WO2022181635A1 - 環状オレフィン共重合体およびその水素化物、並びに、光学素子 - Google Patents

環状オレフィン共重合体およびその水素化物、並びに、光学素子 Download PDF

Info

Publication number
WO2022181635A1
WO2022181635A1 PCT/JP2022/007372 JP2022007372W WO2022181635A1 WO 2022181635 A1 WO2022181635 A1 WO 2022181635A1 JP 2022007372 W JP2022007372 W JP 2022007372W WO 2022181635 A1 WO2022181635 A1 WO 2022181635A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclic olefin
olefin copolymer
naphthylnorbornene
mol
group
Prior art date
Application number
PCT/JP2022/007372
Other languages
English (en)
French (fr)
Inventor
聖 山田
浩成 摺出寺
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US18/262,417 priority Critical patent/US20240218113A1/en
Priority to CN202280015378.1A priority patent/CN116867832A/zh
Priority to JP2023502454A priority patent/JPWO2022181635A1/ja
Priority to KR1020237028169A priority patent/KR20230147622A/ko
Priority to EP22759670.7A priority patent/EP4299646A1/en
Publication of WO2022181635A1 publication Critical patent/WO2022181635A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3324Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/72Derivatisation
    • C08G2261/724Hydrogenation

Definitions

  • the present invention relates to a cyclic olefin copolymer, a hydrogenated cyclic olefin copolymer, and an optical element.
  • Patent Document 1 discloses a norbornene ring-opening (co)polymer having excellent transparency and heat resistance, high solubility in organic solvents, and unique birefringence and wavelength dependence. It is Further, Patent Document 2 discloses a cycloolefin copolymer that effectively develops reverse wavelength dispersion of birefringence and a film made of the copolymer. Further, Patent Document 3 discloses a cyclic olefin-based copolymer that has a high refractive index and can adjust the Abbe number to a low level, and a medical container that is less discolored by electron beam or gamma ray irradiation and has excellent transparency. disclosed.
  • optical elements such as optical lenses
  • a resin that has a high refractive index and heat resistance, and a low birefringence when used as an optical element.
  • an object of the present invention is to provide a resin capable of simultaneously achieving a high refractive index, high heat resistance and low birefringence.
  • the inventor of the present invention conducted intensive studies with the aim of solving the above problems. Then, the present inventors have found a cyclic olefin copolymer obtained by hydrogenating a cyclic olefin copolymer obtained by polymerizing a monomer composition containing a mixture of 1-naphthylnorbornene and 2-naphthylnorbornene having a predetermined average endo body ratio. The present inventors have newly found that an olefin copolymer hydride can simultaneously exhibit a high refractive index, high heat resistance and low birefringence, and completed the present invention.
  • the object of the present invention is to advantageously solve the above problems, and the cyclic olefin copolymer of the present invention comprises a structural unit derived from 1-naphthylnorbornene and a structure derived from 2-naphthylnorbornene. unit, and the average endo form ratio of the 1-naphthylnorbornene and the 2-naphthylnorbornene is 50 mol% or more.
  • a resin cyclic olefin copolymer hydride
  • the cyclic olefin copolymer of the present invention is useful as a raw material for resins capable of simultaneously exhibiting high refractive index, high heat resistance and low birefringence.
  • the "average endo form ratio of 1-naphthylnorbornene and 2-naphthylnorbornene" can be determined, for example, using the method described in Examples.
  • the total ratio of structural units derived from 1-naphthylnorbornene and structural units derived from 2-naphthylnorbornene in all structural units is 30 mol% or more and 70 mol% or less. is preferred. If the total ratio of the structural units derived from 1-naphthylnorbornene and the structural units derived from 2-naphthylnorbornene is within the above range, a high refractive index, high heat resistance and low birefringence can be achieved at even higher levels. It becomes possible to obtain a resin.
  • the "proportion of each structural unit" can be measured using a nuclear magnetic resonance (NMR) method.
  • the ratio of structural units derived from 1-naphthylnorbornene to the total of structural units derived from 1-naphthylnorbornene and structural units derived from 2-naphthylnorbornene is 1 mol% or more. It is preferably 30 mol % or less. If the proportion of the structural unit derived from 1-naphthylnorbornene is within the above range, it is possible to obtain a resin in which a high refractive index, high heat resistance and low birefringence are simultaneously achieved at even higher levels.
  • the cyclic olefin copolymer of the present invention preferably further contains structural units derived from norbornene-based monomers other than 1-naphthylnorbornene and 2-naphthylnorbornene.
  • the cyclic olefin copolymer of the present invention is preferably a ring-opening polymer.
  • Another object of the present invention is to advantageously solve the above problems, and the hydrogenated cyclic olefin copolymer of the present invention is obtained by hydrogenating any of the cyclic olefin copolymers described above. characterized by being The hydrogenated cyclic olefin copolymer obtained by hydrogenating the cyclic olefin copolymer described above has a high refractive index, high heat resistance, and low birefringence, and is therefore useful as a material for optical elements such as optical lenses.
  • the hydrogenated cyclic olefin copolymer of the present invention preferably has a glass transition temperature of 135°C or higher. If the glass transition temperature is 135°C or higher, the heat resistance can be further improved. In addition, in this invention, a "glass transition temperature" can be measured based on JISK6911 using differential scanning calorimetry.
  • the optical element of the present invention is characterized by containing any of the hydrogenated cyclic olefin copolymers described above.
  • the hydrogenated cyclic olefin copolymer described above an optical element having a high refractive index, high heat resistance, and low birefringence can be obtained.
  • a resin having a high refractive index, high heat resistance and low birefringence, and a copolymer useful as a raw material thereof can be obtained.
  • an optical element having a high refractive index, high heat resistance, and low birefringence can be obtained.
  • the cyclic olefin copolymer of the present invention is not particularly limited, and may be used as a material for various molded articles such as optical elements. can be used for Moreover, the hydrogenated cyclic olefin copolymer of the present invention can be suitably used as a material for the optical element (eg, optical lens, etc.) of the present invention without any particular limitation.
  • the optical element eg, optical lens, etc.
  • the cyclic olefin copolymer of the present invention contains 1-naphthylnorbornene and 2-naphthylnorbornene, and optionally, norbornene-based monomers other than 1-naphthylnorbornene and 2-naphthylnorbornene (hereinafter referred to as "other norbornene-based monomers. It is obtained by polymerizing a monomer composition which may further contain at least one of a non-norbornene-based monomer and a non-norbornene monomer.
  • the cyclic olefin copolymer of the present invention contains structural units derived from 1-naphthylnorbornene and structural units derived from 2-naphthylnorbornene, and optionally structures derived from other norbornene-based monomers. unit and at least one of a structural unit derived from a non-norbornene monomer.
  • the cyclic olefin copolymer of the present invention requires that the average endo form ratio of 1-naphthylnorbornene and 2-naphthylnorbornene used in polymerization is 50 mol % or more.
  • 1-naphthylnorbornene exo-1-naphthylnorbornene, endo-1-naphthylnorbornene, or a mixture thereof can be used as long as the desired average endo body ratio can be satisfied.
  • 1-naphthylnorbornene bicyclo[2,2,1]hepta- in which a 1-naphthyl group is attached to position number 5 of norbornene (bicyclo[2,2,1]hept-2-ene) 2-ene-5-(1-naphthyl) is preferred.
  • 2-naphthylnorbornene which can form a structural unit derived from 2-naphthylnorbornene, has an exo bond and an endo bond as bonding modes of the 2-naphthyl group to the norbornene ring.
  • 2-naphthylnorbornene exo-2-naphthylnorbornene, endo-2-naphthylnorbornene, or a mixture thereof can be used as long as the desired average endo body ratio can be satisfied.
  • bicyclo[2,2,1]hepta- in which a 2-naphthyl group is bonded to position number 5 of norbornene (bicyclo[2,2,1]hept-2-ene) 2-ene-5-(2-naphthyl) is preferred.
  • the average endo body ratio of 1-naphthylnorbornene used to form structural units derived from 1-naphthylnorbornene and 2-naphthylnorbornene used to form structural units derived from 2-naphthylnorbornene was 50 mol%. It is preferably 60 mol % or more, more preferably 70 mol % or more, and even more preferably 80 mol % or more.
  • the cyclic olefin copolymer includes structural units derived from exo-1-naphthylnorbornene, structural units derived from endo-1-naphthylnorbornene, structural units derived from exo-2-naphthylnorbornene and endo-2-naphthyl
  • the total ratio of structural units derived from endo-1-naphthylnorbornene and structural units derived from endo-2-naphthylnorbornene to the total structural units derived from norbornene is required to be 50 mol% or more, and 60 mol % or more, more preferably 70 mol % or more, and even more preferably 80 mol % or more.
  • the hydrogenated cyclic olefin copolymer obtained by hydrogenating the cyclic olefin copolymer can have a high refractive index, high heat resistance, and low birefringence at high levels. It becomes possible.
  • the upper limit of the average endo body ratio mentioned above is not particularly limited.
  • the total ratio of structural units derived from 1-naphthylnorbornene and structural units derived from 2-naphthylnorbornene in all structural units is preferably 30 mol% or more, and 35 mol%. It is more preferably 40 mol % or more, more preferably 70 mol % or less, more preferably 65 mol % or less, and even more preferably 60 mol % or less.
  • the hydrogenated cyclic olefin copolymer obtained by hydrogenating the cyclic olefin copolymer, High refractive index, high heat resistance and low birefringence can be combined at higher levels.
  • the ratio of structural units derived from 1-naphthylnorbornene to the total of structural units derived from 1-naphthylnorbornene and structural units derived from 2-naphthylnorbornene is preferably 1 mol% or more, and 5 mol% or more. more preferably 10 mol % or more, preferably 30 mol % or less, more preferably 25 mol % or less, and even more preferably 20 mol % or less.
  • the hydrogenated cyclic olefin copolymer obtained by hydrogenating the cyclic olefin copolymer will have a high refractive index, high heat resistance and low birefringence. It is possible to parallelize them at a higher level.
  • Other norbornene-based monomers capable of forming structural units derived from other norbornene-based monomers are not particularly limited, and include norbornene-based monomers having no naphthyl group, and 1-naphthyl. Examples include norbornene-based monomers having a naphthyl group other than norbornene and 2-naphthylnorbornene.
  • the norbornene-based monomer having no naphthyl group is not particularly limited as long as it has a norbornene ring and does not have a naphthyl group.
  • unsubstituted or alkyl-bearing norbornenes such as norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-hexylnorbornene, 5-decylnorbornene, 5-cyclohexylnorbornene, 5-cyclopentylnorbornene; norbornenes having an alkenyl group such as 5-ethylidenenorbornene, 5-vinylnorbornene, 5-propenylnorbornene, 5-cyclohexenylnorbornene, 5-cyclopentenylnorbornene; norbornenes having an aromatic ring such as 5-phenylnorbornene; 5-methoxycarbonylnorbornene, 5-
  • aromatic rings such as 0 4,9 ]pentadeca-4,6,8,13-tetraene (also referred to as 1,4-methano-1,4,4a,9,9a,10-hexahydroanthracene) polycyclic norbornenes of; tetracyclododecene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene, 8-cyclohexyltetracyclododecene, 8-cyclopentyltetracyclododecene, 8-methoxycarbonyl-8-methyltetracyclo[4. 4.0.1 2,5 .
  • the norbornene-based monomer having a naphthyl group is not particularly limited as long as it is a compound having a norbornene ring and a naphthyl group.
  • other norbornene-based monomers include nonpolar norbornene-based monomers.
  • norbornenes having an alkyl group e.g., norbornene, 8-ethyltetracyclododecene
  • norbornenes having an alkenyl group e.g., ethylidenetetracyclododecene (8-ethylidenetetracyclododecene)
  • dicyclopentadiene norbornene derivatives having an aromatic ring (e.g., tetracyclo[9.2.1.0 2,10 .0 3,8 ]tetradeca-3,5,7,12-tetraene (1,4-methano -1,4,4a,9a-tetrahydro-9H-fluorene)
  • unsubstituted or alkyl-containing tetracyclododecenes e.g., tetracyclododecene, 8-methoxycarbonyl-8-methyltetracyclo[ 4.4.
  • norbornene-based monomers mentioned above can be used alone or in combination of two or more.
  • Other norbornene-based monomers may be a mixture of isomers.
  • the ratio of structural units derived from other norbornene-based monomers in all structural units is preferably 30 mol% or more, more preferably 35 mol% or more, and 40 mol%. % or more, preferably 70 mol % or less, more preferably 65 mol % or less, and even more preferably 60 mol % or less.
  • the non-norbornene-based monomer capable of forming a structural unit derived from a non-norbornene-based monomer is not particularly limited as long as it is a copolymerizable compound having no norbornene ring.
  • Examples include cyclobutene and cyclopentene. , cyclohexene, 3,4-dimethylcyclopentene, 3-methylcyclohexene, 2-(2-methylbutyl)-1-cyclohexene, cyclooctene, 3a,5,6,7a-tetrahydro-4,7-methano-1H-indene, etc.
  • non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene and 1,7-octadiene; These non-norbornene monomers can be used alone or in combination of two or more.
  • the proportion of structural units derived from non-norbornene monomers in all structural units is preferably 30 mol% or less, more preferably 10 mol% or less, and 5 mol%. More preferably: The proportion of structural units derived from non-norbornene monomers in all structural units may be 0 mol %.
  • the cyclic olefin copolymer of the present invention contains the above-described 1-naphthylnorbornene and 2-naphthylnorbornene, and optionally further contains at least one of other norbornene-based monomers and non-norbornene-based monomers. It is a copolymer formed by polymerizing the composition.
  • the polymerization may be either ring-opening polymerization or addition polymerization, and one cyclic olefin copolymer contains both a ring-opening polymerized portion and an addition-polymerized portion. good too.
  • the polymerization is preferably ring-opening polymerization. That is, the cyclic olefin copolymer of the present invention is preferably a ring-opening polymer, specifically a ring-opening polymer polymerized by ring-opening norbornene rings.
  • the cyclic olefin copolymer of the present invention is not particularly limited, and includes, for example, 1-naphthylnorbornene and 2-naphthylnorbornene, and optionally at least other norbornene-based monomers and non-norbornene-based monomers.
  • the ratio of each monomer in the monomer composition is adjusted according to the ratio of structural units derived from the monomer in the desired cyclic olefin copolymer.
  • 1-naphthylnorbornene and 2-naphthylnorbornene used for polymerization are, for example, palladium coupling reaction (e.g., reaction of norbornadiene and bromonaphthalene), Diels-Alder reaction (e.g., reaction of cyclopentadiene and vinylnaphthalene), etc. can be manufactured.
  • the 1-naphthylnorbornene and 2-naphthylnorbornene are not particularly limited, and 1-naphthylnorbornene and 2-naphthylnorbornene having different endo body content ratios are mixed so as to achieve a desired average endo body ratio. can be used
  • the monomer composition can be subjected to ring-opening metathesis polymerization in the presence of a metathesis polymerization catalyst.
  • Ring-opening metathesis polymerization may be carried out in a reaction system in which a monomer composition and a metathesis polymerization catalyst are mixed in a solvent (for example, an organic solvent).
  • the reaction system may further contain activators, chain transfer agents and other auxiliary agents (eg Lewis bases). Reagents such as catalysts used in the ring-opening polymerization and reaction conditions are described below.
  • a transition metal imide complex represented by Formula (1) can be used as a metathesis polymerization catalyst.
  • M is a metal atom selected from transition metal atoms of Group 6 of the periodic table
  • R a is a phenyl group optionally having a substituent at at least one of the 3, 4 and 5 positions or a group represented by —CH 2 R c , where R c is a hydrogen atom , an optionally substituted alkyl group or an optionally substituted aryl group, R b is an optionally substituted alkyl group or an optionally substituted aryl group
  • X is a halogen atom, an alkyl group, an aryl group, an aralkyl group or an alkylsilyl group;
  • L is an electron-donating neutral ligand
  • p is 0 or 1
  • q is an integer from 0 to 2; when there are multiple X's, the multiple X'
  • M in Formula (1) is a transition metal atom of Group 6 of the periodic table and can be selected from chromium, molybdenum and tungsten. Among them, molybdenum and tungsten are preferred, and tungsten is more preferred.
  • R a is a substituent on the nitrogen atom that constitutes the metal imide bond.
  • R a in formula (1) is a phenyl group optionally having a substituent at at least one of the 3, 4 and 5 positions or a group represented by —CH 2 R c .
  • an alkyl group for example, an alkyl group having 1 to 4 carbon atoms such as a methyl group and an ethyl group
  • halogen atoms e.g., fluorine atom, chlorine atom, bromine atom, etc.
  • alkoxy group e.g., alkoxy group having 1 to 4 carbon atoms such as methoxy group, ethoxy group, isopropoxy group
  • substituents present at at least two positions of 3, 4 and 5 may be bonded to each other.
  • phenyl group optionally having a substituent at at least one of the 3, 4 and 5 positions, phenyl group; 4-methylphenyl group, 4-chlorophenyl group, 3-methoxyphenyl group, 4-cyclohexylphenyl group, monosubstituted phenyl group such as 4-methoxyphenyl group; Disubstituted phenyl groups such as 3,5-dimethylphenyl group, 3,5-dichlorophenyl group, 3,4-dimethylphenyl group and 3,5-dimethoxyphenyl group; trisubstituted phenyl groups such as 3,4,5-trimethylphenyl group and 3,4,5-trichlorophenyl group; 2-naphthyl group, 3-methyl-2-naphthyl group, 2-naphthyl group optionally having substituents such as 4-methyl-2-naphthyl group; etc.
  • the number of carbon atoms in the optionally substituted alkyl group of R c in the group represented by —CH 2 R c of R a is not particularly limited, and is usually 1 to 20, preferably 1 to 10. , more preferably 1-4.
  • This alkyl group may be linear or branched.
  • Substituents are not particularly limited, for example, phenyl group, optionally substituted phenyl group (e.g., 4-methylphenyl group, etc.); alkoxy group (e.g., methoxy group, ethoxy group, etc. 1 to 4 alkoxy groups);
  • the aryl group which may have a substituent for R c includes a phenyl group, a 1-naphthyl group, a 2-naphthyl group and the like. Substituents are not particularly limited, for example, phenyl group, optionally substituted phenyl group (e.g., 4-methylphenyl group, etc.); alkoxy group (e.g., methoxy group, ethoxy group, etc. 1 to 4 alkoxy groups);
  • R c is alkyl having 1 to 20 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, hexyl group, octyl group and decyl group; groups are preferred.
  • X is a halogen atom, an alkyl group, an aryl group, an aralkyl group or an alkylsilyl group. X may be the same or different.
  • Halogen atoms for X include chlorine, bromine and iodine atoms.
  • alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, and neopentyl groups.
  • Aryl groups include phenyl, 4-methylphenyl, 2,6-dimethylphenyl, 1-naphthyl, and 2-naphthyl groups.
  • a benzyl group, a neophyll group, etc. are mentioned as an aralkyl group.
  • the alkylsilyl group includes trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group and the like.
  • Formula (1) is 0 or 1
  • Formula (1) may have one metal alkoxide bond or one metal aryloxide bond (OR b ).
  • Rb is a substituent on an oxygen atom that forms a metal alkoxide bond or a metal aryloxide bond.
  • R b is an alkyl group optionally having substituent(s) or an aryl group optionally having substituent ( s); Those exemplified as the aryl group optionally having and preferred examples apply.
  • L includes an electron-donating compound containing an atom of group 14 or group 15 of the periodic table, Phosphines such as trimethylphosphine, triisopropylphosphine, tricyclohexylphosphine and triphenylphosphine; Ethers such as diethyl ether, dibutyl ether, 1,2-dimethoxyethane, tetrahydrofuran, tetrahydropyran; Amines such as trimethylamine, triethylamine, pyridine, lutidine; etc. Among these, ethers are preferred.
  • tungsten imide complex having a phenylimide group (wherein M is a tungsten atom and Ra is a phenyl group) is preferable, and tetrachlorotungsten Phenylimide (tetrahydrofuran) and tetrachlorotungstenphenylimide (tetrahydropyran) are more preferred.
  • the transition metal imide complex of formula (1) may be used alone or in combination of two or more.
  • the transition metal imide complex of formula (1) comprises a Group 6 transition metal oxyhalide and phenyl isocyanates optionally having a substituent at at least one of the 3-, 4- and 5-positions, or monosubstituted
  • the synthesized transition metal imide complex may be purified and isolated by crystallization or the like, and then used in the ring-opening polymerization reaction, or the obtained mixed solution may be used as the catalyst solution as it is without purification. .
  • the amount of the transition metal imide complex of formula (1) used can be 0.00005 mol% or more and 1 mol% or less, preferably 0.0001 mol% or more and 0.7 mol% or less, relative to 100 mol% of the monomer, 0.0002 mol % or more and 0.5 mol % or less is more preferable. Within the above range, difficulty in removing the catalyst can be sufficiently avoided, and sufficient polymerization activity can be obtained.
  • transition metal imide complex of formula (1) exhibits catalytic activity by itself, it can become a more active polymerization catalyst by combining it with an activator.
  • Activators include compounds of Groups 1, 2, 12, 13, and 14 of the periodic table having a hydrocarbon group (eg, alkyl group) with 1 to 20 carbon atoms.
  • a hydrocarbon group eg, alkyl group
  • organic lithium, organic magnesium, organic zinc, organic aluminum, or organic tin is preferably used, and organic aluminum or organic tin is particularly preferably used.
  • organic lithium examples include methyllithium, n-butyllithium and phenyllithium.
  • Organic magnesium includes butylethylmagnesium, butyloctylmagnesium, dihexylmagnesium, ethylmagnesium chloride, n-butylmagnesium chloride, allylmagnesium bromide and the like.
  • organic zinc examples include dimethyl zinc, diethyl zinc and diphenyl zinc.
  • organic aluminum examples include trimethylaluminum, triethylaluminum, triisobutylaluminum, diethylaluminum chloride, ethylaluminum sesquichloride, ethylaluminum dichloride, diethylaluminum ethoxide, diisobutylaluminum isobutoxide, ethylaluminum diethoxide, isobutylaluminum diisobutoxide, and the like. is mentioned.
  • Organic tin includes tetramethyltin, tetra(n-butyl)tin, tetraphenyltin, and the like.
  • the activator may be used alone or in combination of two or more.
  • the amount used can be 0.1 to 100 mol times, preferably 0.2 to 50 mol times, the transition metal imide complex of formula (1). It is more preferably 0.5 mol times or more and 20 mol times or less. Within the above range, the use of the activator can sufficiently improve the polymerization activity, and the occurrence of side reactions can be sufficiently avoided.
  • Lewis bases can be added to control the polymerization rate and the molecular weight distribution of the resulting copolymer.
  • Lewis bases include ethers such as diethyl ether and tetrahydrofuran; ketones such as acetone and cyclohexanone; nitriles such as acetonitrile and benzonitrile; amines such as triethylamine and N,N-diethylaniline; phosphines such as triphenylphosphine; amides such as dimethylformamide; sulfoxides such as dimethylsulfoxide; phosphine oxides such as triphenylphosphine oxide; Among these, ethers, pyridines, and nitriles are preferred. Lewis bases may be used alone or in combination of two or more.
  • the amount used can be 0.1 to 1,000 mol times, preferably 0.2 to 500 mol times, the transition metal imide complex of formula (1). , more preferably 0.5 mol times or more and 200 mol times or less.
  • a chain transfer agent can be used in the polymerization reaction. By using a chain transfer agent, it is possible to adjust the molecular weight of the obtained ring-opening polymer and to effectively reduce the content of dimers and the like.
  • Chain transfer agents include ⁇ -olefins, internal olefins, and aromatic vinyl compounds.
  • Internal olefins refer to compounds that have double bonds internal to the olefin chain rather than at the ends.
  • Aromatic vinyl compounds include compounds having substituents (eg, alkyl groups) on the vinyl group.
  • Examples of ⁇ -olefins include alkenes having 2 to 20 carbon atoms and having a double bond at the ⁇ position, such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1 -butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl -1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, etc.
  • alkenes having 2 to 20 carbon atoms and having a double bond at the ⁇ position such as ethylene, propylene, 1-butene, 1-pentene
  • Internal olefins include 2-butene, 3-hexene, and the like.
  • aromatic vinyl compounds include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene and the like. is mentioned.
  • 1-hexene, styrene and 1-decene are preferred, and 1-hexene and styrene are more preferred, from the viewpoint of reactivity and molecular weight controllability.
  • the chain transfer agent may be used alone or in combination of two or more.
  • the amount of the chain transfer agent used can be 0.1 mol% or more and less than 15 mol% with respect to 100 mol% of the monomer. Within the above range, the effect of using the chain transfer agent can be sufficiently obtained.
  • the chain transfer agent is preferably 0.3 mol% or more and less than 10 mol%, more preferably 0.5 mol% or more and 9 mol% or less, and even more preferably 1 mol% or more and 6 mol% or less. .
  • the organic solvent is not particularly limited as long as it can dissolve or disperse the monomers and the target copolymer and is inert to the reaction.
  • Aliphatic hydrocarbons such as pentane, hexane, heptane; Alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, decahydronaphthalene, bicycloheptane, tricyclodecane, hexahydroindene, and cyclooctane; aromatic hydrocarbons such as benzene, toluene and xylene; Halogenated aliphatic hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane; Halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzen
  • the organic solvent may be used alone or in combination of two or more.
  • the organic solvent can be used in an amount such that the monomer concentration is 1% by mass or more and 50% by mass or less, and the monomer concentration is preferably 2% by mass or more and 45% by mass or less. 40% by mass or less is more preferable. If it is the said range, productivity will be sufficient and it will be convenient also from the point of handleability.
  • the ring-opening polymerization reaction can be carried out by stirring a monomer, a transition metal imide complex of formula (1), an optional activator, and a chain transfer agent in an ordinary organic solvent. At least a portion of the system monomers (1-naphthylnorbornene, 2-naphthylnorbornene and other norbornene-based monomers) may be added continuously.
  • Components other than norbornene-based monomers to be added continuously should be charged into the reactor in advance and stirred. Stirring of the reaction solution in the reactor can be continued even during the continuous addition of the norbornene-based monomer to allow the polymerization reaction to proceed.
  • the norbornene-based monomers that are added continuously may be the total amount or a part of them. From the viewpoint of reaction selectivity and reaction stability, it is preferable to charge a part of the norbornene-based monomer which is continuously added and the remainder into the reactor in advance.
  • the amount of the norbornene-based monomer preliminarily charged into the reactor can be 0.1% by mass or more and 70% by mass or less when the total amount is 100% by mass, and 0.5% by mass or more and 50% by mass. % or less is preferable, and 1% by mass or more and 35% by mass or less is more preferable. Within the above range, the weight-average molecular weight of the resulting copolymer can be easily controlled.
  • the continuous addition of the norbornene-based monomer can be carried out by continuously dropping the liquid dissolved or dispersed in the above-mentioned organic solvent.
  • concentration of the norbornene-based monomer in the liquid can be 1% by mass or more and 50% by mass or less, preferably 2% by mass or more and 45% by mass or less, and more preferably 3% by mass or more and 40% by mass or less. Within this range, the productivity is sufficient and the handling is convenient.
  • the time of continuous addition can be 20 minutes or more and 200 minutes or less. From the viewpoint of stereochemistry control, it is preferably 40 minutes or more and 180 minutes or less, more preferably 60 minutes or more and 160 minutes or less.
  • the polymerization temperature can be 20°C or higher and 60°C or lower. From the viewpoint of stereochemistry control, the temperature is preferably 25° C. or higher and 55° C. or lower, more preferably 30° C. or higher and 50° C. or lower.
  • the continuous addition of the norbornene-based monomer is carried out so that the polymerization conversion of the norbornene-based monomer in the polymerization reaction system at the end of the continuous addition is 40% or more from the viewpoint of controlling the molecular weight. is preferred.
  • the polymerization conversion rate is more preferably 60% or more.
  • the polymerization conversion rate can be controlled by adjusting the addition conditions such as the rate of addition of the norbornene monomer and the polymerization reaction conditions such as the polymerization temperature. When the conditions other than the rate of addition are the same, the higher the rate, the higher the polymerization conversion rate, and the lower the rate, the lower the polymerization conversion rate. The higher the temperature, the higher the polymerization conversion rate. , the lower the temperature, the lower the polymerization conversion rate tends to be. Although the upper limit is not particularly limited, it is usually 99% or less.
  • the mixing and stirring time after completion of the addition can be 15 minutes or more and 300 minutes or less. From the viewpoint of polymerization conversion rate and productivity, the mixing and stirring time is preferably 20 minutes or more and 270 minutes or less, more preferably 30 minutes or more and 240 minutes or less.
  • At least part of the transition metal imide complex may be added continuously.
  • the transition metal imide complex to be added continuously can be added dropwise continuously as a liquid dissolved or dispersed in the aforementioned organic solvent.
  • the concentration of the transition metal imide complex in the liquid can be 0.01% by mass or more and 20% by mass or less. From the viewpoint of solution stability of the complex, the concentration of the transition metal imide complex is preferably 0.1% by mass or more and 15% by mass or less, more preferably 0.5% by mass or more and 10% by mass or less.
  • the timing of continuous addition may be the same as or different from the timing of continuous addition of norbornene-based monomers.
  • the amount of continuous addition of the chain transfer agent is set to 0.060 mol/min or more from the viewpoint of controlling stereochemistry and reducing the content of dimers and the like.
  • An amount that is 0.080 mol/min or more is preferable, and an amount that is 2.000 mol/min or less is preferable, and an amount that is 1.000 mol/min or less is preferable. preferable.
  • the addition polymerization can be carried out in the presence of, for example, a Ziegler-Natta catalyst, a metallocene catalyst, a nickel catalyst, or a palladium catalyst.
  • the addition polymerization may be carried out under reaction conditions that are appropriately modified from known reaction conditions.
  • the copolymer obtained in the polymerization step can be recovered as a cyclic olefin copolymer.
  • the cyclic olefin copolymer can be precipitated by mixing the reaction solution with a precipitant (for example, a poor solvent such as isopropanol or methanol), and the cyclic olefin copolymer can be recovered as a precipitate.
  • the recovered cyclic olefin copolymer may be dried (eg, vacuum dried).
  • the hydrogenated cyclic olefin copolymer of the present invention is obtained by hydrogenating the cyclic olefin copolymer of the present invention described above.
  • the hydrogenated cyclic olefin copolymer obtained by hydrogenating the cyclic olefin copolymer of the present invention described above can simultaneously exhibit a high refractive index, high heat resistance and low birefringence.
  • the cyclic olefin copolymer of the present invention may have carbon-carbon unsaturated bonds in its main chain. Further, depending on the type of monomer used for polymerization, a carbon-carbon unsaturated bond may be present in the main chain, a substituent bonded to a five-membered ring, or a condensed ring with a five-membered ring (hereinafter referred to as a side chain). may also have By hydrogenating the cyclic olefin copolymer, a hydrogenated product is obtained in which at least a portion of these carbon-carbon unsaturated bonds are hydrogenated to become saturated bonds.
  • hydrogenation can be performed by supplying hydrogen to a solution of the cyclic olefin copolymer in the presence of a hydrogenation catalyst and causing an addition reaction.
  • the hydrogenation catalyst is preferably a catalyst that hydrogenates carbon-carbon double bonds in the main chain and does not hydrogenate aromatic rings (eg, naphthalene rings of naphthyl groups).
  • Examples of such hydrogenation catalysts include ruthenium catalysts (chlorohydridocarbonyltris(triphenylphosphine)ruthenium) and palladium catalysts.
  • Addition of hydrogen may be carried out, for example, by supplying hydrogen at a high pressure (eg, 1 MPa or higher) and stirring at a high temperature (eg, 120° C. or higher).
  • the obtained hydrogenated cyclic olefin copolymer can be recovered, for example, using the same method as described above for the cyclic olefin copolymer.
  • the hydrogenated cyclic olefin copolymer of the present invention is sufficiently hydrogenated.
  • the hydrogenation rate of the hydrogenated cyclic olefin copolymer of the present invention is preferably 90 mol % or more, more preferably 95 mol % or more, and even more preferably 99 mol % or more.
  • the hydrogenation rate is the hydrogenation rate of the carbon-carbon unsaturated bond in the main chain, and aromatic rings such as naphthalene rings are usually not hydrogenated.
  • the hydrogenated cyclic olefin copolymer of the present invention preferably has the following physical properties.
  • the glass transition temperature of the hydrogenated cyclic olefin copolymer is preferably 135°C or higher, more preferably 140°C or higher.
  • the glass transition temperature of the hydrogenated cyclic olefin copolymer is not particularly limited, and may be 250°C or lower.
  • the refractive index (n d ) of the hydrogenated cyclic olefin copolymer is preferably 1.550 or more, more preferably 1.560 or more, in order to exhibit the optical function of the optical element. .
  • the refractive index (n d ) of the hydrogenated cyclic olefin copolymer is preferably 1.640 or less, more preferably 1.635 or less, in order to function as an optical element.
  • the refractive index can change depending on the wavelength and temperature. In this specification, the refractive index refers to the refractive index (n d ) at 25° C. for light with a wavelength of 587.6 nm.
  • the slow axis when the slow axis is in the stretching direction, it shows a positive value, and when the slow axis is perpendicular to the stretching direction, it shows a negative value.
  • the stress birefringence (C R ) of the hydrogenated cyclic olefin copolymer is preferably 750 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and 400 ⁇ 10 ⁇ 1 to suppress variations in the quality of optical elements. It is more preferably 12 Pa ⁇ 1 or less.
  • the hydrogenated cyclic olefin copolymer of the present invention can be used as a composition.
  • the composition comprises the cyclic olefin copolymer hydride of the present invention and optionally a weather stabilizer, a heat stabilizer, an antistatic agent, a flame retardant, a slip agent, an antiblocking agent, an antifog agent, a lubricant, a dye, It further contains additives such as pigments, natural oils, synthetic oils, waxes, fillers, and solvents.
  • the hydrogenated cyclic olefin copolymer of the present invention, the additive and the solvent can be mixed using a known mixing method.
  • the additive specifically, for example, those exemplified in JP-A-2005-330465 can be used.
  • a solvent known solvents, such as the organic solvent mentioned above, can be used.
  • the hydrogenated cyclic olefin copolymer of the present invention or the composition containing the hydrogenated cyclic olefin copolymer of the present invention can be advantageously used as materials for optical elements and the like.
  • the hydrogenated cyclic olefin copolymer of the present invention can be used as a molded article.
  • the molded article is obtained by molding the hydrogenated cyclic olefin copolymer of the present invention or a composition containing the hydrogenated cyclic olefin copolymer of the present invention.
  • a molded article obtained from the hydrogenated cyclic olefin copolymer of the present invention can be advantageously used as an optical element or the like.
  • molding methods for molded bodies include injection molding, extrusion blow molding, injection blow molding, two-stage blow molding, multi-layer blow molding, connection blow molding, stretch blow molding, and rotational molding.
  • method vacuum molding method, extrusion molding method, calendar molding method, solution casting method, hot press molding method, inflation method, and the like can be used.
  • ⁇ Stress birefringence CR > The hydrogenated copolymer was formed into a sheet of 35 mm long ⁇ 10 mm wide ⁇ 1 mm thick to obtain a sample sheet. After fixing both ends of this sample sheet with clips, a weight of 55 g was fixed to one of the clips. Next, the sample sheet was suspended for 1 hour in an oven whose temperature was set to the glass transition temperature (Tg) of the hydrogenated copolymer + 15°C, starting from the clip to which the weight was not fixed, and stretched. rice field. After that, the sample sheet was slowly cooled to room temperature to obtain a measurement sample.
  • Tg glass transition temperature
  • ⁇ n Re(b) ⁇ (1/T(b)) ⁇ 10 ⁇ 6 (X1)
  • the stress birefringence (C R ) was calculated by the following formula (X2).
  • C R ⁇ n/F [Pa ⁇ 1 ] (X2) The closer the ⁇ n value is to 0 and the CR to 0, the smaller the birefringence.
  • a positive value is shown when the slow axis is in the stretching direction, and a negative value is shown when the slow axis is perpendicular to the stretching direction.
  • ⁇ Refractive index> A measurement sample was prepared by molding the hydrogenated copolymer into a sheet having a thickness of 5 mm and leaving the sheet in an atmosphere at a glass transition temperature (Tg) of -15°C for 20 hours.
  • Tg glass transition temperature
  • the table shows the refractive index (n d ) for light with a wavelength of 587.6 nm.
  • NPNB naphthylnorbornene
  • TCD tetracyclododecene
  • a cyclic olefin copolymer and a hydrogenated cyclic olefin copolymer were prepared and evaluated. Table 1 shows the results.
  • NPNB naphthylnorbornene
  • TCD tetracyclododecene
  • a cyclic olefin copolymer and a hydrogenated cyclic olefin copolymer were prepared and evaluated. Table 1 shows the results.
  • a resin having a high refractive index, high heat resistance and low birefringence, and a copolymer useful as a raw material thereof can be obtained.
  • an optical element having a high refractive index, high heat resistance, and low birefringence can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本発明は、高い屈折率、高い耐熱性および低い複屈折を並立し得る樹脂を提供する。本発明の環状オレフィン共重合体水素化物は、1-ナフチルノルボルネンに由来する構造単位と、2-ナフチルノルボルネンに由来する構造単位とを含み、1-ナフチルノルボルネンおよび2-ナフチルノルボルネンの平均endo体比率が50mol%以上である環状オレフィン共重合体を水素化してなる。本発明の環状オレフィン共重合体水素化物は、光学レンズ等の光学素子の材料として好適に用いられる。

Description

環状オレフィン共重合体およびその水素化物、並びに、光学素子
 本発明は、環状オレフィン共重合体、環状オレフィン共重合体の水素化物、および、光学素子に関するものである。
 近年、光学素子や医療用容器の材料として、環状オレフィンを重合して得られる重合体が注目されている。
 そして、例えば特許文献1には、透明性および耐熱性に優れ、有機溶媒への高い溶解性を有し、特異な複屈折性および波長依存性を有するノルボルネン系開環(共)重合体が開示されている。また、特許文献2には、複屈折の逆波長分散を効果的に発現させるシクロオレフィンコポリマーおよび該コポリマーからなるフィルムが開示されている。また、特許文献3には、高い屈折率を有しつつアッベ数を低めに調整可能な環状オレフィン系共重合体および電子線あるいはガンマ線照射による変色が少なく、かつ、透明性に優れる医療用容器が開示されている。
特開2009-46615号公報 特開2009-46614号公報 国際公開第2019/107363号
 ここで、光学レンズ等の光学素子に関し、幅広い用途において設計の自由度を上げるため、高い屈折率および耐熱性を有し、光学素子にした際の複屈折も小さい樹脂が求められている。
 しかし、上記従来の重合体では、高い屈折率、高い耐熱性および低い複屈折(例えば、応力複屈折)を並立することができなかった。
 そこで、本発明は、高い屈折率、高い耐熱性および低い複屈折を並立し得る樹脂を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、所定の平均endo体比率を有する1-ナフチルノルボルネンおよび2-ナフチルノルボルネンの混合物を含む単量体組成物を重合して得た環状オレフィン共重合体を水素化してなる環状オレフィン共重合体水素化物であれば、高い屈折率、高い耐熱性および低い複屈折を並立し得ることを新たに見出し、本発明を完成させた。
 即ち、この発明は上記課題を有利に解決することを目的とするものであり、本発明の環状オレフィン共重合体は、1-ナフチルノルボルネンに由来する構造単位と、2-ナフチルノルボルネンに由来する構造単位とを含み、前記1-ナフチルノルボルネンおよび前記2-ナフチルノルボルネンの平均endo体比率が50mol%以上であることを特徴とする。このような環状オレフィン共重合体を水素化すれば、高い屈折率、高い耐熱性および低い複屈折を並立し得る樹脂(環状オレフィン共重合体水素化物)を提供することができる。従って、本発明の環状オレフィン共重合体は、高い屈折率、高い耐熱性および低い複屈折を並立し得る樹脂の原料として有用である。
 なお、本発明において、「1-ナフチルノルボルネンおよび2-ナフチルノルボルネンの平均endo体比率」は、例えば実施例に記載の方法を用いて求めることができる。
 ここで、本発明の環状オレフィン共重合体は、全構造単位中における1-ナフチルノルボルネンに由来する構造単位および2-ナフチルノルボルネンに由来する構造単位の合計の割合が30mol%以上70mol%以下であることが好ましい。1-ナフチルノルボルネンに由来する構造単位および2-ナフチルノルボルネンに由来する構造単位の合計の割合が上記範囲内であれば、高い屈折率、高い耐熱性および低い複屈折を更に高いレベルで並立させた樹脂を得ることが可能となる。
 なお、本発明において、「各構造単位の割合」は、核磁気共鳴(NMR)法を用いて測定することができる。
 また、本発明の環状オレフィン共重合体は、1-ナフチルノルボルネンに由来する構造単位および2-ナフチルノルボルネンに由来する構造単位の合計に対する1-ナフチルノルボルネンに由来する構造単位の割合が、1mol%以上30mol%以下であることが好ましい。1-ナフチルノルボルネンに由来する構造単位の割合が上記範囲内であれば、高い屈折率、高い耐熱性および低い複屈折を更に高いレベルで並立させた樹脂を得ることが可能となる。
 更に、本発明の環状オレフィン共重合体は、1-ナフチルノルボルネンおよび2-ナフチルノルボルネン以外のノルボルネン系単量体に由来する構造単位を更に含むことが好ましい。
 そして、本発明の環状オレフィン共重合体は、開環重合体であることが好ましい。
 また、この発明は上記課題を有利に解決することを目的とするものであり、本発明の環状オレフィン共重合体水素化物は、上述した環状オレフィン共重合体の何れかを水素化してなるものであることを特徴とする。上述した環状オレフィン共重合体を水素化して得られる環状オレフィン共重合体水素化物は、屈折率および耐熱性が高く、複屈折が低いので、光学レンズ等の光学素子の材料として有用である。
 そして、本発明の環状オレフィン共重合体水素化物は、ガラス転移温度が135℃以上であることが好ましい。ガラス転移温度が135℃以上であれば、耐熱性を更に高めることができる。
 なお、本発明において、「ガラス転移温度」は、示差走査熱量分析を使用し、JIS K6911に準拠して測定することができる。
 また、本発明の光学素子は、上述した環状オレフィン共重合体水素化物の何れかを含むことを特徴とする。上述した環状オレフィン共重合体水素化物を使用すれば、屈折率および耐熱性が高く、複屈折が低い光学素子が得られる。
 本発明によれば、高い屈折率、高い耐熱性および低い複屈折を並立し得る樹脂、並びに、その原料として有用な共重合体が得られる。
 また、本発明によれば、屈折率および耐熱性が高く、複屈折が低い光学素子が得られる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の環状オレフィン共重合体は、特に限定されることなく、光学素子などの各種成形体の材料として用いてもよいが、本発明の環状オレフィン共重合体水素化物の原料として好適に用いることができる。また、本発明の環状オレフィン共重合体水素化物は、特に限定されることなく、本発明の光学素子(例えば、光学レンズ等)の材料として好適に用いることができる。
(環状オレフィン共重合体)
 本発明の環状オレフィン共重合体は、1-ナフチルノルボルネンおよび2-ナフチルノルボルネンを含み、任意に、1-ナフチルノルボルネンおよび2-ナフチルノルボルネン以外のノルボルネン系単量体(以下、「その他のノルボルネン系単量体」と称することがある。)並びに非ノルボルネン系単量体の少なくとも一方を更に含み得る単量体組成物を重合して得られる。即ち、本発明の環状オレフィン共重合体は、1-ナフチルノルボルネンに由来する構造単位と、2-ナフチルノルボルネンに由来する構造単位とを含み、任意に、その他のノルボルネン系単量体に由来する構造単位および非ノルボルネン系単量体に由来する構造単位の少なくとも一方を更に含有し得る。また、本発明の環状オレフィン共重合体は、重合に用いた1-ナフチルノルボルネンおよび2-ナフチルノルボルネンの平均endo体比率が50mol%以上であることを必要とする。
<1-ナフチルノルボルネンに由来する構造単位>
 ここで、1-ナフチルノルボルネンに由来する構造単位を形成し得る1-ナフチルノルボルネンにおいて、1-ナフチル基のノルボルネン環への結合様式としては、立体異性的に、exo結合(橋頭位のメチレンと同方向への結合)およびendo結合(橋頭位のメチレンと反対方向への結合)が存在する。そして、1-ナフチルノルボルネンとしては、所望の平均endo体比率を満たすことができれば、exo-1-ナフチルノルボルネン、endo-1-ナフチルノルボルネン、または、これらの混合物を用いることができる。
 なお、1-ナフチルノルボルネンとしては、1-ナフチル基がノルボルネン(ビシクロ[2,2,1]ヘプタ-2-エン)の位置番号5位に結合しているビシクロ[2,2,1]ヘプタ-2-エン-5-(1-ナフチル)が好ましい。
<2-ナフチルノルボルネンに由来する構造単位>
 また、2-ナフチルノルボルネンに由来する構造単位を形成し得る2-ナフチルノルボルネンについても、2-ナフチル基のノルボルネン環への結合様式としては、exo結合およびendo結合が存在する。そして、2-ナフチルノルボルネンとしては、所望の平均endo体比率を満たすことができれば、exo-2-ナフチルノルボルネン、endo-2-ナフチルノルボルネン、または、これらの混合物を用いることができる。
 なお、2-ナフチルノルボルネンとしては、2-ナフチル基がノルボルネン(ビシクロ[2,2,1]ヘプタ-2-エン)の位置番号5位に結合しているビシクロ[2,2,1]ヘプタ-2-エン-5-(2-ナフチル)が好ましい。
<平均endo体比率>
 そして、1-ナフチルノルボルネンに由来する構造単位の形成に用いられた1-ナフチルノルボルネンおよび2-ナフチルノルボルネンに由来する構造単位の形成に用いられた2-ナフチルノルボルネンの平均endo体比率は、50mol%以上であることを必要とし、60mol%以上であることが好ましく、70mol%以上であることがより好ましく、80mol%以上であることが更に好ましい。即ち、環状オレフィン共重合体は、exo-1-ナフチルノルボルネンに由来する構造単位、endo-1-ナフチルノルボルネンに由来する構造単位、exo-2-ナフチルノルボルネンに由来する構造単位およびendo-2-ナフチルノルボルネンに由来する構造単位の合計に対する、endo-1-ナフチルノルボルネンに由来する構造単位およびendo-2-ナフチルノルボルネンに由来する構造単位の合計の割合が、50mol%以上であることを必要とし、60mol%以上であることが好ましく、70mol%以上であることがより好ましく、80mol%以上であることが更に好ましい。平均endo体比率が上記範囲内であれば、環状オレフィン共重合体を水素化してなる環状オレフィン共重合体水素化物が、高い屈折率、高い耐熱性および低い複屈折を高いレベルで並立させることが可能となる。
 なお、上述した平均endo体比率の上限は、特に限定されない。
 そして、環状オレフィン共重合体において、全構造単位中における1-ナフチルノルボルネンに由来する構造単位および2-ナフチルノルボルネンに由来する構造単位の合計の割合は、30mol%以上であることが好ましく、35mol%以上であることがより好ましく、40mol%以上であることが更に好ましく、70mol%以下であることが好ましく、65mol%以下であることがより好ましく、60mol%以下であることが更に好ましい。1-ナフチルノルボルネンに由来する構造単位および2-ナフチルノルボルネンに由来する構造単位の合計の割合が上記範囲内であれば、環状オレフィン共重合体を水素化してなる環状オレフィン共重合体水素化物が、高い屈折率、高い耐熱性および低い複屈折をより高いレベルで並立させることが可能となる。
 また、1-ナフチルノルボルネンに由来する構造単位および2-ナフチルノルボルネンに由来する構造単位の合計に対する1-ナフチルノルボルネンに由来する構造単位の割合は、1mol%以上であることが好ましく、5mol%以上であることがより好ましく、10mol%以上であることが更に好ましく、30mol%以下であることが好ましく、25mol%以下であることがより好ましく、20mol%以下であることが更に好ましい。1-ナフチルノルボルネンに由来する構造単位の割合が上記範囲内であれば、環状オレフィン共重合体を水素化してなる環状オレフィン共重合体水素化物が、高い屈折率、高い耐熱性および低い複屈折をより高いレベルで並立させることが可能となる。
<その他のノルボルネン系単量体に由来する構造単位>
 その他のノルボルネン系単量体に由来する構造単位を形成し得るその他のノルボルネン系単量体としては、特に限定されることなく、ナフチル基を有さないノルボルネン系単量体、並びに、1-ナフチルノルボルネンおよび2-ナフチルノルボルネン以外のナフチル基を有するノルボルネン系単量体が挙げられる。
 具体的には、ナフチル基を有さないノルボルネン系単量体としては、ノルボルネン環を有し、且つ、ナフチル基を有さない化合物であれば特に限定されないが、例えば、
ノルボルネン、5-メチルノルボルネン、5-エチルノルボルネン、5-ブチルノルボルネン、5-ヘキシルノルボルネン、5-デシルノルボルネン、5-シクロヘキシルノルボルネン、5-シクロペンチルノルボルネン等の非置換またはアルキル基を有するノルボルネン類;
5-エチリデンノルボルネン、5-ビニルノルボルネン、5-プロペニルノルボルネン、5-シクロヘキセニルノルボルネン、5-シクロペンテニルノルボルネン等のアルケニル基を有するノルボルネン類;
5-フェニルノルボルネン等の芳香環を有するノルボルネン類;
5-メトキシカルボニルノルボルネン、5-エトキシカルボニルノルボルネン、5-メチル-5-メトキシカルボニルノルボルネン、5-メチル-5-エトキシカルボニルノルボルネン、ノルボルネニル-2-メチルプロピオネート、ノルボルネニル-2-メチルオクタネート、5-ヒドロキシメチルノルボルネン、5,6-ジ(ヒドロキシメチル)ノルボルネン、5,5-ジ(ヒドロキシメチル)ノルボルネン、5-ヒドロキシ-i-プロピルノルボルネン、5,6-ジカルボキシノルボルネン、5-メトキシカルボニル-6-カルボキシノルボルネン等の酸素原子を含む極性基を有するノルボルネン類;
5-シアノノルボルネン等の窒素原子を含む極性基を有するノルボルネン類;
ジシクロペンタジエン、メチルジシクロペンタジエン、トリシクロ[5.2.1.02,6]デカ-8-エン等の芳香環構造を含まない3環以上の多環式ノルボルネン類;
テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロ-9H-フルオレンともいう)、テトラシクロ[10.2.1.02,11.04,9]ペンタデカ-4,6,8,13-テトラエン(1,4-メタノ-1,4,4a,9,9a,10-ヘキサヒドロアントラセンともいう)等の芳香環を有する3環以上の多環式ノルボルネン類;
テトラシクロドデセン、8-メチルテトラシクロドデセン、8-エチルテトラシクロドデセン、8-シクロヘキシルテトラシクロドデセン、8-シクロペンチルテトラシクロドデセン、8-メトキシカルボニル-8-メチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン等の非置換またはアルキル基を有するテトラシクロドデセン類;
8-メチリデンテトラシクロドデセン、8-エチリデンテトラシクロドデセン、8-ビニルテトラシクロドデセン、8-プロペニルテトラシクロドデセン、8-シクロヘキセニルテトラシクロドデセン、8-シクロペンテニルテトラシクロドデセン等の環外に二重結合を有するテトラシクロドデセン類;
8-フェニルテトラシクロドデセン等の芳香環を有するテトラシクロドデセン類;
8-メトキシカルボニルテトラシクロドデセン、8-メチル-8-メトキシカルボニルテトラシクロドデセン、8-ヒドロキシメチルテトラシクロドデセン、8-カルボキシテトラシクロドデセン、テトラシクロドデセン-8,9-ジカルボン酸、テトラシクロドデセン-8,9-ジカルボン酸無水物等の酸素原子を含む置換基を有するテトラシクロドデセン類;
8-シアノテトラシクロドデセン、テトラシクロドデセン-8,9-ジカルボン酸イミド等の窒素原子を含む置換基を有するテトラシクロドデセン類;
8-クロロテトラシクロドデセン等のハロゲン原子を含む置換基を有するテトラシクロドデセン類;
8-トリメトキシシリルテトラシクロドデセン等のケイ素原子を含む置換基を有するテトラシクロドデセン類;
上述したテトラシクロドデセン類とシクロペンタジエンとのディールズ・アルダー付加体等のヘキサシクロヘプタデセン類;
などが挙げられる。
 また、ナフチル基を有するノルボルネン系単量体としては、ノルボルネン環およびナフチル基を有する化合物であれば特に限定されないが、例えば、9-ナフチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、5-ジナフチルメチルシリルメチル-2-ノルボルネン、5-トリナフチルシリルメチル-2-ノルボルネン、5-(2-ジナフチルメチルシリルエチル)-2-ノルボルネン、5-(2-トリナフチルシリルエチル)-2-ノルボルネンなどが挙げられる。
 中でも、高い屈折率、高い耐熱性および低い複屈折をより高いレベルで並立させた環状オレフィン共重合体水素化物を得る観点からは、その他のノルボルネン系単量体としては、非極性ノルボルネン系単量体が好ましく、非置換またはアルキル基を有するノルボルネン類(例えば、ノルボルネン、8-エチルテトラシクロドデセン)、アルケニル基を有するノルボルネン類(例えば、エチリデンテトラシクロドデセン(8-エチリデンテトラシクロドデセン))、ジシクロペンタジエン、芳香環を有するノルボルネン誘導体(例えば、テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロ-9H-フルオレンともいう))、非置換またはアルキル基を有するテトラシクロドデセン類(例えば、テトラシクロドデセン、8-メトキシカルボニル-8-メチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン)がより好ましく、テトラシクロドデセン、テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロ-9H-フルオレンともいう)が更に好ましい。
 上述したその他のノルボルネン系単量体は、単独で、または、2種以上を組み合わせて用いることができる。また、その他のノルボルネン系単量体は、異性体の混合物であってもよい。
 そして、環状オレフィン共重合体において、全構造単位中におけるその他のノルボルネン系単量体に由来する構造単位の割合は、30mol%以上であることが好ましく、35mol%以上であることがより好ましく、40mol%以上であることが更に好ましく、70mol%以下であることが好ましく、65mol%以下であることがより好ましく、60mol%以下であることが更に好ましい。
<非ノルボルネン系単量体に由来する構造単位>
 非ノルボルネン系単量体に由来する構造単位を形成し得る非ノルボルネン系単量体としては、ノルボルネン環を有さない共重合可能な化合物であれば特に限定されることなく、例えば、シクロブテン、シクロペンテン、シクロヘキセン、3,4-ジメチルシクロペンテン、3-メチルシクロヘキセン、2-(2-メチルブチル)-1-シクロヘキセン、シクロオクテン、3a,5,6,7a-テトラヒドロ-4,7-メタノ-1H-インデン等のシクロオレフィン;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、1,7-オクタジエン等の非共役ジエン;などが挙げられる。これらの非ノルボルネン系単量体は、単独で、または、2種以上を組み合わせて用いることができる。
 そして、環状オレフィン共重合体において、全構造単位中における非ノルボルネン系単量体に由来する構造単位の割合は、30mol%以下であることが好ましく、10mol%以下であることがより好ましく、5mol%以下であることが更に好ましい。なお、全構造単位中における非ノルボルネン系単量体に由来する構造単位の割合は、0mol%であってもよい。
<環状オレフィン共重合体の構造>
 本発明の環状オレフィン共重合体は、上述した1-ナフチルノルボルネンおよび2-ナフチルノルボルネンを含み、任意に、その他のノルボルネン系単量体および非ノルボルネン系単量体の少なくとも一方を更に含む単量体組成物を重合することにより形成される共重合体である。
 ここで、重合は、開環重合および付加重合のいずれであってもよく、1つの環状オレフィン共重合体中に、開環重合された部分と付加重合された部分との両方が含まれていてもよい。中でも、重合は、開環重合が好ましい。即ち、本発明の環状オレフィン共重合体は、開環重合体、具体的にはノルボルネン環の開環によって重合した開環重合体であることが好ましい。
<環状オレフィン共重合体の製造方法>
 本発明の環状オレフィン共重合体は、特に限定されることなく、例えば、1-ナフチルノルボルネンおよび2-ナフチルノルボルネンを含み、任意に、その他のノルボルネン系単量体および非ノルボルネン系単量体の少なくとも一方を更に含む単量体組成物を重合(開環重合または付加重合)させて共重合体を得る工程(重合工程)を実施した後、任意に、共重合体を回収する工程(回収工程)を実施して得ることができる。
 ここで、単量体組成物中の各単量体の割合は、目的とする環状オレフィン共重合体における当該単量体に由来する構造単位の割合に合わせて調整される。また、重合に用いる1-ナフチルノルボルネンおよび2-ナフチルノルボルネンは、例えば、パラジウムカップリング反応(例えば、ノルボルナジエンとブロモナフタレンの反応)、ディールズ・アルダー反応(例えば、シクロペンタジエンとビニルナフタレンの反応)等により製造することができる。なお、1-ナフチルノルボルネンおよび2-ナフチルノルボルネンとしては、特に限定されることなく、endo体の含有割合の異なる1-ナフチルノルボルネンや2-ナフチルノルボルネンを所望の平均endo体比率となるように混合して用いることができる。
[重合工程]
 開環重合により環状オレフィン共重合体を調製する場合には、単量体組成物を、メタセシス重合触媒の存在下で、開環メタセシス重合させることできる。開環メタセシス重合は、単量体組成物およびメタセシス重合触媒を溶媒(例えば、有機溶媒)中に混合した反応系で行ってもよい。重合効率を向上させるために、反応系は、活性化剤、連鎖移動剤、その他の助剤(例えば、ルイス塩基)をさらに含んでいてもよい。以下、開環重合に用いる触媒等の試薬類、反応の諸条件について説明する。
 メタセシス重合触媒として、式(1)で表される遷移金属イミド錯体を用い得る。
 M(NR)X4-p(OR・L      (1)
(式中、
 Mは、周期律表第6族の遷移金属原子から選択される金属原子であり、
 Rは、3、4及び5位の少なくとも1つの位置に置換基を有していてもよいフェニル基又は-CHで表される基であり、ここで、Rは、水素原子、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基であり、
 Rは、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基であり、
 Xは、ハロゲン原子、アルキル基、アリール基、アラルキル基又はアルキルシリル基であり、
 Lは、電子供与性の中性配位子であり、
 pは、0又は1であり、
 qは、0~2の整数であり、
 複数のXが存在するとき、複数のXは同一であっても異なっていてもよく、
 複数のLが存在するとき、複数のLは同一であっても異なっていてもよい。)
 式(1)におけるMは、周期律表第6族の遷移金属原子であり、クロム、モリブデン及びタングステンから選択することができる。中でも、モリブデン、タングステンが好ましく、タングステンがより好ましい。
 式(1)の遷移金属イミド錯体は、金属イミド結合(N=R)を含む。Rは、金属イミド結合を構成する窒素原子上の置換基である。
 式(1)におけるRは、3、4及び5位の少なくとも1つの位置に置換基を有していてもよいフェニル基又は-CHで表される基である。
 Rの、3、4及び5位の少なくとも1つの位置に置換基を有していてもよいフェニル基の置換基としては、
アルキル基(例えば、メチル基、エチル基等の炭素原子数1~4のアルキル基);
ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等);
アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基等の炭素原子数1~4のアルコキシ基);
等が挙げられ、3、4及び5位の少なくとも2つの位置に存在する置換基が互いに結合したものであってもよい。
 3、4及び5位の少なくとも1つの位置に置換基を有していてもよいフェニル基としては、
フェニル基;
4-メチルフェニル基、4-クロロフェニル基、3-メトキシフェニル基、4-シクロヘキシルフェニル基、4-メトキシフェニル基等の一置換フェニル基;
3,5-ジメチルフェニル基、3,5-ジクロロフェニル基、3,4-ジメチルフェニル基、3,5-ジメトキシフェニル基等の二置換フェニル基;
3,4,5-トリメチルフェニル基、3,4,5-トリクロロフェニル基等の三置換フェニル基;
2-ナフチル基、3-メチル-2-ナフチル基、4-メチル-2-ナフチル基等の置換基を有していてもよい2-ナフチル基;
等が挙げられる。
 Rの、-CHで表される基におけるRの、置換基を有していてもよいアルキル基の炭素原子数は特に限定されず、通常1~20、好ましくは1~10、より好ましくは1~4である。このアルキル基は直鎖状であっても分岐状であってもよい。置換基は特に限定されず、例えば、フェニル基、置換基を有していてもよいフェニル基(例えば、4-メチルフェニル基等);アルコキシ基(例えば、メトキシ基、エトキシ基等の炭素原子数1~4のアルコキシ基);等が挙げられる。
 Rの、置換基を有していてもよいアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。置換基は特に限定されず、例えば、フェニル基、置換基を有していてもよいフェニル基(例えば、4-メチルフェニル基等);アルコキシ基(例えば、メトキシ基、エトキシ基等の炭素原子数1~4のアルコキシ基);等が挙げられる。
 Rとしては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基等の炭素原子数が1~20のアルキル基が好ましい。
 式(1)における(4-p)は4又は3であり、式(1)は、4個又は3個のXを有する。Xは、ハロゲン原子、アルキル基、アリール基、アラルキル基又はアルキルシリル基である。Xは同じであっても異なっていてもよい。
 Xについて、ハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子が挙げられる。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ネオペンチル基等が挙げられる。
 アリール基としては、フェニル基、4-メチルフェニル基、2,6-ジメチルフェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。
 アラルキル基としては、ベンジル基、ネオフィル基等が挙げられる。
 アルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基等が挙げられる。
 式(1)におけるpは0又1はであり、式(1)は、1個の金属アルコキシド結合又は1個の金属アリールオキシド結合(OR)を有するものであってもよい。Rは、金属アルコキシド結合又は金属アリールオキシド結合を構成する酸素原子上の置換基である。
 Rは、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基であり、前述のRの、置換基を有していてもよいアルキル基及び置換基を有していてもよいアリール基として例示したもの及び好適例が適用される。
 式(1)におけるqは0~2の整数であり、式(1)は、1個又は2個の電子供与性の中性配位子(L)を有するものであってもよい。
 Lとしては、周期律表第14族又は第15族の原子を含有する電子供与性化合物が挙げられ、
トリメチルホスフィン、トリイソプロピルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン等のホスフィン類;
ジエチルエーテル、ジブチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、テトラヒドロピラン等のエーテル類;
トリメチルアミン、トリエチルアミン、ピリジン、ルチジン等のアミン類;
等が挙げられる。これらの中でも、エーテル類が好ましい。
 式(1)の遷移金属イミド錯体としては、フェニルイミド基を有するタングステンイミド錯体(式(1)中、Mがタングステン原子で、Rがフェニル基であるタングステンイミド錯体)が好ましく、テトラクロロタングステンフェニルイミド(テトラヒドロフラン)、テトラクロロタングステンフェニルイミド(テトラヒドロピラン)がより好ましい。
 式(1)の遷移金属イミド錯体は、単独で、又は、2種以上を組み合わせて用いてもよい。
 式(1)の遷移金属イミド錯体は、第6族遷移金属のオキシハロゲン化物と、3、4及び5位の少なくとも1つの位置に置換基を有していてもよいフェニルイソシアナート類又は一置換メチルイソシアナート類を、必要に応じて電子供与性の中性配位子(L)、アルコール類、金属アルコキシド、金属アリールオキシドとともに混合する方法等(例えば、特開平5-345817号公報に記載された方法)により合成することができる。合成された遷移金属イミド錯体は、結晶化等により精製・単離した後、開環重合反応に用いてもよいし、精製することなく、得られた混合液をそのまま触媒液として用いてもよい。
 式(1)の遷移金属イミド錯体の使用量は、単量体100mol%に対して、0.00005mol%以上1mol%以下とすることができ、0.0001mol%以上0.7mol%以下が好ましく、0.0002mol%以上0.5mol%以下がより好ましい。上記範囲内であれば、触媒除去が困難となることを十分回避でき、十分な重合活性を得ることができる。
 式(1)の遷移金属イミド錯体は、単独でも触媒活性を示すが、活性化剤と組み合わせることにより、より高活性な重合用触媒となり得る。
 活性化剤としては、炭素原子数1~20の炭化水素基(例えば、アルキル基)を有する周期律表第1、2、12、13、14族の化合物が挙げられる。中でも、有機リチウム、有機マグネシウム、有機亜鉛、有機アルミニウム、又は有機スズが好ましく用いられ、有機アルミニウム又は有機スズが特に好ましく用いられる。
 有機リチウムとしては、メチルリチウム、n-ブチルリチウム、フェニルリチウム等が挙げられる。
 有機マグネシウムとしては、ブチルエチルマグネシウム、ブチルオクチルマグネシウム、ジヘキシルマグネシウム、エチルマグネシウムクロリド、n-ブチルマグネシウムクロリド、アリルマグネシウムブロミド等が挙げられる。
 有機亜鉛としては、ジメチル亜鉛、ジエチル亜鉛、ジフェニル亜鉛等が挙げられる。
 有機アルミニウムとしては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、ジエチルアルミニウムクロリド、エチルアルミニウムセスキクロリド、エチルアルミニウムジクロリド、ジエチルアルミニウムエトキシド、ジイソブチルアルミニウムイソブトキシド、エチルアルミニウムジエトキシド、イソブチルアルミニウムジイソブトキシド等が挙げられる。
 有機スズとしては、テトラメチルスズ、テトラ(n-ブチル)スズ、テトラフェニルスズ等が挙げられる。
 活性化剤は、単独でも、2種以上を組み合わせて用いてもよい。
 活性化剤を使用する場合、使用量は、式(1)の遷移金属イミド錯体に対して、0.1mol倍以上100mol倍以下とすることができ、0.2mol倍以上50mol倍以下が好ましく、0.5mol倍以上20mol倍以下がより好ましい。上記範囲内であれば、活性化剤の使用による重合活性の向上が十分得られ、副反応が生ずることを十分回避できる。
 また、重合速度や得られる共重合体の分子量分布を制御するため、さらにルイス塩基を添加することができる。
 ルイス塩基としては、ジエチルエーテル、テトラヒドロフラン等のエーテル類;アセトン、シクロヘキサノン等のケトン類;アセトニトリル、ベンゾニトリル等のニトリル類;トリエチルアミン、N,N-ジエチルアニリン等のアミン類;ピリジン、ルチジン等のピリジン類;トリフェニルホスフィン等のホスフィン類;ジメチルホルムアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類;トリフェニルホスフィンオキシド等のホスフィンオキシド類;エチルアセテート等のエステル類;等が挙げられる。これらの中でも、エーテル類、ピリジン類、ニトリル類が好ましい。ルイス塩基は、単独でも、2種以上を組み合わせ用いてもよい。
 ルイス塩基を使用する場合、使用量は、式(1)の遷移金属イミド錯体に対して、0.1mol倍以上1,000mol倍以下とすることができ、0.2mol倍以上500mol倍以下が好ましく、0.5mol倍以上200mol倍以下がより好ましい。
 重合反応において、連鎖移動剤を用いることができる。連鎖移動剤を用いることで、得られる開環重合体の分子量を調整するとともに、二量体等の含有率を効果的に低減させることができる。
 連鎖移動剤としては、α-オレフィン、内部オレフィン、芳香族ビニル化合物等が挙げられる。内部オレフィンは、二重結合をオレフィン鎖の末端ではなく内部に有する化合物をいう。芳香族ビニル化合物は、ビニル基上に置換基(例えば、アルキル基)を有する化合物を包含する。
 α-オレフィンとしては、α位に二重結合を有する炭素原子数2~20個のアルケンが挙げられ、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等が挙げられる。
 内部オレフィンとしては、2-ブテン、3-ヘキセン等が挙げられる。
 芳香族ビニル化合物としては、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン等が挙げられる。
 中でも、反応性及び分子量制御性の点から、1-ヘキセン、スチレン、1-デセンが好ましく、1-ヘキセン、スチレンがより好ましい。
 連鎖移動剤は、単独でも、2種以上を組み合わせて用いてもよい。
 連鎖移動剤を使用する場合、連鎖移動剤の使用量は、単量体100mol%に対して、0.1mol%以上15mol%未満とすることができる。上記範囲内であれば、連鎖移動剤を使用することによる効果が十分に得られる。二量体等の含有率の低減の点から、連鎖移動剤は、0.3mol%以上10mol%未満が好ましく、0.5mol%以上9mol%以下がより好ましく、1mol%以上6mol%以下がさらに好ましい。
 有機溶媒は、単量体および目的物である共重合体を溶解または分散可能であり、反応に不活性なものであれば、特に限定されず、例えば、
ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;
シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ビシクロヘプタン、トリシクロデカン、ヘキサヒドロインデン、シクロオクタン等の脂環族炭化水素;
ベンゼン、トルエン、キシレン等の芳香族炭化水素;
ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン系脂肪族炭化水素;
クロロベンゼン、ジクロロベンゼン等のハロゲン系芳香族炭化水素;
ニトロメタン、ニトロベンゼン、アセトニトリル等の含窒素炭化水素系溶媒;
ジエチルエーテル、テトラヒドロフラン等のエーテル類;又はこれらの混合溶媒が挙げられる。これらの溶媒の中でも、芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素、エーテル類が好ましく用いられる。
 有機溶媒は、単独でも、2種以上を組み合わせて用いてもよい。
 有機溶媒は、単量体の濃度が、1質量%以上50質量%以下となるような量で使用することができ、単量体の濃度は、2質量%以上45質量%以下が好ましく、3質量%40質量%以下がより好ましい。上記範囲であれば、生産性が十分であり、取り扱い性の点からも便利である。
 開環重合反応は、単量体、式(1)の遷移金属イミド錯体、及び任意の活性化剤、連鎖移動剤を、通常有機溶媒中で撹拌することにより行うことができ、その際、ノルボルネン系の単量体(1-ナフチルノルボルネン、2-ナフチルノルボルネンおよびその他のノルボルネン系単量体)の少なくとも一部を、連続的に添加してもよい。
 連続的に添加するノルボルネン系の単量体以外の成分は、予め反応器に装入し、撹拌しておけばよい。反応器内の反応液の撹拌は、ノルボルネン系の単量体の連続的な添加の間も継続して行い、重合反応を進めることができる。
 連続的に添加するノルボルネン系の単量体は、全量であっても、一部であってもよい。反応選択性及び反応安定性の点から、連続的に添加するノルボルネン系の単量体を一部とし、残部を予め反応器中に装入しておくことが好ましい。予め反応器に装入するノルボルネン系の単量体の量は、全量を100質量%とした場合、0.1質量%以上70質量%以下とすることができ、0.5質量%以上50質量%以下が好ましく、1質量%以上35質量%以下がより好ましい。上記範囲内であれば、得られる共重合体の重量平均分子量の制御が容易となる。
 ノルボルネン系の単量体の連続的な添加は、前述の有機溶媒に溶解又は分散させた液体として、連続的に滴下することにより行うことができる。液体中のノルボルネン系の単量体の濃度は1質量%以上50質量%以下とすることができ、2質量%以上45質量%以下が好ましく、3質量%以上40質量%以下がより好ましい。この範囲であれば、生産性が十分であり、取り扱い性の点からも便利である。
 連続的な添加の時間は、20分以上200分以下とすることができる。立体化学の制御の点から、40分以上180分以下が好ましく、60分以上160分以下がより好ましい。
 重合温度は、20℃以上60℃以下とすることができる。立体化学の制御の点から、25℃以上55℃以下が好ましく、30℃以上50℃以下がより好ましい。
 ノルボルネン系の単量体の連続的な添加は、分子量の制御の点から、連続的な添加終了時の重合反応系においてノルボルネン系の単量体の重合転化率が40%以上となるように行うことが好ましい。重合転化率はより好ましくは60%以上である。重合転化率は、ノルボルネン系の単量体の添加の速度等の添加の条件、重合温度等の重合反応の条件を調整することにより、制御することができる。添加の際の速度以外の条件が同一の場合、速度を大きくすると、重合転化率は高くなり、速度を小さくすると、重合転化率は小さくなる傾向にあり、温度が高いと、重合転化率は高く、温度が低いと重合転化率は小さくなる傾向にある。上限は、特に限定されないが、通常99%以下である。
 連続的な添加が終了した後、反応液を継続的に撹拌して、重合反応を終了させる。添加終了後の混合撹拌の時間は、15分以上300分以下とすることができる。重合転化率及び生産性の点から、混合撹拌の時間は、20分以上270分以下が好ましく、30分以上240分以下がより好ましい。
 遷移金属イミド錯体については、少なくとも一部を連続的に添加してもよい。これにより、反応選択性が期待できる。連続的に添加する遷移金属イミド錯体は、前述の有機溶媒に溶解又は分散させた液体として、連続的に滴下することにより行うことができる。液体中の遷移金属イミド錯体の濃度は0.01質量%以上20質量%以下とすることができる。錯体の溶液安定性の点から、遷移金属イミド錯体の濃度は、0.1質量%以上15質量%以下が好ましく、0.5質量%以上10質量%以下がより好ましい。連続的に添加するタイミングは、ノルボルネン系の単量体の連続添加のタイミングと同じであっても、異なっていてもよい。
 連鎖移動剤を使用する場合、立体化学の制御及び二量体等の含有率の低減の点から、連鎖移動剤の連続的な添加の量が、0.060mol/分以上となるような量とすることができ、0.080mol/分以上となるような量が好ましく、また、2.000mol/分以下となるような量とすることができ、1.000mol/分以下となるような量が好ましい。
 付加重合により環状オレフィン共重合体を調製する場合には、付加重合は、例えば、チーグラーナッタ触媒、メタロセン触媒、ニッケル触媒、パラジウム触媒のいずれかの存在下により行うことができる。付加重合は、公知の反応条件を適宜改変した反応条件下で行ってもよい。
[回収工程]
 重合工程で得られた共重合体は、環状オレフィン共重合体として回収することができる。例えば、反応溶液を沈殿剤(例えば、イソプロパノール、メタノール等の貧溶媒)と混合することにより環状オレフィン共重合体を沈殿させて、沈殿物として環状オレフィン共重合体を回収することができる。回収した環状オレフィン共重合体は、乾燥(例、真空乾燥)させてもよい。
(環状オレフィン共重合体水素化物)
 本発明の環状オレフィン共重合体水素化物は、上述した本発明の環状オレフィン共重合体を水素化してなる。そして、上述した本発明の環状オレフィン共重合体を水素化してなる環状オレフィン共重合体水素化物は、高い屈折率、高い耐熱性および低い複屈折を並立し得る。
<水素化>
 本発明の環状オレフィン共重合体は、主鎖中に炭素-炭素不飽和結合を有することがある。また、重合に用いた単量体の種類によって、主鎖、あるいは5員環に結合した置換基もしくは5員環との縮合環(以下、側鎖という)の中に、炭素-炭素不飽和結合を有することもある。環状オレフィン共重合体を水素化することにより、これらの炭素-炭素不飽和結合の少なくとも一部を水素添加して飽和結合にした、水素添加物が得られる。
 水素添加の方法としては、公知の方法を利用することができ、例えば、水素添加触媒の存在下で環状オレフィン共重合体の溶液に水素を供給し付加反応させることにより水素添加することができる。水素添加触媒は、主鎖中の炭素-炭素二重結合を水素化し、かつ、芳香環(例えば、ナフチル基のナフタレン環)を水素化しない触媒が好ましい。このような水素添加触媒としては、例えば、ルテニウム触媒(クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム)、パラジウム触媒が挙げられる。水素の付加は、例えば、水素を高圧(例、1MPa以上)で供給し、高温(例、120℃以上)で撹拌することによって行われてもよい。
 なお、得られた環状オレフィン共重合体水素化物は、例えば、環状オレフィン共重合体について上述したのと同様の方法を用いて回収することができる。
<水素化率>
 本発明の環状オレフィン共重合体水素化物は、十分に水素化されていることがより好ましい。本発明の環状オレフィン共重合体水素化物の水素化率は、90mol%以上であることが好ましく、95mol%以上であることがより好ましく、99mol%以上であることが更に好ましい。水素化率の値が上記下限値以上であれば、環状オレフィン共重合体水素化物の耐熱性を更に高めることができる。なお、水素化率は、主鎖中の炭素-炭素不飽和結合の水素化率であり、ナフタレン環等の芳香環は、通常水素化されていない。
<環状オレフィン共重合体水素化物の物性>
 そして、本発明の環状オレフィン共重合体水素化物は、以下の物性を有していることが好ましい。
[ガラス転移温度]
 耐熱性の観点からは、環状オレフィン共重合体水素化物のガラス転移温度は、135℃以上であることが好ましく、140℃以上であることがより好ましい。なお、環状オレフィン共重合体水素化物のガラス転移温度は、特に限定されることなく、250℃以下であり得る。
[屈折率]
 また、環状オレフィン共重合体水素化物の屈折率(n)は、光学素子の光学的機能を発揮させるために、1.550以上であることが好ましく、1.560以上であることがより好ましい。また、環状オレフィン共重合体水素化物の屈折率(n)は、光学素子の機能を奏するために、1.640以下であることが好ましく、1.635以下であることがより好ましい。
 なお、屈折率は、波長および温度に依存して変化し得るものであり、本明細書では、屈折率とは、波長587.6nmの光における25℃での屈折率(n)を指すものとする。
[応力複屈折]
 応力複屈折(C)は、測定試料に応力(F)を加え、その後、特定の波長(例、波長543nm)での測定試料の中心部の面内レターデーション(Re(b)[nm])および厚み(T(b)[mm])を測定し、下記式(X1)及び(X2)により、δn値を算出して求めることができる。
 δn=Re(b)×(1/T(b))×10-6 ・・・(X1)
 C=δn/F ・・・(X2)
 δn値が0に近いものほど複屈折が小さいことを示す。また、遅相軸が延伸方向のものは正の値を示し、遅相軸が延伸方向と直交するものは負の値を示す。
 そして、環状オレフィン共重合体水素化物の応力複屈折(C)は、光学素子の品質のばらつきを抑制するために、750×10-12Pa-1以下であることが好ましく、400×10-12Pa-1以下であることがより好ましい。
(環状オレフィン共重合体水素化物の用途)
 本発明の環状オレフィン共重合体水素化物は、組成物として用いることができる。組成物は、本発明の環状オレフィン共重合体水素化物を含み、任意に、耐候安定剤、耐熱安定剤、帯電防止剤、難燃剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、染料、顔料、天然油、合成油、ワックス、充填剤などの添加剤や、溶剤を更に含有する。
 なお、本発明の環状オレフィン共重合体水素化物と、添加剤や溶剤とは、既知の混合方法を用いて混合することができる
 ここで、添加剤としては、具体的には、例えば、特開2005-330465号公報に例示されているものを用いることができる。また、溶剤としては、上述した有機溶媒等の既知の溶剤を用いることができる。
 そして、本発明の環状オレフィン共重合体水素化物または本発明の環状オレフィン共重合体水素化物を含む組成物は、光学素子等の材料として有利に使用することができる。
 また、本発明の環状オレフィン共重合体水素化物は、成形体として用いることができる。成形体は、本発明の環状オレフィン共重合体水素化物または本発明の環状オレフィン共重合体水素化物を含む組成物を成形してなる。そして、本発明の環状オレフィン共重合体水素化物から得られる成形体は、光学素子等として有利に使用することができる。
 なお、成形体の成形方法としては、例えば、射出成形法、エクストルージョンブロー成形法、インジェクションブロー成形法、二段ブロー成形法、多層ブロー成形法、コネクションブロー成形法、延伸ブロー成形法、回転成形法、真空成形法、押出成形法、カレンダー成形法、溶液流延法、熱プレス成形法、インフレーション法などを用いることができる。
 以下、本発明について実施例および比較例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 なお、以下の実施例および比較例において、各種の物性の測定は、下記の方法に従って行った。
 また、実施例および比較例において、ナフチルノルボルネンとしては、下記の合成例1~4で合成したものを用いた。
<ナフチルノルボルネンのendo/exo比>
 重クロロホルムを溶媒に用いて、23℃でH-NMR測定を行い、ナフチルノルボルネンのendo/exo比を求めた。具体的には、endo体由来の5.79ppmのシグナルと、exo体由来の6.20ppmのシグナルの強度比に基づいて、endo/exo比(mol比)を求めた。
<ガラス転移温度>
 ガラス転移温度(Tg)は、示差走査熱量分析計(ナノテクノロジー社製、製品名:DSC6220SII)を用いて、JIS K6911に基づき、昇温速度10℃/分の条件で測定した。
 ガラス転移温度が高いほど、耐熱性に優れていることを示す。
<応力複屈折C
 共重合体水素化物を、縦35mm×横10mm×厚み1mmのシート状に成形して、サンプルシートを得た。このサンプルシートの両端をクリップで固定した後に、片方のクリップに55gの重りを固定した。次いで、共重合体水素化物のガラス転移温度(Tg)+15℃に温度を設定したオーブン内に、重りを固定していない方のクリップを起点にして、1時間サンプルシートを吊るして延伸処理を行った。その後、サンプルシートをゆっくりと冷やして室温まで戻し、測定試料を得た。
 この測定試料について、複屈折計(株式会社フォトニックラティス製、製品名:WPA-100)を用いて、測定波長543nmで、測定試料の中心部の面内レターデーション(Re(b)[nm])を測定した。また、測定試料の前記中心部の厚み(T(b)[mm])を測定した。これらの測定値Re(b)およびT(b)を用いて、下記式(X1)により、δn値を算出した。
 δn=Re(b)×(1/T(b))×10-6   (X1)
 当該δn値およびサンプルに加えた応力(F)を用い、下記式(X2)により、応力複屈折(C)を計算した。
 C=δn/F [Pa-1]  (X2)
 δn値が0に近く、Cが0に近いものほど複屈折が小さい。なお、遅相軸が延伸方向のものは正の値を示し、遅相軸が延伸方向と直交するものは負の値を示す。
<屈折率>
 共重合体水素化物を厚さ5mmのシート状に成形し、ガラス転移温度(Tg)-15℃の雰囲気下に20時間放置したものを測定試料とした。
 得られた測定試料について、精密屈折計(株式会社島津製作所製、製品名:KPR-200、光源=Heランプ(波長:587.6nm)、Hランプ(波長:656.3nmおよび486.1nm)を用いて、25℃における屈折率(n、nおよびn)を測定した。表中には、波長が587.6nmの光における屈折率(n)を示す。
<合成例1:exo体リッチな1-ナフチルノルボルネンの製造>
 1-ブロモナフタレン(和光純薬社製)458g、ジメチホルムアミド(和光純薬社製)500mL、ノルボルナジエン(東京化成工業株式会社製)455mL、ピペリジン(和光純薬社製)656mL、ギ酸(99%、和光純薬社製)220m、およびパラジウム触媒(パラジウムジクロロビストリフェニルホスフィン、東京化成工業株式会社製、製品コード:B1667)2.75gを反応器に仕込み、90℃で6.5時間撹拌した。得られた反応液を酢酸エチル/水で抽出し、有機層を硫酸マグネシウムで乾燥した。これを、ろ過およびエバポレーションした。残存物をカラムクロマトグラフィーに付し(展開溶媒:ヘキサン)、パラジウム残渣を除去した。得られた溶液をエバポレーションし、残存液を減圧蒸留(1.2mmHg/135~152℃)した。その結果、無色透明な液体の1-ナフチルノルボルネン(1-NPNB:ビシクロ[2,2,1]ヘプタ-2-エン-5-(1-ナフチル))269gを得た。endo/exo比を測定したところ、0/100であった。
<合成例2:exo体リッチな2-ナフチルノルボルネンの製造>
 2-ブロモナフタレン(和光純薬社製)458g、ジメチホルムアミド(和光純薬社製)500mL、ノルボルナジエン(東京化成工業株式会社製)455mL、ピペリジン(和光純薬社製)656mL、ギ酸(99%、和光純薬社製)220mL、およびパラジウム触媒(パラジウムジクロロビストリフェニルホスフィン、東京化成工業株式会社製、製品コード:B1667)2.75gを反応器に仕込み、90℃で6.5時間撹拌した。得られた反応液を酢酸エチル/水で抽出し、有機層を硫酸マグネシウムで乾燥した。これを、ろ過およびエバポレーションした。残存物をカラムクロマトグラフィーに付し(展開溶媒:ヘキサン)、パラジウム残渣を除去した。得られた溶液をエバポレーションし、残存液を減圧蒸留(1.2mmHg/135~152℃)した。その結果、無色透明な液体の2-ナフチルノルボルネン(2-NPNB:ビシクロ[2,2,1]ヘプタ-2-エン-5-(2-ナフチル))269gを得た。endo/exo比を測定したところ、0/100であった。
<合成例3:endo体リッチな1-ナフチルノルボルネンの製造>
 ジシクロペンタジエン(東京化成社製)264g、1-ビニルナフタレン(東京化成社製)1234g、N-ニトロソフェニルヒドロキシルアミンアルミニウム塩(和光純薬社製)15gを反応器に仕込み、180℃で1時間撹拌した。得られた粗生成物を減圧蒸留(1.2mmHg/135~152℃)した。その結果、無色透明な液体の1-ナフチルノルボルネン(1-NPNB:ビシクロ[2,2,1]ヘプタ-2-エン-5-(1-ナフチル))42gを得た。endo/exo比を測定したところ、85/15であった。
<合成例4:endo体リッチな2-ナフチルノルボルネンの製造>
 ジシクロペンタジエン(東京化成社製)264g、2-ビニルナフタレン(アルドリッチ社製)1234g、N-ニトロソフェニルヒドロキシルアミンアルミニウム塩(和光純薬社製)15gを反応器に仕込み、180℃で1時間撹拌した。得られた粗生成物を減圧蒸留(1.2mmHg/135~152℃)した。その結果、無色透明な液体の2-ナフチルノルボルネン(2-NPNB:ビシクロ[2,2,1]ヘプタ-2-エン-5-(2-ナフチル))58gを得た。endo/exo比を測定したところ、86/14であった。
(実施例1)
<環状オレフィン共重合体の調製>
 合成例1~4で作製したexo体リッチな1-ナフチルノルボルネン(合成例1)、exo体リッチな2-ナフチルノルボルネン(合成例2)、endo体リッチな1-ナフチルノルボルネン(合成例3)およびendo体リッチな2-ナフチルノルボルネン(合成例4)を、合成例1/合成例2/合成例3/合成例4=0.3/3.1/10.7/85.9(mol比)となるよう混合し、ナフチルノルボルネン(NPNB)混合物を得た。この混合物のendo/exo比を測定したところ、83/17であった。
 次いで、内部を窒素置換したガラス製反応容器に、脱水したトルエン96g、1-ヘキセン2mol%、ジエチルアルミニウムエトキシド(EtAl(OEt))1.2mol%およびナフチルノルボルネン(NPNB)混合物とテトラシクロドデセン(TCD)との混合モノマー(mol比=70:30)1mol%を室温で入れ混合した後、50℃に保ちながら、テトラクロロタングステンフェニルイミド(テトラヒドロフラン)の2.0質量%トルエン溶液を0.4mol%となるように全量投入し、その後、ナフチルノルボルネン(NPNB)混合物と、テトラシクロドデセン(TCD)との混合モノマー(mol比=70:30、合計0.03mol)を2時間かけて連続的に添加し、開環重合した。その後、重合溶液にイソプロピルアルコール48mol%を加えて重合触媒を不活性化し、重合反応を停止させた。この時の単量体の重合体への転化率は、100%であった。
 なお、文中、「mol%」は、混合モノマーのmol数を基準とした%値を示す。
<環状オレフィン共重合体水素化物の調製>
 次いで、得られた開環重合体(環状オレフィン共重合体)を含有する反応溶液95gに対して、シクロヘキサン155gを加え、さらに水素添加触媒として、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.05質量%を加え、水素により4.5MPaに加圧して撹拌しながら温度160℃まで加温した後、8時間反応させ、環状オレフィン共重合体水素化物を含有する反応溶液を得た。得られた溶液を、大量のイソプロパノール中に注ぎ、環状オレフィン共重合体水素化物を沈殿させた。沈殿した環状オレフィン共重合体水素化物を濾取した後に、真空乾燥機(200℃、1Torr)で10時間乾燥させて、環状オレフィン共重合体水素化物5gを得た。
 そして、得られた環状オレフィン共重合体水素化物のガラス転移温度(Tg)、応力複屈折(C)および屈折率(n)を上述した方法で測定した。結果を表1に示す。
(実施例2)
 環状オレフィン共重合体の調製時に、ナフチルノルボルネン(NPNB)混合物として合成例1/合成例2/合成例3/合成例4=1.0/3.3/28.0/67.7(mol比)となるように混合した混合物を使用し、ナフチルノルボルネン混合物と、テトラシクロドデセン(TCD)との混合比を30:70(mol比)に変更した混合モノマーを用いた以外は実施例1と同様にして、環状オレフィン共重合体および環状オレフィン共重合体水素化物を調製し、評価を行った。結果を表1に示す。
(実施例3)
 環状オレフィン共重合体の調製時に、ナフチルノルボルネン(NPNB)混合物として合成例1/合成例2/合成例3/合成例4=0/1.0/11.0/88.0(mol比)となるように混合した混合物を使用し、混合モノマーとして、ナフチルノルボルネン混合物と、1,4-メタノ-1,4,4a,9a-テトラヒドロ-9H-フルオレン(MTF)とを50:50(mol比)となるように混合した混合モノマーを用いた以外は実施例1と同様にして、環状オレフィン共重合体および環状オレフィン共重合体水素化物を調製し、評価を行った。結果を表1に示す。
(実施例4)
 環状オレフィン共重合体の調製時に、ナフチルノルボルネン(NPNB)混合物として合成例1/合成例2/合成例3/合成例4=4.7/34.8/7.3/53.2(mol比)となるように混合した混合物を使用し、ナフチルノルボルネン混合物と、テトラシクロドデセン(TCD)との混合比を30:70(mol比)に変更した混合モノマーを用いた以外は実施例1と同様にして、環状オレフィン共重合体および環状オレフィン共重合体水素化物を調製し、評価を行った。結果を表1に示す。
(比較例1)
 環状オレフィン共重合体の調製時に、ナフチルノルボルネン混合物に替えてexo体リッチな2-ナフチルノルボルネン(合成例2)を使用し、exo体リッチな2-ナフチルノルボルネン(合成例2)と、テトラシクロドデセン(TCD)との混合比を56:44(mol比)に変更した混合モノマーを用いた以外は実施例1と同様にして、環状オレフィン共重合体および環状オレフィン共重合体水素化物を調製し、評価を行った。結果を表1に示す。
(比較例2)
 環状オレフィン共重合体の調製時に、ナフチルノルボルネン(NPNB)混合物として合成例1/合成例2/合成例3/合成例4=4.7/0/95.3/0(mol比)となるように混合した混合物を使用し、ナフチルノルボルネン混合物と、テトラシクロドデセン(TCD)との混合比を30:70(mol比)に変更した混合モノマーを用いた以外は実施例1と同様にして、環状オレフィン共重合体および環状オレフィン共重合体水素化物を調製し、評価を行った。結果を表1に示す。
(比較例3)
 環状オレフィン共重合体の調製時に、ナフチルノルボルネン(NPNB)混合物として合成例1/合成例2/合成例3/合成例4=3.9/40.2/5.1/50.8(mol比)となるように混合した混合物を使用した以外は実施例1と同様にして、環状オレフィン共重合体および環状オレフィン共重合体水素化物を調製し、評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~4の環状オレフィン共重合体水素化物は、高い屈折率、高い耐熱性および低い複屈折を並立し得ることが分かる。また、表1より、比較例1および比較例3の環状オレフィン共重合体水素化物は耐熱性が低く、比較例2の環状オレフィン共重合体水素化物は複屈折の発現性が悪いことが分かる。
 本発明によれば、高い屈折率、高い耐熱性および低い複屈折を並立し得る樹脂、並びに、その原料として有用な共重合体が得られる。
 また、本発明によれば、屈折率および耐熱性が高く、複屈折が低い光学素子が得られる。

Claims (8)

  1.  1-ナフチルノルボルネンに由来する構造単位と、2-ナフチルノルボルネンに由来する構造単位とを含み、
     前記1-ナフチルノルボルネンおよび前記2-ナフチルノルボルネンの平均endo体比率が50mol%以上である、環状オレフィン共重合体。
  2.  全構造単位中における1-ナフチルノルボルネンに由来する構造単位および2-ナフチルノルボルネンに由来する構造単位の合計の割合が30mol%以上70mol%以下である、請求項1に記載の環状オレフィン共重合体。
  3.  1-ナフチルノルボルネンに由来する構造単位および2-ナフチルノルボルネンに由来する構造単位の合計に対する1-ナフチルノルボルネンに由来する構造単位の割合が、1mol%以上30mol%以下である、請求項1または2に記載の環状オレフィン共重合体。
  4.  1-ナフチルノルボルネンおよび2-ナフチルノルボルネン以外のノルボルネン系単量体に由来する構造単位を更に含む、請求項1~3の何れかに記載の環状オレフィン共重合体。
  5.  開環重合体である、請求項1~4の何れかに記載の環状オレフィン共重合体。
  6.  請求項1~5の何れかに記載の環状オレフィン共重合体を水素化してなる環状オレフィン共重合体水素化物。
  7.  ガラス転移温度が135℃以上である、請求項6に記載の環状オレフィン共重合体水素化物。
  8.  請求項6または7に記載の環状オレフィン共重合体水素化物を含む、光学素子。
     
PCT/JP2022/007372 2021-02-26 2022-02-22 環状オレフィン共重合体およびその水素化物、並びに、光学素子 WO2022181635A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/262,417 US20240218113A1 (en) 2021-02-26 2022-02-22 Cycloolefin copolymer and hydrogenated product thereof, and optical element
CN202280015378.1A CN116867832A (zh) 2021-02-26 2022-02-22 环状烯烃共聚物及其氢化物、以及光学元件
JP2023502454A JPWO2022181635A1 (ja) 2021-02-26 2022-02-22
KR1020237028169A KR20230147622A (ko) 2021-02-26 2022-02-22 고리형 올레핀 공중합체 및 그 수소화물, 그리고, 광학소자
EP22759670.7A EP4299646A1 (en) 2021-02-26 2022-02-22 Cyclic olefin copolymer and hydrogenated product thereof, and optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021030604 2021-02-26
JP2021-030604 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181635A1 true WO2022181635A1 (ja) 2022-09-01

Family

ID=83048210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007372 WO2022181635A1 (ja) 2021-02-26 2022-02-22 環状オレフィン共重合体およびその水素化物、並びに、光学素子

Country Status (7)

Country Link
US (1) US20240218113A1 (ja)
EP (1) EP4299646A1 (ja)
JP (1) JPWO2022181635A1 (ja)
KR (1) KR20230147622A (ja)
CN (1) CN116867832A (ja)
TW (1) TW202244090A (ja)
WO (1) WO2022181635A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345817A (ja) 1991-09-24 1993-12-27 Hercules Inc シクロオレフィンの開環メタセシス重合用タングステン−イミド触媒
JP2005314597A (ja) * 2004-04-30 2005-11-10 Jsr Corp ノルボルネン系開環重合体
JP2005330465A (ja) 2004-04-21 2005-12-02 Mitsui Chemicals Inc エチレン・環状オレフィン共重合体およびその光学部品
JP2009092691A (ja) * 2007-10-03 2009-04-30 Shin Etsu Chem Co Ltd レジスト下層膜材料およびこれを用いたパターン形成方法
JP2009179749A (ja) * 2008-01-31 2009-08-13 Fujifilm Corp ノルボルネン系重合体、これを含むフィルム、偏光板、液晶表示装置
WO2021107041A1 (ja) * 2019-11-29 2021-06-03 日本ゼオン株式会社 環状オレフィン重合体及びその製造方法並びに光学素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046614A (ja) 2007-08-21 2009-03-05 Fujifilm Corp シクロオレフィンコポリマーおよびフィルム
JP2009046615A (ja) 2007-08-21 2009-03-05 Fujifilm Corp ノルボルネン系開環(共)重合体、フィルム、これらの製造方法、および偏光板
US11732075B2 (en) 2017-11-29 2023-08-22 Mitsui Chemicals, Inc. Cyclic olefin-based copolymer, cyclic olefin-based copolymer composition, molded article, and medical container

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345817A (ja) 1991-09-24 1993-12-27 Hercules Inc シクロオレフィンの開環メタセシス重合用タングステン−イミド触媒
JP2005330465A (ja) 2004-04-21 2005-12-02 Mitsui Chemicals Inc エチレン・環状オレフィン共重合体およびその光学部品
JP2005314597A (ja) * 2004-04-30 2005-11-10 Jsr Corp ノルボルネン系開環重合体
JP2009092691A (ja) * 2007-10-03 2009-04-30 Shin Etsu Chem Co Ltd レジスト下層膜材料およびこれを用いたパターン形成方法
JP2009179749A (ja) * 2008-01-31 2009-08-13 Fujifilm Corp ノルボルネン系重合体、これを含むフィルム、偏光板、液晶表示装置
WO2021107041A1 (ja) * 2019-11-29 2021-06-03 日本ゼオン株式会社 環状オレフィン重合体及びその製造方法並びに光学素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
COSSU, SERGIO ET AL.: "(Z)- and (E)-1-chloro-1,2-bis(phenylsulfonyl)ethylenes: synthons of bis(phenylsulfonyl)acetylene and of terminal acetylenes in cycloaddition reactions", GAZZETTA CHIMICA ITALIANA, SOCIETà CHIMICA ITALIANA, IT, vol. 120, no. 9, 1 January 1990 (1990-01-01), IT , pages 569 - 576, XP009539411, ISSN: 0016-5603 *

Also Published As

Publication number Publication date
CN116867832A (zh) 2023-10-10
US20240218113A1 (en) 2024-07-04
TW202244090A (zh) 2022-11-16
EP4299646A1 (en) 2024-01-03
JPWO2022181635A1 (ja) 2022-09-01
KR20230147622A (ko) 2023-10-23

Similar Documents

Publication Publication Date Title
US20090221750A1 (en) Thermoplastic Resin, Method for Producing Same and Molding Material
JP4466272B2 (ja) ノルボルネン系開環重合体水素化物の製造方法およびノルボルネン系開環重合体水素化物
TWI507431B (zh) A cyclic olefin ring-opening polymer, a hydride thereof and the hydride composition, and tricyclopentadiene
TWI599591B (zh) 環烯烴類開環共聚物
WO2021107041A1 (ja) 環状オレフィン重合体及びその製造方法並びに光学素子
JP4830800B2 (ja) 薄型の光学レンズ成形体の製造方法
JP5545078B2 (ja) 環状オレフィン系開環共重合体
WO2005016990A1 (ja) ノルボルネン系開環重合体水素化物およびその製造方法
JP5391514B2 (ja) 環状オレフィン系共重合体およびその製造方法ならびに用途
WO2022181635A1 (ja) 環状オレフィン共重合体およびその水素化物、並びに、光学素子
JP2020066683A (ja) ノルボルネン系開環重合体水素化物、樹脂組成物および成形体
JP5791418B2 (ja) 新規化合物、重合体、その架橋体、及びそれを有する光学素子
JP2010254980A (ja) 環状オレフィン系開環重合体の製造方法
JP5239180B2 (ja) スピロ環含有ノルボルネン誘導体、ノルボルネン系重合体、ノルボルネン系開環重合体水素化物、光学樹脂材料及び光学成形体
JP7207403B2 (ja) ノルボルネン開環重合体水素化物およびその製造方法
JP7408935B2 (ja) ノルボルネン系開環重合体の製造方法
JP5262328B2 (ja) 光学フィルムとその製造方法
JP5494718B2 (ja) 環状オレフィン系共重合体およびその用途
KR101534345B1 (ko) 사출 성형체로 이루어지는 광학 부품 및 사출 성형체로 이루어지는 광학 부품 형성용 수지 조성물
JP2020079357A (ja) 付加重合体およびその製造方法、組成物、並びに、成形体
JPS63305111A (ja) ランダム共重合体及びその製造法
JP4356532B2 (ja) ノルボルネン系開環重合体の製造方法、およびその成形品の位相差の波長分散性の調整方法
WO2024190556A1 (ja) フッ素含有環状オレフィン(共)重合体及びその製造方法
JP2006183001A (ja) ランダム共重合体およびその製造方法
KR20160074286A (ko) 역 파장 분산을 갖는 광학 필름 및 이를 포함하는 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502454

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18262417

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280015378.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022759670

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022759670

Country of ref document: EP

Effective date: 20230926