JP6405604B2 - Thermoelectric element and manufacturing method thereof - Google Patents

Thermoelectric element and manufacturing method thereof Download PDF

Info

Publication number
JP6405604B2
JP6405604B2 JP2013142257A JP2013142257A JP6405604B2 JP 6405604 B2 JP6405604 B2 JP 6405604B2 JP 2013142257 A JP2013142257 A JP 2013142257A JP 2013142257 A JP2013142257 A JP 2013142257A JP 6405604 B2 JP6405604 B2 JP 6405604B2
Authority
JP
Japan
Prior art keywords
thermoelectric
members
reinforcing
substrate
reinforcing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013142257A
Other languages
Japanese (ja)
Other versions
JP2015015407A (en
Inventor
琢也 西野
琢也 西野
壷井 修
修 壷井
悟覚 ▲高▼馬
悟覚 ▲高▼馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013142257A priority Critical patent/JP6405604B2/en
Publication of JP2015015407A publication Critical patent/JP2015015407A/en
Application granted granted Critical
Publication of JP6405604B2 publication Critical patent/JP6405604B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、熱電素子及びその製造方法に関する。   The present invention relates to a thermoelectric element and a manufacturing method thereof.

熱電素子には、ゼーベック効果を利用した熱電変換素子や、ペルチェ効果を利用したペルチェ素子などがある。   Thermoelectric elements include thermoelectric conversion elements that use the Seebeck effect and Peltier elements that use the Peltier effect.

熱電変換素子は、例えば2枚の伝熱板の間にn型熱電部材とp型熱電部材とを挟んだ構造を有する。伝熱板側に設けられた電極によりn型熱電部材とp型熱電部材とは電気的に直列接続されており、一方の伝熱板と他方の伝熱板との間に温度差を与えると、温度差に応じた電力を発生する。   The thermoelectric conversion element has a structure in which, for example, an n-type thermoelectric member and a p-type thermoelectric member are sandwiched between two heat transfer plates. The n-type thermoelectric member and the p-type thermoelectric member are electrically connected in series by the electrode provided on the heat transfer plate side, and when a temperature difference is given between one heat transfer plate and the other heat transfer plate Generates electric power according to the temperature difference.

また、ペルチェ素子も、例えば2枚の伝熱板の間にn型熱電部材とp型熱電部材とを挟んだ構造を有する。伝熱板側に設けられた電極によりn型熱電部材とp型熱電部材とは電気的に直列接続されており、直列接続されたn型熱電部材及びp型熱電部材に電圧を印加すると、2枚の伝熱板間に温度差が生じる。   The Peltier element also has a structure in which, for example, an n-type thermoelectric member and a p-type thermoelectric member are sandwiched between two heat transfer plates. The n-type thermoelectric member and the p-type thermoelectric member are electrically connected in series by the electrode provided on the heat transfer plate side, and when a voltage is applied to the n-type thermoelectric member and the p-type thermoelectric member connected in series, 2 A temperature difference occurs between the heat transfer plates.

一般的な熱電素子(マクロ熱電素子)は、熱電材料を機械加工して製造された熱電部材を使用している。しかし、熱電材料は脆いため、機械加工時に破損しやすく、より一層の小型化が困難である。   A general thermoelectric element (macro thermoelectric element) uses a thermoelectric member manufactured by machining a thermoelectric material. However, since the thermoelectric material is brittle, it is easily damaged during machining, and it is difficult to further reduce the size.

そこで、近年、サブミクロンオーダーの加工が可能なMEMS(Micro Electro Mechanical Systems)技術を用いて、小型の熱電素子を製造することが提案されている。このような小型の熱電素子を、マイクロ熱電素子と呼ぶ。   Therefore, in recent years, it has been proposed to manufacture a small thermoelectric element using MEMS (Micro Electro Mechanical Systems) technology capable of processing on the order of submicrons. Such a small thermoelectric element is called a micro thermoelectric element.

マイクロ熱電素子は、携帯型マイクロエネルギー源としての応用、センサ等への応用、及び局所冷却デバイスとしての応用などが検討されている。特に、温度差により電力を発生するマイクロ熱電素子は、センサネット用の複合デバイスに組み込んで、電子機器等の廃熱や、生体の体温を用いた発電が可能なメンテナンスフリー電源としての使用が期待されている。   The micro thermoelectric element has been studied for application as a portable micro energy source, application to a sensor, etc., application as a local cooling device, and the like. In particular, micro thermoelectric elements that generate electric power due to temperature differences are expected to be used as maintenance-free power sources that can be incorporated into sensor net composite devices to generate power using waste heat from electronic devices and the body temperature of living bodies. Has been.

特開平11−274592号公報Japanese Patent Laid-Open No. 11-274592 特開2011−124805公報JP 2011-124805 A

一方の側から他方の側に熱が伝わりにくく、且つ応力や衝撃力が加えられても破損しにくい熱電素子及びその製造方法を提供することを目的とする。   It is an object of the present invention to provide a thermoelectric element that is difficult to transmit heat from one side to the other side and that is not easily damaged even when stress or impact force is applied, and a method for manufacturing the thermoelectric element.

開示技術の一観点によれば、平面視で規則的に配列された複数の柱状の熱電部材と、前記熱電部材の長さ方向の端部に接続され、前記複数の熱電部材を電気的に直列接続する電極と、複数の隣り合う前記熱電部材間において、前記熱電部材の長さ方向の一部かつ周方向の一部に接触し、それぞれの前記隣り合う熱電部材間を連絡する、平面視で短冊状の補強材とを有し、前記それぞれの隣り合う熱電部材間を連絡する補強材は、配列された前記熱電部材を介して格子状に配置されたことを特徴とする熱電素子が提供される。 According to one aspect of the disclosed technology, a plurality of columnar thermoelectric members regularly arranged in a plan view are connected to end portions in the length direction of the thermoelectric members, and the plurality of thermoelectric members are electrically connected in series. Between the electrodes to be connected and a plurality of adjacent thermoelectric members, a part in the length direction and a part in the circumferential direction of the thermoelectric member are in contact with each other and in a plan view. possess a strip-shaped reinforcing member, the reinforcing member to contact between thermoelectric element adjacent the respective thermoelectric elements are provided, characterized in that arranged in a grid via the heat conductive member arranged The

開示の技術の他の一観点によれば、基板に複数の貫通孔を形成する工程と、前記貫通孔内に熱電材料を充填して熱電部材を形成する工程と、前記基板をその厚さ方向の途中までエッチングする工程と、前記基板の前記エッチングを施した面に絶縁材料を塗布して補強材を形成する工程と、前記基板を除去する工程と、前記熱電部材の端部に電極を接続する工程とを有する熱電素子の製造方法が提供される。   According to another aspect of the disclosed technology, a step of forming a plurality of through holes in the substrate, a step of forming a thermoelectric member by filling the through holes with a thermoelectric material, and the substrate in the thickness direction Etching partway, applying an insulating material to the etched surface of the substrate to form a reinforcing material, removing the substrate, and connecting an electrode to the end of the thermoelectric member There is provided a method of manufacturing a thermoelectric device having the step of:

上記一観点に係る熱電素子及び熱電素子の製造方法によれば、熱電部材間が、その熱電部材の長さ方向の一部に接触する補強材により連絡しているので、応力又は衝撃力が補強材を介して分散される。これにより、一方の側から他方の側に熱が伝わりにくく、且つ応力や衝撃力が加えられても破損しにくい熱電素子が得られる。   According to the thermoelectric element and the method of manufacturing a thermoelectric element according to the above aspect, since the thermoelectric members are connected by the reinforcing material that contacts a part of the length of the thermoelectric member, stress or impact force is reinforced. Dispersed through the material. Thereby, it is possible to obtain a thermoelectric element in which heat is hardly transmitted from one side to the other side and is not easily damaged even when stress or impact force is applied.

図1は、マイクロ熱電素子の一例を示す図である。FIG. 1 is a diagram illustrating an example of a micro thermoelectric element. 図2は、実施形態に係る熱電素子の製造方法を表わした断面図(その1)である。Drawing 2 is a sectional view (the 1) showing the manufacturing method of the thermoelectric device concerning an embodiment. 図3は、実施形態に係る熱電素子の製造方法を表わした断面図(その2)である。Drawing 3 is a sectional view (the 2) showing the manufacturing method of the thermoelectric device concerning an embodiment. 図4は、実施形態に係るマイクロ熱電素子のn型熱電部材、p型熱電部材、補強材及び電極の配置を示す模式平面図である。FIG. 4 is a schematic plan view showing the arrangement of the n-type thermoelectric member, the p-type thermoelectric member, the reinforcing material, and the electrodes of the micro thermoelectric element according to the embodiment. 図5は、伝熱板がない熱電素子(変形例)の例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of a thermoelectric element (modified example) having no heat transfer plate. 図6は、補強材を熱電部材の上部と下部とに交互に配置した熱電素子の例(変形例)を示す模式平面図である。FIG. 6 is a schematic plan view showing an example (modification) of a thermoelectric element in which reinforcing materials are alternately arranged on the upper and lower portions of the thermoelectric member. 図7は、一列毎にヤング率が異なる補強材を交互に配置した例(変形例)を示す模式平面図である。FIG. 7 is a schematic plan view showing an example (modified example) in which reinforcing materials having different Young's moduli are alternately arranged for each row. 図8は、接続部よりも中央部が細い形状の補強材の例を示す断面図である。FIG. 8 is a cross-sectional view showing an example of a reinforcing material having a shape whose center portion is narrower than the connection portion. 図9(a)〜(d)は、比較例、実施例1、実施例2及び実施例3の熱電素子を示す模式図である。FIGS. 9A to 9D are schematic views showing thermoelectric elements of Comparative Example, Example 1, Example 2, and Example 3. FIG. 図10は、SU−8、エポキシ樹脂、及びBiTeのヤング率及びポアソン比を示す図である。FIG. 10 is a diagram showing Young's modulus and Poisson's ratio of SU-8, epoxy resin, and BiTe. 図11は、比較例、実施例1、実施例2及び実施例3の最大ミーゼス応力をシミュレーション計算した結果を示す図である。FIG. 11 is a diagram illustrating a result of simulation calculation of the maximum Mises stress of the comparative example, the example 1, the example 2, and the example 3.

以下、実施形態について説明する前に、実施形態の理解を容易にするための予備的事項について説明する。   Hereinafter, before describing the embodiment, a preliminary matter for facilitating understanding of the embodiment will be described.

図1は、マイクロ熱電素子の一例を示す図である。   FIG. 1 is a diagram illustrating an example of a micro thermoelectric element.

この図1に例示したマイクロ熱電素子10は、2枚の伝熱板11a,11bと、それらの伝熱板11a,11b間に配置された複数のn型熱電部材12及びp型熱電部材13とを有する。   The micro thermoelectric element 10 illustrated in FIG. 1 includes two heat transfer plates 11a and 11b, and a plurality of n-type thermoelectric members 12 and p-type thermoelectric members 13 disposed between the heat transfer plates 11a and 11b. Have

n型熱電部材12及びp型熱電部材13は所定のピッチで交互に並んで配列している。また、それらのn型熱電部材12及びp型熱電部材13は、伝熱板11a,11b側に設けられた電極14により電気的に直列接続されている。そして、直列接続されたn型熱電部材12及びp型熱電部材13の端部には、引出電極15a,15bが接続されている。   The n-type thermoelectric members 12 and the p-type thermoelectric members 13 are arranged alternately at a predetermined pitch. Further, the n-type thermoelectric member 12 and the p-type thermoelectric member 13 are electrically connected in series by electrodes 14 provided on the heat transfer plates 11a and 11b side. The lead electrodes 15 a and 15 b are connected to end portions of the n-type thermoelectric member 12 and the p-type thermoelectric member 13 connected in series.

このような構造の熱電素子10において、例えば一方の伝熱板(11a又は11b)と他方の伝熱板(11b又は11a)との間に温度差を与えると、ゼーベック効果により電力が発生し、引出電極15a,15bから電力を取り出すことができる。 In the heat Denmoto element 10 having such a structure, for example, given a temperature difference between one of the heat transfer plate and (11a or 11b) the other heat transfer plate and (11b or 11a), the power by the Seebeck effect occurs Then, electric power can be taken out from the extraction electrodes 15a and 15b.

ところで、マイクロ熱電素子10は、熱電部材12,13の長さが極めて短いため、熱電部材12,13を介して一方の伝熱板から他方の伝熱板に熱が移動しやすい。一方の伝熱板から他方の伝熱板に熱が移動すると、伝熱板11a,11b間の温度差が小さくなり、マイクロ熱電素子10の発電効率が低下してしまう。   By the way, in the micro thermoelectric element 10, since the length of the thermoelectric members 12 and 13 is extremely short, heat easily moves from one heat transfer plate to the other heat transfer plate via the thermoelectric members 12 and 13. When heat is transferred from one heat transfer plate to the other heat transfer plate, the temperature difference between the heat transfer plates 11a and 11b decreases, and the power generation efficiency of the micro thermoelectric element 10 decreases.

熱電部材12,13を介した熱の移動を抑制してマイクロ熱電素子10の発電効率を高くするためには、熱電部材12,13の直径(熱電部材が角材の場合は幅:以下、同じ)を小さくすることが考えられる。しかし、熱電部材12,13の直径を小さくすると強度が低下し、応力や衝撃力が加えられると容易に破損してしまう。   In order to suppress the movement of heat through the thermoelectric members 12 and 13 and increase the power generation efficiency of the micro thermoelectric element 10, the diameter of the thermoelectric members 12 and 13 (when the thermoelectric member is a square member, the width is the same below) It is conceivable to reduce. However, when the diameters of the thermoelectric members 12 and 13 are reduced, the strength is reduced, and when the stress or impact force is applied, the thermoelectric members 12 and 13 are easily damaged.

例えば、孔が設けられた補強部材を使用し、補強部材の孔内に熱電部材12,13を配置して、熱電部材12,13の破損を防止することも考えられる。しかし、その場合は、補強部材を介して熱が移動するため、マイクロ熱電素子10の発電効率が低下する。   For example, it is conceivable to use a reinforcing member provided with a hole and dispose the thermoelectric members 12 and 13 in the hole of the reinforcing member to prevent the thermoelectric members 12 and 13 from being damaged. However, in that case, since heat moves through the reinforcing member, the power generation efficiency of the micro thermoelectric element 10 decreases.

以下の実施形態では、一方の側から他方の側に熱が伝わりにくく、且つ応力や衝撃力が加えられても破損しにくい熱電素子及びその製造方法について説明する。   In the following embodiments, a thermoelectric element that is difficult to transfer heat from one side to the other side and that is not easily damaged even when stress or impact force is applied, and a method for manufacturing the thermoelectric element will be described.

(実施形態)
図2,図3は、実施形態に係る熱電素子の製造方法を工程順に表わした断面図である。
(Embodiment)
2 and 3 are cross-sectional views showing the method of manufacturing a thermoelectric element according to the embodiment in the order of steps.

まず、図2(a)示すように、基板21を用意し、基板21に所定のピッチで複数の貫通孔22を形成する。   First, as shown in FIG. 2A, a substrate 21 is prepared, and a plurality of through holes 22 are formed in the substrate 21 at a predetermined pitch.

本実施形態では、基板21として、厚さが50μm〜500μmのシリコンウェハを使用する。そして、基板21の上にフォトレジスト膜(図示せず)を形成した後、所定のパターンが設けられた露光マスクを使用してフォトレジスト膜を露光する。その後、現像処理を実施して、貫通孔を形成する部分の基板21を露出させる。   In the present embodiment, a silicon wafer having a thickness of 50 μm to 500 μm is used as the substrate 21. Then, after forming a photoresist film (not shown) on the substrate 21, the photoresist film is exposed using an exposure mask provided with a predetermined pattern. Thereafter, development processing is performed to expose the portion of the substrate 21 where the through hole is to be formed.

次に、フォトレジスト膜をエッチングマスクとし、例えばSF6ガスを用いた反応性イオンエッチング(Reactive Ion Etching:RIE)を実施して、基板21に貫通孔22を形成する。貫通孔22を形成した後、基板21上のフォトレジスト膜をアセトン等の溶剤により除去する。 Next, using the photoresist film as an etching mask, for example, reactive ion etching (RIE) using SF 6 gas is performed to form through holes 22 in the substrate 21. After the through hole 22 is formed, the photoresist film on the substrate 21 is removed with a solvent such as acetone.

貫通孔22の直径は例えば5μm〜100μmとし、隣接する貫通孔22間の間隔は例えば100μmとする。また、貫通孔22のアスペクト比は、例えば2〜40程度とする。   The diameter of the through hole 22 is, for example, 5 μm to 100 μm, and the interval between the adjacent through holes 22 is, for example, 100 μm. The aspect ratio of the through hole 22 is, for example, about 2-40.

次に、図2(b)のように、基板21上にステンシルマスク23を配置して、エアロゾルデポジッション法により所定の貫通孔22内のみにn型熱電材料を充填し、n型熱電部材24を形成する。   Next, as shown in FIG. 2B, a stencil mask 23 is disposed on the substrate 21, and an n-type thermoelectric material is filled only in a predetermined through-hole 22 by an aerosol deposition method. Form.

n型熱電材料として、例えばBi2Te3や、NaxCoO及びAZO(Aluminum-doped Zinc Oxide)等の酸化物熱電材料を使用することができる。その他、CoSb、SiGe及びPbTe等の化合物半導体、又はBi、Pt、Au、Cu及びNi等の単体金属を使用してもよい。本実施形態では、n型熱電材料として、粒径が200nmのテルル化ビスマス(Bi2Te3)を用いるものとする。 As the n-type thermoelectric material, for example, Bi 2 Te 3 , oxide thermoelectric materials such as NaxCoO and AZO (Aluminum-doped Zinc Oxide) can be used. In addition, a compound semiconductor such as CoSb, SiGe, and PbTe, or a single metal such as Bi, Pt, Au, Cu, and Ni may be used. In this embodiment, bismuth telluride (Bi 2 Te 3 ) having a particle size of 200 nm is used as the n-type thermoelectric material.

次に、図2(c)のように、基板21上にステンシルマスク(図示せず)を配置し、エアロゾルデポジッション法により残りの貫通孔22内にp型熱電材料を充填して、p型熱電部材25を形成する。   Next, as shown in FIG. 2C, a stencil mask (not shown) is disposed on the substrate 21, and the remaining through holes 22 are filled with a p-type thermoelectric material by an aerosol deposition method. The thermoelectric member 25 is formed.

p型熱電材料として、例えばBi0.3Sb1.7Te3や、Ca3Co49等の酸化物熱電材料を使用することができる。その他、CoSb、SiGe及びPbTe等の化合物半導体、又はBi、Pt、Au、Cu及びNi等の単体金属を使用してもよい。 As the p-type thermoelectric material, for example, an oxide thermoelectric material such as Bi 0.3 Sb 1.7 Te 3 or Ca 3 Co 4 O 9 can be used. In addition, a compound semiconductor such as CoSb, SiGe, and PbTe, or a single metal such as Bi, Pt, Au, Cu, and Ni may be used.

本実施形態では、p型熱電材料として、粒径が200nmのBi0.3Sb1.7Te3を用いるものとする。また、本実施形態では、図2(c)のように、n型熱電部材24とp型熱電部材25とが交互に並ぶように、貫通孔22内にn型熱電材料及びp型熱電材料を充填する。 In this embodiment, Bi 0.3 Sb 1.7 Te 3 having a particle size of 200 nm is used as the p-type thermoelectric material. Further, in this embodiment, as shown in FIG. 2C, the n-type thermoelectric material and the p-type thermoelectric material are placed in the through holes 22 so that the n-type thermoelectric members 24 and the p-type thermoelectric members 25 are alternately arranged. Fill.

なお、本実施形態ではエアロゾルデポジッション法を用いて貫通孔22内に熱電材料を充填しているが、ホットプレス法又はその他の方法により貫通孔22内に熱電材料を充填してもよい。但し、貫通孔22の直径が小さく且つアスペクト比が大きい場合は、貫通孔22内に熱電材料を確実に充填するために、エアロゾルデポジッション法を用いることが好ましい。   In the present embodiment, the thermoelectric material is filled in the through hole 22 by using the aerosol deposition method, but the thermoelectric material may be filled in the through hole 22 by a hot press method or other methods. However, when the diameter of the through hole 22 is small and the aspect ratio is large, it is preferable to use an aerosol deposition method in order to reliably fill the thermoelectric material into the through hole 22.

エアロゾルデポジッション法で貫通孔22内に熱電材料を充填して熱電部材24,25を形成した場合は、熱処理(アニール)又は加圧処理(プレス処理)等の後処理を行うことで、熱電部材24,25の熱電特性を改善できる。例えば貫通孔22内に熱電材料を充填して熱電部材24,25を形成した後、真空中又は不活性ガス中で400℃の温度で1時間程度の熱処理を行うことが好ましい。   When the thermoelectric materials 24 and 25 are formed by filling the through-hole 22 with the thermodeposition material by the aerosol deposition method, the post-treatment such as heat treatment (annealing) or pressurizing treatment (pressing treatment) is performed, so that the thermoelectric member The thermoelectric characteristics of 24 and 25 can be improved. For example, after the thermoelectric material is filled in the through hole 22 to form the thermoelectric members 24 and 25, it is preferable to perform a heat treatment in a vacuum or an inert gas at a temperature of 400 ° C. for about 1 hour.

このようにしてn型熱電部材24及びp型熱電部材25を形成した後、基板21の表面を研磨して、表面に付着した残渣を除去するとともに基板21自体の凹凸を低減する。   After forming the n-type thermoelectric member 24 and the p-type thermoelectric member 25 in this way, the surface of the substrate 21 is polished to remove residues attached to the surface and reduce the unevenness of the substrate 21 itself.

次に、図2(d)に示すように、基板21を、その厚さの半分程度までエッチングする。本実施形態では基板21としてシリコンウェハを使用しているので、例えばエッチングガスとしてSF6を使用した反応性イオンエッチングにより基板21をエッチングする。エッチング速度が10μm/分程度であるとすると、約25分間エッチングを行うことで、基板21を250μm程度エッチングすることができる。 Next, as shown in FIG. 2D, the substrate 21 is etched to about half of its thickness. In this embodiment, since a silicon wafer is used as the substrate 21, the substrate 21 is etched by reactive ion etching using, for example, SF 6 as an etching gas. If the etching rate is about 10 μm / min, the substrate 21 can be etched by about 250 μm by performing the etching for about 25 minutes.

次に、図3(a)に示すように、熱電部材24,25間の基板21上に、熱電部材24,25間を連絡する補強材26を形成する。補強材26は、絶縁性であり、機械的強度及び耐衝撃性が高く、且つ熱伝導率が低いことが重要である。   Next, as shown in FIG. 3A, a reinforcing material 26 that communicates between the thermoelectric members 24 and 25 is formed on the substrate 21 between the thermoelectric members 24 and 25. It is important that the reinforcing material 26 is insulative, has high mechanical strength and impact resistance, and has low thermal conductivity.

本実施形態では、二液性エポキシ樹脂を有機溶剤で希釈したものをインクとして使用し、インクジェットプリンターで熱電部材24,25間の基板21上に樹脂を付着させる。その後、基板21を例えば150℃の温度で1分間熱処理して樹脂を硬化させ、補強材26とする。補強材26の厚さは、例えば20μm程度とする。   In this embodiment, a two-component epoxy resin diluted with an organic solvent is used as ink, and the resin is deposited on the substrate 21 between the thermoelectric members 24 and 25 by an ink jet printer. Thereafter, the substrate 21 is heat-treated at a temperature of, for example, 150 ° C. for 1 minute to cure the resin, and the reinforcing material 26 is obtained. The thickness of the reinforcing material 26 is, for example, about 20 μm.

補強材26の材料として、エポキシ樹脂以外にも種々の樹脂やゴムを使用することができる。また、インクジェット印刷以外の方法で補強材26を形成してもよい。   As the material of the reinforcing material 26, various resins and rubbers can be used in addition to the epoxy resin. Moreover, you may form the reinforcing material 26 by methods other than inkjet printing.

次に、図3(b)のように、基板21から突出した熱電部材24,25の端部に電極29を取り付け、更にその上に伝熱板28aを取り付ける。伝熱板28aは、熱伝送効率が高く、少なくとも熱電部材24,25側の表面が絶縁性であることが重要である。伝熱板28aとして、例えばAlN又はSiを使用することができる。本実施形態では、伝熱板28aとして、表面が絶縁膜で覆われたシリコン板を使用する。   Next, as shown in FIG. 3B, the electrode 29 is attached to the end portions of the thermoelectric members 24 and 25 protruding from the substrate 21, and the heat transfer plate 28a is further attached thereon. It is important that the heat transfer plate 28a has high heat transfer efficiency, and at least the surface on the thermoelectric members 24 and 25 side is insulative. For example, AlN or Si can be used as the heat transfer plate 28a. In the present embodiment, a silicon plate whose surface is covered with an insulating film is used as the heat transfer plate 28a.

電極29は熱電部材24,25とオーミック接続するものであればよく、例えばCr/Cu、Ti/Au、又はTi/Cu等の2層構造とする。   The electrode 29 only needs to be in ohmic contact with the thermoelectric members 24 and 25, and has a two-layer structure such as Cr / Cu, Ti / Au, or Ti / Cu, for example.

次に、図3(c)に示すように、例えばSF6を使用した反応性イオンエッチングにより、基板21を完全に除去する。 Next, as shown in FIG. 3C, the substrate 21 is completely removed by, for example, reactive ion etching using SF 6 .

次いで、図3(d)に示すように、熱電部材24,25の他方の端部、電極29及び引出電極29a,29bを取り付け、更にその上(図3(d)では下側)に伝熱板28bを取り付ける。本実施形態では、伝熱板28bも、伝熱板28aと同様に、表面が絶縁膜で覆われたシリコン板を使用する。   Next, as shown in FIG. 3 (d), the other ends of the thermoelectric members 24 and 25, the electrode 29, and the extraction electrodes 29a and 29b are attached, and heat transfer is further performed thereon (lower side in FIG. 3 (d)). The board 28b is attached. In the present embodiment, the heat transfer plate 28b is also a silicon plate whose surface is covered with an insulating film, like the heat transfer plate 28a.

このようにして、本実施形態に係るマイクロ熱電素子20が完成する。本実施形態に係るマイクロ熱電素子20の伝熱板28a,28b間に温度差を与えると、ゼーベック効果により電力が発生し、引出電極29a,29bから電力を取り出すことができる。   In this way, the micro thermoelectric element 20 according to this embodiment is completed. When a temperature difference is given between the heat transfer plates 28a and 28b of the micro thermoelectric element 20 according to the present embodiment, electric power is generated by the Seebeck effect, and the electric power can be taken out from the extraction electrodes 29a and 29b.

図4は、上述した方法により製造された本実施形態に係るマイクロ熱電素子20のn型熱電部材24、p型熱電部材25、補強材26及び電極29の配置を示す模式平面図である。この図4に示すように、伝熱板28a,28b間には多数の熱電部材24,25が配置されており、隣接する熱電部材24,25間は補強材26により連絡されている。また、電極29は2つの熱電部材、すなわち隣り合うn型熱電部材24とp型熱電部材25との間を電気的に接続している。   FIG. 4 is a schematic plan view showing the arrangement of the n-type thermoelectric member 24, the p-type thermoelectric member 25, the reinforcing material 26, and the electrode 29 of the micro thermoelectric element 20 according to this embodiment manufactured by the above-described method. As shown in FIG. 4, a large number of thermoelectric members 24 and 25 are arranged between the heat transfer plates 28 a and 28 b, and the adjacent thermoelectric members 24 and 25 are connected by a reinforcing material 26. The electrode 29 electrically connects two thermoelectric members, that is, the adjacent n-type thermoelectric member 24 and p-type thermoelectric member 25.

本実施形態によれば、基板21の貫通孔22内に熱電材料を充填してn型熱電部材24及びp型熱電部材25を形成するので、機械加工で形成する場合と異なり、製造工程中に熱電部材を破損するおそれが少ない。   According to the present embodiment, the n-type thermoelectric member 24 and the p-type thermoelectric member 25 are formed by filling the through holes 22 of the substrate 21 to form the n-type thermoelectric member 24 and the p-type thermoelectric member 25. There is little possibility of damaging the thermoelectric member.

また、本実施形態によれば、各熱電部材24,25の間に補強材26を配置しているので、応力や衝撃力が加えられても、応力や衝撃力が補強材26を介して分散される。これにより、熱電部材24,25の破損が抑制される。   In addition, according to the present embodiment, since the reinforcing material 26 is disposed between the thermoelectric members 24 and 25, the stress and the impact force are distributed via the reinforcing material 26 even when a stress and an impact force are applied. Is done. Thereby, breakage of the thermoelectric members 24 and 25 is suppressed.

更に、本実施形態の熱電素子20では、補強材26は熱電部材24,25の長さ方向の一部としか接触していないので、一方の伝熱板から他方の伝熱板への補強材26を介した熱の移動が抑制される。これにより、良好な発電効率を確保できる。   Further, in the thermoelectric element 20 of the present embodiment, the reinforcing material 26 is in contact with only a part of the thermoelectric members 24 and 25 in the length direction, so that the reinforcing material from one heat transfer plate to the other heat transfer plate. Heat transfer through 26 is suppressed. Thereby, favorable power generation efficiency is securable.

(変形例)
上述の実施形態では、伝熱板28a,28b間にn型熱電部材24及びp型熱電部材25が配置されている場合について説明したが、熱電素子を絶縁性の部材に取り付ける場合は、図5に例示するように伝熱板がなくてもよい。
(Modification)
In the above-described embodiment, the case where the n-type thermoelectric member 24 and the p-type thermoelectric member 25 are disposed between the heat transfer plates 28a and 28b has been described. However, when the thermoelectric element is attached to an insulating member, FIG. As illustrated in FIG.

また、上述の実施形態では、補強材26が各熱電部材24,25の長さ方向のほぼ中央に接合されている場合について説明したが、補強材26と熱電部材24,25との接触位置は中央でなくてもよい。   Further, in the above-described embodiment, the case where the reinforcing material 26 is joined to substantially the center in the length direction of each of the thermoelectric members 24 and 25 has been described, but the contact position between the reinforcing material 26 and the thermoelectric members 24 and 25 is as follows. It does not have to be in the center.

更に、上述の実施形態では、全ての補強材26が同一平面上に配置されている場合について説明したが、全ての補強材26が同一平面上に配置されていなくてもよい。   Furthermore, although the above-mentioned embodiment demonstrated the case where all the reinforcing materials 26 were arrange | positioned on the same plane, all the reinforcing materials 26 do not need to be arrange | positioned on the same plane.

図6に例示する熱電素子20aは、補強材26aを熱電部材24,25の長さ方向に直交する第1の平面上に配置し、補強材26bを熱電部材24,25の長さ方向に直交する第2の平面上に配置している。このような熱電部材20aは、例えば基板21をその厚さの1/3までエッチングした後に上段の補強材26aを形成し、その後基板21を2/3までエッチングして下段の補強材26bを形成することにより形成できる。 Heat Denmoto child 20a illustrated in FIG. 6, the length direction of the first placed on a plane, the thermoelectric element 24, 25 a reinforcing member 26b perpendicular reinforcement 26a in the longitudinal direction of the thermoelectric element 24 and 25 It arrange | positions on the 2nd plane orthogonal to. In such a thermoelectric member 20a, for example, the substrate 21 is etched to 1/3 of its thickness, and then the upper reinforcing material 26a is formed, and then the substrate 21 is etched to 2/3 to form the lower reinforcing material 26b. Can be formed.

図6では2つの平面上に補強材26a,26bを配置しているが、3以上の平面上に補強材を配置するようにしてもよい。また、図9(c)に示すように、隣接する熱電部材31間に配置された補強材32の数が、熱電部材31の配列方向に沿って、例えば1,2,1,2,…というように一定の周期で変化していてもよい。   In FIG. 6, the reinforcing members 26a and 26b are arranged on two planes, but the reinforcing members may be arranged on three or more planes. Further, as shown in FIG. 9C, the number of reinforcing members 32 arranged between adjacent thermoelectric members 31 is, for example, 1, 2, 1, 2,... Along the arrangement direction of the thermoelectric members 31. Thus, it may change at a constant cycle.

更に、全ての補強材26を同じ材質とする必要はなく、例えばヤング率が異なる複数の補強板を適宜配置するようにしてもよい。   Furthermore, it is not necessary for all the reinforcing members 26 to be made of the same material. For example, a plurality of reinforcing plates having different Young's moduli may be appropriately disposed.

図7は、一列毎にヤング率が異なる補強材26c,26dを交互に配置した例を示している。ここでは、補強材26cは二液性エポキシ樹脂により形成し、補強材26dはフォトレジストとして使用されるSU−8により形成している。   FIG. 7 shows an example in which reinforcing members 26c and 26d having different Young's moduli are alternately arranged for each row. Here, the reinforcing material 26c is formed of a two-component epoxy resin, and the reinforcing material 26d is formed of SU-8 used as a photoresist.

更に、補強材26は、図8に例示するように、熱電部材24,25との接続部よりも中央部が細い形状とすることが好ましい。これにより、熱電部材24,25間の熱の移動を抑制することができる。   Further, as illustrated in FIG. 8, the reinforcing member 26 preferably has a shape whose center portion is narrower than the connection portion with the thermoelectric members 24 and 25. Thereby, the movement of the heat between the thermoelectric members 24 and 25 can be suppressed.

(効果)
図9(a)〜(d)に示す構造の熱電素子について、最大ミーゼス応力をシミュレーション計算し、実施形態の効果について調べた。
(effect)
With respect to the thermoelectric elements having the structures shown in FIGS. 9A to 9D, the maximum Mises stress was calculated by simulation to investigate the effect of the embodiment.

図9(a)は、熱電部材31間に補強材がない構造の比較例の熱電素子である。また、図9(b)は、熱電部材31の長さ方向の中央部にエポキシ樹脂製の補強材32を配置した構造の実施例1の熱電素子である。   FIG. 9A shows a thermoelectric element of a comparative example having a structure in which no reinforcing material is provided between the thermoelectric members 31. FIG. 9B shows the thermoelectric element of Example 1 having a structure in which a reinforcing material 32 made of an epoxy resin is arranged at the center in the length direction of the thermoelectric member 31.

更に、図9(c)は、熱電部材31の一方の側に補強材32を1個配置し、他方の側に補強材32を2個配置した構造の実施例2の熱電素子である。補強材32はいずれもエポキシ樹脂である。   Further, FIG. 9C shows a thermoelectric element of Example 2 having a structure in which one reinforcing member 32 is arranged on one side of the thermoelectric member 31 and two reinforcing members 32 are arranged on the other side. All the reinforcing members 32 are epoxy resins.

更にまた、図9(d)は、熱電部材31の一方の側にエポキシ樹脂製の補強材32aを1個配置し、他方の側にSU−8製の補強材32bを2個配置した構造の実施例3の熱電素子である。   FIG. 9D shows a structure in which one reinforcing member 32a made of epoxy resin is arranged on one side of the thermoelectric member 31, and two reinforcing members 32b made of SU-8 are arranged on the other side. 3 is a thermoelectric element of Example 3.

この図9(a)〜(d)に示す構造の比較例、実施例1、実施例2及び実施例3の各熱電素子について、熱電部材31の内部に生じる最大ミーゼス応力をシミュレーション計算した。   The maximum Mises stress generated inside the thermoelectric member 31 was calculated by simulation for each of the thermoelectric elements of the comparative example, Example 1, Example 2 and Example 3 having the structures shown in FIGS.

なお、シミュレーション計算時には、図10に示すSU−8、エポキシ樹脂、及び熱電部材の材料であるBiTeのヤング率及びポアソン比を使用した。また、熱電部材31の幅は10μm、長さは100μm、アスペクト比は10とした。更に、シミュレーション計算には、境界条件として下部電極を固定した条件で電極材料側面に100kPaの応力を加えた場合に熱電部材31の内部に生じる最大ミーゼス応力を比較した。その結果を、図11にまとめて示す。   In the simulation calculation, the Young's modulus and Poisson's ratio of SU-8, epoxy resin, and BiTe, which are thermoelectric member materials, shown in FIG. 10 were used. The thermoelectric member 31 had a width of 10 μm, a length of 100 μm, and an aspect ratio of 10. Furthermore, in the simulation calculation, the maximum Mises stress generated inside the thermoelectric member 31 when a stress of 100 kPa was applied to the electrode material side surface under the condition that the lower electrode was fixed as a boundary condition was compared. The results are summarized in FIG.

図11からわかるように、補強材がない比較例の熱電素子では、最大ミーゼス応力が約5800kPaと大きい。それに対し、実施例1〜3の熱電素子は、いずれも比較例に比べて最大ミーゼス応力が1000kPa以上低減される。このことから、実施例1〜3の熱電素子は、比較例に比べて耐衝撃性が高いことが確認された。   As can be seen from FIG. 11, the maximum Mises stress is as large as about 5800 kPa in the thermoelectric element of the comparative example without the reinforcing material. On the other hand, as for the thermoelectric elements of Examples 1-3, the maximum Mises stress is reduced by 1000 kPa or more as compared with the comparative example. From this, it was confirmed that the thermoelectric elements of Examples 1 to 3 have higher impact resistance than the comparative example.

以上の諸実施形態に関し、更に以下の付記を開示する。   The following additional notes are disclosed with respect to the above embodiments.

(付記1)複数の柱状の熱電部材と、
前記熱電部材の長さ方向の端部に接続され、前記複数の熱電部材を電気的に直列接続する電極と、
前記熱電部材の長さ方向の一部に接触し、隣り合う前記熱電部材間を連絡する補強材と
を有することを特徴とする熱電素子。
(Appendix 1) A plurality of columnar thermoelectric members;
An electrode connected to an end of the thermoelectric member in a length direction, and electrically connecting the plurality of thermoelectric members in series;
A thermoelectric element comprising: a reinforcing material that contacts a part of a length direction of the thermoelectric member and communicates between the adjacent thermoelectric members.

(付記2)前記熱電部材は、n型熱電材料からなるn型熱電部材と、p型熱電材料からなるp型熱電部材とを有し、前記電極は前記n型熱電部材とp型熱電部材とを交互に接続することを特徴とする付記2に記載の熱電素子。   (Supplementary Note 2) The thermoelectric member includes an n-type thermoelectric member made of an n-type thermoelectric material and a p-type thermoelectric member made of a p-type thermoelectric material, and the electrode includes the n-type thermoelectric member and the p-type thermoelectric member. The thermoelectric elements according to supplementary note 2, characterized by being connected alternately.

(付記3)前記熱電部材は、一対の伝熱板間に配列していることを特徴とする付記1又は2に記載の熱電素子。   (Appendix 3) The thermoelectric element according to appendix 1 or 2, wherein the thermoelectric members are arranged between a pair of heat transfer plates.

(付記4)前記補強材の一部は、前記熱電部材の長さ方向に直交する第1の平面上に配置され、少なくとも他の一部は前記熱電部材の長さ方向に直交する第2の平面上に配置されていることを特徴とする付記1乃至4のいずれか1項に記載の熱電素子。   (Supplementary Note 4) A part of the reinforcing member is disposed on a first plane orthogonal to the length direction of the thermoelectric member, and at least another part is a second orthogonal to the length direction of the thermoelectric member. The thermoelectric element according to any one of appendices 1 to 4, wherein the thermoelectric element is disposed on a plane.

(付記5)隣接する熱電部材間に配置された前記補強材の数が、前記熱電部材の配列方向に沿って一定の周期で変化していることを特徴とする付記1乃至4のいずれか1項に記載の熱電素子。 (Additional remark 5) Any one of Additional remarks 1 thru | or 4 characterized by the number of the said reinforcing material arrange | positioned between adjacent thermoelectric members changing with the fixed period along the sequence direction of the said thermoelectric members. heat Denmoto child according to item.

(付記6)前記熱電部材間に配置された前記補強材の一部は、他の補強材とヤング率が異なることを特徴とする付記1乃至5のいずれか1項に記載の熱電素子。 (Supplementary Note 6) a part of the thermoelectric said reinforcing member disposed between members, heat Denmoto child according to any one of Appendices 1 to 5, characterized in that another reinforcing member and the Young's modulus is different .

(付記7)前記補強材は、前記熱電部材との接続部よりも中央部が細い形状であることを特徴とする付記1乃至6のいずれか1項に記載の熱電素子。 (Supplementary Note 7) The reinforcing material is thermally Denmoto child according to any one of Appendices 1 to 6, characterized in that said a slender shape central portion than the connection portion of the thermoelectric element.

(付記8)基板に複数の貫通孔を形成する工程と、
前記貫通孔内に熱電材料を充填して熱電部材を形成する工程と、
前記基板をその厚さ方向の途中までエッチングする工程と、
前記基板の前記エッチングを施した面に絶縁材料を塗布して補強材を形成する工程と、
前記基板を除去する工程と、
前記熱電部材の端部に電極を接続する工程と
を有することを特徴とする熱電素子の製造方法。
(Appendix 8) A step of forming a plurality of through holes in the substrate;
Filling the through hole with a thermoelectric material to form a thermoelectric member;
Etching the substrate halfway along its thickness direction;
Applying an insulating material to the etched surface of the substrate to form a reinforcing material;
Removing the substrate;
And a step of connecting an electrode to an end of the thermoelectric member.

(付記9)前記貫通孔は、直径が5μm乃至100μmであり、アスペクト比が2乃至40であることを特徴とする付記8に記載の熱電素子の製造方法。   (Supplementary note 9) The method of manufacturing a thermoelectric element according to supplementary note 8, wherein the through hole has a diameter of 5 to 100 µm and an aspect ratio of 2 to 40.

(付記10)熱電材料は、エアロゾルデポジッション法により前記貫通孔内に充填することを特徴とする付記8又は9に記載の熱電素子の製造方法。   (Supplementary note 10) The thermoelectric element manufacturing method according to supplementary note 8 or 9, wherein the thermoelectric material is filled in the through hole by an aerosol deposition method.

(付記11)前記貫通孔内に前記熱電材料を充填した後、熱処理又は加圧処理を実施することを特徴とする付記10に記載の熱電素子の製造方法。   (Additional remark 11) After filling the said thermoelectric material in the said through-hole, heat processing or a pressurization process is implemented, The manufacturing method of the thermoelectric element of Additional remark 10 characterized by the above-mentioned.

(付記12)前記補強材を形成する工程では、インクジェットプリンターを使用して前記絶縁材料を前記基板に塗布することを特徴とする付記8乃至11のいずれか1項に記載の熱電素子の製造方法。   (Supplementary note 12) The method for manufacturing a thermoelectric element according to any one of supplementary notes 8 to 11, wherein in the step of forming the reinforcing material, the insulating material is applied to the substrate using an inkjet printer. .

(付記13)前記基板として、シリコンウェハを使用することを特徴とする付記8乃至12のいずれか1項に記載の熱電素子の製造方法。   (Additional remark 13) The manufacturing method of the thermoelectric element of any one of Additional remark 8 thru | or 12 characterized by using a silicon wafer as said board | substrate.

10…マイクロ熱電素子、11a.11b…伝熱板、12…n型熱電部材、13…p型熱電部材、14…電極、15a,15b…引出電極、20…マイクロ熱電素子、21…基板、22…貫通孔、23…ステンシルマスク、24…n型熱電部材、25…p型熱電部材、26,26a,26b,26c,26d,32,32a,32b…補強材、28a,28b…伝熱板、29…電極、29a,29b…引出電極。   10 ... micro thermoelectric element, 11a. DESCRIPTION OF SYMBOLS 11b ... Heat-transfer plate, 12 ... N-type thermoelectric member, 13 ... P-type thermoelectric member, 14 ... Electrode, 15a, 15b ... Extraction electrode, 20 ... Micro thermoelectric element, 21 ... Substrate, 22 ... Through-hole, 23 ... Stencil mask 24 ... n-type thermoelectric member, 25 ... p-type thermoelectric member, 26, 26a, 26b, 26c, 26d, 32, 32a, 32b ... reinforcement, 28a, 28b ... heat transfer plate, 29 ... electrode, 29a, 29b ... Extraction electrode.

Claims (9)

平面視で規則的に配列された複数の柱状の熱電部材と、
前記熱電部材の長さ方向の端部に接続され、前記複数の熱電部材を電気的に直列接続する電極と、
複数の隣り合う前記熱電部材間において、前記熱電部材の長さ方向の一部かつ周方向の一部に接触し、それぞれの前記隣り合う熱電部材間を連絡する、平面視で短冊状の補強材と
を有し、
前記それぞれの隣り合う熱電部材間を連絡する補強材は、配列された前記熱電部材を介して格子状に配置されたことを特徴とする熱電素子。
A plurality of columnar thermoelectric members regularly arranged in a plan view;
An electrode connected to an end of the thermoelectric member in a length direction, and electrically connecting the plurality of thermoelectric members in series;
A strip-shaped reinforcing material in plan view that contacts a part of the thermoelectric member in the length direction and a part of the circumferential direction between the plurality of adjacent thermoelectric members and communicates between the adjacent thermoelectric members. And
The reinforcing element that communicates between the adjacent thermoelectric members is arranged in a lattice shape via the arranged thermoelectric members.
前記補強材の一部は、前記熱電部材の長さ方向に直交する第1の平面上に配置され、少なくとも他の一部は前記熱電部材の長さ方向に直交する第2の平面上に配置されていることを特徴とする請求項1に記載の熱電素子。   A part of the reinforcing material is arranged on a first plane orthogonal to the length direction of the thermoelectric member, and at least another part is arranged on a second plane orthogonal to the length direction of the thermoelectric member. The thermoelectric element according to claim 1, wherein the thermoelectric element is formed. 隣接する熱電部材間に配置された前記補強材の数が、前記熱電部材の配列方向に沿って一定の周期で変化していることを特徴とする請求項1又は2に記載の熱電素子。   3. The thermoelectric element according to claim 1, wherein the number of the reinforcing members arranged between adjacent thermoelectric members changes at a constant period along the arrangement direction of the thermoelectric members. 前記それぞれの隣り合う熱電部材間を連絡する前記補強材のうち、一部の前記隣り合う熱電部材間に配置された前記補強材は、他の前記隣り合う熱電部材間に配置された前記補強材とヤング率が異なることを特徴とする請求項1乃至3のいずれか1項に記載の熱電素子。 Among the reinforcing materials that communicate between the adjacent thermoelectric members, the reinforcing material that is disposed between some of the adjacent thermoelectric members is the reinforcing material that is disposed between the other adjacent thermoelectric members. heat Denmoto child according to any one of claims 1 to 3 Young's modulus are different from each other and. 前記補強材は、前記熱電部材との接続部よりも中央部が細い形状であることを特徴とする請求項1乃至4のいずれか1項に記載の熱電素子。   The thermoelectric element according to any one of claims 1 to 4, wherein the reinforcing member has a shape whose central portion is narrower than a connection portion with the thermoelectric member. 基板に複数の貫通孔を形成する工程と、
前記貫通孔内に熱電材料を充填して熱電部材を形成する工程と、
前記基板をその厚さ方向の途中までエッチングする工程と、
前記基板の前記エッチングを施した面に絶縁材料を塗布して補強材を形成する工程と、
前記基板を除去する工程と、
前記熱電部材の端部に電極を接続する工程と
を有することを特徴とする熱電素子の製造方法。
Forming a plurality of through holes in the substrate;
Filling the through hole with a thermoelectric material to form a thermoelectric member;
Etching the substrate halfway along its thickness direction;
Applying an insulating material to the etched surface of the substrate to form a reinforcing material;
Removing the substrate;
And a step of connecting an electrode to an end of the thermoelectric member.
前記貫通孔は、直径が5μm乃至100μmであり、アスペクト比が2乃至40であることを特徴とする請求項6に記載の熱電素子の製造方法。   The method of manufacturing a thermoelectric element according to claim 6, wherein the through hole has a diameter of 5 μm to 100 μm and an aspect ratio of 2 to 40. 熱電材料は、エアロゾルデポシション法により前記貫通孔に充填することを特徴とする請求項6又は7に記載の熱電素子の製造方法。   The thermoelectric element manufacturing method according to claim 6 or 7, wherein the thermoelectric material is filled in the through-hole by an aerosol deposition method. 前記補強材を形成する工程は、インクジェットプリンターを使用して前記絶縁材料を前記基板に塗布することを特徴とする請求項6乃至8のいずれか1項に記載の熱電素子の製造方法。   The method of manufacturing a thermoelectric element according to claim 6, wherein the step of forming the reinforcing material includes applying the insulating material to the substrate using an ink jet printer.
JP2013142257A 2013-07-08 2013-07-08 Thermoelectric element and manufacturing method thereof Expired - Fee Related JP6405604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013142257A JP6405604B2 (en) 2013-07-08 2013-07-08 Thermoelectric element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013142257A JP6405604B2 (en) 2013-07-08 2013-07-08 Thermoelectric element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015015407A JP2015015407A (en) 2015-01-22
JP6405604B2 true JP6405604B2 (en) 2018-10-17

Family

ID=52436924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013142257A Expired - Fee Related JP6405604B2 (en) 2013-07-08 2013-07-08 Thermoelectric element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6405604B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109545951B (en) * 2018-11-16 2023-02-03 清华大学深圳研究生院 Organic thermoelectric device template, preparation method thereof and thermoelectric device
WO2020166647A1 (en) * 2019-02-15 2020-08-20 パナソニックIpマネジメント株式会社 Thermoelectric conversion substrate and thermoelectric conversion module
KR20210081617A (en) * 2019-12-24 2021-07-02 엘지이노텍 주식회사 Thermo electric element
KR102549551B1 (en) * 2021-04-06 2023-06-29 (주)포인트엔지니어링 The electro-conductive contact pin and inspection apparatus having the same electro-conductive pin and manufacturing method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3151759B2 (en) * 1994-12-22 2001-04-03 モリックス株式会社 Thermoelectric semiconductor needle crystal and method of manufacturing thermoelectric semiconductor element
JP2896497B2 (en) * 1996-07-31 1999-05-31 工業技術院長 Flexible thermoelectric module
JPH11121816A (en) * 1997-10-21 1999-04-30 Morikkusu Kk Thermoelectric module unit
JP4065049B2 (en) * 1998-03-19 2008-03-19 オリンパス株式会社 Method for manufacturing piezoelectric ceramic structure and method for manufacturing composite piezoelectric vibrator
JP3724262B2 (en) * 1999-06-25 2005-12-07 松下電工株式会社 Thermoelectric module
JP2001210880A (en) * 2000-01-26 2001-08-03 Matsushita Electric Works Ltd Peltier module
JP2005217169A (en) * 2004-01-29 2005-08-11 Tohoku Okano Electronics:Kk Thermoelectric conversion module
JP4412209B2 (en) * 2004-05-21 2010-02-10 パナソニック電工株式会社 Method for manufacturing thermoelectric conversion element module
JP2010165842A (en) * 2009-01-15 2010-07-29 Sumitomo Chemical Co Ltd Thermoelectric conversion module
JP2011035117A (en) * 2009-07-31 2011-02-17 Sumitomo Chemical Co Ltd Thermoelectric conversion material
DE102009043413B3 (en) * 2009-09-29 2011-06-01 Siemens Aktiengesellschaft Thermo-electric energy converter with three-dimensional microstructure, method for producing the energy converter and use of the energy converter
JP2012019205A (en) * 2010-06-10 2012-01-26 Fujitsu Ltd Thermoelectric conversion element and manufacturing method thereof
JP2012119451A (en) * 2010-11-30 2012-06-21 Daikin Ind Ltd Thermoelectric conversion module

Also Published As

Publication number Publication date
JP2015015407A (en) 2015-01-22

Similar Documents

Publication Publication Date Title
JP5831554B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP6232703B2 (en) Thermoelectric conversion element
JP6405604B2 (en) Thermoelectric element and manufacturing method thereof
JP5987444B2 (en) Thermoelectric conversion device and manufacturing method thereof
JP5598152B2 (en) Thermoelectric conversion module and manufacturing method thereof
US20120227780A1 (en) Thermoelectric conversion module and method of manufacturing same
JP2008205181A (en) Thermoelectric module
KR101680766B1 (en) Thermoelectric device and Array of Thermoelectric device
JP2013074291A (en) Thermoelectric module and method for manufacturing the same
KR101621750B1 (en) Manufacturing Method of Thermoelectric Film
JP2008277584A (en) Thermoelectric substrate member, thermoelectric module, and manufacturing method of them
JP2016187008A (en) Thermoelectric conversion device
JP2012019205A (en) Thermoelectric conversion element and manufacturing method thereof
DE102017125647A1 (en) Thermoelectric devices and methods of forming thermoelectric devices
US20140103481A1 (en) Semiconductor substrate, semiconductor device, solid-state imaging device, and method of manufacturing semiconductor sustrate
KR20110117872A (en) Structure of micro thermoelectric device and method of manufacturing the same
JP2005259944A (en) Thin film thermo-electronic semiconductor device and manufacturing method thereof
JP2011166079A (en) Method of manufacturing thermoelectric conversion element
JP2012212838A (en) Thermoelectric thin film device
JP6021383B2 (en) Substrate and semiconductor device
JP5533026B2 (en) Thermoelectric conversion device and manufacturing method thereof
DE10333084A1 (en) Thermal generator used e.g. as a current source comprises thermal segments displaced relative to each other so that one end of the thermal element chain protrudes over one edge of a neighboring thermal segment
KR100975628B1 (en) Method for manufacturing a thin film flexible thermoelectric module using peeling process
JP4124150B2 (en) Thermoelectric module manufacturing method
JP4438622B2 (en) Thermoelectric conversion element and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171116

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R150 Certificate of patent or registration of utility model

Ref document number: 6405604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees