WO2023140617A1 - Electro-conductive contact pin and inspection device having same - Google Patents

Electro-conductive contact pin and inspection device having same Download PDF

Info

Publication number
WO2023140617A1
WO2023140617A1 PCT/KR2023/000871 KR2023000871W WO2023140617A1 WO 2023140617 A1 WO2023140617 A1 WO 2023140617A1 KR 2023000871 W KR2023000871 W KR 2023000871W WO 2023140617 A1 WO2023140617 A1 WO 2023140617A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically conductive
conductive contact
contact pin
support
flange
Prior art date
Application number
PCT/KR2023/000871
Other languages
French (fr)
Korean (ko)
Inventor
안범모
박승호
홍창희
Original Assignee
(주)포인트엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포인트엔지니어링 filed Critical (주)포인트엔지니어링
Publication of WO2023140617A1 publication Critical patent/WO2023140617A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06705Apparatus for holding or moving single probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • G01R1/06761Material aspects related to layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2863Contacting devices, e.g. sockets, burn-in boards or mounting fixtures

Definitions

  • the present invention relates to an electrically conductive contact pin and a testing device having the same.
  • the electrical property test of a semiconductor device is performed by bringing a test object (semiconductor wafer or semiconductor package) close to a test device having a plurality of electrically conductive contact pins and contacting the electrically conductive contact pins with corresponding external terminals (solder balls or bumps, etc.) on the test object.
  • test objects semiconductor wafer or semiconductor package
  • Examples of testing devices include, but are not limited to, probe cards or test sockets.
  • test sockets include a pogo type test socket and a rubber type test socket.
  • An electrically conductive contact pin (hereinafter referred to as 'pogo type socket pin') used in a pogo type test socket includes a pin unit and a barrel accommodating the pin unit.
  • a spring member between the plungers at both ends of the pin, it is possible to apply necessary contact pressure and absorb shock at the contact position.
  • a gap In order for the pin to slide within the barrel, a gap must exist between the outer surface of the pin and the inner surface of the barrel.
  • the pogo-type socket pin is manufactured separately from the barrel and the pin and then combined and used, it is impossible to precisely manage the gap, such that the outer surface of the pin is separated from the inner surface of the barrel more than necessary.
  • the pin portion has a sharp tip portion in order to increase the contact effect with the external terminal of the test object.
  • the pointed tip portion generates a press-fitting mark or groove on the external terminal of the test object after the test. Due to the loss of the contact shape of the external terminal, errors in vision inspection occur and reliability of the external terminal is deteriorated in a subsequent process such as soldering.
  • the electrically conductive contact pins used in rubber-type test sockets have a structure in which conductive microballs are placed inside silicon rubber, which is a rubber material.
  • a test object eg, a semiconductor package
  • the conductive microballs made of gold strongly press each other and increase conductivity, making them electrically connected.
  • this rubber-type socket pin has a problem in that contact stability is secured only when it is pressed with an excessive pressing force.
  • pogo-type socket pin is used after separately manufacturing the barrel and the pin, it is difficult to manufacture them in a small size. Therefore, existing pogo-type socket pins also have limitations in responding to the narrow pitch technology trend.
  • Patent Document 1 Republic of Korea Registration No. 10-0659944 Patent Registration
  • Patent Document 2 Republic of Korea Registration No. 10-0952712 Patent Publication
  • the present invention has been made to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide an electrically conductive contact pin and an inspection device with improved inspection reliability for an inspection object.
  • an object of the present invention is to provide an electrically conductive contact pin and a test device that prevent breakage of the elastic part and prevent separation from an installation member in a test device employing a terminal guide film.
  • an electrically conductive contact pin includes a first connection portion; a second connection; a support extending in the longitudinal direction; an elastic part connected to at least one of the first connection part and the second connection part and elastically deformable along the longitudinal direction; and a connection part connecting the elastic part to the support part, wherein the first connection part includes: a contact part contacting a connection object; and a flange extending downward from the contact portion and covering at least a portion of the elastic portion.
  • the flange is provided between the elastic part and the support part.
  • the flange is in contact with the inner surface of the support to form a current path.
  • the flange a first flange located on one side of the elastic portion; and a second flange facing the first flange and positioned on the other side of the elastic part, wherein the first flange and the second flange are connected to the contact part, respectively.
  • the flange continuously extends downward from an end portion of the contact portion in the width direction, so that the contact portion does not protrude outward in the width direction based on the flange.
  • the contact portion has a cavity.
  • the contact part and the flange act as one body.
  • the support portion may include a first support portion positioned on one side of the electrically conductive contact pin; and a second support portion positioned on the other side of the electrically conductive contact pin, wherein a width direction dimension of the contact portion is smaller than a dimension between the first support portion and the second support portion, and the flange is located in an area between the first support portion and the second support portion.
  • the support portion may include a first support portion positioned on one side of the electrically conductive contact pin; and a second support portion positioned on the other side of the electrically conductive contact pin, wherein the connection portion includes: a first connection portion connecting the elastic portion and the first support portion; and a second connection portion connecting the elastic portion and the second support portion.
  • the support portion a first holding portion provided at one end; and a second catching portion provided at the other end.
  • a plurality of metal layers are formed by being stacked in the thickness direction of the electrically conductive contact pin.
  • a fine trench provided on the side surface is included.
  • the contact portion includes a protrusion on its upper surface, and the protrusion is formed to elongate along the thickness direction.
  • the first connection part contacts the support part to form a current path.
  • the inspection apparatus in order to solve the above problems and achieve the object, the inspection apparatus according to the present invention, the first connection unit; a second connection; a support extending in the longitudinal direction; an elastic part connected to at least one of the first connection part and the second connection part and elastically deformable along the longitudinal direction; and a connection part connecting the elastic part to the support part, wherein the first connection part includes: a contact part contacting a connection object; and a flange extending downward from the contact portion and covering at least a portion of the elastic portion; and an installation member having a through hole accommodating the electrically conductive contact pin.
  • the overall length of the electrically conductive contact pin is 400 ⁇ m or more and 600 ⁇ m or less
  • the overall width of the electrically conductive contact pin is 150 ⁇ m or more and 300 ⁇ m or less
  • the longitudinal dimension of the installation member is 150 ⁇ m or more and 250 ⁇ m or less
  • the longitudinal dimension in which the electrically conductive contact pin protrudes from the installation member is 50 ⁇ m or more and 200 ⁇ m or less.
  • the present invention provides an electrically conductive contact pin and an inspection device with improved inspection reliability for an inspection object.
  • the present invention provides an electrically conductive contact pin and a test device that prevent breakage of the elastic part and prevent separation from the installation member in the test device employing the terminal guide film.
  • FIG. 1 is a plan view of an electrically conductive contact pin according to a preferred embodiment of the present invention
  • FIG. 2 is a perspective view of an electrically conductive contact pin according to a preferred embodiment of the present invention.
  • FIG. 3A to 3D are views explaining a method of manufacturing an electrically conductive contact pin according to a preferred embodiment of the present invention, wherein FIG. 3A is a plan view of a mold in which an inner space is formed, FIG. 3B is an A-A' cross-sectional view of FIG. 3A, FIG. 3C is a plan view showing that an electroplating process is performed on the inner space, and FIG.
  • FIG. 4 is a side view of an electrically conductive contact pin according to a preferred embodiment of the present invention.
  • 5 and 6 are diagrams showing an inspection device according to a preferred embodiment of the present invention.
  • Figure 7 is a view showing a part of the installation member according to a preferred embodiment of the present invention.
  • FIG. 8 is a view showing an electrically conductive contact pin according to a preferred embodiment of the present invention installed on an installation member.
  • FIGS. 9 and 10 are diagrams illustrating inspection of an inspection target using an inspection device according to a preferred embodiment of the present invention.
  • Embodiments described in this specification will be described with reference to sectional views and/or perspective views, which are ideal exemplary views of the present invention. Films and thicknesses of regions shown in these drawings are exaggerated for effective description of technical content.
  • the shape of the illustrative drawings may be modified due to manufacturing techniques and/or tolerances. Therefore, embodiments of the present invention are not limited to the specific shapes shown, but also include changes in shapes generated according to manufacturing processes.
  • Technical terms used in this specification are used only to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise.
  • Fig. 1 is a plan view of an electrically conductive contact pin according to a preferred embodiment of the present invention
  • Fig. 2 is a perspective view of an electrically conductive contact pin according to a preferred embodiment of the present invention
  • Figs. 3A to 3D are views explaining a method of manufacturing an electrically conductive contact pin according to a preferred embodiment of the present invention
  • Fig. 4 is a side view of an electrically conductive contact pin according to a preferred embodiment of the present invention
  • Figs. 1 is a plan view of an electrically conductive contact pin according to a preferred embodiment of the present invention
  • Fig. 2 is a perspective view of an electrically conductive contact pin according to a preferred embodiment of the present invention
  • Figs. 3A to 3D are views explaining a method of manufacturing an electrically conductive contact pin according to a preferred embodiment of the present invention
  • Fig. 4 is a side view of an electrically conductive contact pin according to a preferred embodiment of the present invention
  • Figure 7 is a view showing a part of the installation member according to a preferred embodiment of the present invention
  • Figure 8 is a view showing that the electrically conductive contact pins according to a preferred embodiment of the present invention are installed in the installation member
  • Figures 9 and 10 are views showing inspection objects using the inspection device according to a preferred embodiment of the present invention.
  • the electrically conductive contact pin 100 is provided in the test device 10 and is used to electrically and physically contact the test target 400 to transmit an electrical signal.
  • the inspection device 10 may be an inspection device used in a semiconductor manufacturing process, and may be, for example, a probe card or a test socket.
  • the test device 10 includes an electrically conductive contact pin 100 and an installation member 200 having a through hole 210 accommodating the electrically conductive contact pin 100.
  • the electrically conductive contact pin 100 may be a probe pin provided on a probe card or a socket pin provided on a test socket.
  • a socket pin is exemplified and described as an example of the electrically conductive contact pin 100, but the electrically conductive contact pin 100 according to a preferred embodiment of the present invention is not limited thereto, and all pins for checking whether the object to be tested 400 is defective by applying electricity are included.
  • the width direction of the electrically conductive contact pin 100 described below is the ⁇ x direction indicated in the drawing
  • the length direction of the electrically conductive contact pin 100 is the ⁇ y direction indicated in the drawing
  • the thickness direction of the electrically conductive contact pin 100 is the ⁇ z direction indicated in the drawing.
  • the electrically conductive contact pin 100 has an overall length dimension L in the longitudinal direction ( ⁇ y direction), an overall thickness dimension H in a thickness direction perpendicular to the longitudinal direction ( ⁇ z direction), and an overall width dimension W in a width direction perpendicular to the longitudinal direction ( ⁇ x direction).
  • the electrically conductive contact pin 100 includes a first connection part 110, a second connection part 120, a support part 130 extending in the longitudinal direction, an elastic part 150 connected to the first connection part 110 and the second connection part 120 and elastically deformable along the length direction, and a connection part 140 connecting the elastic part 150 to the support part 130.
  • the first connection part 110, the second connection part 120, the support part 130, the connection part 140, and the elastic part 150 are integrally provided.
  • the first connection part 110, the second connection part 120, the support part 130, the connection part 140, and the elastic part 150 are manufactured together using a plating process.
  • the electrically conductive contact pin 100 is formed by filling the inner space 1100 with a metal material by electroplating using a mold 1000 having an inner space 1100, so that the first connection part 110, the second connection part 120, the support part 130, the connection part 140, and the elastic part 150 are integrally connected to each other.
  • the electrically conductive contact pins 100 have a structural difference in that the first connection part 110, the second connection part 120, the support part 130, the connection part 140, and the elastic part 150 are integrally manufactured by manufacturing them all at once using a plating process.
  • each cross section in the thickness direction ( ⁇ z direction) of the electrically conductive contact pin 100 is the same.
  • the same shape on the x-y plane is formed extending in the thickness direction ( ⁇ z direction).
  • the electrically conductive contact pin 100 is provided by stacking a plurality of metal layers in its thickness direction ( ⁇ z direction).
  • the plurality of metal layers include a first metal layer 101 and a second metal layer 102 .
  • the first metal layer 101 is a metal having relatively high wear resistance compared to the second metal layer 102, and is preferably made of rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), nickel (Ni), manganese (Mn), tungsten (W), phosphorus (Ph) or an alloy thereof, or a palladium-cobalt (PdCo) alloy, a palladium-nickel (PdNi) alloy, or It may be formed of a metal selected from among a nickel-phosphorus (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo), or nickel-tungsten (NiW) alloy.
  • the second metal layer 102 is a metal having relatively high electrical conductivity compared to the first metal layer 101, and is preferably selected from among copper (Cu), silver (Ag), gold (Au), or alloys thereof. Can be formed of. However, it is not limited thereto.
  • the first metal layer 101 is provided on the lower and upper surfaces of the electrically conductive contact pin 100 in the thickness direction ( ⁇ z direction), and the second metal layer 102 is provided between the first metal layers 101 .
  • the electrically conductive contact pin 100 is provided by alternately stacking the first metal layer 101, the second metal layer 102, and the first metal layer 101 in that order in its thickness direction ( ⁇ z direction), and the number of layers stacked may be three or more.
  • the first connection part 110 includes a contact part 111 in contact with the connection object (more preferably the test object 400) and a flange 113 extending downward from the contact part 111 and covering at least a portion of the elastic part 150.
  • the contact part 111 and the flange 113 act as one body.
  • the contact portion 111 is a portion in contact with the connection terminal 410 of the test object 400 .
  • the contact part 111 has a cavity 112 so that the contact surface can be more easily deformed by the pressure of the test object 400 .
  • the upper surface of the contact part 111 with respect to the cavity part 112 becomes a part in contact with the connection terminal 410 of the test object 400, and the lower surface of the contact part 111 with respect to the cavity part 112 is connected to the elastic part 150.
  • the cavity 122 is formed as an empty space with curved left and right sides, so that the upper surface of the contact portion 111 is more easily deformed.
  • the contact portion 111 includes at least one protrusion 114 on its upper surface to make multi-contact with the connection terminal 410 .
  • the protrusion 114 is formed to protrude and extend longer than the periphery thereof along the thickness direction ( ⁇ z direction) of the contact portion 111 .
  • the first connection part 110 is connected to the elastic part 130 and can be vertically moved elastically by contact pressure.
  • connection terminal 410 of the inspection object 400 moves downward while contacting the upper surface of the first connection part 110 . Accordingly, the elastic part 150 connected to the first connection part 110 is compressed and deformed. While the first connection part 110 moves downward, the first connection part 110 comes into contact with the support part 130 .
  • the flange 113 of the first connection part 110 extends downward from the contact part 111 and covers at least a part of the elastic part 150 .
  • the flange 113 continues from the end of the contact portion 111 in the width direction and extends downward.
  • the contact portion 111 does not protrude more than the flange 113 in the width direction ( ⁇ x direction), and the flange 113 does not protrude more than the contact portion 111 in the longitudinal direction (+y direction).
  • the flange 113 extends from the contact portion 111 in a downward direction (-y direction), and at least a portion of the flange 113 is provided between the elastic portion 150 and the support portion 130 .
  • the flange 113 descends in a downward direction (-y direction) in the space between the elastic part 150 and the support part 130 . Conversely, when the elastic part 150 is restored, the flange 113 rises in the upward direction (+y direction) in the space between the elastic part 150 and the support part 130 .
  • the support portion 130 includes a first support portion 130a located on one side of the electrically conductive contact pin 100 and a second support portion 130b located on the other side of the electrically conductive contact pin 100 .
  • the flange 113 includes a first flange 113a located on one side of the elastic part 150 and a second flange 113b located on the other side of the elastic part 150 opposite to the first flange 113a.
  • the first flange 113a and the second flange 113b are connected to the contact portion 111, respectively.
  • the first flange 113a is positioned between the first support portion 130a and the elastic portion 150
  • at least a portion of the second flange 113b is positioned between the elastic portion 150 and the second support portion 130b.
  • the first flange 113a rises in the upward direction (+y direction) in the space between the elastic part 150 and the first support part 130a
  • the second flange 113b rises in the upward direction (+y direction) in the space between the elastic part 150 and the second support part 130b.
  • the flange 113 of the first connection part 110 overlaps the support part 130 in the width direction. Specifically, the flange 113 extends from the contact portion 111 so that at least a portion of the flange 113 is provided in a space between the support portion 130 and the elastic portion 150 .
  • the second flange 113 b comes into contact with the second support portion 130 b to prevent excessive buckling in the left direction.
  • the first flange 113a contacts the first support part 130a to prevent excessive buckling in the right direction.
  • the flange 113 comes into contact with the support portion 130 to prevent the electrically conductive contact pin 100 from being excessively buckled in the left and right directions.
  • a convex portion 115 protruding toward the support portion 130 is provided at a free end of the flange 113 .
  • the supporting part 130 is provided with an inner surface inclined part 137 inclined inward as the width increases toward the lower direction (-y direction).
  • the flange 113 and the support part 130 are spaced apart from each other.
  • the flange 113 contacts the inner surface of the support part 130 to form a current path. More specifically, when the flange 113 moves in the downward direction (-y direction), the convex portion 115 of the flange 113 comes into contact with the inner inclined portion 137 of the support portion 130 to form a current path.
  • the flange 113 and the support portion 130 are spaced apart from each other to prevent deformation of the elastic portion 150, and then the outer surface of the flange 113 and the inner surface of the support portion 130 contact each other to resist excessive deformation of the elastic portion 150.
  • a current path is formed between the support portion 130 and the flange 113.
  • connection part 140 connects the elastic part 150 and the support part 130 to each other.
  • connection part 140 includes a first connection part 140a connecting the elastic part 150 and the first support part 130a, and a second connection part 140b connecting the elastic part 150 and the second support part 130b.
  • the first connection part 140a connects the elastic part 150 and the first support part 130a
  • the second connection part 140b connects the elastic part 150 and the second support part 130b.
  • the first connection portion 140a and the second connection portion 140b may be located at the same position or at different positions in the longitudinal direction. According to a preferred embodiment of the present invention, the first connection portion 140a and the second connection portion 140b are provided at different positions in the longitudinal direction to distribute stress. 1, the first connection part 140a is provided to be located closer to the second connection part 120 side than the second connection part 140b, and the second connection part 140b is the first connection part 140a. It is provided to be located closer to the second connection part 110 side.
  • connection part 140 Due to the connection part 140, foreign substances introduced from the upper part cannot flow into the second connection part 120, and foreign substances introduced from the lower part are also prevented from flowing into the first connection part 110. By limiting the movement of the foreign matter introduced into the inside, it is possible to prevent interference with the operation of the first and second connectors 110 and 120 by the foreign matter.
  • connection part 140 may serve as a stopper to limit the additional descent of the flange 113 .
  • the lengths of the first flange 113a and the second flange 113b may be different from each other. More specifically, the length of the first flange 113a may be longer than that of the second flange 113b. This is in consideration of the positions of the first connection part 140a and the second connection part 140b, and since the first connection part 140a is located lower than the second connection part 140b, the length of the first flange 113 is formed longer than the length of the second flange 113b so that it can serve as a stopper.
  • An upper surface of the connecting portion 140 is concave, and a free end of the flange 113 is convex to correspond to the shape of the upper surface of the connecting portion 140 . Since the convex free end of the flange 113 is accommodated in the concave portion of the connecting portion 140, the descending position of the descending flange 113 can be firmly supported without shaking.
  • the second connection part 120 is in contact with a connection object (more preferably, a pad P of a circuit board).
  • the second connector 120 has a cavity 122 so that the contact surface can be more easily deformed by pressing the pad P of the circuit board.
  • the second connector 120 includes at least one protrusion 123 to make multi-contact with the pad P.
  • the second connection part 120 is connected to the elastic part 130 and can be vertically moved elastically by contact pressure.
  • the elastic portion 150 is compressed and deformed, and the second connector 120 moves upward.
  • the pad P of the circuit board also comes into contact with the support part 130 .
  • the pad P of the circuit board is connected to both the second connection part 120 and the support part 130 to form a current path.
  • the first support portion 130a and the second support portion 130b are formed along the longitudinal direction of the electrically conductive contact pin 100, and the first support portion 141 and the second support portion 145 are integrally connected to the connection portion 140 extending along the width direction of the electrically conductive contact pin 100.
  • the first connection part 110 is connected to the upper part of the elastic part 150
  • the second connection part 120 is connected to the lower part of the elastic part 150. While the elastic part 150 is integrally connected to the first and second support parts 130a and 130b through the connection part 140, the electrically conductive contact pin 100 is composed of one body as a whole.
  • each cross-sectional shape of the electrically conductive contact pin 100 in the thickness direction is the same in all thickness cross-sections. This is possible because the electrically conductive contact pin 100 is manufactured through a plating process.
  • the elastic part 150 has a shape in which a plate-like plate having an actual width t is repeatedly bent in an S shape, and the actual width t of the plate-like plate is generally constant.
  • the elastic part 150 is formed by alternately connecting a plurality of straight parts 153 and a plurality of curved parts 154 .
  • the straight part 153 connects the curved part 154 adjacent to the left and right, and the curved part 154 connects the straight part 153 adjacent to the top and bottom.
  • the curved portion 154 is provided in an arc shape.
  • a straight portion 153 is disposed at the center of the elastic portion 150 and a curved portion 154 is disposed at an outer portion of the elastic portion 150 .
  • the straight portion 153 is provided parallel to the width direction so that the deformation of the curved portion 154 according to the contact pressure is more easily achieved.
  • a first hooking part 131 is provided at one end of the support part 130 and a second hooking part 132 is provided at the other end.
  • the first catching portion 131 prevents the electrically conductive contact pin 100 from being separated from the installation member 200 in the downward direction
  • the second catching portion 132 prevents the electrically conductive contact pin 100 from being separated from the installation member 200 in the upward direction.
  • the first hanging portion 131 is configured to protrude outward in the width direction. Through this, upward movement of the electrically conductive contact pin 100 is restricted.
  • the first hanging part 131 is provided with a cutout 135 .
  • the cutout part 135 is formed long along the thickness direction on the side surface of the first hooking part 131 in the width direction.
  • the cutout 135 is provided in a protruding form than its periphery.
  • Tens of thousands to hundreds of thousands of electrically conductive contact pins 100 according to a preferred embodiment of the present invention are manufactured collectively by using a wafer-sized anodic oxide film mold 1000 .
  • Numerous electrically conductive contact pins 100 are collectively manufactured while being connected to the support frame during the manufacturing process, and the electrically conductive contact pins 100 that have been manufactured are removed from the support frame one by one and inserted into the through-hole 210 of the installation member 200 to be installed.
  • a cutout 135 is formed on the side of the first hooking portion 131 so that the electrically conductive contact pin 100 can be easily removed from the support frame.
  • the cutout 135 performs a function of fixing the electrically conductive contact pin 100 to the support frame when manufacturing the electrically conductive contact pin 100, and easily separates the electrically conductive contact pin 100 from the support frame.
  • the second hanging part 132 is provided in the form of a hook.
  • the second hooking part 132 is connected to the support part 130 and includes a first inclined part 132a inclined inward in the width direction, one end connected to the first inclined part 132a and the other end being formed as a free end, and a second inclined part 132b inclined in the inclined direction of the first inclined part 132a.
  • the second hooking part 132 has a hook shape so that the other end of the second inclined part 132b is supported on the lower surface of the installation member 200.
  • the second hooking portion 132 is more easily elastically deformed in the width direction through the configuration of the first inclined portion 132a and the second inclined portion 132b, it is easy to insert the electrically conductive contact pin 100 into the through hole 210 of the installation member 200.
  • FIG. 3A is a plan view of the mold 1000 in which the inner space 1100 is formed
  • FIG. 3B is a cross-sectional view taken along line A-A' of FIG. 3A.
  • the mold 1000 may be made of an anodic oxide film, photoresist, silicon wafer, or a material similar thereto. However, preferably, the mold 1000 may be made of an anodic oxide film material.
  • the anodic oxide film means a film formed by anodic oxidation of a base metal
  • the pore means a hole formed in the process of forming an anodic oxide film by anodic oxidation of a metal.
  • the base metal is aluminum (Al) or an aluminum alloy
  • Al 2 O 3 aluminum oxide
  • the base metal is not limited thereto, and includes Ta, Nb, Ti, Zr, Hf, Zn, W, Sb, or an alloy thereof.
  • the anodic oxide film formed as above is vertically divided into a barrier layer having no pores formed therein and a porous layer having pores formed therein. In the base material on which the anodic oxide film having the barrier layer and the porous layer is formed, when the base material is removed, only the anodic oxide film made of aluminum oxide (Al 2 O 3 ) remains.
  • the anodic oxidation film may be formed in a structure in which the barrier layer formed during anodic oxidation is removed to pass through the upper and lower pores, or in a structure in which the barrier layer formed during anodic oxidation remains as it is and seals one end of the upper and lower portions of the pores.
  • the anodic oxide film has a thermal expansion coefficient of 2 to 3 ppm/°C. Due to this, when exposed to a high temperature environment, thermal deformation due to temperature is small. Therefore, the electrically conductive contact pin 100 can be manufactured accurately without thermal deformation even in a high-temperature environment in which the electrically conductive contact pin 100 is manufactured.
  • the electrically conductive contact pin 100 is manufactured using the mold 1000 made of an anodic oxide film instead of the photoresist mold, it is possible to achieve the effect of implementing fine shapes and accuracy of shape, which were limited to implement with the photoresist mold.
  • an electrically conductive contact pin having a thickness of 40 ⁇ m can be manufactured, but in the case of using the mold 1000 made of an anodized film material, an electrically conductive contact pin 100 having a thickness of 100 ⁇ m or more to 200 ⁇ m or less can be manufactured.
  • a seed layer 1200 is provided on the lower surface of the mold 1000 .
  • the seed layer 1200 may be provided on the lower surface of the mold 1000 before forming the inner space 1100 in the mold 1000 .
  • a support substrate (not shown) is formed under the mold 1000 to improve handling of the mold 1000 .
  • the seed layer 1200 is formed on the upper surface of the support substrate and the mold 1000 in which the inner space 1100 is formed may be used by being coupled to the support substrate.
  • the seed layer 1200 may be formed of a copper (Cu) material and may be formed by a deposition method.
  • the inner space 1100 may be formed by wet etching the mold 1000 made of an anodic oxide film. To this end, a photoresist is provided on the upper surface of the mold 1000 and patterned, and then the anodic oxide film in the patterned open area reacts with the etching solution to form the inner space 1100 .
  • Figure 3c is a plan view showing that the electroplating process is performed on the inner space 1100
  • Figure 3d is a cross-sectional view A-A' of Figure 3c.
  • the metal layer is formed while growing in the thickness direction ( ⁇ z direction) of the mold 1000, the shape of each cross section in the thickness direction ( ⁇ z direction) of the electrically conductive contact pin 100 is the same, and a plurality of metal layers are stacked in the thickness direction ( ⁇ z direction) of the electrically conductive contact pin 100.
  • the plurality of metal layers include a first metal layer 101 and a second metal layer 102 .
  • the first metal layer 101 is a metal having relatively high wear resistance compared to the second metal layer 102, and is rhodium (Rd), platinum (Pt), iridium (Ir), palladium (palladium) or an alloy thereof, or a palladium-cobalt (PdCo) alloy, a palladium-nickel (PdNi) alloy, or a nickel-phosphorus (nickel-phosphor (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo) or nickel-tungsten (NiW) alloy.
  • the second metal layer 102 is a metal having relatively higher electrical conductivity than the first metal layer 101 and includes copper (Cu), silver (Ag), gold (Au), or an alloy thereof.
  • the first metal layer 101 is provided on the lower and upper surfaces of the electrically conductive contact pin 100 in the thickness direction ( ⁇ z direction), and the second metal layer 102 is provided between the first metal layers 101 .
  • the electrically conductive contact pin 100 is provided by alternately stacking the first metal layer 101, the second metal layer 102, and the first metal layer 101 in this order, and the number of layers to be stacked may be three or more.
  • the first metal layer 101 and the second metal layer 102 may be made more dense by raising the temperature to a high temperature and pressing the metal layer on which the plating process is completed by applying pressure.
  • a photoresist material is used as a mold, a process of raising the temperature to a high temperature and applying pressure cannot be performed because the photoresist exists around the metal layer after the plating process is completed.
  • the mold 1000 made of an anodic oxide film is provided around the metal layer on which the plating process is completed, it is possible to densify the first metal layer 101 and the second metal layer 102 while minimizing deformation due to the low thermal expansion coefficient of the anodic oxide film even when the temperature is raised to a high temperature. Therefore, it becomes possible to obtain a higher density first metal layer 101 and second metal layer 102 compared to a technique using a photoresist as a mold.
  • a process of removing the mold 1000 and the seed layer 1200 is performed.
  • the mold 1000 is made of an anodic oxide film material
  • the mold 1000 is removed using a solution that selectively reacts to the anodic oxide film material.
  • the seed layer 1200 is made of copper (Cu)
  • the seed layer 1200 is removed using a solution that selectively reacts with copper (Cu).
  • an electrically conductive contact pin 100 includes a plurality of fine trenches 88 on its side surface.
  • the fine trench 88 is formed by extending from the side of the electrically conductive contact pin 100 to a thickness direction ( ⁇ z direction) of the electrically conductive contact pin 100 .
  • the thickness direction ( ⁇ z direction) of the electrically conductive contact pin 100 means a direction in which metal fillers grow during electroplating.
  • the fine trench 88 has a depth of 20 nm or more and 1 ⁇ m or less, and a width of 20 nm or more and 1 ⁇ m or less.
  • the width and depth of the fine trench 88 have a value equal to or less than the range of the diameter of the pore of the anodic oxide film mold 1000.
  • the anodic oxide film mold 1000 includes numerous pores, and at least a part of the anodic oxide film mold 1000 is etched to form an inner space 1100, and a metal filling is formed by electroplating into the inner space 1100, the side surface of the electrically conductive contact pin 100 is provided with a fine trench 88 formed while contacting the pores of the anodic oxide film mold 1000.
  • the fine trench 88 as described above has an effect of increasing the surface area on the side surface of the electrically conductive contact pin 100 .
  • Heat generated from the electrically conductive contact pin 100 can be quickly dissipated through the configuration of the micro trench 88 formed on the side surface of the electrically conductive contact pin 100, so that the temperature rise of the electrically conductive contact pin 100 can be suppressed.
  • the configuration of the micro trench 88 formed on the side surface of the electrically conductive contact pin 100 it is possible to improve torsional resistance when the electrically conductive contact pin 100 is deformed.
  • the overall length L of the electrically conductive contact pin 100 should be short. Accordingly, the length of the elastic part 150 should also be shortened. However, when the length of the elastic part 150 is shortened, a problem of increasing contact pressure occurs. In order to keep the contact pressure from increasing while shortening the length of the elastic part 150, the actual width t of the plate-shaped plate constituting the elastic part 150 should be reduced. However, if the actual width t of the plate-shaped plate constituting the elastic part 150 is reduced, the elastic part 150 may be easily damaged. In order to shorten the length of the elastic part 150 and prevent damage to the elastic part 150 without increasing the contact pressure, the total thickness H of the plate-shaped plate constituting the elastic part 150 should be formed large.
  • the electrically conductive contact pin 100 is formed such that the actual width t of the plate-shaped plate is thin while the overall thickness dimension H of the plate-shaped plate is large. That is, the overall thickness dimension (H) is formed to be larger than the actual width (t) of the plate-shaped plate.
  • the actual width (t) of the plate-shaped plate constituting the electrically conductive contact pin 100 is in the range of 5 ⁇ m or more and 15 ⁇ m or less
  • the total thickness (H) is in the range of 70 ⁇ m or more and 200 ⁇ m or less
  • the actual width (t) and the total thickness (H) of the plate-shaped plate are provided in the range of 1:5 to 1:30.
  • the actual width of the plate-like plate is formed to be substantially 10 ⁇ m, and the total thickness dimension (H) is formed to be 100 ⁇ m, so that the effective width (t) and the total thickness dimension (H) of the plate-like plate are formed at a ratio of 1:10. Can be formed.
  • the overall thickness H and the overall length L of the electrically conductive contact pin 100 are provided in the range of 1:3 to 1:9.
  • the overall length dimension (L) of the electrically conductive contact pin 100 may be provided in the range of 300 ⁇ m or more and less than 2 mm, and more preferably may be provided in the range of 350 ⁇ m or more and 600 ⁇ m or less. In this way, it is possible to shorten the overall length L of the electrically conductive contact pin 100, making it easy to respond to high-frequency characteristics, and as the elastic recovery time of the elastic part 150 is shortened, the test time can also be shortened.
  • planar plate constituting the electrically conductive contact pin 100 has a substantially smaller width t than the thickness H, resistance to bending in the front and rear directions is improved.
  • the overall thickness (H) and the overall width (W) of the electrically conductive contact pin 100 are provided in the range of 1:1 to 1:5.
  • the overall thickness (H) of the electrically conductive contact pins 100 is provided in the range of 70 ⁇ m or more and 200 ⁇ m or less
  • the overall width (W) of the electrically conductive contact pins 100 may be provided in the range of 100 ⁇ m or more and 500 ⁇ m or less. In this way, by shortening the overall width dimension W of the electrically conductive contact pin 100, it is possible to narrow the pitch.
  • the overall thickness (H) and the overall width (W) of the electrically conductive contact pin 100 may be formed to have substantially the same length. Accordingly, it is not necessary to bond a plurality of electrically conductive contact pins 100 in the thickness direction so that the overall thickness dimension H and the overall width dimension W are substantially the same length.
  • the overall thickness (H) and the overall width (W) of the electrically conductive contact pin 100 may have substantially the same length, resistance to a moment acting in the front and rear directions of the electrically conductive contact pin 100 increases, and as a result, contact stability is improved.
  • the total thickness H of the electrically conductive contact pin 100 is 70 ⁇ m or more and the total thickness H and total width W are in the range of 1:1 to 1:5, the overall durability and deformation stability of the electrically conductive contact pin 100 are improved, and contact stability with the connection terminal 410 is improved.
  • the total thickness H of the electrically conductive contact pin 100 is formed to be 70 ⁇ m or more, current carrying capacity can be improved.
  • the electrically conductive contact pin 100 manufactured using a conventional photoresist mold cannot have a large overall thickness due to alignment problems because the mold is formed by laminating a plurality of photoresists. As a result, the overall thickness dimension (H) is small compared to the overall width dimension (W). For example, since the conventional electrically conductive contact pin 100 has a total thickness H of less than 70 ⁇ m and a total thickness H and a total width W in the range of 1:2 to 1:10, resistance to a moment that deforms the electrically conductive contact pin 100 in the front and rear directions due to contact pressure is weak.
  • the inspection device 10 includes an insert body 4, a guide 3, an installation member 200, an electrically conductive contact pin 100, and a pusher 5.
  • the insert body 4 accommodates the semiconductor package, which is the object to be inspected 400, so that the object 400 to be inspected can be tested in a stable state.
  • the guide 3 serves to guide the mounting of the installation member 200.
  • the mounting member 200 is fixed to the mounting portion of the guide 3, and a plurality of electrically conductive contact pins 100 are installed.
  • a terminal guide film 7 having holes is installed in the lower part of the guide body 4 to guide the connection terminals 410 of the object 400 to be inspected.
  • the terminal guide film 70 is provided between the test object 400 and the electrically conductive contact pin 100 .
  • the terminal guide film 7 guides an accurate contact position by allowing the connection terminal 410 of the test object 400 to be inserted into a hole provided in the terminal guide film 7 when the test object 400 is inspected.
  • the pusher 5 serves to pressurize the test object 400 seated in the receiving part of the insert body 4 with a constant pressure.
  • the test object 400 pressed by the pusher 5 may be electrically connected to the pad P of the circuit board through the electrically conductive contact pin 100 installed on the installation member 200 .
  • a through hole 210 is formed in the installation member 200 .
  • the through hole 210 has a square cross-sectional shape, and the outer shape of the electrically conductive contact pin 100 also has a square cross-sectional shape corresponding to the cross-sectional shape of the through hole 210 .
  • the cross section of the through hole 210 and the outer shape of the electrically conductive contact pin 100 may preferably be formed in a rectangular shape. Through this, it is possible to prevent the electrically conductive contact pin 100 from being erroneously inserted in a 90 degree rotation state.
  • FIG. 8 is a view showing a state in which the electrically conductive contact pin 100 is inserted into the through hole 210 of the installation member 200 .
  • the support portion 130 In a state where the electrically conductive contact pin 100 is inserted into the through hole 210, when the electrically conductive contact pin 100 is pushed upward until the second hooking portion 132 is supported on the lower surface of the installation member 200, a part of the support portion 130 protrudes from the upper surface of the installation member 200.
  • the support portion 130 is longer than the length of the through hole 210 so that at least a portion of the support portion 130 protrudes outward from the through hole 210 .
  • the width direction dimension (d) of the contact part 111 of the first connection part 110 is smaller than the dimension between the first support part 130a and the second support part 130b, and the flange 113 is the first support part 130a. It is located in the area between the 2nd support part 130b.
  • the width d of the contact portion 111 of the first connection portion 110 is smaller than or equal to the width D of the connection terminal 410 . Since the flange 113 is continuously extended downward from the end of the contact portion 111 in the width direction and the contact portion 111 is configured not to protrude outward in the width direction with respect to the flange 113, the width direction dimension of the first connection portion 110 is formed to be smaller than or equal to the width direction dimension D of the connection terminal 410 as a whole.
  • the width direction dimension (D) of the connection terminal 410 of the inspection object 400 is 150 ⁇ m
  • the width direction dimension (d) of the contact portion 111 of the first connection part 110 is 50 ⁇ m or more and 150 ⁇ m or less. Formed.
  • the overall length L of the electrically conductive contact pin 100 may be 400 ⁇ m or more and 600 ⁇ m or less.
  • the overall width W of the electrically conductive contact pin 100 may be greater than or equal to 150 ⁇ m and less than or equal to 300 ⁇ m.
  • the longitudinal dimension L2 of the installation member 200 may be 150 ⁇ m or more and 250 ⁇ m or less.
  • a longitudinal dimension L1 of the electrically conductive contact pin 100 protruding upward from the installation member 200 may be greater than or equal to 50 ⁇ m and less than or equal to 200 ⁇ m.
  • a longitudinal dimension L3 of the electrically conductive contact pin 100 protruding from the lower portion of the installation member 200 may be greater than or equal to 50 ⁇ m and less than or equal to 200 ⁇ m.
  • the distance L4 between the lower surface of the first hanging part 131 and the upper surface of the installation member 200 may be 5 ⁇ m or more and 50 ⁇ m or less.
  • the contact stroke of the test object 400 may be secured through the distance L4 between the lower surface of the first hanging part 131 and the upper surface of the installation member 200 .
  • the electrically conductive contact pin 100 When the electrically conductive contact pin 100 is pressed by the contact terminal 410 and moves downward, the electrically conductive contact pin 100 can move downward as a whole within a spare space provided through the distance L4 between the lower surface of the first hooking portion 131 and the upper surface of the installation member 200.
  • the stroke may not be constant each time. Therefore, when the electrically conductive contact pin 100 is not entirely movable with respect to the installation member 200, the electrically conductive contact pin 100 may be damaged. However, it is possible to secure the contact stroke through the distance L4 between the lower surface of the first hanging part 131 and the upper surface of the installation member 200 .
  • the distance L4 between the lower surface of the first hanging part 131 and the upper surface of the installation member 200 is less than 5 ⁇ m, it is difficult to secure a contact stroke of the object to be inspected, and when it exceeds 50 ⁇ m, it is not preferable because it can get caught in the gap between the terminal guide film 7 and the connection terminal 410.
  • the first connection part 110 is in a state of being spaced apart from the support part 130 .
  • connection terminal 410 of the object to be inspected 400 descends and comes into contact with the contact portion 111 of the first connection portion 110 .
  • connection terminal 410 of the object to be inspected 400 is guided to an accurate contact position by being inserted into a hole provided in the terminal guide film 7 .
  • a gap exists between the connection terminal 410 and the terminal guide film 7.
  • it may be separated from the lower surface of the inspection object 400 .
  • the protruding part when there is a protruding part that protrudes more than the upper surface of the contact part 111, the protruding part can be inserted into the gap between the connection terminal 410 of the test object 400 and the terminal guide film 7.
  • the protruding part is inserted into the gap and is caught between the terminal guide film 7 and the connection terminal 410, and due to this jamming phenomenon, the elastic part 150 is tensioned and causes plastic deformation or the electrically conductive contact pin 100 may be separated from the installation member 200 in repeated tests.
  • the flange 113 of the first connection portion 110 extends downward from the contact portion 111 to cover at least a portion of the elastic portion 150.
  • the contact portion 111 does not protrude more than the flange 113 in the width direction ( ⁇ x direction), and the flange 113 does not protrude more than the contact portion 111 in the longitudinal direction (+y direction).
  • the width direction dimension d of the contact part 111 of the first connection part 110 is smaller than or equal to the width direction dimension D of the connection terminal 410, even if a positional error occurs between the connection terminal 410 and the first connection part 110, a part of the first connection part 110 is not inserted into the gap.
  • the first connection part 110 contacts the support part 130 and the support part 130 contacts the pad P of the circuit board. As a result, a current path leading to the first connection part 110 and the support part 130 is formed.
  • the first connection part 110 comes into close contact with the inside of the support part 130 and generates frictional force.
  • the elastic part 150 is prevented from being excessively deformed, thereby improving durability.
  • the electrically conductive contact pin 100 according to the preferred embodiment of the present invention described above is provided in the test device 10 and is used to electrically and physically contact the test target 400 to transmit an electrical signal.
  • the inspection device 10 includes an electrically conductive contact pin 100 installed in the installation member 200 by being inserted into the through hole 210 of the installation member 200 having a hole.
  • the inspection device 10 may be an inspection device used in a semiconductor manufacturing process, and may be, for example, a probe card or a test socket.
  • the electrically conductive contact pins 100 may be electrically conductive contact pins provided in a probe card to inspect a semiconductor chip, or socket pins provided in a test socket to inspect a packaged semiconductor package to inspect a semiconductor package.
  • the inspection devices 10 to which the electrically conductive contact pins 100 according to a preferred embodiment of the present invention can be used are not limited thereto, but include all inspection devices for checking whether an object to be inspected is defective by applying electricity.
  • the inspection target 400 of the inspection device 10 may include a semiconductor device, a memory chip, a microprocessor chip, a logic chip, a light emitting device, or a combination thereof.
  • inspection objects include logic LSIs (such as ASICs, FPGAs, and ASSPs), microprocessors (such as CPUs and GPUs), memories (including DRAM, Hybrid Memory Cube (HMC), Magnetic RAM (MRAM), Phase-Change Memory (PCM), Resistive RAM (ReRAM), ferroelectric RAM (FeRAM), and NAND flash)), semiconductor light-emitting devices (including LEDs, mini-LEDs, micro-LEDs, etc.), power devices, These include analog ICs (such as DC-AC converters and insulated gate bipolar transistors (IGBTs)), MEMS (such as acceleration sensors, pressure sensors, vibrators, and giro sensors), wire-free devices (such as GPS, FM, NFC, RFEM, MMIC, and WLAN), discrete devices, BSI, CIS, camera modules,

Abstract

The present invention provides an electro-conductive contact pin and an inspection device having improved inspection reliability with respect to an object to be inspected. In addition, the present invention provides an electro-conductive contact pin and an inspection device for preventing damage of an elastic part in an inspection device which adopts a terminal guide film and preventing separation thereof from an installation member.

Description

전기 전도성 접촉핀 및 이를 구비하는 검사장치Electrically conductive contact pin and testing device having the same
본 발명은 전기 전도성 접촉핀 및 이를 구비하는 검사장치에 관한 것이다.The present invention relates to an electrically conductive contact pin and a testing device having the same.
반도체 소자의 전기적 특성 시험은 다수의 전기 전도성 접촉핀을 구비한 검사장치에 검사 대상물(반도체 웨이퍼 또는 반도체 패키지)을 접근시켜 전기 전도성 접촉핀을 검사 대상물상의 대응하는 외부 단자 (솔더볼 또는 범프 등)에 접촉시킴으로써 수행된다. 검사장치의 일례로는 프로브 카드 또는 테스트 소켓이 포함되나 이에 한정되는 것은 아니다.The electrical property test of a semiconductor device is performed by bringing a test object (semiconductor wafer or semiconductor package) close to a test device having a plurality of electrically conductive contact pins and contacting the electrically conductive contact pins with corresponding external terminals (solder balls or bumps, etc.) on the test object. Examples of testing devices include, but are not limited to, probe cards or test sockets.
종래 테스트 소켓에는 포고 타입 테스트 소켓과 러버 타입 테스트 소켓이 있다. Conventional test sockets include a pogo type test socket and a rubber type test socket.
포고 타입 테스트 소켓에 사용되는 전기 전도성 접촉핀(이하, '포고 타입 소켓핀'이라 함)은 핀부와 이를 수용하는 배럴을 포함하여 구성된다. 핀부는 그 양단의 플런저 사이에 스프링 부재를 설치함으로써 필요한 접촉압 부여 및 접촉 위치의 충격 흡수가 가능하게 한다. 핀부가 배럴 내에서 슬라이드 이동하기 위해서는 핀부의 외면과 배럴 내면 사이에는 틈새가 존재해야 한다. 하지만, 이러한 포고 타입 소켓핀은 배럴과 핀부를 별도로 제작한 후 이들을 결합하여 사용하기 때문에, 필요 이상으로 핀부의 외면이 배럴의 내면과 이격되는 등 틈새 관리를 정밀하게 수행할 수 없다. 따라서 전기 신호가 양단의 플런저를 경유하여 배럴로 전달되는 과정에서 전기 신호의 손실 및 왜곡이 발생되므로 접촉 안정성이 일정하지 않다는 문제가 발생하게 된다. 또한 핀부는 검사 대상물의 외부 단자와의 접촉 효과를 높이기 위해 뾰족한 팁부를 구비한다. 뾰족한 형상의 팁부는 검사 후 검사 대상물의 외부 단자에 압입의 흔적 또는 홈을 발생시킨다. 외부 단자의 접촉 형상의 손실로 인하여, 비전검사의 오류를 발생시키고 솔더링 등의 이후 공정에서의 외부 단자의 신뢰성을 저하시키는 문제가 발생하게 된다. An electrically conductive contact pin (hereinafter referred to as 'pogo type socket pin') used in a pogo type test socket includes a pin unit and a barrel accommodating the pin unit. By installing a spring member between the plungers at both ends of the pin, it is possible to apply necessary contact pressure and absorb shock at the contact position. In order for the pin to slide within the barrel, a gap must exist between the outer surface of the pin and the inner surface of the barrel. However, since the pogo-type socket pin is manufactured separately from the barrel and the pin and then combined and used, it is impossible to precisely manage the gap, such that the outer surface of the pin is separated from the inner surface of the barrel more than necessary. Therefore, since electrical signals are lost and distorted in the process of being transferred to the barrel via the plungers at both ends, contact stability is not constant. In addition, the pin portion has a sharp tip portion in order to increase the contact effect with the external terminal of the test object. The pointed tip portion generates a press-fitting mark or groove on the external terminal of the test object after the test. Due to the loss of the contact shape of the external terminal, errors in vision inspection occur and reliability of the external terminal is deteriorated in a subsequent process such as soldering.
한편, 러버 타입 테스트 소켓에 사용되는 전기 전도성 접촉핀(이하, '러버 타입 소켓 핀'이라 함)은, 고무 소재인 실리콘 러버 내부에 전도성 마이크로볼을 배치한 구조로, 검사 대상물(예를 들어, 반도체 패키지)을 올리고 소켓을 닫아 응력이 가해지면 금 성분의 전도성 마이크로 볼이 서로를 강하게 누르면서 전도도가 높아져 전기적으로 연결되는 구조이다. 하지만 이러한 러버 타입 소켓핀은 과도한 가압력으로 눌러줘야만 접촉 안정성이 확보된다는 점에서 문제가 있다.On the other hand, the electrically conductive contact pins (hereinafter referred to as 'rubber-type socket pins') used in rubber-type test sockets have a structure in which conductive microballs are placed inside silicon rubber, which is a rubber material. When a test object (eg, a semiconductor package) is placed and stress is applied by closing the socket, the conductive microballs made of gold strongly press each other and increase conductivity, making them electrically connected. However, this rubber-type socket pin has a problem in that contact stability is secured only when it is pressed with an excessive pressing force.
한편 최근에는 반도체 기술의 고도화 및 고집적화에 따라 검사 대상물의 외부 단자들의 피치가 더욱 더 협피치화되고 있는 추세이다. 그런데 기존 러버 타입 소켓 핀은, 유동성의 탄성 물질 내에 도전성 입자가 분포되어 있는 성형용 재료를 준비하고, 그 성형용 재료를 소정의 금형 내에 삽입한 후, 두께방향으로 자기장을 가하여 도전성 입자들을 두께방향으로 배열하여 제작되기 때문에 자기장의 사이 간격이 좁아지면 도전성 입자들이 불규칙하게 배향되어 면방향으로 신호가 흐르게 된다. 따라서 기존 러버 타입 소켓 핀으로는 협피치 기술 트렌드에 대응하는데 한계가 있다.Meanwhile, with the advancement and high integration of semiconductor technology, the pitch of external terminals of an object to be inspected is becoming more and more narrow. However, conventional rubber-type socket pins are manufactured by preparing a molding material in which conductive particles are distributed in a fluid elastic material, inserting the molding material into a predetermined mold, and then applying a magnetic field in the thickness direction to arrange the conductive particles in the thickness direction. When the distance between the magnetic fields is narrowed, the conductive particles are irregularly oriented and signals flow in the plane direction. Therefore, existing rubber-type socket pins have limitations in responding to the narrow pitch technology trend.
또한, 포고 타입 소켓핀은, 배럴과 핀부를 별도로 제작한 후 이들을 결합하여 사용하기 때문에, 작은 크기로 제작하는데 어려움이 있다. 따라서 기존 포고 타입 소켓핀 역시 협피치 기술 트렌드에 대응하는데 한계가 있다. In addition, since the pogo-type socket pin is used after separately manufacturing the barrel and the pin, it is difficult to manufacture them in a small size. Therefore, existing pogo-type socket pins also have limitations in responding to the narrow pitch technology trend.
따라서 최근의 기술 트렌드에 부합하여 검사 대상물에 대한 검사 신뢰성을 향상시킬 수 있는 새로운 유형의 전기 전도성 접촉핀 및 이를 구비하는 검사장치의 개발이 필요한 상황이다.Therefore, it is necessary to develop a new type of electrically conductive contact pin and a test device having the same, which can improve the test reliability of an object to be tested in line with recent technological trends.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 1) 대한민국 등록번호 제10-0659944호 등록특허공보(Patent Document 1) Republic of Korea Registration No. 10-0659944 Patent Registration
(특허문헌 2) 대한민국 등록번호 제10-0952712호 등록특허공보(Patent Document 2) Republic of Korea Registration No. 10-0952712 Patent Publication
본 발명은 상술한 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명은 검사 대상물에 대한 검사 신뢰성을 향상시킨 전기 전도성 접촉핀 및 검사장치를 제공하는 것을 그 목적으로 한다.The present invention has been made to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide an electrically conductive contact pin and an inspection device with improved inspection reliability for an inspection object.
또한, 본 발명은 단자 가이드 필름을 채택한 검사장치에서 탄성부의 파손을 방지하고 설치부재로부터의 이탈을 방지하는 전기 전도성 접촉핀 및 검사장치를 제공하는 것을 그 목적으로 한다.In addition, an object of the present invention is to provide an electrically conductive contact pin and a test device that prevent breakage of the elastic part and prevent separation from an installation member in a test device employing a terminal guide film.
상술한 과제를 해결하고 목적을 달성하기 위해, 본 발명에 따른 전기 전도성 접촉핀은, 제1접속부; 제2접속부; 길이방향으로 연장되는 지지부; 상기 제1접속부와 상기 제2접속부 중 적어도 어느 하나에 연결되며 길이 방향을 따라 탄성 변형가능한 탄성부; 및 상기 탄성부를 상기 지지부에 연결하는 연결부;를 포함하고, 상기 제1접속부는, 접속 대상물과 접촉되는 접촉부; 및 상기 접촉부로부터 하측으로 연장되어 상기 탄성부의 적어도 일부를 덮는 플랜지;를 포함한다.In order to solve the above problems and achieve the object, an electrically conductive contact pin according to the present invention includes a first connection portion; a second connection; a support extending in the longitudinal direction; an elastic part connected to at least one of the first connection part and the second connection part and elastically deformable along the longitudinal direction; and a connection part connecting the elastic part to the support part, wherein the first connection part includes: a contact part contacting a connection object; and a flange extending downward from the contact portion and covering at least a portion of the elastic portion.
또한, 상기 플랜지는 상기 탄성부와 상기 지지부 사이에 구비된다.In addition, the flange is provided between the elastic part and the support part.
또한, 상기 플랜지는 상기 지지부의 내면에 접촉되어 전류 패스를 형성한다.In addition, the flange is in contact with the inner surface of the support to form a current path.
또한, 상기 플랜지는, 상기 탄성부의 일측에 위치하는 제1플랜지; 및 상기 제1플랜지에 대향되어 상기 탄성부의 타측에 위치하는 제2플랜지를 포함하고, 상기 제1플랜지와 상기 제2플랜지는 각각 상기 접촉부에 연결된다.In addition, the flange, a first flange located on one side of the elastic portion; and a second flange facing the first flange and positioned on the other side of the elastic part, wherein the first flange and the second flange are connected to the contact part, respectively.
또한, 상기 플랜지는 상기 접촉부의 폭 방향 단부에서 연속되어 하측으로 연장되어 상기 접촉부는 상기 플랜지를 기준으로 폭 방향 외측으로 돌출되지 않는다.In addition, the flange continuously extends downward from an end portion of the contact portion in the width direction, so that the contact portion does not protrude outward in the width direction based on the flange.
또한, 상기 접촉부는 공동부를 구비한다.In addition, the contact portion has a cavity.
또한, 상기 탄성부가 탄성 변형될 때, 상기 접촉부와 상기 플랜지는 일체 거동한다.Also, when the elastic part is elastically deformed, the contact part and the flange act as one body.
또한, 상기 지지부는, 상기 전기 전도성 접촉핀의 일측에 위치하는 제1지지부; 및 상기 전기 전도성 접촉핀의 타측에 위치하는 제2지지부를 포함하고, 상기 접촉부의 폭 방향 치수는 상기 제1지지부와 상기 제2지지부 사이의 치수보다 작고, 상기 플랜지는 상기 제1지지부와 상기 제2지지부 사이의 영역 내에 위치한다.In addition, the support portion may include a first support portion positioned on one side of the electrically conductive contact pin; and a second support portion positioned on the other side of the electrically conductive contact pin, wherein a width direction dimension of the contact portion is smaller than a dimension between the first support portion and the second support portion, and the flange is located in an area between the first support portion and the second support portion.
또한, 상기 지지부는, 상기 전기 전도성 접촉핀의 일측에 위치하는 제1지지부; 및 상기 전기 전도성 접촉핀의 타측에 위치하는 제2지지부를 포함하고, 상기 연결부는, 상기 탄성부와 상기 제1지지부를 연결하는 제1연결부; 및 상기 탄성부와 상기 제2지지부를 연결하는 제2연결부를 포함한다.In addition, the support portion may include a first support portion positioned on one side of the electrically conductive contact pin; and a second support portion positioned on the other side of the electrically conductive contact pin, wherein the connection portion includes: a first connection portion connecting the elastic portion and the first support portion; and a second connection portion connecting the elastic portion and the second support portion.
또한, 상기 지지부는, 일단부에 구비되는 제1걸림부; 및 타단부에 구비되는 제2걸림부를 포함한다.In addition, the support portion, a first holding portion provided at one end; and a second catching portion provided at the other end.
또한, 복수개의 금속층이 상기 전기 전도성 접촉핀의 두께 방향으로 적층되어 형성된다.In addition, a plurality of metal layers are formed by being stacked in the thickness direction of the electrically conductive contact pin.
또한, 측면에 구비되는 미세 트렌치를 포함한다.In addition, a fine trench provided on the side surface is included.
또한, 상기 접촉부는 그 상면에 돌기를 포함하고, 상기 돌기는 두께 방향을 따라 길게 연장되어 형성된다.In addition, the contact portion includes a protrusion on its upper surface, and the protrusion is formed to elongate along the thickness direction.
또한, 상기 탄성부가 압축됨에 따라 상기 제1접속부가 상기 지지부에 접촉되어 전류 패스를 형성한다.In addition, as the elastic part is compressed, the first connection part contacts the support part to form a current path.
한편, 상술한 과제를 해결하고 목적을 달성하기 위해, 본 발명에 따른 검사 장치는, 제1접속부; 제2접속부; 길이방향으로 연장되는 지지부; 상기 제1접속부와 상기 제2접속부 중 적어도 어느 하나에 연결되며 길이 방향을 따라 탄성 변형가능한 탄성부; 및 상기 탄성부를 상기 지지부에 연결하는 연결부;를 포함하고, 상기 제1접속부는, 접속 대상물과 접촉되는 접촉부; 및 상기 접촉부로부터 하측으로 연장되어 상기 탄성부의 적어도 일부를 덮는 플랜지;를 포함하는, 전기 전도성 접촉핀; 및 상기 전기 전도성 접촉핀을 수용하는 관통홀을 구비하는 설치부재를 포함한다.On the other hand, in order to solve the above problems and achieve the object, the inspection apparatus according to the present invention, the first connection unit; a second connection; a support extending in the longitudinal direction; an elastic part connected to at least one of the first connection part and the second connection part and elastically deformable along the longitudinal direction; and a connection part connecting the elastic part to the support part, wherein the first connection part includes: a contact part contacting a connection object; and a flange extending downward from the contact portion and covering at least a portion of the elastic portion; and an installation member having a through hole accommodating the electrically conductive contact pin.
또한, 상기 전기 전도성 접촉핀의 전체 길이 치수는 400㎛ 이상 600㎛이하이고, 상기 전기 전도성 접촉핀의 전체 폭 치수는 150㎛이상 300㎛이하이고, 상기 설치부재의 길이 방향 치수는 150㎛이상 250㎛이하이고, 상기 전기 전도성 접촉핀이 상기 설치부재의 상부로 돌출된 길이 방향 치수는 50㎛이상 200㎛이하이다.In addition, the overall length of the electrically conductive contact pin is 400 μm or more and 600 μm or less, the overall width of the electrically conductive contact pin is 150 μm or more and 300 μm or less, the longitudinal dimension of the installation member is 150 μm or more and 250 μm or less, and the longitudinal dimension in which the electrically conductive contact pin protrudes from the installation member is 50 μm or more and 200 μm or less.
본 발명은 검사 대상물에 대한 검사 신뢰성을 향상시킨 전기 전도성 접촉핀 및 검사장치를 제공한다. 또한, 본 발명은 단자 가이드 필름을 채택한 검사장치에서 탄성부의 파손을 방지하고 설치부재로부터의 이탈을 방지하는 전기 전도성 접촉핀 및 검사장치를 제공한다.The present invention provides an electrically conductive contact pin and an inspection device with improved inspection reliability for an inspection object. In addition, the present invention provides an electrically conductive contact pin and a test device that prevent breakage of the elastic part and prevent separation from the installation member in the test device employing the terminal guide film.
도 1은 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀의 평면도.1 is a plan view of an electrically conductive contact pin according to a preferred embodiment of the present invention;
도 2는 본 발명의 바람지한 실시예에 따른 전기 전도성 접촉핀의 사시도.2 is a perspective view of an electrically conductive contact pin according to a preferred embodiment of the present invention;
도 3a 내지 도 3d는 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀의 제조방법을 설명하는 도면으로서, 도 3a는 내부 공간이 형성된 몰드의 평면도이고, 도 3b는 도 3a의 A-A'단면도이며, 도 3c는 내부 공간에 전기 도금 공정을 수행하여 것을 도시한 평면도이고, 도 3d는 도 3c의 A-A'단면도.3A to 3D are views explaining a method of manufacturing an electrically conductive contact pin according to a preferred embodiment of the present invention, wherein FIG. 3A is a plan view of a mold in which an inner space is formed, FIG. 3B is an A-A' cross-sectional view of FIG. 3A, FIG. 3C is a plan view showing that an electroplating process is performed on the inner space, and FIG.
도 4는 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀의 측면을 도시한 도면. 4 is a side view of an electrically conductive contact pin according to a preferred embodiment of the present invention;
도 5 및 도 6은 본 발명의 바람직한 실시예에 따른 검사장치를 도시한 도면.5 and 6 are diagrams showing an inspection device according to a preferred embodiment of the present invention.
도 7은 본 발명의 바람직한 실시예에 따른 설치부재의 일부를 도시한 도면.Figure 7 is a view showing a part of the installation member according to a preferred embodiment of the present invention.
도 8은 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀이 설치부재에 설치된 것을 도시한 도면.8 is a view showing an electrically conductive contact pin according to a preferred embodiment of the present invention installed on an installation member.
도 9 및 도 10은 본 발명의 바람직한 실시예에 따른 검사장치를 이용하여 검사 대상물을 검사하는 것을 도시한 도면.9 and 10 are diagrams illustrating inspection of an inspection target using an inspection device according to a preferred embodiment of the present invention.
이하의 내용은 단지 발명의 원리를 예시한다. 그러므로 당업자는 비록 본 명세서에 명확히 설명되거나 도시되지 않았지만 발명의 원리를 구현하고 발명의 개념과 범위에 포함된 다양한 장치를 발명할 수 있는 것이다. 또한, 본 명세서에 열거된 모든 조건부 용어 및 실시 예들은 원칙적으로, 발명의 개념이 이해되도록 하기 위한 목적으로만 명백히 의도되고, 이와 같이 특별히 열거된 실시 예들 및 상태들에 제한적이지 않는 것으로 이해되어야 한다.The following merely illustrates the principle of the invention. Therefore, those skilled in the art can invent various devices that embody the principles of the invention and fall within the concept and scope of the invention, even though not explicitly described or shown herein. In addition, it should be understood that all conditional terms and embodiments listed in this specification are, in principle, expressly intended only for the purpose of understanding the concept of the invention, and are not limited to such specifically listed embodiments and conditions.
상술한 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해질 것이며, 그에 따라 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다.The above objects, features and advantages will become more apparent through the following detailed description in conjunction with the accompanying drawings, and accordingly, those skilled in the art to which the invention belongs will be able to easily implement the technical idea of the invention.
본 명세서에서 기술하는 실시 예들은 본 발명의 이상적인 예시 도인 단면도 및/또는 사시도들을 참고하여 설명될 것이다. 이러한 도면들에 도시된 막 및 영역들의 두께 등은 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 따라서, 본 발명의 실시 예들은 도시된 특정 형태로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형태의 변화도 포함하는 것이다. 본 명세서에서 사용한 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "구비하다" 등의 용어는 본 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Embodiments described in this specification will be described with reference to sectional views and/or perspective views, which are ideal exemplary views of the present invention. Films and thicknesses of regions shown in these drawings are exaggerated for effective description of technical content. The shape of the illustrative drawings may be modified due to manufacturing techniques and/or tolerances. Therefore, embodiments of the present invention are not limited to the specific shapes shown, but also include changes in shapes generated according to manufacturing processes. Technical terms used in this specification are used only to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as "comprise" or "comprise" are intended to designate that the features, numbers, steps, operations, components, parts, or combinations thereof described in this specification exist, but it should be understood that the presence or addition of one or more other features or numbers, steps, operations, components, parts, or combinations thereof is not precluded.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들에 대해 구체적으로 설명한다. 이하에서 다양한 실시예들을 설명함에 있어서, 동일한 기능을 수행하는 구성요소에 대해서는 실시예가 다르더라도 편의상 동일한 명칭 및 동일한 참조번호를 부여하기로 한다. 또한, 이미 다른 실시예에서 설명된 구성 및 작동에 대해서는 편의상 생략하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description of various embodiments, the same names and the same reference numbers will be given to components performing the same functions even if the embodiments are different. In addition, configurations and operations already described in other embodiments will be omitted for convenience.
도 1은 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀의 평면도이고, 도 2는 본 발명의 바람지한 실시예에 따른 전기 전도성 접촉핀의 사시도이며, 도 3a 내지 도 3d는 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀의 제조방법을 설명하는 도면이고, 도 4는 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀의 측면을 도시한 도면이며, 도 5 및 도 6은 본 발명의 바람직한 실시예에 따른 검사장치를 도시한 도면이고, 도 7은 본 발명의 바람직한 실시예에 따른 설치부재의 일부를 도시한 도면이며, 도 8은 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀이 설치부재에 설치된 것을 도시한 도면이고, 도 9 및 도 10은 본 발명의 바람직한 실시예에 따른 검사장치를 이용하여 검사 대상물을 검사하는 것을 도시한 도면이다.Fig. 1 is a plan view of an electrically conductive contact pin according to a preferred embodiment of the present invention, Fig. 2 is a perspective view of an electrically conductive contact pin according to a preferred embodiment of the present invention, Figs. 3A to 3D are views explaining a method of manufacturing an electrically conductive contact pin according to a preferred embodiment of the present invention, Fig. 4 is a side view of an electrically conductive contact pin according to a preferred embodiment of the present invention, and Figs. Figure 7 is a view showing a part of the installation member according to a preferred embodiment of the present invention, Figure 8 is a view showing that the electrically conductive contact pins according to a preferred embodiment of the present invention are installed in the installation member, Figures 9 and 10 are views showing inspection objects using the inspection device according to a preferred embodiment of the present invention.
본 발명의 바람직한 일 실시예에 따른 전기 전도성 접촉핀(100)은, 검사장치(10)에 구비되어 검사 대상물(400)과 전기적, 물리적으로 접촉하여 전기적 신호를 전달하는데 사용된다. 검사장치(10)는 반도체 제조공정에 사용되는 검사장치일 수 있으며, 그 일례로 프로브 카드일 수 있고, 테스트 소켓일 수 있다.The electrically conductive contact pin 100 according to a preferred embodiment of the present invention is provided in the test device 10 and is used to electrically and physically contact the test target 400 to transmit an electrical signal. The inspection device 10 may be an inspection device used in a semiconductor manufacturing process, and may be, for example, a probe card or a test socket.
검사장치(10)는 전기 전도성 접촉핀(100)과, 전기 전도성 접촉핀(100)을 수용하는 관통홀(210)을 구비하는 설치부재(200)를 포함한다, The test device 10 includes an electrically conductive contact pin 100 and an installation member 200 having a through hole 210 accommodating the electrically conductive contact pin 100.
전기 전도성 접촉핀(100)은 프로브 카드에 구비되는 프로브 핀일 수 있고, 테스트 소켓에 구비되는 소켓 핀일 수 있다. 이하에서는 전기 전도성 접촉핀(100)의 일례로서 소켓 핀을 예시하여 설명하지만, 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀(100)은 이에 한정되는 것은 아니며, 전기를 인가하여 검사 대상물(400)의 불량 여부를 확인하기 위한 핀이라면 모두 포함된다.The electrically conductive contact pin 100 may be a probe pin provided on a probe card or a socket pin provided on a test socket. Hereinafter, a socket pin is exemplified and described as an example of the electrically conductive contact pin 100, but the electrically conductive contact pin 100 according to a preferred embodiment of the present invention is not limited thereto, and all pins for checking whether the object to be tested 400 is defective by applying electricity are included.
이하에서 설명하는 전기 전도성 접촉핀(100)의 폭 방향은 도면에 표기된 ±x방향이고, 전기 전도성 접촉핀(100)의 길이 방향은 도면에 표기된 ±y방향이고, 전기 전도성 접촉핀(100)의 두께 방향은 도면에 표기된 ±z방향이다. The width direction of the electrically conductive contact pin 100 described below is the ±x direction indicated in the drawing, the length direction of the electrically conductive contact pin 100 is the ±y direction indicated in the drawing, and the thickness direction of the electrically conductive contact pin 100 is the ±z direction indicated in the drawing.
전기 전도성 접촉핀(100)은, 길이 방향(±y 방향)으로 전체 길이 치수(L)를 가지고, 상기 길이 방향의 수직한 두께 방향(±z 방향)으로 전체 두께 치수(H)를 가지며, 상기 길이 방향의 수직한 폭 방향(±x 방향)으로 전체 폭 치수(W)를 가진다.The electrically conductive contact pin 100 has an overall length dimension L in the longitudinal direction (±y direction), an overall thickness dimension H in a thickness direction perpendicular to the longitudinal direction (±z direction), and an overall width dimension W in a width direction perpendicular to the longitudinal direction (±x direction).
전기 전도성 접촉핀(100)은, 제1접속부(110), 제2접속부(120), 길이방향으로 연장되는 지지부(130), 제1접속부(110)와 제2접속부(120)에 연결되며 길이 방향을 따라 탄성 변형가능한 탄성부(150) 및 탄성부(150)를 지지부(130)에 연결하는 연결부(140)를 포함한다. The electrically conductive contact pin 100 includes a first connection part 110, a second connection part 120, a support part 130 extending in the longitudinal direction, an elastic part 150 connected to the first connection part 110 and the second connection part 120 and elastically deformable along the length direction, and a connection part 140 connecting the elastic part 150 to the support part 130.
제1접속부(110), 제2접속부(120), 지지부(130), 연결부(140) 및 탄성부(150)는 일체형으로 구비된다. 제1접속부(110), 제2접속부(120), 지지부(130), 연결부(140) 및 탄성부(150)는 도금 공정을 이용하여 한꺼번에 제작된다. 전기 전도성 접촉핀(100)은, 후술하는 바와 같이, 내부 공간(1100)을 구비하는 몰드(1000)를 이용하여 전기 도금으로 내부 공간(1100)에 금속 물질을 충진하여 형성되기 때문에, 제1접속부(110), 제2접속부(120), 지지부(130), 연결부(140) 및 탄성부(150)가 서로 연결되는 일체형으로 제작된다. 종래 전기 전도성 접촉핀은 배럴과 핀부를 별도로 제작한 후 이들을 조립 또는 결합하여 구비되는 것인 반면에, 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀(100)은 제1접속부(110), 제2접속부(120), 지지부(130), 연결부(140) 및 탄성부(150)를 도금 공정을 이용하여 한꺼번에 제작함으로써 일체형으로 구비된다는 점에서 구성상의 차이가 있다. The first connection part 110, the second connection part 120, the support part 130, the connection part 140, and the elastic part 150 are integrally provided. The first connection part 110, the second connection part 120, the support part 130, the connection part 140, and the elastic part 150 are manufactured together using a plating process. As will be described later, the electrically conductive contact pin 100 is formed by filling the inner space 1100 with a metal material by electroplating using a mold 1000 having an inner space 1100, so that the first connection part 110, the second connection part 120, the support part 130, the connection part 140, and the elastic part 150 are integrally connected to each other. Whereas conventional electrically conductive contact pins are provided by separately manufacturing barrels and pins and then assembling or combining them, the electrically conductive contact pins 100 according to a preferred embodiment of the present invention have a structural difference in that the first connection part 110, the second connection part 120, the support part 130, the connection part 140, and the elastic part 150 are integrally manufactured by manufacturing them all at once using a plating process.
전기 전도성 접촉핀(100)의 두께 방향(±z 방향)으로의 각 단면에서의 형상은 동일하다. 다시 말해 x-y 평면상의 동일한 형상이 두께 방향(±z 방향)으로 연장되어 형성된다. The shape of each cross section in the thickness direction (±z direction) of the electrically conductive contact pin 100 is the same. In other words, the same shape on the x-y plane is formed extending in the thickness direction (±z direction).
전기 전도성 접촉핀(100)은 그 두께 방향(±z 방향)으로 복수 개의 금속층이 적층되어 구비된다. 복수개의 금속층은, 제1금속층(101)과 제2금속층(102)을 포함한다. The electrically conductive contact pin 100 is provided by stacking a plurality of metal layers in its thickness direction (±z direction). The plurality of metal layers include a first metal layer 101 and a second metal layer 102 .
제1금속층(101)은 제2금속층(102)에 비해 상대적으로 내마모성이 높은 금속으로서 바람직하게는, 로듐(Rd), 백금 (Pt), 이리듐(Ir), 팔라듐(Pd), 니켈(Ni), 망간(Mn), 텅스텐(W), 인(Ph) 이나 이들의 합금, 또는 팔라듐-코발트(PdCo) 합금, 팔라듐-니켈(PdNi) 합금 또는 니켈-인(NiPh) 합금, 니켈-망간(NiMn), 니켈-코발트(NiCo) 또는 니켈-텅스텐(NiW) 합금 중에서 선택된 금속으로 형성될 수 있다. 제2금속층(102)은 제1금속층(101)에 비해 상대적으로 전기 전도도가 높은 금속으로서 바람직하게는, 구리(Cu), 은(Ag), 금(Au) 또는 이들의 합금 중에서 선택된 금속으로 형성될 수 있다. 다만 이에 한정되는 것은 아니다.The first metal layer 101 is a metal having relatively high wear resistance compared to the second metal layer 102, and is preferably made of rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), nickel (Ni), manganese (Mn), tungsten (W), phosphorus (Ph) or an alloy thereof, or a palladium-cobalt (PdCo) alloy, a palladium-nickel (PdNi) alloy, or It may be formed of a metal selected from among a nickel-phosphorus (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo), or nickel-tungsten (NiW) alloy. The second metal layer 102 is a metal having relatively high electrical conductivity compared to the first metal layer 101, and is preferably selected from among copper (Cu), silver (Ag), gold (Au), or alloys thereof. Can be formed of. However, it is not limited thereto.
제1금속층(101)은 전기 전도성 접촉핀(100)의 두께 방향(±z 방향)으로 하면과 상면에 구비되고 제2금속층(102)은 제1금속층(101) 사이에 구비된다. 예를 들어, 전기 전도성 접촉핀(100)은 그 두께 방향(±z 방향)으로 제1금속층(101), 제2금속층(102), 제1금속층(101) 순으로 교대로 적층되어 구비되며, 적층되는 층수는 3층 이상으로 구성될 수 있다. The first metal layer 101 is provided on the lower and upper surfaces of the electrically conductive contact pin 100 in the thickness direction (±z direction), and the second metal layer 102 is provided between the first metal layers 101 . For example, the electrically conductive contact pin 100 is provided by alternately stacking the first metal layer 101, the second metal layer 102, and the first metal layer 101 in that order in its thickness direction (±z direction), and the number of layers stacked may be three or more.
제1접속부(110)는 접속 대상물(보다 바람직하게는 검사 대상물(400))과 접촉되는 접촉부(111)와, 접촉부(111)로부터 하측으로 연장되어 탄성부(150)의 적어도 일부를 덮는 플랜지(113)를 포함한다. 탄성부(150)가 탄성 변형될 때, 접촉부(111)와 플랜지(113)는 일체 거동한다.The first connection part 110 includes a contact part 111 in contact with the connection object (more preferably the test object 400) and a flange 113 extending downward from the contact part 111 and covering at least a portion of the elastic part 150. When the elastic part 150 is elastically deformed, the contact part 111 and the flange 113 act as one body.
접촉부(111)는 검사 대상물(400)의 접속 단자(410)와 접촉되는 부분이다. The contact portion 111 is a portion in contact with the connection terminal 410 of the test object 400 .
접촉부(111)는 검사 대상물(400)의 가압에 의해 접촉면이 보다 쉽게 변형될 수 있도록 공동부(112)를 구비한다. 공동부(112)를 기준으로 접촉부(111)의 상부면이 검사 대상물(400)의 접속 단자(410)에 접촉하는 부위가 되고, 공동부(112)를 기준으로 접촉부(111)의 하부면은 탄성부(150)에 연결된다. 공동부(122)는 좌,우가 만곡된 빈 공간으로 형성되어 접촉부(111)의 상부면이 보다 쉽게 변형되도록 한다. The contact part 111 has a cavity 112 so that the contact surface can be more easily deformed by the pressure of the test object 400 . The upper surface of the contact part 111 with respect to the cavity part 112 becomes a part in contact with the connection terminal 410 of the test object 400, and the lower surface of the contact part 111 with respect to the cavity part 112 is connected to the elastic part 150. The cavity 122 is formed as an empty space with curved left and right sides, so that the upper surface of the contact portion 111 is more easily deformed.
접촉부(111)는 접속 단자(410)와 멀티-컨택이 이루어지도록 그 상면에 적어도 1개 이상의 돌기(114)를 포함한다. 돌기(114)는 접촉부(111)의 두께 방향(±z 방향)을 따라 그 주변부보다 돌출되어 길게 연장되어 형성된다. The contact portion 111 includes at least one protrusion 114 on its upper surface to make multi-contact with the connection terminal 410 . The protrusion 114 is formed to protrude and extend longer than the periphery thereof along the thickness direction (±z direction) of the contact portion 111 .
제1접속부(110)는 탄성부(130)에 연결되어 접촉압력에 의해 탄력적으로 수직 이동이 가능하다. The first connection part 110 is connected to the elastic part 130 and can be vertically moved elastically by contact pressure.
검사 대상물(400)을 검사할 경우, 검사 대상물(400)의 접속 단자(410)는 제1접속부(110)의 상면에 접촉되면서 하향으로 이동한다. 이에 따라 제1접속부(110)와 연결된 탄성부(150)는 압축 변형된다. 제1접속부(110)가 하향 이동하면서 제1접속부(110)는 지지부(130)와 접촉된다. When the inspection object 400 is inspected, the connection terminal 410 of the inspection object 400 moves downward while contacting the upper surface of the first connection part 110 . Accordingly, the elastic part 150 connected to the first connection part 110 is compressed and deformed. While the first connection part 110 moves downward, the first connection part 110 comes into contact with the support part 130 .
제1접속부(110)의 플랜지(113)는 접촉부(111)로부터 하측으로 연장되어 탄성부(150)의 적어도 일부를 덮도록 구성된다. 여기서 플랜지(113)는 접촉부(111)의 폭 방향 단부에서 연속되어 하측으로 연장된다. 그 결과 접촉부(111)는 플랜지(113)보다 폭 방향(±x 방향)으로 돌출되지 않고, 플랜지(113)는 접촉부(111)보다 길이 방향 상측(+y 방향)으로 돌출되지 않는다.The flange 113 of the first connection part 110 extends downward from the contact part 111 and covers at least a part of the elastic part 150 . Here, the flange 113 continues from the end of the contact portion 111 in the width direction and extends downward. As a result, the contact portion 111 does not protrude more than the flange 113 in the width direction (±x direction), and the flange 113 does not protrude more than the contact portion 111 in the longitudinal direction (+y direction).
플랜지(113)는 접촉부(111)로부터 하측 방향(-y 방향)으로 연장되어 플랜지(113)의 적어도 일부는 탄성부(150)와 지지부(130) 사이에 구비된다. The flange 113 extends from the contact portion 111 in a downward direction (-y direction), and at least a portion of the flange 113 is provided between the elastic portion 150 and the support portion 130 .
탄성부(150)가 압축되면, 플랜지(113)는 탄성부(150)와 지지부(130) 사이 공간에서 하측 방향(-y 방향)으로 하강한다. 반대로, 탄성부(150)가 복원되면, 플랜지(113)는 탄성부(150)와 지지부(130) 사이 공간에서 상측 방향(+y 방향)으로 상승한다. When the elastic part 150 is compressed, the flange 113 descends in a downward direction (-y direction) in the space between the elastic part 150 and the support part 130 . Conversely, when the elastic part 150 is restored, the flange 113 rises in the upward direction (+y direction) in the space between the elastic part 150 and the support part 130 .
지지부(130)는, 전기 전도성 접촉핀(100)의 일측에 위치하는 제1지지부(130a)와, 전기 전도성 접촉핀(100)의 타측에 위치하는 제2지지부(130b)를 포함한다. 또한, 플랜지(113)는, 탄성부(150)의 일측에 위치하는 제1플랜지(113a)와, 제1플랜지(113a)에 대향되어 탄성부(150)의 타측에 위치하는 제2플랜지(113b)를 포함한다. 제1플랜지(113a)와 제2플랜지(113b)는 각각 접촉부(111)에 연결된다. The support portion 130 includes a first support portion 130a located on one side of the electrically conductive contact pin 100 and a second support portion 130b located on the other side of the electrically conductive contact pin 100 . In addition, the flange 113 includes a first flange 113a located on one side of the elastic part 150 and a second flange 113b located on the other side of the elastic part 150 opposite to the first flange 113a. The first flange 113a and the second flange 113b are connected to the contact portion 111, respectively.
폭 방향으로, 제1플랜지(113a)의 적어도 일부는 제1지지부(130a)와 탄성부(150) 사이에 위치하고, 제2플랜지(113b)의 적어도 일부는 탄성부(150)와 제2지지부(130b) 사이에 위치한다. 탄성부(150)가 압축되면, 제1플랜지(113a)는 탄성부(150)와 제1지지부(130a) 사이 공간에서 하측 방향(-y 방향)으로 하강하고, 제2플랜지(113b)는 탄성부(150)와 제2지지부(130b)사이 공간에서 하측 방향(-y 방향)으로 하강한다. 반대로, 탄성부(150)가 복원되면, 제1플랜지(113a)는 탄성부(150)와 제1지지부(130a) 사이 공간에서 상측 방향(+y 방향)으로 상승하고, 제2플랜지(113b)는 탄성부(150)와 제2지지부(130b) 사이 공간에서 상승 방향(+y 방향)으로 상승한다. In the width direction, at least a portion of the first flange 113a is positioned between the first support portion 130a and the elastic portion 150, and at least a portion of the second flange 113b is positioned between the elastic portion 150 and the second support portion 130b. When the elastic part 150 is compressed, the first flange 113a descends in the lower direction (-y direction) in the space between the elastic part 150 and the first support part 130a, and the second flange 113b descends in the lower direction (-y direction) in the space between the elastic part 150 and the second support part 130b. Conversely, when the elastic part 150 is restored, the first flange 113a rises in the upward direction (+y direction) in the space between the elastic part 150 and the first support part 130a, and the second flange 113b rises in the upward direction (+y direction) in the space between the elastic part 150 and the second support part 130b.
제1접속부(110)의 플랜지(113)는 지지부(130)와 폭 방향으로 중첩되게 위치한다. 구체적으로, 지지부(130)와 탄성부(150) 사이의 공간에 플랜지(113)의 적어도 일부가 구비되도록 플랜지(113)는 접촉부(111)에서 연장된다. 제1접속부(110)에 접촉된 접촉 단자(410)에 의해 편심 가압력이 작용하여 좌측 방향으로 기울어지면 제2플랜지(113b)가 제2지지부(130b)가 접촉되어 좌측 방향으로의 과도한 좌굴을 방지한다. 또한, 제1접속부(110)에 접촉된 접촉 단자(410)에 의해 편심 가압력이 작용하여 우측 방향으로 기울어지면 제1플랜지(113a)가 제1지지부(130a)가 접촉되어 우측 방향으로의 과도한 좌굴을 방지한다. 이처럼 편심 가압력에 작용할 때에, 플랜지(113)가 지지부(130)에 접촉되어 전기 전도성 접촉핀(100)이 과도하게 좌, 우 방향으로 좌굴 변형되는 것을 방지한다.The flange 113 of the first connection part 110 overlaps the support part 130 in the width direction. Specifically, the flange 113 extends from the contact portion 111 so that at least a portion of the flange 113 is provided in a space between the support portion 130 and the elastic portion 150 . When an eccentric pressing force is applied by the contact terminal 410 in contact with the first connection portion 110 and tilted in the left direction, the second flange 113 b comes into contact with the second support portion 130 b to prevent excessive buckling in the left direction. In addition, when an eccentric pressing force is applied by the contact terminal 410 in contact with the first connection part 110 and tilted in the right direction, the first flange 113a contacts the first support part 130a to prevent excessive buckling in the right direction. When such an eccentric pressing force is applied, the flange 113 comes into contact with the support portion 130 to prevent the electrically conductive contact pin 100 from being excessively buckled in the left and right directions.
플랜지(113)의 자유 단부에는 지지부(130) 측으로 돌출된 볼록부(115)가 구비된다. 이에 대응하여 지지부(130)는 하측 방향(-y 방향)으로 갈수록 폭이 두꺼워지면서 내측 방향으로 경사진 내면 경사부(137)가 구비된다. 볼록부(115)와 내면 경사부(137)의 구성을 통해, 플랜지(113)가 하강하면 지지부(130)의 내면에 부드럽게 접촉하며 접촉 상태를 유지하면서 추가적으로 하강한다. A convex portion 115 protruding toward the support portion 130 is provided at a free end of the flange 113 . Correspondingly, the supporting part 130 is provided with an inner surface inclined part 137 inclined inward as the width increases toward the lower direction (-y direction). When the flange 113 descends through the configuration of the convex portion 115 and the inner surface inclined portion 137, it gently contacts the inner surface of the support portion 130 and additionally descends while maintaining the contact state.
탄성부(150)가 압축되지 않은 상태에서는, 플랜지(113)와 지지부(130)는 서로 이격된다. 탄성부(150)가 압축되어 플랜지(113)가 하측 방향(-y 방향)으로 이동하면 플랜지(113)는 지지부(130)의 내면에 접촉되어 전류 패스를 형성한다. 보다 구체적으로, 플랜지(113)가 하측 방향(-y 방향)으로 이동하면, 플랜지(113)의 볼록부(115)는 지지부(130)의 내면 경사부(137)에 접촉되어 전류 패스를 형성한다. 압축 초기에는 플랜지(113)와 지지부(130)가 서로 이격되어 탄성부(150)의 변형을 방해하지 않고, 이후 플랜지(113)의 외면과 지지부(130)의 내면이 서로 접촉되어 마찰 저항하여 탄성부(150)의 과도한 변형을 방지하며, 검사시에는 지지부(130)와 플랜지(113) 사이에서 전류 패스가 형성되도록 한다. In a state in which the elastic part 150 is not compressed, the flange 113 and the support part 130 are spaced apart from each other. When the elastic part 150 is compressed and the flange 113 moves in the downward direction (-y direction), the flange 113 contacts the inner surface of the support part 130 to form a current path. More specifically, when the flange 113 moves in the downward direction (-y direction), the convex portion 115 of the flange 113 comes into contact with the inner inclined portion 137 of the support portion 130 to form a current path. In the initial stage of compression, the flange 113 and the support portion 130 are spaced apart from each other to prevent deformation of the elastic portion 150, and then the outer surface of the flange 113 and the inner surface of the support portion 130 contact each other to resist excessive deformation of the elastic portion 150. During inspection, a current path is formed between the support portion 130 and the flange 113.
연결부(140)는 탄성부(150)와 지지부(130)를 서로 연결한다. The connection part 140 connects the elastic part 150 and the support part 130 to each other.
연결부(140)는, 탄성부(150)와 제1지지부(130a)를 연결하는 제1연결부(140a)와, 탄성부(150)와 제2지지부(130b)를 연결하는 제2연결부(140b)를 포함한다. The connection part 140 includes a first connection part 140a connecting the elastic part 150 and the first support part 130a, and a second connection part 140b connecting the elastic part 150 and the second support part 130b.
제1연결부(140a)는 탄성부(150)와 제1지지부(130a)를 연결하고 제2연결부(140b)는 탄성부(150)와 제2지지부(130b)를 연결한다. The first connection part 140a connects the elastic part 150 and the first support part 130a, and the second connection part 140b connects the elastic part 150 and the second support part 130b.
제1연결부(140a)와 제2연결부(140b)는 길이 방향으로 서로 동일 위치에 있거나 서로 다른 위치에 있을 수 있다. 본 발명의 바람직한 실시예에 따르면, 제1연결부(140a)와 제2연결부(140b)는 길이 방향으로 서로 다른 위치에 구비되어 응력이 분산되도록 한다. 도 1을 기준으로 제1연결부(140a)는 제2연결부(140b)보다 제2접속부(120) 측에 가깝게 위치하도록 구비되고 제2연결부(140b)는 제1연결부(140a)보다 제2접속부(110) 측에 가깝게 위치하도록 구비된다. The first connection portion 140a and the second connection portion 140b may be located at the same position or at different positions in the longitudinal direction. According to a preferred embodiment of the present invention, the first connection portion 140a and the second connection portion 140b are provided at different positions in the longitudinal direction to distribute stress. 1, the first connection part 140a is provided to be located closer to the second connection part 120 side than the second connection part 140b, and the second connection part 140b is the first connection part 140a. It is provided to be located closer to the second connection part 110 side.
연결부(140)에 의해, 상부로부터 유입된 이물질은 제2접속부(120) 측으로 유입되지 못하고, 하부로부터 유입된 이물질 역시 제1접속부(110)측으로 유입되지 못하게 된다. 내측으로 유입된 이물질의 이동을 제한함으로써 이물질에 의해 제1,2접속부(110, 120)의 작동이 방해되는 것을 방지할 수 있다.Due to the connection part 140, foreign substances introduced from the upper part cannot flow into the second connection part 120, and foreign substances introduced from the lower part are also prevented from flowing into the first connection part 110. By limiting the movement of the foreign matter introduced into the inside, it is possible to prevent interference with the operation of the first and second connectors 110 and 120 by the foreign matter.
플랜지(113)가 하강함에 따라 플랜지(113)의 자유단은 연결부(140)에 접촉될 수 있다. 이를 통해 연결부(140)는 플랜지(113)의 추가 하강을 제한하는 스토퍼 역할을 수행할 수 있다. As the flange 113 descends, the free end of the flange 113 may contact the connecting portion 140 . Through this, the connection part 140 may serve as a stopper to limit the additional descent of the flange 113 .
제1플랜지(113a)와 제2플랜지(113b)의 길이는 서로 다를 수 있다. 보다 구체적으로, 제1플랜지(113a)의 길이는 제2플랜지(113b)의 길이보다 길게 형성될 수 있다. 이는 제1연결부(140a) 및 제2연결부(140b)의 위치를 고려한 것으로서, 제1연결부(140a)가 제2연결부(140b)에 비해 보다 아래쪽에 위치하므로 스토퍼 역할을 수행할 수 있도록 제1플랜지(113)의 길이는 제2플랜지(113b)의 길이보다 길게 형성된다.The lengths of the first flange 113a and the second flange 113b may be different from each other. More specifically, the length of the first flange 113a may be longer than that of the second flange 113b. This is in consideration of the positions of the first connection part 140a and the second connection part 140b, and since the first connection part 140a is located lower than the second connection part 140b, the length of the first flange 113 is formed longer than the length of the second flange 113b so that it can serve as a stopper.
연결부(140)의 상면은 오목하게 구비되고, 연결부(140)의 상면 형상에 대응하여 플랜지(113)의 자유단은 볼록하게 구비된다. 플랜지(113)의 볼록한 자유단이 연결부(140)의 오목한 부분에 수용됨으로써 하강하는 플랜지(113)의 하강 위치를 흔들림없이 견고하게 지탱할 수 있다. An upper surface of the connecting portion 140 is concave, and a free end of the flange 113 is convex to correspond to the shape of the upper surface of the connecting portion 140 . Since the convex free end of the flange 113 is accommodated in the concave portion of the connecting portion 140, the descending position of the descending flange 113 can be firmly supported without shaking.
제2접속부(120)는 접속 대상물(보다 바람직하게는 회로기판의 패드(P))과 접촉된다. The second connection part 120 is in contact with a connection object (more preferably, a pad P of a circuit board).
제2접속부(120)는 회로 기판의 패드(P)의 가압에 의해 접촉면이 보다 쉽게 변형될 수 있도록 공동부(122)를 구비한다. The second connector 120 has a cavity 122 so that the contact surface can be more easily deformed by pressing the pad P of the circuit board.
또한, 제2접속부(120)는 패드(P)와 멀티-컨택이 이루어지도록 적어도 1개 이상의 돌기(123)를 구비한다. In addition, the second connector 120 includes at least one protrusion 123 to make multi-contact with the pad P.
제2접속부(120)는 탄성부(130)에 연결되어 접촉압력에 의해 탄력적으로 수직 이동이 가능하다. The second connection part 120 is connected to the elastic part 130 and can be vertically moved elastically by contact pressure.
제2접속부(120)가 회로기판의 패드(P)에 접촉되어 가압되면 탄성부(150)가 압축 변형되면서 제2접속부(120)는 상향 이동하게 된다. 제2접속부(120)가 소정 거리만큼 상향 이동하게 되면, 회로기판의 패드(P)는 지지부(130)와도 접촉하게 된다. 그 결과 회로기판의 패드(P)는 제2접속부(120)와 지지부(130) 모두에 접속되어 전류 패스를 형성한다. When the second connector 120 comes into contact with the pad P of the circuit board and is pressed, the elastic portion 150 is compressed and deformed, and the second connector 120 moves upward. When the second connection part 120 moves upward by a predetermined distance, the pad P of the circuit board also comes into contact with the support part 130 . As a result, the pad P of the circuit board is connected to both the second connection part 120 and the support part 130 to form a current path.
제1지지부(130a)와 제2지지부(130b)는 전기 전도성 접촉핀(100)의 길이 방향을 따라 형성되며, 제1지지부(141)와 제2지지부(145)는 전기 전도성 접촉핀(100)의 폭 방향을 따라 연장되어 형성되는 연결부(140)에 일체로 연결된다. 탄성부(150)의 상부에는 제1접속부(110)가 연결되고, 탄성부(150)의 하부에는 제2접속부(120)가 연결되며, 탄성부(150)는 연결부(140)를 통해 제1,2지지부(130a, 130b)와 일체로 연결되면서, 전기 전도성 접촉핀(100)은 전체적으로 한 몸체로 구성된다. The first support portion 130a and the second support portion 130b are formed along the longitudinal direction of the electrically conductive contact pin 100, and the first support portion 141 and the second support portion 145 are integrally connected to the connection portion 140 extending along the width direction of the electrically conductive contact pin 100. The first connection part 110 is connected to the upper part of the elastic part 150, and the second connection part 120 is connected to the lower part of the elastic part 150. While the elastic part 150 is integrally connected to the first and second support parts 130a and 130b through the connection part 140, the electrically conductive contact pin 100 is composed of one body as a whole.
탄성부(150)는, 전기 전도성 접촉핀(100)의 두께 방향으로의 각 단면 형상이 모든 두께 단면에서 동일하다. 이는 도금 공정을 통해 전기 전도성 접촉핀(100)이 제작되기 때문에 가능하다. In the elastic portion 150, each cross-sectional shape of the electrically conductive contact pin 100 in the thickness direction is the same in all thickness cross-sections. This is possible because the electrically conductive contact pin 100 is manufactured through a plating process.
탄성부(150)는 실질 폭(t)을 갖는 판상 플레이트가 S자 모양으로 반복적으로 절곡된 형태를 가지며, 판상 플레이트의 실질 폭(t)은 전체적으로 일정하다.The elastic part 150 has a shape in which a plate-like plate having an actual width t is repeatedly bent in an S shape, and the actual width t of the plate-like plate is generally constant.
탄성부(150)는 복수개의 직선부(153)와 복수개의 만곡부(154)가 교대로 접속되어 형성된다. 직선부(153)는 좌, 우로 인접하는 만곡부(154)를 연결하며, 만곡부(154)는 상, 하로 인접하는 직선부(153)를 연결한다. 만곡부(154)는 원호 형상으로 구비된다.The elastic part 150 is formed by alternately connecting a plurality of straight parts 153 and a plurality of curved parts 154 . The straight part 153 connects the curved part 154 adjacent to the left and right, and the curved part 154 connects the straight part 153 adjacent to the top and bottom. The curved portion 154 is provided in an arc shape.
탄성부(150)의 중앙 부위에는 직선부(153)가 배치되고 탄성부(150)의 외측 부위에는 만곡부(154)가 배치된다. 직선부(153)는 폭 방향과 평행하게 구비되어 접촉압에 따른 만곡부(154)의 변형이 보다 쉽게 이루어지도록 한다. A straight portion 153 is disposed at the center of the elastic portion 150 and a curved portion 154 is disposed at an outer portion of the elastic portion 150 . The straight portion 153 is provided parallel to the width direction so that the deformation of the curved portion 154 according to the contact pressure is more easily achieved.
검사 장치(10)에 설치된 전기 전도성 접촉핀(100)이 설치부재(200)로부터 이탈되지 않도록 하기 위하여, 지지부(130)의 일단부에는 제1걸림부(131)가 구비되고 타단부에는 제2걸림부(132)가 구비된다. In order to prevent the electrically conductive contact pin 100 installed in the test device 10 from being separated from the installation member 200, a first hooking part 131 is provided at one end of the support part 130 and a second hooking part 132 is provided at the other end.
제1걸림부(131)는 전기 전도성 접촉핀(100)이 설치부재(200)로부터 하 방향으로 이탈되는 것을 방지하고, 제2걸림부(132)는 전기 전도성 접촉핀(100)이 설치부재(200)로부터 상 방향으로 이탈되는 것을 방지한다. The first catching portion 131 prevents the electrically conductive contact pin 100 from being separated from the installation member 200 in the downward direction, and the second catching portion 132 prevents the electrically conductive contact pin 100 from being separated from the installation member 200 in the upward direction.
제1걸림부(131)는 폭 방향 외측으로 돌출된 형태로 구성된다. 이를 통해 전기 전도성 접촉핀(100)의 상 방향 이동을 제한한다. The first hanging portion 131 is configured to protrude outward in the width direction. Through this, upward movement of the electrically conductive contact pin 100 is restricted.
제1걸림부(131)에는 절취부(135)가 구비된다. 절취부(135)는 제1걸림부(131)의 폭 방향 측면에서 두께 방향을 따라 길게 형성된다. 절취부(135)는 그 주변보다 돌출된 형태로 구비된다. The first hanging part 131 is provided with a cutout 135 . The cutout part 135 is formed long along the thickness direction on the side surface of the first hooking part 131 in the width direction. The cutout 135 is provided in a protruding form than its periphery.
본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀(100)은 웨이퍼 크기의 양극산화막 몰드(1000)를 이용함으로써 수만 내지는 수십만개가 일괄적으로 제작된다. 수많은 전기 전도성 접촉핀(100)은 제작과정에서 지지틀에 연결된 상태로 일괄 제작되고, 제작이 완료된 전기 전도성 접촉핀(100)을 지지틀에서 하나씩 떼어내어 설치부재(200)의 관통홀(210)에 삽입하여 설치하게 된다. 전기 전도성 접촉핀(100)을 지지틀에서 쉽게 떼어 낼 수 있도록, 제1걸림부(131)의 측면에 절취부(135)가 구성된다. 절취부(135)는 전기 전도성 접촉핀(100)을 제작할 때에는 전기 전도성 접촉핀(100)을 지지틀에 고정하는 기능을 수행하고, 전기 전도성 접촉핀(100)을 지지틀에서 분리할 때는 쉽게 분리되도록 하는 기능을 수행한다. Tens of thousands to hundreds of thousands of electrically conductive contact pins 100 according to a preferred embodiment of the present invention are manufactured collectively by using a wafer-sized anodic oxide film mold 1000 . Numerous electrically conductive contact pins 100 are collectively manufactured while being connected to the support frame during the manufacturing process, and the electrically conductive contact pins 100 that have been manufactured are removed from the support frame one by one and inserted into the through-hole 210 of the installation member 200 to be installed. A cutout 135 is formed on the side of the first hooking portion 131 so that the electrically conductive contact pin 100 can be easily removed from the support frame. The cutout 135 performs a function of fixing the electrically conductive contact pin 100 to the support frame when manufacturing the electrically conductive contact pin 100, and easily separates the electrically conductive contact pin 100 from the support frame.
제2걸림부(132)는 갈고리 형태로 구비된다. 제2걸림부(132)는 지지부(130)와 연결되되 폭 방향 내측으로 경사진 제1경사부(132a)와, 일단이 제1경사부(132a)와 연결되고 타단이 자유단으로 형성되면서 제1경사부(132a)의 경사 방향으로 경사진 제2경사부(132b)를 포함한다. 제1경사부(132a)와 제2경사부(132b)의 구성을 통해 제2걸림부(132)는 갈고리 형태가 되어 제2경사부(132b)의 타단이 설치부재(200)의 하면에 지지된다. 또한, 제1경사부(132a)와 제2경사부(132b)의 구성을 통해 제2걸림부(132)가 폭 방향으로 보다 쉽게 탄성변형되므로, 전기 전도성 접촉핀(100)을 설치부재(200)의 관통홀(210)에 삽입하는 것이 용이해진다. The second hanging part 132 is provided in the form of a hook. The second hooking part 132 is connected to the support part 130 and includes a first inclined part 132a inclined inward in the width direction, one end connected to the first inclined part 132a and the other end being formed as a free end, and a second inclined part 132b inclined in the inclined direction of the first inclined part 132a. Through the configuration of the first inclined part 132a and the second inclined part 132b, the second hooking part 132 has a hook shape so that the other end of the second inclined part 132b is supported on the lower surface of the installation member 200. In addition, since the second hooking portion 132 is more easily elastically deformed in the width direction through the configuration of the first inclined portion 132a and the second inclined portion 132b, it is easy to insert the electrically conductive contact pin 100 into the through hole 210 of the installation member 200.
이하에서는 상술한 본 발명의 바람직한 실시예들에 따른 전기 전도성 접촉핀(100)의 제조방법에 대해 설명한다.Hereinafter, a method of manufacturing the electrically conductive contact pin 100 according to the above-described preferred embodiments of the present invention will be described.
도 3a는 내부 공간(1100)이 형성된 몰드(1000)의 평면도이고, 도 3b는 도 3a의 A-A'단면도이다. FIG. 3A is a plan view of the mold 1000 in which the inner space 1100 is formed, and FIG. 3B is a cross-sectional view taken along line A-A' of FIG. 3A.
몰드(1000)는 양극산화막, 포토레지스트, 실리콘 웨이퍼 또는 이와 유사한 재질로 구성될 있다. 다만, 바람직하게는 몰드(1000)는 양극산화막 재질로 구성될 수 있다. 양극산화막은 모재인 금속을 양극산화하여 형성된 막을 의미하고, 포어는 금속을 양극산화하여 양극산화막을 형성하는 과정에서 형성되는 구멍을 의미한다. 예컨대, 모재인 금속이 알루미늄(Al) 또는 알루미늄 합금인 경우, 모재를 양극산화하면 모재의 표면에 알루미늄 산화물(Al203) 재질의 양극산화막이 형성된다. 다만 모재 금속은 이에 한정되는 것은 아니며, Ta, Nb, Ti, Zr, Hf, Zn, W, Sb 또는 이들의 합금을 포함한다, 위와 같이 형성된 양극산화막은 수직적으로 내부에 포어가 형성되지 않은 배리어층과, 내부에 포어가 형성된 다공층으로 구분된다. 배리어층과 다공층을 갖는 양극산화막이 표면에 형성된 모재에서, 모재를 제거하게 되면, 알루미늄 산화물(Al203) 재질의 양극산화막만이 남게 된다. 양극산화막은 양극산화시 형성된 배리어층이 제거되어 포어의 상, 하로 관통되는 구조로 형성되거나 양극산화시 형성된 배리어층이 그대로 남아 포어의 상, 하 중 일단부를 밀폐하는 구조로 형성될 수 있다. The mold 1000 may be made of an anodic oxide film, photoresist, silicon wafer, or a material similar thereto. However, preferably, the mold 1000 may be made of an anodic oxide film material. The anodic oxide film means a film formed by anodic oxidation of a base metal, and the pore means a hole formed in the process of forming an anodic oxide film by anodic oxidation of a metal. For example, when the base metal is aluminum (Al) or an aluminum alloy, when the base metal is anodized, an anodized film made of aluminum oxide (Al 2 O 3 ) is formed on the surface of the base metal. However, the base metal is not limited thereto, and includes Ta, Nb, Ti, Zr, Hf, Zn, W, Sb, or an alloy thereof. The anodic oxide film formed as above is vertically divided into a barrier layer having no pores formed therein and a porous layer having pores formed therein. In the base material on which the anodic oxide film having the barrier layer and the porous layer is formed, when the base material is removed, only the anodic oxide film made of aluminum oxide (Al 2 O 3 ) remains. The anodic oxidation film may be formed in a structure in which the barrier layer formed during anodic oxidation is removed to pass through the upper and lower pores, or in a structure in which the barrier layer formed during anodic oxidation remains as it is and seals one end of the upper and lower portions of the pores.
양극산화막은 2~3ppm/℃의 열팽창 계수를 갖는다. 이로 인해 고온의 환경에 노출될 경우, 온도에 의한 열변형이 적다. 따라서 전기 전도성 접촉핀(100)의 제작 환경에 비록 고온 환경이라 하더라도 열 변형없이 정밀한 전기 전도성 접촉핀(100)을 제작할 수 있다. The anodic oxide film has a thermal expansion coefficient of 2 to 3 ppm/°C. Due to this, when exposed to a high temperature environment, thermal deformation due to temperature is small. Therefore, the electrically conductive contact pin 100 can be manufactured accurately without thermal deformation even in a high-temperature environment in which the electrically conductive contact pin 100 is manufactured.
본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀(100)은 포토 레지스트 몰드 대신에 양극산화막 재질의 몰드(1000)를 이용하여 제조된다는 점에서 포토 레지스트 몰드로는 구현하는데 한계가 있었던 형상의 정밀도, 미세 형상의 구현의 효과를 발휘할 수 있게 된다. 또한 기존의 포토 레지스트 몰드의 경우에는 40㎛ 두께 수준의 전기 전도성 접촉핀을 제작할 수 있으나 양극산화막 재질의 몰드(1000)를 이용할 경우에는 100㎛ 이상에서 200㎛ 이하의 두께를 가지는 전기 전도성 접촉핀(100)을 제작할 수 있게 된다.Since the electrically conductive contact pin 100 according to a preferred embodiment of the present invention is manufactured using the mold 1000 made of an anodic oxide film instead of the photoresist mold, it is possible to achieve the effect of implementing fine shapes and accuracy of shape, which were limited to implement with the photoresist mold. In addition, in the case of a conventional photoresist mold, an electrically conductive contact pin having a thickness of 40 μm can be manufactured, but in the case of using the mold 1000 made of an anodized film material, an electrically conductive contact pin 100 having a thickness of 100 μm or more to 200 μm or less can be manufactured.
몰드(1000)의 하면에는 시드층(1200)이 구비된다. 시드층(1200)은 몰드(1000)에 내부 공간(1100)을 형성하기 이전에 몰드(1000)의 하면에 구비될 수 있다. 한편 몰드(1000)의 하부에는 지지기판(미도시)이 형성되어 몰드(1000)의 취급성을 향상시킬 수 있다. 또한 이 경우 지지기판의 상면에 시드층(1200)을 형성하고 내부 공간(1100)이 형성된 몰드(1000)를 지지기판에 결합하여 사용할 수도 있다. 시드층(1200)은 구리(Cu)재질로 형성될 수 있고, 증착 방법에 의해 형성될 수 있다. A seed layer 1200 is provided on the lower surface of the mold 1000 . The seed layer 1200 may be provided on the lower surface of the mold 1000 before forming the inner space 1100 in the mold 1000 . Meanwhile, a support substrate (not shown) is formed under the mold 1000 to improve handling of the mold 1000 . Also, in this case, the seed layer 1200 is formed on the upper surface of the support substrate and the mold 1000 in which the inner space 1100 is formed may be used by being coupled to the support substrate. The seed layer 1200 may be formed of a copper (Cu) material and may be formed by a deposition method.
내부 공간(1100)은 양극산화막 재질의 몰드(1000)를 습식 에칭하여 형성될 수 있다. 이를 위해 몰드(1000)의 상면에 포토 레지스트를 구비하고 이를 패터닝한 다음, 패터닝되어 오픈된 영역의 양극산화막이 에칭 용액과 반응하여 내부 공간(1100)이 형성될 수 있다. The inner space 1100 may be formed by wet etching the mold 1000 made of an anodic oxide film. To this end, a photoresist is provided on the upper surface of the mold 1000 and patterned, and then the anodic oxide film in the patterned open area reacts with the etching solution to form the inner space 1100 .
그 다음 몰드(1000)의 내부 공간(1100)에 전기 도금 공정을 수행하여 전기 전도성 접촉핀(100)를 형성한다. 도 3c는 내부 공간(1100)에 전기 도금 공정을 수행하여 것을 도시한 평면도이고, 도 3d는 도 3c의 A-A'단면도이다. Then, an electroplating process is performed on the inner space 1100 of the mold 1000 to form the electrically conductive contact pins 100 . Figure 3c is a plan view showing that the electroplating process is performed on the inner space 1100, Figure 3d is a cross-sectional view A-A' of Figure 3c.
몰드(1000)의 두께 방향(±z 방향)으로 금속층이 성장하면서 형성되기 때문에, 전기 전도성 접촉핀(100)의 두께 방향(±z 방향)으로의 각 단면에서의 형상이 동일하고, 전기 전도성 접촉핀(100)의 두께 방향(±z 방향)으로 복수 개의 금속층이 적층되어 구비된다. 복수개의 금속층은, 제1금속층(101)과 제2금속층(102)을 포함한다. 제1금속층(101)은 제2금속층(102)에 비해 상대적으로 내마모성이 높은 금속으로서 로듐(rhodium, Rd), 백금 (platinum, Pt), 이리듐(iridium, Ir), 팔라듐(palladium) 이나 이들의 합금, 또는 팔라듐-코발트(palladium-cobalt, PdCo) 합금, 팔라듐-니켈(palladium-nickel, PdNi) 합금 또는 니켈-인(nickel-phosphor, NiPh) 합금, 니켈-망간(nickel-manganese, NiMn), 니켈-코발트(nickel-cobalt, NiCo) 또는 니켈-텅스텐(nickel-tungsten, NiW) 합금을 포함한다. 제2금속층(102)은 제1금속층(101)에 비해 상대적으로 전기 전도도가 높은 금속으로서 구리(Cu), 은(Ag), 금(Au) 또는 이들의 합금을 포함한다. Since the metal layer is formed while growing in the thickness direction (±z direction) of the mold 1000, the shape of each cross section in the thickness direction (±z direction) of the electrically conductive contact pin 100 is the same, and a plurality of metal layers are stacked in the thickness direction (±z direction) of the electrically conductive contact pin 100. The plurality of metal layers include a first metal layer 101 and a second metal layer 102 . The first metal layer 101 is a metal having relatively high wear resistance compared to the second metal layer 102, and is rhodium (Rd), platinum (Pt), iridium (Ir), palladium (palladium) or an alloy thereof, or a palladium-cobalt (PdCo) alloy, a palladium-nickel (PdNi) alloy, or a nickel-phosphorus (nickel-phosphor (NiPh) alloy, nickel-manganese (NiMn), nickel-cobalt (NiCo) or nickel-tungsten (NiW) alloy. The second metal layer 102 is a metal having relatively higher electrical conductivity than the first metal layer 101 and includes copper (Cu), silver (Ag), gold (Au), or an alloy thereof.
제1금속층(101)은 전기 전도성 접촉핀(100)의 두께 방향(±z 방향)으로 하면과 상면에 구비되고 제2금속층(102)은 제1금속층(101) 사이에 구비된다. 예를 들어, 전기 전도성 접촉핀(100)은 제1금속층(101), 제2금속층(102), 제1금속층(101) 순으로 교대로 적층되어 구비되며, 적층되는 층수는 3층 이상으로 구성될 수 있다. The first metal layer 101 is provided on the lower and upper surfaces of the electrically conductive contact pin 100 in the thickness direction (±z direction), and the second metal layer 102 is provided between the first metal layers 101 . For example, the electrically conductive contact pin 100 is provided by alternately stacking the first metal layer 101, the second metal layer 102, and the first metal layer 101 in this order, and the number of layers to be stacked may be three or more.
한편, 도금 공정이 완료된 이후에, 고온으로 승온한 후 압력을 가해 도금 공정이 완료된 금속층을 눌러줌으로써 제1금속층(101) 및 제2금속층(102)이 보다 고밀화되도록 할 수 있다. 포토레지스트 재질을 몰드로 이용할 경우, 도금 공정이 완료된 이후의 금속층 주변에는 포토레지스트가 존재하므로 고온으로 승온하여 압력을 가하는 공정을 수행할 수 없다. 이와는 다르게, 본 발명의 바람직한 실시예에 따르면 도금 공정이 완료된 금속층의 주변으로는 양극산화막 재질의 몰드(1000)가 구비되어 있기 때문에 고온으로 승온하더라도 양극산화막의 낮은 열 팽창계수로 인해 변형을 최소화하면서 제1금속층(101) 및 제2금속층(102)을 고밀화시키는 것이 가능하다. 따라서 포토레지스트를 몰드로 이용하는 기술에 비해 보다 고밀화된 제1금속층(101) 및 제2금속층(102)을 얻는 것이 가능하게 된다.Meanwhile, after the plating process is completed, the first metal layer 101 and the second metal layer 102 may be made more dense by raising the temperature to a high temperature and pressing the metal layer on which the plating process is completed by applying pressure. When a photoresist material is used as a mold, a process of raising the temperature to a high temperature and applying pressure cannot be performed because the photoresist exists around the metal layer after the plating process is completed. Unlike this, according to a preferred embodiment of the present invention, since the mold 1000 made of an anodic oxide film is provided around the metal layer on which the plating process is completed, it is possible to densify the first metal layer 101 and the second metal layer 102 while minimizing deformation due to the low thermal expansion coefficient of the anodic oxide film even when the temperature is raised to a high temperature. Therefore, it becomes possible to obtain a higher density first metal layer 101 and second metal layer 102 compared to a technique using a photoresist as a mold.
전기 도금 공정이 완료가 되면, 몰드(1000)와 시드층(1200)을 제거하는 공정을 수행한다. 몰드(1000)가 양극산화막 재질인 경우에는 양극산화막 재질에 선택적으로 반응하는 용액을 이용하여 몰드(1000)를 제거한다. 또한 시드층(1200)이 구리(Cu) 재질인 경우에는 구리(Cu)에 선택적으로 반응하는 용액을 이용하여 시드층(1200)을 제거한다.When the electroplating process is completed, a process of removing the mold 1000 and the seed layer 1200 is performed. When the mold 1000 is made of an anodic oxide film material, the mold 1000 is removed using a solution that selectively reacts to the anodic oxide film material. Also, when the seed layer 1200 is made of copper (Cu), the seed layer 1200 is removed using a solution that selectively reacts with copper (Cu).
도 4를 참조하면, 본 발명의 바람직한 실시예들에 따른 전기 전도성 접촉핀(100)은, 그 측면에 복수 개의 미세 트렌치(88)를 포함한다. 미세 트렌치(88)는 전기 전도성 접촉핀(100)의 측면에서 전기 전도성 접촉핀(100)의 두께 방향(±z 방향)으로 길게 연장되어 형성된다. 여기서 전기 전도성 접촉핀(100)의 두께 방향(±z 방향)은 전기 도금 시 금속 충진물이 성장하는 방향을 의미한다. Referring to FIG. 4 , an electrically conductive contact pin 100 according to preferred embodiments of the present invention includes a plurality of fine trenches 88 on its side surface. The fine trench 88 is formed by extending from the side of the electrically conductive contact pin 100 to a thickness direction (±z direction) of the electrically conductive contact pin 100 . Here, the thickness direction (±z direction) of the electrically conductive contact pin 100 means a direction in which metal fillers grow during electroplating.
미세 트렌치(88)는 그 깊이가 20㎚ 이상 1㎛이하의 범위를 가지며, 그 폭 역시 20㎚ 이상 1㎛이하의 범위를 가진다. 여기서 미세 트렌치(88)는 양극산화막 몰드(1000)의 제조시 형성된 포어에 기인한 것이기 때문에 미세 트렌치(88)의 폭과 깊이는 양극산화막 몰드(1000)의 포어의 직경의 범위 이하의 값을 가진다. 한편, 양극산화막 몰드(1000)에 내부 공간(1100)을 형성하는 과정에서 에칭 용액에 의해 양극산화막 몰드(1000)의 포어의 일부가 서로 뭉개지면서 양극산화시 형성된 포어의 직경의 범위보다 보다 큰 범위의 깊이를 가지는 미세 트렌치(88)가 적어도 일부 형성될 수 있다. The fine trench 88 has a depth of 20 nm or more and 1 μm or less, and a width of 20 nm or more and 1 μm or less. Here, since the fine trench 88 is due to pores formed during the manufacture of the anodic oxide film mold 1000, the width and depth of the fine trench 88 have a value equal to or less than the range of the diameter of the pore of the anodic oxide film mold 1000. On the other hand, in the process of forming the inner space 1100 in the anodic oxide film mold 1000, some of the pores of the anodic oxide film mold 1000 are crushed together by the etching solution, and at least some of the fine trenches 88 having a depth greater than the range of diameters of the pores formed during anodic oxidation may be formed.
양극산화막 몰드(1000)는 수많은 포어들을 포함하고 이러한 양극산화막 몰드(1000)의 적어도 일부를 에칭하여 내부 공간(1100)을 형성하고, 내부 공간(1100) 내부로 전기 도금으로 금속 충진물을 형성하므로, 전기 전도성 접촉핀(100)의 측면에는 양극산화막 몰드(1000)의 포어와 접촉하면서 형성되는 미세 트렌치(88)가 구비되는 것이다. Since the anodic oxide film mold 1000 includes numerous pores, and at least a part of the anodic oxide film mold 1000 is etched to form an inner space 1100, and a metal filling is formed by electroplating into the inner space 1100, the side surface of the electrically conductive contact pin 100 is provided with a fine trench 88 formed while contacting the pores of the anodic oxide film mold 1000.
위와 같은 미세 트렌치(88)는, 전기 전도성 접촉핀(100)의 측면에 있어서 표면적으로 크게 할 수 있는 효과를 가진다. 전기 전도성 접촉핀(100)의 측면에 형성되는 미세 트렌치(88)의 구성을 통해, 전기 전도성 접촉핀(100)에서 발생한 열을 빠르게 방출할 수 있으므로 전기 전도성 접촉핀(100)의 온도 상승을 억제할 수 있게 된다. 또한, 전기 전도성 접촉핀(100)의 측면에 형성되는 미세 트렌치(88)의 구성을 통해, 전기 전도성 접촉핀(100)의 변형 시 비틀림 저항 능력을 향상시킬 수 있게 된다. The fine trench 88 as described above has an effect of increasing the surface area on the side surface of the electrically conductive contact pin 100 . Heat generated from the electrically conductive contact pin 100 can be quickly dissipated through the configuration of the micro trench 88 formed on the side surface of the electrically conductive contact pin 100, so that the temperature rise of the electrically conductive contact pin 100 can be suppressed. In addition, through the configuration of the micro trench 88 formed on the side surface of the electrically conductive contact pin 100, it is possible to improve torsional resistance when the electrically conductive contact pin 100 is deformed.
검사 대상물(20)의 고주파 특성 검사를 효과적으로 대응하기 위해서는 전기 전도성 접촉핀(100)의 전체 길이(L)는 짧아야 한다. 이에 따라 탄성부(150)의 길이도 짧아져야 한다. 하지만 탄성부(150)의 길이가 짧아지게 되면 접촉압이 커지는 문제가 발생하게 된다. 탄성부(150)의 길이를 짧게 하면서도 접촉압이 커지지 않도록 하려면, 탄성부(150)를 구성하는 판상 플레이트의 실질 폭(t)을 작게 해야 한다. 그러나 탄성부(150)를 구성하는 판상 플레이트의 실질 폭(t)을 작게 하면 탄성부(150)가 쉽게 파손되는 문제를 발생하게 된다. 탄성부(150)의 길이를 짧게 하면서도 접촉압이 커지지 않고 탄성부(150)의 파손을 방지하기 위해서는 탄성부(150)를 구성하는 판상 플레이트의 전체 두께 치수(H)를 크게 형성하여야 한다. In order to effectively respond to the high-frequency characteristic test of the test object 20, the overall length L of the electrically conductive contact pin 100 should be short. Accordingly, the length of the elastic part 150 should also be shortened. However, when the length of the elastic part 150 is shortened, a problem of increasing contact pressure occurs. In order to keep the contact pressure from increasing while shortening the length of the elastic part 150, the actual width t of the plate-shaped plate constituting the elastic part 150 should be reduced. However, if the actual width t of the plate-shaped plate constituting the elastic part 150 is reduced, the elastic part 150 may be easily damaged. In order to shorten the length of the elastic part 150 and prevent damage to the elastic part 150 without increasing the contact pressure, the total thickness H of the plate-shaped plate constituting the elastic part 150 should be formed large.
본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀(100)은 판상 플레이트의 실질 폭(t)은 얇게 하면서도 판상 플레이트의 전체 두께 치수(H)는 크도록 형성된다. 즉, 판상 플레이트의 실질 폭(t) 대비 전체 두께 치수(H)가 크게 형성된다. 바람직하게는 전기 전도성 접촉핀(100)를 구성하는 판상 플레이트의 실질 폭(t)이 5㎛ 이상 15㎛이하의 범위로 구비되고, 전체 두께 치수(H)는 70㎛ 이상 200㎛이하의 범위로 구비되되, 판상 플레이트의 실질 폭(t)과 전체 두께 치수(H)는 1:5 내지 1:30의 범위로 구비된다. 예를 들어, 판상 플레이트의 실질 폭은 실질적으로 10㎛로 형성되고, 전체 두께 치수(H)는 100㎛로 형성되어 판상 플레이트의 실질 폭(t)과 전체 두께 치수(H)는 1:10의 비율로 형성될 수 있다. The electrically conductive contact pin 100 according to a preferred embodiment of the present invention is formed such that the actual width t of the plate-shaped plate is thin while the overall thickness dimension H of the plate-shaped plate is large. That is, the overall thickness dimension (H) is formed to be larger than the actual width (t) of the plate-shaped plate. Preferably, the actual width (t) of the plate-shaped plate constituting the electrically conductive contact pin 100 is in the range of 5 μm or more and 15 μm or less, the total thickness (H) is in the range of 70 μm or more and 200 μm or less, and the actual width (t) and the total thickness (H) of the plate-shaped plate are provided in the range of 1:5 to 1:30. For example, the actual width of the plate-like plate is formed to be substantially 10 μm, and the total thickness dimension (H) is formed to be 100 μm, so that the effective width (t) and the total thickness dimension (H) of the plate-like plate are formed at a ratio of 1:10. Can be formed.
이를 통해 탄성부(150)의 파손을 방지하면서도 탄성부(150)의 길이를 짧게 하는 것이 가능하고 탄성부(150)의 길이를 짧게 하더라도 적절한 접촉압을 갖도록 하는 것이 가능하다. 더욱이 탄성부(150)를 구성하는 판상 플레이트의 실질 폭(t) 대비 전체 두께 치수(H)를 크게 하는 것이 가능함에 따라 탄성부(150)의 앞, 뒤 방향으로 작용하는 모멘트에 대한 저항이 커지고 되고 그 결과 접촉 안정성이 향상된다.Through this, it is possible to shorten the length of the elastic part 150 while preventing damage to the elastic part 150, and even if the length of the elastic part 150 is shortened, it is possible to have an appropriate contact pressure. Furthermore, as it is possible to increase the total thickness dimension (H) compared to the actual width (t) of the plate-shaped plate constituting the elastic part 150, the resistance to the moment acting in the front and rear directions of the elastic part 150 increases, and as a result, contact stability is improved.
탄성부(150)의 길이를 짧게 하는 것이 가능함에 따라, 전기 전도성 접촉핀(100)의 전체 두께 치수(H)와 전체 길이 치수(L)는 1:3 내지 1:9의 범위로 구비된다. 바람직하게는 전기 전도성 접촉핀(100)의 전체 길이 치수(L)는 300㎛ 이상 2㎜하의 범위로 구비될 수 있으며, 보다 바람직하게는 350㎛ 이상 600㎛이하의 범위로 구비될 수 있다. 이처럼 전기 전도성 접촉핀(100)의 전체 길이 치수(L)를 짧게 하는 것이 가능하게 되어 고주파 특성에 대응하는 것이 용이하게 되고, 탄성부(150)의 탄성 복원 시간이 단축됨에 따라 테스트 시간도 단축되는 효과를 발휘할 수 있게 된다. As it is possible to shorten the length of the elastic portion 150, the overall thickness H and the overall length L of the electrically conductive contact pin 100 are provided in the range of 1:3 to 1:9. Preferably, the overall length dimension (L) of the electrically conductive contact pin 100 may be provided in the range of 300 μm or more and less than 2 mm, and more preferably may be provided in the range of 350 μm or more and 600 μm or less. In this way, it is possible to shorten the overall length L of the electrically conductive contact pin 100, making it easy to respond to high-frequency characteristics, and as the elastic recovery time of the elastic part 150 is shortened, the test time can also be shortened.
또한, 전기 전도성 접촉핀(100)를 구성하는 판상 플레이트는 그 실질 폭(t)이 두께(H) 보다 작은 크기로 형성됨에 따라 전, 후 방향으로의 굽힘 저항력이 향상된다. In addition, since the planar plate constituting the electrically conductive contact pin 100 has a substantially smaller width t than the thickness H, resistance to bending in the front and rear directions is improved.
전기 전도성 접촉핀(100)의 전체 두께 치수(H)와 전체 폭 치수(W)는 1:1 내지는 1:5의 범위로 구비된다. 바람직하게는 전기 전도성 접촉핀(100)의 전체 두께 치수(H)는 70㎛ 이상 200㎛이하의 범위로 구비되고, 전기 전도성 접촉핀(100)의 전체 폭 치수(W)는 100㎛ 이상 500㎛하의 범위로 구비될 수 있으며, 보다 바람직하게는 전기 전도성 접촉핀(100)의 전체 폭 치수(W)는 150㎛ 이상 400㎛이하의 범위로 구비될 수 있다. 이처럼 전기 전도성 접촉핀(100)의 전체 폭 치수(W)를 짧게 함으로써 협피치화하는 것이 가능하게 된다. The overall thickness (H) and the overall width (W) of the electrically conductive contact pin 100 are provided in the range of 1:1 to 1:5. Preferably, the overall thickness (H) of the electrically conductive contact pins 100 is provided in the range of 70 μm or more and 200 μm or less, and the overall width (W) of the electrically conductive contact pins 100 may be provided in the range of 100 μm or more and 500 μm or less. In this way, by shortening the overall width dimension W of the electrically conductive contact pin 100, it is possible to narrow the pitch.
한편, 전기 전도성 접촉핀(100)의 전체 두께 치수(H)와 전체 폭 치수(W)는 실질적으로 동일한 길이로 형성될 수 있다. 따라서 전체 두께 치수(H)와 전체 폭 치수(W)는 실질적으로 동일한 길이가 되도록 복수개의 전기 전도성 접촉핀(100)을 두께 방향으로 여러 개 접합할 필요가 없게 된다. 또한 전기 전도성 접촉핀(100)의 전체 두께 치수(H)와 전체 폭 치수(W)는 실질적으로 동일한 길이로 형성하는 것이 가능하게 됨에 따라, 전기 전도성 접촉핀(100)의 앞, 뒤 방향으로 작용하는 모멘트에 대한 저항이 커지고 되고 그 결과 접촉 안정성이 향상된다. 더욱이 전기 전도성 접촉핀(100)의 전체 두께 치수(H)는 70㎛ 이상이면서 전체 두께 치수(H)와 전체 폭 치수(W)는 1:1 내지는 1:5의 범위로 구비되는 구성에 따르면 전기 전도성 접촉핀(100)의 전체적인 내구성 및 변형 안정성이 향상되면서 접속 단자(410)와의 접촉 안정성이 향상된다. 또한 전기 전도성 접촉핀(100)의 전체 두께 치수(H)는 70㎛ 이상으로 형성됨에 따라 전류 운반 용량(Current Carrying Capacity)를 향상시킬 수 있게 된다. Meanwhile, the overall thickness (H) and the overall width (W) of the electrically conductive contact pin 100 may be formed to have substantially the same length. Accordingly, it is not necessary to bond a plurality of electrically conductive contact pins 100 in the thickness direction so that the overall thickness dimension H and the overall width dimension W are substantially the same length. In addition, as it is possible to form the overall thickness (H) and the overall width (W) of the electrically conductive contact pin 100 to have substantially the same length, resistance to a moment acting in the front and rear directions of the electrically conductive contact pin 100 increases, and as a result, contact stability is improved. Furthermore, according to the configuration in which the total thickness H of the electrically conductive contact pin 100 is 70 μm or more and the total thickness H and total width W are in the range of 1:1 to 1:5, the overall durability and deformation stability of the electrically conductive contact pin 100 are improved, and contact stability with the connection terminal 410 is improved. In addition, as the total thickness H of the electrically conductive contact pin 100 is formed to be 70 μm or more, current carrying capacity can be improved.
종래 포토레지스트 몰드를 이용하여 제작되는 전기 전도성 접촉핀(100)은, 복수의 포토레지스트를 적층하여 몰드를 구성하기 때문에 얼라인 문제로 인해 전체 두께 치수를 크게 할 수 없다. 그 결과, 전체 폭 치수(W) 대비 전체 두께 치수(H)가 작다. 예를 들어 종래 전기 전도성 접촉핀(100)은 전체 두께 치수(H)가 70㎛ 미만이면서 전체 두께 치수(H)와 전체 폭 치수(W)가 1:2 내지 1:10의 범위로 구성되기 때문에, 접촉압에 의해 전기 전기 전도성 접촉핀(100)을 앞, 뒤 방향으로 변형시키는 모멘트에 대한 저항력이 약하다. 종래에는 전기 전도성 접촉핀(100)의 앞, 뒷면에 탄성부의 과도한 변형으로 인한 문제 발생을 방지하기 위해, 전기 전도성 접촉핀(100)의 앞, 뒷면에 하우징을 추가로 형성하는 것을 고려해야 하지만, 본 발명의 바람직한 실시예에 따르면 추가적인 하우징 구성이 필요없게 된다. The electrically conductive contact pin 100 manufactured using a conventional photoresist mold cannot have a large overall thickness due to alignment problems because the mold is formed by laminating a plurality of photoresists. As a result, the overall thickness dimension (H) is small compared to the overall width dimension (W). For example, since the conventional electrically conductive contact pin 100 has a total thickness H of less than 70 μm and a total thickness H and a total width W in the range of 1:2 to 1:10, resistance to a moment that deforms the electrically conductive contact pin 100 in the front and rear directions due to contact pressure is weak. Conventionally, in order to prevent problems due to excessive deformation of elastic parts on the front and rear surfaces of the electrically conductive contact pins 100, it is considered to additionally form housings on the front and rear surfaces of the electrically conductive contact pins 100, but according to a preferred embodiment of the present invention, an additional housing structure is not required.
도 5 및 도 6을 참조하면, 본 발명의 실시예에 따른 검사 장치(10)는 인서트 몸체(4)와, 가이드(3)와, 설치부재(200), 전기 전도성 접촉핀(100), 그리고 푸셔(5)를 포함한다.5 and 6, the inspection device 10 according to an embodiment of the present invention includes an insert body 4, a guide 3, an installation member 200, an electrically conductive contact pin 100, and a pusher 5.
인서트 몸체(4)는 검사 대상물(400)인 반도체 패키지를 수용하여 검사 대상물(400)이 안정된 상태에서 테스트가 이루어질 수 있도록 한다.The insert body 4 accommodates the semiconductor package, which is the object to be inspected 400, so that the object 400 to be inspected can be tested in a stable state.
가이드(3)는 설치부재(200)의 장착을 가이드 하는 역할을 한다.The guide 3 serves to guide the mounting of the installation member 200.
설치부재(200)는 가이드(3)의 장착부에 고정 설치되며, 복수개의 전기 전도성 접촉핀(100)이 설치된다. The mounting member 200 is fixed to the mounting portion of the guide 3, and a plurality of electrically conductive contact pins 100 are installed.
가이드 몸체(4)의 하부에는 검사 대상물(400)의 접속단자(410)를 가이드 하기 위해 홀이 마련된 단자 가이드 필름(7)이 설치된다. 단자 가이드 필름(70)은 검사 대상물(400)과 전기 전도성 접촉핀(100) 사이에 구비된다. A terminal guide film 7 having holes is installed in the lower part of the guide body 4 to guide the connection terminals 410 of the object 400 to be inspected. The terminal guide film 70 is provided between the test object 400 and the electrically conductive contact pin 100 .
단자 가이드 필름(7)은 검사 대상물(400)의 검사 시, 검사 대상물(400)의 접속 단자(410)가 단자 가이드 필름(7)에 마련된 홀에 삽입되도록 하여 정확한 접촉 위치를 안내한다.The terminal guide film 7 guides an accurate contact position by allowing the connection terminal 410 of the test object 400 to be inserted into a hole provided in the terminal guide film 7 when the test object 400 is inspected.
푸셔(5)는 인서트 몸체(4)의 수납부에 안착된 검사 대상물(400)를 일정한 압력으로 가압시키는 역할을 한다. 푸셔(5)에 의해 가압되는 검사 대상물(400)은 설치 부재(200)에 설치된 전기 전도성 접촉핀(100)을 통해 회로기판의 패드(P)에 전기적으로 연결될 수 있다.The pusher 5 serves to pressurize the test object 400 seated in the receiving part of the insert body 4 with a constant pressure. The test object 400 pressed by the pusher 5 may be electrically connected to the pad P of the circuit board through the electrically conductive contact pin 100 installed on the installation member 200 .
도 8을 참조하면, 설치부재(200)에는 관통홀(210)이 형성된다. 관통홀(210)은 사각 단면의 형상을 가지며, 전기 전도성 접촉핀(100)의 외곽 형상도 관통홀(210)의 단면 형상과 대응되게 사각 단면 형상을 가진다. Referring to FIG. 8 , a through hole 210 is formed in the installation member 200 . The through hole 210 has a square cross-sectional shape, and the outer shape of the electrically conductive contact pin 100 also has a square cross-sectional shape corresponding to the cross-sectional shape of the through hole 210 .
관통홀(210)의 단면과 전기 전도성 접촉핀(100)의 외곽 형상은 바람직하게는 직사각 형상으로 형성될 수 있다. 이를 통해 전기 전도성 접촉핀(100)이 90도 회전 상태에서 오삽입되는 것을 방지할 수 있다. The cross section of the through hole 210 and the outer shape of the electrically conductive contact pin 100 may preferably be formed in a rectangular shape. Through this, it is possible to prevent the electrically conductive contact pin 100 from being erroneously inserted in a 90 degree rotation state.
도 8은 설치부재(200)의 관통홀(210)에 전기 전도성 접촉핀(100)이 삽입된 상태를 도시한 도면이다. FIG. 8 is a view showing a state in which the electrically conductive contact pin 100 is inserted into the through hole 210 of the installation member 200 .
전기 전도성 접촉핀(100)이 관통홀(210)에 삽입된 상태에서 제2걸림부(132)가 설치부재(200)의 하면에 지지될 때까지 전기 전도성 접촉핀(100)을 상향으로 밀어올리면, 지지부(130)의 일부는 설치부재(200)의 상면으로부터 돌출된 상태가 된다. 지지부(130)는 관통홀(210)의 길이보다 길게 형성되어 지지부(130)의 적어도 일부가 관통홀(210)의 외측으로 돌출된다. In a state where the electrically conductive contact pin 100 is inserted into the through hole 210, when the electrically conductive contact pin 100 is pushed upward until the second hooking portion 132 is supported on the lower surface of the installation member 200, a part of the support portion 130 protrudes from the upper surface of the installation member 200. The support portion 130 is longer than the length of the through hole 210 so that at least a portion of the support portion 130 protrudes outward from the through hole 210 .
제1접속부(110)의 접촉부(111)의 폭 방향 치수(d)는 제1지지부(130a)와 제2지지부(130b) 사이의 치수보다 작고, 플랜지(113)는 제1지지부(130a)와 제2지지부(130b) 사이의 영역 내에 위치한다. The width direction dimension (d) of the contact part 111 of the first connection part 110 is smaller than the dimension between the first support part 130a and the second support part 130b, and the flange 113 is the first support part 130a. It is located in the area between the 2nd support part 130b.
제1접속부(110)의 접촉부(111)의 폭 방향 치수(d)는 접속 단자(410)의 폭 방향 치수(D)보다 작거나 같게 형성된다. 플랜지(113)는 접촉부(111)의 폭 방향 단부에서 연속되어 하측으로 연장되어 접촉부(111)는 플랜지(113)를 기준으로 폭 방향 외측으로 돌출되지 않도록 구성되기 때문에, 제1접속부(110)의 폭 방향 치수는 전체적으로 접속 단자(410)의 폭 방향 치수(D)보다 작거나 같게 형성된다.The width d of the contact portion 111 of the first connection portion 110 is smaller than or equal to the width D of the connection terminal 410 . Since the flange 113 is continuously extended downward from the end of the contact portion 111 in the width direction and the contact portion 111 is configured not to protrude outward in the width direction with respect to the flange 113, the width direction dimension of the first connection portion 110 is formed to be smaller than or equal to the width direction dimension D of the connection terminal 410 as a whole.
예컨대, 검사 대상물(400)의 접속단자(410)의 폭 방향 치수(D)이 150㎛인 경우, 제1접속부(110)의 접촉부(111)의 폭 방향 치수(d)는 50㎛이상 150㎛이하로 형성된다. For example, when the width direction dimension (D) of the connection terminal 410 of the inspection object 400 is 150 μm, the width direction dimension (d) of the contact portion 111 of the first connection part 110 is 50 μm or more and 150 μm or less. Formed.
한편, 전기 전도성 접촉핀(100)의 전체 길이 치수(L)는 400㎛ 이상 600㎛이하일 수 있다. 또한 전기 전도성 접촉핀(100)의 전체 폭 치수(W)는 150㎛이상 300㎛이하일 수 있다. 또한, 설치 부재(200)의 길이 방향 치수(L2)는 150㎛이상 250㎛이할 수 있다. 또한, 전기 전도성 접촉핀(100)이 설치 부재(200)의 상부로 돌출된 길이 방향 치수(L1)는 50㎛이상 200㎛이하일 수 있다. 또한 전기 전도성 접촉핀(100)이 설치 부재(200)의 하부로 돌출된 길이 방향 치수(L3)는 50㎛이상 200㎛이하일 수 있다. Meanwhile, the overall length L of the electrically conductive contact pin 100 may be 400 μm or more and 600 μm or less. In addition, the overall width W of the electrically conductive contact pin 100 may be greater than or equal to 150 μm and less than or equal to 300 μm. In addition, the longitudinal dimension L2 of the installation member 200 may be 150 μm or more and 250 μm or less. In addition, a longitudinal dimension L1 of the electrically conductive contact pin 100 protruding upward from the installation member 200 may be greater than or equal to 50 μm and less than or equal to 200 μm. In addition, a longitudinal dimension L3 of the electrically conductive contact pin 100 protruding from the lower portion of the installation member 200 may be greater than or equal to 50 μm and less than or equal to 200 μm.
한편, 제1걸림부(131)의 하면과 설치 부재(200)의 상면의 거리(L4)는 5㎛이상 50㎛이하일 수 있다. Meanwhile, the distance L4 between the lower surface of the first hanging part 131 and the upper surface of the installation member 200 may be 5 μm or more and 50 μm or less.
제1걸림부(131)의 하면과 설치 부재(200)의 상면의 거리(L4)를 통해 검사 대상물(400)의 접촉 스트로크를 확보할 수 있다. 전기 전도성 접촉핀(100)이 접촉 단자(410)에 의해 가압되어 하향 이동할 때, 제1걸림부(131)의 하면과 설치 부재(200)의 상면의 거리(L4)를 통해 제공된 여유 공간내에서 전기 전도성 접촉핀(100)이 전체적으로 하향 이동할 수 있다.The contact stroke of the test object 400 may be secured through the distance L4 between the lower surface of the first hanging part 131 and the upper surface of the installation member 200 . When the electrically conductive contact pin 100 is pressed by the contact terminal 410 and moves downward, the electrically conductive contact pin 100 can move downward as a whole within a spare space provided through the distance L4 between the lower surface of the first hooking portion 131 and the upper surface of the installation member 200.
접촉 단자(410)가 전기 전도성 접촉핀(100)에 접촉하기 위해 하향 이동할 때 스트로크가 매번 일정하지 않을 수 있다. 따라서, 전기 전도성 접촉핀(100)이 설치 부재(200)에 대해 전체적으로 이동할 수 있는 여유 거리가 확보되지 않을 경우 전기 전도성 접촉핀(100)이 파손되는 문제를 야기할 수 있다. 하지만, 제1걸림부(131)의 하면과 설치 부재(200)의 상면의 거리(L4)를 통해 접촉 스트로크를 확보하는 것이 가능하게 된다. When the contact terminal 410 moves downward to contact the electrically conductive contact pin 100, the stroke may not be constant each time. Therefore, when the electrically conductive contact pin 100 is not entirely movable with respect to the installation member 200, the electrically conductive contact pin 100 may be damaged. However, it is possible to secure the contact stroke through the distance L4 between the lower surface of the first hanging part 131 and the upper surface of the installation member 200 .
제1걸림부(131)의 하면과 설치 부재(200)의 상면의 거리(L4)가 5㎛미만인 경우에는 검사대상물의 접촉 스트로크를 확보하는 데에 어려움이 있고, 50㎛를 초과하는 경우에는 단자 가이드 필름(7)과 접속 단자(410) 사이의 틈새에 낄 수 있기 때문에 바람직하지 않다.When the distance L4 between the lower surface of the first hanging part 131 and the upper surface of the installation member 200 is less than 5 μm, it is difficult to secure a contact stroke of the object to be inspected, and when it exceeds 50 μm, it is not preferable because it can get caught in the gap between the terminal guide film 7 and the connection terminal 410.
도 9 및 도 10을 참조하면, 탄성부(150)가 압축 변형하기 전에는 제1접속부(110)는 지지부(130)와 이격된 상태이다. Referring to FIGS. 9 and 10 , before the elastic part 150 compressively deforms, the first connection part 110 is in a state of being spaced apart from the support part 130 .
검사 대상물(400)의 접속 단자(410)가 하강하여 제1접속부(110)의 접촉부(111)에 접촉된다. The connection terminal 410 of the object to be inspected 400 descends and comes into contact with the contact portion 111 of the first connection portion 110 .
검사 대상물(400)의 접속 단자(410)는 단자 가이드 필름(7)에 마련된 홀에 삽입되도록 하여 정확한 접촉 위치를 안내 받는다. 단자 가이드 필름(7)에 형성된 홀에 접속 단자(410)가 삽입됨에 따라, 접속 단자(410)와 단자 가이드 필름(7) 사이에는 틈새가 존재한다. 또한, 단자 가이드 필름(7)의 일부가 쳐짐에 따라 이 검사 대상물(400)의 하면으로부터 이격될 수 있다. The connection terminal 410 of the object to be inspected 400 is guided to an accurate contact position by being inserted into a hole provided in the terminal guide film 7 . As the connection terminal 410 is inserted into the hole formed in the terminal guide film 7, a gap exists between the connection terminal 410 and the terminal guide film 7. In addition, as a part of the terminal guide film 7 is drooped, it may be separated from the lower surface of the inspection object 400 .
본 발명의 바람직한 실시예와는 다르게 접촉부(111)의 상면보다 더욱 돌출된 돌출부분이 있는 경우에는 해당 돌출부분이 검사 대상물(400)의 접속 단자(410)와 단자 가이드 필름(7) 사이의 틈새로 삽입될 수 있다. 이 경우 해당 돌출부분이 틈새에 삽입되어 단자 가이드 필름(7)과 접속 단자(410) 사이에서 끼이게 되고 이러한 끼임 현상으로 인해 반복되는 검사에서 탄성부(150)가 인장되어 소성변형을 일으키거나 전기 전도성 접촉핀(100)이 설치 부재(200)로부터 이탈되는 문제가 발생할 수 있다. Unlike the preferred embodiment of the present invention, when there is a protruding part that protrudes more than the upper surface of the contact part 111, the protruding part can be inserted into the gap between the connection terminal 410 of the test object 400 and the terminal guide film 7. In this case, the protruding part is inserted into the gap and is caught between the terminal guide film 7 and the connection terminal 410, and due to this jamming phenomenon, the elastic part 150 is tensioned and causes plastic deformation or the electrically conductive contact pin 100 may be separated from the installation member 200 in repeated tests.
하지만 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀(100)은, 제1접속부(110)의 플랜지(113)가 접촉부(111)로부터 하측으로 연장되어 탄성부(150)의 적어도 일부를 덮도록 구성된다. 여기서 접촉부(111)는 플랜지(113)보다 폭 방향(±x 방향)으로 돌출되지 않고, 플랜지(113)는 접촉부(111)보다 길이 방향 상측(+y 방향)으로 돌출되지 않도록 구성된다. 이러한 구성을 통해, 검사 대상물(400)의 접속 단자(410)와 단자 가이드 필름(7) 사이에 틈새가 존재하더라도, 제1접속부(110)의 일부분이 틈새로 삽입될 여지가 없게 된다. 더욱이 제1접속부(110)의 접촉부(111)의 폭 방향 치수(d)가 접속 단자(410)의 폭 방향 치수(D)보다 작거나 같게 형성되도록 함으로써, 접속 단자(410)와 제1접속부(110)간에 위치 오차가 발생하더라도 제1접속부(110)의 일부분이 틈새로 삽입되지 않도록 한다. However, in the electrically conductive contact pin 100 according to a preferred embodiment of the present invention, the flange 113 of the first connection portion 110 extends downward from the contact portion 111 to cover at least a portion of the elastic portion 150. Here, the contact portion 111 does not protrude more than the flange 113 in the width direction (±x direction), and the flange 113 does not protrude more than the contact portion 111 in the longitudinal direction (+y direction). Through this configuration, even if there is a gap between the connection terminal 410 of the object 400 and the terminal guide film 7, there is no room for a portion of the first connection part 110 to be inserted into the gap. Furthermore, by making the width direction dimension d of the contact part 111 of the first connection part 110 smaller than or equal to the width direction dimension D of the connection terminal 410, even if a positional error occurs between the connection terminal 410 and the first connection part 110, a part of the first connection part 110 is not inserted into the gap.
가압력에 의해 탄성부(150)가 압축 변형을 하게 되면, 제1접속부(110)는 지지부(130)에 접촉되고 지지부(130)는 회로기판의 패드(P)에 접촉됨에 따라, 제1접속부(110) 및 지지부(130)로 이어지는 전류 패스가 형성된다. When the elastic part 150 is compressed and deformed by the pressing force, the first connection part 110 contacts the support part 130 and the support part 130 contacts the pad P of the circuit board. As a result, a current path leading to the first connection part 110 and the support part 130 is formed.
가압력에 의해 탄성부(150)가 압축 변형을 하게 되면, 제1접속부(110)가 지지부(130)의 내측과 밀착되면서 마찰력을 발생시킨다. 탄성부(150)에 가해지는 응력을 지지부(130)와의 마찰력으로 분산함으로써, 탄성부(150)가 과도하게 변형되는 것을 방지하여 내구성을 향상시킨다. When the elastic part 150 is compressed and deformed by the pressing force, the first connection part 110 comes into close contact with the inside of the support part 130 and generates frictional force. By distributing the stress applied to the elastic part 150 by frictional force with the support part 130, the elastic part 150 is prevented from being excessively deformed, thereby improving durability.
이상에서 설명한 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀(100)은, 검사장치(10)에 구비되어 검사 대상물(400)과 전기적, 물리적으로 접촉하여 전기적 신호를 전달하는데 사용된다. The electrically conductive contact pin 100 according to the preferred embodiment of the present invention described above is provided in the test device 10 and is used to electrically and physically contact the test target 400 to transmit an electrical signal.
검사장치(10)는 구멍이 형성된 설치부재(200)의 관통홀(210)에 삽입되어 설치부재(200)에 설치되는 전기 전도성 접촉핀(100)을 포함한다. The inspection device 10 includes an electrically conductive contact pin 100 installed in the installation member 200 by being inserted into the through hole 210 of the installation member 200 having a hole.
검사장치(10)는 반도체 제조공정에 사용되는 검사장치일 수 있으며, 그 일례로 프로브 카드일 수 있고, 테스트 소켓일 수 있다. 전기 전도성 접촉핀들(100)은 프로브 카드에 구비되어 반도체 칩을 검사하는 전기 전도성 접촉핀일 수 있고, 패키징된 반도체 패키지를 검사하는 테스트 소켓에 구비되어 반도체 패키지를 검사하는 소켓 핀일 수 있다. 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀(100)이 사용될 수 있는 검사장치(10)들은 이에 한정되는 것은 아니며, 전기를 인가하여 검사 대상물의 불량 여부를 확인하기 위한 검사장치라면 모두 포함된다. The inspection device 10 may be an inspection device used in a semiconductor manufacturing process, and may be, for example, a probe card or a test socket. The electrically conductive contact pins 100 may be electrically conductive contact pins provided in a probe card to inspect a semiconductor chip, or socket pins provided in a test socket to inspect a packaged semiconductor package to inspect a semiconductor package. The inspection devices 10 to which the electrically conductive contact pins 100 according to a preferred embodiment of the present invention can be used are not limited thereto, but include all inspection devices for checking whether an object to be inspected is defective by applying electricity.
검사 장치(10)의 검사 대상물(400)은, 반도체 소자, 메모리 칩, 마이크로 프로세서 칩, 로직 칩, 발광소자, 혹은 이들의 조합을 포함할 수 있다. 예를 들어, 검사 대상물은 로직 LSI(ASIC, FPGA 및 ASSP과 같은), 마이크로프로세서(CPU 및 GPU와 같은), 메모리(DRAM, HMC(Hybrid Memory Cube), MRAM(Magnetic RAM), PCM(Phase-Change Memory), ReRAM(Resistive RAM), FeRAM(강유전성 RAM) 및 플래쉬 메모리(NAND flash)), 반도체 발광소자(LED, 미니 LED, 마이크로 LED 등 포함), 전력 장치, 아날로그IC(DC-AC 컨버터 및 절연 게이트 2극 트랜지스터(IGBT)와 같은), MEMS(가속 센서, 압력 센서, 진동기 및 지로 센서와 같은), 무배선 장치(GPS, FM, NFC, RFEM, MMIC 및 WLAN과 같은), 별개 장치, BSI, CIS, 카메라 모듈, CMOS, 수동 장치, GAW 필터, RF 필터, RF IPD, APE 및 BB를 포함한다.The inspection target 400 of the inspection device 10 may include a semiconductor device, a memory chip, a microprocessor chip, a logic chip, a light emitting device, or a combination thereof. For example, inspection objects include logic LSIs (such as ASICs, FPGAs, and ASSPs), microprocessors (such as CPUs and GPUs), memories (including DRAM, Hybrid Memory Cube (HMC), Magnetic RAM (MRAM), Phase-Change Memory (PCM), Resistive RAM (ReRAM), ferroelectric RAM (FeRAM), and NAND flash)), semiconductor light-emitting devices (including LEDs, mini-LEDs, micro-LEDs, etc.), power devices, These include analog ICs (such as DC-AC converters and insulated gate bipolar transistors (IGBTs)), MEMS (such as acceleration sensors, pressure sensors, vibrators, and giro sensors), wire-free devices (such as GPS, FM, NFC, RFEM, MMIC, and WLAN), discrete devices, BSI, CIS, camera modules, CMOS, passive devices, GAW filters, RF filters, RF IPDs, APEs, and BBs.
전술한 바와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술분야의 통상의 기술자는 하기의 특허 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다.As described above, although it has been described with reference to the preferred embodiments of the present invention, those skilled in the art variously modify or modify the present invention within the scope not departing from the spirit and scope of the present invention described in the claims below. Can be practiced.
[부호의 설명][Description of code]
100: 전기 전도성 접촉핀 100: electrically conductive contact pin
110: 제1접속부110: first connection part
120: 제2접속부120: second connection part
130: 지지부130: support
140: 연결부 140: connection part
150: 탄성부150: elastic part
200: 설치부재200: installation member
400: 검사 대상물400: inspection object

Claims (16)

  1. 제1접속부;a first connection;
    제2접속부;a second connection;
    길이방향으로 연장되는 지지부;a support extending in the longitudinal direction;
    상기 제1접속부와 상기 제2접속부 중 적어도 어느 하나에 연결되며 길이 방향을 따라 탄성 변형가능한 탄성부; 및an elastic part connected to at least one of the first connection part and the second connection part and elastically deformable along the longitudinal direction; and
    상기 탄성부를 상기 지지부에 연결하는 연결부;를 포함하고, A connection portion connecting the elastic portion to the support portion,
    상기 제1접속부는, The first connection part,
    접속 대상물과 접촉되는 접촉부; 및a contact portion that comes into contact with the object to be connected; and
    상기 접촉부로부터 하측으로 연장되어 상기 탄성부의 적어도 일부를 덮는 플랜지;를 포함하는, 전기 전도성 접촉핀.An electrically conductive contact pin comprising: a flange extending downward from the contact portion and covering at least a portion of the elastic portion.
  2. 제1항에 있어서,According to claim 1,
    상기 플랜지는 상기 탄성부와 상기 지지부 사이에 구비되는, 전기 전도성 접촉핀.wherein the flange is provided between the resilient portion and the support portion.
  3. 제1항에 있어서,According to claim 1,
    상기 플랜지는 상기 지지부의 내면에 접촉되어 전류 패스를 형성하는, 전기 전도성 접촉핀.wherein the flange contacts the inner surface of the support to form a current path.
  4. 제1항에 있어서,According to claim 1,
    상기 플랜지는, The flange is
    상기 탄성부의 일측에 위치하는 제1플랜지; 및A first flange located on one side of the elastic part; and
    상기 제1플랜지에 대향되어 상기 탄성부의 타측에 위치하는 제2플랜지를 포함하고,And a second flange opposed to the first flange and located on the other side of the elastic part,
    상기 제1플랜지와 상기 제2플랜지는 각각 상기 접촉부에 연결되는, 전기 전도성 접촉핀.wherein the first flange and the second flange are each connected to the contact portion.
  5. 제1항에 있어서,According to claim 1,
    상기 플랜지는 상기 접촉부의 폭 방향 단부에서 연속되어 하측으로 연장되어 상기 접촉부는 상기 플랜지를 기준으로 폭 방향 외측으로 돌출되지 않는, 전기 전도성 접촉핀. The electrically conductive contact pin of claim 1 , wherein the flange continuously extends downward from an end portion of the contact portion in the width direction so that the contact portion does not protrude outward in the width direction based on the flange.
  6. 제1항에 있어서,According to claim 1,
    상기 접촉부는 공동부를 구비하는, 전기 전도성 접촉핀.wherein the contact portion has a cavity.
  7. 제1항에 있어서,According to claim 1,
    상기 탄성부가 탄성 변형될 때, 상기 접촉부와 상기 플랜지는 일체 거동하는, 전기 전도성 접촉핀. and when the elastic portion elastically deforms, the contact portion and the flange act integrally.
  8. 제1항에 있어서,According to claim 1,
    상기 지지부는, the support,
    상기 전기 전도성 접촉핀의 일측에 위치하는 제1지지부; 및a first support located on one side of the electrically conductive contact pin; and
    상기 전기 전도성 접촉핀의 타측에 위치하는 제2지지부를 포함하고,a second support located on the other side of the electrically conductive contact pin;
    상기 접촉부의 폭 방향 치수는 상기 제1지지부와 상기 제2지지부 사이의 치수보다 작고,The width direction dimension of the contact part is smaller than the dimension between the first support part and the second support part,
    상기 플랜지는 상기 제1지지부와 상기 제2지지부 사이의 영역 내에 위치하는, 전기 전도성 접촉핀. wherein the flange is located in a region between the first support and the second support.
  9. 제1항에 있어서,According to claim 1,
    상기 지지부는, the support,
    상기 전기 전도성 접촉핀의 일측에 위치하는 제1지지부; 및a first support located on one side of the electrically conductive contact pin; and
    상기 전기 전도성 접촉핀의 타측에 위치하는 제2지지부를 포함하고,a second support located on the other side of the electrically conductive contact pin;
    상기 연결부는,The connection part,
    상기 탄성부와 상기 제1지지부를 연결하는 제1연결부; 및a first connection portion connecting the elastic portion and the first support portion; and
    상기 탄성부와 상기 제2지지부를 연결하는 제2연결부를 포함하는, 전기 전도성 접촉핀.An electrically conductive contact pin comprising a second connection portion connecting the elastic portion and the second support portion.
  10. 제1항에 있어서,According to claim 1,
    상기 지지부는,the support,
    일단부에 구비되는 제1걸림부; 및A first holding portion provided at one end; and
    타단부에 구비되는 제2걸림부를 포함하는, 전기 전도성 접촉핀.An electrically conductive contact pin comprising a second hooking portion provided at the other end.
  11. 제1항에 있어서,According to claim 1,
    복수개의 금속층이 상기 전기 전도성 접촉핀의 두께 방향으로 적층되어 형성되는, 전기 전도성 접촉핀.An electrically conductive contact pin formed by stacking a plurality of metal layers in a thickness direction of the electrically conductive contact pin.
  12. 제1항에 있어서,According to claim 1,
    측면에 구비되는 미세 트렌치를 포함하는, 전기 전도성 접촉핀.An electrically conductive contact pin comprising a fine trench provided on a side surface.
  13. 제1항에 있어서,According to claim 1,
    상기 접촉부는 그 상면에 돌기를 포함하고, 상기 돌기는 두께 방향을 따라 길게 연장되어 형성되는, 전기 전도성 접촉핀.The electrically conductive contact pin of claim 1 , wherein the contact portion includes a protrusion on an upper surface thereof, and the protrusion is formed to elongate along a thickness direction.
  14. 제1항에 있어서,According to claim 1,
    상기 탄성부가 압축됨에 따라 상기 제1접속부가 상기 지지부에 접촉되어 전류 패스를 형성하는, 전기 전도성 접촉핀.and wherein the first contact portion contacts the support portion to form a current path as the elastic portion is compressed.
  15. 제1접속부; 제2접속부; 길이방향으로 연장되는 지지부; 상기 제1접속부와 상기 제2접속부 중 적어도 어느 하나에 연결되며 길이 방향을 따라 탄성 변형가능한 탄성부; 및 상기 탄성부를 상기 지지부에 연결하는 연결부;를 포함하고, 상기 제1접속부는, 접속 대상물과 접촉되는 접촉부; 및 상기 접촉부로부터 하측으로 연장되어 상기 탄성부의 적어도 일부를 덮는 플랜지;를 포함하는, 전기 전도성 접촉핀; 및a first connection; a second connection; a support extending in the longitudinal direction; an elastic part connected to at least one of the first connection part and the second connection part and elastically deformable along the longitudinal direction; and a connection part connecting the elastic part to the support part, wherein the first connection part includes: a contact part contacting a connection object; and a flange extending downward from the contact portion and covering at least a portion of the elastic portion; and
    상기 전기 전도성 접촉핀을 수용하는 관통홀을 구비하는 설치부재를 포함하는, 검사 장치.and an installation member having a through hole accommodating the electrically conductive contact pin.
  16. 제15항에 있어서,According to claim 15,
    상기 전기 전도성 접촉핀의 전체 길이 치수는 400㎛ 이상 600㎛이하이고,The overall length dimension of the electrically conductive contact pin is 400 μm or more and 600 μm or less,
    상기 전기 전도성 접촉핀의 전체 폭 치수는 150㎛이상 300㎛이하이고,The overall width dimension of the electrically conductive contact pin is 150 μm or more and 300 μm or less,
    상기 설치부재의 길이 방향 치수는 150㎛이상 250㎛이하이고,The longitudinal dimension of the installation member is 150 μm or more and 250 μm or less,
    상기 전기 전도성 접촉핀이 상기 설치부재의 상부로 돌출된 길이 방향 치수는 50㎛이상 200㎛이하인, 검사 장치.Wherein the electrically conductive contact pin protrudes from the top of the installation member in a longitudinal direction of 50 μm or more and 200 μm or less.
PCT/KR2023/000871 2022-01-21 2023-01-18 Electro-conductive contact pin and inspection device having same WO2023140617A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220008885A KR20230112812A (en) 2022-01-21 2022-01-21 The Electro-conductive Contact Pin And Test Device Having The Same
KR10-2022-0008885 2022-01-21

Publications (1)

Publication Number Publication Date
WO2023140617A1 true WO2023140617A1 (en) 2023-07-27

Family

ID=87349024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/000871 WO2023140617A1 (en) 2022-01-21 2023-01-18 Electro-conductive contact pin and inspection device having same

Country Status (3)

Country Link
KR (1) KR20230112812A (en)
TW (1) TW202342993A (en)
WO (1) WO2023140617A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284292A (en) * 2005-03-31 2006-10-19 Kanai Hiroaki Contact probe structure
KR20150020500A (en) * 2013-08-13 2015-02-26 주식회사 기가레인 Method for testing electrode circuit pin and electrode circuit testing pin using the same
KR20160045510A (en) * 2014-10-17 2016-04-27 주식회사 아이에스시 Connector for electrical connection
US20170244189A1 (en) * 2016-02-22 2017-08-24 Jf Microtechnology Sdn. Bhd. Spring contact in a testing apparatus for integrated circuits
KR102058831B1 (en) * 2016-06-17 2019-12-23 오므론 가부시키가이샤 Probe pin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100659944B1 (en) 2005-12-23 2006-12-21 리노공업주식회사 A plunger and a probe employing that
KR100952712B1 (en) 2007-12-27 2010-04-13 주식회사 아이에스시테크놀러지 Silicone Contactor for Semi-conductor Device Test including Plate Type Powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284292A (en) * 2005-03-31 2006-10-19 Kanai Hiroaki Contact probe structure
KR20150020500A (en) * 2013-08-13 2015-02-26 주식회사 기가레인 Method for testing electrode circuit pin and electrode circuit testing pin using the same
KR20160045510A (en) * 2014-10-17 2016-04-27 주식회사 아이에스시 Connector for electrical connection
US20170244189A1 (en) * 2016-02-22 2017-08-24 Jf Microtechnology Sdn. Bhd. Spring contact in a testing apparatus for integrated circuits
KR102058831B1 (en) * 2016-06-17 2019-12-23 오므론 가부시키가이샤 Probe pin

Also Published As

Publication number Publication date
KR20230112812A (en) 2023-07-28
TW202342993A (en) 2023-11-01

Similar Documents

Publication Publication Date Title
US6072326A (en) System for testing semiconductor components
US6922069B2 (en) Needle assembly of probe card
US7710132B2 (en) Method for making a conductive film and a probe card using the same
US7977961B2 (en) Component for testing device for electronic component and testing method of the electronic component
WO2019216503A1 (en) Semiconductor device test socket
JP2002175859A (en) Spiral contactor, semiconductor testing apparatus and electronic parts using the same
US20130093453A1 (en) Connecting device, semiconductor wafer test apparatus comprising same, and connecting method
WO2014204161A2 (en) Insert for inspection
WO2020022745A1 (en) Conductive sheet for test
US6396291B1 (en) Method for testing semiconductor components
US5574383A (en) IC tester and measuring method
WO2023167479A1 (en) Electrically conductive contact pin, alignment plate, and inspection apparatus comprising same
US20050127935A1 (en) Semiconductor device tester
US6255832B1 (en) Flexible wafer level probe
KR102002256B1 (en) Film type probe card for RF chip test
WO2023140617A1 (en) Electro-conductive contact pin and inspection device having same
WO2023090746A1 (en) Electrically conductive contact pin and inspection device having same
WO2022181951A1 (en) Alignment module and alignment transfer method for electrically conductive contact pins
WO2023033372A1 (en) Vertical probe card
WO2016167412A1 (en) Bidirectional conductive socket for testing high-frequency device, bidirectional conductive module for testing high-frequency device, and manufacturing method thereof
WO2022045787A1 (en) Conductive particle and electrical connection connector including same
WO2023172046A1 (en) Metal molded article, manufacturing method therefor, and inspection device having same
WO2023059078A1 (en) Electro-conductive contact pin and inspection apparatus comprising same
WO2023219322A1 (en) Electro-conductive contact pin and inspection device including same
WO2023059130A1 (en) Electrically conductive contact pin array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743463

Country of ref document: EP

Kind code of ref document: A1