WO2022177389A1 - Electrically conductive contact pin and assembly thereof - Google Patents

Electrically conductive contact pin and assembly thereof Download PDF

Info

Publication number
WO2022177389A1
WO2022177389A1 PCT/KR2022/002515 KR2022002515W WO2022177389A1 WO 2022177389 A1 WO2022177389 A1 WO 2022177389A1 KR 2022002515 W KR2022002515 W KR 2022002515W WO 2022177389 A1 WO2022177389 A1 WO 2022177389A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically conductive
contact
tip portion
contact pin
conductive contact
Prior art date
Application number
PCT/KR2022/002515
Other languages
French (fr)
Korean (ko)
Inventor
안범모
박승호
홍창희
Original Assignee
(주)포인트엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포인트엔지니어링 filed Critical (주)포인트엔지니어링
Publication of WO2022177389A1 publication Critical patent/WO2022177389A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • G01R1/06738Geometry aspects related to tip portion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects

Definitions

  • the present invention relates to an electrically conductive contact pin and an assembly thereof.
  • a test apparatus and test socket having a plurality of electrically conductive contact pins between a connection terminal of a semiconductor package or wafer for testing and a connection terminal on the side of the test circuit board are used in a test apparatus for a semiconductor package or a wafer for an integrated circuit.
  • an inspection object semiconductor wafer or semiconductor package
  • the electrically conductive contact pins are applied to corresponding electrode pads (or solder balls or bumps) on the inspection object. This is done by making contact.
  • the electrically conductive contact pin and the electrode pad on the inspection object are brought into contact, after reaching a state in which both start to contact, a process for further approaching the inspection object is performed.
  • FIG. 1 shows an electrically conductive contact pin according to the prior art.
  • the electrically conductive contact pin shown in FIG. 1 is a slide-type electrically conductive contact pin that enables the application of a necessary contact pressure and shock absorption at the contact position by installing the spring member 12 between the tip portions 11 at both ends.
  • the electrically conductive contact pin In order for the electrically conductive contact pin to slide within the housing, a gap must exist between the outer surface of the electrically conductive contact pin and the inner surface of the housing.
  • the outer surface of the electrically conductive contact pin is spaced apart from the inner surface of the housing 13 more than necessary. It is not possible to precisely perform niche management. Accordingly, loss and distortion of the electrical signal are generated in the process in which the electrical signal is transmitted to the housing via the tip portion 11 , so that the inspection reliability is reduced.
  • Patent Document 1 Republic of Korea Patent Publication Registration No. 10-0659944
  • Patent Document 2 Republic of Korea Patent Publication No. 10-0647131
  • the present invention has been devised to solve the problems of the prior art, and by adopting an elastic contact structure to a contact tip sliding within a housing, and slidingly moving while always in contact with the inner surface of the housing, an electrically conductive contact pin that minimizes contact resistance and an assembly thereof.
  • an electrically conductive contact pin includes a first contact tip portion; a second contact tip portion; a body portion connecting the first contact tip portion and the second contact tip portion; and an elastic contact portion formed on at least one of the first contact tip portion and the second contact tip portion.
  • one end of the elastic contact portion is connected to the first contact tip portion, and the other end of the elastic contact portion is a free end.
  • the elastic contact portion is formed to be curved.
  • the electrically conductive contact pin assembly is an electrically conductive contact pin assembly including an electrically conductive contact pin which is inserted into a housing, the first contact tip portion; a second contact tip portion; a body portion connecting the first contact tip portion and the second contact tip portion; and an elastic contact portion formed on at least one of the first contact tip portion and the second contact tip portion, wherein the elastic contact portion slides in contact with the interior of the housing.
  • a metal layer made of a material having high electrical conductivity is coated on the inner wall of the housing.
  • the present invention provides an electrically conductive contact pin and an assembly thereof that minimizes contact resistance by slidingly moving while always in contact with the inner surface of the housing by adopting an elastic contact structure to the contact tip portion that slides within the housing.
  • FIG. 1 is a view showing an electrically conductive contact pin according to the prior art.
  • FIG. 2 is a plan view of an electrically conductive contact pin according to a first preferred embodiment of the present invention
  • FIG. 3 is a perspective view of an electrically conductive contact pin according to a first preferred embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of an electrically conductive contact pin assembly according to a first preferred embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of an electrically conductive contact pin assembly according to a second preferred embodiment of the present invention.
  • FIG. 6 is a plan view showing a modified example of the electrically conductive contact pin according to the first and second preferred embodiments of the present invention.
  • Embodiments described herein will be described with reference to cross-sectional and/or perspective views, which are ideal illustrative drawings of the present invention.
  • the thicknesses of films and regions shown in these drawings are exaggerated for effective description of technical content.
  • the shape of the illustrative drawing may be modified due to manufacturing technology and/or tolerance. Accordingly, embodiments of the present invention are not limited to the specific form shown, but also include changes in the form generated according to the manufacturing process.
  • the electrically conductive contact pin according to a preferred embodiment of the present invention may be manufactured by MEMS technology, and application fields may vary according to its use.
  • the electrically conductive contact pin according to a preferred embodiment of the present invention is provided in the inspection device and is used to electrically and physically contact the inspection object to transmit an electrical signal.
  • the inspection apparatus may be an inspection apparatus used in a semiconductor manufacturing process, and for example, may be a probe card or a test socket depending on an object to be inspected.
  • the inspection apparatus according to a preferred embodiment of the present invention is not limited thereto, and any apparatus for checking whether an object to be inspected is defective by applying electricity is included.
  • An electrically conductive contact pin assembly is configured to include an electrically conductive contact pin and a housing in which the electrically conductive contact pin is accommodated.
  • FIG. 2 to 4 are views for explaining an electrically conductive contact pin 100 and an assembly thereof according to a first embodiment of the present invention
  • FIG. 2 is an electrically conductive contact pin 100 according to the first embodiment of the present invention
  • 3 is a perspective view of the electrically conductive contact pin 100 according to the first embodiment
  • FIG. 4 is a plan view of the electrically conductive contact pin assembly according to the first embodiment.
  • an electrically conductive contact pin 100 includes a first contact tip portion 210 , a second contact tip portion 230 , a first contact tip portion 210 and a second contact tip portion 210 . It includes a body part 300 for connecting the two contact tip parts 230 .
  • An elastic contact portion 400 is formed on at least one of the first contact tip portion 210 and the second contact tip portion 230 .
  • the first contact tip portion 210 , the second contact tip portion 230 , and the body portion 300 may be integrally manufactured by MEMS technology.
  • the body part 300 may be formed in a zigzag shape to be elastically stretchable in the longitudinal direction of the electrically conductive contact pin 100 .
  • the shape of the body part 300 may be manufactured in another shape as long as it is elastically deformable in addition to the zigzag shape.
  • the electrically conductive contact pins 100 may be formed of a conductive material.
  • the conductive material is platinum (Pt), rhodium (Ph), palladium (Pd), copper (Cu), silver (Ag), gold (Au), iridium (Ir) or an alloy thereof, or nickel-cobalt (NiCo). At least one may be selected from an alloy, a palladium-cobalt (PdCo) alloy, a palladium-nickel (PdNi) alloy, or a nickel-phosphorus (NiP) alloy.
  • the body portion of the electrically conductive contact pin 100 may have a multilayer structure in which a plurality of conductive materials are stacked.
  • Each conductive layer composed of different materials is platinum (Pt), rhodium (Ph), palladium (Pd), copper (Cu), silver (Ag), gold (Au), iridium (Ir) or alloys thereof. , or a palladium-cobalt (PdCo) alloy, a palladium-nickel (PdNi) alloy, or a nickel-phosphorus (NiP) alloy.
  • the first contact tip portion 210 is a portion substantially in contact with the pad of the inspection device
  • the second contact tip portion 230 is a portion substantially in contact with the object to be inspected, and is a compressive force applied to both ends of the electrically conductive contact pin 100 .
  • the body part 300 is elastically compressed in the longitudinal direction, and when the compressive force applied to both ends is released, the body part 300 is restored to its original state again.
  • the electrically conductive contact pin 100 may be manufactured by a mold made of an anodized film material. More specifically, the electrically conductive contact pin 100 may be manufactured by forming an opening in a mold made of an anodization film material and electroplating using a seed layer provided under the mold made of an anodization film material.
  • a mold made of an anodized film material means a film formed by anodizing a metal as a base material, and a pore means a hole formed in the process of anodizing a metal to form an anodizing film.
  • the base metal is aluminum (Al) or an aluminum alloy
  • an anodization film made of aluminum oxide (Al 2 0 3 ) material is formed on the surface of the base material.
  • the anodic oxide film formed as described above is vertically divided into a barrier layer having no pores formed therein and a porous layer having pores formed therein.
  • the anodization film may be formed in a structure in which the barrier layer formed during anodization is removed to penetrate the top and bottom of the pores, or the barrier layer formed during anodization remains as it is and seals one end of the top and bottom of the pores.
  • the anodized film has a coefficient of thermal expansion of 2-3 ppm/°C. For this reason, when exposed to a high temperature environment, thermal deformation due to temperature is small. Therefore, even in a high-temperature environment in the manufacturing environment of the electrically conductive contact pin 100, the precise electrically conductive contact pin 100 can be manufactured without thermal deformation.
  • the elastic contact portion 400 is formed on at least one of the first contact tip portion 210 and the second contact tip portion 230 . 2 and 3 show a configuration in which the elastic contact portion 400 is provided on the first contact tip portion 210 .
  • One end of the elastic contact portion 400 is connected to the first contact tip portion 400 , and the other end of the elastic contact portion 400 is a free end. Through this, the elastic contact portion 400 is elastically deformable while being supported and fixed by the first contact tip portion 400 .
  • the elastic contact part 400 provided on the left side of the electrically conductive contact pin 100 is curved in the same shape as the English alphabet "C” shape, and the elastic contact part 400 provided on the right side of the electrically conductive contact pin 100 . ) is formed by being curved in the same shape as the "inverted C” shape.
  • One end of the elastic contact part 400 is a root part connected to the first contact tip part 400, and the thickness of the electrically conductive contact pin 100 increases from the other end to the root part. Through this, it has an effect of preventing damage due to concentration of stress in the vicinity of the electrically conductive contact pin 100 during deformation.
  • the other end of the elastic contact part 400 is configured as a free end.
  • the elastic contact part 400 deforms when the first contact tip part 210 slides. Since it is not large, the frictional resistance can act significantly.
  • the elastic contact part 400 according to the preferred embodiment of the present invention has the other end configured as a free end, so that when the first contact tip part 210 slides, deformation of the elastic contact part 400 easily occurs, thereby reducing frictional resistance. has the effect of reducing
  • the elastic contact part 400 is provided on both sides of the first contact tip part 210 .
  • the length of the width before deformation of the elastic contact portion 400 provided on both sides of the first contact tip portion 210 is smaller than the length between the inner surfaces of the housing 500 . Through this, the first contact tip 210 can always maintain a state of contact with the inner surface of the housing 500 .
  • the elastic contact part 400 has a curved shape, even when the first contact tip part 210 slides along the inner surface of the housing 500 , the normal drag force of the frictional force acting on the elastic contact part 400 is the first contact tip part It acts in the (210) direction. As a result, the first contact tip 210 can always maintain a contact state with the inner surface of the housing 500 even when sliding.
  • the housing 500 comprises an electrically conductive material.
  • the housing 500 itself may be constructed of an electrically conductive material.
  • the inner surface of the housing 500 may be formed by coating an electrically conductive material.
  • the elastic contact part 400 contacts the inner surface of the housing 500 made of an electrically conductive material, a current path passing through the first contact tip part 210 , the housing 500 , and the second contact tip part 230 is formed. Therefore, the elastic deformation of the electrically conductive contact pin 100 is handled by the body portion 300, and the current path of the electrically conductive contact pin 100 is the first contact tip portion 210, the housing 500, and the second contact tip portion ( As the 230 is in charge, it is possible to form a shorter path of the current flowing through the electrically conductive contact pin 100 .
  • the housing 500 may have a rectangular cross-section. Since the cross-sectional shape of the electrically conductive contact pin 100 is a rectangular shape and the cross-sectional shape of the housing 500 is manufactured to have a rectangular shape, the electrically conductive contact pin 100 is prevented from tilting in the housing 500 and the electrically conductive contact pin It has the advantage of being able to arrange the assemblies at narrower pitch intervals. When the cross-section of the housing 500 is manufactured in a circular shape, there is a limitation in arranging the electrically conductive contact pin assembly in a narrow pitch. In addition, there may be a problem in that the electrically conductive contact pin 100 having a rectangular cross-section is tilted within the housing 500 . However, according to a preferred embodiment of the present invention, through the configuration in which the electrically conductive contact pin 100 of the rectangular cross-section is provided in the housing 500 of the rectangular cross-section, it is possible to simultaneously achieve tilting prevention and narrow pitch implementation.
  • Caulking parts 510 are formed at both ends of the housing 500 .
  • the size of the hole formed by the caulking part 510 is such that the electrically conductive contact pin 100 cannot easily come out.
  • the size of the hole formed by the caulking portion 510 is greater than the width of the first contact tip portion 210 and smaller than the longest distance between the two elastic contact portions 400 .
  • the caulking portion 510 supports the proximal portion 410 of the elastic contact portion 400 . Through this, it is possible to make a clearance between the housing 500 and the caulking part 510 in the manufacturing process, and it is possible to ensure the smooth sliding movement of the first contact tip part 210 .
  • the elastic contact part 400 since the elastic contact part 400 always maintains a state of contact with the inner surface of the housing 500 , foreign substances are prevented from penetrating into the housing 500 . Moreover, at the proximal side of the elastic contact part 400 , a sufficient separation space exists between the caulking part 510 and the first contact tip part 210 , so that foreign substances generated during the sliding process can be easily discharged to the outside.
  • FIG. 5 is a view for explaining an electrically conductive contact pin 100 and an assembly thereof according to a second preferred embodiment of the present invention. Since the configuration of the electrically conductive contact pin 100 is the same as that of the electrically conductive contact pin 100 according to the first embodiment described above, a detailed description thereof will be omitted.
  • the electrically conductive contact pin assembly according to the second embodiment of the present invention differs only in the configuration of the housing of the electrically conductive contact pin assembly of the first embodiment.
  • the housing 600 according to the second embodiment has a plurality of housings 600 in one housing 600 .
  • the electrically conductive contact pins 100 are provided.
  • FIG. 5 only one electrically conductive contact pin 100 is shown in FIG. 5 , a plurality of electrically conductive contact pins 100 are provided.
  • the housing 500 according to the first embodiment has a caulking part 510 to prevent the first and second contact tip parts 210 and 230 from falling off
  • the housing 600 according to the second embodiment has an upper portion.
  • the configuration prevents the first and second contact tip portions 210 and 230 from falling off through the coupling of the housing 610 and the lower housing 630 .
  • the upper housing 610 has a first hole 611 and a second hole 613 having a larger inner width than the first hole 611 therein
  • the lower housing 630 has a second hole 613 and A third hole 631 having the same inner width and a fourth hole 633 having a smaller inner width than the third hole 631 are provided.
  • the size of the first hole 611 is greater than the width of the first contact tip portion 210 and is smaller than the longest distance between the two elastic contact portions 400 .
  • the first hole 611 supports the proximal portion 410 of the elastic contact portion 400 . Through this, it is possible to make a clearance between the housing 500 and the caulking part 510 in the manufacturing process, and it is possible to ensure the smooth sliding movement of the first contact tip part 210 .
  • the inner surface of the housing 600 may be coated with a metal layer having excellent electrical conductivity.
  • a current path passing through the first contact tip part 210 , the housing 600 , and the second contact tip part 230 is formed. Therefore, the elastic deformation of the electrically conductive contact pin 100 is carried out by the body portion 300, and the current path of the electrically conductive contact pin 100 is the first contact tip portion 210, the housing 600, and the second contact tip portion ( As the 230 is in charge, it is possible to form a shorter path of the current flowing through the electrically conductive contact pin 100 .
  • the elastic contact portion 400 includes the first contact tip portion 210 and the second contact tip portion ( 230) may also be provided.
  • the configuration and effect of the elastic contact portion 400 provided in the second contact tip portion 230 is the same as the configuration and effect of the elastic contact portion 400 provided in the first contact tip portion 210, and thus a detailed description thereof will be omitted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Measuring Leads Or Probes (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

The present invention provides an electrically conductive contact pin and an assembly thereof, the electrically conductive contact pin adopting a resilient contact structure on a contact tip portion which slides inside a housing, to slide while constantly staying in contact with the inner surface of the housing, thereby minimizing contact resistance.

Description

전기 전도성 접촉핀 및 그 어셈블리Electrically conductive contact pins and their assemblies
본 발명은 전기 전도성 접촉핀 및 그 어셈블리에 관한 것이다.The present invention relates to an electrically conductive contact pin and an assembly thereof.
반도체 패키지 또는 집적 회로를 위한 웨이퍼의 시험 장치에는 테스트를 위한 반도체 패키지나 웨이퍼의 접속 단자와 테스트 회로 기판 측의 접속 단자 사이에 복수의 전기 전도성 접촉핀을 구비한 시험용 장치 및 검사용 소켓이 사용되고 있다. 반도체 소자의 전기적 특성 시험은 다수의 전기 전도성 접촉핀을 구비한 검사장치에 검사 대상물(반도체 웨이퍼 또는 반도체 패키지)을 접근시켜 전기 전도성 접촉핀을 검사 대상물상의 대응하는 전극 패드(또는 솔더볼 또는 범프)에 접촉시킴으로써 수행된다. 전기 전도성 접촉핀과 검사 대상물 상의 전극 패드를 접촉시킬 때, 양자가 접촉하기 시작하는 상태에 도달한 이후, 검사 대상물을 추가로 접근하는 처리가 이루어진다.A test apparatus and test socket having a plurality of electrically conductive contact pins between a connection terminal of a semiconductor package or wafer for testing and a connection terminal on the side of the test circuit board are used in a test apparatus for a semiconductor package or a wafer for an integrated circuit. . In the electrical property test of a semiconductor device, an inspection object (semiconductor wafer or semiconductor package) is approached to an inspection device having a plurality of electrically conductive contact pins, and the electrically conductive contact pins are applied to corresponding electrode pads (or solder balls or bumps) on the inspection object. This is done by making contact. When the electrically conductive contact pin and the electrode pad on the inspection object are brought into contact, after reaching a state in which both start to contact, a process for further approaching the inspection object is performed.
도 1은 종래기술에 따른 전기 전도성 접촉핀을 도시한다. 도 1에 도시된 전기 전도성 접촉핀은 양단의 팁부(11) 사이에 스프링 부재(12)를 설치함으로써 필요한 접촉압 부여 및 접촉 위치의 충격 흡수가 가능하게 하는 슬라이드형 전기 전도성 접촉핀이다. 1 shows an electrically conductive contact pin according to the prior art. The electrically conductive contact pin shown in FIG. 1 is a slide-type electrically conductive contact pin that enables the application of a necessary contact pressure and shock absorption at the contact position by installing the spring member 12 between the tip portions 11 at both ends.
전기 전도성 접촉핀이 하우징 내에서 슬라이드 이동하기 위해서는 전기 전도성 접촉핀의 외면과 하우징 내면 사이에는 틈새가 존재해야 한다. 하지만, 종래 슬라이드형 전기 전도성 접촉핀은 하우징(13)과 전기 전도성 접촉핀을 별도로 제작한 후 이들을 결합하여 사용하기 때문에, 필요 이상으로 전기 전도성 접촉핀의 외면이 하우징(13)의 내면과 이격되는 등 틈새 관리를 정밀하게 수행할 수 없다. 따라서 전기 신호가 팁부(11)를 경유하여 하우징으로 전달되는 과정에서 전기 신호의 손실 및 왜곡이 발생되므로 검사 신뢰도가 감소하는 문제가 발생하게 된다.In order for the electrically conductive contact pin to slide within the housing, a gap must exist between the outer surface of the electrically conductive contact pin and the inner surface of the housing. However, in the conventional slide-type electrically conductive contact pin, since the housing 13 and the electrically conductive contact pin are separately manufactured and then used by combining them, the outer surface of the electrically conductive contact pin is spaced apart from the inner surface of the housing 13 more than necessary. It is not possible to precisely perform niche management. Accordingly, loss and distortion of the electrical signal are generated in the process in which the electrical signal is transmitted to the housing via the tip portion 11 , so that the inspection reliability is reduced.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 1) 대한민국 등록특허공보 등록번호 제10-0659944호(Patent Document 1) Republic of Korea Patent Publication Registration No. 10-0659944
(특허문헌 2) 대한민국 등록특허공보 등록번호 제10-0647131호(Patent Document 2) Republic of Korea Patent Publication No. 10-0647131
본 발명은 상술한 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 하우징 내에서 슬라이드 이동하는 접촉 팁부에 탄성 접촉 구조를 채택하여 하우징 내면에 항시 접촉하면서 슬라이드 이동함으로써 접촉 저항을 최소화하는 전기 전도성 접촉핀 및 그 어셈블리를 제공하는 것을 그 목적으로 한다.The present invention has been devised to solve the problems of the prior art, and by adopting an elastic contact structure to a contact tip sliding within a housing, and slidingly moving while always in contact with the inner surface of the housing, an electrically conductive contact pin that minimizes contact resistance and an assembly thereof.
이러한 본 발명의 목적을 달성하기 위해, 본 발명에 따른 전기 전도성 접촉핀은, 제1접촉 팁부; 제2접촉 팁부; 상기 제1접촉 팁부와 상기 제2접촉 팁부를 연결하는 바디부; 및 상기 제1접촉 팁부 및 상기 제2접촉 팁부 중 적어도 어느 하나에 형성되는 탄성 접촉부를 포함한다.In order to achieve this object of the present invention, an electrically conductive contact pin according to the present invention includes a first contact tip portion; a second contact tip portion; a body portion connecting the first contact tip portion and the second contact tip portion; and an elastic contact portion formed on at least one of the first contact tip portion and the second contact tip portion.
또한, 상기 탄성 접촉부의 일단은 상기 제1접촉 팁부에 연결되고, 상기 탄성 접촉부의 타단은 자유단이다.In addition, one end of the elastic contact portion is connected to the first contact tip portion, and the other end of the elastic contact portion is a free end.
또한, 상기 탄성 접촉부는 만곡되어 형성된다.In addition, the elastic contact portion is formed to be curved.
한편, 본 발명에 따른 전기 전도성 접촉핀 어셈블리는, 하우징 내부에 삽입되어 구비되는 전기 전도성 접촉핀을 포함하는 전기 전도성 접촉핀 어셈블리에 있어서, 제1접촉 팁부; 제2접촉 팁부; 상기 제1접촉 팁부와 상기 제2접촉 팁부를 연결하는 바디부; 및 상기 제1접촉 팁부 및 상기 제2접촉 팁부 중 적어도 어느 하나에 형성되는 탄성 접촉부를 포함하고, 상기 탄성 접촉부는 상기 하우징의 내부에 접촉하여 슬라이딩한다.On the other hand, the electrically conductive contact pin assembly according to the present invention is an electrically conductive contact pin assembly including an electrically conductive contact pin which is inserted into a housing, the first contact tip portion; a second contact tip portion; a body portion connecting the first contact tip portion and the second contact tip portion; and an elastic contact portion formed on at least one of the first contact tip portion and the second contact tip portion, wherein the elastic contact portion slides in contact with the interior of the housing.
또한, 상기 하우징의 내벽에는 전기 전도성이 높은 재질의 금속층이 코팅된다.In addition, a metal layer made of a material having high electrical conductivity is coated on the inner wall of the housing.
본 발명은 하우징 내에서 슬라이드 이동하는 접촉 팁부에 탄성 접촉 구조를 채택하여 하우징 내면에 항시 접촉하면서 슬라이드 이동함으로써 접촉 저항을 최소화하는 전기 전도성 접촉핀 및 그 어셈블리를 제공한다.The present invention provides an electrically conductive contact pin and an assembly thereof that minimizes contact resistance by slidingly moving while always in contact with the inner surface of the housing by adopting an elastic contact structure to the contact tip portion that slides within the housing.
도 1은 종래기술에 따른 전기 전도성 접촉핀을 도시한 도면.1 is a view showing an electrically conductive contact pin according to the prior art.
도 2는 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀의 평면도.2 is a plan view of an electrically conductive contact pin according to a first preferred embodiment of the present invention;
도 3은 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀의 사시도.3 is a perspective view of an electrically conductive contact pin according to a first preferred embodiment of the present invention;
도 4는 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀 어셈블리의 단면도.4 is a cross-sectional view of an electrically conductive contact pin assembly according to a first preferred embodiment of the present invention.
도 5는 본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀 어셈블리의 단면도.5 is a cross-sectional view of an electrically conductive contact pin assembly according to a second preferred embodiment of the present invention.
도 6은 본 발명의 바람직한 제1,2실시예에 전기 전도성 접촉핀의 변형례를 도시한 평면도.6 is a plan view showing a modified example of the electrically conductive contact pin according to the first and second preferred embodiments of the present invention.
이하의 내용은 단지 발명의 원리를 예시한다. 그러므로 당업자는 비록 본 명세서에 명확히 설명되거나 도시되지 않았지만 발명의 원리를 구현하고 발명의 개념과 범위에 포함된 다양한 장치를 발명할 수 있는 것이다. 또한, 본 명세서에 열거된 모든 조건부 용어 및 실시 예들은 원칙적으로, 발명의 개념이 이해되도록 하기 위한 목적으로만 명백히 의도되고, 이와 같이 특별히 열거된 실시 예들 및 상태들에 제한적이지 않는 것으로 이해되어야 한다.The following is merely illustrative of the principles of the invention. Therefore, those skilled in the art will be able to devise various devices that, although not explicitly described or shown herein, embody the principles of the invention and are included in the spirit and scope of the invention. In addition, it should be understood that all conditional terms and examples listed herein are, in principle, expressly intended only for the purpose of understanding the inventive concept and are not limited to the specifically enumerated embodiments and states as such. .
상술한 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해질 것이며, 그에 따라 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다.The above-described objects, features, and advantages will become more apparent through the following detailed description in relation to the accompanying drawings, and accordingly, those of ordinary skill in the art to which the invention pertains will be able to easily practice the technical idea of the invention. .
본 명세서에서 기술하는 실시 예들은 본 발명의 이상적인 예시 도인 단면도 및/또는 사시도들을 참고하여 설명될 것이다. 이러한 도면들에 도시된 막 및 영역들의 두께 등은 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 따라서, 본 발명의 실시 예들은 도시된 특정 형태로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형태의 변화도 포함하는 것이다. Embodiments described herein will be described with reference to cross-sectional and/or perspective views, which are ideal illustrative drawings of the present invention. The thicknesses of films and regions shown in these drawings are exaggerated for effective description of technical content. The shape of the illustrative drawing may be modified due to manufacturing technology and/or tolerance. Accordingly, embodiments of the present invention are not limited to the specific form shown, but also include changes in the form generated according to the manufacturing process.
다양한 실시예들을 설명함에 있어서, 동일한 기능을 수행하는 구성요소에 대해서는 실시예가 다르더라도 편의상 동일한 명칭 및 동일한 참조번호를 부여하기로 한다. 또한, 이미 다른 실시예에서 설명된 구성 및 작동에 대해서는 편의상 생략하기로 한다.In describing various embodiments, components performing the same function will be given the same names and the same reference numbers for convenience even if the embodiments are different. In addition, configurations and operations already described in other embodiments will be omitted for convenience.
본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀은 MEMS 기술에 의해 제작될 수 있으며 그 용도에 따라 적용분야가 달라질 수 있다. 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀은, 검사장치에 구비되어 검사 대상물과 전기적, 물리적으로 접촉하여 전기적 신호를 전달하는데 사용된다. 검사장치는 반도체 제조공정에 사용되는 검사장치일 수 있으며, 그 일례로 검사 대상물에 따라 프로브 카드일 수 있고, 테스트 소켓일 수 있다. 본 발명의 바람직한 실시예에 따른 검사장치는 이에 한정되는 것은 아니며, 전기를 인가하여 검사 대상물의 불량 여부를 확인하기 위한 장치라면 모두 포함된다. The electrically conductive contact pin according to a preferred embodiment of the present invention may be manufactured by MEMS technology, and application fields may vary according to its use. The electrically conductive contact pin according to a preferred embodiment of the present invention is provided in the inspection device and is used to electrically and physically contact the inspection object to transmit an electrical signal. The inspection apparatus may be an inspection apparatus used in a semiconductor manufacturing process, and for example, may be a probe card or a test socket depending on an object to be inspected. The inspection apparatus according to a preferred embodiment of the present invention is not limited thereto, and any apparatus for checking whether an object to be inspected is defective by applying electricity is included.
본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀 어셈블리는 전기 전도성 접촉핀과 전기 전도성 접촉핀이 수용되는 하우징을 포함하여 구성된다.An electrically conductive contact pin assembly according to a preferred embodiment of the present invention is configured to include an electrically conductive contact pin and a housing in which the electrically conductive contact pin is accommodated.
이하, 첨부된 도면에 기초하여 본 발명의 바람직한 실시예에 대해 설명한다.Hereinafter, a preferred embodiment of the present invention will be described based on the accompanying drawings.
도 2 내지 도 4는 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀(100) 및 그 어셈블리를 설명하기 위한 도면으로서, 도 2는 제1실시예에 따른 전기 전도성 접촉핀(100)의 평면도이고, 도 3은 제1실시예에 따른 전기 전도성 접촉핀(100)의 사시도이며, 도 4는 제1실시예에 따른 전기 전도성 접촉핀 어셈블리의 평면도이다.2 to 4 are views for explaining an electrically conductive contact pin 100 and an assembly thereof according to a first embodiment of the present invention, and FIG. 2 is an electrically conductive contact pin 100 according to the first embodiment of the present invention. 3 is a perspective view of the electrically conductive contact pin 100 according to the first embodiment, and FIG. 4 is a plan view of the electrically conductive contact pin assembly according to the first embodiment.
도 2 내지 도 4를 참조하면, 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀(100)은 제1접촉 팁부(210), 제2접촉 팁부(230), 제1접촉 팁부(210)와 제2접촉 팁부(230)를 연결하는 바디부(300)를 포함한다. 제1접촉 팁부(210) 및 제2접촉 팁부(230) 중 적어도 어느 하나에는 탄성 접촉부(400)가 형성된다. 2 to 4 , an electrically conductive contact pin 100 according to a preferred embodiment of the present invention includes a first contact tip portion 210 , a second contact tip portion 230 , a first contact tip portion 210 and a second contact tip portion 210 . It includes a body part 300 for connecting the two contact tip parts 230 . An elastic contact portion 400 is formed on at least one of the first contact tip portion 210 and the second contact tip portion 230 .
전기 전도성 접촉핀(100)은 제1접촉 팁부(210), 제2접촉 팁부(230) 및 바디부(300)가 MEMS 기술에 의해 일체형으로 제작될 수 있다. In the electrically conductive contact pin 100 , the first contact tip portion 210 , the second contact tip portion 230 , and the body portion 300 may be integrally manufactured by MEMS technology.
바디부(300)는 지그재그 상으로 형성되어 전기 전도성 접촉핀(100)의 길이 방향으로 탄력적으로 신축 가능하게 제작될 수 있다. 바디부(300)의 형상은 지그재그 형상 이외에 탄성 변형 가능한 형상이라면 다른 형상으로 제작될 수 있다.The body part 300 may be formed in a zigzag shape to be elastically stretchable in the longitudinal direction of the electrically conductive contact pin 100 . The shape of the body part 300 may be manufactured in another shape as long as it is elastically deformable in addition to the zigzag shape.
전기 전도성 접촉핀(100)은 전도성 재료로 형성될 수 있다. 여기서 전도성 재료는 백금(Pt), 로듐(Ph), 팔라듐(Pd), 구리(Cu), 은(Ag), 금(Au), 이리듐(Ir)이나 이들의 합금, 또는 니켈-코발트(NiCo)합금, 팔라듐-코발트(PdCo)합금, 팔라듐-니켈(PdNi)합금 또는 니켈-인(NiP)합금 중에서 적어도 하나 선택될 수 있다. 전기 전도성 접촉핀(100)의 바디부는 복수 개의 전도성 재료가 적층된 다층 구조를 가질 수 있다. 서로 다른 재질로 구성되는 각각의 전도층은, 백금(Pt), 로듐(Ph), 팔라듐(Pd), 구리(Cu), 은(Ag), 금(Au), 이리듐(Ir)이나 이들의 합금, 또는 팔라듐-코발트(PdCo)합금, 팔라듐-니켈(PdNi)합금 또는 니켈-인(NiP)합금 중에서 선택될 수 있다. The electrically conductive contact pins 100 may be formed of a conductive material. Here, the conductive material is platinum (Pt), rhodium (Ph), palladium (Pd), copper (Cu), silver (Ag), gold (Au), iridium (Ir) or an alloy thereof, or nickel-cobalt (NiCo). At least one may be selected from an alloy, a palladium-cobalt (PdCo) alloy, a palladium-nickel (PdNi) alloy, or a nickel-phosphorus (NiP) alloy. The body portion of the electrically conductive contact pin 100 may have a multilayer structure in which a plurality of conductive materials are stacked. Each conductive layer composed of different materials is platinum (Pt), rhodium (Ph), palladium (Pd), copper (Cu), silver (Ag), gold (Au), iridium (Ir) or alloys thereof. , or a palladium-cobalt (PdCo) alloy, a palladium-nickel (PdNi) alloy, or a nickel-phosphorus (NiP) alloy.
제1접촉 팁부(210)는 검사 장치의 패드에 실질적으로 접촉하는 부위이고, 제2접촉 팁부(230)는 검사 대상물에 실질적으로 접촉하는 부위로서 전기 전도성 접촉핀(100)의 양단에 가해지는 압축력에 의해 바디부(300)는 길이방향으로 탄력적으로 압축되고 양단에 가해지는 압축력이 해제되면 바디부(300)는 다시 원래 상태로 복원된다. The first contact tip portion 210 is a portion substantially in contact with the pad of the inspection device, and the second contact tip portion 230 is a portion substantially in contact with the object to be inspected, and is a compressive force applied to both ends of the electrically conductive contact pin 100 . By this, the body part 300 is elastically compressed in the longitudinal direction, and when the compressive force applied to both ends is released, the body part 300 is restored to its original state again.
전기 전도성 접촉핀(100)은 양극산화막 재질의 몰드에 의해 제작될 수 있다. 보다 구체적으로 양극산화막 재질의 몰드에 개구부를 형성하고, 양극산화막 재질의 몰드 하부에 구비된 시드층을 이용하여 전기 도금함으로써 전기 전도성 접촉핀(100)을 제작할 수 있다. The electrically conductive contact pin 100 may be manufactured by a mold made of an anodized film material. More specifically, the electrically conductive contact pin 100 may be manufactured by forming an opening in a mold made of an anodization film material and electroplating using a seed layer provided under the mold made of an anodization film material.
양극산화막 재질의 몰드는, 모재인 금속을 양극산화하여 형성된 막을 의미하고, 포어는 금속을 양극산화하여 양극산화막을 형성하는 과정에서 형성되는 구멍을 의미한다. 예컨대, 모재인 금속이 알루미늄(Al) 또는 알루미늄 합금인 경우, 모재를 양극산화하면 모재의 표면에 알루미늄 산화물(Al203) 재질의 양극산화막이 형성된다. 위와 같이 형성된 양극산화막은 수직적으로 내부에 포어(pore)가 형성되지 않은 배리어층과, 내부에 포어가 형성된 다공층으로 구분된다. 배리어층과 다공층을 갖는 양극산화막이 표면에 형성된 모재에서, 모재를 제거하게 되면, 알루미늄 산화물(Al203) 재질의 양극산화막만이 남게 된다. 양극산화막은 양극산화시 형성된 배리어층이 제거되어 포어의 상, 하로 관통되는 구조로 형성되거나 양극산화시 형성된 배리어층이 그대로 남아 포어의 상, 하 중 일단부를 밀폐하는 구조로 형성될 수 있다. 양극산화막은 2~3ppm/℃의 열팽창 계수를 갖는다. 이로 인해 고온의 환경에 노출될 경우, 온도에 의한 열변형이 적다. 따라서 전기 전도성 접촉핀(100)의 제작 환경에 비록 고온 환경이라 하더라도 열 변형없이 정밀한 전기 전도성 접촉핀(100)을 제작할 수 있다. A mold made of an anodized film material means a film formed by anodizing a metal as a base material, and a pore means a hole formed in the process of anodizing a metal to form an anodizing film. For example, when the base metal is aluminum (Al) or an aluminum alloy, when the base material is anodized, an anodization film made of aluminum oxide (Al 2 0 3 ) material is formed on the surface of the base material. The anodic oxide film formed as described above is vertically divided into a barrier layer having no pores formed therein and a porous layer having pores formed therein. When the base material is removed from the base material on which the anodized film having a barrier layer and a porous layer is formed on the surface, only the anodized film made of aluminum oxide (Al 2 O 3 ) material remains. The anodization film may be formed in a structure in which the barrier layer formed during anodization is removed to penetrate the top and bottom of the pores, or the barrier layer formed during anodization remains as it is and seals one end of the top and bottom of the pores. The anodized film has a coefficient of thermal expansion of 2-3 ppm/°C. For this reason, when exposed to a high temperature environment, thermal deformation due to temperature is small. Therefore, even in a high-temperature environment in the manufacturing environment of the electrically conductive contact pin 100, the precise electrically conductive contact pin 100 can be manufactured without thermal deformation.
탄성 접촉부(400)는 제1접촉 팁부(210) 및 제2접촉 팁부(230) 중 적어도 어느 하나에 형성된다. 도 2 및 도 3에는 탄성 접촉부(400)가 제1접촉 팁부(210)에 구비된 구성이 도시되어 있다. The elastic contact portion 400 is formed on at least one of the first contact tip portion 210 and the second contact tip portion 230 . 2 and 3 show a configuration in which the elastic contact portion 400 is provided on the first contact tip portion 210 .
탄성 접촉부(400)의 일단은 제1접촉 팁부(400)에 연결되고, 탄성 접촉부(400)의 타단은 자유단이다. 이를 통해 탄성 접촉부(400)는 제1접촉 팁부(400)에 의해 지지 및 고정되면서 탄성 변형가능하다.One end of the elastic contact portion 400 is connected to the first contact tip portion 400 , and the other end of the elastic contact portion 400 is a free end. Through this, the elastic contact portion 400 is elastically deformable while being supported and fixed by the first contact tip portion 400 .
전기 전도성 접촉핀(100)의 좌측에 구비된 탄성 접촉부(400)는 영어 알파벳 "C"자 형상과 같은 형상으로 만곡되어 형성되고, 전기 전도성 접촉핀(100)의 우측에 구비된 탄성 접촉부(400)는 "역 C"자 형성과 같은 형상으로 만곡되어 형성된다. The elastic contact part 400 provided on the left side of the electrically conductive contact pin 100 is curved in the same shape as the English alphabet "C" shape, and the elastic contact part 400 provided on the right side of the electrically conductive contact pin 100 . ) is formed by being curved in the same shape as the "inverted C" shape.
탄성 접촉부(400)의 일단은 제1접촉 팁부(400)에 연결되는 근부로서, 타단에서 근부로 갈수록 전기 전도성 접촉핀(100)의 두께는 두껍게 형성된다. 이를 통해 변형시 전기 전도성 접촉핀(100)의 근부로 응력이 집중되어 파손되는 것을 방지하는 효과를 가진다.One end of the elastic contact part 400 is a root part connected to the first contact tip part 400, and the thickness of the electrically conductive contact pin 100 increases from the other end to the root part. Through this, it has an effect of preventing damage due to concentration of stress in the vicinity of the electrically conductive contact pin 100 during deformation.
탄성 접촉부(400)의 타단은 자유단으로 구성된다. 탄성 접촉부(400)의 타단이 자유단으로 구성되지 않고 전기 전도성 접촉핀(100)의 어딘가에 연결되는 구성을 채택할 경우에는, 제1접촉 팁부(210)의 슬라이드 이동시 탄성 접촉부(400)가 변형량이 크지 않아 오히려 마찰저항이 크게 작용할 수 있게 된다. 이와는 다르게 본 발명의 바람직한 실시예에 따른 탄성 접촉부(400)는 그 타단이 자유단으로 구성됨에 따라 제1접촉 팁부(210)의 슬라이드 이동시 탄성 접촉부(400)의 변형이 쉽게 일어나게 함으로써 마찰저항을 상대적으로 줄일 수 있는 효과를 가지게 된다. The other end of the elastic contact part 400 is configured as a free end. When the other end of the elastic contact part 400 is not configured as a free end and a configuration connected somewhere in the electrically conductive contact pin 100 is adopted, the elastic contact part 400 deforms when the first contact tip part 210 slides. Since it is not large, the frictional resistance can act significantly. On the other hand, the elastic contact part 400 according to the preferred embodiment of the present invention has the other end configured as a free end, so that when the first contact tip part 210 slides, deformation of the elastic contact part 400 easily occurs, thereby reducing frictional resistance. has the effect of reducing
탄성 접촉부(400)는 제1접촉 팁부(210)의 양측에 구비된다. 제1접촉 팁부(210)의 양측에 구비되는 탄성 접촉부(400)의 변형 전 폭의 길이는 하우징(500)의 내면간의 길이보다 작게 형성된다. 이를 통해 제1접촉 팁부(210)는 하우징(500)의 내면과 항시 접촉 상태를 유지할 수 있게 된다. The elastic contact part 400 is provided on both sides of the first contact tip part 210 . The length of the width before deformation of the elastic contact portion 400 provided on both sides of the first contact tip portion 210 is smaller than the length between the inner surfaces of the housing 500 . Through this, the first contact tip 210 can always maintain a state of contact with the inner surface of the housing 500 .
또한 탄성 접촉부(400)는 만곡진 형상을 가지므로, 제1접촉 팁부(210)가 하우징(500)의 내면을 따라 슬라이드 이동시에도 탄성 접촉부(400)에 작용하는 마찰력의 수직항력이 제1접촉 팁부(210) 방향으로 작용한다. 그 결과 제1접촉 팁부(210)은 슬라이드 이동시에도 하우징(500)의 내면과 항시 접촉 상태를 유지할 수 있게 한다.In addition, since the elastic contact part 400 has a curved shape, even when the first contact tip part 210 slides along the inner surface of the housing 500 , the normal drag force of the frictional force acting on the elastic contact part 400 is the first contact tip part It acts in the (210) direction. As a result, the first contact tip 210 can always maintain a contact state with the inner surface of the housing 500 even when sliding.
하우징(500)은 전기 전도성 재료를 포함하여 구성된다. 하우징(500) 자체가 전기 전도성 재료로 구성될 수 있다. 또는 하우징(500)의 내면이 전기 전도성 재료가 코팅되어 형성될 수 있다. The housing 500 comprises an electrically conductive material. The housing 500 itself may be constructed of an electrically conductive material. Alternatively, the inner surface of the housing 500 may be formed by coating an electrically conductive material.
탄성 접촉부(400)가 전기 전도성 재질의 하우징(500) 내면에 접촉함에 따라 제1접촉 팁부(210), 하우징(500) 및 제2접촉 팁부(230)를 지나는 전류 경로가 형성된다. 따라서 전기 전도성 접촉핀(100)의 탄성 변형은 바디부(300)가 담당하고, 전기 전도성 접촉핀(100)의 전류 경로는 제1접촉 팁부(210), 하우징(500) 및 제2접촉 팁부(230)가 담당함으로써, 전기 전도성 접촉핀(100)을 흐르는 전류의 경로를 보다 짧게 형성하는 것이 가능하게 된다.As the elastic contact part 400 contacts the inner surface of the housing 500 made of an electrically conductive material, a current path passing through the first contact tip part 210 , the housing 500 , and the second contact tip part 230 is formed. Therefore, the elastic deformation of the electrically conductive contact pin 100 is handled by the body portion 300, and the current path of the electrically conductive contact pin 100 is the first contact tip portion 210, the housing 500, and the second contact tip portion ( As the 230 is in charge, it is possible to form a shorter path of the current flowing through the electrically conductive contact pin 100 .
하우징(500)은 그 단면이 직사각형 형상으로 제작될 수 있다. 전기 전도성 접촉핀(100)의 단면 형상이 직사각형 형상이고 하우징(500)의 단면 형상이 직사각형 형상으로 제작됨으로써 하우징(500) 내에서 전기 전도성 접촉핀(100)이 틸팅되는 것을 방지하고 전기 전도성 접촉핀 어셈블리를 보다 협피치 간격으로 배열할 수 있다는 장점을 가진다. 하우징(500)의 단면이 원형 형상으로 제작될 경우에는 전기 전도성 접촉핀 어셈블리를 협피치 배열하는데 한계가 발생한다. 또한 직사각 단면의 전기 전도성 접촉핀(100)이 하우징(500) 내에서 틸팅되는 문제가 발생할 수 있다. 하지만 본 발명의 바람직한 실시예에 따라 직사각 단면의 전기 전도성 접촉핀(100)이 직사각 단면의 하우징(500) 내에 구비되는 구성을 통해 틸팅 방지 및 협피치 구현을 동시에 달성할 수 있게 된다.The housing 500 may have a rectangular cross-section. Since the cross-sectional shape of the electrically conductive contact pin 100 is a rectangular shape and the cross-sectional shape of the housing 500 is manufactured to have a rectangular shape, the electrically conductive contact pin 100 is prevented from tilting in the housing 500 and the electrically conductive contact pin It has the advantage of being able to arrange the assemblies at narrower pitch intervals. When the cross-section of the housing 500 is manufactured in a circular shape, there is a limitation in arranging the electrically conductive contact pin assembly in a narrow pitch. In addition, there may be a problem in that the electrically conductive contact pin 100 having a rectangular cross-section is tilted within the housing 500 . However, according to a preferred embodiment of the present invention, through the configuration in which the electrically conductive contact pin 100 of the rectangular cross-section is provided in the housing 500 of the rectangular cross-section, it is possible to simultaneously achieve tilting prevention and narrow pitch implementation.
하우징(500)의 양단부에는 코킹부(510)가 구성된다. 코킹부(510)에 의해 형성되는 구멍의 크기는 전기 전도성 접촉핀(100)이 손쉽게 빠져나오지 못할 정도의 크기를 가진다. 코킹부(510)에 의해 형성되는 구멍의 크기는 제1접촉 팁부(210)의 폭보다 크고 2개의 탄성 접촉부(400)간의 최장 거리보다 작다. 바디부(300)가 최대 길이로 신장되었을 때, 코킹부(510)는 탄성 접촉부(400)의 근부(410)를 지지한다. 이를 통해 제작과정에서 하우징(500)과 코킹부(510) 사이의 틈새를 여유있게 하는 것이 가능하고, 제1접촉 팁부(210)의 원활한 슬라이드 이동을 보장할 수 있다. Caulking parts 510 are formed at both ends of the housing 500 . The size of the hole formed by the caulking part 510 is such that the electrically conductive contact pin 100 cannot easily come out. The size of the hole formed by the caulking portion 510 is greater than the width of the first contact tip portion 210 and smaller than the longest distance between the two elastic contact portions 400 . When the body portion 300 is elongated to its maximum length, the caulking portion 510 supports the proximal portion 410 of the elastic contact portion 400 . Through this, it is possible to make a clearance between the housing 500 and the caulking part 510 in the manufacturing process, and it is possible to ensure the smooth sliding movement of the first contact tip part 210 .
또한 탄성 접촉부(400)는 하우징(500)의 내면과 항시 접촉 상태를 유지하므로 이물질이 하우징(500) 내부로 침투하는 것을 방지한다. 더욱이, 탄성 접촉부(400)의 근부 측에서는 코킹부(510)와 제1접촉 팁부(210) 사이에 충분한 이격 공간이 존재하므로 슬라이딩 과정에서 발생한 이물질을 외부로 용이하게 배출할 수 있게 된다. In addition, since the elastic contact part 400 always maintains a state of contact with the inner surface of the housing 500 , foreign substances are prevented from penetrating into the housing 500 . Moreover, at the proximal side of the elastic contact part 400 , a sufficient separation space exists between the caulking part 510 and the first contact tip part 210 , so that foreign substances generated during the sliding process can be easily discharged to the outside.
도 5는 본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀(100) 및 그 어셈블리를 설명하기 위한 도면이다. 전기 전도성 접촉핀(100)의 구성은 앞서 설명한 제1실시예에 따른 전기 전도성 접촉핀(100)의 구성과 동일하므로 구체적인 설명은 생략한다. 5 is a view for explaining an electrically conductive contact pin 100 and an assembly thereof according to a second preferred embodiment of the present invention. Since the configuration of the electrically conductive contact pin 100 is the same as that of the electrically conductive contact pin 100 according to the first embodiment described above, a detailed description thereof will be omitted.
본 발명의 제2실시예에 따른 전기 전도성 접촉핀 어셈블리는 제1실시예의 전기 전도성 접촉핀 어셈블리의 하우징의 구성에서만 차이가 있다. The electrically conductive contact pin assembly according to the second embodiment of the present invention differs only in the configuration of the housing of the electrically conductive contact pin assembly of the first embodiment.
제1실시예에 따른 하우징(500)은 전기 전도성 접촉핀(100) 마다 하나씩 1:1로 구비되는 것인 반면에, 제2실시예에 따른 하우징(600)은 하나의 하우징(600)에 복수개의 전기 전도성 접촉핀(100)이 구비된다는 점에서 차이가 있다. 도 5에서는 하나의 전기 전도성 접촉핀(100)만을 도시하고 있으나 복수개의 전기 전도성 접촉핀(100)이 구비된다.Whereas the housing 500 according to the first embodiment is provided in a 1:1 ratio for each electrically conductive contact pin 100 , the housing 600 according to the second embodiment has a plurality of housings 600 in one housing 600 . There is a difference in that the electrically conductive contact pins 100 are provided. Although only one electrically conductive contact pin 100 is shown in FIG. 5 , a plurality of electrically conductive contact pins 100 are provided.
제1실시예에 따른 하우징(500)은 코킹부(510)를 구성하여 제1,2접촉 팁부(210,230)의 탈락을 방지하는 구성인 반면에, 제2실시예에 따른 하우징(600)은 상부 하우징(610)과 하부 하우징(630)의 결합을 통해 제1,2접촉 팁부(210,230)의 탈락을 방지하는 구성이라는 점에서 차이가 있다. 상부 하우징(610)에는 내부에 제1홀(611) 및 제1홀(611)보다 큰 내부 폭을 갖는 제2홀(613)이 구비되고, 하부 하우징(630)에는 제2홀(613)과 동일한 내부 폭을 갖는 제3홀(631) 및 제3홀(631)보다 작은 내부 폭을 갖는 제4홀(633)이 구비된다. The housing 500 according to the first embodiment has a caulking part 510 to prevent the first and second contact tip parts 210 and 230 from falling off, whereas the housing 600 according to the second embodiment has an upper portion. There is a difference in that the configuration prevents the first and second contact tip portions 210 and 230 from falling off through the coupling of the housing 610 and the lower housing 630 . The upper housing 610 has a first hole 611 and a second hole 613 having a larger inner width than the first hole 611 therein, and the lower housing 630 has a second hole 613 and A third hole 631 having the same inner width and a fourth hole 633 having a smaller inner width than the third hole 631 are provided.
제1홀(611)의 크기는 제1접촉 팁부(210)의 폭보다 크고 2개의 탄성 접촉부(400)간의 최장 거리보다 작다. 바디부(300)가 최대 길이로 신장되었을 때, 제1홀(611)는 탄성 접촉부(400)의 근부(410)를 지지한다. 이를 통해 제작과정에서 하우징(500)과 코킹부(510) 사이의 틈새를 여유있게 하는 것이 가능하고, 제1접촉 팁부(210)의 원활한 슬라이드 이동을 보장할 수 있다. The size of the first hole 611 is greater than the width of the first contact tip portion 210 and is smaller than the longest distance between the two elastic contact portions 400 . When the body portion 300 is elongated to its maximum length, the first hole 611 supports the proximal portion 410 of the elastic contact portion 400 . Through this, it is possible to make a clearance between the housing 500 and the caulking part 510 in the manufacturing process, and it is possible to ensure the smooth sliding movement of the first contact tip part 210 .
하우징(600)의 내면은 전기 전도성이 우수한 금속층이 코팅되어 구비될 수 있다. 탄성 접촉부(400)가 전기 전도성 재질의 하우징(600) 내면에 접촉함에 따라 제1접촉 팁부(210), 하우징(600) 및 제2접촉 팁부(230)를 지나는 전류 경로가 형성된다. 따라서 전기 전도성 접촉핀(100)의 탄성 변형은 바디부(300)가 담당하고, 전기 전도성 접촉핀(100)의 전류 경로는 제1접촉 팁부(210), 하우징(600) 및 제2접촉 팁부(230)가 담당함으로써, 전기 전도성 접촉핀(100)을 흐르는 전류의 경로를 보다 짧게 형성하는 것이 가능하게 된다.The inner surface of the housing 600 may be coated with a metal layer having excellent electrical conductivity. As the elastic contact part 400 contacts the inner surface of the housing 600 made of an electrically conductive material, a current path passing through the first contact tip part 210 , the housing 600 , and the second contact tip part 230 is formed. Therefore, the elastic deformation of the electrically conductive contact pin 100 is carried out by the body portion 300, and the current path of the electrically conductive contact pin 100 is the first contact tip portion 210, the housing 600, and the second contact tip portion ( As the 230 is in charge, it is possible to form a shorter path of the current flowing through the electrically conductive contact pin 100 .
이상에서의 실시예의 구조는 제1접촉 팁부(210)에만 탄성 접촉부(400)가 구비되는 것으로 설명하였으나 도 6을 참조하면 탄성 접촉부(400)는 제1접촉 팁부(210) 및 제2접촉 팁부(230)에도 구비될 수 있다. 제2접촉 팁부(230)에 구비되는 탄성 접촉부(400)의 구성 및 효과는 앞서 제1접촉 팁부(210)에 구비되는 탄성 접촉부(400)의 구성 및 효과와 동일하므로 구체적인 설명은 생략한다. Although the structure of the above embodiment has been described as having the elastic contact portion 400 provided only on the first contact tip portion 210, referring to FIG. 6, the elastic contact portion 400 includes the first contact tip portion 210 and the second contact tip portion ( 230) may also be provided. The configuration and effect of the elastic contact portion 400 provided in the second contact tip portion 230 is the same as the configuration and effect of the elastic contact portion 400 provided in the first contact tip portion 210, and thus a detailed description thereof will be omitted.
전술한 바와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술분야의 통상의 기술자는 하기의 특허 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다.As described above, although described with reference to preferred embodiments of the present invention, those skilled in the art can variously modify the present invention within the scope without departing from the spirit and scope of the present invention described in the claims below. Or it can be carried out by modification.
[부호의 설명][Explanation of code]
100: 전기 전도성 접촉핀100: electrically conductive contact pin
210: 제1접촉 팁부210: first contact tip portion
230: 제2접촉 팁부230: second contact tip portion
300: 바디부300: body part
400: 탄성 접촉부400: elastic contact
500: 하우징500: housing

Claims (5)

  1. 제1접촉 팁부;a first contact tip portion;
    제2접촉 팁부; a second contact tip portion;
    상기 제1접촉 팁부와 상기 제2접촉 팁부를 연결하는 바디부; 및a body portion connecting the first contact tip portion and the second contact tip portion; and
    상기 제1접촉 팁부 및 상기 제2접촉 팁부 중 적어도 어느 하나에 형성되는 탄성 접촉부를 포함하는 전기 전도성 접촉핀.An electrically conductive contact pin including an elastic contact portion formed on at least one of the first contact tip portion and the second contact tip portion.
  2. 제1항에 있어서,According to claim 1,
    상기 탄성 접촉부의 일단은 상기 제1접촉 팁부에 연결되고,One end of the elastic contact portion is connected to the first contact tip portion,
    상기 탄성 접촉부의 타단은 자유단인, 전기 전도성 접촉핀.The other end of the elastic contact portion is a free end, an electrically conductive contact pin.
  3. 제1항에 있어서,According to claim 1,
    상기 탄성 접촉부는 만곡되어 형성되는, 전기 전도성 접촉핀.The elastic contact portion is formed by being curved, an electrically conductive contact pin.
  4. 하우징 내부에 삽입되어 구비되는 전기 전도성 접촉핀을 포함하는 전기 전도성 접촉핀 어셈블리에 있어서,An electrically conductive contact pin assembly comprising an electrically conductive contact pin inserted inside a housing, the assembly comprising:
    제1접촉 팁부;a first contact tip portion;
    제2접촉 팁부; a second contact tip portion;
    상기 제1접촉 팁부와 상기 제2접촉 팁부를 연결하는 바디부; 및a body portion connecting the first contact tip portion and the second contact tip portion; and
    상기 제1접촉 팁부 및 상기 제2접촉 팁부 중 적어도 어느 하나에 형성되는 탄성 접촉부를 포함하고,and an elastic contact portion formed on at least one of the first contact tip portion and the second contact tip portion,
    상기 탄성 접촉부는 상기 하우징의 내부에 접촉하여 슬라이딩하는, 전기 전도성 접촉핀 어셈블리.and the elastic contact portion slides in contact with the interior of the housing.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 하우징의 내벽에는 전기 전도성이 높은 재질의 금속층이 코팅된, 전기 전도성 접촉핀 어셈블리.An electrically conductive contact pin assembly in which a metal layer of a material having high electrical conductivity is coated on an inner wall of the housing.
PCT/KR2022/002515 2021-02-22 2022-02-21 Electrically conductive contact pin and assembly thereof WO2022177389A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0023285 2021-02-22
KR1020210023285A KR102509525B1 (en) 2021-02-22 2021-02-22 The Electro-conductive Contact Pin and The Assembly Including The Contact Pin

Publications (1)

Publication Number Publication Date
WO2022177389A1 true WO2022177389A1 (en) 2022-08-25

Family

ID=82931008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002515 WO2022177389A1 (en) 2021-02-22 2022-02-21 Electrically conductive contact pin and assembly thereof

Country Status (3)

Country Link
KR (1) KR102509525B1 (en)
TW (1) TWI812020B (en)
WO (1) WO2022177389A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345443A (en) * 2004-06-07 2005-12-15 Japan Electronic Materials Corp Contact pin for probe card and probe card employing it
JP5459801B2 (en) * 2008-10-24 2014-04-02 タイコ エレクトロニクス サービシズ ゲゼルシャフト ミット ベシュレンクテル ハフツンク Test probe
JP5847576B2 (en) * 2011-12-29 2016-01-27 株式会社エンプラス Probe pin and socket for electrical parts
JP2018009790A (en) * 2016-07-11 2018-01-18 アルプス電気株式会社 Spring contact and socket using the same
KR102166677B1 (en) * 2019-08-09 2020-10-16 주식회사 오킨스전자 MEMS pogo pin and testing method using same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647131B1 (en) 2005-07-12 2006-11-23 리노공업주식회사 probe and manufacturing method thereof
KR100659944B1 (en) 2005-12-23 2006-12-21 리노공업주식회사 A plunger and a probe employing that
KR20080113951A (en) * 2007-06-26 2008-12-31 송정규 Probe guide asembly
KR100984876B1 (en) * 2008-05-08 2010-10-04 한국기계연구원 Vertical micro contact probe with variable stiffness
JP5868239B2 (en) * 2012-03-27 2016-02-24 株式会社日本マイクロニクス Probes and probe cards
US10359447B2 (en) * 2012-10-31 2019-07-23 Formfactor, Inc. Probes with spring mechanisms for impeding unwanted movement in guide holes
JP2018009789A (en) 2016-07-11 2018-01-18 アルプス電気株式会社 Spring contact, socket using the same, and manufacturing method for the same
KR101827736B1 (en) * 2016-07-29 2018-02-09 오재숙 Connector pin device for testing semi-conductor chip and manufacturing method thereof
KR101951705B1 (en) * 2017-07-18 2019-02-25 송유선 Pogo pin and test socket for implementing array of the same
KR101852849B1 (en) 2018-02-14 2018-04-27 주식회사 오킨스전자 Semiconductor test socket pin having tilt contact

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345443A (en) * 2004-06-07 2005-12-15 Japan Electronic Materials Corp Contact pin for probe card and probe card employing it
JP5459801B2 (en) * 2008-10-24 2014-04-02 タイコ エレクトロニクス サービシズ ゲゼルシャフト ミット ベシュレンクテル ハフツンク Test probe
JP5847576B2 (en) * 2011-12-29 2016-01-27 株式会社エンプラス Probe pin and socket for electrical parts
JP2018009790A (en) * 2016-07-11 2018-01-18 アルプス電気株式会社 Spring contact and socket using the same
KR102166677B1 (en) * 2019-08-09 2020-10-16 주식회사 오킨스전자 MEMS pogo pin and testing method using same

Also Published As

Publication number Publication date
KR20220119879A (en) 2022-08-30
TW202244506A (en) 2022-11-16
KR102509525B1 (en) 2023-03-14
TWI812020B (en) 2023-08-11

Similar Documents

Publication Publication Date Title
WO2022010246A1 (en) Vertical probe pin and probe card having same
US5336094A (en) Apparatus for interconnecting electrical contacts
WO2014129784A1 (en) Test socket with high density conduction section
US8465312B2 (en) Socket cartridge and socket cartridge assembly
WO2018221886A1 (en) Vertical probe pin and probe pin assembly comprising same
WO2012002763A2 (en) Test probe for test and fabrication method thereof
WO2014204161A2 (en) Insert for inspection
WO2009145416A1 (en) Socket for testing semiconductor chip
WO2021137527A1 (en) Test socket assembly
WO2014104782A1 (en) Test socket and socket body
WO2017119676A1 (en) Semiconductor test contactor
WO2015102304A1 (en) Sheet-type connector and electrical connector device
WO2023003255A1 (en) Contact probe
WO2020096238A1 (en) Electroconductive particles and signal-transmitting connector having same
US6255832B1 (en) Flexible wafer level probe
WO2022177389A1 (en) Electrically conductive contact pin and assembly thereof
WO2020241990A1 (en) Conductive pin using spring, and test socket and interposer using same
WO2016190601A1 (en) Film contactor and test socket including same
WO2019245153A1 (en) Plate spring-type connecting pin
WO2023080533A1 (en) Test socket
WO2022181951A1 (en) Alignment module and alignment transfer method for electrically conductive contact pins
WO2017155134A1 (en) Probe member for inspection
WO2015020353A1 (en) Probe apparatus for kelvin test
WO2022177388A1 (en) Electrically conductive contact pin assembly
WO2021241784A1 (en) Probe pin having improved gripping structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756587

Country of ref document: EP

Kind code of ref document: A1