of the mold 20 in which the reinforcement part 120 is formed in the second inner space 22 , and FIG. 12 ( b ) is a view of FIG. 12 ( a ). A-A' cross-sectional view, FIG. 12(c) is a B-B' cross-sectional view of FIG. 12(a), and FIG. 12(d) is a C-C' cross-sectional view of FIG. 12(a).
강화부(120)를 형성하는 단계를 수행한다. 이전 단계에서 형성된 제2내부 공간(22)에 전기 도금 공정을 이용하여 강화부(120)를 형성한다. A step of forming the reinforcement part 120 is performed. The reinforcement part 120 is formed in the second internal space 22 formed in the previous step by using an electroplating process.
강화부(120)는 전 단계에서 제작된 적층부(110)와 일체화된다. 앞서 설명한 바와 같이 제2내부 공간(22)의 1개의 측면에는 적층부(110)이 노출되는데 이 측면에서 강화부(120)는 적층부(110)와 일체화된다.The reinforcement part 120 is integrated with the stacking part 110 manufactured in the previous step. As described above, the stacked part 110 is exposed on one side of the second internal space 22 , and the reinforcement part 120 is integrated with the stacked part 110 on this side.
강화부(120)는 로듐(rhodium, Rd), 백금 (platinum, Pt), 이리듐(iridium, Ir), 팔라듐(palladium) 이나 이들의 합금, 또는 팔라듐-코발트(palladium-cobalt, PdCo) 합금, 팔라듐-니켈(palladium-nickel, PdNi) 합금 또는 니켈-인(nickel-phosphor, NiPh) 합금, 니켈-망간(nickel-manganese, NiMn), 니켈-코발트(nickel-cobalt, NiCo) 또는 니켈-텅스텐(nickel-tungsten, NiW) 합금 중에서 선택된 금속 일 수 있으며, 바람직하게는 강화부(120)는 적층부(110)을 구성하는 제1금속(210)과 동일 재질로 형성될 수 있다. 예를 들어 적층부(110)가 제1금속(111) 중에서 팔라듐-코발트(palladium-cobalt, PdCo) 합금 재질로 형성되는 경우에, 강화부(120) 역시 팔라듐-코발트(palladium-cobalt, PdCo) 합금 재질일 수 있다. 이와는 다르게 강화부(120)는 적층부(110)을 구성하는 제1금속(210)과 다른 재질로 형성될 수 있다. 예를 들어 적층부(110)가 제1금속(111) 중에서 팔라듐-코발트(palladium-cobalt, PdCo) 합금 재질로 형성되는 경우에, 강화부(120)는 로듐(rhodium, Rd) 재질일 수 있다.Reinforcing unit 120 is rhodium (rhodium, Rd), platinum (platinum, Pt), iridium (iridium, Ir), palladium (palladium) or alloys thereof, or palladium-cobalt (palladium-cobalt, PdCo) alloy, palladium -Nickel (palladium-nickel, PdNi) alloy or nickel-phosphor (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo) or nickel-tungsten (nickel) -tungsten, NiW) may be a metal selected from an alloy, and preferably, the reinforcing part 120 may be formed of the same material as the first metal 210 constituting the stacking part 110 . For example, when the stacked part 110 is formed of a palladium-cobalt (PdCo) alloy material among the first metal 111 , the reinforced part 120 is also palladium-cobalt (PdCo). It may be an alloy material. Alternatively, the reinforcing part 120 may be formed of a material different from that of the first metal 210 constituting the stacking part 110 . For example, when the stacked part 110 is formed of a palladium-cobalt (PdCo) alloy material among the first metal 111, the reinforced part 120 may be made of a rhodium (Rd) material. .
다음으로 도 13을 참조하면, 도 13(a)는 전기 전도성 접촉핀(100)의 평면도이고, 도 13(b)는 도 13(a)의 A-A’단면도이고, 도 13(c)는 도 13(a)의 B-B’단면도이며, 도 13(d)는 도 13(a)의 C-C’단면도이다. Next, referring to FIG. 13, FIG. 13(a) is a plan view of the electrically conductive contact pin 100, FIG. 13(b) is a cross-sectional view taken along line A-A' of FIG. 13(a), and FIG. 13(c) is 13(a) is a sectional view taken along line B-B', and FIG. 13(d) is a cross-sectional view taken along line C-C' of FIG. 13(a).
이전 단계 이후에 몰드(20)와 시드층(30)를 제거하는 공정을 수행한다. 몰드(20)가 양극산화막 재질인 경우에는 양극산화막 재질에 선택적으로 반응하는 용액을 이용하여 몰드(20)를 제거한다. 또한 시드층(30)이 구리(Cu) 재질인 경우에는 구리(Cu)에 선택적으로 반응하는 용액을 이용하여 시드층(30)을 제거한다. After the previous step, a process of removing the mold 20 and the seed layer 30 is performed. When the mold 20 is made of an anodized film material, the mold 20 is removed using a solution that selectively reacts to the anodized film material. Also, when the seed layer 30 is made of copper (Cu), the seed layer 30 is removed using a solution that selectively reacts with copper (Cu).
앞선 설명에서는 제1내부 공간(21)이 형성된 몰드(20)를 이용하여 제1내부 공간(21)에 도금하여 적층부(110)를 형성하는 단계를 먼저 수행하고 그 다음에 몰드(20)의 일부를 제거하여 제2내부 공간(22)을 형성하고 제2내부 공간(22)에 도금하여 강화부(120)를 형성하는 단계를 수행하는 것으로 설명하였으나, 본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀의 제조방법은, 몰드(20)의 일부를 제거하여 제2내부 공간(22)을 형성하고 제2내부 공간(22)에 도금하여 강화부(120)를 형성하는 단계를 먼저 수행하고 그 다음에 제1내부 공간(21)이 형성된 몰드(20)를 이용하여 제1내부 공간(21)에 도금하여 복수개의 적층부(110)를 형성하는 단계를 수행하는 것도 포함한다. In the previous description, the step of forming the laminated part 110 by plating the first internal space 21 using the mold 20 in which the first internal space 21 is formed is first performed, and then the mold 20 is formed. Although it has been described that the step of forming the second inner space 22 is formed by removing a part and the step of forming the reinforcing part 120 is performed by plating the second inner space 22, according to the second preferred embodiment of the present invention In the method of manufacturing the electrically conductive contact pin, a step of forming the second inner space 22 by removing a part of the mold 20 and plating the second inner space 22 to form the reinforcement part 120 is performed first. and then plating the first internal space 21 using the mold 20 in which the first internal space 21 is formed to form a plurality of stacked parts 110 .
도 14(a)는 본 발명의 바람직한 제2실시예에 따른 검사장치의 일부로서 전기 전도성 접촉핀(100)이 가이드 플레이트(10)의 가이드 구멍(11)에 삽입된 상태를 정면에서 바라본 도면이고, 도 14(b)는 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀(100)측면도이다.14 (a) is a view from the front of a state in which the electrically conductive contact pin 100 is inserted into the guide hole 11 of the guide plate 10 as a part of the inspection device according to the second preferred embodiment of the present invention. , Figure 14 (b) is a side view of the electrically conductive contact pin 100 according to the first preferred embodiment of the present invention.
본 발명의 바람직한 제2실시예에 따른 검사장치는 복수개의 전기 전도성 접촉핀(100)이 삽입되는 가이드 플레이트(10)를 포함한다. 또한 검사장치에 구비되는 전기 전도성 접촉핀(100)은 복수개의 금속층이 적층되어 형성되는 적층부(110)를 포함하고, 전기 전도성 접촉핀(100)의 측면(103)에 구비되는 강화부(120)를 포함한다. 또한, 적층부(110)는 제1금속(111)과 제2금속(112)을 포함하되 제1금속(111)은 제2금속(112)에 비해 상대적으로 내마모성이 높은 금속이고 제2금속(112)은 제1금속(111)에 비해 상대적으로 전기 전도도가 높은 금속이며, 강화부(120)는 제1금속(111)으로 형성되고, 강화부(120)는 가이드 플레이트(10)의 가이드 구멍(11)의 위치에 대응되는 위치에 구비된다.The inspection apparatus according to the second preferred embodiment of the present invention includes a guide plate 10 into which a plurality of electrically conductive contact pins 100 are inserted. In addition, the electrically conductive contact pin 100 provided in the inspection device includes a stacking part 110 formed by stacking a plurality of metal layers, and a strengthening part 120 provided on the side surface 103 of the electrically conductive contact pin 100 . ) is included. In addition, the stacking part 110 includes a first metal 111 and a second metal 112, but the first metal 111 is a metal having relatively high wear resistance compared to the second metal 112, and the second metal ( 112 is a metal having relatively high electrical conductivity compared to the first metal 111 , the reinforcing part 120 is formed of the first metal 111 , and the reinforcing part 120 is a guide hole of the guide plate 10 . It is provided at a position corresponding to the position of (11).
보다 구체적으로, 본 발명의 바람직한 제2실시예에 따른 강화부(120)는 전기 전도성 접촉핀(100)의 측면(103) 전체에 구비된다. More specifically, the reinforcing part 120 according to the second preferred embodiment of the present invention is provided on the entire side surface 103 of the electrically conductive contact pin 100 .
전기 전도성 접촉핀(100)는 가이드 플레이트(10)의 가이드 구멍(11)에 삽입되어 구비되는데, 검사 시 전기 전도성 접촉핀(100)은 가이드 구멍(11)의 내벽에 슬라이딩 접촉하게 된다. 특히 검사 중에는 전기 전도성 접촉핀(100)은 측면 방향으로 굴곡되면서 가이드 구멍(11)의 내벽에 큰 힘을 부여하기 때문에 마찰력이 높아지게 된다. 이런 상황에서 본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀(100)은 그 측면(103) 전체에 내 마모성이 높은 강화부(120)를 구비함으로써 마찰에 따른 마모가 최소화된다. 그 결과 전기 전도성 접촉핀(100)의 내구성이 향상된다. 또한 마찰에 따른 이물질 발생을 최소화할 수 있게 된다. The electrically conductive contact pin 100 is provided by being inserted into the guide hole 11 of the guide plate 10 , and during inspection, the electrically conductive contact pin 100 is in sliding contact with the inner wall of the guide hole 11 . In particular, during the inspection, since the electrically conductive contact pin 100 is bent in the lateral direction to apply a large force to the inner wall of the guide hole 11, the frictional force is increased. In this situation, the electrically conductive contact pin 100 according to the second preferred embodiment of the present invention is provided with the reinforcing portion 120 having high wear resistance on the entire side surface 103, thereby minimizing wear due to friction. As a result, the durability of the electrically conductive contact pin 100 is improved. In addition, it is possible to minimize the generation of foreign substances due to friction.
본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀(100)은 팔라듐-코발트(palladium-cobalt, PdCo) 재질의 제1금속(111)과 구리(Cu) 재질의 제2금속(112)이 교번적으로 적층되어 구성될 수 있다. 예를 들어 전기 전도성 접촉핀(100)의 두께 방향으로 팔라듐-코발트(palladium-cobalt, PdCo) 재질의 제1금속(111), 구리(Cu) 재질의 제2금속(112), 팔라듐-코발트(palladium-cobalt, PdCo) 재질의 제1금속(111), 구리(Cu) 재질의 제2금속(112), 팔라듐-코발트(palladium-cobalt, PdCo) 재질의 제1금속(111) 순으로 5개 층이 교번적으로 적층되어 구성될 수 있다. 물론 동일한 교번 적층 패턴으로 그 이상의 적층수로 적층될 수 있다. 다만 이 경우 전기 전도성 접촉핀(100)의 최하층과 최상층은 팔라듐-코발트(palladium-cobalt, PdCo) 재질의 제1금속(111)이 위치할 수 있다. 이 경우 강화부(120)는 팔라듐-코발트(palladium-cobalt, PdCo) 재질의 제1금속(111)으로 구성될 수 있다. 본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀(100)은 팔라듐-코발트(palladium-cobalt, PdCo) 재질의 제1금속(111)이 도금 공정을 통해 전체적으로 연속되어 일체(一體)형으로 형성되므로 전기 전도성 접촉핀(100)의 탄성 변형 거동 시 층간 박리를 최소화하여 내구성을 향상시킬 수 있게 된다. The electrically conductive contact pin 100 according to the second preferred embodiment of the present invention includes a first metal 111 made of palladium-cobalt (PdCo) and a second metal 112 made of copper (Cu). It may be configured by being alternately stacked. For example, in the thickness direction of the electrically conductive contact pin 100, the first metal 111 made of palladium-cobalt (PdCo), the second metal 112 made of copper (Cu), palladium-cobalt ( First metal 111 made of palladium-cobalt, PdCo, second metal 112 made of copper (Cu), first metal 111 made of palladium-cobalt (PdCo), 5 in order The layers may be alternately stacked. Of course, the same number of layers may be stacked in the same alternating stacking pattern. However, in this case, the first metal 111 made of palladium-cobalt (PdCo) material may be positioned on the lowermost layer and the uppermost layer of the electrically conductive contact pin 100 . In this case, the reinforcing unit 120 may be formed of the first metal 111 made of palladium-cobalt (PdCo). In the electrically conductive contact pin 100 according to the second preferred embodiment of the present invention, the first metal 111 made of palladium-cobalt (PdCo) is continuously continuous through a plating process to form an integral type. Since it is formed, it is possible to improve durability by minimizing delamination between layers during elastic deformation behavior of the electrically conductive contact pin 100 .
또한, 강화부(120)를 구성하는 금속은 적층부(110)을 구성하는 구리(Cu), 은(Ag), 금(Au) 중에서 선택된 제2금속(112)에 비해 경도가 높기 때문에 가이드 구멍(11)의 내벽과 접촉 시 전기 전도성 접촉핀(100)의 측면(103)이 소성 변형되어 움푹 파이는 현상을 방지할 수 있다. 이를 통해 전기 전도성 접촉핀(100)의 거동 패턴을 일정하게 유지할 수 있게 된다.In addition, since the metal constituting the reinforcing part 120 has a higher hardness than the second metal 112 selected from copper (Cu), silver (Ag), and gold (Au) constituting the stacking part 110 , the guide hole When in contact with the inner wall of (11), the side 103 of the electrically conductive contact pin 100 is plastically deformed to prevent a dent. Through this, the behavior pattern of the electrically conductive contact pin 100 can be constantly maintained.
이상에서 설명한 제1,2실시예에 따른 전기 전도성 접촉핀(100)의 표면에는 전류 운반 용량(Current Carrying Capacity)을 더욱 향상시키기 위해 금(Au) 재질의 도금막이 추가로 형성될 수 있다. 이 경우에는 강화부(120)의 내마모성 측면에서는 다소 불리할 수 있으나 강화부(120)의 구성을 통해 전기 전도성 접촉핀(100)의 측면이 소성 변형되어 움푹 파이는 현상을 방지하는 효과는 그대로 발휘할 수 있게 된다. A plating film made of a gold (Au) material may be additionally formed on the surface of the electrically conductive contact pin 100 according to the first and second embodiments described above in order to further improve the current carrying capacity. In this case, it may be somewhat disadvantageous in terms of the abrasion resistance of the reinforcement part 120, but the effect of preventing the dent due to plastic deformation of the side surface of the electrically conductive contact pin 100 through the configuration of the reinforcement part 120 can be exhibited as it is. be able to
전술한 바와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술분야의 통상의 기술자는 하기의 특허 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다.As described above, although described with reference to preferred embodiments of the present invention, those skilled in the art can variously modify the present invention within the scope without departing from the spirit and scope of the present invention described in the claims below. Or it can be carried out by modification.
[부호의 설명][Explanation of code]
100: 전기 전도성 접촉핀100: electrically conductive contact pin
110: 적층부110: stacked part
120: 강화부120: reinforcement
210: 제1영역210: first area
220: 제2영역220: second area

Claims (17)

  1. 복수개의 금속층이 적층되어 형성되는 적층부를 포함하는 전기 전도성 접촉핀에 있어서,An electrically conductive contact pin comprising a lamination part formed by laminating a plurality of metal layers,
    상기 전기 전도성 접촉핀의 측면에 구비되는 강화부를 포함하는, 전기 전도성 접촉핀.An electrically conductive contact pin comprising a reinforcement provided on a side surface of the electrically conductive contact pin.
  2. 제1항에 있어서,According to claim 1,
    상기 적층부는 제1금속과 제2금속을 포함하되 상기 제1금속은 상기 제2금속에 비해 상대적으로 내마모성이 높은 금속이고 상기 제2금속은 상기 제1금속에 비해 상대적으로 전기 전도도가 높은 금속이며, The lamination part includes a first metal and a second metal, wherein the first metal is a metal having relatively high wear resistance compared to the second metal, and the second metal is a metal having relatively high electrical conductivity compared to the first metal. ,
    상기 강화부는 상기 제1금속으로 형성되는, 전기 전도성 접촉핀.The reinforcing portion is formed of the first metal, an electrically conductive contact pin.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 제1금속은 로듐(rhodium, Rd), 백금 (platinum, Pt), 이리듐(iridium, Ir), 팔라듐(palladium) 이나 이들의 합금, 또는 팔라듐-코발트(palladium-cobalt, PdCo) 합금, 팔라듐-니켈(palladium-nickel, PdNi) 합금 또는 니켈-인(nickel-phosphor, NiPh) 합금, 니켈-망간(nickel-manganese, NiMn), 니켈-코발트(nickel-cobalt, NiCo) 또는 니켈-텅스텐(nickel-tungsten, NiW) 합금 중에서 선택된 금속으로 형성되고,The first metal is rhodium (Rd), platinum (platinum, Pt), iridium (iridium, Ir), palladium (palladium) or an alloy thereof, or palladium-cobalt (palladium-cobalt, PdCo) alloy, palladium- palladium-nickel (PdNi) alloy or nickel-phosphor (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo) or nickel-tungsten (nickel- tungsten, NiW) is formed of a metal selected from alloys,
    상기 제2금속은 구리(Cu), 은(Ag), 금(Au) 또는 이들의 합금 중에서 선택된 금속으로 형성되는, 전기 전도성 접촉핀.The second metal is an electrically conductive contact pin formed of a metal selected from copper (Cu), silver (Ag), gold (Au), or an alloy thereof.
  4. 제1항에 있어서,According to claim 1,
    상기 전기 전도성 접촉핀의 길이 방향으로 구분되어 형성되는 제1영역과 제2영역을 포함하되,Including a first region and a second region formed separately in the longitudinal direction of the electrically conductive contact pin,
    상기 제1영역은 상기 적층부를 포함하고,The first region includes the stacking part,
    상기 제2영역은 상기 적층부와 상기 강화부를 포함하는, 전기 전도성 접촉핀. and the second region includes the stacked portion and the reinforced portion.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 제2영역은 상기 전기 전도성 접촉핀의 길이 방향으로 적어도 2개 이상 형성되는, 전기 전도성 접촉핀.At least two of the second regions are formed in the longitudinal direction of the electrically conductive contact pin.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 제2영역 사이에 상기 제1영역이 구비되는, 전기 전도성 접촉핀.An electrically conductive contact pin, wherein the first region is provided between the second region.
  7. 제1항에 있어서,According to claim 1,
    상기 강화부는 상기 적층부를 구성하는 금속층 중 적어도 어느 하나와 동일 재질로 형성되는, 전기 전도성 접촉핀.The reinforcing portion is formed of the same material as at least one of the metal layers constituting the stacked portion, an electrically conductive contact pin.
  8. 제1항에 있어서,According to claim 1,
    상기 강화부는 상기 적층부를 구성하는 금속층과 다른 재질로 형성되는, 전기 전도성 접촉핀.The reinforcing portion is formed of a material different from the metal layer constituting the stacked portion, an electrically conductive contact pin.
  9. 제1항에 있어서,According to claim 1,
    상기 강화부는 상기 전기 전도성 접촉핀의 두께 방향으로 하면부에서 상면부에 이르기까지 연속적으로 상기 전기 전도성 접촉핀의 측면에 형성되는, 전기 전도성 접촉핀.The reinforcing portion is continuously formed on the side surface of the electrically conductive contact pin from the lower surface portion to the upper surface portion in the thickness direction of the electrically conductive contact pin.
  10. 전기 전도성 접촉핀에 있어서,An electrically conductive contact pin comprising:
    상기 전기 전도성 접촉핀의 길이 방향으로 구분되어 형성되는 제1영역과 제2영역을 포함하되,Including a first region and a second region formed separately in the longitudinal direction of the electrically conductive contact pin,
    상기 제1영역은 복수개의 금속층이 적층되어 구비되는 적층부를 포함하고,The first region includes a stacking portion provided with a plurality of metal layers stacked,
    상기 제2영역은 상기 적층부와 강화부를 포함하되, 상기 강화부는 상기 적층부의 평균적인 내마모성 보다 높은 내마모성을 가지면서 상기 적층부의 적어도 일측면에 구비되는, 전기 전도성 접촉핀. The second region includes the lamination portion and the reinforcing portion, wherein the reinforcing portion is provided on at least one side of the lamination portion while having a higher wear resistance than the average wear resistance of the lamination portion.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 적층부는 제1금속과 제2금속을 포함하되 상기 제1금속은 상기 제2금속에 비해 상대적으로 내마모성이 높은 금속이고 상기 제2금속은 상기 제1금속에 비해 상대적으로 전기 전도도가 높은 금속이며, The lamination part includes a first metal and a second metal, wherein the first metal is a metal having relatively high wear resistance compared to the second metal, and the second metal is a metal having relatively high electrical conductivity compared to the first metal. ,
    상기 강화부는 상기 제1금속으로 형성되는, 전기 전도성 접촉핀.The reinforcing portion is formed of the first metal, an electrically conductive contact pin.
  12. 제11항에 있어서,12. The method of claim 11,
    상기 제1금속은 로듐(rhodium, Rd), 백금 (platinum, Pt), 이리듐(iridium, Ir), 팔라듐(palladium) 이나 이들의 합금, 또는 팔라듐-코발트(palladium-cobalt, PdCo) 합금, 팔라듐-니켈(palladium-nickel, PdNi) 합금 또는 니켈-인(nickel-phosphor, NiPh) 합금, 니켈-망간(nickel-manganese, NiMn), 니켈-코발트(nickel-cobalt, NiCo) 또는 니켈-텅스텐(nickel-tungsten, NiW) 합금 중에서 선택된 금속으로 형성되고,The first metal is rhodium (Rd), platinum (platinum, Pt), iridium (iridium, Ir), palladium (palladium) or an alloy thereof, or palladium-cobalt (palladium-cobalt, PdCo) alloy, palladium- palladium-nickel (PdNi) alloy or nickel-phosphor (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo) or nickel-tungsten (nickel- tungsten, NiW) is formed of a metal selected from alloys,
    상기 제2금속은 구리(Cu), 은(Ag), 금(Au) 또는 이들의 합금 중에서 선택된 금속으로 형성되는, 전기 전도성 접촉핀.The second metal is an electrically conductive contact pin formed of a metal selected from copper (Cu), silver (Ag), gold (Au), or an alloy thereof.
  13. 복수개의 전기 전도성 접촉핀이 삽입되는 가이드 플레이트를 포함하는 검사장치에 있어서,In the inspection device comprising a guide plate into which a plurality of electrically conductive contact pins are inserted,
    상기 전기 전도성 접촉핀은 복수개의 금속층이 적층되어 형성되는 적층부를 포함하고The electrically conductive contact pin includes a stacking part formed by stacking a plurality of metal layers,
    상기 전기 전도성 접촉핀의 측면에 구비되는 강화부를 포함하되,Including a reinforcement provided on the side of the electrically conductive contact pin,
    상기 적층부는 제1금속과 제2금속을 포함하되 상기 제1금속은 상기 제2금속에 비해 상대적으로 내마모성이 높은 금속이고 상기 제2금속은 상기 제1금속에 비해 상대적으로 전기 전도도가 높은 금속이며, The lamination part includes a first metal and a second metal, wherein the first metal is a metal having relatively high wear resistance compared to the second metal, and the second metal is a metal having relatively high electrical conductivity compared to the first metal. ,
    상기 강화부는 상기 제1금속으로 형성되고The reinforcing part is formed of the first metal,
    상기 강화부는 상기 가이드 플레이트의 가이드 구멍의 위치에 대응되는 위치에 구비되는, 검사장치.The reinforcing part is provided at a position corresponding to the position of the guide hole of the guide plate, inspection apparatus.
  14. 제13항에 있어서,14. The method of claim 13,
    상기 전기 전도성 접촉핀의 길이 방향으로 구분되어 형성되는 제1영역과 제2영역을 포함하되,Including a first region and a second region formed separately in the longitudinal direction of the electrically conductive contact pin,
    상기 제1영역은 상기 적층부를 포함하고,The first region includes the stacking part,
    상기 제2영역은 상기 적층부와 상기 강화부를 포함하는, 검사장치. and the second region includes the stacking part and the reinforcement part.
  15. 복수개의 금속층이 적층되어 구비되는 적층부를 형성하는 제1도금 단계; 및A first plating step of forming a stacked portion provided with a plurality of metal layers stacked; and
    상기 제1도금 단계와는 별도의 도금 공정으로 상기 적층부의 적어도 일측면에 상기 적층부의 평균적인 내마모성 보다 높은 내마모성을 가지는 금속으로 강화부를 형성하는 제2도금 단계를 포함하는, 전기 전도성 접촉핀의 제조방법.Manufacturing an electrically conductive contact pin comprising a second plating step of forming a reinforcing portion with a metal having a higher wear resistance than the average wear resistance of the stacked portion on at least one side of the stacked portion by a plating process separate from the first plating step Way.
  16. 제15항에 있어서,16. The method of claim 15,
    상기 제1도금 단계는 몰드의 제1내부공간에 상기 적층부를 형성하는 단계이고,The first plating step is a step of forming the lamination part in the first inner space of the mold,
    상기 제2도금 단계는 상기 적층부의 측면 방향으로 상기 몰드에 형성된 제2내부공간에 강화부를 형성하는 단계인, 전기 전도성 접촉핀의 제조방법.The second plating step is a step of forming a reinforcing portion in the second inner space formed in the mold in a lateral direction of the stacking portion.
  17. 제16항에 있어서,17. The method of claim 16,
    상기 몰드는 양극산화막 재질로 구성되는, 전기 전도성 접촉핀의 제조방법.The mold is made of an anodized film material, the method of manufacturing an electrically conductive contact pin.
PCT/KR2022/004039 2021-04-06 2022-03-23 Electrically conductive contact pin, inspection device comprising same, and method for manufacturing electrically conductive contact pin WO2022215906A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0044804 2021-04-06
KR1020210044804A KR102549551B1 (en) 2021-04-06 2021-04-06 The electro-conductive contact pin and inspection apparatus having the same electro-conductive pin and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2022215906A1 true WO2022215906A1 (en) 2022-10-13

Family

ID=83546412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004039 WO2022215906A1 (en) 2021-04-06 2022-03-23 Electrically conductive contact pin, inspection device comprising same, and method for manufacturing electrically conductive contact pin

Country Status (3)

Country Link
KR (1) KR102549551B1 (en)
TW (1) TWI818486B (en)
WO (1) WO2022215906A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100875092B1 (en) * 2006-12-21 2008-12-23 주식회사 파이컴 Probe and Probe Manufacturing Method for Testing Flat Panel Display
KR101496706B1 (en) * 2008-10-31 2015-02-27 솔브레인이엔지 주식회사 Probe structure and method of manufacturing a probe structure
JP6029764B2 (en) * 2013-08-30 2016-11-24 富士フイルム株式会社 Method for producing metal-filled microstructure
KR101766261B1 (en) * 2015-08-05 2017-08-23 (주)엠투엔 Probe pin and method for manufacturing the same
KR102133484B1 (en) * 2015-03-31 2020-07-14 테크노프로브 에스.피.에이. Corresponding test head with vertical contact probe and vertical contact probe, especially for high frequency applications

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029764B2 (en) * 1978-02-27 1985-07-12 日本エクスラン工業株式会社 Manufacturing method of antistatic acrylonitrile synthetic fiber
SG75186A1 (en) 1998-11-30 2000-09-19 Advantest Corp Method for producing contact structures
WO2011036718A1 (en) * 2009-09-25 2011-03-31 株式会社アドバンテスト Probe apparatus and testing apparatus
CN104755943B (en) 2012-12-04 2018-04-27 日本电子材料株式会社 Electrical contact member
JP6405604B2 (en) 2013-07-08 2018-10-17 富士通株式会社 Thermoelectric element and manufacturing method thereof
CN107257928B (en) * 2014-12-30 2020-12-01 泰克诺探头公司 Contact probe for a test head
KR20170061314A (en) * 2015-11-26 2017-06-05 한국기계연구원 A Probe Pin and a Manufacturing Method of the same
JP6669359B2 (en) * 2016-06-16 2020-03-18 住友電工デバイス・イノベーション株式会社 Method for manufacturing capacitor
KR101962644B1 (en) 2017-08-23 2019-03-28 리노공업주식회사 A test probe and test device using the same
KR20190086366A (en) * 2018-01-12 2019-07-22 에이아이에스 테크놀로지 인코포레이티드 Redistribution system with uniform characteristic multi-layered homogeneous structure and method of manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100875092B1 (en) * 2006-12-21 2008-12-23 주식회사 파이컴 Probe and Probe Manufacturing Method for Testing Flat Panel Display
KR101496706B1 (en) * 2008-10-31 2015-02-27 솔브레인이엔지 주식회사 Probe structure and method of manufacturing a probe structure
JP6029764B2 (en) * 2013-08-30 2016-11-24 富士フイルム株式会社 Method for producing metal-filled microstructure
KR102133484B1 (en) * 2015-03-31 2020-07-14 테크노프로브 에스.피.에이. Corresponding test head with vertical contact probe and vertical contact probe, especially for high frequency applications
KR101766261B1 (en) * 2015-08-05 2017-08-23 (주)엠투엔 Probe pin and method for manufacturing the same

Also Published As

Publication number Publication date
TW202240175A (en) 2022-10-16
KR102549551B1 (en) 2023-06-29
KR20220138731A (en) 2022-10-13
TWI818486B (en) 2023-10-11

Similar Documents

Publication Publication Date Title
US8468690B2 (en) Holding member for use in test and method for manufacturing same
US11696398B2 (en) Anodic aluminum oxide structure, probe head having same, and probe card having same
WO2021194213A1 (en) Probe head and probe card comprising same
WO2022215906A1 (en) Electrically conductive contact pin, inspection device comprising same, and method for manufacturing electrically conductive contact pin
WO2022169196A1 (en) Electrically conductive contact pin
WO2022181951A1 (en) Alignment module and alignment transfer method for electrically conductive contact pins
WO2023033372A1 (en) Vertical probe card
WO2021215786A1 (en) Probe card
WO2022080755A1 (en) Electrically conductive contact pin, method for manufacturing same, inspection apparatus, method for manufacturing molded product, and molded product manufactured thereby
WO2023167479A1 (en) Electrically conductive contact pin, alignment plate, and inspection apparatus comprising same
WO2017061656A1 (en) Kelvin test probe, kelvin test probe module, and manufacturing method therefor
WO2022039439A1 (en) Anodic oxidation film mold, mold structure comprising same, method for manufacturing molded article using same, and molded article thereof
WO2022235055A1 (en) Anodized film structure
WO2023277452A1 (en) Electrically conductive contact pin and method for manufacturing same
WO2023059014A1 (en) Electrically conductive contact pin
WO2022182177A1 (en) Electrically-conductive contact pin assembly and manufacturing method therefor
WO2023033452A1 (en) Cantilever probe pin
WO2023059013A1 (en) Electrically conductive contact pin and test device comprising same
WO2022164173A1 (en) Electro-conductive contact pin, manufacturing method therefor, and electro-conductive contact pin module
WO2022177390A1 (en) Electro-conductive contact pin and manufacturing method therefor
WO2021215790A1 (en) Probe head and probe card having same
JPH11154694A (en) Method of alignment for batch wafer measuring test and method for manufacturing probe card
WO2023140617A1 (en) Electro-conductive contact pin and inspection device having same
WO2023059084A1 (en) Electrically conductive contact pin and inspection device having same
WO2023090746A1 (en) Electrically conductive contact pin and inspection device having same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784816

Country of ref document: EP

Kind code of ref document: A1