WO2022182000A1 - 실란을 포함하는 플라스틱 수지 복합체 및 이의 제조방법 - Google Patents

실란을 포함하는 플라스틱 수지 복합체 및 이의 제조방법 Download PDF

Info

Publication number
WO2022182000A1
WO2022182000A1 PCT/KR2022/001126 KR2022001126W WO2022182000A1 WO 2022182000 A1 WO2022182000 A1 WO 2022182000A1 KR 2022001126 W KR2022001126 W KR 2022001126W WO 2022182000 A1 WO2022182000 A1 WO 2022182000A1
Authority
WO
WIPO (PCT)
Prior art keywords
silane
plastic resin
fiber
resin composite
composite
Prior art date
Application number
PCT/KR2022/001126
Other languages
English (en)
French (fr)
Inventor
진태규
홍상현
김성수
김원빈
정재문
배상윤
Original Assignee
엘지전자 주식회사
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사, 한국과학기술원 filed Critical 엘지전자 주식회사
Priority to US18/278,900 priority Critical patent/US20240059849A1/en
Publication of WO2022182000A1 publication Critical patent/WO2022182000A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • C08K5/08Quinones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • C08K7/20Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/28Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2355/00Characterised by the use of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08J2323/00 - C08J2353/00
    • C08J2355/02Acrylonitrile-Butadiene-Styrene [ABS] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Definitions

  • the present invention relates to a plastic resin composite containing a silane and a method for manufacturing the same, and solves the problem of undesirable dispersion of fibers because gel formation is not achieved by silanol self-condensation, and a plastic resin having a light weight and high strength It relates to a composite and a method for preparing the same.
  • a composite refers to a material made by artificially mixing or combining materials having different components and properties to maximize the properties of each material or to have new properties that are not expressed in a single material.
  • Composites are fundamentally superior in physical properties such as strength, corrosion resistance, fatigue life, abrasion resistance, impact resistance, and lightness compared to conventional materials. It is a representative 21st century industrial material that is in the spotlight.
  • Composites generally have a basic structure of a reinforced material that bears the load applied to the material and a matrix that combines with the reinforcement to transmit the load to the reinforcement.
  • fibrous reinforcements such as thermosetting resins containing phenol and epoxy, polyvinyl chloride (PVC), polyethylene, polypropylene, polyamide, polyacetal, polybutylene terephthalate, and polyphenylene as the base material.
  • a resin-type base material such as a thermoplastic resin containing sulfide or the like is often used.
  • Fiber reinforced plastic is a composite of synthetic resin and fiber reinforcement, and while maintaining the advantages of plastics such as corrosion resistance and ease of molding, tensile strength, impact resistance, heat resistance, etc. due to the added fiber reinforcement material It is a composite material with additional advantages.
  • fiber-reinforced plastics are inexpensive and light in weight, they are used in various fields such as hulls of small ships, bathtubs, and septic tanks as well as various home appliances, and the technology fields used are gradually increasing.
  • Republic of Korea Patent Publication No. 10-2018-0031783 (published on March 28, 2018) relates to a polyolefin composition comprising hollow glass microspheres, polyolefin, hollow glass microspheres, and a polar semi-crystalline thermoplastic additive. and an impact modifier or compatibilizer.
  • WO2015/146718 (published date: October 01, 2015) relates to a polyarylene sulfide-based resin composition and an insert molded article, wherein the PAS-based resin composition comprises a polyarylene sulfide resin having a carboxyl group terminal and It includes an olefin-based copolymer, glass fiber, and calcium carbonate, and discloses a surface treatment of the glass fiber with a silane coupling agent.
  • U.S. Patent Publication No. 2008/0011194 (published on January 17, 2008) relates to a wood fiber synthetic resin composite, wherein a mixture of a lubricant including a cellulosic material, a silane-containing polymer, a thermoplastic resin and a metal stearate, or It is disclosed that the silane-containing polymer is prepared by copolymerizing an ethylenically unsaturated silane and an alpha olefin.
  • a silane coupling agent is used to increase the interfacial bonding force between the fiber and the resin by chemical bonding with the fiber and strong bonding with the resin, but the self-condensation of silanol is There is a problem in that the dispersion of the fibers is difficult due to the formation of a gel (see FIG. 1).
  • the present invention uses a light-weight fiber as a strength reinforcing material, and treats the fiber with silane in order to offset a decrease in strength caused by adding a strength reinforcing material to provide a plastic resin composite containing silane having excellent strength and light weight. do it with
  • Another object of the present invention is to provide a method for preparing a plastic resin composite including silane, which is lightweight while maintaining the strength of the plastic composite by preventing self-condensation of silanol.
  • the present invention provides a fiber composite in which silane is uniformly formed on the fiber because gel formation by self-condensation of silanol is not made on the fiber as a reinforcing material and the fiber, and a base material for manufacturing lightweight plastic
  • a plastic resin composite including a silane including a phosphorus plastic resin.
  • the plastic resin composite including the silane according to the present invention can uniformly form the silane on the fiber without forming the silanol on the fiber in a method different from the conventional one. Due to the improved bonding strength with the plastic resin, the strength may be improved while being lightweight.
  • the fibers may be at least one selected from the group consisting of lyocell fibers, glass fibers and aramid fibers.
  • the silane may be included in an amount of 0.5 to 5.0% by weight of the total weight of the fiber composite.
  • the plastic resin may be at least one selected from the group consisting of acrylonitrile butadiene styrene (ABS), polycarbonate (PC), and polypropylene (PP).
  • ABS acrylonitrile butadiene styrene
  • PC polycarbonate
  • PP polypropylene
  • the fiber composite may be included in an amount of 15 to 35% by volume based on the total volume of the plastic resin composite.
  • the present invention provides a step of adding a silane compound to a mixed solution containing distilled water, methanol, and a weak acid, immersing the fiber in the mixed solution to which the silane compound is added and then heat-treating, and the silane-formed fiber with a plastic resin It provides a method for producing a plastic resin composite comprising a silane comprising the step of mixing with.
  • the methanol may be included in a volume ratio of 3 to 5 with respect to the volume of the distilled water.
  • the weak acid may be acetic acid (CH 3 COOH) or carbonic acid (H 2 CO 3 ), and the weak acid is included to adjust the pH of the mixed solution in the range of 4 to 5.
  • the silane compound has an alkoxy group, specifically 3-(methacryloxypropyl)trimethoxysilane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetra-n-part Toxysilane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, trimethoxysilane, triethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltrie Toxysilane, propyltrimethoxysilane, propyltriethoxysilane, isobutyltriethoxysilane, cyclohexyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrime
  • the silane compound may be included in an amount of 0.5 to 5.0% by weight of the total weight of the mixed solution.
  • the heat treatment may be performed at 90 ⁇ 130 °C for 2 ⁇ 8 minutes.
  • the method for manufacturing a plastic resin composite including silane according to the present invention may further include adding a glass bubble after mixing the silane-formed fiber with a plastic resin, wherein the silane-formed fiber, plastic resin and glass Each of the bubbles may be included in an amount of 5 to 15% by weight, 60 to 80% by weight, and 15 to 25% by weight.
  • silane can be uniformly formed on the fiber without forming silaol on the fiber in a method differentiated from the prior art, and the bonding force with the plastic resin is improved due to the uniformly formed silane, thereby increasing the strength. It is possible to manufacture a lightweight plastic resin composite while improving.
  • plastic resin composite including the silane according to the present invention can be variously applied to a plastic component material requiring light weight, thereby reducing power consumption due to weight reduction during operation.
  • the plastic resin composite including the silane according to the present invention can reduce the load applied to the user's body, such as the wrist, in the case of products such as upper-center cleaners, drones, and dryers that are directly held and moved by a person.
  • 1 is a schematic diagram showing gel formation by self-condensation of silanol on fibers prepared by a conventional method.
  • FIG. 2 is a schematic view showing a method for manufacturing a plastic resin composite including silane according to the present invention.
  • Figure 3a is a scanning electron microscope (SEM) photograph showing the lyocell fibers not treated with silane.
  • Figure 3b is a result of energy dispersive X-ray spectroscopy (EDS) analysis of lyocell fibers not treated with silane.
  • EDS energy dispersive X-ray spectroscopy
  • Figure 4a is a scanning electron microscope (SEM) photograph showing the lyocell fiber treated with silane.
  • Figure 4b is a result of energy dispersive X-ray spectroscopy (EDS) analysis of lyocell fibers treated with silane.
  • EDS energy dispersive X-ray spectroscopy
  • 5 is a graph showing the tensile strength of the plastic resin composite including silane according to the present invention.
  • first, second, etc. are used to describe various elements, these elements are not limited by these terms, of course. These terms are only used to distinguish one component from other components, and unless otherwise stated, the first component may be the second component, of course.
  • the present invention relates to a fiber composite comprising a fiber and a silane formed on the fiber surface;
  • plastic resin composite comprising a silane; including a plastic resin combined with the fiber composite.
  • fiber may be used as a reinforcing material for strength reinforcement, but when the fiber is used alone, there is no strength reinforcement effect, and silane is formed on the fiber surface for strength reinforcement.
  • the present invention was conceived to solve the above-described problem, and by adding methanol at a high concentration to a mixed solution in which the silane compound is dissolved, the silanol does not self-condense, so that a gel is not formed.
  • silane can be uniformly formed on the fiber without forming silanol on the fiber in a method differentiated from the prior art, and the bonding strength with the plastic resin is improved due to the uniformly formed silane, thereby improving strength It is possible to manufacture a lightweight plastic resin composite.
  • plastic resin composite including the silane according to the present invention can be variously applied to a plastic component material requiring light weight, thereby reducing power consumption due to weight reduction during operation.
  • the plastic resin composite including the silane according to the present invention can reduce the load applied to the user's body, such as the wrist, in the case of products such as upper-center cleaners, drones, and dryers that are directly held and moved by a person.
  • the fiber may be a natural fiber or an artificial fiber, and when the fiber is a natural fiber, it is a fiber extracted from nature called Lyocell, and has a silky soft feel, natural color, strong durability, comfortable fit, and luxury. It is a new material fiber that combines practicality and practicality at the same time, and has recently been spotlighted in various fields.
  • the lyocell fiber used in the present invention uses eucalyptus wood pulp as a raw material and has excellent absorbency and is soft to the touch, so it is mainly used for children's clothes, inner wear, and bedding. It has the characteristic of being biodegradable in about a month when buried.
  • lyocell fibers have high dry and wet tensile strength, high wet strength, and loop strength ( loop tenacity) is high.
  • the fiber is an artificial fiber, glass fiber or aramid fiber, etc. may be used, but it is preferable to use a lyocell fiber in terms of bonding strength with plastic resin and biodegradable natural fiber.
  • the fiber composite forms silane on the fiber surface in order to improve bonding strength with the plastic resin
  • the silane is preferably included in 0.5 to 5.0 wt% of the total weight of the fiber composite.
  • the silane is included in an amount of less than 0.5 wt%, there is a problem that the strength of the plastic resin composite is not improved, and when it exceeds 5.0 wt%, an excess of silane is formed on the fiber surface and the plastic resin due to aggregation of the silane. There is a problem that the coupling with the lowered.
  • the plastic resin may be at least one selected from the group consisting of acrylonitrile butadiene styrene, polyalkylene carbonate, and polyurethane.
  • acrylonitrile butadiene styrene is a thermoplastic resin that reinforces the shortcomings of polystyrene and AS resin or impact resistance polystyrene, and maintains the excellent permeability, processability, and electrical properties of polystyrene while maintaining mechanical strength, heat resistance, oil resistance, weather resistance, etc. It has the advantage of being widely used as a substitute for metal not only for home appliances but also for interior and exterior materials for automobiles because of its improved mechanical properties, easy processing, and strong impact resistance and heat resistance.
  • the fiber composite is preferably included in an amount of 15 to 35% by volume based on the total volume of the plastic resin composite.
  • the strength improvement effect is insignificant, and when it exceeds 35% by weight, there is a problem in that the probability of occurrence of internal defects is increased due to the low dispersibility of the fiber.
  • silanol is not formed on the fiber and the silane is uniformly formed on the fiber, so that the interfacial bonding force with the plastic resin is improved, and thus the mechanical strength of the plastic resin composite can be improved. have.
  • the present invention comprises the steps of adding a silane compound to a mixed solution containing distilled water, methanol and a weak acid;
  • It provides a method of manufacturing a plastic resin composite including silane; mixing the fibers with the silane formed therein with a plastic resin.
  • FIG. 2 is a flowchart illustrating a method for manufacturing a plastic resin composite including silane according to the present invention.
  • the method for manufacturing a plastic resin composite including silane according to the present invention includes adding a silane compound to a mixed solution containing distilled water, methanol, and a weak acid (S100).
  • the methanol is preferably included in a volume ratio of 3 to 5 with respect to the volume of the distilled water.
  • the methanol is contained in an amount of less than 3 volume ratio, there is a problem in that the silanes agglomerate with each other, and when it exceeds 5 volume ratio, there is a problem in that the silane is not properly formed on the fiber.
  • the weak acid may be acetic acid (CH 3 COOH) or carbonic acid (H 2 CO 3 ), and the weak acid is included to adjust the pH of the mixed solution to a range of 4 to 5, and the pH is outside the above range. In this case, hydrolysis is not performed properly, and there is a problem in that the stabilization of the silanol is lowered.
  • the method for manufacturing a plastic resin composite including silane according to the present invention includes a step (S200) of heat-treating after immersing the fiber in the mixed solution to which the silane compound is added.
  • the bonding force between the fiber and the plastic resin may be improved.
  • the silane compound is 3-(methacryloxypropyl)trimethoxysilane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, tetra- sec-butoxysilane, tetra-tert-butoxysilane, trimethoxysilane, triethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltri Methoxysilane, propyltriethoxysilane, isobutyltriethoxysilane, cyclohexyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane
  • the silane compound is preferably included in an amount of 0.5 to 5.0% by weight of the total weight of the mixed solution.
  • the reason for limiting the silane compound is the same as described above.
  • the heat treatment is preferably performed at 90 ⁇ 130 °C for 2 ⁇ 8 minutes.
  • the heat treatment is outside the above range, there is a problem in that the silane compound is not formed on the fiber.
  • the manufacturing method of the resin composite according to the present invention includes a step (S300) of mixing the fiber with the silane formed therein with a plastic resin.
  • the fiber may improve the strength of the plastic resin composite by improving interfacial bonding strength with the plastic resin due to the silane on the fiber.
  • the fiber composite is preferably included in an amount of 15 to 35% by volume based on the total volume of the plastic resin composite.
  • the strength improvement effect is insignificant, and when it exceeds 35% by weight, the fiber composite is contained in excess compared to the plastic resin, thereby reducing the physical properties of the final plastic product.
  • the method for manufacturing a resin composite including silane according to the present invention may further include adding glass bubbles after mixing the silane-formed fiber with a plastic resin.
  • each of the silane-formed fiber, plastic resin, and glass bubble is included in an amount of 5 to 15% by weight, 60 to 80% by weight, and 15 to 25% by weight.
  • the amount of the glass bubble is less than 15% by weight, there is a problem in that the tensile strength of the plastic resin composite is not improved. There is a problem in that the strength is lowered and the effect of reinforcing the tensile strength is lowered due to the lowering of the fiber content.
  • the lyocell fiber was immersed in the mixed solution of the silane compound for two hours to permeate the mixed solution of the silane compound into the cell wall of the lyocell fiber. After the lyocell fibers were removed, the lyocell fibers were heated at 110° C. for 5 minutes so that the silanes were bound to the lyocell fibers, and the mixed solution of the silane compounds remaining on the fibers was removed using methanol, and then the fibers were dried.
  • silane-formed lyocell fiber (fiber composite) prepared above was added to acrylonitrile butadiene styrene (ABS) in an amount of 15% by volume to prepare a plastic resin composite.
  • ABS acrylonitrile butadiene styrene
  • a plastic resin composite was prepared in the same manner as in Example 1, except that in Example 1, 3-(methacryloxypropyl)trimethoxysilane was added in an amount of 0.5 wt%.
  • a plastic resin composite was prepared in the same manner as in Example 1, except that in Example 1, 5.0 wt% of 3-(methacryloxypropyl)trimethoxysilane was added.
  • a plastic resin composite was prepared in the same manner as in Example 1, except that a plastic resin composite was prepared by adding the silane-formed lyocell fiber to acrylonitrile butadiene styrene (ABS) in an amount of 22% by volume in Example 1 did.
  • ABS acrylonitrile butadiene styrene
  • a plastic resin composite was prepared in the same manner as in Example 1, except that in Example 4, 3-(methacryloxypropyl)trimethoxysilane was added in an amount of 0.5 wt%.
  • a plastic resin composite was prepared in the same manner as in Example 1, except that in Example 4, 5.0 wt% of 3-(methacryloxypropyl)trimethoxysilane was added.
  • a plastic resin composite was prepared in the same manner as in Example 1, except that the plastic resin composite was prepared by adding the silane-formed Lyocell fiber to acrylonitrile butadiene styrene (ABS) in an amount of 35% by volume in Example 1 did.
  • ABS acrylonitrile butadiene styrene
  • a plastic resin composite was prepared in the same manner as in Example 1, except that in Example 7, 3-(methacryloxypropyl)trimethoxysilane was added in an amount of 0.5 wt%.
  • a plastic resin composite was prepared in the same manner as in Example 1, except that in Example 7, 5.0 wt% of 3-(methacryloxypropyl)trimethoxysilane was added.
  • a plastic resin composite was prepared by mixing 5 to 15% by weight of the silane-formed lyocell fiber prepared in Example 1, 15 to 25% by weight of glass bubbles, and 60 to 80% by weight of acrylonitrile butadiene styrene (ABS).
  • ABS acrylonitrile butadiene styrene
  • a composite resin was prepared by mixing lyocell fibers in which zinc oxide nanorods were not formed and acrylonitrile butadiene styrene in a volume % of 78:22.
  • Table 1 below specifically shows the constituent materials of Examples 1 to 10 and Comparative Examples 1 to 3.
  • the fiber composite before and after the treatment of the silane solution was analyzed by SEM and EDS, and the results are shown in FIGS. 3a, 3b, 4a and 4b.
  • Figure 3a is an SEM photograph of the lyocell fiber not containing silane
  • Figure 3b is the EDS analysis result, it can be seen that only the lyocell fiber is detected as shown in Figures 3a and 3b.
  • Figure 4a is an SEM photograph of the lyocell fiber containing silane
  • Figure 4b is the EDS analysis result, it was confirmed that the Si element was present in the lyocell fiber after silane treatment, and it was confirmed that the silane surface treatment was properly performed.
  • Tensile strength is measured by ASTM D638 method, using a test device, U.T.M (manufacturer; Instron, model name; 4466), after pulling the cross head speed to 200 mm/min (1T), the point at which the specimen is cut was measured. Tensile strength was calculated as follows:
  • Tensile strength (kgf/mm2) load value (kgf) / thickness (mm) x width (mm).
  • the tensile strength of the pure lyocell fiber was 23.8 MPa and 22.5 MPa, respectively, and the resin composite of Comparative Example 3 to which lyocell was added had a tensile strength of 16.3 MPa compared to that of the pure lyocell fiber. rather lowered.
  • the silane-treated lyocell fiber was added, and the tensile strength was 27.5 MPa than that of the pure lyocell fiber, indicating that the tensile strength of the lyocell fiber was improved by 22%.
  • silane is uniformly formed on the fibers, thereby improving the interfacial bonding force with the plastic resin, thereby improving the strength of the plastic resin composite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 실란을 포함하는 플라스틱 수지 복합체 및 이의 제조방법에 관한 것이다. 본 발명에 따른 실란을 포함하는 플라스틱 수지 복합체는 섬유, 상기 섬유 표면에 형성된 실란을 포함하는 섬유 복합체 및 상기 섬유 복합체와 결합되는 플라스틱 수지;를 포함하여, 경량이면서도 기계적 강도가 우수하다.

Description

실란을 포함하는 플라스틱 수지 복합체 및 이의 제조방법
본 발명은 실란을 포함하는 플라스틱 수지 복합체 및 이의 제조방법에 관한 것으로, 실란올 자가-축합에 의해 겔 형성이 이루어지지 않아 섬유의 분산이 원할하지 않는 문제를 해결하여, 경량이면서도 고강도를 갖는 플라스틱 수지 복합체 및 이의 제조방법에 관한 것이다.
복합체란 서로 다른 성분 및 물성을 갖는 물질들을 인위적으로 혼합 또는 결합시켜 각각의 물질의 특성을 극대화하거나 단일 물질에서는 발현되지 않는 새로운 특성을 갖도록 만든 소재를 의미한다.
복합체는 기본적으로 강도, 내식성, 피로수명, 내마모성, 내충격성, 경량성 등의 물성이 기존 소재에 비해 월등히 우수하므로 우주항공 분야를 비롯해 스포츠 용품, 선박, 건설, 자동차, 에너지 분야에 이르기까지 다양한 분야에서 각광받고 있는 대표적인 21세기 산업용 소재이다.
복합체는 소재에 걸리는 하중을 담당하는 강화재(reinforced material) 및 강화재와 결합하여 하중을 강화재에 전달하는 모재(matrix)를 기본 구조로 하는 것이 일반적이며, 강화재로는 보통 유리섬유, 탄소 섬유, 아라미드 섬유 등의 다양한 섬유형 강화재가 많이 사용되고, 모재로는 페놀, 에폭시 등을 포함하는 열경화성 수지나 폴리염화비닐(PVC), 폴리에틸렌, 폴리프로필렌, 폴리아미드, 폴리아세탈, 폴리부틸렌테레프탈레이트, 폴리페닐렌설파이드 등을 포함하는 열가소성 수지와 같은 수지(resin)형 모재가 많이 사용된다.
이러한 섬유 강화 플라스틱(Fiber Reinforced Plastic)은 합성 수지와 섬유 강화재를 복합하여, 플라스틱의 내부식성, 성형의 용이성과 같은 장점을 그대로 유지하면서도, 첨가되는 섬유 강화재로 인한 인장 강도, 내충격성, 내열성 등의 장점을 추가로 얻을 수 있는 복합 재료이다.
이와 같은 섬유 강화 플라스틱은 가격이 저렴하고 무게가 가볍기 때문에 여러 가전제품뿐만 아니라, 소형 선박의 선체, 욕조, 정화조 등의 다양한 분야에 사용되고 있으며, 그 사용되는 기술 분야가 점차 증가하고 있는 추세이다.
관련하여, 대한민국 공개특허 제10-2018-0031783호(공개일: 2018년 03월 28일)는 중공 유리 미소구체를 포함하는 폴리올레핀 조성물에 관한 것으로, 폴리올레핀, 중공 유리 미소구체, 극성 반결정질 열가소성 첨가제 및 충격 개질제 또는 상용화제를 포함하는 조성물을 개시하고 있다.
또한, WO 공개특허 WO2015/146718호(공개일: 2015년 10월 01일)는 폴리아릴렌 설파이드계 수지 조성물 및 인서트 성형체에 관한 것으로, PAS계 수지 조성물이 카르복실기 말단을 가지는 폴리아릴렌 설파이드 수지와 올레핀계 공중합체와 유리섬유와 탄산칼슘을 포함하며, 유리섬유가 실란 커플링제로 표면 처리되는 것을 개시하고 있다.
또한, 미국 공개특허 2008/0011194호(공개일: 2008년 01월 17일)는 목재 섬유 합성수지 복합재에 관한 것으로, 셀룰로오스성 물질, 실란 함유 폴리머, 열가소성 수지 및 금속 스테아레이트를 포함하는 윤활제의 혼합물 또는 반응 생성물을 포함하며, 실란 함유 폴리머는 에틸렌형 불포화 실란 및 알파 올레핀을 공중합하여 제조된 것임을 개시하고 있다.
그러나, 전술한 선행문헌들에는 섬유와 화학적 결합을 하고 수지와 강한 결합을 하여 섬유와 수지 사이의 계면 결합력을 높이기 위해 실란 커플링제를 사용하고 있으나, 실란올의 자가-축합(self-condensation)에 의해 겔이 형성되어 섬유의 분산이 어려운 문제가 있다(도 1 참고).
따라서, 본 발명은 강도 보강재로 경량의 섬유를 사용하고, 강도 보강재를 첨가함으로써 나타나는 강도 저하를 상쇄시키기 위해 섬유를 실란으로 처리하여 경량이면서도 강도가 우수한 실란을 포함하는 플라스틱 수지 복합체를 제공하는 것을 목적으로 한다.
또한, 본 발명은 실란올의 자가-축합을 방지하여 플라스틱 복합체의 강도를 유지하면서도 경량인 실란을 포함하는 플라스틱 수지 복합체의 제조방법을 제공하는 것을 다른 목적으로 한다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상술한 기술적 과제를 해결하기 위해, 본 발명은 보강재인 섬유 및 상기 섬유 상에 실란올의 자가-축합에 의한 겔 형성이 이루어지지 않아 섬유 상에 실란이 균일하게 형성된 섬유 복합체, 및 경량 플라스틱 제조용 모재인 플라스틱 수지를 포함하는 실란을 포함하는 플라스틱 수지 복합체를 제공한다.
구체적으로, 본 발명에 따른 실란을 포함하는 플라스틱 수지 복합체는 종래와는 차별되는 방법으로 섬유 상에 실란올을 형성시키지 않으면서 실란을 섬유 상에 균일하게 형성시킬 수 있고, 이러한 균일하게 형성된 실란으로 인해 플라스틱 수지와의 결합력이 향상되어 강도를 향상시키면서 경량일 수 있다.
이때, 상기 섬유는 라이오셀 섬유, 유리 섬유 및 아라미드 섬유로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 실란은 상기 섬유 복합체 총 중량의 0.5 ~ 5.0 중량%로 포함될 수 있다.
또한, 상기 플라스틱 수지는 아크릴로니트릴 부타디엔 스티렌(ABS), 폴리카보네이트(PC) 및 폴리프로필렌(PP)으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 섬유 복합체는 상기 플라스틱 수지 복합체 전체 부피에 대해 15 ~ 35 부피%로 포함될 수 있다.
또한, 본 발명은 증류수, 메탄올 및 약산을 포함하는 혼합 용액에 실란 화합물을 첨가하는 단계, 상기 실란 화합물이 첨가된 혼합 용액에 섬유를 침지시킨 후 열처리하는 단계, 및 상기 실란이 형성된 섬유를 플라스틱 수지와 혼합하는 단계를 포함하는 실란을 포함하는 플라스틱 수지 복합체의 제조방법을 제공한다.
이때, 상기 메탄올은 상기 증류수 부피에 대해 3 ~ 5 부피비로 포함될 수 있다.
상기 약산은 아세트산(CH3COOH) 또는 탄산(H2CO3)일 수 있고, 상기 약산은 상기 혼합 용액의 pH를 4 ~ 5의 범위로 조절하기 위해 포함된다.
상기 실란 화합물은 알콕시기를 갖는 것으로, 구체적으로 3-(메타크릴옥시프로필)트리메톡시실란, 테트라메톡시실란, 테트라에톡시실란, 테트라프로폭시실란, 테트라이소프로폭시실란, 테트라-n-부톡시실란, 테트라-sec-부톡시실란, 테트라-tert-부톡시실란, 트리메톡시실란, 트리에톡시실란, 메틸트리메톡시실란, 메틸트리에톡시실란, 에틸트리메톡시실란, 에틸트리에톡시실란, 프로필트리메톡시실란, 프로필트리에톡시실란, 이소부틸트리에톡시실란, 시클로헥실트리메톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 알릴트리메톡시실란 알릴트리에톡시실란, 디메틸디메톡시실란, 디메틸디에톡시실란, 디페닐디메톡시실란 및 디페닐디에톡시실란 중에서 선택되는 1종 이상일 수 있다.
상기 실란 화합물은 상기 혼합 용액 총 중량의 0.5 ~ 5.0 중량%로 포함될 수 있다.
상기 열처리는 90 ~ 130 ℃에서 2 ~ 8분 동안 수행될 수 있다.
본 발명에 따른 실란을 포함하는 플라스틱 수지 복합체의 제조방법은 상기 실란이 형성된 섬유를 플라스틱 수지와 혼합한 후 글라스 버블을 추가하는 단계를 더 포함할 수 있고, 상기 실란이 형성된 섬유, 플라스틱 수지 및 글라스 버블 각각은 5 ~ 15 중량%, 60 ~ 80 중량% 및 15 ~ 25 중량%로 포함될 수 있다.
본 발명에 따르면, 종래와는 차별되는 방법으로 섬유 상에 실라올을 형성시키지 않으면서 실란을 섬유 상에 균일하게 형성시킬 수 있고, 균일하게 형성된 실란으로 인해 플라스틱 수지와의 결합력이 향상되어 강도를 향상시키면서 경량인 플라스틱 수지 복합체를 제조할 수 있다.
또한, 본 발명에 따른 실란을 포함하는 플라스틱 수지 복합체는 경량이 필요한 플라스틱 부품 소재에 다양하게 적용될 수 있고, 이로 인해 작동 시 무게 저감에 따른 전력 소모량을 줄일 수 있다.
덧붙여, 본 발명에 따른 실란을 포함하는 플라스틱 수지 복합체는 사람이 직접 들고 움직이는 상중심 청소기, 드론, 드라이어 등의 제품의 경우 손목 등 사용자의 몸에 가해지는 부하를 줄일 수 있다.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.
도 1은 종래 방법으로 제조된 섬유 상에서 실란올의 자가-축합에 의한 겔 형성을 나타내는 모식도이다.
도 2는 본 발명에 따른 실란을 포함하는 플라스틱 수지 복합체의 제조방법을 나타낸 모식도이다.
도 3a는 실란으로 처리되지 않은 라이오셀 섬유를 나타낸 주사전자현미경(SEM) 사진이다.
도 3b는 실란으로 처리되지 않은 라이오셀 섬유의 에너지 분산 X선 분광(EDS) 분석 결과이다.
도 4a는 실란으로 처리된 라이오셀 섬유를 나타낸 주사전자현미경(SEM) 사진이다.
도 4b는 실란으로 처리된 라이오셀 섬유의 에너지 분산 X선 분광(EDS) 분석 결과이다.
도 5는 본 발명에 따른 실란을 포함하는 플라스틱 수지 복합체의 인장강도를 나타낸 그래프이다.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것으로, 특별히 반대되는 기재가 없는 한, 제1 구성요소는 제2 구성요소일 수도 있음은 물론이다.
명세서 전체에서, 특별히 반대되는 기재가 없는 한, 각 구성요소는 단수일 수도 있고 복수일 수도 있다.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
이하에서는, 본 발명에 따른 플라스틱 수지 복합체 및 플라스틱 수지 복합체의 제조방법을 설명하도록 한다.
본 발명은 섬유 및 상기 섬유 표면에 형성된 실란을 포함하는 섬유 복합체; 및
상기 섬유 복합체와 결합되는 플라스틱 수지;를 포함하는 실란을 포함하는 플라스틱 수지 복합체를 제공한다.
종래에는 플라스틱의 무게를 줄이기 위해 글라스 버블과 같은 여러 가지 첨가재를 사용할 수 있는데, 이때 일반적으로 강도가 저하되는 문제가 발생한다.
따라서, 강도 보강을 위해 강화재로 섬유를 사용할 수 있으나, 섬유를 단독으로 사용하면 강도 보강 효과가 없어, 강도 보강을 위해 실란을 섬유 표면에 형성시킨다.
그러나, 섬유 표면에 형성되는 실란이 물과 결합하여 가수분해되면, 실란에 포함된 알콕시기가 떨어져 나가면서 메탄올이 형성되고, 실란놀의 자가-축합에 의해 겔이 형성되어 섬유의 분산이 어려워 강도 보강 효과가 나타나지 않는 문제가 있다.
따라서, 본 발명은 전술한 문제를 해결하기 위한 착안된 것으로, 실란 화합물이 용해되는 혼합 용액에 메탄올을 고농도로 첨가하여 실란놀이 자가-축합되지 않아 겔이 형성되지 않는다.
본 발명에 따르면 종래와는 차별되는 방법으로 섬유 상에 실라놀을 형성시키지 않으면서 실란을 섬유 상에 균일하게 형성시킬 수 있고, 균일하게 형성된 실란으로 인해 플라스틱 수지와의 결합력이 향상되어 강도를 향상시키면서 경량인 플라스틱 수지 복합체를 제조할 수 있다.
또한, 본 발명에 따른 실란을 포함하는 플라스틱 수지 복합체는 경량이 필요한 플라스틱 부품 소재에 다양하게 적용될 수 있고, 이로 인해 작동 시 무게 저감에 따른 전력 소모량을 줄일 수 있다.
덧붙여, 본 발명에 따른 실란을 포함하는 플라스틱 수지 복합체는 사람이 직접 들고 움직이는 상중심 청소기, 드론, 드라이어 등의 제품의 경우 손목 등 사용자의 몸에 가해지는 부하를 줄일 수 있다.
이때, 상기 섬유는 천연 섬유 또는 인공 섬유일 수 있고, 상기 섬유가 천연 섬유인 경우 라이오셀(Lyocell)이라 칭하는 자연에서 추출한 섬유로, 실크처럼 부드러운 감촉, 자연스러운 색깔, 견고한 내구성, 쾌적한 착용감, 고급스러움과 실용감을 동시에 겸비한 신소재 섬유로 다양한 분야에서 최근 각광받고 있다.
본 발명에서 이용되는 라이오셀 섬유는 유칼립투스 나무 펄프를 원재료로 사용하여 흡수성이 뛰어나고 촉감이 부드러워서 아동복, 이너웨어, 침구류에 주로 사용되고 있는 원단으로, 생산 과정이 레이온에 비해 친환경적이고, 폐기 시에도 땅에 묻으면 한달 정도만에 생분해되는 특징을 갖는다.
또한, 라이오셀 섬유는 공정이 유연하고, 고결정성, 침상결정(long crystallites), 고결정배향성, 그리고 비결정 영역의 고배향 등을 가지기 때문에 건식 및 습식 인장강도가 높고 습윤 강도가 높으며, 루프 강도(loop tenacity)가 높다.
따라서, 상기 섬유가 인조 섬유인 경우 유리 섬유 또는 아라미드 섬유 등을 사용할 수 있으나, 플라스틱 수지와의 결합력과 생분해가 가능한 천연 섬유인 점에서 라이오셀 섬유를 사용하는 것이 바람직하다.
상기 섬유 복합체는 플라스틱 수지와의 결합력을 향상시키기 위해 상기 섬유 표면 상에 실란을 형성시키고, 상기 실란은 상기 섬유 복합체 총 중량의 0.5 ~ 5.0 중량%로 포함되는 것이 바람직하다. 상기 실란이 0.5 중량% 미만으로 포함되는 경우에는 플라스틱 수지 복합체의 강도가 향상되지 않는 문제가 있고, 5.0 중량%를 초과하는 경우에는 과량의 실란이 섬유 표면에 형성되어 실란의 뭉침 현상으로 인해 플라스틱 수지와의 결합이 저하되는 문제가 있다.
또한, 상기 플라스틱 수지는 아크릴로니트릴 부타디엔 스티렌, 폴리알킬렌 카보네이트 및 폴리우레탄으로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 플라스틱 수지 중 아크릴로니트릴 부타디엔 스티렌은 폴리스티렌의 결점 및 AS 수지 또는 내충격성 폴리스티렌의 단점을 보강한 열가소성 수지로서, 폴리스틸렌의 뛰어난 투과성, 가공성, 전기적 특성을 유지하면서 기계적 강도, 내열, 내유, 내후성 등을 개선되고, 가공이 쉬우며 내충격성, 내열성이 강해 가전제품뿐만 아니라 자동차용 내외장재에 금속 대체용으로도 많이 사용되는 이점이 있다. 
상기 섬유 복합체는 상기 플라스틱 수지 복합체 전체 부피에 대해 15 ~ 35 부피%로 포함되는 것이 바람직하다. 상기 섬유 복합체가 15 부피% 미만으로 포함되는 경우에는 강도 향상 효과가 미미하고, 35 중량%를 초과하는 경우에는 섬유의 낮은 분산성으로 인해 내부에 결함이 발생할 확률이 높아지는 문제가 있다.
본 발명에 따른 실란을 포함하는 플라스틱 수지 복합체는 섬유 상에 실란올이 형성되지 않아 실란이 섬유 상에 균일하게 형성되므로 플라스틱 수지와의 계면 결합력이 향상되고 따라서 플라스틱 수지 복합체의 기계적 강도가 향상될 수 있다.
또한, 본 발명은 증류수, 메탄올 및 약산을 포함하는 혼합 용액에 실란 화합물을 첨가하는 단계;
상기 실란 화합물이 첨가된 혼합 용액에 섬유를 침지시킨 후 열처리하는 단계; 및
상기 실란이 형성된 섬유를 플라스틱 수지와 혼합하는 단계;를 포함하는 실란을 포함하는 플라스틱 수지 복합체의 제조방법을 제공한다.
도 2는 본 발명에 따른 실란을 포함하는 플라스틱 수지 복합체의 제조방법을 나타낸 순서도이다.
도 2를 참고하여 본 발명을 상세히 설명한다.
본 발명에 따른 실란을 포함하는 플라스틱 수지 복합체의 제조방법은 증류수, 메탄올 및 약산을 포함하는 혼합 용액에 실란 화합물을 첨가하는 단계(S100)를 포함한다.
이때, 상기 메탄올은 상기 증류수 부피에 대해 3 ~ 5 부피비로 포함되는 것이 바람직하다. 상기 메탄올이 3 부피비 미만으로 포함되는 경우에는 실란이 서로 뭉치는 현상이 심해지는 문제가 있고, 5 부피비를 초과하는 경우에는 섬유 상에 실란이 제대로 형성되지 않는 문제가 있다.
상기 약산은 아세트산(CH3COOH) 또는 탄산(H2CO3)일 수 있고, 상기 약산은 상기 혼합 용액의 pH를 4 ~ 5의 범위로 조절하기 위해 포함되고, 상기 pH가 전술한 범위를 벗어나는 경우에는 가수분해가 제대로 이루어지지 않으며, 실란올의 안정화가 저하되는 문제가 있다.
다음으로, 본 발명에 따른 실란을 포함하는 플라스틱 수지 복합체의 제조방법은 상기 실란 화합물이 첨가된 혼합 용액에 섬유를 침지시킨 후 열처리하는 단계(S200)를 포함한다.
상기 섬유 표면 상에 실란이 형성됨으로써 섬유와 플라스틱 수지 사이의 결합력이 향상될 수 있다.
이때, 상기 실란 화합물은 3-(메타크릴옥시프로필)트리메톡시실란, 테트라메톡시실란, 테트라에톡시실란, 테트라프로폭시실란, 테트라이소프로폭시실란, 테트라-n-부톡시실란, 테트라-sec-부톡시실란, 테트라-tert-부톡시실란, 트리메톡시실란, 트리에톡시실란, 메틸트리메톡시실란, 메틸트리에톡시실란, 에틸트리메톡시실란, 에틸트리에톡시실란, 프로필트리메톡시실란, 프로필트리에톡시실란, 이소부틸트리에톡시실란, 시클로헥실트리메톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 알릴트리메톡시실란 알릴트리에톡시실란, 디메틸디메톡시실란, 디메틸디에톡시실란, 디페닐디메톡시실란 및 디페닐디에톡시실란으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 실란 화합물은 상기 혼합 용액 총 중량의 0.5 ~ 5.0 중량%로 포함되는 것이 바람직하다. 상기 실란 화합물의 한정 이유는 전술한 바와 동일하다.
또한, 상기 열처리는 90 ~ 130 ℃에서 2 ~ 8분 동안 수행되는 것이 바람직하다. 상기 열처리가 전술한 범위를 벗어나는 경우에는 섬유 상에 실란 화합물이 형성되지 않는 문제가 있다.
본 발명에 따른 수지 복합체의 제조방법은 상기 실란이 형성된 섬유를 플라스틱 수지와 혼합하는 단계(S300)를 포함한다.
상기 섬유는 상기 섬유 상에 실란으로 인해 상기 플라스틱 수지와의 계면 결합력이 향상되어 플라스틱 수지 복합체의 강도가 향상될 수 있다.
상기 섬유 복합체는 상기 플라스틱 수지 복합체 전체 부피에 대해 15 ~ 35 부피%로 포함되는 것이 바람직하다. 상기 섬유 복합체가 15 부피% 미만으로 포함되는 경우에는 강도 향상 효과가 미미하고, 35 중량%를 초과하는 경우에는 플라스틱 수지 대비 섬유 복합체가 과량으로 함유되어 최종 플라스틱 제품의 물성이 저하되는 문제가 있다.
또한, 본 발명에 따른 실란을 포함하는 수지 복합체의 제조방법은 실란이 형성된 섬유를 플라스틱 수지와 혼합한 후 글라스 버블을 추가하는 단계를 더 포함할 수 있다.
상기 실란이 형성된 섬유, 플라스틱 수지 및 글라스 버블 각각은 5 ~ 15 중량%, 60 ~ 80 중량% 및 15 ~ 25 중량%로 포함되는 것이 바람직하다. 상기 글라스 버블이 15 중량% 미만으로 포함되는 경우에는 플라스틱 수지 복합체의 인장강도가 향상되지 않는 문제가 있고, 25 중량%를 초과하는 경우에는 글라스 버블과 수지 간의 계면 결합력이 저하되는 부분이 증가하여 인장강도가 저하되고 섬유 함량 저하로 인장강도 보강 효과가 저하되는 문제가 있다.
이하, 실시예를 통하여 본 발명을 좀더 상세하게 설명한다. 이러한 실시예는 본 발명을 좀더 상세하게 설명하기 위하여 예시로 제시한 것에 불과하다. 따라서 본 발명이 이러한 실시예에 한정되는 것은 아니다.
<실시예>
실시예 1: 플라스틱 수지 복합체 제조 1
1. 실란 화합물의 혼합 용액 제조
증류수, 메탄올 및 아세트산을 혼합하여 아세트산 혼합 용액을 제조한 후 3-(메타크릴옥시프로필)트리메톡시실란을 1 중량%로 첨가하고 혼합 용액이 투명해질 때까지 교반하여 실란 화합물의 혼합 용액을 제조하였다.
2. 실란이 형성된 섬유의 제조
실란 화합물의 혼합 용액에 라이오셀 섬유를 두시간 동안 침지시켜 라이오셀 섬유 세포벽 내까지 실란 화합물의 혼합 용액을 침투시켰다. 라이오셀 섬유를 건져낸 뒤, 110 ℃에서 5분 동안 가열하여 라이오셀 섬유에 실란이 결합되게 하고, 섬유 상에 남아 있는 실란 화합물의 혼합 용액은 메탄올을 이용하여 제거한 후 섬유를 건조시켰다.
3. 플라스틱 수지 복합체의 제조
상기에서 제조된 실란이 형성된 라이오셀 섬유(섬유 복합체)를 아크릴로니트릴 부타디엔 스티렌(ABS)에 15 부피%로 첨가하여 플라스틱 수지 복합체를 제조하였다.
실시예 2: 플라스틱 수지 복합체 제조 2
상기 실시예 1에서 3-(메타크릴옥시프로필)트리메톡시실란을 0.5 중량%로 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 플라스틱 수지 복합체를 제조하였다.
실시예 3: 플라스틱 수지 복합체의 제조 3
상기 실시예 1에서 3-(메타크릴옥시프로필)트리메톡시실란을 5.0 중량%로 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 플라스틱 수지 복합체를 제조하였다.
실시예 4: 플라스틱 수지 복합체의 제조 4
상기 실시예 1에서 실란이 형성된 라이오셀 섬유를 아크릴로니트릴 부타디엔 스티렌(ABS)에 22 부피%로 첨가하여 플라스틱 수지 복합체를 제조한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 플라스틱 수지 복합체를 제조하였다.
실시예 5: 플라스틱 수지 복합체의 제조 5
상기 실시예 4에서 3-(메타크릴옥시프로필)트리메톡시실란을 0.5 중량%로 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 플라스틱 수지 복합체를 제조하였다.
실시예 6: 플라스틱 수지 복합체의 제조 6
상기 실시예 4에서 3-(메타크릴옥시프로필)트리메톡시실란을 5.0 중량%로 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 플라스틱 수지 복합체를 제조하였다.
실시예 7: 플라스틱 수지 복합체의 제조 7
상기 실시예 1에서 실란이 형성된 라이오셀 섬유를 아크릴로니트릴 부타디엔 스티렌(ABS)에 35 부피%로 첨가하여 플라스틱 수지 복합체를 제조한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 플라스틱 수지 복합체를 제조하였다.
실시예 8: 플라스틱 수지 복합체의 제조 8
상기 실시예 7에서 3-(메타크릴옥시프로필)트리메톡시실란을 0.5 중량%로 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 플라스틱 수지 복합체를 제조하였다.
실시예 9: 플라스틱 수지 복합체의 제조 9
상기 실시예 7에서 3-(메타크릴옥시프로필)트리메톡시실란을 5.0 중량%로 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 플라스틱 수지 복합체를 제조하였다.
실시예 10: 플라스틱 수지 복합체 제조 10
실시예 1에서 제조된 실란이 형성된 라이오셀 섬유 5 ~ 15 중량%, 글라스 버블 15 ~ 25 중량% 및 아크릴로니트릴 부타디엔 스티렌(ABS) 60 ~ 80 중량%를 혼합하여 플라스틱 수지 복합체를 제조하였다.
비교예 1
2mm 직경의 아크릴로니트릴 부타디엔 스티렌을 사용하였다.
비교예 2
3mm 직경의 아크릴로니트릴 부타디엔 스티렌을 사용하였다.
비교예 3
산화아연 나노로드가 형성되지 않은 라이오셀 섬유와 아크릴로니트릴 부타디엔 스티렌을 78:22의 부피%로 혼합하여 복합 수지를 제조하였다.
하기 표 1은 상기 실시예 1 내지 10 및 비교예 1 내지 3의 구성 물질을 구체적으로 나타낸 것이다.
ABS 라이오셀 섬유 글라스
버블
총합
부피%
무처리 실란 함량 실란 형성
실시예 1 85부피% - 1.0중량% 15부피% - 100
실시예 2 85부피% - 0.5중량% 15부피% - 100
실시예 3 85부피% - 5.0중량% 15부피% - 100
실시예 4 78부피% - 1.0중량% 22부피% - 100
실시예 5 78부피% - 0.5중량% 22부피% - 100
실시예 6 78부피% - 5.0중량% 22부피% - 100
실시예 7 65부피% - 1.0중량% 35부피% - 100
실시예 8 65부피% - 0.5중량% 35부피% - 100
실시예 9 65부피% - 5.0중량% 35부피% - 100
실시예 10 60~80중량% - 1.0중량% 5~15
중량%
15~25 중량% -
비교예 1 100 부피% - - - 100
비교예 2 100 부피% - - - 100
비교예 3 78 부피% 22 부피% - - 100
<실험예>
실험예 1: 실란 용액의 처리 전과 후의 섬유 복합체 분석
본 발명에 따른 실란을 포함하는 플라스틱 수지 복합체에서 실란 용액의 처리 전과 후의 섬유 복합체를 SEM 및 EDS로 분석하고 그 결과를 도 3a, 도 3b, 도 4a 및 도 4b에 나타내었다.
도 3a는 실란을 포함하지 않는 라이오셀 섬유의 SEM 사진이고, 도 3b는 EDS 분석 결과로, 도 3a 및 도 3b에 나타낸 바와 같이 라이오셀 섬유만이 검출되는 것을 알 수 있다.
도 4a는 실란을 포함하는 라이오셀 섬유의 SEM 사진이고, 도 4b는 EDS 분석 결과로, 실란 처리 후 라이오셀 섬유에 Si 원소가 있음을 확인하였고, 실란 표면 처리가 제대로 이루어졌음을 확인할 수 있었다.
또한, 실란 처리 후 겔이 형성되지 않아 섬유의 분산이 용이함을 확인하였다.
실험예 2: 플라스틱 수지 복합체의 인장강도 분석
본 발명에 따른 실란을 포함하는 플라스틱 수지 복합체 및 비교예 1 내지 4에서 제조된 수지의 인장강도를 분석하고, 그 결과를 도 5에 나타내었다.
인장강도는 ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정하였다. 인장강도는 다음과 같이 계산하였다:
인장 강도(kgf/㎟) = 로드(load)값(kgf) / 두께(㎜) x 폭(㎜).
도 5에 나타낸 바와 같이, 순수한 라이오셀 섬유의 인장 강도는 각각 23.8 MPa 및 22.5 MPa로 나타났고, 라이오셀이 첨가된 비교예 3의 수지 복합체는 순수한 라이오셀 섬유와 비교하면 인장 강도가 16.3 MPa로 오히려 더 낮아졌다.
반면, 실시예 1의 복합 수지는 실란 처리된 라이오셀 섬유가 첨가된 것으로 순수한 라이오셀 섬유보다 인장강도가 27.5 MPa로 나타나 라이오셀 섬유의 인장 강도 대비 22% 향상된 것을 알 수 있다.
따라서, 본 발명에 따른 플라스틱 수지 복합체는 섬유 상에 실란이 균일하게 형성되어 플라스틱 수지와의 계면 결합력이 향상되어 플라스틱 수지 복합체의 강도가 향상될 수 있는 것을 알 수 있다.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시 예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시 예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.

Claims (14)

  1. 섬유 및 상기 섬유 표면에 형성된 실란을 포함하는 섬유 복합체; 및
    상기 섬유 복합체와 결합되는 플라스틱 수지;를 포함하는 실란을 포함하는 플라스틱 수지 복합체.
  2. 제1항에 있어서,
    상기 섬유는 라이오셀 섬유, 유리 섬유 및 아라미드 섬유로 이루어진 군으로부터 선택되는 1종 이상인 실란을 포함하는 플라스틱 수지 복합체.
  3. 제1항에 있어서,
    상기 실란은 상기 섬유 복합체 총 중량의 0.5 ~ 5.0 중량%로 포함되는 실란을 포함하는 플라스틱 수지 복합체.
  4. 제1항에 있어서,
    상기 플라스틱 수지는 아크릴로니트릴 부타디엔 스티렌(ABS), 폴리카보네이트(PC) 및 폴리프로필렌(PP)으로 이루어진 군으로부터 선택되는 1종 이상인 실란을 포함하는 플라스틱 수지 복합체.
  5. 제1항에 있어서,
    상기 섬유 복합체는 상기 플라스틱 수지 복합체 전체 부피에 대해 15 ~ 35 부피%로 포함되는 플라스틱 수지 복합체.
  6. 증류수, 메탄올 및 약산을 포함하는 혼합 용액에 실란 화합물을 첨가하는 단계;
    상기 실란 화합물이 첨가된 혼합 용액에 섬유를 침지시킨 후 열처리하는 단계; 및
    상기 실란이 형성된 섬유를 플라스틱 수지와 혼합하는 단계;를 포함하는 실란을 포함하는 실란을 포함하는 플라스틱 수지 복합체의 제조방법.
  7. 제6항에 있어서,
    상기 메탄올은 상기 증류수 부피에 대해 3 ~ 5 부피비로 포함되는 실란을 포함하는 플라스틱 수지 복합체의 제조방법.
  8. 제6항에 있어서,
    상기 약산은 아세트산(CH3COOH) 또는 탄산(H2CO3)인 실란을 포함하는 플라스틱 수지 복합체의 제조방법.
  9. 제6항에 있어서,
    상기 약산은 상기 혼합 용액의 pH를 4 ~ 5 범위로 조절하기 위해 포함되는 실란을 포함하는 플라스틱 수지 복합체의 제조방법.
  10. 제6항에 있어서,
    상기 실란 화합물은 3-(메타크릴옥시프로필)트리메톡시실란, 테트라메톡시실란, 테트라에톡시실란, 테트라프로폭시실란, 테트라이소프로폭시실란, 테트라-n-부톡시실란, 테트라-sec-부톡시실란, 테트라-tert-부톡시실란, 트리메톡시실란, 트리에톡시실란, 메틸트리메톡시실란, 메틸트리에톡시실란, 에틸트리메톡시실란, 에틸트리에톡시실란, 프로필트리메톡시실란, 프로필트리에톡시실란, 이소부틸트리에톡시실란, 시클로헥실트리메톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 알릴트리메톡시실란 알릴트리에톡시실란, 디메틸디메톡시실란, 디메틸디에톡시실란, 디페닐디메톡시실란 및 디페닐디에톡시실란으로 이루어진 군으로부터 선택되는 1종 이상인 실란을 포함하는 플라스틱 수지 복합체의 제조방법.
  11. 제6항에 있어서,
    상기 열처리는 90 ~ 130 ℃에서 2 ~ 8분 동안 수행되는 실란을 포함하는 플라스틱 수지 복합체의 제조방법.
  12. 제6항에 있어서,
    상기 실란 화합물은 상기 혼합 용액 총 중량의 0.5 ~ 5 중량%로 포함되는 실란을 포함하는 플라스틱 수지 복합체의 제조방법.
  13. 제6항에 있어서,
    상기 실란이 형성된 섬유를 플라스틱 수지와 혼합한 후 글라스 버블을 추가하는 단계를 더 포함하는 실란을 포함하는 플라스틱 수지 복합체의 제조방법.
  14. 제13항에 있어서,
    상기 실란이 형성된 섬유, 플라스틱 수지 및 글라스 버블 각각은 5 ~ 15 중량%, 60 ~ 80 중량% 및 15 ~ 25 중량%로 포함되는 실란을 포함하는 플라스틱 수지 복합체의 제조방법.
PCT/KR2022/001126 2021-02-26 2022-01-21 실란을 포함하는 플라스틱 수지 복합체 및 이의 제조방법 WO2022182000A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/278,900 US20240059849A1 (en) 2021-02-26 2022-01-21 Plastic resin composite comprising silane, and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0026558 2021-02-26
KR1020210026558A KR102617911B1 (ko) 2021-02-26 2021-02-26 실란을 포함하는 플라스틱 수지 복합체 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2022182000A1 true WO2022182000A1 (ko) 2022-09-01

Family

ID=83048364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001126 WO2022182000A1 (ko) 2021-02-26 2022-01-21 실란을 포함하는 플라스틱 수지 복합체 및 이의 제조방법

Country Status (3)

Country Link
US (1) US20240059849A1 (ko)
KR (1) KR102617911B1 (ko)
WO (1) WO2022182000A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663369A (en) * 1985-06-03 1987-05-05 Mitsui Toatsu Chemicals, Inc. Glass-fiber reinforced polypropylene resin composition
US20060165968A1 (en) * 2002-10-15 2006-07-27 Toshikatsu Tanaka Glass composition and glass fiber
KR20070004756A (ko) * 2004-03-22 2007-01-09 쓰리엠 이노베이티브 프로퍼티즈 컴파니 충전된 섬유로 강화된 열가소성 복합재
WO2019172208A1 (ja) * 2018-03-05 2019-09-12 旭化成株式会社 熱可塑性樹脂コーティング強化繊維複合糸、該複合糸の製造方法、連続繊維強化樹脂成形体、複合材料成形体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663369A (en) * 1985-06-03 1987-05-05 Mitsui Toatsu Chemicals, Inc. Glass-fiber reinforced polypropylene resin composition
US20060165968A1 (en) * 2002-10-15 2006-07-27 Toshikatsu Tanaka Glass composition and glass fiber
KR20070004756A (ko) * 2004-03-22 2007-01-09 쓰리엠 이노베이티브 프로퍼티즈 컴파니 충전된 섬유로 강화된 열가소성 복합재
WO2019172208A1 (ja) * 2018-03-05 2019-09-12 旭化成株式会社 熱可塑性樹脂コーティング強化繊維複合糸、該複合糸の製造方法、連続繊維強化樹脂成形体、複合材料成形体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOO JIN PARK, JOONG SEONG JIN, JAE ROCK LEE, YEUNG KEUN KIM: "Effect of Silane Coupling Agent Treatment on Interfacial Adhesion of Glass Fiber-reinforced Composites", JOURNAL OF THE KOREAN INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 11, no. 3, 1 May 2000 (2000-05-01), KOREA , pages 285 - 289, XP009539419, ISSN: 1226-086X *

Also Published As

Publication number Publication date
KR102617911B1 (ko) 2023-12-22
US20240059849A1 (en) 2024-02-22
KR20220122216A (ko) 2022-09-02

Similar Documents

Publication Publication Date Title
JPH0528732B2 (ko)
US5061736A (en) Foamable silicone rubber composition
US4526922A (en) Organofunctional silane-siloxane oligomer coupling compositions, curable and cured elastomeric compositions containing same and novel electric cable containing said cured elastomeric compositions
CA1257429A (en) Polybutylene terephthalate composition
ATE163239T1 (de) Flammwidrige zusammensetzung zur herstellung von elektrischen kabeln mit isolations- und/oder funktionserhalt
US4550056A (en) Electrical cable containing cured elastomeric compositions
WO2011134209A1 (zh) 一种能量塑料母粒的制造方法及衍生的塑料产品
WO2022182000A1 (ko) 실란을 포함하는 플라스틱 수지 복합체 및 이의 제조방법
CN106589925A (zh) 一种滑石粉/废胶粉改性的耐候阻燃的玻纤增强pa66电力金具材料及其制备方法
WO2013154256A1 (ko) 친환경 고강도 수지 복합재
KR102072501B1 (ko) 열안정성이 우수한 이중압출 합성목재 및 그 제조방법
WO2024144081A1 (ko) 천연섬유계 혼방 부직포층 및 폴리올레핀 수지층으로 구성된 친환경 다층시트
CN108690293A (zh) 一种耐高低温高力学强度pvc电缆料
WO2022182022A1 (ko) 금속 산화물 나노로드를 포함하는 플라스틱 수지 복합체 및 이의 제조방법
WO2010110563A2 (ko) 촉진탄산화 반응을 이용한 순환골재 제조방법
CN115975315B (zh) 一种耐酸耐碱的耐磨损电力电缆
JPS5813092B2 (ja) ゴム組成物
CN106543636A (zh) 一种高抗冲耐寒abs箱体材料及其制备方法
US4721765A (en) Room temperature-curable organopolysiloxane composition
EP0236674B1 (en) Improved mineral filled rubber composites
WO2020256289A1 (ko) 방열 실리콘 탄성체 컴파운드의 제조방법
GB2116986A (en) Method for producing polymer mouldings
CN114276642A (zh) 一种耐环境应力开裂的硅芯管及其制备方法
WO2022071645A1 (ko) 사이징 조성물 및 이를 사용한 유리 섬유
WO2022164136A1 (ko) 경량 복합체 조성물 및 경량 복합체의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759919

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18278900

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759919

Country of ref document: EP

Kind code of ref document: A1