WO2011134209A1 - 一种能量塑料母粒的制造方法及衍生的塑料产品 - Google Patents

一种能量塑料母粒的制造方法及衍生的塑料产品 Download PDF

Info

Publication number
WO2011134209A1
WO2011134209A1 PCT/CN2010/075549 CN2010075549W WO2011134209A1 WO 2011134209 A1 WO2011134209 A1 WO 2011134209A1 CN 2010075549 W CN2010075549 W CN 2010075549W WO 2011134209 A1 WO2011134209 A1 WO 2011134209A1
Authority
WO
WIPO (PCT)
Prior art keywords
plastic
carbon black
mixed
energy
total weight
Prior art date
Application number
PCT/CN2010/075549
Other languages
English (en)
French (fr)
Inventor
李国声
许文姬
Original Assignee
华南再生资源(中山)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南再生资源(中山)有限公司 filed Critical 华南再生资源(中山)有限公司
Priority to EP10850540.5A priority Critical patent/EP2565220A4/en
Priority to US13/581,540 priority patent/US8927628B2/en
Publication of WO2011134209A1 publication Critical patent/WO2011134209A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the invention discloses a method for manufacturing plastic masterbatch and a plastic product, in particular to a method for manufacturing an energy plastic masterbatch and a plastic product containing the plastic masterbatch prepared by the method.
  • the present invention provides a method for manufacturing energy plastic masterbatch, and the plastic masterbatch produced by the method can greatly improve the above properties. improve.
  • the present invention also provides a derivative product of the above energy plastic masterbatch.
  • the technical solution adopted by the present invention to solve the technical problem is: a method for manufacturing an energy plastic masterbatch, the method comprising the following steps:
  • the carbon black is subjected to ozone oxidation treatment
  • the treated carbon black and the nanometer tourmaline powder are thoroughly mixed as a base material, wherein the nanometer tourmaline powder accounts for 80%-85% of the total weight of the base material, and the carbon black accounts for 15% of the total weight of the base material- 20%, adding ultrafine rutile titanium dioxide to the base material and mixing well, as the energy raw material, the content of ultrafine rutile titanium dioxide is compared with the carbon black and nano tourmaline powder mixed base, and the weight of the ultrafine rutile titanium dioxide is 10%-15% of the total weight of the mixed base;
  • the energy raw material after adding the dispersing agent is added into the plastic carrier resin and uniformly mixed to form a mixed material, wherein the plastic carrier resin is added in an amount of 12% of the total weight of the mixed base of the carbon black and the nanometer tourmaline powder- 18%;
  • the mixed material is made into a plastic masterbatch by using production equipment.
  • the carbon black described above can be replaced by white carbon black.
  • the white carbon black may be subjected to ozone oxidation treatment or may not be subjected to ozone oxidation treatment.
  • the step E1 may be added, the coupling agent is added to the mixed material of the plastic carrier resin, and the mixture is uniformly mixed.
  • the coupling agent is added in the total weight of the mixed base of the carbon black and the nanometer tourmaline powder. 1%-4%.
  • the plastic carrier resin described above is PVC, PE, EVA, PEVA, PET, LDPE, LLOPE or GPPS.
  • the carbon black in the above step A is ultrafine carbon black, which is fine carbon black particles having a particle size of ⁇ 1 ⁇ m; the white carbon black is ultrafine white carbon black, which is fine white carbon black particles having a particle size of ⁇ 1 ⁇ m. .
  • the ultrafine rutile type titanium dioxide in the above step B is ultrafine rutile type titanium dioxide having a particle size of ⁇ 1 ⁇ m.
  • the coupling agent described above employs an aminosilane coupling agent.
  • the dispersing agent described above uses magnesium stearate.
  • carbon black or white carbon preferably accounts for 18% by weight of the total base material
  • nanometer tourmaline powder accounts for 82% of the total weight of the base material
  • the mixed energy raw materials described above are preferably dried at 110 ° C for 1.5 hours.
  • the plastic carrier resin described above is added in an amount of 15% by weight based on the total weight of the carbon black and nano tourmaline powder mixed base.
  • the dispersant described above has a weight of 3% of the total weight of the mixed base.
  • a plastic article comprising an energy plastic masterbatch produced by the above-described manufacturing method.
  • the plastic products are tablecloths, shower curtains, coasters, placemats, polyester long fibers, polyester staple fibers, PVC pipes, PE pipes, PVC pipe fittings, PE pipe fittings, floor mats, PP plastic doors and windows, PE plastic doors and windows, PVC plastic doors and windows, PP plastic floor, PE plastic floor or PVC plastic floor.
  • the invention has the beneficial effects that the invention can utilize and exert the advantages and complementary functions of the functional materials such as carbon black (white carbon black), tourmaline, titanium dioxide, etc., and solve the previous manufacture of single functional materials. Defects in plastic products, which make functional plastics more optimized.
  • the energy plastic masterbatch produced by the invention (according to the inspection result of the National Infrared and Industrial Electrothermal Product Quality Supervision and Inspection Center) has an infrared radiation wavelength range of 4-16 normal directions, a normal total emissivity of ⁇ 0.86, and an anion concentration of 12100/cm3. .
  • the invention can be mixed with the plastic carrier resin in the prior art, such as PVC, PE, EVA, PEVA, PET, LOPE, PP, LLOPE, GPAS, etc.
  • Figure 1 is a flow chart of the production process of the present invention.
  • This embodiment is a preferred embodiment of the present invention, and other principles and basic structures are the same as or similar to those of the present embodiment, and are all within the scope of the present invention.
  • the invention is a specific manufacturing method of an energy plastic masterbatch, and the method mainly comprises the following steps:
  • the carbon black is subjected to ozone oxidation treatment.
  • the carbon black is made of ultrafine carbon black, the particle size is ⁇ 1 ⁇ m, and the ozone oxidation treatment is carried out by conventional ozone oxidation using the ozone oxidation equipment in the prior art.
  • the treatment increases the internal surface area of the carbon black by more than 4 times, so that the carbon black enhances the adsorption capacity.
  • the treated carbon black and the nanometer tourmaline powder are thoroughly mixed as a base material, wherein the carbon black accounts for 15%-20% of the total weight of the base material, and the nanometer tourmaline powder accounts for 80% of the total weight of the base material- 85% (the mixing ratio of carbon black and nanometer tourmaline powder depends on the product used for production), and the ultrafine rutile titanium dioxide is thoroughly mixed in the mixed base material as an energy raw material, and the content of ultrafine rutile titanium dioxide is The total weight of the carbon black and nano tourmaline powder mixed base is 10%-15%, and the ultrafine rutile type titanium dioxide is selected from the ultrafine rutile type titanium dioxide having a particle size of ⁇ 1 ⁇ m.
  • the mixed energy raw materials are dried at 100 ° C - 120 ° C for 1-2 hours (the drying time can be determined by looking at the mixed energy raw materials, and the mixed energy raw materials can be completely dried).
  • the dispersing agent adopts a coupling agent related to the basic resin, in particular, a coupling agent which is used to facilitate mixing with the carrier resin, and the dispersing agent is added in the total weight of the mixed base material. 2%-4%.
  • the dispersing agent may be selected from magnesium stearate, depending on the base resin, using a dispersing agent commonly used in the prior art.
  • plastic carrier resin is added in an amount of 12% of the total weight of the mixed base of the carbon black and the nanometer tourmaline powder- 18%, wherein the plastic carrier resin can be PVC, PE, EVA, PEVA, PET, LDPE, LLOPE or GPPS, depending on the specific application.
  • the coupling agent is an aminosilane coupling agent, and the coupling agent is added in the amount of carbon black and nanometer tourmaline powder.
  • the total weight of the mixed base is between 1% and 4%.
  • the coupling agent may not be added to the mixed material, and the coupling agent may be added when the plastic masterbatch produces the plastic product.
  • the plastic masterbatch is prepared by using an extruder which conforms to the mixing property of the plastic to the pelletizing process, etc.
  • the extrusion and pelletizing process The plastic extrusion and pelletizing process commonly used in the prior art can be used.
  • the energy plastic masterbatch produced by the above manufacturing method can be widely used in the processing of plastic products, and the specific plastic products are tablecloths, shower curtains, coasters, placemats, polyester long fibers, polyester staple fibers, PVC pipes, PE pipe, PVC pipe fittings, PE pipe fittings, floor mats, PP plastic doors and windows, PE plastic doors and windows, PVC plastic doors and windows, PP plastic flooring, PE plastic flooring or PVC plastic flooring, etc.
  • the carbon black in the present invention may also be replaced by white carbon black (ie, silica), as the case may be.
  • white carbon black ie, silica
  • transparent plastic or lighter colored plastics are made of white carbon black, opaque plastic or darker in color. Carbon black is used in the plastic.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • This embodiment is a specific manufacturing method of the energy plastic masterbatch, and the method mainly comprises the following steps:
  • the carbon black is subjected to ozone oxidation treatment.
  • the carbon black is made of ultrafine carbon black, the particle size is ⁇ 1 ⁇ m, and the ozone oxidation treatment is carried out by conventional ozone oxidation using the ozone oxidation equipment in the prior art.
  • the treatment increases the internal surface area of the carbon black by more than 4 times, so that the carbon black enhances the adsorption capacity.
  • the treated carbon black and the nanometer tourmaline powder are thoroughly mixed as a base material.
  • the carbon black accounts for 15% of the total weight of the base material
  • the nanometer tourmaline powder accounts for 85% of the total weight of the base material.
  • the ultrafine rutile type titanium dioxide is sufficiently mixed in the mixed base material as an energy raw material.
  • the content of the ultrafine rutile type titanium dioxide is 10% of the total weight of the mixed base of the carbon black and the nano tourmaline powder.
  • the ultrafine rutile type titanium dioxide is selected from ultrafine rutile type titanium dioxide having a particle size of ⁇ 1 ⁇ m.
  • the mixed energy raw materials were dried at 100 ° C for 1 hour.
  • the dispersing agent uses a coupling agent related to the basic resin, in particular, a coupling agent which is used to facilitate mixing with the carrier resin.
  • the dispersing agent is dispersed. The amount of the agent added was 2%.
  • the plastic carrier resin is added in an amount of the total weight of the carbon black and the nanometer tourmaline powder mixed base. 12%, in this embodiment, the plastic carrier resin may be PVC, PE, EVA, PEVA, PET, LDPE, LLOPE or GPPS, depending on the specific application.
  • a coupling agent is added to the mixed material added to the plastic carrier resin, and uniformly mixed, and the coupling agent is added in an amount of 1% by weight of the total weight of the mixed base of the carbon black and the nanometer tourmaline powder.
  • the coupling agent may not be added to the mixed material, and the coupling agent may be added when the plastic masterbatch produces the plastic product.
  • the plastic masterbatch is prepared by using an extruder which conforms to the mixing property of the plastic to the pelletizing process, etc.
  • the extrusion and pelletizing process The plastic extrusion and pelletizing process commonly used in the prior art can be used.
  • the energy plastic masterbatch produced by the above manufacturing method can be widely used in the processing of plastic products, and the specific plastic products are tablecloths, shower curtains, coasters, placemats, polyester long fibers, polyester staple fibers, PVC pipes, PE pipe, PVC pipe fittings, PE pipe fittings, floor mats, PP plastic doors and windows, PE plastic doors and windows, PVC plastic doors and windows, PP plastic flooring, PE plastic flooring or PVC plastic flooring, etc.
  • the energy plastic masterbatch produced in this embodiment (according to the inspection results of the National Infrared and Industrial Electrothermal Product Quality Supervision and Inspection Center) has a range of infrared radiation wavelength range of 4-16, full normal emissivity ⁇ 0.86, negative ion concentration 12100/ Cm3.
  • the invention can be mixed with the plastic carrier resin in the prior art, such as PVC, PE, EVA, PEVA, PET, LOPE, PP, LLOPE, GPAS, etc. to produce functional plastic products, which combines carbon black and tourmaline.
  • the advantages of titanium dioxide and the like are examples of titanium dioxide and the like.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • This embodiment is a specific manufacturing method of the energy plastic masterbatch, and the method mainly comprises the following steps:
  • the carbon black is subjected to ozone oxidation treatment.
  • the carbon black is made of ultrafine carbon black, the particle size is ⁇ 1 ⁇ m, and the ozone oxidation treatment is carried out by conventional ozone oxidation using the ozone oxidation equipment in the prior art.
  • the treatment increases the internal surface area of the carbon black by more than 4 times, so that the carbon black enhances the adsorption capacity.
  • the treated carbon black and the nanometer tourmaline powder are thoroughly mixed as a base material.
  • the carbon black accounts for 16% of the total weight of the base material
  • the nanometer tourmaline powder accounts for 84% of the total weight of the base material.
  • the ultrafine rutile type titanium dioxide is sufficiently mixed in the mixed base material as an energy raw material.
  • the content of the ultrafine rutile type titanium dioxide is 11% of the total weight of the mixed base of the carbon black and the nano tourmaline powder.
  • the ultrafine rutile type titanium dioxide is selected from ultrafine rutile type titanium dioxide having a particle size of ⁇ 1 ⁇ m.
  • the mixed energy raw materials were dried at 104 ° C for 1.2 hours.
  • the dispersing agent uses a coupling agent related to the basic resin, in particular, a coupling agent which is used to facilitate mixing with the carrier resin.
  • the dispersing agent is dispersed. The amount of the agent added was 2.4%.
  • the plastic carrier resin is added in an amount of the total weight of the carbon black and the nanometer tourmaline powder mixed base. 13%, in this embodiment, the plastic carrier resin may be PVC, PE, EVA, PEVA, PET, LDPE, LLOPE or GPPS, depending on the specific application.
  • a coupling agent is added to the mixed material added to the plastic carrier resin, and uniformly mixed, and the coupling agent is added in an amount of 1.6% of the total weight of the mixed base of the carbon black and the nanometer tourmaline powder.
  • the coupling agent may not be added to the mixed material, and the coupling agent may be added when the plastic masterbatch produces the plastic product.
  • the plastic masterbatch is prepared by using an extruder which conforms to the mixing property of the plastic to the pelletizing process, etc.
  • the extrusion and pelletizing process The plastic extrusion and pelletizing process commonly used in the prior art can be used.
  • the energy plastic masterbatch produced by the above manufacturing method can be widely used in the processing of plastic products, and the specific plastic products are tablecloths, shower curtains, coasters, placemats, polyester long fibers, polyester staple fibers, PVC pipes, PE pipe, PVC pipe fittings, PE pipe fittings, floor mats, PP plastic doors and windows, PE plastic doors and windows, PVC plastic doors and windows, PP plastic flooring, PE plastic flooring or PVC plastic flooring, etc.
  • the energy plastic masterbatch produced in this embodiment (according to the inspection results of the National Infrared and Industrial Electrothermal Product Quality Supervision and Inspection Center) has a range of infrared radiation wavelength range of 4-16, full normal emissivity ⁇ 0.86, negative ion concentration 12100/ Cm3.
  • the invention can be mixed with the plastic carrier resin in the prior art, such as PVC, PE, EVA, PEVA, PET, LOPE, PP, LLOPE, GPAS, etc. to produce functional plastic products, which combines carbon black and tourmaline.
  • the advantages of titanium dioxide and the like are examples of titanium dioxide and the like.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • This embodiment is a specific manufacturing method of the energy plastic masterbatch, and the method mainly comprises the following steps:
  • the carbon black is subjected to ozone oxidation treatment.
  • the carbon black is made of ultrafine carbon black, the particle size is ⁇ 1 ⁇ m, and the ozone oxidation treatment is carried out by conventional ozone oxidation using the ozone oxidation equipment in the prior art.
  • the treatment increases the internal surface area of the carbon black by more than 4 times, so that the carbon black enhances the adsorption capacity.
  • the treated carbon black and the nanometer tourmaline powder are thoroughly mixed as a base material.
  • the carbon black accounts for 17% of the total weight of the base material
  • the nanometer tourmaline powder accounts for 83% of the total weight of the base material.
  • the ultrafine rutile type titanium dioxide is sufficiently mixed in the mixed base material as an energy raw material.
  • the content of the ultrafine rutile type titanium dioxide is 12% of the total weight of the mixed base of the carbon black and the nano tourmaline powder.
  • the ultrafine rutile type titanium dioxide is selected from ultrafine rutile type titanium dioxide having a particle size of ⁇ 1 ⁇ m.
  • the mixed energy raw materials were dried at 108 ° C for 1.4 hours.
  • the dispersing agent uses a coupling agent related to the basic resin, in particular, a coupling agent which is used to facilitate mixing with the carrier resin.
  • the dispersing agent is dispersed. The amount of the agent added was 2.8%.
  • the plastic carrier resin is added in an amount of the total weight of the carbon black and the nanometer tourmaline powder mixed base. 14%, in this embodiment, the plastic carrier resin may be PVC, PE, EVA, PEVA, PET, LDPE, LLOPE or GPPS, depending on the specific application.
  • a coupling agent is added to the mixed material of the plastic carrier resin and uniformly mixed.
  • the coupling agent is added in an amount of 2.2% of the total weight of the mixed base of the carbon black and the nanometer tourmaline powder.
  • the coupling agent may not be added to the mixed material, and the coupling agent may be added when the plastic masterbatch produces the plastic product.
  • the plastic masterbatch is prepared by using an extruder which conforms to the mixing property of the plastic to the pelletizing process, etc.
  • the extrusion and pelletizing process The plastic extrusion and pelletizing process commonly used in the prior art can be used.
  • the energy plastic masterbatch produced by the above manufacturing method can be widely used in the processing of plastic products, and the specific plastic products are tablecloths, shower curtains, coasters, placemats, polyester long fibers, polyester staple fibers, PVC pipes, PE pipe, PVC pipe fittings, PE pipe fittings, floor mats, PP plastic doors and windows, PE plastic doors and windows, PVC plastic doors and windows, PP plastic flooring, PE plastic flooring or PVC plastic flooring, etc.
  • the energy plastic masterbatch produced in this embodiment (according to the inspection results of the National Infrared and Industrial Electrothermal Product Quality Supervision and Inspection Center) has a range of infrared radiation wavelength range of 4-16, full normal emissivity ⁇ 0.86, negative ion concentration 12100/ Cm3.
  • the invention can be mixed with the plastic carrier resin in the prior art, such as PVC, PE, EVA, PEVA, PET, LOPE, PP, LLOPE, GPAS, etc. to produce functional plastic products, which combines carbon black and tourmaline.
  • the advantages of titanium dioxide and the like are examples of titanium dioxide and the like.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • This embodiment is a specific manufacturing method of the energy plastic masterbatch, and the method mainly comprises the following steps:
  • the carbon black is subjected to ozone oxidation treatment.
  • the carbon black is made of ultrafine carbon black, the particle size is ⁇ 1 ⁇ m, and the ozone oxidation treatment is carried out by conventional ozone oxidation using the ozone oxidation equipment in the prior art.
  • the treatment increases the internal surface area of the carbon black by more than 4 times, so that the carbon black enhances the adsorption capacity.
  • the treated carbon black and the nanometer tourmaline powder are thoroughly mixed as a base material.
  • the carbon black accounts for 18% of the total weight of the base material
  • the nanometer tourmaline powder accounts for 82% of the total weight of the base material.
  • the ultrafine rutile type titanium dioxide is sufficiently mixed in the mixed base material as an energy raw material.
  • the content of the ultrafine rutile type titanium dioxide is 12% of the total weight of the mixed base of the carbon black and the nano tourmaline powder.
  • the ultrafine rutile type titanium dioxide is selected from ultrafine rutile type titanium dioxide having a particle size of ⁇ 1 ⁇ m.
  • the mixed energy raw materials were dried at 110 ° C for 1.5 hours.
  • the dispersing agent uses a coupling agent related to the basic resin, in particular, a coupling agent which is used to facilitate mixing with the carrier resin.
  • the dispersing agent is dispersed. The amount of the agent added was 3%.
  • the plastic carrier resin is added in an amount of the total weight of the carbon black and the nanometer tourmaline powder mixed base.
  • the plastic carrier resin may be PVC, PE, EVA, PEVA, PET, LDPE, LLOPE or GPPS, depending on the specific application.
  • a coupling agent is added to the mixed material of the plastic carrier resin, and uniformly mixed, and the coupling agent is added in an amount of 2.8% of the total weight of the mixed base of the carbon black and the nanometer tourmaline powder.
  • the coupling agent may not be added to the mixed material, and the coupling agent may be added when the plastic masterbatch produces the plastic product.
  • the plastic masterbatch is prepared by using an extruder which conforms to the mixing property of the plastic to the pelletizing process, etc.
  • the extrusion and pelletizing process The plastic extrusion and pelletizing process commonly used in the prior art can be used.
  • the energy plastic masterbatch produced by the above manufacturing method can be widely used in the processing of plastic products, and the specific plastic products are tablecloths, shower curtains, coasters, placemats, polyester long fibers, polyester staple fibers, PVC pipes, PE pipe, PVC pipe fittings, PE pipe fittings, floor mats, PP plastic doors and windows, PE plastic doors and windows, PVC plastic doors and windows, PP plastic flooring, PE plastic flooring or PVC plastic flooring, etc.
  • the energy plastic masterbatch produced in this embodiment (according to the inspection results of the National Infrared and Industrial Electrothermal Product Quality Supervision and Inspection Center) has a range of infrared radiation wavelength range of 4-16, full normal emissivity ⁇ 0.86, negative ion concentration 12100/ Cm3.
  • the invention can be mixed with the plastic carrier resin in the prior art, such as PVC, PE, EVA, PEVA, PET, LOPE, PP, LLOPE, GPAS, etc. to produce functional plastic products, which combines carbon black and tourmaline.
  • the advantages of titanium dioxide and the like are examples of titanium dioxide and the like.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • This embodiment is a specific manufacturing method of the energy plastic masterbatch, and the method mainly comprises the following steps:
  • the carbon black is subjected to ozone oxidation treatment.
  • the carbon black is made of ultrafine carbon black, the particle size is ⁇ 1 ⁇ m, and the ozone oxidation treatment is carried out by conventional ozone oxidation using the ozone oxidation equipment in the prior art.
  • the treatment increases the internal surface area of the carbon black by more than 4 times, so that the carbon black enhances the adsorption capacity.
  • the treated carbon black and the nanometer tourmaline powder are thoroughly mixed as a base material.
  • the carbon black accounts for 18% of the total weight of the base material
  • the nanometer tourmaline powder accounts for 82% of the total weight of the base material.
  • the ultrafine rutile type titanium dioxide is sufficiently mixed in the mixed base material as an energy raw material.
  • the content of the ultrafine rutile type titanium dioxide is 13% of the total weight of the mixed base of the carbon black and the nano tourmaline powder.
  • the ultrafine rutile type titanium dioxide is selected from ultrafine rutile type titanium dioxide having a particle size of ⁇ 1 ⁇ m.
  • the mixed energy raw materials were dried at 112 ° C for 1.6 hours.
  • the dispersing agent uses a coupling agent related to the basic resin, in particular, a coupling agent which is used to facilitate mixing with the carrier resin.
  • the dispersing agent is dispersed. The amount of the agent added was 3.6%.
  • the plastic carrier resin is added in an amount of the total weight of the carbon black and the nanometer tourmaline powder mixed base. 16%, in this embodiment, the plastic carrier resin may be PVC, PE, EVA, PEVA, PET, LDPE, LLOPE or GPPS, depending on the specific application.
  • a coupling agent is added to the mixed material of the plastic carrier resin, and the mixture is uniformly mixed.
  • the coupling agent is added in an amount of 3% of the total weight of the carbon black and the nanometer tourmaline powder mixed base.
  • the coupling agent may not be added to the mixed material, and the coupling agent may be added when the plastic masterbatch produces the plastic product.
  • the plastic masterbatch is prepared by using an extruder which conforms to the mixing property of the plastic to the pelletizing process, etc.
  • the extrusion and pelletizing process The plastic extrusion and pelletizing process commonly used in the prior art can be used.
  • the energy plastic masterbatch produced by the above manufacturing method can be widely used in the processing of plastic products, and the specific plastic products are tablecloths, shower curtains, coasters, placemats, polyester long fibers, polyester staple fibers, PVC pipes, PE pipe, PVC pipe fittings, PE pipe fittings, floor mats, PP plastic doors and windows, PE plastic doors and windows, PVC plastic doors and windows, PP plastic flooring, PE plastic flooring or PVC plastic flooring, etc.
  • the energy plastic masterbatch produced in this embodiment (according to the inspection results of the National Infrared and Industrial Electrothermal Product Quality Supervision and Inspection Center) has a range of infrared radiation wavelength range of 4-16, full normal emissivity ⁇ 0.86, negative ion concentration 12100/ Cm3.
  • the invention can be mixed with the plastic carrier resin in the prior art, such as PVC, PE, EVA, PEVA, PET, LOPE, PP, LLOPE, GPAS, etc. to produce functional plastic products, which combines carbon black and tourmaline.
  • the advantages of titanium dioxide and the like are examples of titanium dioxide and the like.
  • This embodiment is a specific manufacturing method of the energy plastic masterbatch, and the method mainly comprises the following steps:
  • the carbon black is subjected to ozone oxidation treatment.
  • the carbon black is made of ultrafine carbon black, the particle size is ⁇ 1 ⁇ m, and the ozone oxidation treatment is carried out by conventional ozone oxidation using the ozone oxidation equipment in the prior art.
  • the treatment increases the internal surface area of the carbon black by more than 4 times, so that the carbon black enhances the adsorption capacity.
  • the treated carbon black and the nanometer tourmaline powder are thoroughly mixed as a base.
  • the carbon black accounts for 19% of the total weight of the base material
  • the nanometer tourmaline powder accounts for 81% of the total weight of the base material.
  • the ultrafine rutile type titanium dioxide is thoroughly mixed in the mixed base material as an energy raw material.
  • the content of the ultrafine rutile type titanium dioxide is 14% of the total weight of the mixed base of the carbon black and the nano tourmaline powder.
  • the ultrafine rutile type titanium dioxide is selected from ultrafine rutile type titanium dioxide having a particle size of ⁇ 1 ⁇ m.
  • the mixed energy raw materials were dried at 116 ° C for 1.8 hours.
  • the dispersing agent uses a coupling agent related to the basic resin, in particular, a coupling agent which is used to facilitate mixing with the carrier resin.
  • the dispersing agent is dispersed. The amount of the agent added was 3.6%. ;
  • the plastic carrier resin is added in an amount of the total weight of the carbon black and the nanometer tourmaline powder mixed base. 17%, in this embodiment, the plastic carrier resin may be PVC, PE, EVA, PEVA, PET, LDPE, LLOPE or GPPS, depending on the specific application.
  • a coupling agent is added to the mixed material of the plastic carrier resin, and the mixture is uniformly mixed.
  • the coupling agent is added in an amount of 3.4% of the total weight of the mixed base of the carbon black and the nanometer tourmaline powder.
  • the coupling agent may not be added to the mixed material, and the coupling agent may be added when the plastic masterbatch produces the plastic product.
  • the plastic masterbatch is prepared by using an extruder which conforms to the mixing property of the plastic to the pelletizing process, etc.
  • the extrusion and pelletizing process The plastic extrusion and pelletizing process commonly used in the prior art can be used.
  • the energy plastic masterbatch produced by the above manufacturing method can be widely used in the processing of plastic products, and the specific plastic products are tablecloths, shower curtains, coasters, placemats, polyester long fibers, polyester staple fibers, PVC pipes, PE pipe, PVC pipe fittings, PE pipe fittings, floor mats, PP plastic doors and windows, PE plastic doors and windows, PVC plastic doors and windows, PP plastic flooring, PE plastic flooring or PVC plastic flooring, etc.
  • the energy plastic masterbatch produced in this embodiment (according to the inspection results of the National Infrared and Industrial Electrothermal Product Quality Supervision and Inspection Center) has a range of infrared radiation wavelength range of 4-16, full normal emissivity ⁇ 0.86, negative ion concentration 12100/ Cm3.
  • the invention can be mixed with the plastic carrier resin in the prior art, such as PVC, PE, EVA, PEVA, PET, LOPE, PP, LLOPE, GPAS, etc. to produce functional plastic products, which combines carbon black and tourmaline.
  • the advantages of titanium dioxide and the like are examples of titanium dioxide and the like.
  • This embodiment is a specific manufacturing method of the energy plastic masterbatch, and the method mainly comprises the following steps:
  • the carbon black is subjected to ozone oxidation treatment.
  • the carbon black is made of ultrafine carbon black, the particle size is ⁇ 1 ⁇ m, and the ozone oxidation treatment is carried out by conventional ozone oxidation using the ozone oxidation equipment in the prior art.
  • the treatment increases the internal surface area of the carbon black by more than 4 times, so that the carbon black enhances the adsorption capacity.
  • the treated carbon black and the nanometer tourmaline powder are thoroughly mixed as a base material.
  • the carbon black accounts for 20% of the total weight of the base material
  • the nanometer tourmaline powder accounts for 80% of the total weight of the base material.
  • the ultrafine rutile type titanium dioxide is thoroughly mixed in the mixed base material as an energy raw material.
  • the content of the ultrafine rutile type titanium dioxide is 15% of the total weight of the mixed base of the carbon black and the nano tourmaline powder.
  • the ultrafine rutile type titanium dioxide is selected from ultrafine rutile type titanium dioxide having a particle size of ⁇ 1 ⁇ m.
  • the mixed energy raw materials were dried at 120 ° C for 2 hours.
  • the dispersing agent uses a coupling agent related to the basic resin, in particular, a coupling agent which is used to facilitate mixing with the carrier resin.
  • the dispersing agent is dispersed. The amount of the agent added was 4%.
  • the plastic carrier resin is added in an amount of the total weight of the carbon black and the nanometer tourmaline powder mixed base. 18%, in this embodiment, the plastic carrier resin may be PVC, PE, EVA, PEVA, PET, LDPE, LLOPE or GPPS, depending on the specific application.
  • a coupling agent is added to the mixed material of the plastic carrier resin, and the mixture is uniformly mixed.
  • the coupling agent is added in an amount of 4% by weight of the total weight of the carbon black and the nanometer tourmaline powder mixed base.
  • the coupling agent may not be added to the mixed material, and the coupling agent may be added when the plastic masterbatch produces the plastic product.
  • the plastic masterbatch is prepared by using an extruder which conforms to the mixing property of the plastic to the pelletizing process, etc.
  • the extrusion and pelletizing process The plastic extrusion and pelletizing process commonly used in the prior art can be used.
  • the energy plastic masterbatch produced by the above manufacturing method can be widely used in the processing of plastic products, and the specific plastic products are tablecloths, shower curtains, coasters, placemats, polyester long fibers, polyester staple fibers, PVC pipes, PE pipe, PVC pipe fittings, PE pipe fittings, floor mats, PP plastic doors and windows, PE plastic doors and windows, PVC plastic doors and windows, PP plastic flooring, PE plastic flooring or PVC plastic flooring, etc.
  • the energy plastic masterbatch produced in this embodiment (according to the inspection results of the National Infrared and Industrial Electrothermal Product Quality Supervision and Inspection Center) has a range of infrared radiation wavelength range of 4-16, full normal emissivity ⁇ 0.86, negative ion concentration 12100/ Cm3.
  • the invention can be mixed with the plastic carrier resin in the prior art, such as PVC, PE, EVA, PEVA, PET, LOPE, PP, LLOPE, GPAS, etc. to produce functional plastic products, which combines carbon black and tourmaline.
  • the advantages of titanium dioxide and the like are examples of titanium dioxide and the like.
  • This embodiment is a specific manufacturing method of the energy plastic masterbatch, and the method mainly comprises the following steps:
  • the white carbon black is subjected to ozone oxidation treatment.
  • the white carbon black is made of ultrafine white carbon black, the particle size is ⁇ 1 ⁇ m, and the ozone oxidation treatment is carried out by the ozone oxidation black carbon equipment in the prior art.
  • Conventional ozone oxidation treatment enhances the adsorption capacity of silica (the white carbon black may not be subjected to ozone oxidation treatment).
  • the treated white carbon black and the nanometer tourmaline powder are thoroughly mixed as a base material.
  • the white carbon black accounts for 15% of the total weight of the base material
  • the nanometer tourmaline powder accounts for 85% of the total weight of the base material.
  • the ultrafine rutile type titanium dioxide is thoroughly mixed in the mixed base material as an energy raw material.
  • the content of the ultrafine rutile type titanium dioxide is the total weight of the mixed base of the white carbon black and the nano tourmaline powder.
  • the ultrafine rutile type titanium dioxide is selected from ultrafine rutile type titanium dioxide having a particle size of ⁇ 1 ⁇ m.
  • the mixed energy raw materials were dried at 100 ° C for 1 hour.
  • the dispersing agent uses a coupling agent related to the basic resin, in particular, a coupling agent which is used to facilitate mixing with the carrier resin.
  • the dispersing agent is dispersed. The amount of the agent added was 2%.
  • the plastic carrier resin is added in an amount of the total weight of the carbon black and the nanometer tourmaline powder mixed base. 12%, in this embodiment, the plastic carrier resin may be PVC, PE, EVA, PEVA, PET, LDPE, LLOPE or GPPS, depending on the specific application.
  • a coupling agent is added to the mixed material added to the plastic carrier resin, and uniformly mixed, and the coupling agent is added in an amount of 1% by weight of the total weight of the mixed base of the carbon black and the nanometer tourmaline powder.
  • the coupling agent may not be added to the mixed material, and the coupling agent may be added when the plastic masterbatch produces the plastic product.
  • the plastic masterbatch is prepared by using an extruder which conforms to the mixing property of the plastic to the pelletizing process, etc.
  • the extrusion and pelletizing process The plastic extrusion and pelletizing process commonly used in the prior art can be used.
  • the energy plastic masterbatch produced by the above manufacturing method can be widely used in the processing of plastic products, and the specific plastic products are tablecloths, shower curtains, coasters, placemats, polyester long fibers, polyester staple fibers, PVC pipes, PE pipe, PVC pipe fittings, PE pipe fittings, floor mats, PP plastic doors and windows, PE plastic doors and windows, PVC plastic doors and windows, PP plastic flooring, PE plastic flooring or PVC plastic flooring, etc.
  • the energy plastic masterbatch produced in this embodiment (according to the inspection results of the National Infrared and Industrial Electrothermal Product Quality Supervision and Inspection Center) has a range of infrared radiation wavelength range of 4-16, full normal emissivity ⁇ 0.86, negative ion concentration 12100/ Cm3.
  • the invention can be mixed with the plastic carrier resin in the prior art, such as PVC, PE, EVA, PEVA, PET, LOPE, PP, LLOPE, GPAS, etc. to produce functional plastic products, which have both white carbon black and electrical The advantages of stone, titanium dioxide, etc.
  • This embodiment is a specific manufacturing method of the energy plastic masterbatch, and the method mainly comprises the following steps:
  • the white carbon black is subjected to ozone oxidation treatment.
  • the white carbon black is made of ultrafine white carbon black, the particle size is ⁇ 1 ⁇ m, and the ozone oxidation treatment is carried out by the ozone oxidation black carbon equipment in the prior art.
  • Conventional ozone oxidation treatment enhances the adsorption capacity of silica (the white carbon black may not be subjected to ozone oxidation treatment).
  • the treated white carbon black and the nanometer tourmaline powder are thoroughly mixed as a base material.
  • the white carbon black accounts for 16% of the total weight of the base material
  • the nanometer tourmaline powder accounts for 84% of the total weight of the base material.
  • the ultrafine rutile type titanium dioxide is thoroughly mixed in the mixed base material as an energy raw material.
  • the content of the ultrafine rutile type titanium dioxide is the total weight of the mixed base of the white carbon black and the nano tourmaline powder.
  • the ultrafine rutile type titanium dioxide is selected from ultrafine rutile type titanium dioxide having a particle size of ⁇ 1 ⁇ m.
  • the mixed energy raw materials were dried at 104 ° C for 1.2 hours.
  • the dispersing agent uses a coupling agent related to the basic resin, in particular, a coupling agent which is used to facilitate mixing with the carrier resin.
  • the dispersing agent is dispersed. The amount of the agent added was 2.4%.
  • the plastic carrier resin is added in an amount of the total weight of the carbon black and the nanometer tourmaline powder mixed base. 13%, in this embodiment, the plastic carrier resin may be PVC, PE, EVA, PEVA, PET, LDPE, LLOPE or GPPS, depending on the specific application.
  • a coupling agent is added to the mixed material added to the plastic carrier resin, and uniformly mixed, and the coupling agent is added in an amount of 1.6% of the total weight of the mixed base of the carbon black and the nanometer tourmaline powder.
  • the coupling agent may not be added to the mixed material, and the coupling agent may be added when the plastic masterbatch produces the plastic product.
  • the plastic masterbatch is prepared by using an extruder which conforms to the mixing property of the plastic to the pelletizing process, etc.
  • the extrusion and pelletizing process The plastic extrusion and pelletizing process commonly used in the prior art can be used.
  • the energy plastic masterbatch produced by the above manufacturing method can be widely used in the processing of plastic products, and the specific plastic products are tablecloths, shower curtains, coasters, placemats, polyester long fibers, polyester staple fibers, PVC pipes, PE pipe, PVC pipe fittings, PE pipe fittings, floor mats, PP plastic doors and windows, PE plastic doors and windows, PVC plastic doors and windows, PP plastic flooring, PE plastic flooring or PVC plastic flooring, etc.
  • the energy plastic masterbatch produced in this embodiment (according to the inspection results of the National Infrared and Industrial Electrothermal Product Quality Supervision and Inspection Center) has a range of infrared radiation wavelength range of 4-16, full normal emissivity ⁇ 0.86, negative ion concentration 12100/ Cm3.
  • the invention can be mixed with the plastic carrier resin in the prior art, such as PVC, PE, EVA, PEVA, PET, LOPE, PP, LLOPE, GPAS, etc. to produce functional plastic products, which have both white carbon black and electrical The advantages of stone, titanium dioxide, etc.
  • This embodiment is a specific manufacturing method of the energy plastic masterbatch, and the method mainly comprises the following steps:
  • the white carbon black is subjected to ozone oxidation treatment.
  • the white carbon black is made of ultrafine white carbon black, the particle size is ⁇ 1 ⁇ m, and the ozone oxidation treatment is carried out by the ozone oxidation black carbon equipment in the prior art.
  • Conventional ozone oxidation treatment enhances the adsorption capacity of silica (the white carbon black may not be subjected to ozone oxidation treatment).
  • the treated white carbon black and the nanometer tourmaline powder are thoroughly mixed as a base material.
  • the white carbon black accounts for 17% of the total weight of the base material
  • the nanometer tourmaline powder accounts for 83% of the total weight of the base material.
  • the ultrafine rutile type titanium dioxide is thoroughly mixed in the mixed base material as an energy raw material.
  • the content of the ultrafine rutile type titanium dioxide is the total weight of the mixed base of the white carbon black and the nano tourmaline powder.
  • the ultrafine rutile type titanium dioxide is selected from ultrafine rutile type titanium dioxide having a particle size of ⁇ 1 ⁇ m.
  • the mixed energy raw materials were dried at 108 ° C for 1.4 hours.
  • the dispersing agent uses a coupling agent related to the basic resin, in particular, a coupling agent which is used to facilitate mixing with the carrier resin.
  • the dispersing agent is dispersed. The amount of the agent added was 2.8%.
  • the plastic carrier resin is added in an amount of the total weight of the carbon black and the nanometer tourmaline powder mixed base. 14%, in this embodiment, the plastic carrier resin may be PVC, PE, EVA, PEVA, PET, LDPE, LLOPE or GPPS, depending on the specific application.
  • a coupling agent is added to the mixed material of the plastic carrier resin and uniformly mixed.
  • the coupling agent is added in an amount of 2.2% of the total weight of the mixed base of the carbon black and the nanometer tourmaline powder.
  • the coupling agent may not be added to the mixed material, and the coupling agent may be added when the plastic masterbatch produces the plastic product.
  • the plastic masterbatch is prepared by using an extruder which conforms to the mixing property of the plastic to the pelletizing process, etc.
  • the extrusion and pelletizing process is adopted.
  • plastic extrusion and pelletizing processes commonly used in the art.
  • the energy plastic masterbatch produced by the above manufacturing method can be widely used in the processing of plastic products, and the specific plastic products are tablecloths, shower curtains, coasters, placemats, polyester long fibers, polyester staple fibers, PVC pipes, PE pipe, PVC pipe fittings, PE pipe fittings, floor mats, PP plastic doors and windows, PE plastic doors and windows, PVC plastic doors and windows, PP plastic flooring, PE plastic flooring or PVC plastic flooring, etc.
  • the energy plastic masterbatch produced in this embodiment (according to the inspection results of the National Infrared and Industrial Electrothermal Product Quality Supervision and Inspection Center) has a range of infrared radiation wavelength range of 4-16, full normal emissivity ⁇ 0.86, negative ion concentration 12100/ Cm3.
  • the invention can be mixed with the plastic carrier resin in the prior art, such as PVC, PE, EVA, PEVA, PET, LOPE, PP, LLOPE, GPAS, etc. to produce functional plastic products, which have both white carbon black and electrical The advantages of stone, titanium dioxide, etc.
  • This embodiment is a specific manufacturing method of the energy plastic masterbatch, and the method mainly comprises the following steps:
  • the white carbon black is subjected to ozone oxidation treatment.
  • the white carbon black is made of ultrafine white carbon black, the particle size is ⁇ 1 ⁇ m, and the ozone oxidation treatment is carried out by the ozone oxidation black carbon equipment in the prior art.
  • Conventional ozone oxidation treatment enhances the adsorption capacity of silica (the white carbon black may not be subjected to ozone oxidation treatment).
  • the treated white carbon black and the nanometer tourmaline powder are thoroughly mixed as a base material.
  • the white carbon black accounts for 18% of the total weight of the base material
  • the nanometer tourmaline powder accounts for 82% of the total weight of the base material.
  • the ultrafine rutile type titanium dioxide is thoroughly mixed in the mixed base material as an energy raw material.
  • the content of the ultrafine rutile type titanium dioxide is the total weight of the mixed base of the white carbon black and the nano tourmaline powder.
  • the ultrafine rutile type titanium dioxide is selected from ultrafine rutile type titanium dioxide having a particle size of ⁇ 1 ⁇ m.
  • the mixed energy raw materials were dried at 110 ° C for 1.5 hours.
  • the dispersing agent uses a coupling agent related to the basic resin, in particular, a coupling agent which is used to facilitate mixing with the carrier resin.
  • the dispersing agent is dispersed. The amount of the agent added was 3%.
  • the plastic carrier resin is added in an amount of the total weight of the carbon black and the nanometer tourmaline powder mixed base.
  • the plastic carrier resin may be PVC, PE, EVA, PEVA, PET, LDPE, LLOPE or GPPS, depending on the specific application.
  • a coupling agent is added to the mixed material of the plastic carrier resin, and uniformly mixed, and the coupling agent is added in an amount of 2.8% of the total weight of the mixed base of the carbon black and the nanometer tourmaline powder.
  • the coupling agent may not be added to the mixed material, and the coupling agent may be added when the plastic masterbatch produces the plastic product.
  • the plastic masterbatch is prepared by using an extruder which conforms to the mixing property of the plastic to the pelletizing process, etc.
  • the extrusion and pelletizing process The plastic extrusion and pelletizing process commonly used in the prior art can be used.
  • the energy plastic masterbatch produced by the above manufacturing method can be widely used in the processing of plastic products, and the specific plastic products are tablecloths, shower curtains, coasters, placemats, polyester long fibers, polyester staple fibers, PVC pipes, PE pipe, PVC pipe fittings, PE pipe fittings, floor mats, PP plastic doors and windows, PE plastic doors and windows, PVC plastic doors and windows, PP plastic flooring, PE plastic flooring or PVC plastic flooring, etc.
  • the energy plastic masterbatch produced in this embodiment (according to the inspection results of the National Infrared and Industrial Electrothermal Product Quality Supervision and Inspection Center) has a range of infrared radiation wavelength range of 4-16, full normal emissivity ⁇ 0.86, negative ion concentration 12100/ Cm3.
  • the invention can be mixed with the plastic carrier resin in the prior art, such as PVC, PE, EVA, PEVA, PET, LOPE, PP, LLOPE, GPAS, etc. to produce functional plastic products, which have both white carbon black and electrical The advantages of stone, titanium dioxide, etc.
  • This embodiment is a specific manufacturing method of the energy plastic masterbatch, and the method mainly comprises the following steps:
  • the white carbon black is subjected to ozone oxidation treatment.
  • the white carbon black is made of ultrafine white carbon black, the particle size is ⁇ 1 ⁇ m, and the ozone oxidation treatment is carried out by the ozone oxidation black carbon equipment in the prior art.
  • Conventional ozone oxidation treatment enhances the adsorption capacity of silica (the white carbon black may not be subjected to ozone oxidation treatment).
  • the treated white carbon black and the nanometer tourmaline powder are thoroughly mixed as a base material.
  • the white carbon black accounts for 18% of the total weight of the base material
  • the nanometer tourmaline powder accounts for 82% of the total weight of the base material.
  • the ultrafine rutile type titanium dioxide is thoroughly mixed in the mixed base material as an energy raw material.
  • the content of the ultrafine rutile type titanium dioxide is the total weight of the mixed base of the white carbon black and the nano tourmaline powder.
  • the ultrafine rutile type titanium dioxide is selected from ultrafine rutile type titanium dioxide having a particle size of ⁇ 1 ⁇ m.
  • the mixed energy raw materials were dried at 112 ° C for 1.6 hours.
  • the dispersing agent uses a coupling agent related to the basic resin, in particular, a coupling agent which is used to facilitate mixing with the carrier resin.
  • the dispersing agent is dispersed. The amount of the agent added was 3.6%.
  • the plastic carrier resin is added in an amount of the total weight of the carbon black and the nanometer tourmaline powder mixed base. 16%, in this embodiment, the plastic carrier resin may be PVC, PE, EVA, PEVA, PET, LDPE, LLOPE or GPPS, depending on the specific application.
  • a coupling agent is added to the mixed material of the plastic carrier resin, and the mixture is uniformly mixed.
  • the coupling agent is added in an amount of 3% of the total weight of the carbon black and the nanometer tourmaline powder mixed base.
  • the coupling agent may not be added to the mixed material, and the coupling agent may be added when the plastic masterbatch produces the plastic product.
  • the plastic masterbatch is prepared by using an extruder which conforms to the mixing property of the plastic to the pelletizing process, etc.
  • the extrusion and pelletizing process The plastic extrusion and pelletizing process commonly used in the prior art can be used.
  • the energy plastic masterbatch produced by the above manufacturing method can be widely used in the processing of plastic products, and the specific plastic products are tablecloths, shower curtains, coasters, placemats, polyester long fibers, polyester staple fibers, PVC pipes, PE pipe, PVC pipe fittings, PE pipe fittings, floor mats, PP plastic doors and windows, PE plastic doors and windows, PVC plastic doors and windows, PP plastic flooring, PE plastic flooring or PVC plastic flooring, etc.
  • the energy plastic masterbatch produced in this embodiment (according to the inspection results of the National Infrared and Industrial Electrothermal Product Quality Supervision and Inspection Center) has a range of infrared radiation wavelength range of 4-16, full normal emissivity ⁇ 0.86, negative ion concentration 12100/ Cm3.
  • the invention can be mixed with the plastic carrier resin in the prior art, such as PVC, PE, EVA, PEVA, PET, LOPE, PP, LLOPE, GPAS, etc. to produce functional plastic products, which have both white carbon black and electrical The advantages of stone, titanium dioxide, etc.
  • This embodiment is a specific manufacturing method of the energy plastic masterbatch, and the method mainly comprises the following steps:
  • the white carbon black is subjected to ozone oxidation treatment.
  • the white carbon black is made of ultrafine white carbon black, the particle size is ⁇ 1 ⁇ m, and the ozone oxidation treatment is carried out by the ozone oxidation black carbon equipment in the prior art.
  • Conventional ozone oxidation treatment enhances the adsorption capacity of silica (the white carbon black may not be subjected to ozone oxidation treatment).
  • the treated white carbon black and the nanometer tourmaline powder are thoroughly mixed as a base material.
  • the white carbon black accounts for 19% of the total weight of the base material
  • the nanometer tourmaline powder accounts for 81% of the total weight of the base material.
  • the ultrafine rutile type titanium dioxide is thoroughly mixed in the mixed base material as an energy raw material.
  • the content of the ultrafine rutile type titanium dioxide is the total weight of the mixed base of the white carbon black and the nano tourmaline powder.
  • the ultrafine rutile type titanium dioxide is selected from ultrafine rutile type titanium dioxide having a particle size of ⁇ 1 ⁇ m.
  • the mixed energy raw materials were dried at 116 ° C for 1.8 hours.
  • the dispersing agent uses a coupling agent related to the basic resin, in particular, a coupling agent which is used to facilitate mixing with the carrier resin.
  • the dispersing agent is dispersed. The amount of the agent added was 3.6%.
  • the plastic carrier resin is added in an amount of the total weight of the carbon black and the nanometer tourmaline powder mixed base. 17%, in this embodiment, the plastic carrier resin may be PVC, PE, EVA, PEVA, PET, LDPE, LLOPE or GPPS, depending on the specific application.
  • a coupling agent is added to the mixed material of the plastic carrier resin, and the mixture is uniformly mixed.
  • the coupling agent is added in an amount of 3.4% of the total weight of the mixed base of the carbon black and the nanometer tourmaline powder.
  • the coupling agent may not be added to the mixed material, and the coupling agent may be added when the plastic masterbatch produces the plastic product.
  • the plastic masterbatch is prepared by using an extruder which conforms to the mixing property of the plastic to the pelletizing process, etc.
  • the extrusion and pelletizing process The plastic extrusion and pelletizing process commonly used in the prior art can be used.
  • the energy plastic masterbatch produced by the above manufacturing method can be widely used in the processing of plastic products, and the specific plastic products are tablecloths, shower curtains, coasters, placemats, polyester long fibers, polyester staple fibers, PVC pipes, PE pipe, PVC pipe fittings, PE pipe fittings, floor mats, PP plastic doors and windows, PE plastic doors and windows, PVC plastic doors and windows, PP plastic flooring, PE plastic flooring or PVC plastic flooring, etc.
  • the energy plastic masterbatch produced in this embodiment (according to the inspection results of the National Infrared and Industrial Electrothermal Product Quality Supervision and Inspection Center) has a range of infrared radiation wavelength range of 4-16, full normal emissivity ⁇ 0.86, negative ion concentration 12100/ Cm3.
  • the invention can be mixed with the plastic carrier resin in the prior art, such as PVC, PE, EVA, PEVA, PET, LOPE, PP, LLOPE, GPAS, etc. to produce functional plastic products which have both white carbon and tourmaline.
  • the advantages of titanium dioxide and the like are examples of titanium dioxide and the like.
  • Embodiment 14 is a diagrammatic representation of Embodiment 14:
  • This embodiment is a specific manufacturing method of the energy plastic masterbatch, and the method mainly comprises the following steps:
  • the white carbon black is subjected to ozone oxidation treatment.
  • the white carbon black is made of ultrafine white carbon black, the particle size is ⁇ 1 ⁇ m, and the ozone oxidation treatment is carried out by the ozone oxidation black carbon equipment in the prior art.
  • Conventional ozone oxidation treatment enhances the adsorption capacity of silica (the white carbon black may not be subjected to ozone oxidation treatment).
  • the treated white carbon black and the nanometer tourmaline powder are thoroughly mixed as a base material.
  • the white carbon black accounts for 20% of the total weight of the base material
  • the nanometer tourmaline powder accounts for 80% of the total weight of the base material.
  • the ultrafine rutile type titanium dioxide is thoroughly mixed in the mixed base material as an energy raw material.
  • the content of the ultrafine rutile type titanium dioxide is the total weight of the mixed base of the white carbon black and the nano tourmaline powder.
  • the ultrafine rutile type titanium dioxide is selected from ultrafine rutile type titanium dioxide having a particle size of ⁇ 1 ⁇ m.
  • the mixed energy raw materials were dried at 120 ° C for 2 hours.
  • the dispersing agent uses a coupling agent related to the basic resin, in particular, a coupling agent which is used to facilitate mixing with the carrier resin.
  • the dispersing agent is dispersed. The amount of the agent added was 4%. ;
  • the plastic carrier resin is added in an amount of the total weight of the carbon black and the nanometer tourmaline powder mixed base. 18%, in this embodiment, the plastic carrier resin may be PVC, PE, EVA, PEVA, PET, LDPE, LLOPE or GPPS, depending on the specific application.
  • a coupling agent is added to the mixed material of the plastic carrier resin, and the mixture is uniformly mixed.
  • the coupling agent is added in an amount of 4% by weight of the total weight of the carbon black and the nanometer tourmaline powder mixed base.
  • the coupling agent may not be added to the mixed material, and the coupling agent may be added when the plastic masterbatch produces the plastic product.
  • the plastic masterbatch is prepared by using an extruder which conforms to the mixing property of the plastic to the pelletizing process, etc.
  • the extrusion and pelletizing process The plastic extrusion and pelletizing process commonly used in the prior art can be used.
  • the energy plastic masterbatch produced by the above manufacturing method can be widely used in the processing of plastic products, and the specific plastic products are tablecloths, shower curtains, coasters, placemats, polyester long fibers, polyester staple fibers, PVC pipes, PE pipe, PVC pipe fittings, PE pipe fittings, floor mats, PP plastic doors and windows, PE plastic doors and windows, PVC plastic doors and windows, PP plastic flooring, PE plastic flooring or PVC plastic flooring, etc.
  • the energy plastic masterbatch produced in this embodiment (according to the inspection results of the National Infrared and Industrial Electrothermal Product Quality Supervision and Inspection Center) has a range of infrared radiation wavelength range of 4-16, full normal emissivity ⁇ 0.86, negative ion concentration 12100/ Cm3.
  • the invention can be mixed with the plastic carrier resin in the prior art, such as PVC, PE, EVA, PEVA, PET, LOPE, PP, LLOPE, GPAS, etc. to produce functional plastic products, which have both white carbon black and electrical The advantages of stone, titanium dioxide, etc.
  • the invention can utilize and exert the advantages and complementary functions of the functional materials such as carbon black (white carbon black), tourmaline, titanium dioxide, etc., and solve the defects of the plastic products manufactured by the single single functional materials in the past, thereby Functional plastics are more optimized.
  • the energy plastic masterbatch produced by the invention (according to the inspection result of the National Infrared and Industrial Electrothermal Product Quality Supervision and Inspection Center) has an infrared radiation wavelength range of 4-16 normal directions, a normal total emissivity of ⁇ 0.86, and an anion concentration of 12100/cm3. .
  • the invention can be mixed with the plastic carrier resin in the prior art, such as PVC, PE, EVA, PEVA, PET, LOPE, PP, LLOPE, GPAS, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开一种能量塑料母粒的制造方法及含有该方法制成的塑料母粒的塑料产品,制造方法为:将炭黑进行臭氧氧化处理;将处理过的炭黑与纳米级电气石粉剂充分混合作为基料,在基料中加入超细金红石型二氧化钛并充分混合,作为能量原料;将混合的能量原料在100-120℃条件下干燥1-2小时;在干燥后的能量原料中加入分散剂,其中,分散剂的加入量与炭黑和纳米级电气石粉混合基料相比,分散剂的重量为混合基料总重量和的2%-4%;在加入分散剂后的能量原料加入塑料载体树脂中,并混合均匀,形成混合材料,其中,塑料载体树脂的加入量占炭黑和纳米级电气石粉混合基料总重量和的12%-18%;利用生产设备将混合材料制成塑料母粒。

Description

一种能量塑料母粒的制造方法及衍生的塑料产品 技术领域
本发明公开一种塑料母粒的制造方法及塑料产品,特别是一种能量塑料母粒的制造方法及含有该方法制成的塑料母粒的塑料产品。
背景技术
随着化学化工技术的不断发展,化工产品在人们生活中应用也越来越广发。塑料作为一种常用的化工产品,已经成为人们日常生活中不可或缺的东西,塑料技术的发展使得其品种不断丰富,性能多样,功能特征也不断完善。多年来人们已看准电气石的特性,利用电气石粉直接以侵渍、喷涂或直接混炼等方法可以制成各种塑料保健产品,这些产品能够明显提高室内空气中的负离子含量,对人体具有保健作用。可是,由于电气石是一种自身结构致密的天然石料,与塑料的相容性较差,因此就造成了利用电气石制造的塑料保健产品的耐洗涤性能较差,以及拉伸强度、弯曲强度不理想,着色力差等缺陷。
发明内容
针对上述提到的现有技术中的利用电气石制造的塑料保健产品存在的诸多缺陷,本发明提供一种能量塑料母粒的制造方法,利用该方法制造的塑料母粒可使上述性能得到大大改善。
同时,本发明还提供一种上述能量塑料母粒的衍生物产品。
本发明解决其技术问题采用的技术方案是:一种能量塑料母粒的制造方法,该方法包括下述步骤:
A、将炭黑进行臭氧氧化处理;
B、将处理过的炭黑与纳米级电气石粉剂充分混合作为基料,其中,纳米级电气石粉剂占基料总重量的80%-85%,炭黑占基料总重量的15%-20%,在基料中加入超细金红石型二氧化钛并充分混合,作为能量原料,超细金红石型二氧化钛的含量与炭黑和纳米级电气石粉混合基料相比,超细金红石型二氧化钛的重量为混合基料总重量和的10%-15%;
C、将混合的能量原料在100-120℃条件下干燥1-2小时;
D、在干燥后的能量原料中加入分散剂,其中,分散剂的加入量与炭黑和纳米级电气石粉混合基料相比,分散剂的重量为混合基料总重量和的2%-4%;
E、在加入分散剂后的能量原料加入塑料载体树脂中,并混合均匀,形成混合材料,其中,塑料载体树脂的加入量占炭黑和纳米级电气石粉混合基料总重量和的12%-18%;
F、利用生产设备将混合材料制成塑料母粒。
本发明解决其技术问题采用的技术方案进一步还包括:
上述所述的炭黑能够采用白炭黑替换,当采用白炭黑时,可以将白炭黑进行臭氧氧化处理,也可以不进行臭氧氧化处理。
所述的步骤E后可增设有步骤E1,在加入塑料载体树脂的混合材料中加入偶联剂,并混合均匀,偶联剂的加入量占炭黑和纳米级电气石粉混合基料总重量和的1%-4%。
上述所述的塑料载体树脂为PVC、PE、EVA、PEVA、PET、LDPE、LLOPE或GPPS。
上述所述的步骤A中的炭黑为超细炭黑,其为粒度≤1μm的较细炭黑粒子;白炭黑为超细白炭黑,其为粒度≤1μm的较细白炭黑粒子。
上述所述的步骤B中的超细金红石型二氧化钛为粒度≤1μm的超细金红石型二氧化钛。
上述所述的偶联剂采用氨基硅烷类偶联剂。
上述所述的分散剂采用硬脂酸镁。
上述所述的基料中,炭黑或白炭黑所占的比重优选为占基料总重量的18%,纳米级电气石粉剂占基料总重量的82%。
上述所述的混合的能量原料优选在110℃条件下干燥1.5小时。
上述所述的塑料载体树脂的加入量占炭黑和纳米级电气石粉混合基料总重量和的15%。
上述所述的分散剂的重量为混合基料总重量和的3%。
一种含有上述的制造方法制造的能量塑料母粒的塑料制品。
所述的塑料制品为台布、浴帘、杯垫、餐垫、聚酯长纤维、聚酯短纤维、PVC管材、PE管材、PVC管件、PE管件、地垫、PP塑料门窗、PE塑料门窗、PVC塑料门窗、PP塑料地板、PE塑料地板或PVC塑料地板。
本发明的有益效果是:本发明能很好地、合理地利用和发挥了炭黑(白炭黑)、电气石、二氧化钛等功能材料自身的优点和互补作用,解决了以往单一功能材料所制造的塑料产品缺陷,从而使功能塑料更为优化。本发明生产出的能量塑料母料(按国家红外及工业电热产品质量监督检验中心检验结果)红外辐射波长范围4-16法向全发,法向全发射率≥0.86,负离子浓度12100个/cm3。本发明可与现有技术中的塑料载体树脂,如PVC、PE、EVA、PEVA、PET、LOPE、PP、LLOPE、GPAS等进行混合而生产出功能塑料制品,以及利用这些塑料制成台布、浴帘、杯垫、餐垫、聚酯长纤维、聚酯短纤维、PVC管材、PE管材、PVC管件、PE管件、地垫、PP塑料门窗、PE塑料门窗、PVC塑料门窗、PP塑料地板、PE塑料地板或PVC塑料地板等塑料产品,使其兼有炭黑(白炭黑)、电气石、二氧化钛等的自身的优点。
附图说明
图1为本发明的生产工艺流程图。
具体实施方式
本实施例为本发明优选实施方式,其他凡其原理和基本结构与本实施例相同或近似的,均在本发明保护范围之内。
本发明为一种能量塑料母粒的具体制造方法,该方法主要包括下述步骤:
A、将炭黑进行臭氧氧化处理,本实施例中,炭黑采用超细的炭黑,其粒度≤1μm,臭氧氧化处理采用现有技术中的臭氧氧化炭黑设备对其进行常规的臭氧氧化处理,使炭黑的内表面积增加4倍以上,使炭黑加强吸附能力。
B、将处理过的炭黑与纳米级电气石粉剂充分混合作为基料,其中,炭黑占基料总重量的15%-20%,纳米级电气石粉剂占基料总重量的80%-85%(炭黑与纳米级电气石粉剂混合比例视生产的产品用途而定),在混合后的基料内加入超细金红石型二氧化钛充分混合,作为能量原料,超细金红石型二氧化钛的含量为炭黑与纳米电气石粉剂混合基料总重量和的10%-15%,超细金红石型二氧化钛选用粒度≤1μm的超细金红石型二氧化钛。
C、将混合的能量原料在100℃-120℃条件下干燥1-2小时(可通过查看混合的能量原料而确定干燥时间,当混合的能量原料完全干燥即可)。
D、在干燥后的能量原料中加入分散剂,分散剂采用与基本树脂相关的偶联剂,特别是采用以利于和载体树脂混合的偶联剂,分散剂的加入量为混合基料总重量和的2%-4%。分散剂可选用硬脂酸镁,视基本树脂而定,采用现有技术中常用的分散剂。
E、将加入分散剂后的能量原料加入塑料载体树脂中,并混合均匀,形成混合材料,其中,塑料载体树脂的加入量占炭黑和纳米级电气石粉混合基料总重量和的12%-18%,其中,塑料载体树脂可为PVC、PE、EVA、PEVA、PET、LDPE、LLOPE或GPPS,视具体应用决定采用哪种。
E1、在加入塑料载体树脂的混合材料中加入偶联剂,并混合均匀,本实施例中,偶联剂选用氨基硅烷类偶联剂,偶联剂的加入量占炭黑和纳米级电气石粉混合基料总重量和的1%-4%。具体实施时,混合材料中也可不添加偶联剂,而在塑料母粒生产塑料制品时再添加偶联剂也可以。
F、将上述步骤E1产生的混合材料进行混炼后,用合符该塑料特点混炼性能的挤出机至切粒工序等制成塑料母粒,本实施例中,挤出及切粒工艺采用现有技术中常用的塑料挤出及切粒工艺即可。
采用上述制造方法生产出来的能量塑料母粒可广泛应用于塑料制品的加工中,具体的塑料制品为台布、浴帘、杯垫、餐垫、聚酯长纤维、聚酯短纤维、PVC管材、PE管材、PVC管件、PE管件、地垫、PP塑料门窗、PE塑料门窗、PVC塑料门窗、PP塑料地板、PE塑料地板或PVC塑料地板等等。
本发明中的炭黑也可以采用白炭黑(即二氧化硅)代替,视具体情况而定,一般而言,透明塑料或颜色较浅的塑料中采用白炭黑,不透明塑料或颜色较深的塑料中采用炭黑。下面将分为几个具体实施例,对本发明的情况进行进一步说明。
实施例一:
本实施例为能量塑料母粒的一种具体制造方法,该方法主要包括下述步骤:
A、将炭黑进行臭氧氧化处理,本实施例中,炭黑采用超细的炭黑,其粒度≤1μm,臭氧氧化处理采用现有技术中的臭氧氧化炭黑设备对其进行常规的臭氧氧化处理,使炭黑的内表面积增加4倍以上,使炭黑加强吸附能力。
B、将处理过的炭黑与纳米级电气石粉剂充分混合作为基料,本实施例中,炭黑占基料总重量的15%,纳米级电气石粉剂占基料总重量的85%,在混合后的基料内加入超细金红石型二氧化钛充分混合,作为能量原料,本实施例中,超细金红石型二氧化钛的含量为炭黑与纳米电气石粉剂混合基料总重量和的10%,本实施例中,超细金红石型二氧化钛选用粒度≤1μm的超细金红石型二氧化钛。
C、将混合的能量原料在100℃条件下干燥1小时。
D、在干燥后的能量原料中加入分散剂,本实施例中,分散剂采用与基本树脂相关的偶联剂,特别是采用以利于和载体树脂混合的偶联剂,本实施例中,分散剂的加入量为2%。
E、将加入分散剂后的能量原料加入塑料载体树脂中,并混合均匀,形成混合材料,本实施例中,塑料载体树脂的加入量占炭黑和纳米级电气石粉混合基料总重量和的12%,本实施例中,塑料载体树脂可为PVC、PE、EVA、PEVA、PET、LDPE、LLOPE或GPPS,视具体应用决定采用哪种。
E1、在加入塑料载体树脂的混合材料中加入偶联剂,并混合均匀,偶联剂的加入量占炭黑和纳米级电气石粉混合基料总重量和的1%。具体实施时,混合材料中也可不添加偶联剂,而在塑料母粒生产塑料制品时再添加偶联剂也可以。
F、将上述步骤E1产生的混合材料进行混炼后,用合符该塑料特点混炼性能的挤出机至切粒工序等制成塑料母粒,本实施例中,挤出及切粒工艺采用现有技术中常用的塑料挤出及切粒工艺即可。
采用上述制造方法生产出来的能量塑料母粒可广泛应用于塑料制品的加工中,具体的塑料制品为台布、浴帘、杯垫、餐垫、聚酯长纤维、聚酯短纤维、PVC管材、PE管材、PVC管件、PE管件、地垫、PP塑料门窗、PE塑料门窗、PVC塑料门窗、PP塑料地板、PE塑料地板或PVC塑料地板等等。
本实施例生产出的能量塑料母料(按国家红外及工业电热产品质量监督检验中心检验结果)红外辐射波长范围4-16法向全发,法向全发射率≥0.86,负离子浓度12100个/cm3。本发明可与现有技术中的塑料载体树脂,如PVC、PE、EVA、PEVA、PET、LOPE、PP、LLOPE、GPAS等进行混合而生产出功能塑料制品,使其兼有炭黑、电气石、二氧化钛等的自身的优点。
实施例二:
本实施例为能量塑料母粒的一种具体制造方法,该方法主要包括下述步骤:
A、将炭黑进行臭氧氧化处理,本实施例中,炭黑采用超细的炭黑,其粒度≤1μm,臭氧氧化处理采用现有技术中的臭氧氧化炭黑设备对其进行常规的臭氧氧化处理,使炭黑的内表面积增加4倍以上,使炭黑加强吸附能力。
B、将处理过的炭黑与纳米级电气石粉剂充分混合作为基料,本实施例中,炭黑占基料总重量的16%,纳米级电气石粉剂占基料总重量的84%,在混合后的基料内加入超细金红石型二氧化钛充分混合,作为能量原料,本实施例中,超细金红石型二氧化钛的含量为炭黑与纳米电气石粉剂混合基料总重量和的11%,本实施例中,超细金红石型二氧化钛选用粒度≤1μm的超细金红石型二氧化钛。
C、将混合的能量原料在104℃条件下干燥1.2小时。
D、在干燥后的能量原料中加入分散剂,本实施例中,分散剂采用与基本树脂相关的偶联剂,特别是采用以利于和载体树脂混合的偶联剂,本实施例中,分散剂的加入量为2.4%。
E、将加入分散剂后的能量原料加入塑料载体树脂中,并混合均匀,形成混合材料,本实施例中,塑料载体树脂的加入量占炭黑和纳米级电气石粉混合基料总重量和的13%,本实施例中,塑料载体树脂可为PVC、PE、EVA、PEVA、PET、LDPE、LLOPE或GPPS,视具体应用决定采用哪种。
E1、在加入塑料载体树脂的混合材料中加入偶联剂,并混合均匀,偶联剂的加入量占炭黑和纳米级电气石粉混合基料总重量和的1.6%。具体实施时,混合材料中也可不添加偶联剂,而在塑料母粒生产塑料制品时再添加偶联剂也可以。
F、将上述步骤E1产生的混合材料进行混炼后,用合符该塑料特点混炼性能的挤出机至切粒工序等制成塑料母粒,本实施例中,挤出及切粒工艺采用现有技术中常用的塑料挤出及切粒工艺即可。
采用上述制造方法生产出来的能量塑料母粒可广泛应用于塑料制品的加工中,具体的塑料制品为台布、浴帘、杯垫、餐垫、聚酯长纤维、聚酯短纤维、PVC管材、PE管材、PVC管件、PE管件、地垫、PP塑料门窗、PE塑料门窗、PVC塑料门窗、PP塑料地板、PE塑料地板或PVC塑料地板等等。
本实施例生产出的能量塑料母料(按国家红外及工业电热产品质量监督检验中心检验结果)红外辐射波长范围4-16法向全发,法向全发射率≥0.86,负离子浓度12100个/cm3。本发明可与现有技术中的塑料载体树脂,如PVC、PE、EVA、PEVA、PET、LOPE、PP、LLOPE、GPAS等进行混合而生产出功能塑料制品,使其兼有炭黑、电气石、二氧化钛等的自身的优点。
实施例三:
本实施例为能量塑料母粒的一种具体制造方法,该方法主要包括下述步骤:
A、将炭黑进行臭氧氧化处理,本实施例中,炭黑采用超细的炭黑,其粒度≤1μm,臭氧氧化处理采用现有技术中的臭氧氧化炭黑设备对其进行常规的臭氧氧化处理,使炭黑的内表面积增加4倍以上,使炭黑加强吸附能力。
B、将处理过的炭黑与纳米级电气石粉剂充分混合作为基料,本实施例中,炭黑占基料总重量的17%,纳米级电气石粉剂占基料总重量的83%,在混合后的基料内加入超细金红石型二氧化钛充分混合,作为能量原料,本实施例中,超细金红石型二氧化钛的含量为炭黑与纳米电气石粉剂混合基料总重量和的12%,本实施例中,超细金红石型二氧化钛选用粒度≤1μm的超细金红石型二氧化钛。
C、将混合的能量原料在108℃条件下干燥1.4小时。
D、在干燥后的能量原料中加入分散剂,本实施例中,分散剂采用与基本树脂相关的偶联剂,特别是采用以利于和载体树脂混合的偶联剂,本实施例中,分散剂的加入量为2.8%。
E、将加入分散剂后的能量原料加入塑料载体树脂中,并混合均匀,形成混合材料,本实施例中,塑料载体树脂的加入量占炭黑和纳米级电气石粉混合基料总重量和的14%,本实施例中,塑料载体树脂可为PVC、PE、EVA、PEVA、PET、LDPE、LLOPE或GPPS,视具体应用决定采用哪种。
E1、在加入塑料载体树脂的混合材料中加入偶联剂,并混合均匀,偶联剂的加入量占炭黑和纳米级电气石粉混合基料总重量和的2.2%。具体实施时,混合材料中也可不添加偶联剂,而在塑料母粒生产塑料制品时再添加偶联剂也可以。
F、将上述步骤E1产生的混合材料进行混炼后,用合符该塑料特点混炼性能的挤出机至切粒工序等制成塑料母粒,本实施例中,挤出及切粒工艺采用现有技术中常用的塑料挤出及切粒工艺即可。
采用上述制造方法生产出来的能量塑料母粒可广泛应用于塑料制品的加工中,具体的塑料制品为台布、浴帘、杯垫、餐垫、聚酯长纤维、聚酯短纤维、PVC管材、PE管材、PVC管件、PE管件、地垫、PP塑料门窗、PE塑料门窗、PVC塑料门窗、PP塑料地板、PE塑料地板或PVC塑料地板等等。
本实施例生产出的能量塑料母料(按国家红外及工业电热产品质量监督检验中心检验结果)红外辐射波长范围4-16法向全发,法向全发射率≥0.86,负离子浓度12100个/cm3。本发明可与现有技术中的塑料载体树脂,如PVC、PE、EVA、PEVA、PET、LOPE、PP、LLOPE、GPAS等进行混合而生产出功能塑料制品,使其兼有炭黑、电气石、二氧化钛等的自身的优点。
实施例四:
本实施例为能量塑料母粒的一种具体制造方法,该方法主要包括下述步骤:
A、将炭黑进行臭氧氧化处理,本实施例中,炭黑采用超细的炭黑,其粒度≤1μm,臭氧氧化处理采用现有技术中的臭氧氧化炭黑设备对其进行常规的臭氧氧化处理,使炭黑的内表面积增加4倍以上,使炭黑加强吸附能力。
B、将处理过的炭黑与纳米级电气石粉剂充分混合作为基料,本实施例中,炭黑占基料总重量的18%,纳米级电气石粉剂占基料总重量的82%,在混合后的基料内加入超细金红石型二氧化钛充分混合,作为能量原料,本实施例中,超细金红石型二氧化钛的含量为炭黑与纳米电气石粉剂混合基料总重量和的12%,本实施例中,超细金红石型二氧化钛选用粒度≤1μm的超细金红石型二氧化钛。
C、将混合的能量原料在110℃条件下干燥1.5小时。
D、在干燥后的能量原料中加入分散剂,本实施例中,分散剂采用与基本树脂相关的偶联剂,特别是采用以利于和载体树脂混合的偶联剂,本实施例中,分散剂的加入量为3%。
E、将加入分散剂后的能量原料加入塑料载体树脂中,并混合均匀,形成混合材料,本实施例中,塑料载体树脂的加入量占炭黑和纳米级电气石粉混合基料总重量和的15%,本实施例中,塑料载体树脂可为PVC、PE、EVA、PEVA、PET、LDPE、LLOPE或GPPS,视具体应用决定采用哪种。
E1、在加入塑料载体树脂的混合材料中加入偶联剂,并混合均匀,偶联剂的加入量占炭黑和纳米级电气石粉混合基料总重量和的2.8%。具体实施时,混合材料中也可不添加偶联剂,而在塑料母粒生产塑料制品时再添加偶联剂也可以。
F、将上述步骤E1产生的混合材料进行混炼后,用合符该塑料特点混炼性能的挤出机至切粒工序等制成塑料母粒,本实施例中,挤出及切粒工艺采用现有技术中常用的塑料挤出及切粒工艺即可。
采用上述制造方法生产出来的能量塑料母粒可广泛应用于塑料制品的加工中,具体的塑料制品为台布、浴帘、杯垫、餐垫、聚酯长纤维、聚酯短纤维、PVC管材、PE管材、PVC管件、PE管件、地垫、PP塑料门窗、PE塑料门窗、PVC塑料门窗、PP塑料地板、PE塑料地板或PVC塑料地板等等。
本实施例生产出的能量塑料母料(按国家红外及工业电热产品质量监督检验中心检验结果)红外辐射波长范围4-16法向全发,法向全发射率≥0.86,负离子浓度12100个/cm3。本发明可与现有技术中的塑料载体树脂,如PVC、PE、EVA、PEVA、PET、LOPE、PP、LLOPE、GPAS等进行混合而生产出功能塑料制品,使其兼有炭黑、电气石、二氧化钛等的自身的优点。
实施例五:
本实施例为能量塑料母粒的一种具体制造方法,该方法主要包括下述步骤:
A、将炭黑进行臭氧氧化处理,本实施例中,炭黑采用超细的炭黑,其粒度≤1μm,臭氧氧化处理采用现有技术中的臭氧氧化炭黑设备对其进行常规的臭氧氧化处理,使炭黑的内表面积增加4倍以上,使炭黑加强吸附能力。
B、将处理过的炭黑与纳米级电气石粉剂充分混合作为基料,本实施例中,炭黑占基料总重量的18%,纳米级电气石粉剂占基料总重量的82%,在混合后的基料内加入超细金红石型二氧化钛充分混合,作为能量原料,本实施例中,超细金红石型二氧化钛的含量为炭黑与纳米电气石粉剂混合基料总重量和的13%,本实施例中,超细金红石型二氧化钛选用粒度≤1μm的超细金红石型二氧化钛。
C、将混合的能量原料在112℃条件下干燥1.6小时。
D、在干燥后的能量原料中加入分散剂,本实施例中,分散剂采用与基本树脂相关的偶联剂,特别是采用以利于和载体树脂混合的偶联剂,本实施例中,分散剂的加入量为3.6%。
E、将加入分散剂后的能量原料加入塑料载体树脂中,并混合均匀,形成混合材料,本实施例中,塑料载体树脂的加入量占炭黑和纳米级电气石粉混合基料总重量和的16%,本实施例中,塑料载体树脂可为PVC、PE、EVA、PEVA、PET、LDPE、LLOPE或GPPS,视具体应用决定采用哪种。
E1、在加入塑料载体树脂的混合材料中加入偶联剂,并混合均匀,偶联剂的加入量占炭黑和纳米级电气石粉混合基料总重量和的3%。具体实施时,混合材料中也可不添加偶联剂,而在塑料母粒生产塑料制品时再添加偶联剂也可以。
F、将上述步骤E1产生的混合材料进行混炼后,用合符该塑料特点混炼性能的挤出机至切粒工序等制成塑料母粒,本实施例中,挤出及切粒工艺采用现有技术中常用的塑料挤出及切粒工艺即可。
采用上述制造方法生产出来的能量塑料母粒可广泛应用于塑料制品的加工中,具体的塑料制品为台布、浴帘、杯垫、餐垫、聚酯长纤维、聚酯短纤维、PVC管材、PE管材、PVC管件、PE管件、地垫、PP塑料门窗、PE塑料门窗、PVC塑料门窗、PP塑料地板、PE塑料地板或PVC塑料地板等等。
本实施例生产出的能量塑料母料(按国家红外及工业电热产品质量监督检验中心检验结果)红外辐射波长范围4-16法向全发,法向全发射率≥0.86,负离子浓度12100个/cm3。本发明可与现有技术中的塑料载体树脂,如PVC、PE、EVA、PEVA、PET、LOPE、PP、LLOPE、GPAS等进行混合而生产出功能塑料制品,使其兼有炭黑、电气石、二氧化钛等的自身的优点。
实施例六:
本实施例为能量塑料母粒的一种具体制造方法,该方法主要包括下述步骤:
A、将炭黑进行臭氧氧化处理,本实施例中,炭黑采用超细的炭黑,其粒度≤1μm,臭氧氧化处理采用现有技术中的臭氧氧化炭黑设备对其进行常规的臭氧氧化处理,使炭黑的内表面积增加4倍以上,使炭黑加强吸附能力。
B、将处理过的炭黑与纳米级电气石粉剂充分混合作为基料,本实施例中,炭黑占基料总重量的19%,纳米级电气石粉剂占基料总重量的81%,在混合后的基料内加入超细金红石型二氧化钛充分混合,作为能量原料,本实施例中,超细金红石型二氧化钛的含量为炭黑与纳米电气石粉剂混合基料总重量和的14%,本实施例中,超细金红石型二氧化钛选用粒度≤1μm的超细金红石型二氧化钛。
C、将混合的能量原料在116℃条件下干燥1.8小时。
D、在干燥后的能量原料中加入分散剂,本实施例中,分散剂采用与基本树脂相关的偶联剂,特别是采用以利于和载体树脂混合的偶联剂,本实施例中,分散剂的加入量为3.6%。;
E、将加入分散剂后的能量原料加入塑料载体树脂中,并混合均匀,形成混合材料,本实施例中,塑料载体树脂的加入量占炭黑和纳米级电气石粉混合基料总重量和的17%,本实施例中,塑料载体树脂可为PVC、PE、EVA、PEVA、PET、LDPE、LLOPE或GPPS,视具体应用决定采用哪种。
E1、在加入塑料载体树脂的混合材料中加入偶联剂,并混合均匀,偶联剂的加入量占炭黑和纳米级电气石粉混合基料总重量和的3.4%。具体实施时,混合材料中也可不添加偶联剂,而在塑料母粒生产塑料制品时再添加偶联剂也可以。
F、将上述步骤E1产生的混合材料进行混炼后,用合符该塑料特点混炼性能的挤出机至切粒工序等制成塑料母粒,本实施例中,挤出及切粒工艺采用现有技术中常用的塑料挤出及切粒工艺即可。
采用上述制造方法生产出来的能量塑料母粒可广泛应用于塑料制品的加工中,具体的塑料制品为台布、浴帘、杯垫、餐垫、聚酯长纤维、聚酯短纤维、PVC管材、PE管材、PVC管件、PE管件、地垫、PP塑料门窗、PE塑料门窗、PVC塑料门窗、PP塑料地板、PE塑料地板或PVC塑料地板等等。
本实施例生产出的能量塑料母料(按国家红外及工业电热产品质量监督检验中心检验结果)红外辐射波长范围4-16法向全发,法向全发射率≥0.86,负离子浓度12100个/cm3。本发明可与现有技术中的塑料载体树脂,如PVC、PE、EVA、PEVA、PET、LOPE、PP、LLOPE、GPAS等进行混合而生产出功能塑料制品,使其兼有炭黑、电气石、二氧化钛等的自身的优点。
实施例七:
本实施例为能量塑料母粒的一种具体制造方法,该方法主要包括下述步骤:
A、将炭黑进行臭氧氧化处理,本实施例中,炭黑采用超细的炭黑,其粒度≤1μm,臭氧氧化处理采用现有技术中的臭氧氧化炭黑设备对其进行常规的臭氧氧化处理,使炭黑的内表面积增加4倍以上,使炭黑加强吸附能力。
B、将处理过的炭黑与纳米级电气石粉剂充分混合作为基料,本实施例中,炭黑占基料总重量的20%,纳米级电气石粉剂占基料总重量的80%,在混合后的基料内加入超细金红石型二氧化钛充分混合,作为能量原料,本实施例中,超细金红石型二氧化钛的含量为炭黑与纳米电气石粉剂混合基料总重量和的15%,本实施例中,超细金红石型二氧化钛选用粒度≤1μm的超细金红石型二氧化钛。
C、将混合的能量原料在120℃条件下干燥2小时。
D、在干燥后的能量原料中加入分散剂,本实施例中,分散剂采用与基本树脂相关的偶联剂,特别是采用以利于和载体树脂混合的偶联剂,本实施例中,分散剂的加入量为4%。
E、将加入分散剂后的能量原料加入塑料载体树脂中,并混合均匀,形成混合材料,本实施例中,塑料载体树脂的加入量占炭黑和纳米级电气石粉混合基料总重量和的18%,本实施例中,塑料载体树脂可为PVC、PE、EVA、PEVA、PET、LDPE、LLOPE或GPPS,视具体应用决定采用哪种。
E1、在加入塑料载体树脂的混合材料中加入偶联剂,并混合均匀,偶联剂的加入量占炭黑和纳米级电气石粉混合基料总重量和的4%。具体实施时,混合材料中也可不添加偶联剂,而在塑料母粒生产塑料制品时再添加偶联剂也可以。
F、将上述步骤E1产生的混合材料进行混炼后,用合符该塑料特点混炼性能的挤出机至切粒工序等制成塑料母粒,本实施例中,挤出及切粒工艺采用现有技术中常用的塑料挤出及切粒工艺即可。
采用上述制造方法生产出来的能量塑料母粒可广泛应用于塑料制品的加工中,具体的塑料制品为台布、浴帘、杯垫、餐垫、聚酯长纤维、聚酯短纤维、PVC管材、PE管材、PVC管件、PE管件、地垫、PP塑料门窗、PE塑料门窗、PVC塑料门窗、PP塑料地板、PE塑料地板或PVC塑料地板等等。
本实施例生产出的能量塑料母料(按国家红外及工业电热产品质量监督检验中心检验结果)红外辐射波长范围4-16法向全发,法向全发射率≥0.86,负离子浓度12100个/cm3。本发明可与现有技术中的塑料载体树脂,如PVC、PE、EVA、PEVA、PET、LOPE、PP、LLOPE、GPAS等进行混合而生产出功能塑料制品,使其兼有炭黑、电气石、二氧化钛等的自身的优点。
实施例八:
本实施例为能量塑料母粒的一种具体制造方法,该方法主要包括下述步骤:
A、将白炭黑进行臭氧氧化处理,本实施例中,白炭黑采用超细的白炭黑,其粒度≤1μm,臭氧氧化处理采用现有技术中的臭氧氧化白炭黑设备对其进行常规的臭氧氧化处理,使白炭黑加强吸附能力(白炭黑也可不进行臭氧氧化处理)。
B、将处理过的白炭黑与纳米级电气石粉剂充分混合作为基料,本实施例中,白炭黑占基料总重量的15%,纳米级电气石粉剂占基料总重量的85%,在混合后的基料内加入超细金红石型二氧化钛充分混合,作为能量原料,本实施例中,超细金红石型二氧化钛的含量为白炭黑与纳米电气石粉剂混合基料总重量和的10%,本实施例中,超细金红石型二氧化钛选用粒度≤1μm的超细金红石型二氧化钛。
C、将混合的能量原料在100℃条件下干燥1小时。
D、在干燥后的能量原料中加入分散剂,本实施例中,分散剂采用与基本树脂相关的偶联剂,特别是采用以利于和载体树脂混合的偶联剂,本实施例中,分散剂的加入量为2%。
E、将加入分散剂后的能量原料加入塑料载体树脂中,并混合均匀,形成混合材料,本实施例中,塑料载体树脂的加入量占炭黑和纳米级电气石粉混合基料总重量和的12%,本实施例中,塑料载体树脂可为PVC、PE、EVA、PEVA、PET、LDPE、LLOPE或GPPS,视具体应用决定采用哪种。
E1、在加入塑料载体树脂的混合材料中加入偶联剂,并混合均匀,偶联剂的加入量占炭黑和纳米级电气石粉混合基料总重量和的1%。具体实施时,混合材料中也可不添加偶联剂,而在塑料母粒生产塑料制品时再添加偶联剂也可以。
F、将上述步骤E1产生的混合材料进行混炼后,用合符该塑料特点混炼性能的挤出机至切粒工序等制成塑料母粒,本实施例中,挤出及切粒工艺采用现有技术中常用的塑料挤出及切粒工艺即可。
采用上述制造方法生产出来的能量塑料母粒可广泛应用于塑料制品的加工中,具体的塑料制品为台布、浴帘、杯垫、餐垫、聚酯长纤维、聚酯短纤维、PVC管材、PE管材、PVC管件、PE管件、地垫、PP塑料门窗、PE塑料门窗、PVC塑料门窗、PP塑料地板、PE塑料地板或PVC塑料地板等等。
本实施例生产出的能量塑料母料(按国家红外及工业电热产品质量监督检验中心检验结果)红外辐射波长范围4-16法向全发,法向全发射率≥0.86,负离子浓度12100个/cm3。本发明可与现有技术中的塑料载体树脂,如PVC、PE、EVA、PEVA、PET、LOPE、PP、LLOPE、GPAS等进行混合而生产出功能塑料制品,使其兼有白炭黑、电气石、二氧化钛等的自身的优点。
实施例九:
本实施例为能量塑料母粒的一种具体制造方法,该方法主要包括下述步骤:
A、将白炭黑进行臭氧氧化处理,本实施例中,白炭黑采用超细的白炭黑,其粒度≤1μm,臭氧氧化处理采用现有技术中的臭氧氧化白炭黑设备对其进行常规的臭氧氧化处理,使白炭黑加强吸附能力(白炭黑也可不进行臭氧氧化处理)。
B、将处理过的白炭黑与纳米级电气石粉剂充分混合作为基料,本实施例中,白炭黑占基料总重量的16%,纳米级电气石粉剂占基料总重量的84%,在混合后的基料内加入超细金红石型二氧化钛充分混合,作为能量原料,本实施例中,超细金红石型二氧化钛的含量为白炭黑与纳米电气石粉剂混合基料总重量和的11%,本实施例中,超细金红石型二氧化钛选用粒度≤1μm的超细金红石型二氧化钛。
C、将混合的能量原料在104℃条件下干燥1.2小时。
D、在干燥后的能量原料中加入分散剂,本实施例中,分散剂采用与基本树脂相关的偶联剂,特别是采用以利于和载体树脂混合的偶联剂,本实施例中,分散剂的加入量为2.4%。
E、将加入分散剂后的能量原料加入塑料载体树脂中,并混合均匀,形成混合材料,本实施例中,塑料载体树脂的加入量占炭黑和纳米级电气石粉混合基料总重量和的13%,本实施例中,塑料载体树脂可为PVC、PE、EVA、PEVA、PET、LDPE、LLOPE或GPPS,视具体应用决定采用哪种。
E1、在加入塑料载体树脂的混合材料中加入偶联剂,并混合均匀,偶联剂的加入量占炭黑和纳米级电气石粉混合基料总重量和的1.6%。具体实施时,混合材料中也可不添加偶联剂,而在塑料母粒生产塑料制品时再添加偶联剂也可以。
F、将上述步骤E1产生的混合材料进行混炼后,用合符该塑料特点混炼性能的挤出机至切粒工序等制成塑料母粒,本实施例中,挤出及切粒工艺采用现有技术中常用的塑料挤出及切粒工艺即可。
采用上述制造方法生产出来的能量塑料母粒可广泛应用于塑料制品的加工中,具体的塑料制品为台布、浴帘、杯垫、餐垫、聚酯长纤维、聚酯短纤维、PVC管材、PE管材、PVC管件、PE管件、地垫、PP塑料门窗、PE塑料门窗、PVC塑料门窗、PP塑料地板、PE塑料地板或PVC塑料地板等等。
本实施例生产出的能量塑料母料(按国家红外及工业电热产品质量监督检验中心检验结果)红外辐射波长范围4-16法向全发,法向全发射率≥0.86,负离子浓度12100个/cm3。本发明可与现有技术中的塑料载体树脂,如PVC、PE、EVA、PEVA、PET、LOPE、PP、LLOPE、GPAS等进行混合而生产出功能塑料制品,使其兼有白炭黑、电气石、二氧化钛等的自身的优点。
实施例十:
本实施例为能量塑料母粒的一种具体制造方法,该方法主要包括下述步骤:
A、将白炭黑进行臭氧氧化处理,本实施例中,白炭黑采用超细的白炭黑,其粒度≤1μm,臭氧氧化处理采用现有技术中的臭氧氧化白炭黑设备对其进行常规的臭氧氧化处理,使白炭黑加强吸附能力(白炭黑也可不进行臭氧氧化处理)。
B、将处理过的白炭黑与纳米级电气石粉剂充分混合作为基料,本实施例中,白炭黑占基料总重量的17%,纳米级电气石粉剂占基料总重量的83%,在混合后的基料内加入超细金红石型二氧化钛充分混合,作为能量原料,本实施例中,超细金红石型二氧化钛的含量为白炭黑与纳米电气石粉剂混合基料总重量和的12%,本实施例中,超细金红石型二氧化钛选用粒度≤1μm的超细金红石型二氧化钛。
C、将混合的能量原料在108℃条件下干燥1.4小时。
D、在干燥后的能量原料中加入分散剂,本实施例中,分散剂采用与基本树脂相关的偶联剂,特别是采用以利于和载体树脂混合的偶联剂,本实施例中,分散剂的加入量为2.8%。
E、将加入分散剂后的能量原料加入塑料载体树脂中,并混合均匀,形成混合材料,本实施例中,塑料载体树脂的加入量占炭黑和纳米级电气石粉混合基料总重量和的14%,本实施例中,塑料载体树脂可为PVC、PE、EVA、PEVA、PET、LDPE、LLOPE或GPPS,视具体应用决定采用哪种。
E1、在加入塑料载体树脂的混合材料中加入偶联剂,并混合均匀,偶联剂的加入量占炭黑和纳米级电气石粉混合基料总重量和的2.2%。具体实施时,混合材料中也可不添加偶联剂,而在塑料母粒生产塑料制品时再添加偶联剂也可以。
F、 将上述步骤E1产生的混合材料进行混炼后,用合符该塑料特点混炼性能的挤出机至切粒工序等制成塑料母粒,本实施例中,挤出及切粒工艺采用现有技术中常用的塑料挤出及切粒工艺即可。
采用上述制造方法生产出来的能量塑料母粒可广泛应用于塑料制品的加工中,具体的塑料制品为台布、浴帘、杯垫、餐垫、聚酯长纤维、聚酯短纤维、PVC管材、PE管材、PVC管件、PE管件、地垫、PP塑料门窗、PE塑料门窗、PVC塑料门窗、PP塑料地板、PE塑料地板或PVC塑料地板等等。
本实施例生产出的能量塑料母料(按国家红外及工业电热产品质量监督检验中心检验结果)红外辐射波长范围4-16法向全发,法向全发射率≥0.86,负离子浓度12100个/cm3。本发明可与现有技术中的塑料载体树脂,如PVC、PE、EVA、PEVA、PET、LOPE、PP、LLOPE、GPAS等进行混合而生产出功能塑料制品,使其兼有白炭黑、电气石、二氧化钛等的自身的优点。
实施例十一:
本实施例为能量塑料母粒的一种具体制造方法,该方法主要包括下述步骤:
A、将白炭黑进行臭氧氧化处理,本实施例中,白炭黑采用超细的白炭黑,其粒度≤1μm,臭氧氧化处理采用现有技术中的臭氧氧化白炭黑设备对其进行常规的臭氧氧化处理,使白炭黑加强吸附能力(白炭黑也可不进行臭氧氧化处理)。
B、将处理过的白炭黑与纳米级电气石粉剂充分混合作为基料,本实施例中,白炭黑占基料总重量的18%,纳米级电气石粉剂占基料总重量的82%,在混合后的基料内加入超细金红石型二氧化钛充分混合,作为能量原料,本实施例中,超细金红石型二氧化钛的含量为白炭黑与纳米电气石粉剂混合基料总重量和的12%,本实施例中,超细金红石型二氧化钛选用粒度≤1μm的超细金红石型二氧化钛。
C、将混合的能量原料在110℃条件下干燥1.5小时。
D、在干燥后的能量原料中加入分散剂,本实施例中,分散剂采用与基本树脂相关的偶联剂,特别是采用以利于和载体树脂混合的偶联剂,本实施例中,分散剂的加入量为3%。
E、将加入分散剂后的能量原料加入塑料载体树脂中,并混合均匀,形成混合材料,本实施例中,塑料载体树脂的加入量占炭黑和纳米级电气石粉混合基料总重量和的15%,本实施例中,塑料载体树脂可为PVC、PE、EVA、PEVA、PET、LDPE、LLOPE或GPPS,视具体应用决定采用哪种。
E1、在加入塑料载体树脂的混合材料中加入偶联剂,并混合均匀,偶联剂的加入量占炭黑和纳米级电气石粉混合基料总重量和的2.8%。具体实施时,混合材料中也可不添加偶联剂,而在塑料母粒生产塑料制品时再添加偶联剂也可以。
F、将上述步骤E1产生的混合材料进行混炼后,用合符该塑料特点混炼性能的挤出机至切粒工序等制成塑料母粒,本实施例中,挤出及切粒工艺采用现有技术中常用的塑料挤出及切粒工艺即可。
采用上述制造方法生产出来的能量塑料母粒可广泛应用于塑料制品的加工中,具体的塑料制品为台布、浴帘、杯垫、餐垫、聚酯长纤维、聚酯短纤维、PVC管材、PE管材、PVC管件、PE管件、地垫、PP塑料门窗、PE塑料门窗、PVC塑料门窗、PP塑料地板、PE塑料地板或PVC塑料地板等等。
本实施例生产出的能量塑料母料(按国家红外及工业电热产品质量监督检验中心检验结果)红外辐射波长范围4-16法向全发,法向全发射率≥0.86,负离子浓度12100个/cm3。本发明可与现有技术中的塑料载体树脂,如PVC、PE、EVA、PEVA、PET、LOPE、PP、LLOPE、GPAS等进行混合而生产出功能塑料制品,使其兼有白炭黑、电气石、二氧化钛等的自身的优点。
实施例十二:
本实施例为能量塑料母粒的一种具体制造方法,该方法主要包括下述步骤:
A、将白炭黑进行臭氧氧化处理,本实施例中,白炭黑采用超细的白炭黑,其粒度≤1μm,臭氧氧化处理采用现有技术中的臭氧氧化白炭黑设备对其进行常规的臭氧氧化处理,使白炭黑加强吸附能力(白炭黑也可不进行臭氧氧化处理)。
B、将处理过的白炭黑与纳米级电气石粉剂充分混合作为基料,本实施例中,白炭黑占基料总重量的18%,纳米级电气石粉剂占基料总重量的82%,在混合后的基料内加入超细金红石型二氧化钛充分混合,作为能量原料,本实施例中,超细金红石型二氧化钛的含量为白炭黑与纳米电气石粉剂混合基料总重量和的13%,本实施例中,超细金红石型二氧化钛选用粒度≤1μm的超细金红石型二氧化钛。
C、将混合的能量原料在112℃条件下干燥1.6小时。
D、在干燥后的能量原料中加入分散剂,本实施例中,分散剂采用与基本树脂相关的偶联剂,特别是采用以利于和载体树脂混合的偶联剂,本实施例中,分散剂的加入量为3.6%。
E、将加入分散剂后的能量原料加入塑料载体树脂中,并混合均匀,形成混合材料,本实施例中,塑料载体树脂的加入量占炭黑和纳米级电气石粉混合基料总重量和的16%,本实施例中,塑料载体树脂可为PVC、PE、EVA、PEVA、PET、LDPE、LLOPE或GPPS,视具体应用决定采用哪种。
E1、在加入塑料载体树脂的混合材料中加入偶联剂,并混合均匀,偶联剂的加入量占炭黑和纳米级电气石粉混合基料总重量和的3%。具体实施时,混合材料中也可不添加偶联剂,而在塑料母粒生产塑料制品时再添加偶联剂也可以。
F、将上述步骤E1产生的混合材料进行混炼后,用合符该塑料特点混炼性能的挤出机至切粒工序等制成塑料母粒,本实施例中,挤出及切粒工艺采用现有技术中常用的塑料挤出及切粒工艺即可。
采用上述制造方法生产出来的能量塑料母粒可广泛应用于塑料制品的加工中,具体的塑料制品为台布、浴帘、杯垫、餐垫、聚酯长纤维、聚酯短纤维、PVC管材、PE管材、PVC管件、PE管件、地垫、PP塑料门窗、PE塑料门窗、PVC塑料门窗、PP塑料地板、PE塑料地板或PVC塑料地板等等。
本实施例生产出的能量塑料母料(按国家红外及工业电热产品质量监督检验中心检验结果)红外辐射波长范围4-16法向全发,法向全发射率≥0.86,负离子浓度12100个/cm3。本发明可与现有技术中的塑料载体树脂,如PVC、PE、EVA、PEVA、PET、LOPE、PP、LLOPE、GPAS等进行混合而生产出功能塑料制品,使其兼有白炭黑、电气石、二氧化钛等的自身的优点。
实施例十三:
本实施例为能量塑料母粒的一种具体制造方法,该方法主要包括下述步骤:
A、将白炭黑进行臭氧氧化处理,本实施例中,白炭黑采用超细的白炭黑,其粒度≤1μm,臭氧氧化处理采用现有技术中的臭氧氧化白炭黑设备对其进行常规的臭氧氧化处理,使白炭黑加强吸附能力(白炭黑也可不进行臭氧氧化处理)。
B、将处理过的白炭黑与纳米级电气石粉剂充分混合作为基料,本实施例中,白炭黑占基料总重量的19%,纳米级电气石粉剂占基料总重量的81%,在混合后的基料内加入超细金红石型二氧化钛充分混合,作为能量原料,本实施例中,超细金红石型二氧化钛的含量为白炭黑与纳米电气石粉剂混合基料总重量和的14%,本实施例中,超细金红石型二氧化钛选用粒度≤1μm的超细金红石型二氧化钛。
C、将混合的能量原料在116℃条件下干燥1.8小时。
D、在干燥后的能量原料中加入分散剂,本实施例中,分散剂采用与基本树脂相关的偶联剂,特别是采用以利于和载体树脂混合的偶联剂,本实施例中,分散剂的加入量为3.6%。
E、将加入分散剂后的能量原料加入塑料载体树脂中,并混合均匀,形成混合材料,本实施例中,塑料载体树脂的加入量占炭黑和纳米级电气石粉混合基料总重量和的17%,本实施例中,塑料载体树脂可为PVC、PE、EVA、PEVA、PET、LDPE、LLOPE或GPPS,视具体应用决定采用哪种。
E1、在加入塑料载体树脂的混合材料中加入偶联剂,并混合均匀,偶联剂的加入量占炭黑和纳米级电气石粉混合基料总重量和的3.4%。具体实施时,混合材料中也可不添加偶联剂,而在塑料母粒生产塑料制品时再添加偶联剂也可以。
F、将上述步骤E1产生的混合材料进行混炼后,用合符该塑料特点混炼性能的挤出机至切粒工序等制成塑料母粒,本实施例中,挤出及切粒工艺采用现有技术中常用的塑料挤出及切粒工艺即可。
采用上述制造方法生产出来的能量塑料母粒可广泛应用于塑料制品的加工中,具体的塑料制品为台布、浴帘、杯垫、餐垫、聚酯长纤维、聚酯短纤维、PVC管材、PE管材、PVC管件、PE管件、地垫、PP塑料门窗、PE塑料门窗、PVC塑料门窗、PP塑料地板、PE塑料地板或PVC塑料地板等等。
本实施例生产出的能量塑料母料(按国家红外及工业电热产品质量监督检验中心检验结果)红外辐射波长范围4-16法向全发,法向全发射率≥0.86,负离子浓度12100个/cm3。本发明可与现有技术中的塑料载体树脂,如PVC、PE、EVA、PEVA、PET、LOPE、PP、LLOPE、GPAS等进行混合而生产出功能塑料制品使其兼有白炭黑、电气石、二氧化钛等的自身的优点。
实施例十四:
本实施例为能量塑料母粒的一种具体制造方法,该方法主要包括下述步骤:
A、将白炭黑进行臭氧氧化处理,本实施例中,白炭黑采用超细的白炭黑,其粒度≤1μm,臭氧氧化处理采用现有技术中的臭氧氧化白炭黑设备对其进行常规的臭氧氧化处理,使白炭黑加强吸附能力(白炭黑也可不进行臭氧氧化处理)。
B、将处理过的白炭黑与纳米级电气石粉剂充分混合作为基料,本实施例中,白炭黑占基料总重量的20%,纳米级电气石粉剂占基料总重量的80%,在混合后的基料内加入超细金红石型二氧化钛充分混合,作为能量原料,本实施例中,超细金红石型二氧化钛的含量为白炭黑与纳米电气石粉剂混合基料总重量和的15%,本实施例中,超细金红石型二氧化钛选用粒度≤1μm的超细金红石型二氧化钛。
C、将混合的能量原料在120℃条件下干燥2小时。
D、在干燥后的能量原料中加入分散剂,本实施例中,分散剂采用与基本树脂相关的偶联剂,特别是采用以利于和载体树脂混合的偶联剂,本实施例中,分散剂的加入量为4%。;
E、将加入分散剂后的能量原料加入塑料载体树脂中,并混合均匀,形成混合材料,本实施例中,塑料载体树脂的加入量占炭黑和纳米级电气石粉混合基料总重量和的18%,本实施例中,塑料载体树脂可为PVC、PE、EVA、PEVA、PET、LDPE、LLOPE或GPPS,视具体应用决定采用哪种。
E1、在加入塑料载体树脂的混合材料中加入偶联剂,并混合均匀,偶联剂的加入量占炭黑和纳米级电气石粉混合基料总重量和的4%。具体实施时,混合材料中也可不添加偶联剂,而在塑料母粒生产塑料制品时再添加偶联剂也可以。
F、将上述步骤E1产生的混合材料进行混炼后,用合符该塑料特点混炼性能的挤出机至切粒工序等制成塑料母粒,本实施例中,挤出及切粒工艺采用现有技术中常用的塑料挤出及切粒工艺即可。
采用上述制造方法生产出来的能量塑料母粒可广泛应用于塑料制品的加工中,具体的塑料制品为台布、浴帘、杯垫、餐垫、聚酯长纤维、聚酯短纤维、PVC管材、PE管材、PVC管件、PE管件、地垫、PP塑料门窗、PE塑料门窗、PVC塑料门窗、PP塑料地板、PE塑料地板或PVC塑料地板等等。
本实施例生产出的能量塑料母料(按国家红外及工业电热产品质量监督检验中心检验结果)红外辐射波长范围4-16法向全发,法向全发射率≥0.86,负离子浓度12100个/cm3。本发明可与现有技术中的塑料载体树脂,如PVC、PE、EVA、PEVA、PET、LOPE、PP、LLOPE、GPAS等进行混合而生产出功能塑料制品,使其兼有白炭黑、电气石、二氧化钛等的自身的优点。
上述具体实施例中列举出的具体数值对本发明进行说明,具体实施时,也可以选用本发明列出范围内的,但是不包括在上述具体数值中的数值参数进行生产,同样可达到相同的效果。
本发明能很好地、合理地利用和发挥了炭黑(白炭黑)、电气石、二氧化钛等功能材料自身的优点和互补作用,解决了以往单一功能材料所制造的塑料产品缺陷,从而使功能塑料更为优化。本发明生产出的能量塑料母料(按国家红外及工业电热产品质量监督检验中心检验结果)红外辐射波长范围4-16法向全发,法向全发射率≥0.86,负离子浓度12100个/cm3。本发明可与现有技术中的塑料载体树脂,如PVC、PE、EVA、PEVA、PET、LOPE、PP、LLOPE、GPAS等进行混合而生产出功能塑料制品,以及利用这些塑料制成台布、浴帘、杯垫、餐垫、聚酯长纤维、聚酯短纤维、PVC管材、PE管材、PVC管件、PE管件、地垫、PP塑料门窗、PE塑料门窗、PVC塑料门窗、PP塑料地板、PE塑料地板或PVC塑料地板等塑料产品,使其兼有炭黑(白炭黑)、电气石、二氧化钛等的自身的优点。

Claims (10)

1、一种能量塑料母粒的制造方法,其特征是:所述的方法包括下述步骤:
A、将炭黑进行臭氧氧化处理;
B、将处理过的炭黑与纳米级电气石粉剂充分混合作为基料,其中,纳米级电气石粉剂占基料总重量的80%-85%,炭黑占基料总重量的15%-20%,在基料中加入超细金红石型二氧化钛并充分混合,作为能量原料,超细金红石型二氧化钛的含量与炭黑和纳米级电气石粉混合基料相比,超细金红石型二氧化钛的重量为混合基料总重量和的10%-15%;
C、将混合的能量原料在100-120℃条件下干燥1-2小时;
D、在干燥后的能量原料中加入分散剂,其中,分散剂的加入量与炭黑和纳米级电气石粉混合基料相比,分散剂的重量为混合基料总重量和的2%-4%;
E、在加入分散剂后的能量原料加入塑料载体树脂中,并混合均匀,形成混合材料,其中,塑料载体树脂的加入量占炭黑和纳米级电气石粉混合基料总重量和的12%-18%;
F、利用生产设备将混合材料制成塑料母粒。
2、根据权利要求1所述的能量塑料母粒的制造方法,其特征是:所述的炭黑能够采用白炭黑替换,当采用白炭黑时,可以将白炭黑进行臭氧氧化处理,也可以不进行臭氧氧化处理。
3、根据权利要求1或2所述的能量塑料母粒的制造方法,其特征是:所述的步骤E后可增设有步骤E1,在加入塑料载体树脂的混合材料中加入偶联剂,并混合均匀,偶联剂的加入量占炭黑和纳米级电气石粉混合基料总重量和的1%-4%。
4、根据权利要求1或2所述的能量塑料母粒的制造方法,其特征是:所述的塑料载体树脂为PVC、PE、EVA、PEVA、PET、LDPE、LLOPE或GPPS。
5、根据权利要求1或2所述的能量塑料母粒的制造方法,其特征是:所述的步骤A中的炭黑为超细炭黑,其为粒度≤1μm的较细炭黑粒子;白炭黑为超细白炭黑,其为粒度≤1μm的较细白炭黑粒子。
6、根据权利要求1所述的能量塑料母粒的制造方法,其特征是:所述的步骤B中的超细金红石型二氧化钛为粒度≤1μm的超细金红石型二氧化钛。
7、根据权利要求3 所述的能量塑料母粒的制造方法,其特征是:所述的偶联剂采用氨基硅烷类偶联剂。
8、根据权利要求1或2所述的能量塑料母粒的制造方法,其特征是:所述的分散剂采用硬脂酸镁。
9、一种含有采用如权利要求1至8中任意一项所述的制造方法制造的能量塑料母粒的塑料制品。
10、根据权利要求9所述的塑料制品,其特征是:所述的塑料制品为台布、浴帘、杯垫、餐垫、聚酯长纤维、聚酯短纤维、PVC管材、PE管材、PVC管件、PE管件、地垫、PP塑料门窗、PE塑料门窗、PVC塑料门窗、PP塑料地板、PE塑料地板或PVC塑料地板。
PCT/CN2010/075549 2010-04-26 2010-07-29 一种能量塑料母粒的制造方法及衍生的塑料产品 WO2011134209A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10850540.5A EP2565220A4 (en) 2010-04-26 2010-07-29 PROCESS FOR THE PREPARATION OF ENERGY PLASTIC PARTICLES FOR MASTER MIXTURE AND PLASTIC PRODUCTS OBTAINED THEREFROM
US13/581,540 US8927628B2 (en) 2010-04-26 2010-07-29 Method for fabricating energy plastic masterbatch and plastic product derived therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010154643.3 2010-04-26
CN 201010154643 CN102234441B (zh) 2010-04-26 2010-04-26 一种能量塑料母粒的制造方法及衍生的塑料产品

Publications (1)

Publication Number Publication Date
WO2011134209A1 true WO2011134209A1 (zh) 2011-11-03

Family

ID=44860801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075549 WO2011134209A1 (zh) 2010-04-26 2010-07-29 一种能量塑料母粒的制造方法及衍生的塑料产品

Country Status (5)

Country Link
US (1) US8927628B2 (zh)
EP (1) EP2565220A4 (zh)
CN (1) CN102234441B (zh)
MY (1) MY155859A (zh)
WO (1) WO2011134209A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104674457B (zh) * 2015-03-18 2017-01-25 吉林大学 一种抗菌型聚对苯二甲酸乙二醇酯复合纤维膜的制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103724776A (zh) * 2014-01-03 2014-04-16 齐齐哈尔大学 含负离子环保发泡儿童游戏拼图地垫及其制备
CN104017351A (zh) * 2014-06-13 2014-09-03 齐齐哈尔大学 一种汽车用产生负离子塑料材料及其制备方法
CN104213242A (zh) * 2014-09-16 2014-12-17 无锡恒诺纺织科技有限公司 一种吸光发热功能性纤维及其纺丝加工工艺及面料
CN106189073A (zh) * 2016-07-26 2016-12-07 方裕辉 碳元素竹纤维加强型茶叶包装用具生产工艺方法及产品
CN108192320A (zh) * 2017-11-27 2018-06-22 广德粤华塑业制品有限公司 一种pu革环保色母粒
CN110845758A (zh) * 2019-11-18 2020-02-28 东莞市悠悠美居家居制造有限公司 立体pvc台布及其生产工艺
CN115926209A (zh) * 2023-02-16 2023-04-07 山东壹贰叁塑胶有限公司 色母粒添加氧化钙的制作及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192927A (ja) * 1999-12-28 2001-07-17 Bene Corp:Kk 電気石練り込み抗菌機能性繊維
CN1478828A (zh) * 2003-08-07 2004-03-03 北京朗诺环保科技有限公司 负离子涂料添加剂
CN1683614A (zh) * 2005-03-09 2005-10-19 丁宏广 能够发射负离子的单丝及其制备方法和用途
CN101148353A (zh) * 2007-08-21 2008-03-26 常州众博复合材料有限公司 能够产生负离子的粉体材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223861A (ja) * 1984-04-20 1985-11-08 Idemitsu Kosan Co Ltd 導電性樹脂組成物の製造法
JP2001104493A (ja) * 1999-10-05 2001-04-17 Tokin Corp ポリマー治療体
CN1566188A (zh) * 2003-06-18 2005-01-19 周秋华 含有黑色电气石的塑料制品及其制法和用途
CN100341583C (zh) * 2005-07-27 2007-10-10 李虹光 负离子自洁开关插座及其制作方法
KR100568611B1 (ko) * 2005-09-23 2006-04-07 주식회사 엘지화학 기능성 내장재 및 그 제조방법
CN100491620C (zh) * 2007-03-06 2009-05-27 天津工业大学 一种功能微粒改性熔喷非织造布的制备方法及制造设备
CN101259080B (zh) * 2007-03-09 2011-11-02 郑州市翱翔医药包装有限公司 一种免硅化输液瓶塞及其制造方法
KR100843976B1 (ko) * 2007-06-04 2008-07-04 이규주 기능성 항균 pe 마스타 배치(master batch)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192927A (ja) * 1999-12-28 2001-07-17 Bene Corp:Kk 電気石練り込み抗菌機能性繊維
CN1478828A (zh) * 2003-08-07 2004-03-03 北京朗诺环保科技有限公司 负离子涂料添加剂
CN1683614A (zh) * 2005-03-09 2005-10-19 丁宏广 能够发射负离子的单丝及其制备方法和用途
CN101148353A (zh) * 2007-08-21 2008-03-26 常州众博复合材料有限公司 能够产生负离子的粉体材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104674457B (zh) * 2015-03-18 2017-01-25 吉林大学 一种抗菌型聚对苯二甲酸乙二醇酯复合纤维膜的制备方法

Also Published As

Publication number Publication date
EP2565220A4 (en) 2014-06-18
EP2565220A1 (en) 2013-03-06
CN102234441B (zh) 2012-10-24
US8927628B2 (en) 2015-01-06
MY155859A (en) 2015-12-15
CN102234441A (zh) 2011-11-09
US20120322914A1 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
WO2011134209A1 (zh) 一种能量塑料母粒的制造方法及衍生的塑料产品
WO2011027960A2 (ko) 화장품용 색조캡슐 조성물, 이의 제조방법 및 이를 이용한 화장품 제제
WO2015111784A1 (ko) 바닥재 및 바닥재의 제조방법
WO2011108856A4 (ko) 닫힌셀의 팽창 퍼라이트를 이용한 보온재
WO2022103116A1 (ko) 이차전지 폐분리막을 이용한 복합수지 조성물의 제조 방법
WO2017074087A1 (ko) 내마모성 및 치수안정성이 우수한 비-폴리염화비닐 재활용성 친환경 바닥재
WO2020235983A1 (ko) 이차전지 폐분리막을 이용한 복합수지 조성물의 제조 방법
WO2016122136A1 (ko) 바닥재용 투명필름, 이의 제조방법 및 이를 포함하는 바닥재
WO2017069558A1 (ko) 다공성 단일 수지 섬유 복합재 및 다공성 단일 수지 섬유 복합재를 제조하는 방법
WO2024058461A1 (ko) 차열 기능 조성물을 이용한 미끄럼 방지 도료
WO2017135569A1 (ko) 자외선 차단 효과가 우수한 화장품 및 그 제조 방법
WO2018074889A2 (ko) 그라파이트 시트의 제조방법
WO2020080844A1 (ko) 열 차폐 필름 및 그 제조방법
EP3289015A1 (en) Polymer composition, molded article, and method of manufacturing the molded article
WO2018182111A1 (ko) 탄소나노튜브 분산액 및 이의 제조방법
WO2016175402A1 (en) Polymer composition, molded article, and method of manufacturing the molded article
WO2020262726A1 (ko) 패각을 이용한 친환경 산업자재용 조성물
WO2020242169A1 (ko) 마감재 조성물, 이의 제조방법 및 이를 이용한 시공방법
WO2024025057A1 (ko) 섬유 코팅 방법
WO2016171485A1 (ko) 친수성 및 방오성, 내후성이 향상된 광촉매 시트 및 그의 제조방법
WO2018048276A1 (ko) 다공성 섬유강화 복합재 및 이를 제조하는 방법
WO2022191433A1 (ko) 도료 조성물 및 그의 제조방법
WO2022145821A1 (ko) 복합 유리 조성물 및 그 제조 방법과, 이를 포함하는 조리기기
WO2018194284A1 (ko) 복합 백색 안료
WO2011108887A2 (ko) 친환경 pvc 조성물, 이의 제조방법 및 이를 포함하여 이루어진 건축재

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850540

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13581540

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010850540

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010850540

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE