WO2022180939A1 - 樹脂組成物、電力ケーブル、および電力ケーブルの製造方法 - Google Patents

樹脂組成物、電力ケーブル、および電力ケーブルの製造方法 Download PDF

Info

Publication number
WO2022180939A1
WO2022180939A1 PCT/JP2021/040903 JP2021040903W WO2022180939A1 WO 2022180939 A1 WO2022180939 A1 WO 2022180939A1 JP 2021040903 W JP2021040903 W JP 2021040903W WO 2022180939 A1 WO2022180939 A1 WO 2022180939A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
styrene
mass
content
insulating layer
Prior art date
Application number
PCT/JP2021/040903
Other languages
English (en)
French (fr)
Inventor
文俊 伊與田
孝則 山崎
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN202180082670.0A priority Critical patent/CN116601234A/zh
Priority to JP2023502066A priority patent/JPWO2022180939A1/ja
Priority to EP21928034.4A priority patent/EP4299663A1/en
Priority to KR1020237016332A priority patent/KR20230150252A/ko
Publication of WO2022180939A1 publication Critical patent/WO2022180939A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present disclosure relates to resin compositions, power cables, and methods of manufacturing power cables.
  • This application claims priority based on the Japanese application "Japanese Patent Application No. 2021-28226" filed on February 25, 2021, and incorporates all the descriptions described in the Japanese application.
  • a base resin comprising a polyolefin; a styrenic elastomer containing styrene units; a copolymer comprising styrene units and maleic anhydride units; has The content of the copolymer is 0.5 parts by mass or more when the total content of the base resin and the styrene elastomer is 100 parts by mass, The content of the styrene-based elastomer is equal to or greater than the content of the copolymer,
  • the copolymer provides a resin composition that does not contain side chains that are detached by thermal decomposition or hydrolysis at 300° C. or lower.
  • a conductor an insulating layer provided to cover the periphery of the conductor; with The insulating layer includes a resin composition having a base resin containing polyolefin, a styrene elastomer containing styrene units, and a copolymer containing styrene units and maleic anhydride units,
  • the content of the copolymer in the insulating layer is 0.5 parts by mass or more when the total content of the base resin and the styrene elastomer is 100 parts by mass
  • the content of the styrene-based elastomer in the insulating layer is equal to or greater than the content of the copolymer
  • a power cable is provided in which the copolymer does not contain side chains that are detached by thermal decomposition or hydrolysis at 300° C. or less.
  • a conductor an insulating layer provided to cover the periphery of the conductor; with The insulating layer includes a resin composition having a base resin containing polyolefin, a styrene elastomer containing styrene units, and a copolymer containing styrene units and maleic anhydride units,
  • the total content of the maleic anhydride units in the insulating layer is 0.1 parts by mass or more when the total content of the base resin and the styrene elastomer is 100 parts by mass
  • the content of the styrene-based elastomer in the insulating layer is equal to or greater than the content of the copolymer
  • a power cable is provided in which the copolymer does not contain side chains that are detached by thermal decomposition or hydrolysis at 300° C. or less.
  • a resin composition having a base resin comprising a polyolefin, a styrenic elastomer comprising styrene units, and a copolymer comprising styrene units and maleic anhydride units;
  • the content of the copolymer in the resin composition is set to 0.5 parts by mass or more when the total content of the base resin and the styrene elastomer is 100 parts by mass,
  • the content of the styrene-based elastomer in the resin composition is equal to or greater than the content of the copolymer,
  • a method for producing a power cable is provided, wherein the copolymer is a material that does not contain side chains that are detached by thermal decomposition or hydrolysis at 300° C. or less.
  • a resin composition having a base resin comprising a polyolefin, a styrenic elastomer comprising styrene units, and a copolymer comprising styrene units and maleic anhydride units;
  • the total content of the maleic anhydride units in the resin composition is set to 0.1 parts by mass or more when the total content of the base resin and the styrene elastomer is 100 parts by mass,
  • the content of the styrene-based elastomer in the resin composition is equal to or greater than the content of the copolymer,
  • a method for producing a power cable is provided, wherein the copolymer is a material that does not contain side chains that are detached by thermal decomposition or hydrolysis at 300° C. or less.
  • FIG. 1 is a schematic cross-sectional view orthogonal to the axial direction of a DC power cable according to one embodiment of the present disclosure.
  • An object of the present disclosure is to obtain stable insulating properties of the insulating layer.
  • insulating properties of the insulating layer used herein refers to volume resistivity, DC breakdown field strength, space charge characteristics, etc., and is also referred to as "DC characteristics.
  • the resin composition constituting the insulation layer contains carbon black, magnesium oxide (MgO), etc. of polar inorganic fillers may be added (for example, Patent Document 1).
  • the insulating layer is formed, for example, by extruding a resin composition containing an inorganic filler through a mesh.
  • the resin composition according to one aspect of the present disclosure is a base resin comprising a polyolefin; a styrenic elastomer containing styrene units; a copolymer comprising styrene units and maleic anhydride units; has The content of the copolymer is 0.5 parts by mass or more when the total content of the base resin and the styrene elastomer is 100 parts by mass, The content of the styrene-based elastomer is equal to or greater than the content of the copolymer, The copolymer does not contain side chains that are eliminated by thermal decomposition or hydrolysis at 300° C. or lower. According to this configuration, stable insulation can be obtained.
  • a power cable according to another aspect of the present disclosure, a conductor; an insulating layer provided to cover the periphery of the conductor; with The insulating layer includes a resin composition having a base resin containing polyolefin, a styrene elastomer containing styrene units, and a copolymer containing styrene units and maleic anhydride units,
  • the content of the copolymer in the insulating layer is 0.5 parts by mass or more when the total content of the base resin and the styrene elastomer is 100 parts by mass
  • the content of the styrene-based elastomer in the insulating layer is equal to or greater than the content of the copolymer
  • the copolymer does not contain side chains that are eliminated by thermal decomposition or hydrolysis at 300° C. or lower. With this configuration, it is possible to obtain stable insulation of the insulating layer.
  • the total content of the maleic anhydride units in the insulating layer is 0.1 parts by mass or more when the total content of the base resin and the styrene elastomer is 100 parts by mass. According to this configuration, space charges can be sufficiently trapped in the maleic anhydride units.
  • a power cable according to another aspect of the present disclosure, a conductor; an insulating layer provided to cover the periphery of the conductor; with The insulating layer includes a resin composition having a base resin containing polyolefin, a styrene elastomer containing styrene units, and a copolymer containing styrene units and maleic anhydride units,
  • the total content of the maleic anhydride units in the insulating layer is 0.1 parts by mass or more when the total content of the base resin and the styrene elastomer is 100 parts by mass
  • the content of the styrene-based elastomer in the insulating layer is equal to or greater than the content of the copolymer
  • the copolymer does not contain side chains that are eliminated by thermal decomposition or hydrolysis at 300° C. or lower. With this configuration, it is possible to obtain stable insulation of the insulating layer.
  • the copolymer does not contain any ester, ether, amide, urethane or siloxane linkages. With this configuration, it is possible to obtain stable insulation of the insulating layer.
  • the content of the copolymer is less than 20 parts by mass when the total content of the base resin and the styrene elastomer is 100 parts by mass. According to this configuration, deformation at high temperatures can be suppressed.
  • the content of the inorganic compound contained in the insulating layer is less than 0.01 parts by mass when the total content of the base resin and the styrene-based elastomer is 100 parts by mass. According to this configuration, clogging of the mesh can be suppressed in the step of extruding the insulating layer.
  • the insulating layer further contains an inorganic filler of less than 1 part by mass when the total content of the base resin and the styrene-based elastomer is 100 parts by mass. According to this configuration, it is possible to stably obtain the effect of improving the insulating properties of the insulating layer while suppressing clogging of the mesh in the extrusion process.
  • the insulating layer satisfies the following formula (1) for the variation rate of DC breakdown strength: ( EMAX - EMIN ) /EAVE ⁇ 0.2 (1)
  • the DC breakdown strength was measured by applying a DC electric field at a temperature of 90° C. to each of a plurality of sheets sampled at a plurality of locations of the insulating layer at predetermined intervals in the length direction of the conductor. is the electric field strength at which the sheet breaks down, E MAX , E MIN and E AVE are the maximum, minimum and average DC breaking strengths of the plurality of sheets, respectively. According to this configuration, it is possible to obtain stable insulation for the long power cable as a whole.
  • the glass transition temperature of the copolymer is 110° C. or higher. According to this configuration, it is possible to ensure the mechanical properties of the power cable.
  • the glass transition temperature of the copolymer is 140° C. or less. According to this configuration, it is possible to prevent the copolymer (C) from becoming vitreous (filler-like).
  • a method for manufacturing a power cable includes: providing a resin composition having a base resin comprising a polyolefin, a styrenic elastomer comprising styrene units, and a copolymer comprising styrene units and maleic anhydride units; A step of forming an insulating layer so as to cover the outer periphery of the conductor using the resin composition; with In the step of preparing the resin composition, The content of the copolymer in the resin composition is set to 0.5 parts by mass or more when the total content of the base resin and the styrene elastomer is 100 parts by mass, The content of the styrene-based elastomer in the resin composition is equal to or greater than the content of the copolymer, The copolymer is a material that does not contain side chains that are detached by thermal decomposition or hydrolysis at 300° C. or lower. According to this configuration, it is
  • a method for manufacturing a power cable includes: providing a resin composition having a base resin comprising a polyolefin, a styrenic elastomer comprising styrene units, and a copolymer comprising styrene units and maleic anhydride units; A step of forming an insulating layer so as to cover the outer periphery of the conductor using the resin composition; with In the step of preparing the resin composition, The total content of the maleic anhydride units in the resin composition is set to 0.1 parts by mass or more when the total content of the base resin and the styrene elastomer is 100 parts by mass, The content of the styrene-based elastomer in the resin composition is equal to or greater than the content of the copolymer, The copolymer is a material that does not contain side chains that are detached by thermal decomposition or hydrolysis at 300° C. or lower. According to this configuration
  • the resin composition of the present embodiment is a material that constitutes the insulating layer 130 of the power cable 10, which will be described later.
  • the resin composition has, for example, a base resin (A), a styrene elastomer (B), a copolymer (C), and other additives.
  • the base resin (A) is also referred to as "(A) component", the styrene elastomer (B) as "(B) component”, and the copolymer (C) as "(C) component”.
  • Base resin (A) The base resin (base polymer) refers to a resin component that constitutes the main component of the resin composition.
  • a "main component” means a component with the largest content.
  • the base resin of this embodiment contains, for example, polyolefin.
  • Polyolefins constituting the base resin include, for example, polyethylene, polypropylene, ethylene- ⁇ -olefin copolymers, and thermoplastic elastomers (non-styrene elastomers) obtained by dispersing or copolymerizing ethylene-propylene rubber in polypropylene.
  • polyethylene or polypropylene is preferred.
  • polyethylene that constitutes the base resin examples include low-density polyethylene (LDPE), medium-density polyethylene (MDPE), and high-density polyethylene (HDPE). Also, these polyethylenes may be linear or branched, for example.
  • LDPE low-density polyethylene
  • MDPE medium-density polyethylene
  • HDPE high-density polyethylene
  • polypropylene constituting the base resin examples include propylene homopolymer (homopolypropylene) and propylene random polymer (random polypropylene).
  • the stereoregularity is not limited, it is preferably isotactic, for example.
  • the basic properties and mechanical properties of the power cable 10 can be ensured.
  • the elastic modulus of polyolefin measured by a scanning probe microscope is preferably, for example, 300 MPa or more and 2000 MPa or less.
  • the elastic modulus measurement by SPM is performed at 25° C. under the conditions of tapping 60,000 times within the range of 10 ⁇ m square of polyolefin with a cantilever made of silicon and having a tip with a radius of curvature of less than 20 nm.
  • both flexibility and rigidity of power cable 10 can be achieved.
  • the styrenic elastomer (B) contains, for example, at least styrene units as monomer units.
  • the compatibility between the styrene elastomer (B) and the copolymer (C) containing the styrene unit described below can be improved. That is, the copolymer (C) can be uniformly dispersed in the base resin (A) while interposing the styrene elastomer (B). Thereby, the content of the copolymer (C) in the resin composition can be easily increased.
  • the styrene elastomer (B) contains styrene units, not only the maleic anhydride units in the copolymer (C) described later, but also the aromatic rings of the styrene units in the styrene elastomer (B) have spaces. Charge can be trapped. Thereby, local accumulation of space charges can be suppressed.
  • the styrenic elastomer (B) is, for example, a copolymer containing styrene units as hard segments and at least one monomer unit selected from ethylene, propylene, butylene and isoprene as soft segments.
  • Styrene-based elastomers include, for example, styrene-butadiene-styrene block copolymer (SBS), hydrogenated styrene-butadiene-styrene block copolymer, styrene-ethylene-ethylene-propylene-styrene block copolymer (SEEPS), styrene - ethylene-propylene-styrene block copolymer (SEPS), styrene isoprene styrene copolymer (SIS), hydrogenated styrene isoprene styrene copolymer, hydrogenated styrene butadiene rubber, hydrogenated styrene isoprene rubber, styrene ethylene butylene olefin crystals block copolymers, and the like. Two or more of these may be used in combination. Two or more of these may be used in combination.
  • Hydrogenated here means that hydrogen is added to the double bond.
  • hydrogenated styrene-butadiene-styrene block copolymer means a polymer obtained by adding hydrogen to the double bonds of a styrene-butadiene-styrene block copolymer. No hydrogen is added to the double bond of the aromatic ring of styrene.
  • Hydrodrogenated styrene butadiene styrene block copolymer can be interchanged with styrene ethylene butylene styrene block copolymer (SEBS).
  • the styrene-based elastomer (B) among the above materials preferably contains, for example, ethylene units. Thereby, compatibility between the base resin (A) and the styrene elastomer (B) can be improved.
  • the content of ethylene units in the styrene-based elastomer (B) is not particularly limited, but is preferably, for example, 10% by mass or more and 50% by mass or less.
  • ethylene content is not particularly limited, but is preferably, for example, 10% by mass or more and 50% by mass or less.
  • the compatibility between the base resin (A) and the styrene elastomer (B) can be sufficiently improved.
  • ethylene content to 50% by mass or less, a predetermined amount of styrene units can be secured. This can sufficiently improve the compatibility between the styrene elastomer (B) and the copolymer (C) described later. As a result, it is possible to stably improve the insulation at high temperatures.
  • hydrogenated materials that do not contain double bonds in their chemical structures other than aromatic rings are preferred.
  • the resin component may be thermally degraded during molding of the resin composition, and various properties of the resulting molded article may deteriorate.
  • a hydrogenated material resistance to thermal deterioration can be improved. As a result, various properties of the molded body can be maintained at a higher level.
  • the styrene elastomer (B) has a low elastic modulus.
  • the elastic modulus of the styrene-based elastomer (B) measured by SPM is preferably, for example, 10 MPa or more and 400 MPa or less.
  • the measurement conditions are the same as those described for the base resin (A).
  • the elastic modulus of the styrene-based elastomer (B) By setting the elastic modulus of the styrene-based elastomer (B) to 10 MPa or more, the insulating layer 130 can be stably formed.
  • the elastic modulus of the styrene-based elastomer (B) to 400 MPa or less, the flexibility of the power cable 10 can be improved.
  • the styrene elastomer (B) has low crystallinity. Specifically, the styrene elastomer (B) has no melting point or a melting point of less than 100°C. Further, the heat of fusion of the styrene-based elastomer (B) is, for example, 50 J/g or less, preferably 30 J/g or less.
  • styrene-modified polyethylene is not suitable as the styrene-based elastomer (B) in this embodiment. This is because, in order to suppress the local accumulation of space charges (to develop good direct-current characteristics), it is necessary to finely and finely disperse the copolymer (C), which will be described later, in the composition.
  • styrene-modified polyethylene it is difficult to secure a predetermined amount of grafted styrene units. For example, styrene units are insufficient in styrene-grafted polyethylene grafted with 0.1% by mass or more and 10% by mass or less of styrene. Therefore, it becomes difficult to improve the compatibility between the styrene elastomer (B) and the copolymer (C) described later. As a result, the dispersibility of copolymer (C) may deteriorate.
  • the content of the styrene-based elastomer (B) in the resin composition is, for example, greater than or equal to the content of the copolymer (C) described below.
  • the content of the component (B) is less than the content of the component (C)
  • the styrene elastomer (B) cannot sufficiently intervene in the base resin (A)
  • the copolymer (C) is uniformly dispersed. It becomes difficult to disperse into Therefore, there is a possibility that local accumulation of space charge cannot be suppressed. In particular, the insulation at high temperatures may deteriorate.
  • the content of the component (B) is made equal to or greater than the content of the component (C), so that the styrene elastomer (B) is sufficiently interposed in the base resin (A). , the copolymer (C) can be uniformly dispersed. Thereby, local accumulation of space charges can be suppressed. Insulation can be improved, especially at high temperatures.
  • the upper limit of the content of the styrene-based elastomer (B) in the resin composition is not limited.
  • the content of the styrene elastomer (B) is, for example, 40 parts by mass or less, preferably 30 parts by mass, when the total content of components (A) and (B) is 100 parts by mass.
  • the following are preferable.
  • the content of the base resin (A) is 60 parts by mass or more, preferably 70 parts by mass or more.
  • Copolymer (C) contains, for example, styrene units and maleic anhydride units as monomer units.
  • the copolymer (C) can be freely molecularly designed by incorporating the maleic anhydride unit as one monomer unit constituting the main chain into the copolymer (C) containing the styrene unit. This makes it possible to easily increase the content of maleic anhydride units in one molecule. As a result, the total content of maleic anhydride units in the entire resin composition can be increased.
  • the copolymer (C) does not contain, for example, side chains that are detached by thermal decomposition or hydrolysis at 300°C or less.
  • the "side chain that is detached by thermal decomposition or hydrolysis at 300° C. or less” is, for example, at least one of the extrusion process of the insulating layer 130, the cross-linking process, and the installation environment in which the insulating layer 130 can absorb moisture. In the above, it means a side chain that may be detached from the main chain.
  • the side chains Detachment can be suppressed, and generation of low-molecular-weight components resulting from the side chain can be suppressed. This makes it possible to suppress the accumulation of space charges in the low-molecular-weight component.
  • the copolymer (C) preferably does not contain, for example, ester, ether, amide, urethane, or siloxane bonds. Ester, ether, amide, urethane, and siloxane bonds, if present as side chains, may be detached by thermal decomposition or hydrolysis at 300° C. or lower.
  • Examples of monomer units containing side chains that are eliminated by thermal decomposition or hydrolysis at 300°C or lower include vinyl acetate, allyl ether, and acrylamide.
  • the copolymer (C) preferably does not have polar groups other than maleic anhydride units, for example. Thereby, generation of low molecular weight components due to polar groups other than maleic anhydride units can be suppressed.
  • the copolymer (C) consists of, for example, styrene units and maleic anhydride units only.
  • the copolymer (C) is more preferably a styrene-maleic anhydride copolymer. That is, by eliminating monomer units other than these in copolymer (C), the content of maleic anhydride units in one molecule can be increased. As a result, the total content of maleic anhydride units in the entire resin composition can be easily increased.
  • the content of styrene units in the copolymer (C) (hereinafter also simply referred to as "styrene content”) is preferably, for example, 50% by mass or more and 90% by mass or less. If the styrene content is less than 50% by mass, the compatibility between the copolymer (C) and the styrenic elastomer (B) may deteriorate. On the other hand, by setting the styrene content to 50% by mass or more, the compatibility between the copolymer (C) and the styrene-based elastomer (B) can be improved.
  • the insulating layer 130 may become flexible and easily deformed under high temperature conditions. If the styrene content exceeds 90% by mass, it becomes difficult to secure a predetermined amount of maleic anhydride units. On the other hand, by setting the styrene content to 90% by mass or less, excessive softening of insulating layer 130 and excessive deformation of insulating layer 130 under high temperature conditions can be suppressed. That is, mechanical properties can be secured. Also, by setting the styrene content to 90% by mass or less, a predetermined amount of maleic anhydride units can be secured. The total content of maleic anhydride units in the resin composition will be described later.
  • the content of maleic anhydride units in the copolymer (C) is preferably, for example, 10% by mass or more and 50% by mass or less.
  • maleic anhydride content is preferably, for example, 10% by mass or more and 50% by mass or less.
  • the copolymer (C) may contain a predetermined amount of monomer units other than styrene units and maleic anhydride units.
  • the glass transition temperature of the copolymer (C) is, for example, 110°C or higher. Thereby, it can suppress that the power cable 10 becomes flexible excessively. As a result, mechanical properties of the power cable 10 can be ensured.
  • the glass transition temperature of the copolymer (C) is, for example, 140°C or lower.
  • the copolymer (C) can be uniformly dispersed throughout the insulating layer 130 .
  • the elastic modulus of the copolymer (C) measured by SPM is preferably, for example, 1300 MPa or more and 3000 MPa or less.
  • the measurement conditions are the same as those described for the base resin (A). Rigidity can be ensured by setting the elastic modulus of the copolymer (C) to 1300 MPa or more. On the other hand, by setting the elastic modulus of the copolymer (C) to 3000 MPa or less, flexibility can be ensured.
  • the content of the copolymer (C) in the resin composition is high, that is, the total content of maleic anhydride units in the resin composition is higher than in the past.
  • the content of the copolymer (C) in the resin composition is, for example, 0.5 when the total content of the base resin (A) and the styrene elastomer (B) is 100 parts by mass. It is at least 4 parts by mass, preferably at least 4 parts by mass. If the content of the copolymer (C) is less than 0.5 parts by mass, it becomes difficult to sufficiently secure the total content of maleic anhydride units in the resin composition. Therefore, there is a possibility that space charges cannot be sufficiently trapped in the maleic anhydride units. On the other hand, by setting the content of the copolymer (C) to 0.5 parts by mass or more, the total content of maleic anhydride units in the resin composition can be sufficiently secured. As a result, space charges can be sufficiently trapped in the maleic anhydride units. Furthermore, by setting the content of the copolymer (C) to 4 parts by mass or more, space charges can be stably trapped in maleic anhydride units.
  • the total content of maleic anhydride units in the resin composition is, for example, 0.1 parts by mass when the total content of the base resin (A) and the styrene elastomer (B) is 100 parts by mass. or more, preferably 0.8 parts by mass or more.
  • space charges can be sufficiently trapped in the maleic anhydride units in the same manner as described above.
  • stable insulation of the insulating layer 130 can be obtained.
  • the insulating properties of the insulating layer 130 will be described later in detail.
  • the content of the copolymer (C) in the resin composition is less than 20 parts by mass when the total content of the base resin (A) and the styrene elastomer (B) is 100 parts by mass. Yes, preferably 15 parts by mass or less.
  • the content of the copolymer (C) is 20 parts by mass or more, the contribution of the styrene units in the copolymer (C) to deformation increases. As a result, the power cable 10 is easily deformed at high temperatures.
  • the content of the copolymer (C) to less than 20 parts by mass, the contribution of the styrene units in the copolymer (C) to the deformation can be reduced. As a result, deformation of power cable 10 at high temperatures can be suppressed.
  • the content of the copolymer (C) to 15 parts by mass or less, deformation of the power cable 10 at high temperatures can be stably suppressed.
  • the resin composition of the present embodiment may contain the following materials as other additives.
  • Cross-linking agents are, for example, organic peroxides.
  • organic peroxides include dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, 1,3-bis(t-butylperoxyisopropyl)benzene and the like. mentioned. In addition, you may use combining two or more types among these.
  • the content of the cross-linking agent is not limited.
  • the content of the cross-linking agent is preferably 0.5 parts by mass or more and 3.0 parts by mass or less when the total content of the components (A) and (B) is 100 parts by mass.
  • antioxidants examples include 2,2-thio-diethylenebis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], pentaerythrityl-tetrakis[3-(3,5 -di-t-butyl-4-hydroxyphenyl)propionate], octadecyl 3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 2,4-bis-[(octylthio)methyl]-o -cresol, 2,4-bis-(n-octylthio)-6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine, bis[2-methyl-4- ⁇ 3-n-alkyl(C12 or C14)thiopropionyloxy ⁇ -5-t-butylphenyl]sulfide, 4,4'-thiobis(3-methyl-6-t-butylphenol)
  • the content of the antioxidant is not limited.
  • the content of the antioxidant is preferably 0.1 parts by mass or more and 0.5 parts by mass or less when the total content of the components (A) and (B) is 100 parts by mass. .
  • Lubricant acts to improve fluidity of the resin composition in the process of extruding the insulating layer 130 .
  • Lubricants of this embodiment are, for example, fatty acid metal salts or fatty acid amides.
  • fatty acid metal salts include magnesium stearate, zinc stearate, aluminum stearate, and magnesium montanate.
  • fatty acid amides include oleic acid amide and stearic acid amide. In addition, you may use combining two or more types among these.
  • the content of the lubricant is not limited.
  • the content of the lubricant is preferably 0.01 parts by mass or more and 0.5 parts by mass or less when the total content of the components (A) and (B) is 100 parts by mass.
  • the resin composition may further contain, for example, a coloring agent.
  • the resin composition of the present embodiment does not contain inorganic compounds such as inorganic fillers.
  • inorganic compound means a compound other than an organic compound containing an organic substituent, and does not include the above-mentioned fatty acid metal salts and the like. That is, the resin composition of the present embodiment does not intentionally contain an inorganic filler or the like added to an insulation layer for a general DC power cable, and hardly contains an inorganic compound. Even if the resin composition of the present embodiment contains an inorganic compound, the resin composition contains only a trace amount of the inorganic compound as an unavoidable impurity.
  • the content of the inorganic compound contained in the resin composition is less than 0.01 part by mass when the total content of the base resin (A) and the styrene elastomer (B) is 100 parts by mass. be. Thereby, clogging of the mesh can be suppressed in the extrusion process of the insulating layer 130 .
  • FIG. 1 is a cross-sectional view orthogonal to the axial direction of the DC power cable according to this embodiment.
  • the power cable 10 of the present embodiment is configured as a so-called solid insulated DC power cable, and includes, for example, a conductor 110, an inner semiconducting layer 120, an insulating layer 130, an outer semiconducting layer 140, a shielding layer 150, a sheath 160 and .
  • the conductor 110 is configured by twisting a plurality of conductor core wires (conductive core wires) made of, for example, pure copper, copper alloy, aluminum, aluminum alloy, or the like.
  • the inner semi-conductive layer 120 is provided so as to cover the outer circumference of the conductor 110 .
  • the inner semiconducting layer 120 has semiconductivity and is configured to suppress electric field concentration on the surface side of the conductor 110 .
  • the inner semi-conductive layer 120 is made of, for example, ethylene-based copolymers such as ethylene-ethyl acrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-butyl acrylate copolymer, and ethylene-vinyl acetate copolymer, olefin It contains at least one of the above-described low-crystalline resin and the like, and conductive carbon black.
  • the insulating layer 130 is provided so as to cover the outer periphery of the inner semi-conductive layer 120 .
  • the insulating layer 130 contains the resin composition of the present embodiment described above.
  • the insulating layer 130 of the present embodiment is crosslinked with a crosslinking agent, at least a portion of the base resin (A), styrene elastomer (B) and copolymer (C) is crosslinked. A non-crosslinked portion may remain in other portions of the components (A), (B) and copolymer (C).
  • the external semi-conductive layer 140 is provided so as to cover the outer circumference of the insulating layer 130 .
  • the outer semiconductive layer 140 is semiconductive and configured to suppress electric field concentration between the insulating layer 130 and the shielding layer 150 .
  • the outer semi-conductive layer 140 is made of the same material as the inner semi-conductive layer 120, for example.
  • the shielding layer 150 is provided so as to cover the outer periphery of the outer semi-conductive layer 140 .
  • the shielding layer 150 is configured by, for example, winding a copper tape, or is configured as a wire shield by winding a plurality of annealed copper wires or the like.
  • a tape made of rubber-coated cloth or the like may be wound around the inside or outside of the shielding layer 150 .
  • the sheath 160 is provided so as to cover the outer circumference of the shielding layer 150 .
  • the sheath 160 is made of polyvinyl chloride or polyethylene, for example.
  • the insulating layer 130 is made of the resin composition described above, so that stable insulation can be obtained.
  • the insulating layer 130 of this embodiment satisfies the following requirements for insulation measured under conditions of high temperature and high electric field, for example.
  • the measurement is performed, for example, using a sheet sampled from the central portion of the insulating layer 130 in the thickness direction.
  • the sheet thickness of the insulating layer 130 at this time is, for example, 0.2 mm.
  • the volume resistivity of the insulating layer 130 sheet measured under conditions of a temperature of 90° C. and a DC electric field of 50 kV/mm is, for example, 1.0 ⁇ 10 15 ⁇ cm or more, preferably 1.0 ⁇ 10 16 ⁇ . ⁇ It is more than cm.
  • the space charge accumulation amount of the sheet of the insulating layer 130 measured under conditions of a temperature of 90° C. and a DC electric field of 50 kV/mm is, for example, 100% or less, preferably 25% or less.
  • the space charge accumulation amount can be obtained by the current integral charge method.
  • the current integration charge method charge is accumulated in a measuring capacitor connected in series with a sheet as a sample, and the charge amount, which is the integrated value of the current, is evaluated. Specifically, at a temperature of 90 ° C., a DC electric field of 50 kV / mm was continuously applied to the sample, and based on the charge amount Q 300 after 300 seconds and the charge amount Q 0 immediately after the application (0 seconds) , the amount of accumulated space charge is obtained from the following equation.
  • Space charge accumulation (Q 300 /Q 0 -1) x 100
  • the insulating layer 130 of the present embodiment for example, satisfies the following insulating requirements even under severer electric field conditions.
  • the volume resistivity of the insulating layer 130 sheet measured under conditions of a temperature of 90° C. and a DC electric field of 75 kV/mm is 1.0 ⁇ 10 15 ⁇ cm or more, preferably 1.0 ⁇ 10 16 ⁇ cm. That's it.
  • the space charge accumulation amount of the insulating layer 130 sheet measured under conditions of a temperature of 90° C. and a DC electric field of 75 kV/mm is 100% or less, preferably 25% or less.
  • the insulating layer 130 of the present embodiment satisfies the following shape stability requirements, for example, under high temperature conditions.
  • the thermal deformation rate of the insulating layer 130 measured under conditions of a temperature of 120°C and a load of 2 kg is 40% or less.
  • the insulation layer 130 of the present embodiment satisfies the requirement of uniform insulation along the length direction by suppressing clogging of the mesh during the extrusion process.
  • the insulating layer 130 satisfies, for example, the following expression (1) of the DC breakdown strength variation rate. ( EMAX - EMIN ) /EAVE ⁇ 0.2 (1)
  • the DC breakdown strength here is obtained by applying a DC electric field at a temperature of 90° C. to each of a plurality of sheets sampled at a plurality of locations of the insulating layer 130 at predetermined intervals in the length direction of the conductor 110. , is the electric field intensity when the sheet breaks down.
  • E MAX , E MIN and E AVE are the maximum, minimum and average DC breaking strengths of the plurality of sheets, respectively.
  • Specific dimensions of the power cable 10 are not particularly limited, for example, the diameter of the conductor 110 is 5 mm or more and 75 mm or less, and the thickness of the inner semiconductive layer 120 is 0.5 mm or more and 3 mm or less. , the thickness of the insulating layer 130 is 1 mm or more and 35 mm or less, the thickness of the outer semi-conductive layer 140 is 0.5 mm or more and 3 mm or less, the thickness of the shielding layer 150 is 1 mm or more and 5 mm or less, and the sheath The thickness of 160 is 1 mm or more.
  • a DC voltage applied to the power cable 10 of the present embodiment is, for example, 20 kV or higher.
  • a mixed material is formed by mixing (kneading) the base resin (A), the styrene elastomer (B), the copolymer (C), and other additives with a mixer such as a Banbury mixer or a kneader. Once the admixture is formed, the admixture is granulated in an extruder. As a result, a pellet-shaped resin composition that forms the insulating layer 130 is formed. The steps from mixing to granulation may be performed collectively using a twin-screw extruder with a high kneading action.
  • the content of the copolymer (C) in the resin composition is 0.00 parts when the total content of the base resin (A) and the styrene elastomer (B) is 100 parts by mass. 5 parts by mass or more and less than 20 parts by mass.
  • the total content of maleic anhydride units in the resin composition is 0.1 parts by mass or more when the total content of the base resin (A) and the styrene elastomer (B) is 100 parts by mass. It may be less than parts by mass.
  • the content of the styrene-based elastomer (B) in the resin composition is made equal to or greater than the content of the copolymer (C).
  • the copolymer (C) is a material that does not contain side chains that are detached by thermal decomposition or hydrolysis at 300°C or less.
  • the extruder A that forms the internal semiconductive layer 120 is fed, for example, with an internal semiconductive layer in which an ethylene-ethyl acrylate copolymer and conductive carbon black are premixed.
  • the pellet-shaped resin composition described above is put into the extruder B that forms the insulating layer 130 .
  • the resin composition for the outer semi-conductive layer made of the same material as the resin composition for the inner semi-conductive layer put in the extruder A is put.
  • the insulating layer is then heated by radiation from an infrared heater in a cross-linked pipe pressurized with nitrogen gas or the like, or by heat transfer through a heat medium such as high-temperature nitrogen gas or silicone oil.
  • 130 is crosslinked. Thereby, a cable core composed of the conductor 110, the inner semi-conductive layer 120, the insulating layer 130 and the outer semi-conductive layer 140 is formed.
  • a shielding layer 150 is formed on the outside of the outer semi-conductive layer 140 by, for example, winding a copper tape.
  • the sheath 160 is formed around the outer circumference of the shielding layer 150 by putting vinyl chloride into an extruder and extruding it.
  • the power cable 10 as a solid insulated DC power cable is manufactured.
  • the resin composition constituting the insulating layer 130 contains a base resin (A) containing polyolefin, a styrene elastomer (B) containing styrene units, styrene units and maleic anhydride units. a copolymer (C); By incorporating a maleic anhydride unit as one monomer unit constituting the main chain into the copolymer (C) containing styrene units, the copolymer (C) can be freely molecularly designed. This makes it possible to easily increase the content of maleic anhydride units in one molecule.
  • maleic anhydride is uniformly dispersed in the insulating layer 130, and maleic anhydride is dispersed throughout the insulating layer 130.
  • the total content of units can be increased.
  • space charges can be trapped in maleic anhydride units as polar groups uniformly dispersed in the insulating layer 130 . That is, local accumulation of space charges can be suppressed in the insulating layer 130 .
  • the insulation layer 130 can have a high withstand voltage even at a high temperature.
  • the power cable 10 of this embodiment enables stable DC power transmission.
  • the content of the copolymer (C) in the resin composition is determined when the total content of the base resin (A) and the styrene elastomer (B) is 100 parts by mass. , 0.5 parts by mass or more. Thereby, the total content of maleic anhydride units in the insulating layer 130 can be easily ensured. Specifically, the total content of maleic anhydride units in the resin composition can be 0.1 parts by mass or more.
  • the insulation layer 130 can have a high withstand voltage even at high temperatures.
  • the content of the styrene-based elastomer (B) in the resin composition (that is, in the insulating layer 130) is greater than or equal to the content of the copolymer (C).
  • the copolymer (C) can be uniformly dispersed in the base resin (A) while the styrene elastomer (B) is sufficiently interposed.
  • local accumulation of space charges can be suppressed.
  • the insulation can be improved, especially at high temperatures.
  • Copolymer (C) does not contain side chains that are eliminated by thermal decomposition or hydrolysis at 300° C. or less.
  • the copolymer (C) contains side chains that are eliminated by thermal decomposition or hydrolysis at high temperatures.
  • the resin composition is exposed to high temperature or high humidity in at least one of the extrusion process, the cross-linking process, and the installation environment where the insulating layer can absorb moisture, the side chains are detached and A low-molecular-weight component resulting from the side chain is generated.
  • space charges are locally accumulated in the low-molecular-weight components in the insulating layer. That is, even if the maleic anhydride units as the polar groups of the copolymer (C) are dispersed, there may be a portion where the space charge trapping effect of the dispersed maleic anhydride cannot be obtained.
  • the copolymer (C) does not contain side chains as described above, even if the resin composition is exposed to high temperatures in the extrusion process and the cross-linking process, etc., the side chains are eliminated. separation can be suppressed, and generation of low-molecular-weight components caused by the side chains can be suppressed. As a result, the accumulation of space charge in the low molecular weight component can be suppressed. In other words, it is possible to uniformly obtain the effect of trapping space charges by the dispersed maleic anhydride.
  • the content of the copolymer (C) in the resin composition is determined when the total content of the base resin (A) and the styrene elastomer (B) is 100 parts by mass. , less than 20 parts by mass. This makes it possible to reduce the contribution of the styrene units in the copolymer (C) to the deformation. As a result, deformation of power cable 10 at high temperatures can be suppressed. That is, the heat resistance can be improved even in the shape of the power cable 10 at high temperatures.
  • the insulating layer 130 does not contain an inorganic compound such as an inorganic filler.
  • the content of the inorganic compound in the insulating layer 130 is less than 0.01 parts by mass when the total content of the base resin (A) and the styrene elastomer (B) is 100 parts by mass. be. Thereby, clogging of the mesh can be suppressed in the extrusion process of the insulating layer 130 .
  • a long power cable can be manufactured in a continuous extrusion process, and stable insulation can be obtained for the long power cable as a whole.
  • the base resin (A) may further contain, for example, maleic anhydride-modified polyolefin obtained by grafting maleic anhydride to polyolefin.
  • the polyolefin that constitutes the maleic anhydride-modified polyolefin is, for example, the same as other polyolefins contained in the base resin (A).
  • the polyolefin that constitutes the maleic anhydride-modified polyolefin is, for example, polyethylene.
  • the modification rate (copolymerization rate) of maleic anhydride with respect to polyolefin in the maleic anhydride-modified polyolefin is not particularly limited, but is, for example, 0.1% or more and 5% or less.
  • the modification rate of maleic anhydride is not particularly limited, but is, for example, 0.1% or more and 5% or less.
  • the compatibility between the base resin (A) and the copolymer (C) can be improved, and the copolymer (C) can be uniformly dispersed.
  • the insulating layer 130 can be stably formed by setting the modification ratio of maleic anhydride to polyolefin at 5% or less.
  • the content of the maleic anhydride-modified polyolefin in the resin composition is not particularly limited. It is more than 10 parts by mass and less than 10 parts by mass. By setting the content of the maleic anhydride-modified polyolefin to 1 part by mass or more, the compatibility between the base resin (A) and the copolymer (C) is improved, and the copolymer (C) can be uniformly dispersed. On the other hand, by setting the content of the maleic anhydride-modified polyolefin to 10 parts by mass or less, the insulating layer 130 can be stably formed.
  • the total content of maleic anhydride units in the entire insulating layer 130 can be further increased by further including maleic anhydride-modified polyethylene in the base resin (A).
  • the base resin (A) further contains maleic anhydride-modified polyethylene, the compatibility between the copolymer (C) containing maleic anhydride units and the base resin (A) can be improved. Thereby, maleic anhydride can be uniformly dispersed in the insulating layer 130 . As a result, local accumulation of space charges can be stably suppressed in the insulating layer 130 .
  • the resin composition may further contain a trace amount of an inorganic filler to the extent that clogging of the mesh does not occur in the extrusion process.
  • inorganic fillers include at least one of magnesium oxide (MgO), silicon dioxide, zinc oxide, aluminum oxide, titanium oxide, zirconium oxide, carbon black, and mixtures of two or more of these. mentioned.
  • Examples of methods for forming magnesium oxide include a vapor phase method in which Mg vapor and oxygen are brought into contact, and a seawater method in which magnesium oxide is formed from raw seawater.
  • the method for forming the inorganic filler in this embodiment may be either a vapor phase method or a seawater method.
  • silicon dioxide examples include at least one of fumed silica, colloidal silica, precipitated silica, and deflagration silica. Among these, fumed silica is preferable as silicon dioxide.
  • the content of the inorganic filler in the resin composition is, for example, less than 1 part by mass when the total content of the components (A) and (B) is 100 parts by mass.
  • the lower limit of the content of the inorganic filler is not limited as long as the inorganic filler can be added.
  • the volume average particle diameter (MV: Mean Volume Diameter) (X described later) of the inorganic filler is not particularly limited, but is, for example, 1 ⁇ m or less, preferably 700 nm or less, more preferably 100 nm. It is below.
  • the lower limit of the volume average particle size of the inorganic filler is not particularly limited either. However, from the viewpoint of stably forming the inorganic filler, the volume average particle size of the inorganic filler is, for example, 1 nm or more, preferably 5 nm or more.
  • At least part of the inorganic filler may be surface-treated with a silane coupling agent.
  • the adhesion of the interface between the inorganic filler and the base resin can be improved, and the mechanical properties and insulating properties of the insulating layer 130 can be improved.
  • the resin composition further contains a small amount of inorganic filler, so that the effect of improving the insulating properties of the insulating layer 130 can be stably obtained while suppressing clogging of the mesh in the extrusion process. can be done.
  • the base resin (A) contains polyolefin and the case where the base resin (A) further contains maleic anhydride-modified polyolefin were described, respectively.
  • copolymers of olefins and polar monomers may be included.
  • copolymers of olefins and polar monomers include ethylene-ethyl acrylate (ethylene-ethyl acrylate) copolymers, ethylene-methyl acrylate copolymers, ethylene-butyl acrylate copolymers, ethylene-methyl methacrylate copolymers, polymers, ethylene-glycidyl methacrylate copolymers, and the like. In addition, you may use combining two or more types among these.
  • the resin composition contains an additive such as a cross-linking agent, and the insulating layer 130 is cross-linked by the cross-linking agent.
  • the insulating layer 130 does not have to be cross-linked.
  • the insulating layer 130 may be non-crosslinked. In this case, even if the insulating layer 130 is non-crosslinked, the insulation required for the power cable 10 can be satisfied. In addition, since the insulating layer 130 is non-crosslinked, the insulating layer 130 can be recycled.
  • the styrene-based elastomer (B) preferably contains, for example, at least one of propylene units and butylene units. Thereby, compatibility between the base resin (A) and the styrene elastomer (B) can be improved.
  • B1, B2 and B3 each hydrogenated styrene butadiene styrene block copolymer (SEBS) (Hereinafter, B1, B2, B3 in order of description) Ethylene content in component (B): 20% by mass, 37% by mass, 44% by mass Styrene content in component (B): 65% by mass, 40% by mass, 30% by mass SPM modulus of component (B): 50 MPa, 300 MPa, 100 MPa Content of component (B): 0 parts by mass or more and 30 parts by mass or less
  • SEBS hydrogenated styrene butadiene styrene block copolymer
  • the total content of components (A) and (B) was 100 parts by mass.
  • the "SPM elastic modulus” mentioned above means the elastic modulus measured by SPM.
  • the elastic modulus measurement by SPM was performed at 25° C. under the conditions of tapping 60,000 times within a 10 ⁇ m square of polyolefin with a cantilever made of silicon and having a tip with a radius of curvature of less than 20 nm.
  • Inorganic filler Material: Vapor phase method magnesium oxide (MgO) (volume average particle size: 50 nm) Content of inorganic filler: 0 parts by mass or more and 2 parts by mass or less
  • antioxidant Phenolic antioxidant (4,4'-thiobis(3-methyl-6-t-butylphenol)) Content of antioxidant: 0 parts by mass or more and 0.3 parts by mass or less
  • (Lubricant) Material Fatty acid amide Lubricant content: 0 parts by mass or more and 0.01 parts by mass or less
  • crosslinking agent Material: Organic peroxide (2,5-dimethyl-2,5-di(tert-butylperoxy)hexane) Content of cross-linking agent: 0 parts by mass or more and 1.5 parts by mass or less
  • each extrudate from extruders A to C was led to a common head to simultaneously extrude an inner semiconducting layer, an insulating layer and an outer semiconducting layer from the inside to the outside on the outer circumference of the conductor.
  • the thicknesses of the inner semiconductive layer, the insulating layer and the outer semiconductive layer were set to 1 mm, 14 mm and 1 mm, respectively.
  • the extruded product was heated at about 250° C. to crosslink the resin composition for the insulating layer.
  • a power cable sample was produced having, from the center to the periphery, a conductor, an inner semi-conductive layer, an insulating layer and an outer semi-conductive layer.
  • Example processing In each of the power cable samples A1 to A11 and samples B1 to B9, the insulating layer was thinly sliced from the outer peripheral surface at a position within 100 m from the initial extrusion position of the insulating layer. Next, an insulating layer sheet having a thickness of 0.20 mm from the central portion in the thickness direction of the insulating layer was formed. At this time, a plurality of sheets were formed from substantially the same circumference.
  • the amount of accumulated space charge was determined by the current integral charge method described above. Specifically, at a temperature of 90 ° C., a DC electric field of 50 kV / mm is continuously applied to each sample, and the charge amount Q 300 after 300 seconds and the charge amount Q 0 immediately after the application (0 seconds) Then, the space charge accumulation amount (%) was obtained from the above formula. A case where the space charge accumulation amount is 25% or less is rated A (best), and a case where the space charge accumulation amount is more than 25% and 100% or less is rated B (good), and the space charge accumulation amount is over 100%. The case was rated as C (bad).
  • volume resistivity The above insulating layer sheet is immersed in silicone oil at a temperature of 90 ° C., and a flat plate electrode with a diameter of 25 mm is used to apply a DC electric field of 50 kV / mm or 75 kV / mm to the insulating layer sheet. rate was measured. A case where the volume resistivity is 1 ⁇ 10 16 ⁇ cm or more is A (best), and a case where the volume resistivity is 1 ⁇ 10 15 ⁇ cm or more and less than 1 ⁇ 10 16 ⁇ cm is B (good) ), and a case where the volume resistivity was less than 1 ⁇ 10 15 ⁇ cm was evaluated as C (defective).
  • Heat deformation rate Based on JIS C3005, the heat deformation rate of the sheet of the insulating layer 130 was measured under conditions of a temperature of 120° C. and a load of 2 kg. A case where the heat deformation rate was 40% or less was evaluated as A (good), and a case where the heat deformation rate was more than 40% was evaluated as B (bad).
  • the rate of increase in resin pressure was measured.
  • the resin pressure increase rate is the ratio (%) of the resin pressure after 2 hours to the initial resin pressure. A case where the resin pressure increase rate was 1% or less was evaluated as A (good), and a case where the resin pressure increase rate was more than 1% was evaluated as B (bad).
  • the DC breaking strength is the electric field strength when a DC electric field is applied at a temperature of 90° C. and dielectric breakdown occurs in the sheet. From these results, ⁇ (E MAX -E MIN )/E AVE ⁇ 100 was used to obtain the variation rate (%) of the DC breakdown strength. A case where the variation rate of the DC breaking strength was 20% or less was evaluated as A (good), and a case where the variation rate of the DC breaking strength was more than 20% was evaluated as B (bad).
  • Tables 1 and 2 below show the results of evaluating power cable samples.
  • the unit for the content of the compounding agent is "parts by mass”.
  • “(B) component/(C) component ratio” means the ratio of the content of component (B) to the content of component (C).
  • Sample B6 which does not contain styrene elastomer (B), copolymer (C), and inorganic filler, has poor space charge accumulation, volume resistivity, and DC breakdown strength measured under a DC electric field of 50 kV/mm. Met. Sample B6 does not contain a material that suppresses the local accumulation of space charges, so it is considered that the insulating properties are degraded.
  • Sample B9 which does not contain the styrene-based elastomer (B) and the copolymer (C) but does contain the inorganic filler, gave good evaluation results regarding insulation. However, the resin pressure rise rate in the extrusion process and the fluctuation rate of the DC breaking strength in the length direction of the cable were poor. In sample B9, the mesh was clogged due to agglomeration of the inorganic filler during the extrusion process of the insulating layer.
  • the direct current breaking strength was good in comparison with sample B5, which did not contain any.
  • sample B5 the space charge storage amount and volume resistivity measured under the condition of a DC electric field of 50 kV/mm were poor.
  • samples B3 and B5 the styrene elastomer (B) could not sufficiently intervene in the base resin (A), and the copolymer (C) could not be uniformly dispersed. For this reason, it is considered that the local accumulation of space charges could not be suppressed.
  • Sample B2 in which the content of the copolymer (C) was 20 parts by mass or more, had good insulating properties, but had a poor heat deformation rate. In sample B2, the styrene unit in the copolymer (C) contributed greatly to the deformation, and thus the insulating layer was likely to deform at high temperatures.
  • Sample B7 which contains a styrene-maleic anhydride-allyl ether copolymer as the copolymer (C), has poor space charge accumulation, volume resistivity, and DC breakdown strength measured under a DC electric field of 50 kV/mm. Met.
  • the allyl ether in copolymer (C) was desorbed and decomposed during the extrusion or cross-linking steps to generate low molecular weight components. Therefore, the low-molecular-weight components were locally accumulated as space charges. As a result, it is considered that the insulating property has deteriorated.
  • Samples A1 to A11 satisfied the respective requirements for the content of copolymer (C), the total content of maleic anhydride units in the composition, and the side chains of copolymer (C). Samples A1 to A11 were good in space charge storage amount, volume resistivity, and DC breakdown strength measured under DC electric field conditions of 50 kV/mm and 75 kV/mm, respectively. Also, the heat deformation rate was good. Furthermore, the resin pressure rise rate in the extrusion process and the fluctuation rate of DC breaking strength in the length direction of the cable were also good.
  • the total content of maleic anhydride units in the composition can be 0.1 parts by mass or more by setting the content of the copolymer (C) to 0.5 parts by mass or more. rice field. This enabled the maleic anhydride units to sufficiently trap the space charge. As a result, it was confirmed that the insulating layer could have a high withstand voltage even at a high temperature.
  • samples A1 to A3 with a copolymer (C) content of 4 parts by mass or more had the best space charge accumulation and volume resistivity measured under a DC electric field of 75 kV/mm.
  • the copolymer (C) does not contain side chains that are detached by thermal decomposition or hydrolysis at 300° C. or less, so that the accumulation of space charges in the low-molecular-weight components can be suppressed. confirmed.
  • sample A11 by containing less than 1 part by mass of the inorganic filler, it was possible to stably obtain the effect of improving the insulating properties of the insulating layer while suppressing clogging of the mesh in the extrusion process. confirmed.
  • the total content of maleic anhydride units could be increased by further including maleic anhydride-modified polyethylene in the base resin (A). As a result, it was confirmed that the local accumulation of space charges could be stably suppressed.
  • the copolymer (C) is a resin composition that does not contain side chains that are detached by thermal decomposition or hydrolysis at 300° C. or lower.
  • the insulating layer includes a resin composition having a base resin (A) containing polyolefin, a styrene elastomer (B) containing styrene units, and a copolymer (C) containing styrene units and maleic anhydride units,
  • the content of the copolymer (C) in the insulating layer is 0.5 parts by mass or more when the total content of the base resin (A) and the styrene elastomer (B) is 100 parts by mass.
  • the content of the styrene-based elastomer (B) in the insulating layer is equal to or greater than the content of the copolymer (C),
  • the total content of the maleic anhydride units in the insulating layer is 0.1 parts by mass or more when the total content of the base resin (A) and the styrene elastomer (B) is 100 parts by mass.
  • the insulating layer includes a resin composition having a base resin (A) containing polyolefin, a styrene elastomer (B) containing styrene units, and a copolymer (C) containing styrene units and maleic anhydride units,
  • the total content of the maleic anhydride units in the insulating layer is 0.1 parts by mass or more when the total content of the base resin (A) and the styrene elastomer (B) is 100 parts by mass.
  • the content of the styrene-based elastomer (B) in the insulating layer is equal to or greater than the content of the copolymer (C),
  • Appendix 6 According to any one of Appendices 2 to 5, wherein the volume resistivity of the insulating layer sheet measured under conditions of a temperature of 90° C. and a DC electric field of 75 kV/mm is 1.0 ⁇ 10 15 ⁇ cm or more. power cable.
  • Appendix 7 The power cable according to any one of appendices 2 to 6, wherein the space charge accumulation amount of the insulating layer sheet measured under conditions of a temperature of 90° C. and a DC electric field of 75 kV/mm is 100% or less.
  • the content of the copolymer (C) is less than 20 parts by mass when the total content of the base resin (A) and the styrene elastomer (B) is 100 parts by mass.
  • the insulating layer of Appendices 2 to 9 further includes an inorganic filler of less than 1 part by mass when the total content of the base resin (A) and the styrene-based elastomer (B) is 100 parts by mass.
  • the insulating layer satisfies the following formula (1) for the variation rate of DC breakdown strength: ( EMAX - EMIN ) /EAVE ⁇ 0.2 (1)
  • the DC breakdown strength was measured by applying a DC electric field at a temperature of 90° C. to each of a plurality of sheets sampled at a plurality of locations of the insulating layer at predetermined intervals in the length direction of the conductor. is the electric field strength at which the sheet breaks down, 12.
  • the base resin contains polyethylene, The power cable according to any one of appendices 2 to 17, wherein the styrene-based elastomer (B) contains ethylene units.
  • the content of the styrene-based elastomer (B) in the resin composition is equal to or greater than the content of the copolymer (C),
  • a method for producing a power cable wherein the copolymer (C) is a material that does not contain a side chain that is detached by thermal decomposition or hydrolysis at 300° C. or less.
  • (Appendix 20) preparing a resin composition having a base resin (A) containing polyolefin, a styrenic elastomer (B) containing styrene units, and a copolymer (C) containing styrene units and maleic anhydride units; A step of forming an insulating layer so as to cover the outer periphery of the conductor using the resin composition; with In the step of preparing the resin composition, The total content of the maleic anhydride units in the resin composition is 0.1 parts by mass when the total content of the base resin (A) and the styrene elastomer (B) is 100 parts by mass.
  • the content of the styrene-based elastomer (B) in the resin composition is equal to or greater than the content of the copolymer (C),
  • a method for producing a power cable wherein the copolymer (C) is a material that does not contain side chains that are detached by thermal decomposition or hydrolysis at 300° C. or less.
  • DC power cable 110 conductor 120 inner semi-conductive layer 130 insulating layer 140 outer semi-conductive layer 150 shielding layer 160 sheath

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

樹脂組成物は、ポリオレフィンを含むベース樹脂と、スチレン単位を含むスチレン系エラストマと、スチレン単位および無水マレイン酸単位を含むコポリマと、を有し、コポリマの含有量は、ベース樹脂およびスチレン系エラストマの合計の含有量を100質量部としたときに、0.5質量部以上であり、スチレン系エラストマの含有量は、コポリマの含有量以上であり、コポリマは、300℃以下において熱分解または加水分解により脱離する側鎖を含まない。

Description

樹脂組成物、電力ケーブル、および電力ケーブルの製造方法
 本開示は、樹脂組成物、電力ケーブル、および電力ケーブルの製造方法に関する。
 本出願は、2021年2月25日出願の日本国出願「特願2021-28226」に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 近年では、直流送電用途において、固体絶縁電力ケーブル(以下、「電力ケーブル」と略す)が開発されている(例えば特許文献1)。
特開平11-16421号公報
 本開示の一態様によれば、
 ポリオレフィンを含むベース樹脂と、
 スチレン単位を含むスチレン系エラストマと、
 スチレン単位および無水マレイン酸単位を含むコポリマと、
 を有し、
 前記コポリマの含有量は、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、0.5質量部以上であり、
 前記スチレン系エラストマの含有量は、前記コポリマの含有量以上であり、
 前記コポリマは、300℃以下において熱分解または加水分解により脱離する側鎖を含まない
樹脂組成物が提供される。
 本開示の他の態様によれば、
 導体と、
 前記導体の周囲を覆うように設けられた絶縁層と、
 を備え、
 前記絶縁層は、ポリオレフィンを含むベース樹脂と、スチレン単位を含むスチレン系エラストマと、スチレン単位および無水マレイン酸単位を含むコポリマと、を有する樹脂組成物を含み、
 前記絶縁層中の前記コポリマの含有量は、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、0.5質量部以上であり、
 前記絶縁層中の前記スチレン系エラストマの含有量は、前記コポリマの含有量以上であり、
 前記コポリマは、300℃以下において熱分解または加水分解により脱離する側鎖を含まない
電力ケーブルが提供される。
 本開示の更に他の態様によれば、
 導体と、
 前記導体の周囲を覆うように設けられた絶縁層と、
 を備え、
 前記絶縁層は、ポリオレフィンを含むベース樹脂と、スチレン単位を含むスチレン系エラストマと、スチレン単位および無水マレイン酸単位を含むコポリマと、を有する樹脂組成物を含み、
 前記絶縁層中の前記無水マレイン酸単位の総含有量は、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、0.1質量部以上であり、
 前記絶縁層中の前記スチレン系エラストマの含有量は、前記コポリマの含有量以上であり、
 前記コポリマは、300℃以下において熱分解または加水分解により脱離する側鎖を含まない
電力ケーブルが提供される。
 本開示の更に他の態様によれば、
 ポリオレフィンを含むベース樹脂と、スチレン単位を含むスチレン系エラストマと、スチレン単位および無水マレイン酸単位を含むコポリマと、を有する樹脂組成物を準備する工程と、
 前記樹脂組成物を用い、導体の外周を覆うように絶縁層を形成する工程と、
 を備え、
 前記樹脂組成物を準備する工程では、
 前記樹脂組成物中の前記コポリマの含有量を、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、0.5質量部以上とし、
 前記樹脂組成物中の前記スチレン系エラストマの含有量を、前記コポリマの含有量以上とし、
 前記コポリマを、300℃以下において熱分解または加水分解により脱離する側鎖を含まない材料とする
電力ケーブルの製造方法が提供される。
 本開示の更に他の態様によれば、
 ポリオレフィンを含むベース樹脂と、スチレン単位を含むスチレン系エラストマと、スチレン単位および無水マレイン酸単位を含むコポリマと、を有する樹脂組成物を準備する工程と、
 前記樹脂組成物を用い、導体の外周を覆うように絶縁層を形成する工程と、
 を備え、
 前記樹脂組成物を準備する工程では、
 前記樹脂組成物中の前記無水マレイン酸単位の総含有量を、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、0.1質量部以上とし、
 前記樹脂組成物中の前記スチレン系エラストマの含有量を、前記コポリマの含有量以上とし、
 前記コポリマを、300℃以下において熱分解または加水分解により脱離する側鎖を含まない材料とする
電力ケーブルの製造方法が提供される。
図1は、本開示の一実施形態に係る直流電力ケーブルの軸方向に直交する模式的断面図である。
[本開示が解決しようとする課題]
 本開示の目的は、絶縁層の安定的な絶縁性を得ることである。
[本開示の効果]
 本開示によれば、絶縁層の安定的な絶縁性を得ることができる。
[本開示の実施形態の説明]
<発明者等の得た知見>
 まず、発明者等の得た知見について説明する。
 直流電力ケーブルでは、例えば、高電圧印加時に絶縁層内に空間電荷が生成され、絶縁層の絶縁性が低下する可能性がある。(なお、ここでいう絶縁層の「絶縁性」とは、体積抵抗率、直流破壊電界強度および空間電荷特性などを意味し、「直流特性」ともいう。)
 従来では、上述のような直流電力ケーブルの絶縁層内における空間電荷の蓄積を抑制するため、様々な対策が試みられてきた。しかしながら、本発明者等の鋭意検討によれば、以下のような新たな課題が生じる可能性があることを見出した。
(i)無機充填剤を添加する場合
 直流電力ケーブルの絶縁層内における空間電荷の蓄積を抑制するため、例えば、当該絶縁層を構成する樹脂組成物には、カーボンブラックや酸化マグネシウム(MgO)などの有極性の無機充填剤が添加されることがある(例えば、特許文献1)。この場合には、絶縁層は、例えば、メッシュを通して、無機充填剤を含む樹脂組成物を押出すことで成形される。
 しかしながら、このような無機充填剤を添加すると、無機充填剤における粒径、表面処理条件および含有量などを含む製造条件によっては、絶縁層の押出工程中に、無機充填剤の凝集に起因して、メッシュが徐々に目詰まりしてしまうことがあった。メッシュが目詰まりすると、押出工程中の樹脂圧力が上昇してしまう可能性があった。このため、絶縁層の絶縁性がケーブルの長さ方向にばらついたり、絶縁層自体の成形性が低下したりする可能性があった。
(ii)変性ポリオレフィンの場合
 直流電力ケーブルの絶縁層内における空間電荷の蓄積を抑制するため、例えば、有機系の極性基を樹脂成分中に取り込むことが検討されてきた。極性基を取り込む方法としては、例えば、極性基として無水マレイン酸を変性したポリエチレンなどの変性ポリオレフィンを樹脂組成物中に添加することが挙げられる。
 しかしながら、このような無水マレイン酸を側鎖としてポリオレフィンに変性する場合には、パーオキサイドが必要となる。パーオキサイドを使用し無水マレイン酸の変性率(変性量)を増やそうとすると、ポリオレフィン同士が反応し、これらがゲル化してしまう。そのため、変性ポリオレフィンが成形できなくなる可能性があった。
 上述のような理由により、変性ポリオレフィン中における無水マレイン酸の変性率(変性量)を増やすことが困難であった。このため、樹脂組成物全体における無水マレイン酸の総含有量を充分に確保することが困難であった。その結果、空間電荷の局所的な蓄積を抑制することができない可能性があった。特に、高温における絶縁性が低下し易い傾向があった。
 本開示は、発明者等が見出した上述の知見に基づくものである。
<本開示の実施態様>
 次に、本開示の実施態様を列記して説明する。
[1]本開示の一態様に係る樹脂組成物は、
 ポリオレフィンを含むベース樹脂と、
 スチレン単位を含むスチレン系エラストマと、
 スチレン単位および無水マレイン酸単位を含むコポリマと、
 を有し、
 前記コポリマの含有量は、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、0.5質量部以上であり、
 前記スチレン系エラストマの含有量は、前記コポリマの含有量以上であり、
 前記コポリマは、300℃以下において熱分解または加水分解により脱離する側鎖を含まない。
 この構成によれば、安定的な絶縁性を得ることができる。
[2]本開示の他の態様に係る電力ケーブルは、
 導体と、
 前記導体の周囲を覆うように設けられた絶縁層と、
 を備え、
 前記絶縁層は、ポリオレフィンを含むベース樹脂と、スチレン単位を含むスチレン系エラストマと、スチレン単位および無水マレイン酸単位を含むコポリマと、を有する樹脂組成物を含み、
 前記絶縁層中の前記コポリマの含有量は、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、0.5質量部以上であり、
 前記絶縁層中の前記スチレン系エラストマの含有量は、前記コポリマの含有量以上であり、
 前記コポリマは、300℃以下において熱分解または加水分解により脱離する側鎖を含まない。
 この構成によれば、絶縁層の安定的な絶縁性を得ることができる。
[3]上記[2]に記載の電力ケーブルにおいて、
 前記絶縁層中の前記無水マレイン酸単位の総含有量は、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、0.1質量部以上である。
 この構成によれば、無水マレイン酸単位に空間電荷を充分にトラップさせることができる。
[4]本開示の他の態様に係る電力ケーブルは、
 導体と、
 前記導体の周囲を覆うように設けられた絶縁層と、
 を備え、
 前記絶縁層は、ポリオレフィンを含むベース樹脂と、スチレン単位を含むスチレン系エラストマと、スチレン単位および無水マレイン酸単位を含むコポリマと、を有する樹脂組成物を含み、
 前記絶縁層中の前記無水マレイン酸単位の総含有量は、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、0.1質量部以上であり、
 前記絶縁層中の前記スチレン系エラストマの含有量は、前記コポリマの含有量以上であり、
 前記コポリマは、300℃以下において熱分解または加水分解により脱離する側鎖を含まない。
 この構成によれば、絶縁層の安定的な絶縁性を得ることができる。
[5]上記[2]から[4]のいずれか1つに記載の電力ケーブルにおいて、
 前記コポリマは、エステル、エーテル、アミド、ウレタン、シロキサンの結合をいずれも含まない。
 この構成によれば、絶縁層の安定的な絶縁性を得ることができる。
[6]上記[2]から[5]のいずれか1つに記載の電力ケーブルにおいて、
 温度90℃および直流電界75kV/mmの条件下において測定した前記絶縁層のシートの体積抵抗率は、1.0×1015Ω・cm以上である。
 この構成によれば、安定的な直流送電が可能となる。
[7]上記[2]から[6]のいずれか1つに記載の電力ケーブルにおいて、
 温度90℃および直流電界75kV/mmの条件下において測定した前記絶縁層のシートの空間電荷蓄積量は、100%以下である。
 この構成によれば、安定的な直流送電が可能となる。
[8]上記[2]から[7]のいずれか1つに記載の電力ケーブルにおいて、
 前記コポリマの含有量は、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、20質量部未満である。
 この構成によれば、高温時の変形を抑制することができる。
[9]上記[7]又は[8]に記載の電力ケーブルにおいて、
 温度120℃および荷重2kgの条件下において測定した前記絶縁層の加熱変形率は、40%以下である。
 この構成によれば、高温時の電力ケーブルの形状においても耐熱性を向上させることができる。
[10]上記[2]から[9]のいずれか1つに記載の電力ケーブルにおいて、
 前記絶縁層が含む無機化合物の含有量は、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、0.01質量部未満である。
 この構成によれば、絶縁層の押出工程において、メッシュの目詰まりを抑制することができる。
[11]上記[2]から[9]のいずれか1つに記載の電力ケーブルにおいて、
 前記絶縁層は、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、1質量部未満の無機充填剤をさらに有する。
 この構成によれば、押出工程におけるメッシュの目詰まりを抑制しつつ、絶縁層の絶縁性向上効果を安定的に得ることができる。
[12]上記[10]又は[11]に記載の電力ケーブルにおいて、
 前記絶縁層は、以下の直流破壊強度の変動率の式(1)を満たす、
 (EMAX-EMIN)/EAVE≦0.2 ・・・(1)
 ただし、前記直流破壊強度は、前記導体の長さ方向に所定間隔をあけて前記絶縁層の複数箇所で採取した複数のシートのそれぞれにおいて、温度90℃の条件下で直流電界を印加し、該シートが絶縁破壊したときの電界強度であり、
 EMAX、EMINおよびEAVEは、それぞれ、前記複数のシートの直流破壊強度のうちの最大値、最小値および平均値である。
 この構成によれば、長尺な電力ケーブル全体として安定的な絶縁性を得ることができる。
[13]上記[2]から[12]のいずれか1つに記載の電力ケーブルにおいて、
 前記コポリマのガラス転移温度は、110℃以上である。
 この構成によれば、電力ケーブルの機械特性を確保することができる。
[14]上記[2]から[13]のいずれか1つに記載の電力ケーブルにおいて、
 前記コポリマのガラス転移温度は、140℃以下である。
 この構成によれば、コポリマ(C)がガラス状(フィラー状)となることを抑制することができる。
[15]本開示の更に他の態様に係る電力ケーブルの製造方法は、
 ポリオレフィンを含むベース樹脂と、スチレン単位を含むスチレン系エラストマと、スチレン単位および無水マレイン酸単位を含むコポリマと、を有する樹脂組成物を準備する工程と、
 前記樹脂組成物を用い、導体の外周を覆うように絶縁層を形成する工程と、
 を備え、
 前記樹脂組成物を準備する工程では、
 前記樹脂組成物中の前記コポリマの含有量を、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、0.5質量部以上とし、
 前記樹脂組成物中の前記スチレン系エラストマの含有量を、前記コポリマの含有量以上とし、
 前記コポリマを、300℃以下において熱分解または加水分解により脱離する側鎖を含まない材料とする。
 この構成によれば、安定的な絶縁性の絶縁層を有する電力ケーブルを得ることができる。
[16]本開示の更に他の態様に係る電力ケーブルの製造方法は、
 ポリオレフィンを含むベース樹脂と、スチレン単位を含むスチレン系エラストマと、スチレン単位および無水マレイン酸単位を含むコポリマと、を有する樹脂組成物を準備する工程と、
 前記樹脂組成物を用い、導体の外周を覆うように絶縁層を形成する工程と、
 を備え、
 前記樹脂組成物を準備する工程では、
 前記樹脂組成物中の前記無水マレイン酸単位の総含有量を、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、0.1質量部以上とし、
 前記樹脂組成物中の前記スチレン系エラストマの含有量を、前記コポリマの含有量以上とし、
 前記コポリマを、300℃以下において熱分解または加水分解により脱離する側鎖を含まない材料とする。
 この構成によれば、安定的な絶縁性の絶縁層を有する電力ケーブルを得ることができる。
[本開示の実施形態の詳細]
 次に、本開示の一実施形態を、以下に図面を参照しつつ説明する。なお、本開示はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
<本開示の一実施形態>
(1)樹脂組成物
 本実施形態の樹脂組成物は、後述する電力ケーブル10の絶縁層130を構成する材料である。樹脂組成物は、例えば、ベース樹脂(A)と、スチレン系エラストマ(B)と、コポリマ(C)と、その他の添加剤と、を有している。以下、ベース樹脂(A)を「(A)成分」、スチレン系エラストマ(B)を「(B)成分」、コポリマ(C)を「(C)成分」ともいう。
[ベース樹脂(A)]
 ベース樹脂(ベースポリマ)とは、樹脂組成物の主成分を構成する樹脂成分のことをいう。「主成分」とは、最も含有量が多い成分のことを意味する。
 本実施形態のベース樹脂は、例えば、ポリオレフィンを含んでいる。ベース樹脂を構成するポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、エチレン-α-オレフィン共重合体、ポリプロピレンにエチレン-プロピレンゴムを分散あるいは共重合した熱可塑性エラストマ(非スチレン系エラストマ)などが挙げられる。これらのなかでも、ポリエチレンまたはポリプロピレンが好ましい。なお、これらのうち2種以上を組み合わせて用いてもよい。
 ベース樹脂を構成するポリエチレンとしては、例えば、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)などが挙げられる。また、これらのポリエチレンは、例えば、直鎖状または分岐状のいずれであってもよい。
 ベース樹脂を構成するポリプロピレンとしては、例えば、プロピレン単独重合体(ホモポリプロピレン)、およびプロピレンランダム重合体(ランダムポリプロピレン)などが挙げられる。立体規則性は、限定されるものではないが、例えば、アイソタクチックであることが好ましい。
 樹脂組成物が上述のベース樹脂(A)を有することで、電力ケーブル10の基本的特性および機械特性を確保することができる。
 また、走査型プローブ顕微鏡(SPM:Scanning Probe Microscope)により測定したポリオレフィンの弾性率は、例えば、300MPa以上2000MPa以下であることが好ましい。なお、SPMによる弾性率測定では、25℃で、シリコンからなり曲率半径が20nm未満である先端を有するカンチレバーにより、ポリオレフィンの10μm角の範囲内を6万回タッピングする条件下で行う。ポリオレフィンの弾性率が上述の範囲内であることにより、電力ケーブル10の柔軟性および剛性を両立することができる。
[スチレン系エラストマ(B)]
 スチレン系エラストマ(B)は、例えば、モノマ単位として、少なくともスチレン単位を含んでいる。
 このようにスチレン系エラストマ(B)がスチレン単位を含むことで、スチレン系エラストマ(B)と後述のスチレン単位を含むコポリマ(C)との相溶性を向上させることができる。つまり、ベース樹脂(A)中において、スチレン系エラストマ(B)を介在させつつ、コポリマ(C)を均一に分散させることができる。これにより、樹脂組成物中のコポリマ(C)の含有量を容易に増やすことができる。
 また、スチレン系エラストマ(B)がスチレン単位を含むことで、後述するコポリマ(C)中の無水マレイン酸単位だけでなく、スチレン系エラストマ(B)中のスチレン単位が有する芳香環においても、空間電荷をトラップさせることができる。これにより、空間電荷の局所的な蓄積を抑制することができる。
 スチレン系エラストマ(B)は、例えば、ハードセグメントとしてのスチレン単位と、ソフトセグメントとして、エチレン、プロピレン、ブチレンおよびイソプレンなどのうち少なくとも1つのモノマ単位と、を含む共重合体である。
 スチレン系エラストマ(B)としては、例えば、スチレンブタジエンスチレンブロック共重合体(SBS)、水素化スチレンブタジエンスチレンブロック共重合体、スチレン-エチレン-エチレン-プロピレン-スチレンブロック共重合体(SEEPS)、スチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS)、スチレンイソプレンスチレン共重合体(SIS)、水素化スチレンイソプレンスチレン共重合体、水素化スチレンブタジエンラバー、水素化スチレンイソプレンラバー、スチレンエチレンブチレンオレフィン結晶ブロック共重合体などが挙げられる。これらのうち2種類以上を組み合わせて用いてもよい。
 なお、ここでいう「水素化(Hydrogenated)」とは、二重結合に水素を添加したことを意味する。例えば、「水素化スチレンブタジエンスチレンブロック共重合体」とは、スチレンブタジエンスチレンブロック共重合体の二重結合に水素を添加したポリマを意味する。なお、スチレンが有する芳香環の二重結合には水素が添加されていない。「水素化スチレンブタジエンスチレンブロック共重合体」は、スチレンエチレンブチレンスチレンブロック共重合体(SEBS)と言い換えることができる。
 ベース樹脂がポリエチレンを含む場合には、上述の材料のなかでも、スチレン系エラストマ(B)は、例えば、エチレン単位を含むことが好ましい。これにより、ベース樹脂(A)とスチレン系エラストマ(B)との相溶性を向上させることができる。
 スチレン系エラストマ(B)中のエチレン単位の含有量(以下、単に「エチレン含有量」ともいう)は、特に限定されないが、例えば、10質量%以上50質量%以下であることが好ましい。エチレン含有量を10質量%以上とすることで、ベース樹脂(A)とスチレン系エラストマ(B)との相溶性を充分に向上させることができる。一方で、エチレン含有量を50質量%以下とすることで、所定量のスチレン単位を確保することができる。
これにより、スチレン系エラストマ(B)と後述のコポリマ(C)との相溶性を充分に向上させることができる。これらの結果、高温での絶縁性を安定的に向上させることができる。
 また、上述の材料のなかでも、芳香環を除く化学構造中に二重結合を含まない水素化材料が好ましい。非水素化材料を用いた場合では、樹脂組成物の成形時などに、樹脂成分が熱劣化する可能性があり、得られる成形体の諸特性が低下する可能性がある。これに対し、水素化材料を用いることで、熱劣化の耐性を向上させることができる。これにより、成形体の諸特性をより高く維持させることができる。
 また、スチレン系エラストマ(B)は、低い弾性率を有している。具体的には、SPMにより測定したスチレン系エラストマ(B)の弾性率は、例えば、10MPa以上400MPa以下であることが好ましい。なお、測定条件はベース樹脂(A)で記載した条件と同じである。スチレン系エラストマ(B)の弾性率を10MPa以上とすることで、絶縁層130を安定的に成形することができる。一方で、スチレン系エラストマ(B)の弾性率を400MPa以下とすることで、電力ケーブル10の柔軟性を向上させることができる。
 また、スチレン系エラストマ(B)は、低い結晶性を有している。具体的には、スチレン系エラストマ(B)は、融点を有しないか、或いは、融点が100℃未満である。また、スチレン系エラストマ(B)の融解熱量は、例えば、50J/g以下、好ましくは30J/g以下である。
 なお、本実施形態におけるスチレン系エラストマ(B)として、スチレン変性ポリエチレンは不適である。というのも、空間電荷の局所的な蓄積を抑制する(良好な直流特性を発現する)ためには、後述のコポリマ(C)を組成物中で細かく微分散させる必要がある。しかしながら、スチレン変性ポリエチレンでは、所定量のスチレン単位のグラフト量を確保するのが困難である。例えば、0.1質量%以上10質量%以下のスチレンをグラフトしたスチレングラフトポリエチレンでは、スチレン単位が不足する。このため、スチレン系エラストマ(B)と後述のコポリマ(C)との相溶性を向上させることが困難となる。その結果、コポリマ(C)の分散性が低下する可能性がある。
 樹脂組成物中のスチレン系エラストマ(B)の含有量は、例えば、後述のコポリマ(C)の含有量以上である。当該(B)成分の含有量が(C)成分の含有量未満であると、ベース樹脂(A)中でスチレン系エラストマ(B)が充分に介在することができず、コポリマ(C)を均一に分散させることが困難となる。このため、空間電荷の局所的な蓄積を抑制することができない可能性がある。特に、高温における絶縁性が低下する可能性がある。これに対し、本実施形態では、(B)成分の含有量を(C)成分の含有量以上とすることで、ベース樹脂(A)中において、スチレン系エラストマ(B)を充分に介在させつつ、コポリマ(C)を均一に分散させることができる。これにより、空間電荷の局所的な蓄積を抑制することができる。特に高温における絶縁性を向上させることができる。
 なお、樹脂組成物中のスチレン系エラストマ(B)の含有量の上限値は、限定されるものではない。ただし、スチレン系エラストマ(B)の含有量は、(A)成分および(B)成分の合計の含有量を100質量部としたときに、例えば、40質量部以下であり、好ましくは30質量部以下であることが好ましい。言い換えれば、ベース樹脂(A)の含有量が60質量部以上であり、好ましくは70質量部以上であることが好ましい。これにより、電力ケーブル10の基本的特性および機械特性を安定的に確保することができる。
[コポリマ(C)]
 コポリマ(C)は、例えば、モノマ単位として、スチレン単位および無水マレイン酸単位を含んでいる。このように、スチレン単位を含むコポリマ(C)中に、主鎖を構成する1つのモノマ単位として無水マレイン酸単位を取り込むことで、自由にコポリマ(C)を分子設計することができる。これにより、1分子中の無水マレイン酸単位の含有量を容易に増やすことができる。その結果、樹脂組成物全体での無水マレイン酸単位の総含有量を増やすことができる。
 また、コポリマ(C)は、例えば、300℃以下において熱分解または加水分解により脱離する側鎖を含まない。ここでいう「300℃以下において熱分解または加水分解により脱離する側鎖」とは、例えば、絶縁層130の押出工程、架橋工程、および絶縁層130が吸湿しうる布設環境などのうち少なくともいずれかにおいて、主鎖から脱離する可能性がある側鎖のことを意味する。上述のような側鎖をコポリマ(C)中に含まないことで、たとえ押出工程、架橋工程および高湿な布設環境などにおいて樹脂組成物が高温または高湿に晒されたとしても、側鎖の脱離を抑制し、当該側鎖に起因した低分子量成分の発生を抑制することができる。これにより、低分子量成分における空間電荷の蓄積を抑制することができる。
 具体的には、コポリマ(C)は、例えば、エステル、エーテル、アミド、ウレタン、シロキサンの結合をいずれも含まないことが好ましい。エステル、エーテル、アミド、ウレタン、シロキサンの結合は、側鎖として存在すると、300℃以下において熱分解または加水分解により脱離する可能性がある。
 上述の300℃以下において熱分解または加水分解により脱離する側鎖を含むモノマ単位としては、例えば、酢酸ビニル、アリルエーテル、アクリルアミドなどが挙げられる。
 一方で、上述の脱離する側鎖を含まないモノマ単位、すなわち、コポリマ(C)に含まれていてもよい他のモノマ単位としては、例えば、オレフィン、スチレン、無水マレイン酸などが挙げられる。
 また、コポリマ(C)は、例えば、無水マレイン酸単位以外に極性基を有しないことが好ましい。これにより、無水マレイン酸単位以外の極性基に起因した低分子量成分の発生を抑制することができる。
 さらには、コポリマ(C)は、例えば、スチレン単位および無水マレイン酸単位のみからなることがより好ましい。言い換えれば、コポリマ(C)は、スチレン無水マレイン酸共重合体であることがより好ましい。すなわち、コポリマ(C)中で、これら以外の他のモノマ単位を無くすことで、1分子中の無水マレイン酸単位の含有量を増やすことができる。その結果、樹脂組成物全体での無水マレイン酸単位の総含有量を容易に増やすことができる。
 コポリマ(C)中のスチレン単位の含有量(以下、単に「スチレン含有量」ともいう)は、例えば、50質量%以上90質量%以下であることが好ましい。スチレン含有量が50質量%未満であると、コポリマ(C)とスチレン系エラストマ(B)との相溶性が低下する可能性がある。これに対し、スチレン含有量を50質量%以上とすることで、コポリマ(C)とスチレン系エラストマ(B)との相溶性を向上させることができる。一方で、スチレン含有量が90質量%超であると、高温の条件下で、絶縁層130が柔軟になりやすく、変形しやすくなる可能性がある。スチレン含有量が90質量%超であると、所定量の無水マレイン酸単位を確保することが困難となる。これに対し、スチレン含有量を90質量%以下とすることで、高温の条件下での、絶縁層130の過剰な柔軟化、および絶縁層130の過剰な変形を抑制することができる。すなわち、機械特性を確保することができる。また、スチレン含有量を90質量%以下とすることで、所定量の無水マレイン酸単位を確保することができる。樹脂組成物中の無水マレイン酸単位の総含有量については後述する。
 一方で、コポリマ(C)中の無水マレイン酸単位の含有量(以下、単に「無水マレイン酸含有量」ともいう)は、例えば、10質量%以上50質量%以下であることが好ましい。無水マレイン酸含有量を10質量%以上とすることで、樹脂組成物中の無水マレイン酸単位の総含有量を確保することができる。樹脂組成物中の無水マレイン酸単位の総含有量については後述する。一方で、無水マレイン酸含有量を50質量%以下とすることで、所定量のスチレン単位を確保することができる。これにより、コポリマ(C)とスチレン系エラストマ(B)との相溶性を向上させることができる。
 なお、コポリマ(C)中には、スチレン単位および無水マレイン酸単位以外の他のモノマ単位を所定量で含んでいてもよい。
 また、コポリマ(C)のガラス転移温度は、例えば、110℃以上である。これにより、電力ケーブル10が過剰に柔軟化することを抑制することができる。その結果、電力ケーブル10の機械特性を確保することができる。
 一方で、コポリマ(C)のガラス転移温度は、例えば、140℃以下である。これにより、絶縁層130の押出工程における加工温度の条件下であっても、コポリマ(C)がガラス状(フィラー状)となることを抑制することができ、コポリマ(C)の局所的な凝集を抑制することができる。その結果、絶縁層130全体に亘ってコポリマ(C)を均一に分散させることができる。
 また、SPMにより測定したコポリマ(C)の弾性率は、例えば、1300MPa以上3000MPa以下であることが好ましい。なお、測定条件はベース樹脂(A)で記載した条件と同じである。コポリマ(C)の弾性率を1300MPa以上とすることで、剛性を確保することができる。一方で、コポリマ(C)の弾性率を3000MPa以下とすることで、柔軟性を確保することができる。
 ここで、本実施形態では、樹脂組成物中のコポリマ(C)の含有量が多く、すなわち、樹脂組成物中の無水マレイン酸単位の総含有量が従来よりも多くなっている。
 具体的には、樹脂組成物中のコポリマ(C)の含有量は、ベース樹脂(A)およびスチレン系エラストマ(B)の合計の含有量を100質量部としたときに、例えば、0.5質量部以上であり、好ましくは4質量部以上である。コポリマ(C)の含有量が0.5質量部未満であると、樹脂組成物中の無水マレイン酸単位の総含有量を充分に確保することが困難となる。このため、無水マレイン酸単位に空間電荷を充分にトラップさせることができない可能性がある。これに対し、コポリマ(C)の含有量を0.5質量部以上とすることで、樹脂組成物中の無水マレイン酸単位の総含有量を充分に確保することができる。これにより、無水マレイン酸単位に空間電荷を充分にトラップさせることができる。さらに、コポリマ(C)の含有量を4質量部以上とすることで、無水マレイン酸単位に空間電荷を安定的にトラップさせることができる。
 また、樹脂組成物中の無水マレイン酸単位の総含有量は、ベース樹脂(A)およびスチレン系エラストマ(B)の合計の含有量を100質量部としたときに、例えば、0.1質量部以上であり、好ましくは0.8質量部以上である。これにより、上述と同様に、無水マレイン酸単位に空間電荷を充分にトラップさせることができる。その結果、絶縁層130の安定的な絶縁性を得ることができる。絶縁層130の絶縁性については詳細を後述する。
 一方で、本実施形態では、樹脂組成物中のコポリマ(C)の含有量が過多となることが抑制されている。
 具体的には、樹脂組成物中のコポリマ(C)の含有量は、ベース樹脂(A)およびスチレン系エラストマ(B)の合計の含有量を100質量部としたときに、20質量部未満であり、好ましくは15質量部以下である。コポリマ(C)の含有量が20質量部以上であると、コポリマ(C)中のスチレン単位による変形への寄与が大きくなる。その結果、高温時に電力ケーブル10が変形し易くなる。これに対し、コポリマ(C)の含有量を20質量部未満とすることで、コポリマ(C)中のスチレン単位による変形への寄与を小さくすることができる。その結果、高温時の電力ケーブル10の変形を抑制することができる。さらに、コポリマ(C)の含有量を15質量部以下とすることで、高温時の電力ケーブル10の変形を安定的に抑制することができる。
[その他の添加剤]
 本実施形態の樹脂組成物は、その他の添加剤として以下の材料を含んでいてもよい。
[架橋剤]
 架橋剤は、例えば、有機過酸化物である。有機過酸化物としては、例えば、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼン等が挙げられる。なお、これらのうち2種類以上を組み合わせて用いてもよい。
 樹脂組成物が架橋剤を含む場合において、架橋剤の含有量は、限定されるものでない。ただし、架橋剤の含有量は、(A)成分および(B)成分の合計の含有量を100質量部としたときに、0.5質量部以上3.0質量部以下であることが好ましい。架橋剤の含有量を3.0質量部以下とすることで、スコーチに対する耐性を確保することができる。
[酸化防止剤]
 酸化防止剤としては、例えば、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,4-ビス-[(オクチルチオ)メチル]-o-クレゾール、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ビス[2-メチル-4-{3-n-アルキル(C12あるいはC14)チオプロピオニルオキシ}-5-t-ブチルフェニル]スルフィド、および4,4′-チオビス(3-メチル-6-t-ブチルフェノール)等が挙げられる。なお、これらのうち2種類以上を組み合わせて用いてもよい。
 樹脂組成物が酸化防止剤を含む場合において、酸化防止剤の含有量は、限定されるものでない。ただし、酸化防止剤の含有量は、(A)成分および(B)成分の合計の含有量を100質量部としたときに、0.1質量部以上0.5質量部以下であることが好ましい。
[滑剤]
 滑剤は、絶縁層130の押出工程において樹脂組成物の流動性を向上させるよう作用する。本実施形態の滑剤は、例えば、脂肪酸金属塩または脂肪酸アミドなどである。脂肪酸金属塩としては、例えば、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸アルミニウム、モンタン酸マグネシウム等が挙げられる。また、脂肪酸アミドとしては、例えば、オレイン酸アミドまたはステアリン酸アミドなどが挙げられる。なお、これらのうち2種類以上を組み合わせて用いてもよい。
 樹脂組成物が滑剤を含む場合において、滑剤の含有量は、限定されるものでない。ただし、滑剤の含有量は、(A)成分および(B)成分の合計の含有量を100質量部としたときに、0.01質量部以上0.5質量部以下であることが好ましい。
 なお、樹脂組成物は、例えば、着色剤をさらに含んでいてもよい。
 一方、本実施形態の樹脂組成物は、例えば、無機充填剤などの無機化合物を含んでいない。ここでいう「無機化合物」とは、有機置換基を含む有機化合物以外の化合物のことを意味し、上述した脂肪酸金属塩などは含まない。すなわち、本実施形態の樹脂組成物中には、一般的な直流電力ケーブル用の絶縁層に添加される無機充填剤などは意図的に混合されておらず、無機化合物は殆ど含まれていない。たとえ本実施形態の樹脂組成物中に無機化合物が含まれていたとしても、樹脂組成物中に不可避不純物としての無機化合物が微量に含まれているだけである。具体的には、樹脂組成物が含む無機化合物の含有量は、ベース樹脂(A)およびスチレン系エラストマ(B)の合計の含有量を100質量部としたときに、0.01質量部未満である。これにより、絶縁層130の押出工程において、メッシュの目詰まりを抑制することができる。
(2)直流電力ケーブル
 次に、図1を用い、本実施形態の直流電力ケーブルについて説明する。図1は、本実施形態に係る直流電力ケーブルの軸方向に直交する断面図である。
 本実施形態の電力ケーブル10は、いわゆる固体絶縁直流電力ケーブルとして構成され、例えば、導体110と、内部半導電層120と、絶縁層130と、外部半導電層140と、遮蔽層150と、シース160と、を有している。
(導体(導電部))
 導体110は、例えば、純銅、銅合金、アルミニウム、またはアルミニウム合金等からなる複数の導体芯線(導電芯線)を撚り合わせることにより構成されている。
(内部半導電層)
 内部半導電層120は、導体110の外周を覆うように設けられている。また、内部半導電層120は、半導電性を有し、導体110の表面側における電界集中を抑制するよう構成されている。内部半導電層120は、例えば、エチレン-エチルアクリレート共重合体、エチレン-メチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、並びにエチレン-酢酸ビニル共重合体等のエチレン系共重合体、オレフィン系エラストマ、および上述の低結晶性樹脂などうち少なくともいずれかと、導電性のカーボンブラックと、を含んでいる。
(絶縁層)
 絶縁層130は、内部半導電層120の外周を覆うように設けられている。絶縁層130は、上述した本実施形態の樹脂組成物を含んでいる。
 本実施形態の絶縁層130が架橋剤により架橋されている場合には、ベース樹脂(A)、スチレン系エラストマ(B)およびコポリマ(C)のうち少なくとも一部が架橋している。なお、(A)成分、(B)成分およびコポリマ(C)のうち他部に架橋していない部分が残存していてもよい。
(外部半導電層)
 外部半導電層140は、絶縁層130の外周を覆うように設けられている。また、外部半導電層140は、半導電性を有し、絶縁層130と遮蔽層150との間における電界集中を抑制するよう構成されている。外部半導電層140は、例えば、内部半導電層120と同様の材料により構成されている。
(遮蔽層)
 遮蔽層150は、外部半導電層140の外周を覆うように設けられている。遮蔽層150は、例えば、銅テープを巻回することにより構成されるか、或いは、複数の軟銅線等を巻回したワイヤシールドとして構成されている。なお、遮蔽層150の内側や外側に、ゴム引き布等を素材としたテープが巻回されていてもよい。
(シース)
 シース160は、遮蔽層150の外周を覆うように設けられている。シース160は、例えば、ポリ塩化ビニルまたはポリエチレンにより構成されている。
(絶縁層の絶縁性)
 本実施形態では、絶縁層130が上述の樹脂組成物により構成されていることで、安定的な絶縁性が得られる。
 具体的には、本実施形態の絶縁層130は、例えば、高温かつ高電界の条件下において測定した以下の絶縁性の要件を満たす。なお、当該測定は、例えば、絶縁層130の厚さ方向の中央部から採取したシートにより行われる。このときの絶縁層130のシートの厚さは、例えば、0.2mmである。
 温度90℃および直流電界50kV/mmの条件下において測定した絶縁層130のシートの体積抵抗率は、例えば、1.0×1015Ω・cm以上であり、好ましくは1.0×1016Ω・cm以上である。
 また、温度90℃および直流電界50kV/mmの条件下において測定した絶縁層130のシートの空間電荷蓄積量は、例えば、100%以下であり、好ましくは25%以下である。
 ただし、空間電荷蓄積量は、電流積分電荷法により求められる。電流積分電荷法では、試料としてのシートと直列に接続した測定用コンデンサに電荷を蓄積させ、電流の積分値である電荷量を評価する。具体的には、温度90℃にて、50kV/mmの直流電界を試料に連続印加し、300秒経過後における電荷量Q300と、印加直後(0秒)における電荷量Q0とに基づいて、下記式より空間電荷蓄積量を求める。
 空間電荷蓄積量=(Q300/Q-1)×100
 本実施形態の絶縁層130は、例えば、より厳しい電界条件下においても以下の絶縁性の要件を満たす。
 温度90℃および直流電界75kV/mmの条件下において測定した絶縁層130のシートの体積抵抗率は、1.0×1015Ω・cm以上であり、好ましくは1.0×1016Ω・cm以上である。
 また、温度90℃および直流電界75kV/mmの条件下において測定した絶縁層130のシートの空間電荷蓄積量は、100%以下であり、好ましくは25%以下である。
(形状安定性)
 また、本実施形態の絶縁層130は、例えば、高温の条件下での以下の形状安定性の要件を満たす。
 JIS C3005に準拠し、温度120℃および荷重2kgの条件下において測定した絶縁層130の加熱変形率は、40%以下である。
(押出安定性:長さ方向の絶縁性)
 さらに、本実施形態の絶縁層130は、押出工程においてメッシュの目詰まりを抑制することで、長さ方向に亘って均一な絶縁性の要件を満たす。
 具体的には、絶縁層130は、例えば、以下の直流破壊強度の変動率の式(1)を満たす。
 (EMAX-EMIN)/EAVE≦0.2 ・・・(1)
 ただし、ここでの直流破壊強度は、導体110の長さ方向に所定間隔をあけて絶縁層130の複数箇所で採取した複数のシートのそれぞれにおいて、温度90℃の条件下で直流電界を印加し、該シートが絶縁破壊したときの電界強度である。EMAX、EMINおよびEAVEは、それぞれ、当該複数のシートの直流破壊強度のうちの最大値、最小値および平均値である。
(具体的寸法等)
 電力ケーブル10における具体的な各寸法としては、特に限定されるものではないが、例えば、導体110の直径は5mm以上75mm以下であり、内部半導電層120の厚さは0.5mm以上3mm以下であり、絶縁層130の厚さは1mm以上35mm以下であり、外部半導電層140の厚さは0.5mm以上3mm以下であり、遮蔽層150の厚さは1mm以上5mm以下であり、シース160の厚さは1mm以上である。本実施形態の電力ケーブル10に適用される直流電圧は、例えば20kV以上である。
(3)直流電力ケーブルの製造方法
 次に、本実施形態の直流電力ケーブルの製造方法について説明する。以下、ステップを「S」と略す。
(S100:樹脂組成物準備工程)
 まず、ポリオレフィンを含むベース樹脂(A)と、スチレン単位を含むスチレン系エラストマ(B)と、スチレン単位および無水マレイン酸単位を含むコポリマ(C)と、を有する樹脂組成物を準備する。
 ベース樹脂(A)と、スチレン系エラストマ(B)と、コポリマ(C)と、その他の添加剤と、をバンバリミキサやニーダなどの混合機で混合(混練)し、混合材を形成する。混合材を形成したら、当該混合材を押出機で造粒する。これにより、絶縁層130を構成することとなるペレット状の樹脂組成物が形成される。なお、混練作用の高い2軸型の押出機を用いて、混合から造粒までの工程を一括して行ってもよい。
 このとき、本実施形態では、樹脂組成物中のコポリマ(C)の含有量を、ベース樹脂(A)およびスチレン系エラストマ(B)の合計の含有量を100質量部としたときに、0.5質量部以上20質量部未満とする。
 または、樹脂組成物中の無水マレイン酸単位の総含有量を、ベース樹脂(A)およびスチレン系エラストマ(B)の合計の含有量を100質量部としたときに、0.1質量部以上4質量部未満としてもよい。
 また、このとき、本実施形態では、樹脂組成物中のスチレン系エラストマ(B)の含有量を、コポリマ(C)の含有量以上とする。
 また、このとき、本実施形態では、コポリマ(C)を、300℃以下において熱分解または加水分解により脱離する側鎖を含まない材料とする。
(S200:導体準備工程)
 一方で、複数の導体芯線を撚り合わせることにより形成された導体110を準備する。
(S300:ケーブルコア形成工程(押出工程))
 次に、3層同時押出機のうち、内部半導電層120を形成する押出機Aに、例えば、エチレン-エチルアクリレート共重合体と、導電性のカーボンブラックとが予め混合された内部半導電層用樹脂組成物を投入する。
 絶縁層130を形成する押出機Bに、上記したペレット状の樹脂組成物を投入する。
 外部半導電層140を形成する押出機Cに、押出機Aに投入した内部半導電層用樹脂組成物と同様の材料からなる外部半導電層用樹脂組成物を投入する。
 次に、押出機A~Cからのそれぞれの押出物をコモンヘッドに導き、導体110の外周に、内側から外側に向けて、内部半導電層120、絶縁層130および外部半導電層140を同時に押出す。
 本実施形態では、その後、窒素ガスなどで加圧された架橋管内で、赤外線ヒータによる輻射により加熱したり、高温の窒素ガスまたはシリコーン油等の熱媒体を通じて熱伝達させたりすることにより、絶縁層130を架橋させる。これにより、導体110、内部半導電層120、絶縁層130および外部半導電層140により構成されるケーブルコアが形成される。
(S400:遮蔽層形成工程)
 次に、外部半導電層140の外側に、例えば銅テープを巻回することにより遮蔽層150を形成する。
(S500:シース形成工程)
 次に、押出機に塩化ビニルを投入して押出すことにより、遮蔽層150の外周に、シース160を形成する。
 以上により、固体絶縁直流電力ケーブルとしての電力ケーブル10が製造される。
(4)本実施形態に係る効果
 本実施形態によれば、以下に示す1つ又は複数の効果を奏する。
(a)本実施形態では、絶縁層130を構成する樹脂組成物が、ポリオレフィンを含むベース樹脂(A)と、スチレン単位を含むスチレン系エラストマ(B)と、スチレン単位および無水マレイン酸単位を含むコポリマ(C)と、を有している。スチレン単位を含むコポリマ(C)中に、主鎖を構成する1つのモノマ単位として無水マレイン酸単位を取り込むことで、自由にコポリマ(C)を分子設計することができる。これにより、1分子中の無水マレイン酸単位の含有量を容易に増やすことができる。当該コポリマ(C)を上述のスチレン系エラストマ(B)とともにベース樹脂(A)と混合することで、絶縁層130中に無水マレイン酸を均一に分散させつつ、絶縁層130全体での無水マレイン酸単位の総含有量を増やすことができる。これにより、絶縁層130中に均一に分散された極性基としての無水マレイン酸単位に、空間電荷をトラップさせることができる。すなわち、絶縁層130において、空間電荷の局所的な蓄積を抑制することができる。
 このように、空間電荷の局所的な蓄積を抑制することで、絶縁層130の安定的な絶縁性を得ることができる。具体的には、絶縁層130を高温であっても高耐圧とすることが可能となる。その結果、本実施形態の電力ケーブル10により安定的な直流送電が可能となる。
(b)樹脂組成物中(すなわち、絶縁層130中)のコポリマ(C)の含有量は、ベース樹脂(A)およびスチレン系エラストマ(B)の合計の含有量を100質量部としたときに、0.5質量部以上である。これにより、絶縁層130中の無水マレイン酸単位の総含有量を容易に確保することができる。具体的には、樹脂組成物中の無水マレイン酸単位の総含有量を、0.1質量部以上とすることができる。
 無水マレイン酸単位の総含有量を、0.1質量部以上とすることで、無水マレイン酸単位に空間電荷を充分にトラップさせることができる。その結果、絶縁層130を高温であっても高耐圧とすることが可能となる。
(c)樹脂組成物中(すなわち、絶縁層130中)のスチレン系エラストマ(B)の含有量は、コポリマ(C)の含有量以上である。これにより、ベース樹脂(A)中において、スチレン系エラストマ(B)を充分に介在させつつ、コポリマ(C)を均一に分散させることができる。その結果、空間電荷の局所的な蓄積を抑制することができる。上述のように、特に高温における絶縁性を向上させることができる。
(d)コポリマ(C)は、300℃以下において熱分解または加水分解により脱離する側鎖を含まない。
 ここで、コポリマ(C)が高温下で熱分解または加水分解により脱離する側鎖を含んでいる場合について考える。この場合、押出工程、架橋工程、および絶縁層が吸湿しうる布設環境などのうち少なくともいずれかにおいて、樹脂組成物が高温または高湿に晒されたときに、側鎖が脱離し、絶縁層中に当該側鎖に起因した低分子量成分が発生する。このような低分子量成分が発生すると、絶縁層中の低分子量成分において、局所的に空間電荷が蓄積してしまう。つまり、上述のコポリマ(C)の極性基としての無水マレイン酸単位を分散させたとしても、分散された無水マレイン酸による空間電荷のトラップ効果が得られない部分が生じてしまう可能性がある。
 これに対し、本実施形態では、コポリマ(C)が上述のような側鎖を含まないことで、たとえ押出工程および架橋工程などにおいて樹脂組成物が高温に晒されたとしても、側鎖の脱離を抑制し、当該側鎖に起因した低分子量成分の発生を抑制することができる。その結果、低分子量成分における空間電荷の蓄積を抑制することができる。つまり、分散された無水マレイン酸による空間電荷のトラップ効果を均一に得ることが可能となる。
(e)樹脂組成物中(すなわち、絶縁層130中)のコポリマ(C)の含有量は、ベース樹脂(A)およびスチレン系エラストマ(B)の合計の含有量を100質量部としたときに、20質量部未満である。これにより、コポリマ(C)中のスチレン単位による変形への寄与を小さくすることができる。その結果、高温時の電力ケーブル10の変形を抑制することができる。すなわち、高温時の電力ケーブル10の形状においても耐熱性を向上させることができる。
(f)本実施形態では、絶縁層130は、無機充填剤などの無機化合物を含んでいない。具体的には、絶縁層130中の無機化合物の含有量は、ベース樹脂(A)およびスチレン系エラストマ(B)の合計の含有量を100質量部としたときに、0.01質量部未満である。これにより、絶縁層130の押出工程において、メッシュの目詰まりを抑制することができる。
 絶縁層130の押出工程において、メッシュの目詰まりを抑制することで、絶縁層130の絶縁性が導体110の長さ方向にばらつくことを抑制することができる。また、絶縁層130自体の成形性の低下を抑制することができる。
 その結果、長尺な電力ケーブルを連続的な押出工程で製造することができるとともに、当該長尺な電力ケーブル全体として安定的な絶縁性を得ることができる。
(5)本開示の一実施形態の変形例
 上述の実施形態は、必要に応じて、以下に示す変形例のように変更することができる。
以下、上述の実施形態と異なる要素についてのみ説明し、上述の実施形態で説明した要素と実質的に同一の要素は、説明を省略する。
[変形例1]
 変形例1では、ベース樹脂(A)は、例えば、ポリオレフィンに無水マレイン酸がグラフトされた無水マレイン酸変性ポリオレフィンをさらに含んでいてもよい。
 無水マレイン酸変性ポリオレフィンを構成するポリオレフィンは、例えば、ベース樹脂(A)に含まれる他のポリオレフィンと同様である。具体的には、無水マレイン酸変性ポリオレフィンを構成するポリオレフィンは、例えば、ポリエチレンである。
 無水マレイン酸変性ポリオレフィン中のポリオレフィンに対する無水マレイン酸の変性率(共重合率)は、特に限定されるものではないが、例えば、0.1%以上5%以下である。ポリオレフィンに対する無水マレイン酸の変性率を0.1%以上とすることにより、ベース樹脂(A)とコポリマ(C)との相溶性を向上させ、コポリマ(C)を均一に分散させることができる。一方で、ポリオレフィンに対する無水マレイン酸の変性率を5%以下とすることにより、絶縁層130を安定的に成形することができる。
 樹脂組成物中の無水マレイン酸変性ポリオレフィンの含有量は、特に限定されるものではないが、(A)成分および(B)成分の合計の含有量を100質量部としたときに、例えば、1質量部以上10質量部以下である。無水マレイン酸変性ポリオレフィンの含有量を1質量部以上とすることにより、ベース樹脂(A)とコポリマ(C)との相溶性が向上し、コポリマ(C)を均一に分散させることができる。一方で、無水マレイン酸変性ポリオレフィンの含有量を10質量部以下とすることにより、絶縁層130を安定的に成形することができる。
 変形例1によれば、ベース樹脂(A)が無水マレイン酸変性ポリエチレンをさらに含むことで、絶縁層130全体での無水マレイン酸単位の総含有量をさらに増やすことができる。また、ベース樹脂(A)が無水マレイン酸変性ポリエチレンをさらに含むことで、無水マレイン酸単位を含むコポリマ(C)とベース樹脂(A)との相溶性を向上させることができる。これにより、絶縁層130中に無水マレイン酸を均一に分散させることができる。その結果、絶縁層130において、空間電荷の局所的な蓄積を安定的に抑制することができる。
[変形例2]
 変形例2では、樹脂組成物は、押出工程においてメッシュの目詰まりが生じない程度に微量の無機充填剤をさらに含んでいてもよい。
 無機充填剤としては、例えば、酸化マグネシウム(MgO)、二酸化シリコン、酸化亜鉛、酸化アルミニウム、酸化チタン、酸化ジルコニウム、カーボンブラック、および、これらのうち2種以上を混合した混合物のうち少なくともいずれかが挙げられる。
 酸化マグネシウムを形成する方法としては、例えば、Mg蒸気と酸素とを接触させる気相法、または海水原料から形成する海水法が挙げられる。本実施形態での無機充填剤を形成する方法は、気相法または海水法のいずれの方法であってもよい。
 二酸化シリコンとしては、例えば、フュームドシリカ、コロイダルシリカ、沈降シリカ、爆燃法シリカのうち少なくともいずれかが挙げられる。これらのなかでも、二酸化シリコンとしてはフュームドシリカが好ましい。
 本変形例では、樹脂組成物中の無機充填剤の含有量は、(A)成分および(B)成分の合計の含有量を100質量部としたときに、例えば、1質量部未満である。このように含有量を微量とすることで、押出工程でのメッシュの目詰まりを抑制することができる。
 なお、本変形例では、無機充填剤の含有量の下限値は、無機充填剤を添加できるのであれば、限定されるものではない。
 本変形例では、無機充填剤の体積平均粒径(MV:Mean Volume Diameter)(後述X)は、特に限定されるものではないが、例えば、1μm以下、好ましくは、700nm以下、より好ましくは100nm以下である。
 なお、ここでいう「体積平均粒径(MV)」は、粒子の粒子径をd、粒子の体積Vとしたとき、以下の式で求められる。
 MV=Σ(V)/ΣV
 なお、体積平均粒径の測定には、動的光散乱式粒子径・粒度分布測定装置が用いられる。
 なお、無機充填剤の体積平均粒径の下限値についても、特に限定されるものではない。
ただし、無機充填剤を安定的に形成する観点では、無機充填剤の体積平均粒径は、例えば、1nm以上、好ましくは5nm以上である。
 本変形例では、無機充填剤のうち少なくとも一部は、シランカップリング剤により表面処理されていてもよい。無機充填剤とベース樹脂との間の界面の密着性を向上させることができ、絶縁層130の機械特性や絶縁性を向上させることができる。
 変形例2によれば、樹脂組成物が微量の無機充填剤をさらに含んでいることで、押出工程におけるメッシュの目詰まりを抑制しつつ、絶縁層130の絶縁性向上効果を安定的に得ることができる。
<本開示の他の実施形態>
 以上、本開示の実施形態について具体的に説明したが、本開示は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 上述の実施形態および変形例では、それぞれ、ベース樹脂(A)がポリオレフィンを含む場合、ベース樹脂(A)がさらに無水マレイン酸変性ポリオレフィンを含む場合について説明したが、樹脂組成物は、ベース樹脂(A)として、これらのほかに、オレフィンと極性モノマとの共重合体を含んでいてもよい。オレフィンと極性モノマとの共重合体としては、例えば、エチレン-エチルアクリレート(エチレン-アクリル酸エチル)共重合体、エチレン-メチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、エチレン-メチルメタクリレート共重合体、エチレン-グリシジルメタクリレート共重合体などが挙げられる。なお、これらのうち2種類以上を組み合わせて用いてもよい。
 上述の実施形態および変形例では、樹脂組成物が架橋剤などの添加剤を含み、絶縁層130が架橋剤により架橋される場合について説明したが、絶縁層130は架橋されていなくてもよい。
 特に、ベース樹脂(A)がポリプロピレンを含む場合には、絶縁層130が非架橋であってもよい。この場合、絶縁層130が非架橋であっても、電力ケーブル10として求められる絶縁性を満たすことができる。また、絶縁層130が非架橋であることで、絶縁層130をリサイクルすることができる。
 ベース樹脂がポリプロピレンを含む場合には、上述の材料のなかでも、スチレン系エラストマ(B)は、例えば、プロピレン単位およびブチレン単位のうち少なくともいずれかを含むことが好ましい。これにより、ベース樹脂(A)とスチレン系エラストマ(B)との相溶性を向上させることができる。
 次に、本開示に係る実施例を説明する。これらの実施例は本開示の一例であって、本開示はこれらの実施例により限定されない。
(1)電力ケーブルのサンプルについて
 以下の手順により、試料A1~A11、B1~B9のそれぞれの電力ケーブルを製造した。
(1-1)樹脂組成物の製造
 以下の配合剤をバンバリミキサによって混合し、押出機で造粒することで、ペレット状の樹脂組成物を製造した。
[ベース樹脂(A)]
 低密度ポリエチレン(LDPE)(密度d=0.920g/cm、MFR=1g/10min、SPM弾性率500MPa):0質量部以上100質量部以下
 ポリプロピレン(プロピレンランダム重合体、アイソタクチック、密度d=0.900g/cm、MFR=0.6g/10min、SPM弾性率1100MPa):0または98質量部
 無水マレイン酸変性ポリエチレン(変性率0.3%、SPM弾性率500MPa):0または5質量部
[スチレン系エラストマ(B)]
 B1、B2およびB3:それぞれ、水素化スチレンブタジエンスチレンブロック共重合体(SEBS)
 (以下、記載順にB1、B2、B3)
 (B)成分中のエチレン含有量:20質量%、37質量%、44質量%
 (B)成分中のスチレン含有量:65質量%、40質量%、30質量%
 (B)成分のSPM弾性率:50MPa、300MPa、100MPa
 (B)成分の含有量:0質量部以上30質量部以下
 なお、(A)成分および(B)成分の合計の含有量を100質量部とした。
[コポリマ(C)]
 C1およびC2:スチレン-無水マレイン酸共重合体(ガラス転移温度:115℃)
 その他:スチレン-無水マレイン酸-アリルエーテル共重合体(ガラス転移温度:115℃)
 C1およびC2のそれぞれのスチレン含有量:75質量%、80質量%
 C1およびC2のそれぞれの無水マレイン酸含有量:25質量%、20質量%
 C1およびC2のそれぞれのSPM弾性率:1500MPa、1300MPa (C)成分の含有量:0質量部以上20質量部以下
 なお、スチレン-無水マレイン酸-アリルエーテル共重合体の無水マレイン酸含有量:25質量%
 なお、上述の「SPM弾性率」とは、SPMにより測定した弾性率のことを意味する。SPMによる弾性率測定では、25℃で、シリコンからなり曲率半径が20nm未満である先端を有するカンチレバーにより、ポリオレフィンの10μm角の範囲内を6万回タッピングする条件下で行った。
[その他の添加剤]
(無機充填剤)
 材料:気相法酸化マグネシウム(MgO)(体積平均粒径:50nm)
 無機充填剤の含有量:0質量部以上2質量部以下
(酸化防止剤)
 材料:フェノール系酸化防止剤(4,4′-チオビス(3-メチル-6-t-ブチルフェノール))
 酸化防止剤の含有量:0質量部以上0.3質量部以下
(滑剤)
 材料:脂肪酸アミド
 滑剤の含有量:0質量部以上0.01質量部以下
(架橋剤)
 材料:有機過酸化物(2、5-ジメチル-2、5-ジ(tert-ブチルペルオキシ)ヘキサン)
 架橋剤の含有量:0質量部以上1.5質量部以下
(1-2)電力ケーブルのサンプルの製造
 次に、直径が14mmの希薄銅合金製の導体芯線を撚り合せることにより形成された導体を準備した。導体を準備したら、エチレン-エチルアクリレート共重合体を含む内部半導電層用樹脂組成物と、上述(1-1)で準備した絶縁層用の樹脂組成物と、内部半導電層用樹脂組成物と同様の材料からなる外部半導電層樹脂組成物と、をそれぞれ押出機A~Cに投入した。押出機A~Cからのそれぞれの押出物をコモンヘッドに導き、導体の外周に、内側から外側に向けて、内部半導電層、絶縁層および外部半導電層を同時に押出した。このとき、内部半導電層、絶縁層および外部半導電層の厚さを、それぞれ、1mm、14mm、1mmとした。その後、上述の押出成形物を約250℃で加熱することで、絶縁層用の樹脂組成物を架橋させた。その結果、中心から外周に向けて、導体、内部半導電層、絶縁層および外部半導電層を有する電力ケーブルのサンプルを製造した。
 以上の工程により、樹脂組成物が異なる電力ケーブルの試料A1~A11、試料B1~B9を製造した。
(2)評価
 電力ケーブルの試料A1~A11、試料B1~B9のそれぞれにおいて、以下の評価を行った。なお、後述の「樹脂圧上昇率」は、絶縁層の押出工程時に評価した。
[サンプル加工]
 電力ケーブルの試料A1~A11、試料B1~B9のそれぞれにおいて、絶縁層の初期押出位置から100m以内の位置での絶縁層を外周面から桂剥き(thinly slicing)した。次に、絶縁層の厚さ方向の中央部から0.20mmの厚さを有する絶縁層のシートを形成した。このとき、ほぼ同一周から複数のシートを形成した。
 なお、後述の長さ方向の絶縁性の評価においては、導体の長さ方向に100mの間隔をあけて絶縁層の10箇所のそれぞれでシートを採取することで、合計で10枚のシートを採取した。なお、それぞれの採取位置において、厚さ方向の中央部からシートを採取した。
[空間電荷特性]
 空間電荷蓄積量は、上述の電流積分電荷法により求めた。具体的には、温度90℃にて、50kV/mmの直流電界を各試料に連続印加し、300秒経過後における電荷量Q300と、印加直後(0秒)における電荷量Q0とに基づいて、上述の式より空間電荷蓄積量(%)を求めた。当該空間電荷蓄積量が25%以下である場合をA(最良)とし、空間電荷蓄積量が25%超100%以下である場合をB(良好)とし、空間電荷蓄積量が100%超である場合をC(不良)として評価した。
[体積抵抗率]
 上述の絶縁層のシートを温度90℃のシリコーンオイル中に浸漬させ、直径25mmの平板電極を用いて、50kV/mmまたは75kV/mmの直流電界を絶縁層のシートに印加することで、体積抵抗率を測定した。当該体積抵抗率が1×1016Ω・cm以上である場合をA(最良)とし、体積抵抗率が1×1015Ω・cm以上1×1016Ω・cm未満である場合をB(良好)とし、体積抵抗率が1×1015Ω・cm未満である場合をC(不良)として評価した。
[直流破壊強度]
 上述の絶縁層のシートを温度90℃のシリコーンオイル中に浸漬させ、直径25mmの平板電極を用いて、4kV/minの速度で印加電圧を上昇させた。絶縁層のシートが絶縁破壊に至ったときに、このときに印加していた電圧をシート厚さで除算することで、該絶縁層のシートの直流破壊強度を求めた。当該直流破壊強度が200kV/mm以上である場合をA(最良)とし、直流破壊強度が160kV/mm以上200kV/mm未満である場合をB(良好)とし、直流破壊強度が160kV/mm未満である場合をC(不良)として評価した。
[加熱変形率]
 JIS C3005に準拠し、温度120℃および荷重2kgの条件下において、絶縁層130のシートの加熱変形率を測定した。当該加熱変形率が40%以下である場合をA(良好)とし、加熱変形率が40%超である場合をB(不良)として評価した。
[押出安定性:樹脂圧上昇率]
 上述の絶縁層の押出工程において、樹脂圧上昇率を測定した。このとき、樹脂圧上昇率は、初期の樹脂圧に対する2時間経過時の樹脂圧の比率(%)である。該樹脂圧上昇率が1%以下である場合をA(良好)とし、樹脂圧上昇率が1%超である場合をB(不良)として評価した。
[押出安定性:長さ方向の絶縁性]
 上述のように、導体の長さ方向に所定間隔をあけて絶縁層の10箇所で採取した10枚のシートのそれぞれにおいて、上述の[直流破壊強度]に記載の測定条件と同様の測定条件により、直流破壊強度を測定した。すなわち、直流破壊強度は、温度90℃の条件下で直流電界を印加し、該シートが絶縁破壊したときの電界強度である。これらの結果から、{(EMAX-EMIN)/EAVE}×100により、直流破壊強度の変動率(%)を求めた。該直流破壊強度の変動率が20%以下である場合をA(良好)とし、直流破壊強度の変動率が20%超である場合をB(不良)として評価した。
(3)結果
 電力ケーブルのサンプルの評価を行った結果を以下の表1および表2に示す。なお、表1および表2において、配合剤の含有量の単位は、「質量部」である。「(B)成分/(C)成分の比率」とは、(C)成分の含有量に対する(B)成分の含有量の比率を意味する。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
(試料B6)
 スチレン系エラストマ(B)、コポリマ(C)および無機充填剤を含まない試料B6では、直流電界50kV/mmの条件下において測定した空間電荷蓄積量および体積抵抗率と、直流破壊強度とがそれぞれ不良であった。試料B6では、空間電荷の局所的な蓄積を抑制する材料を含んでいなかったため、絶縁性が低下したと考えられる。
(試料B8)
 スチレン系エラストマ(B)、コポリマ(C)および無機充填剤を含まないが、無水マレイン酸変性ポリエチレンを含む試料B8では、直流電界50kV/mmの条件下において測定した空間電荷蓄積量および体積抵抗率と、直流破壊強度は、それぞれ、良好であった。しかしながら、より厳しい条件として、直流電界75kV/mmの条件下において測定した空間電荷蓄積量および体積抵抗率がそれぞれ不良であった。試料B8では、組成物中の極性基の総含有量を充分に確保することができなかったため、厳しい条件下では、空間電荷の局所的な蓄積を抑制することができなかったと考えられる。
(試料B9)
 スチレン系エラストマ(B)およびコポリマ(C)を含まないが、無機充填剤を含む試料B9では、絶縁性に係る評価結果は、良好であった。しかしながら、押出工程における樹脂圧上昇率、およびケーブルの長さ方向における直流破壊強度の変動率が不良であった。試料B9では、絶縁層の押出工程中に、無機充填剤の凝集に起因して、メッシュが目詰まりしたため、絶縁性がケーブルの長さ方向にばらついていたと考えられる。
(試料B1およびB4)
 コポリマ(C)の含有量を0.5質量部未満とした試料B1と、コポリマ(C)を含まない試料B4とでは、組成物中の無水マレイン酸単位の総含有量が0.1質量部未満であった。これらの試料では、直流破壊強度は良好であったが、直流電界50kV/mmの条件下において測定した空間電荷蓄積量および体積抵抗率が不良であった。試料B1およびB4では、組成物中の無水マレイン酸単位の総含有量を充分に確保することができなかったため、無水マレイン酸単位に空間電荷を充分にトラップさせることができなかったと考えられる。
(試料B3およびB5)
 スチレン系エラストマ(B)の含有量をコポリマ(C)の含有量未満(すなわち、(B)成分/(C)成分の比率を1未満)とした試料B3と、スチレン系エラストマ(B)を含まない試料B5とでは、直流破壊強度は良好であった。しかしながら、試料B5では、直流電界50kV/mmの条件下において測定した空間電荷蓄積量および体積抵抗率が不良であった。一方で、試料B3では、やや絶縁性が良くなるものの、直流電界75kV/mmの条件下において測定した空間電荷蓄積量および体積抵抗率がそれぞれ不良であった。試料B3およびB5では、ベース樹脂(A)中でスチレン系エラストマ(B)が充分に介在することができず、コポリマ(C)を均一に分散させることができなかった。このため、空間電荷の局所的な蓄積を抑制することができなかったと考えられる。
(試料B2)
 コポリマ(C)の含有量を20質量部以上とした試料B2では、絶縁性は良好であったが、加熱変形率が不良であった。試料B2では、コポリマ(C)中のスチレン単位による変形への寄与が大きかったため、高温時に絶縁層が変形し易くなったと考えられる。
(試料B7)
 コポリマ(C)としてスチレン-無水マレイン酸-アリルエーテル共重合体を含む試料B7では、直流電界50kV/mmの条件下において測定した空間電荷蓄積量および体積抵抗率と、直流破壊強度とがそれぞれ不良であった。試料B7では、コポリマ(C)中のアリルエーテルが押出工程または架橋工程中に脱離および分解し、低分子量成分が発生していた。このため、低分子量成分が局所的に空間電荷として蓄積していた。その結果、絶縁性が低下したと考えられる。
(試料A1~A11)
 試料A1~A11では、コポリマ(C)の含有量、組成物中の無水マレイン酸単位の総含有量、コポリマ(C)の側鎖のそれぞれの要件を満たしていた。試料A1~A11の結果では、直流電界50kV/mmおよび75kV/mmのそれぞれの条件下において測定した空間電荷蓄積量および体積抵抗率と、直流破壊強度とがそれぞれ良好であった。また、加熱変形率が良好であった。さらに、押出工程における樹脂圧上昇率、およびケーブルの長さ方向における直流破壊強度の変動率も良好であった。
 試料A1~A11では、コポリマ(C)の含有量を0.5質量部以上とすることで、組成物中の無水マレイン酸単位の総含有量を、0.1質量部以上とすることができた。これにより、無水マレイン酸単位に空間電荷を充分にトラップさせることができた。その結果、絶縁層を高温であっても高耐圧とすることができたことを確認した。
 これらのなかでも、コポリマ(C)の含有量を4質量部以上とした試料A1~A3では、直流電界75kV/mmの条件下において測定した空間電荷蓄積量および体積抵抗率が最良であった。
 試料A1~A3では、組成物中の無水マレイン酸単位の総含有量を、0.8質量部以上とすることができた。これにより、無水マレイン酸単位に空間電荷を安定的にトラップさせることができた。その結果、より安定的な絶縁性を得ることができたことを確認した。
 試料A1~A11では、コポリマ(C)が、300℃以下において熱分解または加水分解により脱離する側鎖を含まないことで、低分子量成分における空間電荷の蓄積を抑制することができたことを確認した。
 試料A1~A11では、コポリマ(C)の含有量を20質量部未満とすることで、コポリマ(C)中のスチレン単位による変形への寄与を小さくすることができた。その結果、高温時の電力ケーブルの変形を抑制することができたことを確認した。
 試料A1~A10では、組成物中の無機化合物(無機充填剤)の含有量を0.01質量部未満とすることで、絶縁層の押出工程において、メッシュの目詰まりを抑制することができた。その結果、長さ方向の絶縁性のばらつきを抑制することができたことを確認した。
 一方で、試料A11では、1質量部未満の無機充填剤を含むことで、押出工程におけるメッシュの目詰まりを抑制しつつ、絶縁層の絶縁性向上効果を安定的に得ることができたことを確認した。
 試料A9では、ベース樹脂(A)が無水マレイン酸変性ポリエチレンをさらに含むことで、無水マレイン酸単位の総含有量を増やすことができた。その結果、空間電荷の局所的な蓄積を安定的に抑制することができたことを確認した。
<本開示の好ましい態様>
 以下、本開示の好ましい態様を付記する。
(付記1)
 ポリオレフィンを含むベース樹脂(A)と、
 スチレン単位を含むスチレン系エラストマ(B)と、
 スチレン単位および無水マレイン酸単位を含むコポリマ(C)と、
 を有し、
 前記コポリマ(C)の含有量は、前記ベース樹脂(A)および前記スチレン系エラストマ(B)の合計の含有量を100質量部としたときに、0.5質量部以上であり、
 前記スチレン系エラストマ(B)の含有量は、前記コポリマ(C)の含有量以上であり、
 前記コポリマ(C)は、300℃以下において熱分解または加水分解により脱離する側鎖を含まない
樹脂組成物。
(付記2)
 導体と、
 前記導体の周囲を覆うように設けられた絶縁層と、
 を備え、
 前記絶縁層は、ポリオレフィンを含むベース樹脂(A)と、スチレン単位を含むスチレン系エラストマ(B)と、スチレン単位および無水マレイン酸単位を含むコポリマ(C)と、を有する樹脂組成物を含み、
 前記絶縁層中の前記コポリマ(C)の含有量は、前記ベース樹脂(A)および前記スチレン系エラストマ(B)の合計の含有量を100質量部としたときに、0.5質量部以上であり、
 前記絶縁層中の前記スチレン系エラストマ(B)の含有量は、前記コポリマ(C)の含有量以上であり、
 前記コポリマ(C)は、300℃以下において熱分解または加水分解により脱離する側鎖を含まない
電力ケーブル。
(付記3)
 前記絶縁層中の前記無水マレイン酸単位の総含有量は、前記ベース樹脂(A)および前記スチレン系エラストマ(B)の合計の含有量を100質量部としたときに、0.1質量部以上である
付記2に記載の電力ケーブル。
(付記4)
 導体と、
 前記導体の周囲を覆うように設けられた絶縁層と、
 を備え、
 前記絶縁層は、ポリオレフィンを含むベース樹脂(A)と、スチレン単位を含むスチレン系エラストマ(B)と、スチレン単位および無水マレイン酸単位を含むコポリマ(C)と、を有する樹脂組成物を含み、
 前記絶縁層中の前記無水マレイン酸単位の総含有量は、前記ベース樹脂(A)および前記スチレン系エラストマ(B)の合計の含有量を100質量部としたときに、0.1質量部以上であり、
 前記絶縁層中の前記スチレン系エラストマ(B)の含有量は、前記コポリマ(C)の含有量以上であり、
 前記コポリマ(C)は、300℃以下において熱分解または加水分解により脱離する側鎖を含まない
電力ケーブル。
(付記5)
 前記コポリマは、エステル、エーテル、アミド、ウレタン、シロキサンの結合をいずれも含まない
付記2から付記4のいずれか1つに記載の電力ケーブル。
(付記6)
 温度90℃および直流電界75kV/mmの条件下において測定した前記絶縁層のシートの体積抵抗率は、1.0×1015Ω・cm以上である
付記2から付記5のいずれか1つに記載の電力ケーブル。
(付記7)
 温度90℃および直流電界75kV/mmの条件下において測定した前記絶縁層のシートの空間電荷蓄積量は、100%以下である
付記2から付記6のいずれか1つに記載の電力ケーブル。
(付記8)
 前記コポリマ(C)の含有量は、前記ベース樹脂(A)および前記スチレン系エラストマ(B)の合計の含有量を100質量部としたときに、20質量部未満である
付記2から付記7のいずれか1つに記載の電力ケーブル。
(付記9)
 温度120℃および荷重2kgの条件下において測定した前記絶縁層の加熱変形率は、40%以下である
付記7又は付記8に記載の電力ケーブル。
(付記10)
 前記絶縁層が含む無機化合物の含有量は、前記ベース樹脂(A)および前記スチレン系エラストマ(B)の合計の含有量を100質量部としたときに、0.01質量部未満である
付記2から付記9のいずれか1つに記載の電力ケーブル。
(付記11)
 前記絶縁層は、前記ベース樹脂(A)および前記スチレン系エラストマ(B)の合計の含有量を100質量部としたときに、1質量部未満の無機充填剤をさらに有する
付記2から付記9のいずれか1つに記載の電力ケーブル。
(付記12)
 前記絶縁層は、以下の直流破壊強度の変動率の式(1)を満たす、
 (EMAX-EMIN)/EAVE≦0.2 ・・・(1)
 ただし、前記直流破壊強度は、前記導体の長さ方向に所定間隔をあけて前記絶縁層の複数箇所で採取した複数のシートのそれぞれにおいて、温度90℃の条件下で直流電界を印加し、該シートが絶縁破壊したときの電界強度であり、
 EMAX、EMINおよびEAVEは、それぞれ、前記複数のシートの直流破壊強度のうちの最大値、最小値および平均値である
付記10又は付記11に記載の電力ケーブル。
(付記13)
 前記コポリマ(C)のガラス転移温度は、110℃以上である
付記2から付記12のいずれか1つに記載の電力ケーブル。
(付記14)
 前記コポリマ(C)のガラス転移温度は、140℃以下である
付記2から付記13のいずれか1つに記載の電力ケーブル。
(付記15)
 走査型プローブ顕微鏡により測定した前記ポリオレフィンの弾性率は、200MPa以上2000MPa以下である
付記2から付記14のいずれか1つに記載の電力ケーブル。
(付記16)
 走査型プローブ顕微鏡により測定した前記スチレン系エラストマ(B)の弾性率は、10MPa以上200MPa以下である
付記2から付記15のいずれか1つに記載の電力ケーブル。
(付記17)
 前記ベース樹脂(A)は、無水マレイン酸変性ポリオレフィンをさらに含む
付記2から付記16のいずれか1つに記載の電力ケーブル。
(付記18)
 前記ベース樹脂は、ポリエチレンを含み、
 前記スチレン系エラストマ(B)は、エチレン単位を含む
付記2から付記17のいずれか1つに記載の電力ケーブル。
(付記19)
 ポリオレフィンを含むベース樹脂(A)と、スチレン単位を含むスチレン系エラストマ(B)と、スチレン単位および無水マレイン酸単位を含むコポリマ(C)と、を有する樹脂組成物を準備する工程と、
 前記樹脂組成物を用い、導体の外周を覆うように絶縁層を形成する工程と、
 を備え、
 前記樹脂組成物を準備する工程では、
 前記樹脂組成物中の前記コポリマ(C)の含有量を、前記ベース樹脂(A)および前記スチレン系エラストマ(B)の合計の含有量を100質量部としたときに、0.5質量部以上とし、
 前記樹脂組成物中の前記スチレン系エラストマ(B)の含有量を、前記コポリマ(C)の含有量以上とし、
 前記コポリマ(C)を、300℃以下において熱分解または加水分解により脱離する側鎖を含まない材料とする
電力ケーブルの製造方法。
(付記20)
 ポリオレフィンを含むベース樹脂(A)と、スチレン単位を含むスチレン系エラストマ(B)と、スチレン単位および無水マレイン酸単位を含むコポリマ(C)と、を有する樹脂組成物を準備する工程と、
 前記樹脂組成物を用い、導体の外周を覆うように絶縁層を形成する工程と、
 を備え、
 前記樹脂組成物を準備する工程では、
 前記樹脂組成物中の前記無水マレイン酸単位の総含有量を、前記ベース樹脂(A)および前記スチレン系エラストマ(B)の合計の含有量を100質量部としたときに、0.1質量部以上とし、
 前記樹脂組成物中の前記スチレン系エラストマ(B)の含有量を、前記コポリマ(C)の含有量以上とし、
 前記コポリマ(C)を、300℃以下において熱分解または加水分解により脱離する側鎖を含まない材料とする
電力ケーブルの製造方法。
10 直流電力ケーブル
110 導体
120 内部半導電層
130 絶縁層
140 外部半導電層
150 遮蔽層
160 シース

Claims (16)

  1.  ポリオレフィンを含むベース樹脂と、
     スチレン単位を含むスチレン系エラストマと、
     スチレン単位および無水マレイン酸単位を含むコポリマと、
     を有し、
     前記コポリマの含有量は、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、0.5質量部以上であり、
     前記スチレン系エラストマの含有量は、前記コポリマの含有量以上であり、
     前記コポリマは、300℃以下において熱分解または加水分解により脱離する側鎖を含まない
    樹脂組成物。
  2.  導体と、
     前記導体の周囲を覆うように設けられた絶縁層と、
     を備え、
     前記絶縁層は、ポリオレフィンを含むベース樹脂と、スチレン単位を含むスチレン系エラストマと、スチレン単位および無水マレイン酸単位を含むコポリマと、を有する樹脂組成物を含み、
     前記絶縁層中の前記コポリマの含有量は、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、0.5質量部以上であり、
     前記絶縁層中の前記スチレン系エラストマの含有量は、前記コポリマの含有量以上であり、
     前記コポリマは、300℃以下において熱分解または加水分解により脱離する側鎖を含まない
    電力ケーブル。
  3.  前記絶縁層中の前記無水マレイン酸単位の総含有量は、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、0.1質量部以上である
    請求項2に記載の電力ケーブル。
  4.  導体と、
     前記導体の周囲を覆うように設けられた絶縁層と、
     を備え、
     前記絶縁層は、ポリオレフィンを含むベース樹脂と、スチレン単位を含むスチレン系エラストマと、スチレン単位および無水マレイン酸単位を含むコポリマと、を有する樹脂組成物を含み、
     前記絶縁層中の前記無水マレイン酸単位の総含有量は、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、0.1質量部以上であり、
     前記絶縁層中の前記スチレン系エラストマの含有量は、前記コポリマの含有量以上であり、
     前記コポリマは、300℃以下において熱分解または加水分解により脱離する側鎖を含まない
    電力ケーブル。
  5.  前記コポリマは、エステル、エーテル、アミド、ウレタン、シロキサンの結合をいずれも含まない
    請求項2から請求項4のいずれか1項に記載の電力ケーブル。
  6.  温度90℃および直流電界75kV/mmの条件下において測定した前記絶縁層のシートの体積抵抗率は、1.0×1015Ω・cm以上である
    請求項2から請求項5のいずれか1項に記載の電力ケーブル。
  7.  温度90℃および直流電界75kV/mmの条件下において測定した前記絶縁層のシートの空間電荷蓄積量は、100%以下である
    請求項2から請求項6のいずれか1項に記載の電力ケーブル。
  8.  前記コポリマの含有量は、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、20質量部未満である
    請求項2から請求項7のいずれか1項に記載の電力ケーブル。
  9.  温度120℃および荷重2kgの条件下において測定した前記絶縁層の加熱変形率は、40%以下である
    請求項7又は請求項8に記載の電力ケーブル。
  10.  前記絶縁層中が含む無機化合物の含有量は、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、0.01質量部未満である
    請求項2から請求項9のいずれか1項に記載の電力ケーブル。
  11.  前記絶縁層は、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、1質量部未満の無機充填剤をさらに有する
    請求項2から請求項9のいずれか1項に記載の電力ケーブル。
  12.  前記絶縁層は、以下の直流破壊強度の変動率の式(1)を満たす、
     (EMAX-EMIN)/EAVE≦0.2 ・・・(1)
     ただし、前記直流破壊強度は、前記導体の長さ方向に所定間隔をあけて前記絶縁層の複数箇所で採取した複数のシートのそれぞれにおいて、温度90℃の条件下で直流電界を印加し、該シートが絶縁破壊したときの電界強度であり、
     EMAX、EMINおよびEAVEは、それぞれ、前記複数のシートの直流破壊強度のうちの最大値、最小値および平均値である
    請求項10又は請求項11に記載の電力ケーブル。
  13.  前記コポリマのガラス転移温度は、110℃以上である
    請求項2から請求項12のいずれか1項に記載の電力ケーブル。
  14.  前記コポリマのガラス転移温度は、140℃以下である
    請求項2から請求項13のいずれか1項に記載の電力ケーブル。
  15.  ポリオレフィンを含むベース樹脂と、スチレン単位を含むスチレン系エラストマと、スチレン単位および無水マレイン酸単位を含むコポリマと、を有する樹脂組成物を準備する工程と、
     前記樹脂組成物を用い、導体の外周を覆うように絶縁層を形成する工程と、
     を備え、
     前記樹脂組成物を準備する工程では、
     前記樹脂組成物中の前記コポリマの含有量を、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、0.5質量部以上とし、
     前記樹脂組成物中の前記スチレン系エラストマの含有量を、前記コポリマの含有量以上とし、
     前記コポリマを、300℃以下において熱分解または加水分解により脱離する側鎖を含まない材料とする
    電力ケーブルの製造方法。
  16.  ポリオレフィンを含むベース樹脂と、スチレン単位を含むスチレン系エラストマと、スチレン単位および無水マレイン酸単位を含むコポリマと、を有する樹脂組成物を準備する工程と、
     前記樹脂組成物を用い、導体の外周を覆うように絶縁層を形成する工程と、
     を備え、
     前記樹脂組成物を準備する工程では、
     前記樹脂組成物中の前記無水マレイン酸単位の総含有量を、前記ベース樹脂および前記スチレン系エラストマの合計の含有量を100質量部としたときに、0.1質量部以上とし、
     前記樹脂組成物中の前記スチレン系エラストマの含有量を、前記コポリマの含有量以上とし、
     前記コポリマを、300℃以下において熱分解または加水分解により脱離する側鎖を含まない材料とする
    電力ケーブルの製造方法。
PCT/JP2021/040903 2021-02-25 2021-11-08 樹脂組成物、電力ケーブル、および電力ケーブルの製造方法 WO2022180939A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180082670.0A CN116601234A (zh) 2021-02-25 2021-11-08 树脂组合物、电力电缆以及电力电缆的制造方法
JP2023502066A JPWO2022180939A1 (ja) 2021-02-25 2021-11-08
EP21928034.4A EP4299663A1 (en) 2021-02-25 2021-11-08 Resin composition, power cable, and method for producing power cable
KR1020237016332A KR20230150252A (ko) 2021-02-25 2021-11-08 수지 조성물, 전력 케이블, 및 전력 케이블의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021028226 2021-02-25
JP2021-028226 2021-02-25

Publications (1)

Publication Number Publication Date
WO2022180939A1 true WO2022180939A1 (ja) 2022-09-01

Family

ID=83047954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040903 WO2022180939A1 (ja) 2021-02-25 2021-11-08 樹脂組成物、電力ケーブル、および電力ケーブルの製造方法

Country Status (5)

Country Link
EP (1) EP4299663A1 (ja)
JP (1) JPWO2022180939A1 (ja)
KR (1) KR20230150252A (ja)
CN (1) CN116601234A (ja)
WO (1) WO2022180939A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07149959A (ja) * 1993-10-07 1995-06-13 Nippon Petrochem Co Ltd 電気絶縁用樹脂組成物
JPH08339717A (ja) * 1995-06-09 1996-12-24 Hitachi Cable Ltd 電気絶縁組成物及び電線・ケーブル
JPH1064338A (ja) * 1996-08-23 1998-03-06 Hitachi Cable Ltd 電気絶縁組成物及び電線・ケーブル
JPH1116421A (ja) 1997-06-25 1999-01-22 Fujikura Ltd 直流電力ケーブル
JP2002212354A (ja) * 2001-01-19 2002-07-31 Sumitomo Wiring Syst Ltd オレフィン系樹脂組成物、その製法およびそれにより被覆された電線
JP2005135788A (ja) * 2003-10-31 2005-05-26 Hitachi Cable Ltd ノンハロゲン難燃性電線及びノンハロゲン難燃性ケーブル
JP2020026386A (ja) * 2018-08-09 2020-02-20 アース製薬株式会社 巣から逃散させる害虫駆除方法および害虫駆除剤
WO2020137388A1 (ja) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 全固体電池及び全固体電池の製造方法
JP2021028226A (ja) 2019-08-09 2021-02-25 日本電産サンキョー株式会社 開口装置および開口方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07149959A (ja) * 1993-10-07 1995-06-13 Nippon Petrochem Co Ltd 電気絶縁用樹脂組成物
JPH08339717A (ja) * 1995-06-09 1996-12-24 Hitachi Cable Ltd 電気絶縁組成物及び電線・ケーブル
JPH1064338A (ja) * 1996-08-23 1998-03-06 Hitachi Cable Ltd 電気絶縁組成物及び電線・ケーブル
JPH1116421A (ja) 1997-06-25 1999-01-22 Fujikura Ltd 直流電力ケーブル
JP2002212354A (ja) * 2001-01-19 2002-07-31 Sumitomo Wiring Syst Ltd オレフィン系樹脂組成物、その製法およびそれにより被覆された電線
JP2005135788A (ja) * 2003-10-31 2005-05-26 Hitachi Cable Ltd ノンハロゲン難燃性電線及びノンハロゲン難燃性ケーブル
JP2020026386A (ja) * 2018-08-09 2020-02-20 アース製薬株式会社 巣から逃散させる害虫駆除方法および害虫駆除剤
WO2020137388A1 (ja) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 全固体電池及び全固体電池の製造方法
JP2021028226A (ja) 2019-08-09 2021-02-25 日本電産サンキョー株式会社 開口装置および開口方法

Also Published As

Publication number Publication date
KR20230150252A (ko) 2023-10-30
EP4299663A1 (en) 2024-01-03
CN116601234A (zh) 2023-08-15
JPWO2022180939A1 (ja) 2022-09-01

Similar Documents

Publication Publication Date Title
CA2708295C (en) Electric article comprising at least one element made from a semiconductive polymeric material and semiconductive polymeric composition
JP2000357419A (ja) ケーブルの半導電性遮蔽
KR20120048520A (ko) 절연 조성물 및 이를 포함하는 전기 케이블
JP4399076B2 (ja) 水架橋ポリエチレン絶縁電力ケーブル外部半導電層用剥離性半導電性樹脂組成物
CA3001160C (en) Semiconductive shield composition
US6525119B2 (en) Cable semiconductive shield compositions
CA2427259C (en) Power cable
KR102155440B1 (ko) 절연 복합체 및 초고압 전선의 제조방법
JP7272276B2 (ja) 絶縁材用樹脂組成物、絶縁材、絶縁電線及びケーブル
WO2022180939A1 (ja) 樹脂組成物、電力ケーブル、および電力ケーブルの製造方法
WO2021200742A1 (ja) 配線材及びその製造方法
WO2023017562A1 (ja) 樹脂組成物および電力ケーブル
KR102354984B1 (ko) 내트래킹성 절연 조성물 및 이를 포함하는 고전압 케이블
JP4399078B2 (ja) 水架橋ポリエチレン絶縁電力ケーブルの外部半導電層用剥離性半導電性水架橋性樹脂組成物
WO2022244292A1 (ja) 半導電性樹脂組成物、電力ケーブル、および電力ケーブルの製造方法
WO2020202689A1 (ja) 電気絶縁組成物および電力ケーブル
WO2024042775A1 (ja) 樹脂組成物および電力ケーブル
JP4448589B2 (ja) 水架橋ポリエチレン絶縁電力ケーブルの内部半導電層用密着性半導電性水架橋性樹脂組成物
JP2016065208A (ja) 半導電性樹脂組成物およびこれを用いた電力ケーブル
JP2004178867A (ja) 電力ケーブル
JP2019179628A (ja) 配線材
JP2000290437A (ja) シラン架橋半導電層用樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502066

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180082670.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021928034

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021928034

Country of ref document: EP

Effective date: 20230925