WO2023003255A1 - Contact probe - Google Patents

Contact probe Download PDF

Info

Publication number
WO2023003255A1
WO2023003255A1 PCT/KR2022/010176 KR2022010176W WO2023003255A1 WO 2023003255 A1 WO2023003255 A1 WO 2023003255A1 KR 2022010176 W KR2022010176 W KR 2022010176W WO 2023003255 A1 WO2023003255 A1 WO 2023003255A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact probe
layer
beams
hardness
skate
Prior art date
Application number
PCT/KR2022/010176
Other languages
French (fr)
Korean (ko)
Inventor
김학준
김석민
이태종
김성호
Original Assignee
주식회사 새한마이크로텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 새한마이크로텍 filed Critical 주식회사 새한마이크로텍
Publication of WO2023003255A1 publication Critical patent/WO2023003255A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07357Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with flexible bodies, e.g. buckling beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • G01R1/06761Material aspects related to layers

Definitions

  • the present invention relates to contact probes, and more particularly to vertical contact probes.
  • a probe card equipped with a plurality of contact probes is widely used to test the performance of flat panel displays including liquid crystal displays (LCDs) and organic light emitting diodes and semiconductor devices formed on wafers. there is.
  • LCDs liquid crystal displays
  • organic light emitting diodes and semiconductor devices formed on wafers there is.
  • Probe cards are largely classified into cantilever types and vertical types according to their structures.
  • the double vertical probe card includes a first support and a second support in the form of a plate supporting both ends of the vertical contact probe. Both ends of the vertical contact probe are inserted into through holes formed in the first and second supports. When the terminal of the inspected object is pressed against the tip portion of the vertical contact probe, the vertical contact probe slides in the through hole, and the elastic portion of the vertical contact probe is bent.
  • a cobra pin formed by compressing a metal wire to form an elastic part is mainly used, and recently, a vertical contact probe manufactured by MEMS technology is used.
  • An object of the present invention is to provide a vertical contact probe.
  • the present invention is used for testing an electronic device, and is a contact probe including a tip part, a head part, and an elastic part extending long between the tip part and the head part, at least a part of which is connected to a highly conductive layer.
  • a contact probe characterized in that it comprises a multi-layer structure in which high hardness layers having lower electrical conductivity and greater hardness than the high conductivity layer are alternately stacked.
  • the contact probe further comprises an outer coating layer having higher electrical conductivity than the high-hardness layer and surrounding at least a portion of the multilayer structure.
  • the outer coating layer provides a contact probe, characterized in that surrounding the multi-layer structure of the head portion.
  • contact resistance of the contact probe may be reduced or current capacity may be increased.
  • the high conductivity layer may be copper or a copper alloy, and the high hardness layer may be palladium or a palladium alloy. And the outer coating layer may be gold or a gold alloy.
  • the present invention provides a contact probe characterized in that the high hardness layer is thicker than the high conductivity layer. Through this configuration, the hardness of the contact probe can be increased.
  • the thickness of the high hardness layer may be 1.5 to 2 times the thickness of the high conductivity layer.
  • the present invention provides a contact probe characterized in that the high conductivity layer is thicker than the high hardness layer. Through this configuration, the current capacity of the contact probe can be increased.
  • the thickness of the high conductivity layer may be 1.5 to 2 times the thickness of the high hardness layer.
  • the uppermost layer and the lowermost layer of the multilayer structure are preferably the high hardness layer.
  • the tip part includes a multi-layered structure, and at least one of the layers constituting the multi-layered structure of the tip part is formed to protrude to provide a contact probe further comprising a skate part.
  • the skate part may be inclined with respect to the central axis of the tip part. Through this configuration, it is possible to adjust the frictional force during scrubbing.
  • One side of the planar shape of the skate portion is substantially straight, and the other side facing the one side is connected to the straight portion parallel to the one side and the straight portion, and the closer the tip portion is, the further away the distance from the one side is. It may include a curved portion that is bent.
  • the present invention includes a coupling portion located inside the tip portion and replacing a part of the multi-layer structure at the end of the tip portion, and a skate portion extending from the coupling portion and protruding outside the tip portion, and the high hardness A contact probe comprising an insert having a higher hardness than the layer is provided.
  • the elastic part includes at least two beams extending along the longitudinal direction of the elastic part, the adjacent beams are separated by a slit, and at least a portion of at least one of the beams is larger than the skate part.
  • a contact probe characterized by having a small cross-sectional area is provided. Through this configuration, when a high current flows through the contact probe, a beam having a small cross-section is first melted. Therefore, it is possible to prevent contamination of the terminal of the element to be measured while the skate part is melted.
  • a cross section of at least a portion of at least one of the beams may have a groove formed on at least one surface so that the cross section is smaller than that of the skate portion.
  • the present invention provides a contact probe characterized in that the elastic part includes at least two beams extending along the longitudinal direction of the elastic part, and the adjacent beams are separated by a slit.
  • the beams may have different widths.
  • a beam positioned in a direction in which the beams protrude may have a narrower width than a beam positioned in an opposite direction.
  • the present invention provides a contact probe characterized in that it further comprises a stopper portion protruding from one side and the rear surface of the head portion.
  • the present invention provides a first support body having a plurality of first through holes, a second support body disposed side by side with the first support body at regular intervals and having a plurality of second through holes formed thereon, the first through holes and A probe assembly including a plurality of contact probes inserted into the second through hole is provided.
  • FIG. 1 is a view showing a contact probe according to a first embodiment of the present invention.
  • FIG. 2 is a view showing a probe assembly having the contact probe shown in FIG. 1;
  • FIG 3 is a view showing a contact probe according to a second embodiment of the present invention.
  • FIG. 4 is a view showing a contact probe according to a third embodiment of the present invention.
  • 5 and 6 are views showing other examples of the skate part.
  • FIG. 7 is a view showing another example of a tip part and a skate part.
  • FIG. 8 is a view showing a contact probe according to a fourth embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing cross-sections of other examples of elastic parts.
  • FIG. 10 is a view showing a contact probe according to a fifth embodiment of the present invention.
  • FIG. 11 is a view showing a contact probe according to a sixth embodiment of the present invention.
  • FIG. 12 is a view showing a probe assembly having the contact probe shown in FIG. 11;
  • FIG. 13 shows a state in which the first through hole of the first support and the second through hole of the second support overlap when the probe assembly shown in FIG. 12 is viewed from above.
  • FIG. 14 is a view for explaining positions of contact probes in the first through hole and the second through hole of the contact probe of the probe assembly shown in FIG. 12;
  • FIG. 1 is a view showing a contact probe according to a first embodiment of the present invention
  • FIG. 2 is a view showing a probe assembly having the contact probe shown in FIG. 1
  • 1 (a) is a front view of a contact probe, (b) is a side view, and (c) is a view showing the shape of a cross section by position.
  • the probe assembly 1 includes a first support 10 , a second support 20 and a plurality of contact probes 100 .
  • the first support 10 and the second support 20 are substantially parallel and spaced apart from each other at regular intervals.
  • a plurality of first through holes 11 are formed in the first support 10
  • a plurality of second through holes 21 are formed in the second support 20 .
  • the first through hole 11 and the corresponding second through hole 21 may be slightly offset from each other.
  • the first supporter 10 is disposed on the side of the space transformer (not shown) of the probe card, and the second supporter 20 is disposed on the side of the inspection target such as a semiconductor device (not shown).
  • the first through hole 11 and the second through hole 21 are formed substantially perpendicular to the surface of each support body.
  • the first through hole 11 and the second through hole 21 may be rectangular through holes.
  • the contact probe 100 includes a head part 110 in contact with the circuit board of the probe card, a tip part 130 in contact with the object to be inspected, and a head part 110. It is located between and the tip part 130, and includes an elastic part 120 that is elastically deformed when pressure is applied to the tip part 130.
  • the tip part 130 is inserted into the second through hole 21 , and the head part 110 is inserted into the first through hole 11 .
  • the head part 110, the elastic part 120 and the tip part 130 extend in the Z-axis direction, and the elastic part 120 is slightly bent in the Y-axis direction.
  • the width and thickness of the tip part 130 or the elastic part 120 disposed in the second through hole 21 are smaller than the width and thickness of the second through hole 21, so that the elastic probe 100 has the second through hole. It can move in the Z-axis direction within (21). An end of the tip portion 130 is exposed to the outside of the second supporter 20 . The tip portion 130 is inclined to become thinner as it goes toward the end.
  • the width and thickness of the head part 110 or the elastic part 120 disposed in the first through hole 11 are smaller than those of the first through hole 11, so that the elastic probe 100 It can move in the Z direction within one through hole (11).
  • the end 115 of the head part 110 is exposed to the outside of the first supporter 10 .
  • a stopper portion 115 protruding from one side of the head portion 110 is formed at an end of the head portion 110 to prevent the head portion 110 from falling out of the first through hole 11 .
  • the lower end of the stopper part 115 is caught on the upper surface 13 of the first supporter 10 .
  • the head part 110 is inclined so as to become thinner as it goes toward the end.
  • the head portion 110, the elastic portion 120, and the tip portion 130 include a multilayer structure including a plurality of layers made of different conductive materials. .
  • the multilayer structure is a structure in which highly conductive layers 110b, 120b, and 130b and high hardness layers 110a, 120a, and 130a are alternately laminated.
  • the head portion 110, the elastic portion 120, and the tip portion 130 all include a multi-layer structure.
  • the uppermost and lowermost layers of the multilayer structure are preferably high hardness layers 110a, 120a, and 130a.
  • the high-hardness layers 110a, 120a, and 130a are made of materials having lower electrical conductivity and higher hardness than the high-conductivity layers 110b, 120b, and 130b.
  • the high conductivity layers 110b, 120b, and 130b may be made of copper or a copper alloy
  • the high hardness layers 110a, 120a, and 130a may be made of palladium or a palladium alloy.
  • the high-hardness layers 110a, 120a, and 130a may be thicker than the high-conductivity layers 110b, 120b, and 130b. More specifically, the thickness of the high-hardness layers 110a, 120a, and 130a may be 1.5 to 2 times the thickness of the high-conductivity layers 110b, 120b, and 130b.
  • the head portion 110, the tip portion 130, and the elastic portion 120 have a rectangular cross section.
  • the contact probe 100 of this embodiment further includes a coating layer 140 surrounding at least a portion of the multilayer structure.
  • the coating layer 140 has higher electrical conductivity than the high hardness layers 110a, 120a, and 130a.
  • coating layer 140 may be gold or a gold alloy.
  • the coating layer 140 covers the entire slope of the multilayer structure. In this embodiment, the coating layer 140 surrounds at least a portion of the multilayer structure of the head portion 110 . In this embodiment, the coating layer 140 serves to lower contact resistance.
  • FIG 3 is a view showing a contact probe according to a second embodiment of the present invention.
  • This embodiment is different from the embodiment shown in FIG. 1 in that the coating layer 250 is formed over the entire contact probe 200.
  • the coating layer 250 which has higher electrical conductivity than the high-hardness layers 210a, 220a, and 230a, covers the entire contact probe 200, current carrying capacity (CCC) is improved.
  • CCC current carrying capacity
  • the side surfaces of the multi-layer structure are covered with the coating layer 250, gaps that may occur between layers are not exposed to the outside, thereby preventing oxidation of the multi-layer structure.
  • the high conductivity layers 210b, 220b, and 230b may be thicker than the high hardness layers 210a, 220a, and 230a. More specifically, the thickness of the high conductivity layers 210b, 220b, and 230b may be 1.5 to 2 times the thickness of the high hardness layers 210a, 220a, and 230a.
  • FIG. 4 is a view showing a contact probe according to a third embodiment of the present invention.
  • the embodiment shown in FIG. 4 is different from the embodiment shown in FIG. 1 in that the elastic part 320 has a dual beam structure.
  • the elastic part 320 of this embodiment includes a pair of beams 321 and 323 divided by a slit 325 .
  • At least one of the layers constituting the multi-layered structure of the tip portion 330 is formed by protruding long, and the skate portion 335 having a thickness smaller than that of the tip portion 330 is further provided, similar to the embodiment shown in FIG. 1. There is a difference.
  • the end of the skate part 335 contacts the terminal of the device to be measured. Since the thickness of the skate part 335 is thinner than that of the tip part 330, the application of the skate part 335 has the advantage of reducing the size of the scrub.
  • the length of the skate portion 335 is increased, there is an advantage in that, when there is a protruding structure, such as a microbump, around the terminal of the device to be measured, it is possible to avoid the protruding structure and contact the terminal.
  • a protruding structure such as a microbump
  • the skate portion 335 includes two high-hardness layers 335a and one high-conductivity layer 335b.
  • FIGS. 5 and 6 are views showing other examples of the skate part.
  • the skate portion of FIG. 4 may be replaced with the skate portions of FIGS. 5 and 6 .
  • skate parts 336 and 337 are inclined with respect to the central axis of the tip part 330 . It is tilted to adjust the frictional force during scrubbing.
  • one side 3361 extending from the tip portion 330 generally forms an angle with the central axis of the tip portion. It is a straight line formed by
  • the other side 3362 facing the one side 3361 includes a curved portion 3332a and a straight portion 3332b connected to each other.
  • the curved portion 3332a extends from the tip portion 330 and is bent so that the distance from the one side 3361 increases as it gets closer to the tip portion 330.
  • the straight portion 3332b is parallel to one side 3361 and connected to the curved portion 3332a.
  • skate portion 337 is made of one high-hardness layer 337a.
  • FIG. 7 is a view showing another example of a tip part and a skate part.
  • the embodiment shown in FIG. 7 includes an insert portion 350 .
  • the insert portion 350 is generally in the form of a rectangular plate.
  • the insert portion 350 includes a coupling portion 354 positioned inside the tip portion 340 and a skate portion 355 extending from the coupling portion 354 and protruding outward from the tip portion 340 .
  • the coupling portion 354 replaces a portion of the multilayer structure at the end of the tip portion 340 .
  • the coupling part 354 replaces two high-hardness layers 340a and one high-conductivity layer 340b in the multilayer structure constituting the tip part 340 .
  • the insert portion 350 may have higher hardness than the high hardness layer 340a.
  • palladium may be used as the high-hardness layer 340a and rhodium may be used as the insert portion 340 .
  • This embodiment has the advantage of improving the life shortening due to mechanical wear of the skate portion 355 .
  • FIG. 8 is a view showing a contact probe according to a fourth embodiment of the present invention.
  • the embodiment shown in FIG. 8 is different from the embodiment shown in FIG. 4 in that grooves 427 and 428 are formed in some sections of the pair of beams 421 and 423 of the elastic part 420. It is preferable that at least one of the cross-sectional areas (A B1 , A B2 ) of the beams in the section in which the grooves 427 and 428 are formed is smaller than the cross-sectional area (A S ) of the skate portion 435 . This is to minimize contamination of the terminal of the device to be measured as the contact probe 400 melts when a high current momentarily flows through the contact probe 400.
  • the part with the smallest cross-sectional area in the contact probe 400 is melted by Joule's heat.
  • At least one of the cross-sectional areas (A B1 , A B2 ) of the beams 421 and 423 of is smaller than the cross-sectional area (A S ) of the skate portion 435 contacting the terminal of the device to be measured. Then, since the beam 421 or 423 far from the terminal melts first compared to the skate part 435 when a high current flows, contaminating the terminal of the device to be measured while the skate part 435 melts can be prevented.
  • the contact probe 400 is not shown as having a multilayer structure in FIG. 8 , the contact probe 400 according to the fourth embodiment may also have a multilayer structure.
  • FIG. 9 is a schematic diagram showing cross-sections of other examples of elastic parts.
  • grooves 427 and 428 may be formed on the inner surface of the beams 421 and 423, and as shown in (b), formed on the surface facing the same direction. It may be done, and as shown in (c) and (d), it may be formed on only one beam 421.
  • FIG. 10 is a view showing a contact probe according to a fifth embodiment of the present invention.
  • the embodiment shown in FIG. 10 is different from the embodiment shown in FIG. 4 in that the left beam 521 and the right beam 523 have different widths.
  • the beams 521 and 523 are bent when pressure is applied in the direction in which the tip part 530 and the head part 510 come closer in order to measure electrical characteristics. Beam 521 located in the protruding direction (-y direction) The width may be narrower than that of the beam 523 located on the opposite side. This is to improve the phenomenon in which the beam 523 located on the opposite side of the head portion 510 and the beam 521 is disconnected.
  • FIG. 11 is a view showing a contact probe according to a sixth embodiment of the present invention
  • FIG. 12 is a view showing a probe assembly having the contact probe shown in FIG. 11
  • FIG. 13 is a view showing the probe assembly shown in FIG. It shows a state in which the first through hole of the first support and the second through hole of the second support overlap when viewed from above.
  • the embodiment shown in FIG. 11 is the embodiment shown in FIG. 1 in that the stoppers 615 and 617 are formed not only on the side surface of the head part 610 but also on the rear surface. Yes, there is a difference.
  • the first through hole 11 of the first support 10 and the second through hole 21 of the second support 20 are rectangular.
  • the first through hole 11 and the second through hole 21 are offset by a distance L in the diagonal direction of the first through hole (or the second through hole).
  • the first support ( 10) can be achieved by a method of relatively moving the second supporter 20 by a distance L in a diagonal direction.
  • FIG. 14 is a view for explaining positions of contact probes in the first through hole and the second through hole of the contact probe of the probe assembly shown in FIG. 12;
  • the head portion 610 of the contact probe 600 is the first through hole 11 is adhered to one corner of the side.
  • the tip 630 is in close contact with one corner of the first through hole 11 and the opposite corner of the second through hole 21 disposed diagonally.
  • the lower surfaces of the stoppers 615 and 617 are in close contact with the upper surface 13 of the first support 10 .
  • the contact probe 600 is slightly moved so that the head part 610 of the contact probe 600 is not biased to one side. more stable support.
  • the elastic part is shown as having a pair of beams in FIG. 4 , it may include three or more beams.
  • tip portion or skate portion of each embodiment may be replaced with a tip portion or skate portion of another embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

The present invention relates to a contact probe and, more specifically, to a vertical-type contact probe including a plurality of layers. The present invention provides the contact probe which is used to test an electronic apparatus and comprises a tip portion, a head portion, and an elastic portion lengthily extended between the tip portion and the head portion, and at least a part of the contact probe has a multi-layered structure in which a high-conductive layer and a high-hardness layer having lower electric conductivity and higher hardness as compared with the high-conductive layer are alternately stacked.

Description

접촉 프로브contact probe
본 발명은 접촉 프로브에 관한 것으로서, 더욱 상세하게는 수직형 접촉 프로브에 관한 것이다.The present invention relates to contact probes, and more particularly to vertical contact probes.
액정표시장치(Liquid Crystal Display, LCD), 유기 발광다이오드(Organic Light Emitting Diode)를 포함하는 평판표시장치와, 웨이퍼 상에 형성된 반도체 소자의 성능 검사에는 복수의 접촉 프로브를 구비한 프로브 카드가 널리 사용되고 있다.A probe card equipped with a plurality of contact probes is widely used to test the performance of flat panel displays including liquid crystal displays (LCDs) and organic light emitting diodes and semiconductor devices formed on wafers. there is.
프로브 카드는 구조에 따라 크게 캔틸레버형과 수직형으로 분류된다. 이중 수직형 프로브 카드는 수직형 접촉 프로브의 양단부를 지지하는 플레이트 형태의 제1 지지체와 제2 지지체를 포함한다. 수직형 접촉 프로브의 양단부는 제1 지지체와 제2 지지체에 형성된 관통구멍에 삽입된다. 피검사체의 단자를 수직형 접촉 프로브의 팁부에 대하여 누르면, 수직형 접촉 프로브가 관통구멍 내에서 미끄러지고, 수직형 접촉 프로브의 탄성부가 구부려진다.Probe cards are largely classified into cantilever types and vertical types according to their structures. The double vertical probe card includes a first support and a second support in the form of a plate supporting both ends of the vertical contact probe. Both ends of the vertical contact probe are inserted into through holes formed in the first and second supports. When the terminal of the inspected object is pressed against the tip portion of the vertical contact probe, the vertical contact probe slides in the through hole, and the elastic portion of the vertical contact probe is bent.
종래의 수직형 프로브 카드에는 금속 와이어를 압착하여, 탄성부를 형성한 코브라 핀이 주로 사용되었으며, 최근에는 멤즈(MEMS) 기술로 제조된 수직형 접촉 프로브가 사용된다.In the conventional vertical probe card, a cobra pin formed by compressing a metal wire to form an elastic part is mainly used, and recently, a vertical contact probe manufactured by MEMS technology is used.
[선행기술문헌][Prior art literature]
한국 등록특허 10-0701498Korean registered patent 10-0701498
한국 등록특허 10-1769355Korean Registered Patent No. 10-1769355
본 발명은 수직형 접촉 프로브를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a vertical contact probe.
상술한 목적을 달성하기 위해서 본 발명은 전자 장치의 테스트에 사용되며, 팁부, 헤드부, 및 상기 팁부와 상기 헤드부 사이에 길게 연장된 탄성부를 포함하는 접촉 프로브로서, 적어도 일부는 고전도성 층과, 상기 고전도성 층에 비해서 전기전도도가 낮으며 경도가 큰 고경도 층이 교대로 적층된 다층 구조를 포함하는 것을 특징으로 하는 접촉 프로브를 제공한다.In order to achieve the above object, the present invention is used for testing an electronic device, and is a contact probe including a tip part, a head part, and an elastic part extending long between the tip part and the head part, at least a part of which is connected to a highly conductive layer. , It provides a contact probe characterized in that it comprises a multi-layer structure in which high hardness layers having lower electrical conductivity and greater hardness than the high conductivity layer are alternately stacked.
또한, 상기 고경도 층에 비해서 전기전도도가 높으며, 적어도 일부의 상기 다층 구조를 둘러싸는 외부 코팅 층을 더 포함하는 것을 특징으로 하는 접촉 프로브를 제공한다.In addition, the contact probe further comprises an outer coating layer having higher electrical conductivity than the high-hardness layer and surrounding at least a portion of the multilayer structure.
또한, 상기 외부 코팅 층은 상기 헤드부의 상기 다층 구조를 둘러싸는 것을 특징으로 하는 접촉 프로브를 제공한다.In addition, the outer coating layer provides a contact probe, characterized in that surrounding the multi-layer structure of the head portion.
이러한 구성들을 통해서 접촉 프로브의 접촉저항을 줄이거나, 전류 용량을 늘릴 수 있다.Through these configurations, contact resistance of the contact probe may be reduced or current capacity may be increased.
상기 고전도성 층은 구리 또는 구리 합금이며, 상기 고경도 층은 팔라듐 또는 파라듐 합금일 수 있다. 그리고 상기 외부 코팅 층은 금 또는 금 합금일 수 있다.The high conductivity layer may be copper or a copper alloy, and the high hardness layer may be palladium or a palladium alloy. And the outer coating layer may be gold or a gold alloy.
또한, 본 발명은, 상기 고경도 층은 상기 고전도성 층에 비해서 두께가 두꺼운 것을 특징으로 하는 접촉 프로브를 제공한다. 이러한 구성을 통해서 접촉 프로브의 경도를 높일 수 있다.In addition, the present invention provides a contact probe characterized in that the high hardness layer is thicker than the high conductivity layer. Through this configuration, the hardness of the contact probe can be increased.
이때, 상기 고경도 층의 두께는 상기 고전도성 층의 두께의 1.5 내지 2배일 수 있다.In this case, the thickness of the high hardness layer may be 1.5 to 2 times the thickness of the high conductivity layer.
또한, 본 발명은 상기 고전도성 층은 상기 고경도 층에 비해서 두께가 두꺼운 것을 특징으로 하는 접촉 프로브를 제공한다. 이러한 구성을 통해서 접촉 프로브의 전류 용량을 높일 수 있다.In addition, the present invention provides a contact probe characterized in that the high conductivity layer is thicker than the high hardness layer. Through this configuration, the current capacity of the contact probe can be increased.
이때, 상기 고전도성 층의 두께는 상기 고경도 층의 두께의 1.5 내지 2배일 수 있다.In this case, the thickness of the high conductivity layer may be 1.5 to 2 times the thickness of the high hardness layer.
상기 다층 구조의 최상층과 최하층은 상기 고경도 층인 것이 바람직하다. The uppermost layer and the lowermost layer of the multilayer structure are preferably the high hardness layer.
또한, 상기 팁부는 다층 구조를 포함하며, 상기 팁부의 다층 구조를 이루는 층들 중에서 적어도 하나가 길게 돌출되어 형성된 스케이트부를 더 구비하는 것을 특징으로 하는 접촉 프로브를 제공한다. 이러한 구성을 통해서 접촉 프로브에 의한 스크럽 사이즈를 줄일 수 있다.In addition, the tip part includes a multi-layered structure, and at least one of the layers constituting the multi-layered structure of the tip part is formed to protrude to provide a contact probe further comprising a skate part. Through this configuration, the scrub size by the contact probe can be reduced.
여기서, 상기 스케이트부는 상기 팁부의 중심축에 대해서 경사져 있을 수 있다. 이러한 구성을 통해서 스크럽 시의 마찰력을 조절할 수 있다.Here, the skate part may be inclined with respect to the central axis of the tip part. Through this configuration, it is possible to adjust the frictional force during scrubbing.
상기 스케이트부의 평면형상은 일 측은 대체로 직선형이고, 상기 일 측과 마주보는 타 측은 상기 일 측과 나란한 직선부와, 상기 직선부와 연결되며 상기 팁부와 가까워질수록 상기 일 측과의 거리가 멀어지도록 굽어 있는 곡선부를 포함할 수 있다.One side of the planar shape of the skate portion is substantially straight, and the other side facing the one side is connected to the straight portion parallel to the one side and the straight portion, and the closer the tip portion is, the further away the distance from the one side is. It may include a curved portion that is bent.
또한, 본 발명은 상기 팁부의 내측에 위치하며 상기 팁부의 끝 부분의 상기 다층 구조의 일부를 대체하는 결합부와, 상기 결합부로부터 연장되어 상기 팁부 외측으로 돌출된 스케이트부를 포함하며, 상기 고경도 층에 비해서 경도가 더 높은 인서트부를 포함하는 것을 특징으로 하는 접촉 프로브를 제공한다. 이러한 구성을 통해서 스케이트부의 수명을 늘릴 수 있다.In addition, the present invention includes a coupling portion located inside the tip portion and replacing a part of the multi-layer structure at the end of the tip portion, and a skate portion extending from the coupling portion and protruding outside the tip portion, and the high hardness A contact probe comprising an insert having a higher hardness than the layer is provided. Through this configuration, the life of the skate part can be increased.
또한, 본 발명은 상기 탄성부는 상기 탄성부의 길이방향을 따라서 연장된 적어도 2개의 빔들을 포함하며, 인접하는 상기 빔들은 슬릿에 의해서 분리되며, 상기 빔들 중에서 적어도 하나의 적어도 일부분은 상기 스케이트부에 비해서 단면적이 작은 것을 특징으로 하는 접촉 프로브를 제공한다. 이러한 구성을 통해서, 접촉 프로브에 고전류가 흐를 경우에 단면적이 작은 빔이 먼저 용융된다. 따라서 스케이트부가 용융되면서 측정 대상 소자의 단자를 오염시키는 것을 방지할 수 있다.In addition, in the present invention, the elastic part includes at least two beams extending along the longitudinal direction of the elastic part, the adjacent beams are separated by a slit, and at least a portion of at least one of the beams is larger than the skate part. A contact probe characterized by having a small cross-sectional area is provided. Through this configuration, when a high current flows through the contact probe, a beam having a small cross-section is first melted. Therefore, it is possible to prevent contamination of the terminal of the element to be measured while the skate part is melted.
이를 위해서, 상기 빔들 중에서 적어도 하나의 적어도 일부분의 단면은 상기 스케이트부에 비해서 단면적이 작아지도록 적어도 일면에 홈이 형성될 수 있다.To this end, a cross section of at least a portion of at least one of the beams may have a groove formed on at least one surface so that the cross section is smaller than that of the skate portion.
또한, 본 발명은 상기 탄성부는 상기 탄성부의 길이방향을 따라서 연장된 적어도 2개의 빔들을 포함하며, 인접하는 상기 빔들은 슬릿에 의해서 분리된 것을 특징으로 하는 접촉 프로브를 제공한다. In addition, the present invention provides a contact probe characterized in that the elastic part includes at least two beams extending along the longitudinal direction of the elastic part, and the adjacent beams are separated by a slit.
상기 빔들은 상이한 폭을 가질 수 있다. The beams may have different widths.
예를 들어, 상기 빔들은 상기 팁부와 상기 헤드부가 가까워지는 방향으로 압력이 가해질 때, 상기 빔들이 돌출되는 방향에 위치하는 빔이 반대 방향에 위치하는 빔에 비해서 폭이 좁을 수 있다. 이러한 구성들을 통해서, 접촉 프로브에 압력이 가해질 때 헤드부와 빔의 연결 부위가 끊어지는 현상을 개선할 수 있다.For example, when pressure is applied in a direction in which the tip part and the head part come closer to each other, a beam positioned in a direction in which the beams protrude may have a narrower width than a beam positioned in an opposite direction. Through these configurations, it is possible to improve a phenomenon in which a connection portion between the head portion and the beam is disconnected when pressure is applied to the contact probe.
또한, 본 발명은 상기 헤드부의 일측면과 배면에서 돌출된 스토퍼부를 더 포함하는 것을 특징으로 하는 접촉 프로브를 제공한다. 이러한 구성을 통해서, 접촉 프로브의 대각선 정렬 시에 접촉 프로브가 좀 더 안정적으로 지지될 수 있다. In addition, the present invention provides a contact probe characterized in that it further comprises a stopper portion protruding from one side and the rear surface of the head portion. Through this configuration, the contact probes can be more stably supported when the contact probes are diagonally aligned.
또한, 본 발명은 복수의 제1 관통구멍이 형성된 제1 지지체와, 상기 제1 지지체와 일정한 간격으로 나란하게 배치되며, 복수의 제2 관통구멍이 형성된 제2 지지체와, 상기 제1 관통구멍 및 제2 관통구멍에 삽입되는 복수의 접촉 프로브를 포함하는 프로브 조립체를 제공한다.In addition, the present invention provides a first support body having a plurality of first through holes, a second support body disposed side by side with the first support body at regular intervals and having a plurality of second through holes formed thereon, the first through holes and A probe assembly including a plurality of contact probes inserted into the second through hole is provided.
도 1은 본 발명의 제1 실시예에 따른 접촉 프로브를 나타낸 도면이다.1 is a view showing a contact probe according to a first embodiment of the present invention.
도 2는 도 1에 도시된 접촉 프로브를 구비한 프로브 조립체를 나타낸 도면이다.FIG. 2 is a view showing a probe assembly having the contact probe shown in FIG. 1;
도 3은 본 발명의 제2 실시예에 따른 접촉 프로브를 나타낸 도면이다.3 is a view showing a contact probe according to a second embodiment of the present invention.
도 4는 본 발명의 제3 실시예에 따른 접촉 프로브를 나타낸 도면이다.4 is a view showing a contact probe according to a third embodiment of the present invention.
도 5와 6은 스케이트부의 다른 예들을 나타낸 도면들이다.5 and 6 are views showing other examples of the skate part.
도 7은 팁부와 스케이트부의 다른 예를 나타낸 도면이다.7 is a view showing another example of a tip part and a skate part.
도 8은 본 발명의 제4 실시예에 따른 접촉 프로브를 나타낸 도면이다.8 is a view showing a contact probe according to a fourth embodiment of the present invention.
도 9는 탄성부의 다른 예들의 단면을 간단히 나타낸 도면이다.9 is a schematic diagram showing cross-sections of other examples of elastic parts.
도 10은 본 발명의 제5 실시예에 따른 접촉 프로브를 나타낸 도면이다.10 is a view showing a contact probe according to a fifth embodiment of the present invention.
도 11은 본 발명의 제6 실시예에 따른 접촉 프로브를 나타낸 도면이다. 11 is a view showing a contact probe according to a sixth embodiment of the present invention.
도 12는 도 11에 도시된 접촉 프로브를 구비한 프로브 조립체를 나타낸 도면이다.FIG. 12 is a view showing a probe assembly having the contact probe shown in FIG. 11;
도 13은 도 12에 도시된 프로브 조립체를 위에서 바라보았을 때 제1 지지체의 제1 관통구멍과 제2 지지체의 제2 관통구멍이 겹친 상태를 나타낸다. FIG. 13 shows a state in which the first through hole of the first support and the second through hole of the second support overlap when the probe assembly shown in FIG. 12 is viewed from above.
도 14는 도 12에 도시된 프로브 조립체의 접촉 프로브의 제1 관통구멍 및 제2 관통구멍 내에서의 접촉 프로브의 위치를 설명하기 위한 도면이다.FIG. 14 is a view for explaining positions of contact probes in the first through hole and the second through hole of the contact probe of the probe assembly shown in FIG. 12;
이하에서 본 발명의 바람직한 실시예를 도면을 참조하여 상세히 설명하기로 한다. 다음에 소개되는 실시예는 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. The embodiments introduced below are provided as examples to sufficiently convey the spirit of the present invention to those skilled in the art. Therefore, the present invention may be embodied in other forms without being limited to the embodiments described below. And in the drawings, the width, length, thickness, etc. of components may be exaggerated for convenience. Like reference numbers indicate like elements throughout the specification.
도 1은 본 발명의 제1 실시예에 따른 접촉 프로브를 나타낸 도면이며, 도 2는 도 1에 도시된 접촉 프로브를 구비한 프로브 조립체를 나타낸 도면이다. 도 1의 (a)는 접촉 프로브의 정면도이며, (b)는 측면도이며, (c)는 위치별 단면의 형상을 나타내는 도면이다.FIG. 1 is a view showing a contact probe according to a first embodiment of the present invention, and FIG. 2 is a view showing a probe assembly having the contact probe shown in FIG. 1 . 1 (a) is a front view of a contact probe, (b) is a side view, and (c) is a view showing the shape of a cross section by position.
도 2에 도시된 바와 같이, 프로브 조립체(1)는 제1 지지체(10), 제2 지지체(20) 및 복수의 접촉 프로브(100)을 구비한다.As shown in FIG. 2 , the probe assembly 1 includes a first support 10 , a second support 20 and a plurality of contact probes 100 .
제1 지지체(10)와 제2 지지체(20)는 실질적으로 평행하며, 서로 일정한 간격으로 떨어져 있다. 제1 지지체(10)에는 복수의 제1 관통구멍(11)들이 형성되며, 제2 지지체(20)에는 복수의 제2 관통구멍(21)들이 형성된다. 프로브 조립체(1)에서, 제1 관통구멍(11) 및 이에 대응하는 제2 관통구멍(21)은 서로 약간 어긋나 있을 수 있다.The first support 10 and the second support 20 are substantially parallel and spaced apart from each other at regular intervals. A plurality of first through holes 11 are formed in the first support 10 , and a plurality of second through holes 21 are formed in the second support 20 . In the probe assembly 1, the first through hole 11 and the corresponding second through hole 21 may be slightly offset from each other.
제1 지지체(10)는 프로브 카드의 스페이스 트랜스포머(미도시) 쪽에 배치되며, 제2 지지체(20)는 반도체 디바이스와 같은 피검사체(미도시) 쪽으로 배치된다. 제1 관통구멍(11)과 제2 관통구멍(21)은 각각의 지지체의 면에 대체로 수직으로 형성된다. 제1 관통구멍(11)과 제2 관통구멍(21)는 사각형 관통구멍일 수 있다.The first supporter 10 is disposed on the side of the space transformer (not shown) of the probe card, and the second supporter 20 is disposed on the side of the inspection target such as a semiconductor device (not shown). The first through hole 11 and the second through hole 21 are formed substantially perpendicular to the surface of each support body. The first through hole 11 and the second through hole 21 may be rectangular through holes.
도 1의 (a)와 (b)에 도시된 바와 같이, 접촉 프로브(100)는 프로브 카드의 회로기판에 접하는 헤드부(110), 피검사체에 접촉하는 팁부(130) 및 헤드부(110)와 팁부(130) 사이에 위치하며, 팁부(130)에 압력이 가해지면 탄성 변형되는 탄성부(120)를 포함한다.As shown in (a) and (b) of FIG. 1, the contact probe 100 includes a head part 110 in contact with the circuit board of the probe card, a tip part 130 in contact with the object to be inspected, and a head part 110. It is located between and the tip part 130, and includes an elastic part 120 that is elastically deformed when pressure is applied to the tip part 130.
팁부(130)는 제2 관통구멍(21)에 끼워지며, 헤드부(110)는 제1 관통구멍(11)에 끼워진다.The tip part 130 is inserted into the second through hole 21 , and the head part 110 is inserted into the first through hole 11 .
도 1과 2를 참고하면, 헤드부(110), 탄성부(120) 및 팁부(130)는 Z축 방향으로 연장되어 있으며, 탄성부(120)는 Y축 방향으로 살짝 굽어 있다.1 and 2, the head part 110, the elastic part 120 and the tip part 130 extend in the Z-axis direction, and the elastic part 120 is slightly bent in the Y-axis direction.
제2 관통구멍(21) 내에 배치되는 팁부(130) 또는 탄성부(120)의 폭과 두께는 제2 관통구멍(21)의 폭과 두께에 비해서 작아서, 탄성 프로브(100)는 제2 관통구멍(21) 내에서 Z축 방향으로 이동할 수 있다. 팁부(130)의 끝단은 제2 지지체(20)의 외부로 노출된다. 팁부(130)는 끝단으로 진행할수록 가늘어지도록 경사져있다.The width and thickness of the tip part 130 or the elastic part 120 disposed in the second through hole 21 are smaller than the width and thickness of the second through hole 21, so that the elastic probe 100 has the second through hole. It can move in the Z-axis direction within (21). An end of the tip portion 130 is exposed to the outside of the second supporter 20 . The tip portion 130 is inclined to become thinner as it goes toward the end.
또한, 제1 관통구멍(11) 내에 배치되는 헤드부(110) 또는 탄성부(120)의 폭과 두께는 제1 관통구멍(11)의 폭과 두께에 비해서 작아서, 탄성 프로브(100)는 제1 관통구멍(11) 내에서 Z 방향으로 이동할 수 있다. 헤드부(110)의 끝단(115)이 제1 지지체(10)의 외부로 노출된다.In addition, the width and thickness of the head part 110 or the elastic part 120 disposed in the first through hole 11 are smaller than those of the first through hole 11, so that the elastic probe 100 It can move in the Z direction within one through hole (11). The end 115 of the head part 110 is exposed to the outside of the first supporter 10 .
헤드부(110)의 끝 단부에는 헤드부(110)가 제1 관통구멍(11)에서 빠지는 것을 방지하도록 헤드부(110)의 일측면으로부터 돌출된 스토퍼부(115)가 형성된다. 스토퍼부(115)의 하단은 제1 지지체(10)의 상면(13)에 걸린다.A stopper portion 115 protruding from one side of the head portion 110 is formed at an end of the head portion 110 to prevent the head portion 110 from falling out of the first through hole 11 . The lower end of the stopper part 115 is caught on the upper surface 13 of the first supporter 10 .
헤드부(110)는 끝단으로 진행할수록 가늘어지도록 경사져있다.The head part 110 is inclined so as to become thinner as it goes toward the end.
도 1의 (b)와 (c)에 도시된 바와 같이, 헤드부(110), 탄성부(120) 및 팁부(130)는 서로 다른 전도성 물질로 이루어진 복수의 층을 포함하는 다층 구조를 포함한다.As shown in (b) and (c) of FIG. 1, the head portion 110, the elastic portion 120, and the tip portion 130 include a multilayer structure including a plurality of layers made of different conductive materials. .
다층 구조는 고전도성 층(110b, 120b, 130b)과, 고경도 층(110a, 120a, 130a)이 교대로 적층된 구조이다. 본 실시예에서는 헤드부(110), 탄성부(120) 및 팁부(130)가 모두 다층 구조를 포함한다. 다층 구조의 최상층과 최하층은 고경도 층(110a, 120a, 130a)인 것이 바람직하다.The multilayer structure is a structure in which highly conductive layers 110b, 120b, and 130b and high hardness layers 110a, 120a, and 130a are alternately laminated. In this embodiment, the head portion 110, the elastic portion 120, and the tip portion 130 all include a multi-layer structure. The uppermost and lowermost layers of the multilayer structure are preferably high hardness layers 110a, 120a, and 130a.
고경도 층(110a, 120a, 130a)은 고전도성 층(110b, 120b, 130b)에 비해서 전기전도도가 낮으며 경도가 큰 물질로 이루어진다. 예를 들어, 고전도성 층(110b, 120b, 130b)은 구리 또는 구리 합금이며, 고경도 층(110a, 120a, 130a)은 파라듐 또는 파라듐 합금으로 이루어질 수 있다. The high- hardness layers 110a, 120a, and 130a are made of materials having lower electrical conductivity and higher hardness than the high- conductivity layers 110b, 120b, and 130b. For example, the high conductivity layers 110b, 120b, and 130b may be made of copper or a copper alloy, and the high hardness layers 110a, 120a, and 130a may be made of palladium or a palladium alloy.
접촉 프로브의 경도 향상을 위해서 고경도 층(110a, 120a, 130a)은 고전도성 층(110b, 120b, 130b)에 비해서 두께가 두꺼울 수 있다. 좀 더 구체적으로, 고경도 층(110a, 120a, 130a)의 두께는 고전도성 층(110b, 120b, 130b)의 두께의 1.5 내지 2배일 수 있다.To improve the hardness of the contact probe, the high- hardness layers 110a, 120a, and 130a may be thicker than the high- conductivity layers 110b, 120b, and 130b. More specifically, the thickness of the high- hardness layers 110a, 120a, and 130a may be 1.5 to 2 times the thickness of the high- conductivity layers 110b, 120b, and 130b.
도 1의 (c)에 도시된 바와 같이, 헤드부(110), 팁부(130) 및 탄성부(120)는 사각형 단면을 가진다.As shown in (c) of FIG. 1, the head portion 110, the tip portion 130, and the elastic portion 120 have a rectangular cross section.
도 1의 (b)와 (c)에 도시된 바와 같이, 본 실시예의 접촉 프로브(100)는 적어도 일부의 다층 구조를 둘러싸는 코팅 층(140)을 더 포함한다.As shown in (b) and (c) of FIG. 1 , the contact probe 100 of this embodiment further includes a coating layer 140 surrounding at least a portion of the multilayer structure.
코팅 층(140)은 고경도 층(110a, 120a, 130a)에 비해서 전기전도도가 높다. 예를 들어, 코팅 층(140)은 금 또는 금 합금일 수 있다. 코팅 층(140)은 다층 구조의 사면 전체를 덮는다. 본 실시예에서 코팅 층(140)은 헤드부(110)의 다층 구조의 적어도 일부를 둘러싼다. 본 실시예에서 코팅 층(140)은 접촉 저항을 낮추는 역할을 한다.The coating layer 140 has higher electrical conductivity than the high hardness layers 110a, 120a, and 130a. For example, coating layer 140 may be gold or a gold alloy. The coating layer 140 covers the entire slope of the multilayer structure. In this embodiment, the coating layer 140 surrounds at least a portion of the multilayer structure of the head portion 110 . In this embodiment, the coating layer 140 serves to lower contact resistance.
도 3은 본 발명의 제2 실시예에 따른 접촉 프로브를 나타낸 도면이다.3 is a view showing a contact probe according to a second embodiment of the present invention.
*본 실시예는 코팅 층(250)이 접촉 프로브(200) 전체에 형성된다는 점에서 도 1에 도시된 실시예와 차이가 있다. 본 실시예는 고경도 층(210a, 220a, 230a)에 비해서 전기전도도가 높은 고팅 층(250)이 접촉 프로브(200) 전체를 덮기 때문에 전류 용량(current carrying capacity, CCC)이 향상된다. 또한, 다층 구조의 측면을 코팅 층(250)으로 덮기 때문에 층들 사이에 발생할 수 있는 틈이 외부로 노출되지 않아서 다층 구조의 산화를 방지할 수 있다는 장점이 있다.* This embodiment is different from the embodiment shown in FIG. 1 in that the coating layer 250 is formed over the entire contact probe 200. In this embodiment, since the coating layer 250, which has higher electrical conductivity than the high- hardness layers 210a, 220a, and 230a, covers the entire contact probe 200, current carrying capacity (CCC) is improved. In addition, since the side surfaces of the multi-layer structure are covered with the coating layer 250, gaps that may occur between layers are not exposed to the outside, thereby preventing oxidation of the multi-layer structure.
또한, 본 실시예는 접촉 프로브(200)의 전류 용량 향상을 위해서 고전도성 층(210b, 220b, 230b)이 고경도 층(210a, 220a, 230a)에 비해서 두께가 두꺼울 수 있다. 좀 더 구체적으로, 고전도성 층(210b, 220b, 230b)의 두께는 고경도 층(210a, 220a, 230a)의 두께의 1.5 내지 2배일 수 있다.In addition, in this embodiment, to improve the current capacity of the contact probe 200, the high conductivity layers 210b, 220b, and 230b may be thicker than the high hardness layers 210a, 220a, and 230a. More specifically, the thickness of the high conductivity layers 210b, 220b, and 230b may be 1.5 to 2 times the thickness of the high hardness layers 210a, 220a, and 230a.
도 4는 본 발명의 제3 실시예에 따른 접촉 프로브를 나타낸 도면이다.4 is a view showing a contact probe according to a third embodiment of the present invention.
도 4에 도시된 실시예는 탄성부(320)가 듀얼 빔 구조라는 점에서 도 1에 도시된 실시예와 차이가 있다.The embodiment shown in FIG. 4 is different from the embodiment shown in FIG. 1 in that the elastic part 320 has a dual beam structure.
본 실시예의 탄성부(320)는 슬릿(325)에 의해서 구분되는 한 쌍의 빔(321, 323)을 구비한다.The elastic part 320 of this embodiment includes a pair of beams 321 and 323 divided by a slit 325 .
또한, 팁부(330)의 다층 구조를 이루는 층들 중에서 적어도 하나가 길게 돌출되어 형성되며, 팁부(330)에 비해서 두께가 얇은 스케이트부(335)를 더 구비한다는 점에서도 도 1에 도시된 실시예와 차이가 있다. 스케이트부(335)의 끝단은 측정 대상 소자의 단자와 접촉한다. 스케이트부(335)는 팁부(330)에 비해서 두께가 얇기 때문에, 스케이트부(335)를 적용하면 스크럽 사이즈를 줄일 수 있다는 장점이 있다. 또한, 스케이트부(335)의 길이를 길게 하면 측정 대상 소자의 단자 주변에 마이크로 범프와 같이, 돌출된 구조가 존재할 경우에 돌출된 구조를 피해서 단자와 접촉할 수 있다는 점에서 장점이 있다.In addition, at least one of the layers constituting the multi-layered structure of the tip portion 330 is formed by protruding long, and the skate portion 335 having a thickness smaller than that of the tip portion 330 is further provided, similar to the embodiment shown in FIG. 1. There is a difference. The end of the skate part 335 contacts the terminal of the device to be measured. Since the thickness of the skate part 335 is thinner than that of the tip part 330, the application of the skate part 335 has the advantage of reducing the size of the scrub. In addition, if the length of the skate portion 335 is increased, there is an advantage in that, when there is a protruding structure, such as a microbump, around the terminal of the device to be measured, it is possible to avoid the protruding structure and contact the terminal.
본 실시예에서 스케이트부(335)는 두 개의 고경도 층(335a)과 하나의 고전도성 층(335b)으로 이루어진다.In this embodiment, the skate portion 335 includes two high-hardness layers 335a and one high-conductivity layer 335b.
도 5와 6은 스케이트부의 다른 예들을 나타낸 도면들이다. 도 4의 스케이트부는 도 5와 6의 스케이트부들로 대체할 수 있다.5 and 6 are views showing other examples of the skate part. The skate portion of FIG. 4 may be replaced with the skate portions of FIGS. 5 and 6 .
본 예들은 스케이트부(336, 337)가 팁부(330)의 중심축에 대해서 기울어져 있다는 점에서도 도 3에 도시된 실시예와 차이가 있다. 스크럽시에 마찰력을 조절하기 위해서 기울어져 있다. These examples are different from the embodiment shown in FIG. 3 in that the skate parts 336 and 337 are inclined with respect to the central axis of the tip part 330 . It is tilted to adjust the frictional force during scrubbing.
도 5에 도시된 예에서, 스케이트부(336)는 정면에서 바라본 스케이트부(336)의 평면형상을 기준으로, 팁부(330)로부터 연장된 일 측(3361)은 대체로 팁부의 중심축과 각을 이루는 직선형이다. 그리고 일 측(3361)과 마주보는 타 측(3362)은 서로 연결된 곡선부(3332a)와 직선부(3332b)를 포함한다. 곡선부(3332a)는 팁부(330)로부터 연장되며, 팁부(330)와 가까워질수록 상기 일 측(3361)과의 거리가 멀어지도록 굽어있다. 직선부(3332b)는 일 측(3361)과 나란하며, 곡선부(3332a)와 연결된다.In the example shown in FIG. 5 , one side 3361 extending from the tip portion 330, based on the planar shape of the skate portion 336 viewed from the front, generally forms an angle with the central axis of the tip portion. It is a straight line formed by The other side 3362 facing the one side 3361 includes a curved portion 3332a and a straight portion 3332b connected to each other. The curved portion 3332a extends from the tip portion 330 and is bent so that the distance from the one side 3361 increases as it gets closer to the tip portion 330. The straight portion 3332b is parallel to one side 3361 and connected to the curved portion 3332a.
도 6에 도시된 예는 스케이트부(337)가 하나의 고경도층(337a)로 이루어진다는 점에서 도 5에 도시된 실시예와 차이가 있다.The example shown in FIG. 6 is different from the embodiment shown in FIG. 5 in that the skate portion 337 is made of one high-hardness layer 337a.
도 7은 팁부와 스케이트부의 다른 예를 나타낸 도면이다.7 is a view showing another example of a tip part and a skate part.
도 7에 도시된 실시예는, 인서트부(350)를 포함한다. 인서트부(350)는 대체로 직사각형 플레이트 형태이다. 인서트부(350)은 팁부(340) 내측에 위치하는 결합부(354)와, 결합부(354)로부터 연장되어 팁부(340) 외측으로 돌출된 스케이트부(355)를 포함한다.The embodiment shown in FIG. 7 includes an insert portion 350 . The insert portion 350 is generally in the form of a rectangular plate. The insert portion 350 includes a coupling portion 354 positioned inside the tip portion 340 and a skate portion 355 extending from the coupling portion 354 and protruding outward from the tip portion 340 .
결합부(354)는 팁부(340) 끝 부분의 다층 구조의 일부를 대체한다. 본 예에서, 결합부(354)는 팁부(340)를 구성하는 다층 구조 중에서 두 개의 고경도 층(340a)과 하나의 고전도성 층(340b)을 대체한다.The coupling portion 354 replaces a portion of the multilayer structure at the end of the tip portion 340 . In this example, the coupling part 354 replaces two high-hardness layers 340a and one high-conductivity layer 340b in the multilayer structure constituting the tip part 340 .
인서트부(350)는 고경도 층(340a)에 비해서 경도가 더 높을 수 있다. 예를 들어, 고경도 층(340a)으로 팔라듐을 사용하고, 인서트부(340)로 로듐을 사용할 수 있다. 본 실시예는 스케이트부(355)의 기계적 마모에 따른 수명 단축을 개선할 수 있다는 장점이 있다. The insert portion 350 may have higher hardness than the high hardness layer 340a. For example, palladium may be used as the high-hardness layer 340a and rhodium may be used as the insert portion 340 . This embodiment has the advantage of improving the life shortening due to mechanical wear of the skate portion 355 .
도 8은 본 발명의 제4 실시예에 따른 접촉 프로브를 나타낸 도면이다. 8 is a view showing a contact probe according to a fourth embodiment of the present invention.
도 8에 도시된 실시예는 탄성부(420)의 한 쌍의 빔(421, 423)의 일부 구간에 홈(427, 428)이 형성된다는 점에서 도 4에 도시된 실시예와 차이가 있다. 홈(427, 428)이 형성된 구간의 빔의 단면적(AB1, AB2) 중 적어도 하나는 스케이트부(435)의 단면적(AS)에 비해서 작은 것이 바람직하다. 접촉 프로브(400)에 순간적으로 고전류가 흐를 경우에 접촉 프로브(400)가 용융되면서 측정 대상 소자의 단자를 오염시키는 것을 최소화하기 위합니다.The embodiment shown in FIG. 8 is different from the embodiment shown in FIG. 4 in that grooves 427 and 428 are formed in some sections of the pair of beams 421 and 423 of the elastic part 420. It is preferable that at least one of the cross-sectional areas (A B1 , A B2 ) of the beams in the section in which the grooves 427 and 428 are formed is smaller than the cross-sectional area (A S ) of the skate portion 435 . This is to minimize contamination of the terminal of the device to be measured as the contact probe 400 melts when a high current momentarily flows through the contact probe 400.
접촉 프로브(400)에 순간적으로 고전류가 흐를 경우에 접촉 프로브(400)에서 단면적이 가장 작은 부분이 줄 열(Joule's heat)에 의해서 용융되기 때문에, 측정 대상 소자의 단자로부터 멀리 떨어진 탄성부(420)의 빔들(421, 423)의 단면적(AB1, AB2) 중에서 적어도 하나는 측정 대상 소자의 단자와 접촉하는 스케이트부(435)의 단면적(AS)에 비해서 작도록 한다. 그러면, 고전류가 흐를 때에 단자에서 먼 빔(421 또는 423)이 스케이트부(435)에 비해서 먼저 녹기 때문에 스케이트부(435)가 녹으면서 측정 대상 소자의 단자를 오염시키는 것을 방지할 수 있다. When a high current instantaneously flows through the contact probe 400, the part with the smallest cross-sectional area in the contact probe 400 is melted by Joule's heat. At least one of the cross-sectional areas (A B1 , A B2 ) of the beams 421 and 423 of is smaller than the cross-sectional area (A S ) of the skate portion 435 contacting the terminal of the device to be measured. Then, since the beam 421 or 423 far from the terminal melts first compared to the skate part 435 when a high current flows, contaminating the terminal of the device to be measured while the skate part 435 melts can be prevented.
도 8에서는 접촉 프로브(400)가 다층 구조인 것으로 표시되어 있지 않지만, 제4 실시예에 따른 접촉 프로브(400)도 다층 구조일 수 있다.Although the contact probe 400 is not shown as having a multilayer structure in FIG. 8 , the contact probe 400 according to the fourth embodiment may also have a multilayer structure.
도 9는 탄성부의 다른 예들의 단면을 간단히 나타낸 도면이다.9 is a schematic diagram showing cross-sections of other examples of elastic parts.
도 9의 (a)에 도시된 바와 같이, 홈(427, 428)을 빔들(421, 423)의 안쪽 면에 형성할 수도 있으며, (b)에 도시된 바와 같이, 같은 방향을 향하는 면에 형성할 수도 있으며, (c)와 (d)에 도시된 바와 같이, 한쪽 빔(421)에만 형성할 수도 있다.As shown in (a) of FIG. 9, grooves 427 and 428 may be formed on the inner surface of the beams 421 and 423, and as shown in (b), formed on the surface facing the same direction. It may be done, and as shown in (c) and (d), it may be formed on only one beam 421.
도 10은 본 발명의 제5 실시예에 따른 접촉 프로브를 나타낸 도면이다.10 is a view showing a contact probe according to a fifth embodiment of the present invention.
도 10에 도시된 실시예는 좌측 빔(521)과 우측 빔(523)이 상이한 폭을 가진다는 점에서 도 4에 도시된 실시예와 차이가 있다.The embodiment shown in FIG. 10 is different from the embodiment shown in FIG. 4 in that the left beam 521 and the right beam 523 have different widths.
빔들(521, 523)은 전기적 특성을 측정하기 위해서 팁부(530)와 헤드부(510)가 가까워지는 방향으로 압력이 가해질 때, 굽어서 돌출되는 방향(-y 방향)에 위치하는 빔(521)이 반대 측에 위치하는 빔(523)에 비해서 폭이 좁을 수 있다. 헤드부(510)와 빔(521)의 연결 부위에서 반대 측에 위치하는 빔(523)이 끊어지는 현상을 개선하기 위함이다.The beams 521 and 523 are bent when pressure is applied in the direction in which the tip part 530 and the head part 510 come closer in order to measure electrical characteristics. Beam 521 located in the protruding direction (-y direction) The width may be narrower than that of the beam 523 located on the opposite side. This is to improve the phenomenon in which the beam 523 located on the opposite side of the head portion 510 and the beam 521 is disconnected.
도 11은 본 발명의 제6 실시예에 따른 접촉 프로브를 나타낸 도면이며, 도 12는 도 11에 도시된 접촉 프로브를 구비한 프로브 조립체를 나타낸 도면이며, 도 13는 도 12에 도시된 프로브 조립체를 위에서 바라보았을 때 제1 지지체의 제1 관통구멍과 제2 지지체의 제2 관통구멍이 겹친 상태를 나타낸다. 11 is a view showing a contact probe according to a sixth embodiment of the present invention, FIG. 12 is a view showing a probe assembly having the contact probe shown in FIG. 11, and FIG. 13 is a view showing the probe assembly shown in FIG. It shows a state in which the first through hole of the first support and the second through hole of the second support overlap when viewed from above.
도 11에 도시된 실시예는 도 11의 (c)에서 가장 잘 도시된 바와 같이, 스토퍼(615, 617)가 헤드부(610)의 측면뿐 아니라 배면에도 형성된다는 점에서 도 1에 도시된 실시예와 차이가 있다.As best shown in FIG. 11(c), the embodiment shown in FIG. 11 is the embodiment shown in FIG. 1 in that the stoppers 615 and 617 are formed not only on the side surface of the head part 610 but also on the rear surface. Yes, there is a difference.
도 13에 도시된 바와 같이, 프로브 조립체(2)를 위에서 바라보았을 때, 제1 지지체(10)의 제1 관통구멍(11)과 제2 지지체(20)의 제2 관통구멍(21)은 사각형이며, 제1 관통구멍(11)과 제2 관통구멍(21)은 제1 관통구멍(또는 제2 관통구멍)의 대각선 방향으로 거리 L만큼 오프셋되어 있다. 이는 제1 관통구멍(11)과 제2 관통구멍(21)을 정렬한 상태에서 접촉 프로브(600)를 제1 관통구멍(11)과 제2 관통구멍(21)에 삽입한 후에 제1 지지체(10)를 제2 지지체(20)에 대해서 대각선 방향으로 거리 L만큼 상대 이동시키는 방법으로 달성할 수 있다.As shown in FIG. 13 , when the probe assembly 2 is viewed from above, the first through hole 11 of the first support 10 and the second through hole 21 of the second support 20 are rectangular. , and the first through hole 11 and the second through hole 21 are offset by a distance L in the diagonal direction of the first through hole (or the second through hole). After inserting the contact probe 600 into the first through hole 11 and the second through hole 21 in a state in which the first through hole 11 and the second through hole 21 are aligned, the first support ( 10) can be achieved by a method of relatively moving the second supporter 20 by a distance L in a diagonal direction.
도 14는 도 12에 도시된 프로브 조립체의 접촉 프로브의 제1 관통구멍 및 제2 관통구멍 내에서의 접촉 프로브의 위치를 설명하기 위한 도면이다.FIG. 14 is a view for explaining positions of contact probes in the first through hole and the second through hole of the contact probe of the probe assembly shown in FIG. 12;
도 14에 도시된 바와 같이, 이렇게 제1 관통구멍(11)과 제2 관통구멍(21)이 대각선 방향으로 오프셋되면, 접촉 프로브(600)의 헤드부(610)는 제1 관통구멍(11)의 한쪽 모서리 측에 밀착된다. 그리고 팁부(630)는 제1 관통구멍(11)의 한쪽 모서리와 대각선상으로 배치되는 제2 관통구멍(21)의 반대쪽 모서리 측에 밀착된다. 이때, 스토퍼(615, 617)의 아랫면은 제1 지지체(10)의 윗면(13)에 밀착된다. 본 실시예에서는 헤드부(610)의 측면뿐 아니라 배면에도 스토퍼(615, 617)가 형성되어 있으므로, 접촉 프로브(600)의 헤드부(610)가 한쪽으로 치우치지 않도록 접촉 프로브(600)를 좀 더 안정적으로 지지할 수 있다.As shown in FIG. 14 , when the first through hole 11 and the second through hole 21 are offset in the diagonal direction in this way, the head portion 610 of the contact probe 600 is the first through hole 11 is adhered to one corner of the side. The tip 630 is in close contact with one corner of the first through hole 11 and the opposite corner of the second through hole 21 disposed diagonally. At this time, the lower surfaces of the stoppers 615 and 617 are in close contact with the upper surface 13 of the first support 10 . In this embodiment, since the stoppers 615 and 617 are formed on the rear surface as well as the side surface of the head part 610, the contact probe 600 is slightly moved so that the head part 610 of the contact probe 600 is not biased to one side. more stable support.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.Although the preferred embodiments of the present invention have been shown and described above, the present invention is not limited to the specific embodiments described above, and is common in the art to which the present invention pertains without departing from the gist of the present invention claimed in the claims. Of course, various modifications and implementations are possible by those with knowledge of, and these modifications should not be individually understood from the technical spirit or perspective of the present invention.
예를 들어, 도 4에서 탄성부가 한 쌍의 빔을 구비하는 것으로 도시되어 있지만, 3개 이상의 빔들을 구비할 수도 있다.For example, although the elastic part is shown as having a pair of beams in FIG. 4 , it may include three or more beams.
또한, 각각의 실시예의 팁부나 스케이트부는 다른 실시예의 팁부나 스케이트부로 대체할 수 있다.In addition, the tip portion or skate portion of each embodiment may be replaced with a tip portion or skate portion of another embodiment.
[부호의 설명][Description of code]
1, 2: 프로브 조립체1, 2: probe assembly
10: 제1 지지체10: first support
20: 제2 지지체20: second support
100, 200, 300, 400, 500, 600: 접촉 프로브100, 200, 300, 400, 500, 600: contact probe
110, 210, 310, 410, 510, 610: 헤드부110, 210, 310, 410, 510, 610: head
120, 220, 320, 420, 520, 620: 탄성부120, 220, 320, 420, 520, 620: elastic part
130, 230, 330, 430, 530, 630: 팁부130, 230, 330, 430, 530, 630: tip part

Claims (19)

  1. 전자 장치의 테스트에 사용되며, 팁부, 헤드부, 및 상기 팁부와 상기 헤드부 사이에 길게 연장된 탄성부를 포함하는 접촉 프로브로서, A contact probe used for testing an electronic device and including a tip portion, a head portion, and an elastic portion extending between the tip portion and the head portion,
    적어도 일부는 고전도성 층과, 상기 고전도성 층에 비해서 전기전도도가 낮으며 경도가 큰 고경도 층이 교대로 적층된 다층 구조를 포함하며,At least some of them include a multi-layer structure in which a high-conductivity layer and a high-hardness layer having lower electrical conductivity and greater hardness than the high-conductivity layer are alternately stacked,
    상기 팁부의 내측에 위치하며 상기 팁부의 끝 부분의 상기 다층 구조의 일부를 대체하는 결합부와, 상기 결합부로부터 연장되어 상기 팁부 외측으로 돌출된 스케이트부를 포함하며, 상기 고경도 층에 비해서 경도가 더 높은 인서트부를 포함하는 것을 특징으로 하는 접촉 프로브.A coupling portion located inside the tip portion and replacing a part of the multi-layered structure at an end of the tip portion, and a skate portion extending from the coupling portion and protruding outward from the tip portion, and having a hardness greater than that of the high-hardness layer. A contact probe comprising a taller insert.
  2. 제1항에 있어서,According to claim 1,
    상기 고경도 층에 비해서 전기전도도가 높으며, 적어도 일부의 상기 다층 구조를 둘러싸는 외부 코팅 층을 더 포함하는 것을 특징으로 하는 접촉 프로브.The contact probe further comprises an outer coating layer having higher electrical conductivity than the high-hardness layer and surrounding at least a portion of the multilayer structure.
  3. 제2항에 있어서,According to claim 2,
    상기 외부 코팅 층은 상기 헤드부의 상기 다층 구조를 둘러싸는 것을 특징으로 하는 접촉 프로브.The contact probe, characterized in that the outer coating layer surrounds the multi-layer structure of the head portion.
  4. 제1항에 있어서,According to claim 1,
    상기 고전도성 층은 구리 또는 구리 합금이며, 상기 고경도 층은 팔라듐 또는 파라듐 합금인 것을 특징으로 하는 접촉 프로브.The contact probe according to claim 1, wherein the high conductivity layer is copper or a copper alloy, and the high hardness layer is palladium or a palladium alloy.
  5. 제2항에 있어서,According to claim 2,
    상기 외부 코팅 층은 금 또는 금 합금인 것을 특징으로 하는 접촉 프로브.The contact probe, characterized in that the outer coating layer is gold or gold alloy.
  6. 제1항에 있어서,According to claim 1,
    상기 고경도 층은 상기 고전도성 층에 비해서 두께가 두꺼운 것을 특징으로 하는 접촉 프로브.The contact probe, characterized in that the high hardness layer is thicker than the high conductivity layer.
  7. 제6항에 있어서,According to claim 6,
    상기 고경도 층의 두께는 상기 고전도성 층의 두께의 1.5 내지 2배인 것을 특징으로 하는 접촉 프로브.The contact probe, characterized in that the thickness of the high hardness layer is 1.5 to 2 times the thickness of the high conductivity layer.
  8. 제1항에 있어서,According to claim 1,
    상기 고전도성 층은 상기 고경도 층에 비해서 두께가 두꺼운 것을 특징으로 하는 접촉 프로브.The contact probe, characterized in that the high conductivity layer is thicker than the high hardness layer.
  9. 제8항에 있어서,According to claim 8,
    상기 고전도성 층의 두께는 상기 고경도 층의 두께의 1.5 내지 2배인 것을 특징으로 하는 접촉 프로브.The contact probe, characterized in that the thickness of the high conductivity layer is 1.5 to 2 times the thickness of the high hardness layer.
  10. 제1항에 있어서,According to claim 1,
    상기 다층 구조의 최상층과 최하층은 상기 고경도 층인 것을 특징으로 하는 접촉 프로브.The contact probe, characterized in that the uppermost layer and the lowermost layer of the multi-layer structure are the high hardness layer.
  11. 제1항에 있어서,According to claim 1,
    상기 스케이트부는 상기 팁부의 중심축에 대해서 경사져 있는 것을 특징으로 하는 접촉 프로브.The contact probe, characterized in that the skate portion is inclined with respect to the central axis of the tip portion.
  12. 제11항에 있어서,According to claim 11,
    상기 스케이트부의 평면형상은 일 측은 직선형이고, 상기 일 측과 마주보는 타 측은 상기 일 측과 나란한 직선부와, 상기 직선부와 연결되며 상기 팁부와 가까워질수록 상기 일 측과의 거리가 멀어지도록 굽어 있는 곡선부를 포함하는 것을 특징으로 하는 접촉 프로브.One side of the planar shape of the skate portion is straight, and the other side facing the one side is connected to the straight portion parallel to the one side and the straight portion, and is bent so that the distance from the one side increases as it gets closer to the tip portion. A contact probe, characterized in that it comprises a curved portion.
  13. 제1항에 있어서,According to claim 1,
    상기 탄성부는 상기 탄성부의 길이방향을 따라서 연장된 적어도 2개의 빔들을 포함하며, 인접하는 상기 빔들은 슬릿에 의해서 분리되며,The elastic part includes at least two beams extending along the longitudinal direction of the elastic part, and the adjacent beams are separated by a slit,
    상기 빔들 중에서 적어도 하나의 적어도 일부분은 상기 스케이트부에 비해서 단면적이 작은 것을 특징으로 하는 접촉 프로브.At least a portion of at least one of the beams has a smaller cross-sectional area than the skate portion.
  14. 제13항에 있어서,According to claim 13,
    상기 빔들 중에서 적어도 하나의 적어도 일부분의 단면은 상기 스케이트부에 비해서 단면적이 작아지도록 적어도 일면에 홈이 형성된 것을 특징으로 하는 접촉 프로브.A contact probe, characterized in that a groove is formed on at least one surface of at least a portion of at least one of the beams so that the cross section is smaller than that of the skate portion.
  15. 제1항에 있어서,According to claim 1,
    상기 탄성부는 상기 탄성부의 길이방향을 따라서 연장된 적어도 2개의 빔들을 포함하며, 인접하는 상기 빔들은 슬릿에 의해서 분리된 것을 특징으로 하는 접촉 프로브.The contact probe of claim 1 , wherein the elastic part includes at least two beams extending along the longitudinal direction of the elastic part, and the adjacent beams are separated by a slit.
  16. 제15항에 있어서,According to claim 15,
    상기 빔들은 상이한 폭을 가지는 것을 특징으로 하는 접촉 프로브.The contact probe, characterized in that the beams have different widths.
  17. 제16항에 있어서,According to claim 16,
    상기 빔들은 상기 팁부와 상기 헤드부가 가까워지는 방향으로 압력이 가해질 때, 상기 빔들이 돌출되는 방향에 위치하는 빔이 반대 방향에 위치하는 빔에 비해서 폭이 넓은 것을 특징으로 하는 접촉 프로브.The beams are contact probes, characterized in that when pressure is applied in a direction in which the tip portion and the head portion come closer, a beam positioned in a direction in which the beams protrude is wider than a beam positioned in an opposite direction.
  18. 제1항에 있어서,According to claim 1,
    상기 헤드부의 일측면과 배면에서 돌출된 스토퍼부를 더 포함하는 것을 특징으로 하는 접촉 프로브.The contact probe further comprises a stopper protruding from one side surface and a rear surface of the head part.
  19. 복수의 제1 관통구멍이 형성된 제1 지지체와,A first support body having a plurality of first through holes;
    상기 제1 지지체와 일정한 간격으로 나란하게 배치되며, 복수의 제2 관통구멍이 형성된 제2 지지체와,A second support body disposed side by side with the first support body at regular intervals and having a plurality of second through holes;
    상기 제1 관통구멍 및 제2 관통구멍에 삽입되는 복수의 접촉 프로브를 포함하며,It includes a plurality of contact probes inserted into the first through hole and the second through hole,
    상기 접촉 프로브는 제1항 내지 제18항 중 어느 한 항의 접촉 프로브인 프로브 조립체.The contact probe is a probe assembly according to any one of claims 1 to 18.
PCT/KR2022/010176 2021-07-21 2022-07-13 Contact probe WO2023003255A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210095775A KR102321083B1 (en) 2021-07-21 2021-07-21 Contact Probe
KR10-2021-0095775 2021-07-21

Publications (1)

Publication Number Publication Date
WO2023003255A1 true WO2023003255A1 (en) 2023-01-26

Family

ID=78504971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010176 WO2023003255A1 (en) 2021-07-21 2022-07-13 Contact probe

Country Status (2)

Country Link
KR (3) KR102321083B1 (en)
WO (1) WO2023003255A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102321083B1 (en) * 2021-07-21 2021-11-03 (주)새한마이크로텍 Contact Probe
KR102644534B1 (en) * 2023-10-30 2024-03-07 (주)새한마이크로텍 Contact Probe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070152686A1 (en) * 2004-05-21 2007-07-05 January Kister Knee probe having increased scrub motion
KR20150092094A (en) * 2012-12-04 2015-08-12 일본전자재료(주) Electrical contact
KR20170061314A (en) * 2015-11-26 2017-06-05 한국기계연구원 A Probe Pin and a Manufacturing Method of the same
KR102145398B1 (en) * 2020-07-09 2020-08-19 피엠피(주) Vertical probe pin and probe card with the same
KR102321083B1 (en) * 2021-07-21 2021-11-03 (주)새한마이크로텍 Contact Probe

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100307216B1 (en) * 1999-06-16 2001-11-01 허기호 Prove block for testing Liquid Crystal Display
KR100701498B1 (en) 2006-02-20 2007-03-29 주식회사 새한마이크로텍 Probe pin assembly for testing semiconductor and method for manufacturing the same
KR100852514B1 (en) * 2006-07-31 2008-08-18 한국과학기술연구원 Perpendicular Type Probe for Test of Semiconductor, Probe Card with the Probes and Methods for Manufacturing the Probe Card
KR100908271B1 (en) * 2007-09-27 2009-07-20 주식회사 파이컴 Probe, probe manufacturing method and probe coupling method
DE102008023761B9 (en) * 2008-05-09 2012-11-08 Feinmetall Gmbh Electrical contact element for contact contacting of electrical specimens and corresponding contacting arrangement
KR101010666B1 (en) * 2008-10-28 2011-01-24 윌테크놀러지(주) Probe unit and probe card having the same
KR101168147B1 (en) * 2010-04-26 2012-07-24 화인인스트루먼트 (주) Probe pin for probe card and manufacturing method thereof
KR101141836B1 (en) * 2010-05-28 2012-05-07 송원호 Contact Force Relax Formed Micro Vertical Probe
KR20130047933A (en) * 2011-11-01 2013-05-09 솔브레인이엔지 주식회사 Probe, probe assembly and probe card comprising it
KR101638228B1 (en) * 2014-05-15 2016-07-11 주식회사 코리아 인스트루먼트 Fabrication method of probe pin capable of being used for fine pitch
EP3170009A1 (en) * 2014-07-14 2017-05-24 Technoprobe S.p.A Contact probe for a testing head and corresponding manufacturing method
CN107257928B (en) * 2014-12-30 2020-12-01 泰克诺探头公司 Contact probe for a test head
TWI704352B (en) * 2015-03-13 2020-09-11 義大利商探針科技公司 Contact probe for a testing head
CN107533084A (en) * 2015-03-13 2018-01-02 泰克诺探头公司 The measuring head with Vertrical probe being correctly held in the improved sliding motion in respective guide hole and under different operating conditions by probe in measuring head
WO2016156003A1 (en) * 2015-03-31 2016-10-06 Technoprobe S.P.A. Vertical contact probe and corresponding testing head with vertical contact probes, particularly for high frequency applications
KR101769355B1 (en) 2017-05-31 2017-08-18 주식회사 새한마이크로텍 Vertical probe pin and probe pin assembly with the same
KR20180131312A (en) * 2017-08-04 2018-12-10 주식회사 새한마이크로텍 Vertical probe pin and probe pin assembly with the same
JP7254450B2 (en) * 2018-05-16 2023-04-10 日本電産リード株式会社 Probe, inspection jig, inspection apparatus, and probe manufacturing method
JP2021028603A (en) * 2019-08-09 2021-02-25 株式会社日本マイクロニクス Electric contact and electrical connection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070152686A1 (en) * 2004-05-21 2007-07-05 January Kister Knee probe having increased scrub motion
KR20150092094A (en) * 2012-12-04 2015-08-12 일본전자재료(주) Electrical contact
KR20170061314A (en) * 2015-11-26 2017-06-05 한국기계연구원 A Probe Pin and a Manufacturing Method of the same
KR102145398B1 (en) * 2020-07-09 2020-08-19 피엠피(주) Vertical probe pin and probe card with the same
KR102321083B1 (en) * 2021-07-21 2021-11-03 (주)새한마이크로텍 Contact Probe

Also Published As

Publication number Publication date
KR102321088B1 (en) 2021-11-03
KR102321083B1 (en) 2021-11-03
KR102321085B1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
WO2023003255A1 (en) Contact probe
WO2016108520A1 (en) Contact inspection device
WO2022010246A1 (en) Vertical probe pin and probe card having same
WO2018221886A1 (en) Vertical probe pin and probe pin assembly comprising same
WO2017142203A1 (en) Heating device for camera module and camera module having same
US7750655B2 (en) Multilayer substrate and probe card
WO2012121449A1 (en) Probe card and manufacturing method
WO2011149203A2 (en) Structure for a spring contact
WO2014204161A2 (en) Insert for inspection
WO2023003251A1 (en) Contact probe assembly
WO2023128428A1 (en) Test socket for signal loss protection
WO2018128361A1 (en) Vertical ultra low leakage probe card for dc parameter test
WO2012011628A1 (en) Probe card and manufacturing method therefor
WO2020050645A1 (en) Probe card for electrical inspection, and probe head of probe card
WO2017061656A1 (en) Kelvin test probe, kelvin test probe module, and manufacturing method therefor
WO2019245153A1 (en) Plate spring-type connecting pin
WO2022092812A1 (en) Connector for electrical connection
WO2019146831A1 (en) Bidirectional conductive module
WO2023096242A1 (en) Probe card
WO2011019160A2 (en) Method for manufacturing a probe to be used in a semiconductor test or a flat panel display device test
WO2011074837A2 (en) Probe apparatus for a wafer solder bump
WO2015020353A1 (en) Probe apparatus for kelvin test
WO2017061739A1 (en) Cryogenic probe station
WO2020213899A1 (en) Multi-layer mems spring pin
WO2022177388A1 (en) Electrically conductive contact pin assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22846125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE