KR102354984B1 - 내트래킹성 절연 조성물 및 이를 포함하는 고전압 케이블 - Google Patents

내트래킹성 절연 조성물 및 이를 포함하는 고전압 케이블 Download PDF

Info

Publication number
KR102354984B1
KR102354984B1 KR1020190139633A KR20190139633A KR102354984B1 KR 102354984 B1 KR102354984 B1 KR 102354984B1 KR 1020190139633 A KR1020190139633 A KR 1020190139633A KR 20190139633 A KR20190139633 A KR 20190139633A KR 102354984 B1 KR102354984 B1 KR 102354984B1
Authority
KR
South Korea
Prior art keywords
weight
parts
insulating composition
tracking
aluminum hydroxide
Prior art date
Application number
KR1020190139633A
Other languages
English (en)
Other versions
KR20210054103A (ko
Inventor
김상범
김준엽
최병권
정영섭
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020190139633A priority Critical patent/KR102354984B1/ko
Publication of KR20210054103A publication Critical patent/KR20210054103A/ko
Application granted granted Critical
Publication of KR102354984B1 publication Critical patent/KR102354984B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 폴리디메틸실록산을 표면에 도입한 내트래킹제를 포함하는 절연 조성물 및 상기 절연 조성물을 포함하여 제조된 내트래킹성이 향상된 고전압 케이블과 이의 제조방법에 관한 것으로, 절연체의 자체적인 절연내력이 향상되면서 내열성 및 내트래킹성이 향상됨으로써 사용 수명이 연장될 수 있어 산업상 이용가치가 높음을 확인 할 수 있었다.

Description

내트래킹성 절연 조성물 및 이를 포함하는 고전압 케이블{Tracking resistant insulation composition and high voltage cable comprising the same}
본 발명은 폴리디메틸실록산을 표면에 도입한 내트래킹제를 포함하는 절연 조성물 및 상기 절연 조성물을 포함하여 제조된 내트래킹성이 향상된 고전압 케이블과 이의 제조방법에 관한 것이다.
전세계적으로 전력에너지 (electric energy) 수요는 2050년까지 지속적으로 증가하는 추세이며, 이러한 전력 수요 증가는 대규모 전력계통 송전과 계통 간 송전망 연계가 확대되어야 가능할 것으로 전망되고 있으며, 제품 중심 제조업에서 디지털 설비/네트워크 기술/소프트웨어가 결합된 시스템화 되고 있어 전력 송배전 분야에서도 단순 전력기기 제조에서 디지털로 접목시킨 제품개발이 필요하게 되었다.
최근 국내 옥외용 전력케이블의 송전용량을 증대시키고자 하는 요구가 증가되고 있고 이같이 송전용량을 증가시키기 위해서는 대규격의 케이블을 사용하거나 또는 송전 손실을 줄이는 방법 등이 검토될 수 있으나, 이러한 방법들은 비현실적이며 비용이 많이 소모되어 경제성이 떨어지게 되는 단점을 가진다.
전력(electric power)은 전압(voltage)과 전류(current)의 곱에 비례하기 때문에 전력을 송전할 때 전압을 높이면 전류가 적게 되어 케이블 비용이 경감되며, 똑같은 굵기의 케이블이면 보다 많은 전력을 보낼 수 있게 된다. 대용량과 장거리 송전이 요구되는 대형 전력계통에서는 전력손실의 감소, 건설용지 문제, 송전용량의 증대 등의 면에서 볼 때 송전전압을 높이는 고압송전이 필수적이라고 할 수 있다.
고압으로 송전하기 위해서는 고압에 충분히 견딜 수 있는 송전선로나 변압기(transformer), 차단기(breaker) 등의 연결기기에 대한 절연 기술(insulation technology)이 필요하며, 코로나(corona) 잡음(noise)이나, 전파장애(radio disturbance), 통신유도장애 등의 문제점도 제기되고 있으나 이들에 대한 보완 기술이 지속적으로 개발되고 있어서 이들에 대한 문제점도 점차 해결되고 있다.
종래의 가공 배전 케이블은 내열 가교 폴리에틸렌(cross-linked polyethylene) 절연층(insulation layer), 내열 반도전층(heat resistance semi-conductive layer), 강심 알루미늄(aluminium) 도체(conductor)로 구성된다.
폴리에틸렌 가교 방식(cross-linking type)은 유기 과산화물(organic peroxide) 혹은 실란(silane)을 등이 있다. 폴리에틸렌 수지(resin)는 이와 같이 가교 과정(process)을 통하여 선형인 분자구조(linear molecular structure)가 3차원적인 망상구조를 가지는 가교 폴리에틸렌 수지가 되며, 취약한 물성의 고분자를 보다 안정된 구조로 전환시키거나 원하는 물성으로 개질할 수 있다.
요컨대, 이런 가교 가능한 고분자 수지(polymer resin)를 이용하여 케이블의 절연 재질로 사용할 경우 열가소성 재료(thermoplastic material)로 절연(insulation)하는 것 보다 내열성, 내용매성, 내화학성은 물론 내구성까지 향상시킬 수 있고 난연성이 향상되는 특징을 가진다.
하지만 송전 시에는 도체에서 열이 발생하게 되며, 종래의 가교 폴리에틸렌 절연 케이블(cable)은 저밀도폴리에틸렌(low density polyethylene)을 사용하여 가교한 것으로 가교 폴리에틸렌 재료의 최고 허용온도가 90℃인 관계로 인하여 송전 시 전류량의 제한이 있었다. 이러한 가교 폴리에틸렌 재료의 사용 온도 제한은 가교 폴리에틸렌 재료의 구조에 기인하는 것으로, 가교 폴리에틸렌의 결정 용융온도인 약 110℃ 이상이 되면 전력 케이블의 절연층으로 동작하기 위해 필요한 가교 폴리에틸렌의 물성이 급격하게 저하되게 되어 절연재료로서의 기능이 현저히 저하된다.
또한 알루미늄 도체(conductor)는 케이블의 대부분을 차치하고 있는 구리 도체에 이어 케이블의 재료로 전도성이 크고 가볍고 동일한 무게의 동에 비해 2배의 전류를 통할 수 있어 아주 경제적인 금속(metal)으로 알려져 있으나 전도율은 구리의 60% 정도여서 동일한 전력을 송전 시 높은 발열문제를 야기 시키고 상기 가교 폴리에틸렌의 열노화(thermal aging)를 증가시키는 문제점을 갖고 있다.
따라서 산업계에서는 가공성, 내열성, 내후성, 내트래킹성을 겸비하는 가교형 폴리올레핀 컴파운드 및 고전압용 전력선의 개발 요구가 계속되어 왔다.
001. 한국등록특허 제10-2020066호 002. 미국등록특허 제4330493호
본 발명자들은 전선 표면에 열적,전기적 스트레스가 증가하면 그곳의 절연재료는 탄화하게 되며 케이블 길이 방향으로 탄화가 계속 진행되어 또 다른 지점에서 절연체를 파괴시키는 트래킹 현상이 발생되고 케이블 표면이 오염되어 있을 경우 부착된 물질들도 같이 탄화되면서 트래킹 현상을 촉진하게 되며 심지어는 발생된 아크로 인하여 유발된 불꽃이 이 통로를 따라 번지면서 화재가 발생하는 문제점을 해결하고자 내트래킹성/내열성 등이 향상된 고전압 케이블을 예의 연구노력한 결과, 폴리디메틸실록산이 표면에 도입된 내트래킹제를 첨가한 절연체를 포함하는 고전압 케이블이 기존의 케이블과 비교하여 인장강도, 절연파괴전압, 내오염도 및 내트래킹성이 향상됨을 확인하고 본 발명을 완성하였다.
본 발명의 제1양태는
폴리올레핀계 수지 100 중량부 기준으로, 폴리디메틸실록산을 표면에 도입한 내트래킹제 35 내지 60 중량부를 포함하는 절연 조성물로서,
상기 내트래킹제는 금속수산화물 100 중량부 기준으로, 비닐실란 2 내지 30 중량부 및 히드로겐 실록산 중합체 2 내지 30 중량부의 배합물로 형성된 폴리디메틸실록산으로 표면개질된 금속수산화물인 것인, 내트래킹성이 향상된 절연 조성물을 제공한다.
본 발명의 상기 '내트래킹제'는 절연재료가 고압 전압하에서 전도로가 형성되어서 파손하는 것에 견디는 능력을 향상시키는 물질로서, 종래 기술과 달리 폴리디메틸실록산을 도입함으로써 내열향상 및 내오염성을 부여할 수 있다. 폴리디메틸실록산을 도입하기 위해서는 금속수산화물을 비닐실란으로 표면개질하여야 한다.
예컨대, 상기 내트래킹제는 폴리올레핀계 수지 100 중량부 기준으로 35 내지 60 중량부를 포함할 수 있다. 35 중량부 미만인 경우 절연 조성물의 내전압 특성이 감소될 수 있으며, 60 중량부 초과인 경우 용융혼련성이 떨어지는 문제가 있다.
상기 내트래킹제의 입자 직경은 1 내지 100 μm 인 것일 수 있으나, 이에 제한되지 않는다. 구체적으로 10 내지 60 μm일 수 있다.
상기 '금속수산화물'은 수산화철, 수산화칼슘, 수산화마그네슘, 수산화알루미늄, 수산화철, 수산화칼슘, 수산화마그네슘, 수산화알루미늄으로 이루어진 군에서 어느 하나 이상인 것일 수 있으나, 이에 제한되지 않는다.
상기 '비닐실란'은 폴리디메틸실록산 도입위해 사용되는 것 뿐만 아니라, 폴리올레핀 수지와 내트래킹제 간의 계면접착력을 향상시키기 위해 필요하다. 상기 비닐실란은 트리메톡시비닐실란, 트리에톡시비닐실란, 트라이아이소프로폭시비닐실란, 클로로다이메틸비닐실란으로 이루어진 군에서 어느 하나 이상인 것일 수 있으나, 이에 제한되지 않는다.
예컨대, 상기 비닐실란은 금속수화물 100 중량부 기준으로 2 내지 30의 중량부로 포함될 수 있다. 2 중량부 미만인 경우 폴리올레핀과 내트래킹제 간의 계면접착력이 떨어지는 문제가 있으며, 30 중량부 초과인 경우 경제성이 떨어지는 문제가 있다.
상기 '히드로겐 실록산 중합체'는 구체적으로 금속수화물 100 중량부 기준으로 2 내지 30 중량부로 포함될 수 있다.
본 발명의 상기 '폴리올리핀계 수지'는 상기 폴리올레핀계 수지는 폴리에틸렌, 폴리프로필렌, 에틸렌/프로필렌 공중합체로 이루어진 군에서 어느 하나 이상인 것일 수 있으나, 이에 제한되지 않는다. 구체적으로, 저밀도 폴리에틸렌이나, 중밀도 폴리에틸렌, 선상 저밀도 폴리에틸렌, 에틸렌 공중합체, 폴리프로필렌 일 수 있다.
본 발명의 상기 절연 조성물에는 '유기과산화물' 가교제를 추가로 포함할 수있다. 폴리올레핀 수지는 가교 과정을 통하여 선형인 분자구조를 3차원적인 망상구조를 가지게 되며, 안정성을 향상시킬 수 있다. 구체적으로, 유기과산화물은 절연 조성물 100 중량부 기준으로 0.5 내지 2 중량부일 수 있다. 유기과산화물이 0.5 중량부 미만일 경우 절연조성물의 가교도가 떨어지고 2 중량부 초과일 경우 가교외의 부반응을 일으킬 수 있는 문제가 있다. 유기과산화물에는 디큐밀 퍼옥사이드나, 벤조일퍼옥사이드, 2,5-비스(터트-아밀페록시)-2,5-디메틸헥산, 2,5-비스(터트-부틸페록시) 2,5-디메틸헥산, 3,6-비스(터트-부틸페록시)-3,6-디메틸옥탄, 2,7-비스(터트-부틸페록시)-2,7-디메틸옥탄, 2,5-비스(터트-부틸페록시)-2,5-디시클로헥실헥산, 퍼부틸 퍼옥사이드로 이루어진 군에서 선택된 어느 하나 이상일 수 있으나, 이에 제한되지 않는다.
본 발명의 상기 절연 조성물에는 산화방지제, 자외선안정제, 활제, 폴리올레핀 왁스, 분산제 및 방열제를 추가로 포함할 수 있다.
상기 '산화방지제'는 절연체 복합체의 장기 라디컬(radical) 안정성을 부여하며 부틸히드록시톨루엔이나, 펜타에리띠오톨테트라킥스(3-(3,5-디-터트-부틸-4-히드록시페닐)프로피오네이트, 트리스(2,4-디터트-부틸페닐)포스파이트, 비스(2,4-디-터트-부틸페닐)펜타에리띠오톨리포스파이트, 디라우릴 티오디프로피오네이트, 디스테알릴펜타에리띠리틸 디포스파이트, 테트라키스(2,4-디-터트-부틸펜틸)[1,1-비페닐]-4,4‘-디일비스포스포니트 등일 수 있다. 이 때 상기 산화방지제가 폴리올레핀 수지 100 중량부 기준 0.4 내지 0.7 중량부일 수 있다. 0.4 미만일 경우 장기 라디칼 안정성이 떨어지고 0.7 중량부 초과할 경우 경제성이 떨어진다.
상기 '자외선 안정제'는 태양광의 자외선을 흡수하는 역할을 하며 폴리(4-히드록시-2,2,6,6-테트라메틸-1-피퍼리딘에탄올-얼트-1,4-부탄디오닉 액시드, 2-히드록시-4-n-옥토시벤조페논, 2-(2-히드록시-5-t-옥틸페닐)-벤조트리아졸, 2-(2H-벤조트리아졸-2-일)-4,6-비스 (1-메틸-1-페닐에틸)페놀, 2-(5-클로로-2H-벤조트리아졸-2-일6-(1,1-디메틸에틸)-4-메틸페놀 등이 단독 내지 혼합하여 폴리올레핀 수지 100 중량부 기준 0.2 내지 0.4 중량부가 사용된다. 이 때 상기 자외선안정제가 0.2 중량부 미만일 경우 자외선 흡수성이 떨어지고 0.4 중량부 초과할 경우 경제성이 떨어진다.
상기 '활제'는 용융혼련 시 폴리올레핀 수지의 열안정성 및 분산성을 증대시키는 역할을 하며 마그네슘 알루미늄 히드록시카보네이트나 알루미늄 마그네슘 징크 히드록시카보네이트, 알루미늄 마그네슘 징크 히드록시카보네이트 등이 폴리올레핀 수지 100 중량부 기준 0.8 내지 1.3 중량부가 사용된다. 이 때 상기 활제가 0.8 중량부 미만일 경우 용융혼련시 안정성 및 분산성이 떨어지고 1.3 중량부 이상을 첨가할 경우 외부로 이행된다.
상기 '분산제'는 무기물의 분산성을 향상시키는 역할을 하며 소디움 스테아레이트나, 포타슘 스테아레이트, 칼슘 스테아레이트, 마그네숨 스테아레이트, 징크 스테아레이트나 알류미늄 스테아레이트 등이 단독 내지 혼합되어 폴리올레핀 수지 100 중량부 기준 0.2 내지 0.4 중량부가 사용되나 이에 제한되지 않는다. 이 때 분산제가 0.2 중량부 미만일 경우 분산성이 떨어지고 0.4 중량부 초과할 경우절연 조성물 표면으로 이행 (migration) 된다.
상기 '폴리올레핀 왁스'는 폴리올레핀 수지에 가요성을 부여하며 저밀도폴리에틸렌 왁스나 고밀도폴리에틸렌 왁스, 폴리프로필렌 왁스, 산화폴리에틸렌 왁스 등을 단독 내지 혼합하여 폴리올레핀 수지 100 중량부 기준 1.2 내지 1.9 중량부 사용되나 이에 제한되지 않는다. 이 때 상기 폴리올레핀 왁스가 1.2 중량부 미만일 경우 폴리올레핀수지의 가요성이 떨어지고 1.9 중량부 초과할 경우 내구성이 떨어진다.
상기 '자외선차단 안료'는 카본블랙이나 흑연, 카본나노튜브 등이 폴리올레핀 수지 100 중량부 기준 0.6 내지 1.0 중량부 사용되나 이에 제한되지 않는다. 이 때 상기 자외선차단 안료가 0.6 중량부 미만일 경우 색상이 발현되지 않고 1.0 중량부 초과할 경우 분산성이 떨어진다.
본 발명의 제2양태는
도체; 상기 제1양태의 절연 조성물로부터 형성된 절연체; 및 반도전 탄성체 순서로 압출한 것을 포함하는 고전압 케이블을 제공한다.
본 발명의 케이블 구성 순서는 종래기술이 도체, 내부 반도체층, 절연체, 외부 반도체층으로 구성되는 것과 비교해 반도체층 사이에 내부 절연체층을 두지 않으면서도, 종래기술보다 우수한 내트래킹성을 가지며 절연파괴전압이 향상될 수 있다.
본 발명의 상기 '도체'는 구리선나 알루미늄선, 은선, 니켈선 등의 금속선이나 주석도금선, 은도금선, 니켈도금선 등의 금속 도금선, 주석-구리합금선, 알루미늄-구리 합금선 등의 합금선 등을 단선(solid)으로 사용하거나 집합(twist) 또는 연선(combine)하여 사용가능하나, 이에 제한되지 않는다.
본 발명의 상기 '반도전 탄성체'는 105 내지 108 Ω인 3 내지 5 mm 크기일 수 있으나, 이에 제한되지 않는다.
상기 '탄성체'는 가교형 반도전 조성물의 매트릭스(matrix)상을 이루며 폴리에틸렌이나 에틸렌프로필렌 공중합체(ethylene propylene copolymer)나 에틸렌 비닐아세테이트 공중합체(ethylene vinyl acetate copolymer), 에틸렌 아크릭 액시드 공중합체(ethylene acrylic acid copolymer), 에틸렌 옥텐 공중합체(ethylene octene copolymer), 에틸렌 에틸 아크릴레이트 공중합체(ethylene ethyl acrylate copolymer) 등의 에틸렌 공중합체(ethylene copolymer), 폴리프로필렌 (polypropylene)이 바람직하나 이외에도 천연고무(natural rubber), 니드릴부타디엔 고무(nitrile butadiene rubber), 클로로프렌 고무(chloroprene rubber) 등의 고분자 탄성체가 단독 내지 혼합사용도 가능하나 이에 제한되지 않는다.
본 발명의 제3양태는
제2양태의 고전압 케이블의 제조방법으로서, 표면개질된 내트래킹제를 제조하는 제1단계; 상기 내트래킹제를 배합하여 가교된 절연체를 제조하는 제2단계; 가교된 폴리올레핀을 제조하는 제3단계; 가교된 반도전 탄성체를 제조하는 제4단계; 및 도체를 외부에 상기 제1 내지 제4단계에서 제조된 것을 압출가류하는 제5단계를 포함하는 것인 고전압 케이블 제조방법을 제공한다.
상기 내트래킹제를 제조하는 제1단계는 상기 제1단계는 ⅰ)히드로겐 실록산 중합체 제조하는 단계; ⅱ)금속수산화물에 비닐기를 도입하여 비닐실란으로 표면개질된 금속수산화물을 제조하는 단계; 및 ⅲ)상기 히드로겐 실록산, 비닐실란으로 표면개질된 금속수산화물 및 촉매를 반응시켜 비닐실란 표면개질된 금속수산화물에 폴리디메틸실록산을 도입하는 단계로 이루어진 것일 수 있으나, 이에 제한되지 않는다.
예컨대, 상기 표면개질된 금속수산화물에 폴리디메틸실록산을 도입하는 ⅲ)단계는 히드로겐 실록산 100 중량부 기준 비닐실란으로 표면개질된 금속수산화물 1000 내지 4000 중량부 및 촉매 0.01 내지 1 중량부를 배합하여 반응기 온도를 80 내지 140℃로 상승시키고 100 내지 1,000 RPM의 속도로 60 내지 180분간 교반한 다음 여과하여 40 내지 120℃의 온도에서 수행하는 것일 수 있으나, 이에 제한되지 않는다.
상기 제2단계는 산화방지제, 자외선안정제, 활제, 폴리올레핀 왁스, 분산제 및 방열제를 추가로 포함하여 수행하는 것일 수 있으며, 가교제인 유기과산화물을 혼합하여 가교된 절연체를 제조할 수 있다.
상기 제3단계는 3 내지 5 mm 크기의 저밀도 폴리에틸렌이나, 중밀도 폴리에틸렌, 선상 저밀도 폴리에틸렌 및 에틸렌 공중합체 등의 폴리올레핀 수지 펠렛 10,000 중량부와 유기과산화물 95 내지 150 중량부를 투여하여 60 내지 100℃의 온도에서 10 내지 60분간 혼련하여 가교된 폴리올레핀을 제조할 수 있다.
상기 제4단계는 고분자 탄성체(elastomer) 100 중량부 기준 카본블랙(carbon black), 탄소나노튜브(carbon nanotube), 흑연(graphite) 및 그라핀(graphene) 등의 도전성충진제 5 내지 20 중량부, 산화방지제(antioxidant) 0.4 내지 0.7 중량부 및 분산제 0.2 내지 0.4 중량부를 순차적으로 투입하고 100 내지 140℃의 온도에서 10 내지 60분 동안 혼련 한 덩어리 반죽을 일축이나 이축 압출기로 이송시켜 압출성형을 면저항이 105 내지 108 Ω인 3 내지 5 mm 크기의 반도전 탄성체 펠렛를 제조한다. 이후, 상기 반도전 탄성체의 100 중량부 기준 유기과산화물 0.9 내지 1.5 중량부를 투여하여 60 내지 100℃의 온도에서 10 내지 60분간 혼련하여 가교형 반도전 탄성체 펠렛을 제조하는 것일 수 있으나, 이에 제한되지 않는다.
상기 제5단계는 상기 제4단계에서 제조된 반도전 탄성체 펠렛을 제1호퍼(hopper)에 상기 제3단계에서 제조된 가교형 폴리올레핀 펠렛을 제2호퍼에, 상기 2단계에서 제조된 가교형 절연체 펠렛을 제3호퍼에 투여한다. 이때 호퍼의 순서는 임의로 정한것이다. 이후, 공압출 다이(co-extrusion die)가 부착되어 있는 압출기의 헤드(head)에 금속선(metal wire)이나 금속 도금선(metal plated wire), 합금선(metal alloy wire으)로 이루어진 도체(conductor)를 통과시키면서 온도조건이 실린더(cylinder) 1은 100 내지 120℃, 실린더 2는 100 내지 120℃, 실린더 3은 105 내지 125℃, 압출헤드(extrusion head) 110 내지 130℃, 압출다이(extrusion die)는 110 내지 130℃의 온도조건으로 10 내지 40 ㎏/hr 의 속도로 압출하여 80 내지 120℃와 10 내지 20 기압으로 유지되는 가류관(continuous vulcanization pipe)을 20 내지 50 m/min 의 속도로 통과시켜 고전압 케이블을 제조하는 압출가류할 수 있으나, 이에 제한되지 않는다.
본 발명은 폴리디메틸실록산이 표면에 도입된 내트래킹제를 첨가한 절연체를 포함하는 케이블로서, 송전용량을 증가시키는 경우에도, 우수한 트랙킹 억제특성을 갖으며 가공성, 내열성, 내후성이 뛰어난 절연 컴파운드 및 고전압 케이블을 용이하게 제조할 수 있음을 확인하여 고전압에도 견딜수 있는 수명이 연장된 산업상 유용한 케이블로 널리 사용될 수 있음을 확인하였다.
도 1은 본 발명의 실시예에 따른 고전압 케이블 제조방법의 순서도이다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.
실시예 1. 표면개질된 내트래킹제가 첨가된 절연체를 포함한 고전압 케이블
1.1 히드로겐 실록산 중합체의 제조
교반기, 온도조절기, 드로핑 훤넬 및 질소 공급기가 장착된 반응기에 229.55 g의 옥타메틸클로테트라실록산, 1.92 g의 데카메틸 테트라실란 및 0.27 g의 폴리디메틸실록산 오일을 투여하고 반응기 온도를 150℃로 유지시키면서 3시간 동안 반응을 진행시킨다. 반응이 완료되면 반응기 온도를 90℃로 낮추고 1.62 g의 폴리디메틸실록산 오일 및 0.032 g의 포스포니트리릭 클로라이드, 0.031 g의 포타슘 실라노레이트를 상기 반응용액에 투여하여 1시간 동안 50 RPM의 속도로 교반한다. 교반이 끝난 후에 상기 혼합용액에 2.23 g의 메틸히드록실옥산을 투여하고 4시간 동안 50 RPM의 속도로 교반하여 220 g의 히드로겐 실록산 중합체를 제조하였다.
1.2 비닐기로 표면 개질된 금속수산화물의 제조: 내트래킹제의 제조
온도조절기와 교반기가 장착된 20 L 반응기에 메탄올 10,000 g과, 트리에톡시비닐실란 200 g을 첨가하여 100 RPM의 속도로 30분간 교반한 다음 알루미늄 히드록사이드 4,200 g을 투여하고 200 RPM의 속도로 60분간 교반한 다음 여과하여 80℃의 온도에서 건조하여 트리에톡시비닐실란으로 표면처리된 알루미늄 히드록사이드를 제조하였다.
1.3 폴리디메틸실록산을 비닐기 표면개질된 금속수산화물 표면에 도입: 표면개질된 내트래킹제 제조
온도조절기와 교반기가 장착된 20 L 반응기에 톨루엔 10,000 g과 히드로겐 실록산 중합체 220 g, 트리에톡시비닐실란으로 표면처리된 알루미늄 히드록사이드 4,300 g, 백금촉매 0.5g을 첨가하여 500 RPM의 속도로 교반하면서 반응기 온도를 80℃로 상승시켜 120분간 교반한 다음 여과하여 100℃에서 건조하여 폴리디메틸실록산이 도입된 알루미늄 히드록사이드 5,400 g을 제조하였다.
1.4 절연체의 제조
100 L 니더에 고밀도 폴리에틸렌 수지 10,000 g, 폴리디메틸실록산이 도입된 알루미늄 히드록사이드 4,400 g, 펜타에리띠오톨테트라킥스(3-(3,5-디-터트-부틸-4-히드록시페닐)프로피오네이트 50 g, 폴리(4-히드록시-2,2,6,6-테트라메틸-1-피퍼리딘에탄올-얼트-1,4-부탄디오닉 액시드 30 g, 마그네슘 알루미늄 히드록시카보네이트 100g, 저밀도폴리에틸렌 왁스, 140 g, 징크 스테아레이트 30 g, 카본블랙 80 g을 순차적으로 투여하여 140℃에서 30분간 용융혼련한 한 덩어리 반죽을 이축 압출기로 이송시켜 압출성형을 통해 3 내지 5 mm 크기의 고밀도 폴리에틸렌 절연 조성물 펠렛을 제조하였다.
1.5 가교된 절연체의 제조
100L 헨셀믹서에 제조된 고밀도 폴리에틸렌 절연 조성물 펠렛과 퍼부틸 퍼옥사이드 120 g을 투여하여 80℃에서 30분간 혼련하여 가교형 절연 조성물 펠렛을 제조하였다.
1.6 가교된 폴리올레핀의 제조
20L 니더에 3 내지 5 mm 크기의 중밀도 폴리에틸렌 수지 10,000 g과 디큐밀 퍼옥사이드 120 g을 투여하여 80℃에서 30분간 혼련하고 가교형 중밀도 폴리에틸렌 펠렛을 제조하였다.
1.7 가교된 반도전 탄성체의 제조
20L 니더에 에틸렌프로필렌 공중합체 10,000 g과 도전성 카본블랙 1,500 g, 트리스(2,4-디터트-부틸페닐)포스파이트 52 g, 아연 스테아레이트 30 g을 순차적으로 투입하여 100℃에서 20분 동안 혼련 한 덩어리 반죽을 이축 압출기로 이송시켜 압출성형을 통해 표면저항이 106 Ω인 3 내지 5 mm 크기의 반도전 에틸렌프로필렌 공중합체펠렛을 제조하였다. 20 L 헨셀믹서에 제조된 반도전 에틸렌프로필렌 공중합체 펠렛과 디큐밀 퍼옥사이드 120 g을 투여하여 80℃에서 20분간 혼련하여 가교형 반도전 에틸렌프로필렌 공중합체 펠렛을 제조하였다.
1.8 압출가류를 통한 고전압 케이블의 제조
가교형 반도전 에틸렌프로필렌 공중합체 펠렛을 제1호퍼에 가교형 중밀도 폴리에틸렌 펠렛을 제2호퍼에, 고밀도 폴리에틸렌 절연 조성물 펠렛을 제3호퍼에 투여한 다음 직경이 각각 12Φ mm 및 15Φ mm, 18Φ mm 공압출 다이가 부착되어 있는 압출기의 헤드에 작경이 3Φ mm인 알루미늄선을 7연선 시킨 외경이 10Φ mm인 도체를 통과시키면서 실린더 1은 110℃, 실린더 2는 110℃, 실린더 3은 115℃, 압출헤드 120℃, 압출다이는 120℃의 온도조건으로 20 ㎏/hr의 속도로 압출하면서 110℃와 15기압으로 유지되는 가류관을 30 m/min의 속도로 통과시켜 고전압 케이블의 제조하였다.
실시예 2. 표면개질된 내트래킹제가 첨가된 절연체를 포함하는 고전압 케이블
상기 실시예 1.2의 반응용매를 메탄올에서 에탄올로 트리에톡시비닐실란을 트리메톡시비닐실란으로 변경하고; 실시예 1.3의 트리에톡시비닐실란으로 표면처리된 알루미늄을 트리메톡시비닐실란으로 표면처리된 알루미늄으로 변경하며; 실시예 1.4의 고밀도 폴리에틸렌 수지를 중밀도 폴리에틸렌 수지로 변경하는 것을 제외하고는 나머지 방식은 상기 실시예 1과 동일한 방식으로 고전압 케이블을 제조하였다.
비교예 1. 내트래킹제가 첨가된 절연체를 포함하는 고전압 케이블
상기 실시예 1.3을 제외한 나머지 방식은 실시예 1과 동일한 방식으로 고전압 케이블을 제조하였다. 상기 방식으로 제조된 고전압케이블은 폴리디메틸실록산이 표면개질되지 않은 내트레킹제가 첨가되어 제조된 것이다.
시험예 1. 케이블의 인장강도, 내트래킹성 및 절연파괴 전압 측정
상기의 단계를 거쳐 제조된 절연 조성물 펠렛은 핫-프레스 (hot-press)를 이용하여 160℃의 온도에서 0.5 mm 두께의 시트 (sheet)로 제작하여 인장강도는 IEC 60811-1-1 규격의 dumb-bell 시편으로 제작하여 만능시험기를 이용하여 100 mm/분의 속도로 측정하였다.
내트래킹성은 IEC 60587 “Electrical insulating materials used under severe ambient conditions -. Test methods for evaluating resistance”의 시험방법에 따라 진행하였다.
압출된 고전압 케이블의 절연파괴 전압(breakdown voltage)은 고전압시험기를 이용하여 교류 전압을 상승시키면서 절연파괴가 일어나는 최대전압을 측정하였다.
구분
분산성
절연파괴전압
(kV)
인장강도
(MPa)
내오염도
내트래킹성
실시예1 우수 32 17.8 우수 4.5 kV - 130분
실시예2 우수 31 17.0 우수 4.5 kV - 120분
비교예1 양호 28 15.2 보통 4.5 kV - 100분
상기 표 1은 절연 조성물 및 고전압케이블의 실시예와 비교예의 시험결과를 나타낸 것이다. 이를 통해, 본 발명의 고전압 케이블은 실시예1 및 2가 비교예보다 인장강도, 절연파괴전압, 내오염도, 내트래킹성이 향상됨을 확인할 수 있었다.
<결론>
본 발명에 따른 고전압 케이블용 내트래킹성 폴리올레핀 수지 및 고전압 케이블의 제조방법은 표면개질 된 금속산화물 내트래킹제를 기반으로 하는 옥외용 고전압 전력 케이블의 송전용량 증가 시 문제점으로 대두되는 열산화에 대한 안정성을 높이고 압출시 평활도가 향상되어 내트래킹성이 우수한 가교성 폴리올레핀 컴파운드는 물론 절연층의 자체적인 절연내력이 높고, 상기 절연층에 인가되는 전계가 효과적으로 완화되어 내열성이 향상되고 결과적으로 수명이 연장될 수 있는 고전압 케이블을 고가의 설비를 구비하지 않고 기존의 장비를 이용하여 경제적으로 용이하게 제조하는 효과가 있음을 확인할 수 있었다.

Claims (12)

  1. 폴리올레핀계 수지 100 중량부 기준으로, 폴리디메틸실록산을 표면에 도입한 내트래킹제 35 내지 60 중량부를 포함하는 절연 조성물로서,
    상기 내트래킹제는 알루미늄 히드록사이드 100 중량부 기준으로, 비닐실란 2 내지 30 중량부 및 히드로겐 실록산 중합체 2 내지 30 중량부의 배합물로 형성된 폴리디메틸실록산으로 표면개질된 알루미늄 히드록사이드이고,
    상기 내트래킹제는 알루미늄 히드록사이드 표면을 상기 비닐실란으로 개질한 후, 상기 비닐실란과 상기 폴리디메틸실록산간의 촉매 반응을 이용하여 상기 폴리디메틸실록산을 상기 알루미늄 히드록사이드 표면에 도입한 것이고,
    상기 내트래킹제는 히드로겐 실록산 100 중량부 기준 백금 촉매 0.01 내지 1 중량부를 포함하고,
    상기 내트래킹제는 상기 폴리올레핀계 수지의 탄화 및 파괴를 방지하는, 내트래킹성이 향상된 절연 조성물.
  2. 제1항에 있어서,
    상기 내트래킹제 입자 직경은 10 내지 60 μm 인 것인 절연 조성물.
  3. 삭제
  4. 제1항에 있어서,
    상기 비닐실란은 트리메톡시비닐실란, 트리에톡시비닐실란, 트라이아이소프로폭시비닐실란, 클로로다이메틸비닐실란으로 이루어진 군에서 어느 하나 이상인 것인 절연 조성물.
  5. 제1항에 있어서,
    상기 폴리올레핀계 수지는 폴리에틸렌, 폴리프로필렌, 에틸렌/프로필렌 공중합체로 이루어진 군에서 어느 하나 이상인 것인 절연 조성물.
  6. 제1항에 있어서,
    상기 절연 조성물 100 중량부 기준으로 유기과산화물 가교제를 0.5 내지 2 중량부를 추가로 포함하는 것인 절연 조성물.
  7. 제1항에 있어서,
    상기 절연 조성물에 산화방지제, 자외선안정제, 활제, 폴리올레핀 왁스, 분산제 및 방열제를 추가로 포함하는 것인 절연 조성물.
  8. 도체; 상기 제1항의 절연 조성물로부터 형성된 절연체; 및 반도전 탄성체 순서로 압출한 것을 포함하는 고전압 케이블.
  9. 제1항의 절연 조성물로부터 형성된 절연체를 포함하는 고전압 케이블의 제조방법으로서,
    표면개질된 내트래킹제를 제조하는 제1단계; 상기 내트래킹제를 배합하여 가교된 절연체를 제조하는 제2단계; 가교된 폴리올레핀을 제조하는 제3단계; 가교된 반도전 탄성체를 제조하는 제4단계; 및 도체를 외부에 상기 제1 내지 제4단계에서 제조된 것을 압출가류하는 제5단계를 포함하여 수행하는 것인 고전압 케이블 제조방법.
  10. 제9항에 있어서,
    상기 제1단계는 i) 히드로겐 실록산 중합체 제조하는 단계; ii) 알루미늄 히드록사이드에 비닐기를 도입하여 비닐실란으로 표면개질된 알루미늄 히드록사이드을 제조하는 단계; 및 iii) 상기 히드로겐 실록산, 비닐실란으로 표면개질된 알루미늄 히드록사이드 및 촉매를 반응시켜 비닐실란 표면개질된 알루미늄 히드록사이드에 폴리디메틸실록산을 도입하는 단계로 이루어진 것인, 고전압 케이블 제조방법.
  11. 삭제
  12. 제9항에 있어서,
    상기 제2단계는 산화방지제, 자외선안정제, 활제, 폴리올레핀 왁스, 분산제 및 방열제를 추가로 포함하여 수행하는 것인, 고전압 케이블 제조방법.




KR1020190139633A 2019-11-04 2019-11-04 내트래킹성 절연 조성물 및 이를 포함하는 고전압 케이블 KR102354984B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190139633A KR102354984B1 (ko) 2019-11-04 2019-11-04 내트래킹성 절연 조성물 및 이를 포함하는 고전압 케이블

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190139633A KR102354984B1 (ko) 2019-11-04 2019-11-04 내트래킹성 절연 조성물 및 이를 포함하는 고전압 케이블

Publications (2)

Publication Number Publication Date
KR20210054103A KR20210054103A (ko) 2021-05-13
KR102354984B1 true KR102354984B1 (ko) 2022-01-26

Family

ID=75913330

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190139633A KR102354984B1 (ko) 2019-11-04 2019-11-04 내트래킹성 절연 조성물 및 이를 포함하는 고전압 케이블

Country Status (1)

Country Link
KR (1) KR102354984B1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000113738A (ja) * 1998-10-06 2000-04-21 Sumitomo Electric Ind Ltd 電力ケーブルとそのリサイクル方法
JP2013234311A (ja) * 2012-04-09 2013-11-21 Shin-Etsu Chemical Co Ltd 高電圧電気絶縁体用シリコーンゴム組成物及びポリマー碍子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114224A (en) 1980-02-13 1981-09-08 Nippon Denso Co Method of manufacturing low static capacity high voltage resistance wire
KR102020066B1 (ko) 2013-02-01 2019-09-10 엘에스전선 주식회사 내부분방전성 및 부분방전 개시전압 특성이 우수한 절연 전선
KR102012052B1 (ko) * 2013-03-04 2019-08-20 엘에스전선 주식회사 고내화 전력 케이블

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000113738A (ja) * 1998-10-06 2000-04-21 Sumitomo Electric Ind Ltd 電力ケーブルとそのリサイクル方法
JP2013234311A (ja) * 2012-04-09 2013-11-21 Shin-Etsu Chemical Co Ltd 高電圧電気絶縁体用シリコーンゴム組成物及びポリマー碍子

Also Published As

Publication number Publication date
KR20210054103A (ko) 2021-05-13

Similar Documents

Publication Publication Date Title
EP1366498B1 (en) Semiconducting shield compositions
US7767910B2 (en) Semiconductive compositions
US7390970B2 (en) Cable semiconducting shield
AU2002240535A1 (en) Semiconducting shield compositions
US8383012B2 (en) Electric article comprising at least one element made from a semiconductive polymeric material and semiconductive polymeric composition
KR20120048520A (ko) 절연 조성물 및 이를 포함하는 전기 케이블
EP2582751A2 (en) Insulation containing styrene copolymers
KR20180097507A (ko) 반도전성 차폐 조성물
KR102155440B1 (ko) 절연 복합체 및 초고압 전선의 제조방법
KR102354984B1 (ko) 내트래킹성 절연 조성물 및 이를 포함하는 고전압 케이블
JP3699514B2 (ja) 架橋ポリエチレン絶縁電力ケーブルおよびその製造方法
AU3913899A (en) Semiconductive jacket for cable and cable jacketed therewith
KR102253407B1 (ko) 난연성 폴리올레핀계 수지 조성물 및 이를 이용한 고압 전선
WO2022180939A1 (ja) 樹脂組成物、電力ケーブル、および電力ケーブルの製造方法
KR20200112438A (ko) 고전압 전력 케이블용 반도전층 조성물
MXPA00004578A (en) Cable semiconducting shield

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)