WO2022179403A1 - 储能系统和黑启动方法 - Google Patents

储能系统和黑启动方法 Download PDF

Info

Publication number
WO2022179403A1
WO2022179403A1 PCT/CN2022/076013 CN2022076013W WO2022179403A1 WO 2022179403 A1 WO2022179403 A1 WO 2022179403A1 CN 2022076013 W CN2022076013 W CN 2022076013W WO 2022179403 A1 WO2022179403 A1 WO 2022179403A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
load
power
output voltage
storage inverter
Prior art date
Application number
PCT/CN2022/076013
Other languages
English (en)
French (fr)
Inventor
李琳
吴志鹏
张彦忠
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to AU2022225010A priority Critical patent/AU2022225010A1/en
Priority to EP22758768.0A priority patent/EP4290727A1/en
Publication of WO2022179403A1 publication Critical patent/WO2022179403A1/zh
Priority to US18/456,205 priority patent/US20240006886A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • H02J3/472For selectively connecting the AC sources in a particular order, e.g. sequential, alternating or subsets of sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/10Control circuit supply, e.g. means for supplying power to the control circuit

Definitions

  • the present application relates to the field of circuit technology, and in particular, to an energy storage system and a black start method.
  • Black start refers to the fact that after the whole system is shut down due to a fault, without relying on the help of other networks, through the start of the units with self-start capability in the system, it drives the units without self-start capability, gradually expands the recovery range of the system, and finally realizes the whole system. System recovery.
  • the energy storage system When the energy storage system is first installed, the energy storage system is in off-grid mode, and there may be no AC or AC grid access.
  • the battery module in the energy storage system needs to provide voltage to the local load to support the operation of the load.
  • the black-start scheme is used to trigger the battery module, and the system is usually black-started with an Uninterrupted Power Supply (UPS).
  • UPS Uninterrupted Power Supply
  • the cost of the UPS is high, and the UPS needs to occupy a certain energy storage space during the use process, resulting in a reduction in the energy density of the energy storage system, and the service life of the UPS is shorter than that of the energy storage system, so the UPS needs to be replaced midway. Therefore, how to perform black start in the off-grid mode is a technical problem to be solved by those skilled in the art.
  • the embodiments of the present application disclose an energy storage system and a black start method, which improve the efficiency of the system controller in acquiring the black start signal, and facilitate the improvement of the success rate of the black start.
  • an energy storage system including:
  • Black start controller used to output black start signal
  • a battery module whose input end is connected to the output end of the black-start controller, and is used for generating an output voltage based on the black-start signal;
  • the input terminal is connected to the output terminal of the battery module, and the first converter connected to the output terminal of the black start controller is used for inputting the input terminal based on the black start signal and the output voltage of the battery module.
  • the system controller whose terminal is connected to the output terminal of the first converter supplies power, so that the system controller realizes the black start of the energy storage system based on the black start signal.
  • the battery module whose input terminal is connected to the output terminal of the black start controller can generate an output voltage based on the black start signal, and the input terminal is connected to the output terminal of the battery module.
  • the first converter can be started based on the output voltage generated by the battery module to output the output voltage of the first converter, so that the system controller whose input end is connected to the output end of the first converter can be based on the output of the first converter
  • the voltage is activated to supply power to the system controller.
  • the system controller can be controlled to realize the black start of the energy storage system. In this way, the efficiency of obtaining the black start signal by the system controller is improved, and it is convenient to improve the success rate of the black start.
  • the energy storage system further includes at least two energy storage inverters, a load connected in parallel with the at least two energy storage inverters, and an input end connected to the battery module
  • the output end of the inverter is connected to the second converter, and the output end is connected to the input end of the energy storage inverter through at least one DC bus, wherein:
  • the system controller configured to send power-on commands to the second converter and the energy storage inverter respectively;
  • the second converter configured to establish a bus voltage based on the power-on command and the output voltage of the battery module
  • the energy storage inverter is configured to supply power to the load based on the power-on command and the bus voltage.
  • the system controller can supply voltage to the second converter and the energy storage inverter respectively.
  • Send a power-on command so that the second converter establishes a bus voltage for power supply based on the power-on command and the output voltage generated by the battery module, so as to provide a bus voltage for the energy storage inverter, and then the energy storage inverter is powered on based on the power supply.
  • the command and bus voltage supply power to the load to achieve black start of the energy storage system.
  • the energy storage inverter includes a master energy storage inverter and at least one slave energy storage inverter, wherein:
  • the main energy storage inverter configured to supply power to the load based on the power-on command and the bus voltage in response to satisfying a first preset condition
  • the secondary energy storage inverter is configured to supply power to the load based on the power-on command, the bus voltage and the output voltage of the load in response to satisfying the second preset condition.
  • the master energy storage inverter supplies power to the load based on the power-on command and the bus voltage
  • the slave energy storage inverter is powered based on the power-on command,
  • the bus voltage and the output voltage of the load power the load.
  • the satisfaction of the first preset condition includes that the bus voltage satisfies a power-on condition, the energy storage system is in an off-grid mode, and the load has no output voltage.
  • the energy storage inverter when the bus voltage meets the power-on condition, the energy storage inverter can be supported to supply power to the load based on the bus voltage.
  • the energy storage system When the energy storage system is in off-grid mode and the load has no output voltage, it means that the load needs to supply power. Therefore, when the first preset condition is satisfied, the main energy storage inverter can supply power to the load based on the power-on command and the bus voltage, which improves the accuracy of black start and facilitates the success rate of black start.
  • the satisfaction of the second preset condition includes that the bus voltage satisfies a power-on condition, the energy storage system is in an off-grid mode, and the output voltage of the load reaches a target value.
  • the target value may be a preset threshold, for example, 220V.
  • the target value can also be a preset range, for example, 220V ⁇ 10%.
  • the energy storage inverter when the bus voltage meets the power-on condition, the energy storage inverter can be supported to supply power to the load based on the bus voltage.
  • the energy storage system When the energy storage system is in off-grid mode and the output voltage of the load reaches the target value, it means that the operation of the load is in a stable state, and the secondary energy storage inverter can be connected to realize the power supply of the load. That is to say, when the second preset condition is met, the slave energy storage inverter can supply power to the load based on the power-on command, the bus voltage and the output voltage of the load, which improves the accuracy of black start and facilitates the success rate of black start. .
  • the energy storage system further includes a first relay whose input end is connected to the output end of the main energy storage inverter and the output end is connected to the input end of the load.
  • the energy inverter is specifically configured to generate an output voltage based on the power-on command and the bus voltage; in response to the output voltage of the main energy storage inverter reaching a target value, the first relay is closed to make the load power supply.
  • the main energy storage inverter can generate an output voltage based on the bus voltage, that is, perform power conversion from the DC voltage to obtain an AC voltage with a preset frequency and amplitude required by the load.
  • the amplitude of the AC voltage reaches the target value, it means that the main energy storage inverter generates an AC voltage that meets the preset requirements, thereby closing the first relay to supply power to the load, which can improve the stability of the load operation.
  • the energy storage system further includes a second relay whose input end is connected to the output end of the secondary energy storage inverter and the input end of the load at the output end, the secondary energy storage system
  • the inverter is specifically configured to generate an output voltage based on the power-on command and the bus voltage; perform phase locking processing on the output voltage generated from the energy storage inverter and the output voltage of the load; in response to the slave
  • the second relay is closed to supply power to the load.
  • the preset threshold is not limited, and may be 10%, or 0.5, or the like.
  • the main energy storage inverter first supplies power to the load, the load has an output voltage, and then the slave energy storage inverter supplies power to the load based on the received power-on command, which can prevent all energy storage inverters from starting at the same time. Supply power to the load, causing the load current to be too large and the load to fail to supply power.
  • the energy storage inverter generates an output voltage based on the bus voltage, and performs phase-lock processing on the output voltage of the load, so that an output voltage in the same phase as the output voltage of the load can be obtained.
  • the secondary energy storage inverter can generate an AC voltage synchronized with the output voltage of the load, thereby closing the second relay , supplying power to the load, which can further improve the stability of the load operation.
  • the embodiments of the present application further provide a black start method, which is applied to an energy storage system, where the energy storage system includes a black start controller, a battery module, a first converter, and a system controller, wherein:
  • the black-start controller outputs a black-start signal;
  • the battery module generates an output voltage based on the black-start signal;
  • the first converter sends the output voltage to the battery module based on the black-start signal and the output voltage of the battery module
  • the system controller supplies power so that the system controller black-starts the energy storage system based on the black-start signal.
  • the battery module can generate an output voltage based on the black-start signal
  • the first converter can be based on the black-start signal output by the black-start controller and the output voltage generated by the battery module.
  • Supply voltage to the system controller so that the system controller can black start the energy storage system based on the black start signal. In this way, the efficiency of obtaining the black start signal by the system controller is improved, and it is convenient to improve the success rate of the black start.
  • the energy storage system further includes at least two energy storage inverters, a load and a second converter
  • the black start method further includes: the system controller sends the second converter to the system controller.
  • the converter and the energy storage inverter respectively send a start-up command;
  • the second converter establishes a bus voltage based on the start-up command and the output voltage of the battery module;
  • the energy storage inverter is based on the start-up The command and the bus voltage power the load.
  • the system controller can supply voltage to the second converter and the energy storage inverter respectively.
  • Send a power-on command so that the second converter establishes a bus voltage for power supply based on the power-on command and the output voltage generated by the battery module, so as to provide a bus voltage for the energy storage inverter, and then the energy storage inverter is powered on based on the power supply.
  • the command and bus voltage supply power to the load to achieve black start of the energy storage system.
  • the energy storage inverter includes a master energy storage inverter and at least one slave energy storage inverter, and the energy storage inverter is based on the power-on command and the bus voltage Supplying power to the load includes: in response to satisfying a first preset condition, the main energy storage inverter supplies power to the load based on the power-on command and the bus voltage; in response to satisfying a second preset condition, The slave energy storage inverter supplies power to the load based on the power-on command, the bus voltage and the output voltage of the load.
  • the master energy storage inverter supplies power to the load based on the power-on command and the bus voltage
  • the slave energy storage inverter is powered based on the power-on command,
  • the bus voltage and the output voltage of the load power the load.
  • the satisfying the first preset condition includes that the bus voltage satisfies the power-on condition, and the energy storage system is in an off-grid mode, and the load has no output voltage.
  • the energy storage inverter when the bus voltage meets the power-on condition, the energy storage inverter can be supported to supply power to the load based on the bus voltage.
  • the energy storage system When the energy storage system is in off-grid mode and the load has no output voltage, it means that the load needs to supply power. Therefore, when the first preset condition is satisfied, the main energy storage inverter can supply power to the load based on the power-on command and the bus voltage, which improves the accuracy of black start and facilitates the success rate of black start.
  • the satisfaction of the second preset condition includes that the bus voltage satisfies a power-on condition, the energy storage system is in an off-grid mode, and the output voltage of the load reaches a target value.
  • the target value may be a preset threshold, for example, 220V.
  • the target value can also be a preset range, for example, 220V ⁇ 10%.
  • the energy storage inverter when the bus voltage meets the power-on condition, the energy storage inverter can be supported to supply power to the load based on the bus voltage.
  • the energy storage system When the energy storage system is in off-grid mode and the output voltage of the load reaches the target value, it means that the operation of the load is in a stable state, and the secondary energy storage inverter can be connected to realize the power supply of the load. That is to say, when the second preset condition is met, the slave energy storage inverter can supply power to the load based on the power-on command, the bus voltage and the output voltage of the load, which improves the accuracy of black start and facilitates the success rate of black start. .
  • the energy storage system further includes a first relay, and the main energy storage inverter supplies power to the load based on the power-on command and the bus voltage, including: the main energy storage inverter The energy inverter generates an output voltage based on the power-on command and the bus voltage; in response to the output voltage of the main energy storage inverter reaching a target value, the main energy storage inverter closes the first relay, to power the load.
  • the main energy storage inverter can generate an output voltage based on the bus voltage, that is, perform power conversion from the DC voltage to obtain an AC voltage with a preset frequency and amplitude required by the load.
  • the amplitude of the AC voltage reaches the target value, it means that the main energy storage inverter generates an AC voltage that meets the preset requirements, thereby closing the first relay to supply power to the load, which can improve the stability of the load operation.
  • the slave energy storage inverter supplies power to the load based on the power-on command, the bus voltage and the output voltage of the load, including: the slave energy storage inverter The output voltage is generated based on the power-on command and the bus voltage; the secondary energy storage inverter performs phase-lock processing on the output voltage of the secondary energy storage inverter and the output voltage of the load; in response to the The difference between the output voltage of the secondary energy storage inverter and the output voltage of the load is less than a preset threshold, and the secondary energy storage inverter supplies power to the load.
  • the preset threshold is not limited, and may be 10%, or 0.5, or the like.
  • the main energy storage inverter first supplies power to the load, the load has an output voltage, and then the slave energy storage inverter supplies power to the load based on the received power-on command, which can prevent all energy storage inverters from starting at the same time. Supply power to the load, causing the load current to be too large and the load to fail to supply power.
  • the energy storage inverter generates an output voltage based on the bus voltage, and performs phase-lock processing on the output voltage of the load, so that an output voltage in the same phase as the output voltage of the load can be obtained.
  • the secondary energy storage inverter can generate an AC voltage synchronized with the output voltage of the load, thereby closing the second relay , supplying power to the load, which can further improve the stability of the load operation.
  • an embodiment of the present invention further provides a chip system, where the chip system includes at least one processor, a memory, and an interface circuit.
  • the memory, the transceiver, and the at least one processor are interconnected through lines, so that the Instructions are stored in the at least one memory; the instructions are executed by the processor to execute the method of the second aspect.
  • an embodiment of the present invention further provides a computer-readable storage medium, where an instruction is stored in the computer-readable storage medium to execute the method of the second aspect when the computer-readable storage medium runs on a network device.
  • an embodiment of the present invention further provides a computer program product, which executes the method of the second aspect when the computer program product runs on a terminal.
  • FIG. 1 is a schematic structural diagram of an energy storage system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another energy storage system provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a black start method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another black start method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another black start method provided by an embodiment of the present application.
  • the present application provides an energy storage system, which can be applied to microgrids, diesel power supply areas, photovoltaic power generation, wind power generation or renewable energy, etc., or to large, medium and small distributed, microgrid or user side scenarios. This is not limited.
  • the embodiments of the present application will be described below with reference to the accompanying drawings in the embodiments of the present application.
  • FIG. 1 is a schematic structural diagram of an energy storage system provided by an embodiment of the present application.
  • the energy storage system 10 includes a black start controller 101, a battery module 102, a first converter 103, a second converter 104, a system controller (System Control Unit, SCU) 105, at least two storage A power inverter (Power Conditioning System, PCS) 106 and a load 107 are provided.
  • PCS can also be called an energy conversion system, an energy converter or a power inverter, etc., which is a method that converts the received DC voltage (for example, the charge transmitted by the battery, storage battery, etc.) into a constant frequency constant voltage or frequency modulation and voltage regulation AC converter.
  • an energy storage inverter is used for description.
  • the solid-line connecting line in FIG. 1 is represented as a power line, that is, two nodes connected by the solid-line connecting line can transmit electric charges to realize circuit connection. That is to say, the black start controller 101 is connected to the battery module 102 and the first inverter 103 through a power cable, and the battery module 102 is also connected to the second inverter 104 through a power cable.
  • the second converter 104 is connected to at least two PCS 106 connected in parallel through a power line, each PCS 106 is connected to the load 107 through a power line, and the power line between the second converter 104 and the PCS 106 is called a DC bus,
  • the power line between PCS 106 and load 107 is called an AC bus. It should be noted that the number of DC bus bars between the second converter 104 and the PCS 106 may be one or more.
  • the output terminal of the black start controller 101 is connected to the input terminal of the battery module 102 and the input terminal of the first converter 103, and the black start controller 101 can respectively send the battery module to the battery module.
  • 102 and the first converter 103 transmit a black start signal.
  • the output terminal of the battery module 102 is connected to the input terminals of the first inverter 103 and the second inverter 104 , and the battery module 102 can supply power to the first inverter 103 and the second inverter 104 respectively.
  • the output end of the first converter 103 is connected to the input end of the SCU 105, then the first converter 103 can supply power to the SCU 105.
  • the output end of the second converter 104 is connected to the input end of the PCS 106, then the second converter 104 can supply power to the PCS 106.
  • the output terminal of the PCS 106 is connected to the input terminal of the load 107, and the PCS 106 can supply power to the load 107. It should be noted that, when the energy storage system 10 is in the grid-connected mode, the PCS 106 can also supply power to the load 107 .
  • the dashed connecting line in FIG. 1 is represented as a communication line, that is, two nodes connected by the dashed connecting line can realize signal transmission through communication. That is to say, the battery module 102 is connected to the second converter 104 and the SCU 105 through a power line, and the SCU 105 is also connected to the PCS 106 through a power line. SCU 105 may send commands to second converter 104 and PCS 106 when energy storage system 10 is in off-grid mode.
  • the instruction may be an instruction for instructing the second converter 104 and the PCS 106 to start up, or may be other instructions, etc., which are not limited here.
  • the communication line in the embodiment of the present application may be an industry standard architecture (Industry Standard Architecture, ISA) bus, a peripheral device interconnect (Peripheral Component, PCI) bus, or an extended industry standard architecture (Extended Industry Standard Architecture, EISA) bus, etc. .
  • ISA Industry Standard Architecture
  • PCI peripheral device interconnect
  • EISA Extended Industry Standard Architecture
  • the communication line can be divided into an address bus, a data bus, a control bus, etc., for example, a 485 bus.
  • the above-mentioned black start controller 101, battery module 102, first converter 103, and second converter 104 can be integrated into the energy storage container, as an energy storage system, to provide power to the PCS 106. It should be noted that the number of energy storage containers in the energy storage system 10 may be one or more.
  • the black start controller 101 is configured to output a black start signal.
  • the black start signal is used to instruct to implement the black start method provided by the embodiment of the present application.
  • the black start signal can be a command or a state of charge.
  • the black start controller 101 can be a switch, and by setting the state of the switch, the output voltage of the black start controller 101 is switched from a low level to a high level. For example, when the state of the switch is closed, the black start controller 101 can The battery module 102 and the first converter 103 connected to the black-start controller 101 are switched to a high level, and it can be known that the black-start controller 101 outputs a black-start signal.
  • This application does not limit the control method of the black start controller 101, which may be actively controlled by a person, or may be a start-up instruction sent by the SCU 105.
  • the start-up instruction may be an instruction sent by the SCU 105 received by a person, or based
  • the instructions and the like generated when the energy storage system 10 is in the off-grid mode determined by the AC voltage on the PCS 106 side or the AC voltage of the load 107 are not limited here.
  • the battery module 102 is used to generate an output voltage based on the black start signal, that is, to provide the DC voltage of the power generation side of the energy storage system 10 .
  • the battery module 102 may include batteries, which may be a battery pack or a whole cluster of battery packs composed of a plurality of battery cells connected in series, or a photovoltaic string, etc., which are not limited herein.
  • the battery module 102 may further include a battery manager (Battery Control Unit, BCU) connected to the battery, and the like.
  • the BCU can be used to monitor the battery and measure the relevant data of the battery.
  • the relevant data may be data such as current signal, voltage signal, operating temperature, state of charge, and state of health in the battery, which are not limited herein.
  • the BCU performs alarm and emergency protection processing for possible failures of the battery module 102 based on the measured relevant data, so as to optimize the operation of the battery module 102 and ensure the safe, reliable and stable operation of the battery module 102 .
  • the battery can generate an output voltage based on the black start signal, and the battery can also generate an output voltage based on an instruction transmitted by the BCU.
  • the instruction transmitted by the BCU may be an instruction sent by the SCU 105, or an instruction generated based on the relevant data of the measured battery, etc., which is not limited here.
  • the first converter 103 is used to supply power to the SCU 105 based on the output voltage generated by the battery module 102 .
  • the first converter 103 may be a DC/DC converter, or a DC/AC converter, etc., which is not limited herein.
  • the first converter 103 is specifically used to convert the output voltage (direct current) generated by the battery module 102 into a voltage in the form of a required voltage of the SCU 105 .
  • the first converter 103 may be a DC/AC converter.
  • the first converter 103 may be a DC/DC converter.
  • the DC/DC converter may include at least one of the following: a step-up DC/DC converter, a step-down DC/DC converter, and a buck-boost DC/DC converter.
  • the DC/DC converter can adopt the existing structure, that is, it is composed of a first H-bridge rectifier circuit and a second H-bridge rectifier circuit, and the first bridge arm of the first H-bridge rectifier circuit is used as the first DC/DC converter.
  • the second bridge arm of the second H-bridge rectifier circuit can be used as the second direct current end of the DC/DC converter to realize direct current voltage conversion.
  • the DC/AC converter converts DC power into AC power, which is divided into independent rack or single inverter and parallel inverter, etc., which is not limited here.
  • the battery module 102 whose input terminal is connected to the output terminal of the black start controller 101 can generate an output voltage based on the black start signal, and the input terminal and the battery module 102 have an output voltage.
  • the first inverter 103 connected to the output terminal can be activated based on the output voltage generated by the battery module 102 to output the output voltage of the first inverter 103, so that the SCU 105 whose input terminal is connected to the output terminal of the first inverter 103 can be activated.
  • Starting based on the output voltage of the first converter 103 realizes power supply for the SCU 105.
  • the SCU 105 can be controlled to realize the black start of the energy storage system. In this way, the efficiency of obtaining the black start signal by the SCU 105 is improved, and it is convenient to improve the success rate of the black start. It should be noted that the SCU 105 can also debug the energy storage system 10 based on the output voltage of the first converter 103.
  • the SCU 105 is used to send a power-on command to the second converter 104 and the PCS 106 respectively; the second converter 104 is used to establish a bus voltage based on the power-on command and the output voltage generated by the battery module 102; the PCS 106 is used to supply power to the load 107 based on the power-on command and the bus voltage.
  • the power-on command is used to instruct the second converter 104 and the PCS 106 to perform a black start.
  • the second converter 104 can be a DC/DC converter, and is specifically used to convert the output voltage (direct current) generated by the battery module 102 into a voltage (direct current) that meets the required voltage form of the PCS 106.
  • the SCU 105 can send the voltage to the second converter 104 and the PCS 106 respectively.
  • a power-on command so that the second converter 104 establishes a bus voltage for system power supply based on the output voltage generated by the battery module 102, so as to provide a bus voltage for the PCS 106, and then the PCS 106 supplies power to the load 107 based on the power-on command and the bus voltage , in order to realize the black start of the energy storage system.
  • PCS 106 includes a master PCS 1061 and at least one slave PCS 1062.
  • the present application does not limit the method for selecting the master PCS in the PCS, which may be pre-specified, or determined according to the status information of the PCS, etc. After the master PCS is selected, the remaining PCSs can be used as slave PCSs.
  • the present application also does not limit the number of loads 107.
  • one load is used as an example for illustration.
  • This application does not limit the method for the PCS 106 to supply power to the load 107.
  • the master PCS 1061 is configured to supply power to the load 107 based on the power-on command and the bus voltage in response to satisfying the first preset condition; 1062 is configured to supply power to the load 107 based on the power-on command, the bus voltage and the output voltage of the load 107 in response to satisfying the second preset condition.
  • the first preset condition may include that the bus voltage satisfies the power-on condition, the energy storage system 10 is in the off-grid mode, and the load 107 has no output voltage, and the like.
  • the power-on condition may be that the magnitude of the preset bus voltage is greater than a threshold, or the power meets a threshold, etc., which is not limited herein. It can be understood that when the bus voltage meets the power-on condition, the PCS 106 can be supported to supply power to the load 107 based on the bus voltage. When the energy storage system 10 is in the off-grid mode and the load 107 has no output voltage, it means that the load 107 needs to supply power. Therefore, when the first preset condition is satisfied, the main PCS 1061 can supply power to the load 107 based on the power-on command and the bus voltage, which improves the accuracy of black start and facilitates the improvement of the success rate of black start.
  • the energy storage system 10 further includes a first relay 1063, and the input end of the first relay 1063 is connected to the output end of the main PCS 1061, And the output end is connected to the input end of the load 107 .
  • the main PCS 1061 is specifically configured to generate an output voltage based on the power-on command and the bus voltage; in response to the output voltage of the main PCS 1061 reaching the target value, the first relay 1063 is closed to supply power to the load 107.
  • the main PCS 1061 can generate an output voltage based on the bus voltage, that is, perform power conversion from the DC voltage to obtain an AC voltage with a preset frequency and amplitude required by the load 107.
  • the amplitude of the AC voltage reaches the target value, it means that the main PCS 1061 generates an AC voltage that meets the preset requirements, thereby closing the first relay 1063 to supply power to the load 107, which can improve the stability of the operation of the load 107.
  • the second preset condition may include that the bus voltage satisfies the power-on condition, the energy storage system 10 is in the off-grid mode, and the output voltage of the load 107 reaches the target value.
  • the target value may be a preset threshold, for example, 220V.
  • the target value can also be a preset range, for example, 220V ⁇ 10%.
  • the slave PCS 1062 can be connected to realize the power supply of the load 107. That is to say, when the second preset condition is satisfied, the slave PCS 1062 can supply power to the load 107 based on the power-on command, the bus voltage and the output voltage of the load 107, which improves the accuracy of the black start and facilitates the improvement of the success rate of the black start.
  • the energy storage system 10 further includes at least one second relay 1064, the input end of the second relay 1064 and the output end of the slave PCS 1062 connected, and the output terminal is connected to the input terminal of the load 107 .
  • the slave PCS 1062 is specifically used to generate an output voltage based on a power-on command and a bus voltage; phase-lock processing is performed on the output voltage generated from the PCS 1062 and the output voltage of the load 107; in response to the slave PCS 1062 The difference between the output voltage of the load 107 and the output voltage of the load 107 is smaller than the preset threshold, and the second relay 1064 is closed to supply power to the load 107 .
  • the preset threshold is not limited, and may be 10%, or 0.5, or the like. It should be noted that the output voltage from the PCS 1062 and the output voltage of the load 107 may be the output voltage at a certain moment, or may be the output voltage determined by the phase, frequency, and amplitude of the integrated output voltage.
  • the load 107 has an output voltage, and then the slave PCS 1062 supplies power to the load 107 based on the received power-on command, which can prevent all the PCS 106 from starting to supply power to the load 107 at the same time, resulting in The current of the load 107 is too large, and the power supply failure of the load 107 occurs.
  • the output voltage is generated from the PCS 1062 specifically based on the bus voltage, and the output voltage of the load 107 is phase-locked, so that the output voltage in the same phase as the output voltage of the load 107 can be obtained.
  • the slave PCS 1062 can generate an AC voltage synchronized with the output voltage of the load 107, thereby closing the second relay 1064, which is the load 107 is powered, which can further improve the stability of the operation of the load 107 .
  • FIG. 3 is a black start method provided by an embodiment of the present application.
  • the method is applied to the energy storage system as shown in FIG. 1.
  • the method includes but is not limited to the following steps S301 to S303, wherein:
  • the black start controller outputs a black start signal.
  • the battery module generates an output voltage based on the black start signal.
  • the first converter supplies power to the system controller based on the black start signal and the output voltage of the battery module.
  • the battery module may generate an output voltage based on the black-start signal
  • the first converter may generate an output voltage based on the black-start signal output by the black-start controller and the battery
  • the output voltage generated by the module provides voltage to the system controller, so that the system controller can realize the black start of the energy storage system based on the black start signal. In this way, the efficiency of obtaining the black start signal by the system controller is improved, and it is convenient to improve the success rate of the black start.
  • FIG. 4 is another black start method provided by the embodiment of the present application, and the method is applied to the energy storage system as shown in FIG. 1 .
  • the method includes but is not limited to the following steps S401-S406, wherein:
  • the black start controller outputs a black start signal.
  • the battery module generates an output voltage based on the black start signal.
  • the first converter supplies power to the system controller based on the black start signal and the output voltage of the battery module.
  • S404 The system controller sends power-on commands to the second converter and the energy storage inverter respectively.
  • the second converter establishes a bus voltage based on the power-on command and the output voltage of the battery module.
  • the energy storage inverter supplies power to the load based on the power-on command and the bus voltage.
  • the system controller may supply the voltage to the second converter and the battery module.
  • the energy storage inverters send power-on commands respectively, so that the second converter establishes a bus voltage for power supply based on the power-on command and the output voltage generated by the battery module, and then the energy storage inverter is based on the power-on command and the bus voltage as: Load power supply to achieve black start of the energy storage system.
  • FIG. 5 is another black start method provided by the embodiment of the application, and the method is applied to the energy storage system as shown in FIG. 2 . , the method includes but is not limited to the following steps S501-S507, wherein:
  • the black start controller outputs a black start signal.
  • the battery module generates an output voltage based on the black start signal.
  • the first converter supplies power to the system controller based on the black start signal and the output voltage of the battery module.
  • S504 The system controller sends power-on commands to the second converter, the master energy storage inverter, and the slave energy storage inverter, respectively.
  • the second converter establishes a bus voltage based on the power-on command and the output voltage of the battery module.
  • the main energy storage inverter supplies power to the load based on the power-on command and the bus voltage.
  • satisfying the first preset condition includes that the bus voltage satisfies the power-on condition, and the energy storage system is in an off-grid mode, and the load has no output voltage.
  • the energy storage inverter when the bus voltage meets the power-on condition, the energy storage inverter can be supported to supply power to the load based on the bus voltage.
  • the energy storage system When the energy storage system is in off-grid mode and the load has no output voltage, it means that the load needs to supply power. Therefore, when the first preset condition is satisfied, the main energy storage inverter can supply power to the load based on the power-on command and the bus voltage, which improves the accuracy of black start and facilitates the success rate of black start.
  • the energy storage system further includes a first relay, and the main energy storage inverter supplies power to the load based on the power-on command and the bus voltage, including: the main energy storage inverter generates an output voltage based on the power-on command and the bus voltage ; In response to the output voltage of the main energy storage inverter reaching the target value, the main energy storage inverter closes the first relay to supply power to the load.
  • the target value may be a preset threshold, for example, 220V.
  • the target value can also be a preset range, for example, 220V ⁇ 10%.
  • the main energy storage inverter can generate an output voltage based on the bus voltage, that is, perform power conversion from the DC voltage to obtain an AC voltage with a preset frequency and amplitude required by the load.
  • the amplitude of the AC voltage reaches the target value, it means that the main energy storage inverter generates an AC voltage that meets the preset requirements, thereby closing the first relay to supply power to the load, which can improve the stability of the load operation.
  • satisfying the second preset condition includes that the bus voltage satisfies the power-on condition, the energy storage system is in an off-grid mode, and the output voltage of the load reaches the target value.
  • the target value may be a preset threshold, for example, 220V.
  • the target value can also be a preset range, for example, 220V ⁇ 10%.
  • the energy storage inverter when the bus voltage meets the power-on condition, the energy storage inverter can be supported to supply power to the load based on the bus voltage.
  • the energy storage system When the energy storage system is in off-grid mode and the output voltage of the load reaches the target value, it means that the operation of the load is in a stable state, and the secondary energy storage inverter can be connected to realize the power supply of the load. That is to say, when the second preset condition is met, the slave energy storage inverter can supply power to the load based on the power-on command, the bus voltage and the output voltage of the load, which improves the accuracy of black start and facilitates the success rate of black start. .
  • the energy storage inverter supplies power to the load based on the power-on command, the bus voltage and the output voltage of the load, including: generating an output voltage from the energy storage inverter based on the power-on command and the bus voltage; The inverter performs phase-locking processing on the output voltage of the slave energy storage inverter and the output voltage of the load; in response to the difference between the output voltage of the slave energy storage inverter and the output voltage of the load being less than a preset threshold, the The energy storage inverter supplies power to the load.
  • the preset threshold is not limited, and may be 10%, or 0.5, or the like.
  • the main energy storage inverter first supplies power to the load, the load has an output voltage, and then the slave energy storage inverter supplies power to the load based on the received power-on command, which can prevent all energy storage inverters from starting at the same time. Supply power to the load, causing the load current to be too large and the load to fail to supply power.
  • the energy storage inverter generates an output voltage based on the bus voltage, and performs phase-lock processing on the output voltage of the load, so that an output voltage in the same phase as the output voltage of the load can be obtained.
  • the secondary energy storage inverter can generate an AC voltage synchronized with the output voltage of the load, thereby closing the second relay , supplying power to the load, which can further improve the stability of the load operation.
  • the system controller can supply voltage to the second converter,
  • the master energy storage inverter and the slave energy storage inverter send power-on commands respectively, so that the second converter establishes a bus voltage for system power supply based on the power-on command and the output voltage generated by the battery module.
  • the main energy storage inverter supplies power to the load based on the power-on command and the bus voltage
  • the slave energy storage inverter is based on the power-on command and the bus voltage.
  • An embodiment of the present invention further provides a chip system, the chip system includes at least one processor, a memory and an interface circuit, the memory, the transceiver and the at least one processor are interconnected through a line, and the at least one memory Instructions are stored in the processor; when the instructions are executed by the processor, the method flow shown in FIG. 3 to FIG. 5 is realized.
  • An embodiment of the present invention further provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium runs on a network device, the method flows shown in FIGS. 3 to 5 are implemented.
  • An embodiment of the present invention further provides a computer program product.
  • the computer program product runs on a terminal, the method flow shown in FIG. 3 to FIG. 5 is realized.
  • the battery module can generate an output voltage based on the black-start signal, and the first converter can be based on the black-start output by the black-start controller.
  • the signal and the output voltage generated by the battery module provide the system controller with voltage, so that the system controller can realize the black start of the energy storage system based on the black start signal. In this way, the efficiency of obtaining the black start signal by the system controller is improved, and it is convenient to improve the success rate of the black start.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions when loaded and executed on a computer, result in whole or in part of the processes or functions described herein.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, optical fiber, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

本申请实施例提供一种储能系统和黑启动方法,储能系统包括黑启动控制器、电池模组、第一变换器和系统控制器,其中,所述黑启动控制器输出黑启动信号;所述电池模组基于所述黑启动信号产生输出电压;所述第一变换器基于所述黑启动信号和所述电池模组的输出电压给所述系统控制器供电,以使所述系统控制器基于所述黑启动信号实现所述储能系统黑启动。采用本申请实施例,提高了系统控制器获取黑启动信号的效率,便于提高黑启动的成功率。

Description

储能系统和黑启动方法
本申请要求于2021年02月27日提交中国专利局、申请号为202110223426.3、申请名称为“储能系统和黑启动方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电路技术领域,尤其涉及一种储能系统和黑启动方法。
背景技术
黑启动是指整个系统因故障停运后,不依赖别的网络的帮助,通过系统中具有自启动能力的机组的启动,带动无自启动能力的机组,逐步扩大系统的恢复范围,最终实现整个系统的恢复。
在储能系统首次安装时,该储能系统处于离网模式,可能没有交流电或交流电网接入,需要由储能系统中的电池模组给本地负载提供电压,支持负载的运行。一般采用黑启动方案触发电池模组,且通常搭配不间断电源(Uninterrupted Power Supply,UPS)实现系统黑启动。然而,UPS的成本较高,且在使用过程中UPS需要占用一定的储能空间,导致储能系统能量密度降低,且UPS的使用寿命比储能系统使用寿命低,需要中途更换UPS。因此,如何在离网模式下进行黑启动是本领域技术人员待解决的技术问题。
发明内容
本申请实施例公开了一种储能系统和黑启动方法,提高了系统控制器获取黑启动信号的效率,便于提高黑启动的成功率。
第一方面,本申请实施例提供了一种储能系统,包括:
黑启动控制器,用于输出黑启动信号;
输入端与所述黑启动控制器的输出端连接的电池模组,用于基于所述黑启动信号产生输出电压;
输入端与所述电池模组的输出端,以及与所述黑启动控制器的输出端连接的第一变换器,用于基于所述黑启动信号和所述电池模组的输出电压,给输入端与所述第一变换器的输出端连接的系统控制器供电,以使所述系统控制器基于所述黑启动信号实现所述储能系统黑启动。
可以理解,在黑启动控制器输出黑启动信号之后,输入端与黑启动控制器的输出端连接的电池模组可基于该黑启动信号产生输出电压,输入端与电池模组的输出端连接的第一变换器可基于电池模组产生的输出电压进行启动,以输出第一变换器的输出电压,从而输入端与第一变换器的输出端连接的系统控制器可基于第一变换器的输出电压进行启动,实现为系统控制器供电。且在第一变换器接收到黑启动信号之后,可控制系统控制器实现储能系统黑启动。如此,提高了系统控制器获取黑启动信号的效率,便于提高黑启动的成功率。
在一种可能的实现方式中,所述储能系统还包括至少两个储能逆变器和与所述至少两个储能逆变器并联连接的负载,以及输入端与所述电池模组的输出端连接,且输出端通过至少一条直流母线与所述储能逆变器的输入端连接的第二变换器,其中:
所述系统控制器,用于向所述第二变换器和所述储能逆变器分别发送开机指令;
所述第二变换器,用于基于所述开机指令和所述电池模组的输出电压建立母线电压;
所述储能逆变器,用于基于所述开机指令和所述母线电压给所述负载供电。
可以理解,在第一变换器基于黑启动控制器输出的黑启动信号和电池模组产生的输出电压为系统控制器提供电压之后,系统控制器可向第二变换器和储能逆变器分别发送开机指令,从而使得第二变换器基于开机指令和电池模组产生的输出电压建立用于系统供电的母线电压,从而为储能逆变器提供母线电压,再由储能逆变器基于开机指令和母线电压为负载供电,以实现储能系统黑启动。
在一种可能的实现方式中,所述储能逆变器包括主储能逆变器和至少一个从储能逆变器,其中:
所述主储能逆变器,用于响应于满足第一预设条件,基于所述开机指令和所述母线电压给所述负载供电;
所述从储能逆变器,用于响应于满足第二预设条件,基于所述开机指令、所述母线电压和所述负载的输出电压给所述负载供电。
可以理解,在满足第一预设条件时,由主储能逆变器基于开机指令和母线电压为负载供电,然后在满足第二预设条件时,由从储能逆变器基于开机指令、母线电压和负载的输出电压给负载供电。如此,避免了储能系统中所有的储能逆变器同时启动为负载供电,导致负载的电流过大,而造成黑启动失败的事件发生,提高黑启动的成功率。
在一种可能的实现方式中,所述满足第一预设条件包括所述母线电压满足开机条件,以及所述储能系统处于离网模式,且所述负载没有输出电压。
可以理解,在母线电压满足开机条件时,可支持储能逆变器基于母线电压为负载供电。当储能系统处于离网模式,且负载没有输出电压时,表示负载需要进行供电。因此,在满足第一预设条件时,主储能逆变器可基于开机指令和母线电压给负载供电,提高了黑启动的准确率,便于提高黑启动的成功率。
在一种可能的实现方式中,所述满足第二预设条件包括所述母线电压满足开机条件,以及所述储能系统处于离网模式,且所述负载的输出电压达到目标值。
其中,目标值可以为预先设置的一个阈值,例如,220V等。目标值也可以为预先设置的一个范围,例如,220V±10%等。
可以理解,在母线电压满足开机条件时,可支持储能逆变器基于母线电压为负载供电。而在储能系统处于离网模式,且负载的输出电压达到目标值时,表示负载的运行为稳定状态,可以接入从储能逆变器,以实现负载的供电。也就是说,在满足第二预设条件时,从储能逆变器可基于开机指令、母线电压以及负载的输出电压给负载供电,提高了黑启动的准确率,便于提高黑启动的成功率。
在一种可能的实现方式中,所述储能系统还包括输入端与所述主储能逆变器的输出端和输出端与所述负载的输入端连接的第一继电器,所述主储能逆变器具体用于基于所述开机指令和所述母线电压产生输出电压;响应于所述主储能逆变器的输出电压达到目标值,闭合所述第一继电器,以使为所述负载供电。
可以理解,在主储能逆变器接收到开机指令之后,可基于母线电压产生输出电压,即将直流电压进行功率转换,得到负载所需的预设频率和幅值的交流电压。当交流电压的幅值达到目标值时,表示主储能逆变器产生满足预设要求的交流电压,从而闭合第一继电器,为负载供电,可提高负载运行的稳定性。
在一种可能的实现方式中,所述储能系统还包括输入端与所述从储能逆变器的输出端和输出端所述负载的输入端连接的第二继电器,所述从储能逆变器具体用于基于所述开机指令和所述母线电压产生输出电压;对所述从储能逆变器产生的输出电压和所述负载的输出电压进行锁相处理;响应于所述从储能逆变器的输出电压和所述负载的输出电压之间的差值小于预设阈值,闭合所述第二继电器,以使为所述负载供电。
其中,预设阈值不做限定,可以为10%,或者0.5等。
可以理解,在主储能逆变器先为负载供电之后,负载存在输出电压,再由从储能逆变器基于接收到的开机指令为负载供电,可避免所有的储能逆变器同时启动为负载供电,导致负载的电流过大,而负载供电失败的情况发生。且从储能逆变器具体基于母线电压产生输出电压,并对负载的输出电压进行锁相处理,从而可得到与负载的输出电压同相位的输出电压。当从储能逆变器的输出电压和负载的输出电压之间的差值小于预设阈值时,表示从储能逆变器可产生与负载的输出电压同步的交流电压,从而闭合第二继电器,为负载供电,可进一步提高负载运行的稳定性。
第二方面,本申请实施例还提供了一种黑启动方法,应用于储能系统中,所述储能系统包括黑启动控制器、电池模组、第一变换器和系统控制器,其中:所述黑启动控制器输出黑启动信号;所述电池模组基于所述黑启动信号产生输出电压;所述第一变换器基于所述黑启动信号和所述电池模组的输出电压给所述系统控制器供电,以使所述系统控制器基于所述黑启动信号实现所述储能系统黑启动。
可以理解,在黑启动控制器输出黑启动信号之后,电池模组可基于该黑启动信号产生输出电压,第一变换器可基于黑启动控制器输出的黑启动信号和电池模组产生的输出电压为系统控制器提供电压,以使系统控制器基于黑启动信号实现储能系统黑启动。如此,提高了系统控制器获取黑启动信号的效率,便于提高黑启动的成功率。
在一种可能的实现方式中,所述储能系统还包括至少两个储能逆变器、负载和第二变换器,所述黑启动方法还包括:所述系统控制器向所述第二变换器和所述储能逆变器分别发送开机指令;所述第二变换器基于所述开机指令和所述电池模组的输出电压建立母线电压;所述储能逆变器基于所述开机指令和所述母线电压给所述负载供电。
可以理解,在第一变换器基于黑启动控制器输出的黑启动信号和电池模组产生的输出电压为系统控制器提供电压之后,系统控制器可向第二变换器和储能逆变器分别发送开机指令,从而使得第二变换器基于开机指令和电池模组产生的输出电压建立用于系统供电的母线电压,从而为储能逆变器提供母线电压,再由储能逆变器基于开机指令和母线电压为负载供电,以实现储能系统黑启动。
在一种可能的实现方式中,所述储能逆变器包括主储能逆变器和至少一个从储能逆变器,所述储能逆变器基于所述开机指令和所述母线电压给所述负载供电,包括:响应于满足第一预设条件,所述主储能逆变器基于所述开机指令和所述母线电压给所述负载供电;响应于满足第二预设条件,所述从储能逆变器基于所述开机指令、所述母线电压和所述负载的输出电压给所述负载供电。
可以理解,在满足第一预设条件时,由主储能逆变器基于开机指令和母线电压为负载供电,然后在满足第二预设条件时,由从储能逆变器基于开机指令、母线电压和负载的输出电压给负载供电。如此,避免了储能系统中所有的储能逆变器同时启动为负载供电,导致负载的电流过大,而造成黑启动失败的事件发生,提高黑启动的成功率。
在一种可能的实现方式中,所述满足第一预设条件包括所述母线电压满足开机条件,以 及所述储能系统处于离网模式,且所述负载没有输出电压。
可以理解,在母线电压满足开机条件时,可支持储能逆变器基于母线电压为负载供电。当储能系统处于离网模式,且负载没有输出电压时,表示负载需要进行供电。因此,在满足第一预设条件时,主储能逆变器可基于开机指令和母线电压给负载供电,提高了黑启动的准确率,便于提高黑启动的成功率。
在一种可能的实现方式中,所述满足第二预设条件包括所述母线电压满足开机条件,以及所述储能系统处于离网模式,且所述负载的输出电压达到目标值。
其中,目标值可以为预先设置的一个阈值,例如,220V等。目标值也可以为预先设置的一个范围,例如,220V±10%等。
可以理解,在母线电压满足开机条件时,可支持储能逆变器基于母线电压为负载供电。而在储能系统处于离网模式,且负载的输出电压达到目标值时,表示负载的运行为稳定状态,可以接入从储能逆变器,以实现负载的供电。也就是说,在满足第二预设条件时,从储能逆变器可基于开机指令、母线电压以及负载的输出电压给负载供电,提高了黑启动的准确率,便于提高黑启动的成功率。
在一种可能的实现方式中,所述储能系统还包括第一继电器,所述主储能逆变器基于所述开机指令和所述母线电压给所述负载供电,包括:所述主储能逆变器基于所述开机指令和所述母线电压产生输出电压;响应于所述主储能逆变器的输出电压达到目标值,所述主储能逆变器闭合所述第一继电器,以使为所述负载供电。
可以理解,在主储能逆变器接收到开机指令之后,可基于母线电压产生输出电压,即将直流电压进行功率转换,得到负载所需的预设频率和幅值的交流电压。当交流电压的幅值达到目标值时,表示主储能逆变器产生满足预设要求的交流电压,从而闭合第一继电器,为负载供电,可提高负载运行的稳定性。
在一种可能的实现方式中,所述从储能逆变器基于所述开机指令、所述母线电压和所述负载的输出电压给所述负载供电,包括:所述从储能逆变器基于所述开机指令和所述母线电压产生输出电压;所述从储能逆变器对所述从储能逆变器的输出电压和所述负载的输出电压进行锁相处理;响应于所述从储能逆变器的输出电压和所述负载的输出电压之间的差值小于预设阈值,所述从储能逆变器给所述负载供电。
其中,预设阈值不做限定,可以为10%,或者0.5等。
可以理解,在主储能逆变器先为负载供电之后,负载存在输出电压,再由从储能逆变器基于接收到的开机指令为负载供电,可避免所有的储能逆变器同时启动为负载供电,导致负载的电流过大,而负载供电失败的情况发生。且从储能逆变器具体基于母线电压产生输出电压,并对负载的输出电压进行锁相处理,从而可得到与负载的输出电压同相位的输出电压。当从储能逆变器的输出电压和负载的输出电压之间的差值小于预设阈值时,表示从储能逆变器可产生与负载的输出电压同步的交流电压,从而闭合第二继电器,为负载供电,可进一步提高负载运行的稳定性。
第三方面,本发明实施例还提供一种芯片系统,所述芯片系统包括至少一个处理器,存储器和接口电路,所述存储器、所述收发器和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行第二方面的方法。
第四方面,本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在网络设备上运行时执行第二方面的方法。
第五方面,本发明实施例还提供一种计算机程序产品,当所述计算机程序产品在终端上 运行时执行第二方面的方法。
附图说明
以下对本申请实施例用到的附图进行介绍。
图1是本申请实施例提供的一种储能系统的结构示意图;
图2是本申请实施例提供的另一种储能系统的结构示意图;
图3是本申请实施例提供的一种黑启动方法的流程示意图;
图4是本申请实施例提供的另一种黑启动方法的流程示意图;
图5是本申请实施例提供的另一种黑启动方法的流程示意图。
具体实施方式
本申请提供一种储能系统,可应用于微电网、柴油供电区域、光伏发电、风力发电或可再生能源等,或者应用于大型、中小型分布式、微网或用户侧等场景中,在此不做限定。下面结合本申请实施例中的附图对本申请实施例进行描述。
请参见图1,图1是本申请实施例提供的一种储能系统的结构示意图。如图1所示,储能系统10包括黑启动控制器101、电池模组102、第一变换器103、第二变换器104、系统控制器(System Control Unit,SCU)105、至少两个储能逆变器(Power Conditioning System,PCS)106和负载107。PCS还可称为能量转换系统、能量转换器或功率逆变器等,是一种将接收到的直流电压(例如,电池、蓄电瓶等传输的电荷)转变成定频定压或调频调压交流电的转换器。在本申请实施例中,以储能逆变器进行描述。
图1中的实线连接线表示为功率线,即实线连接线连接的两个节点可传输电荷实现电路连接。也就是说,黑启动控制器101和电池模组102、第一变换器103之间通过功率线连接,电池模组102还与第二变换器104之间通过功率线连接。第二变换器104通过功率线与至少两个并联连接的PCS 106连接,每一PCS 106与负载107通过功率线连接,且第二变换器104和PCS 106之间的功率线称为直流母线,PCS 106与负载107之间的功率线称为交流母线。需要说明的是,第二变换器104和PCS 106之间的直流母线的数量可以为一条或多条。
在储能系统10处于离网模式时,黑启动控制器101的输出端和电池模组102的输入端和第一变换器103的输入端连接,则黑启动控制器101可分别向电池模组102和第一变换器103传输黑启动信号。电池模组102的输出端和第一变换器103和第二变换器104的输入端连接,则电池模组102可分别向第一变换器103和第二变换器104供电。第一变换器103的输出端和SCU 105的输入端连接,则第一变换器103可向SCU 105供电。第二变换器104的输出端和PCS 106的输入端连接,则第二变换器104可向PCS 106供电。PCS 106的输出端和负载107的输入端连接,则PCS 106可向负载107供电。需要说明的是,在储能系统10处于并网模式时,PCS 106还可向负载107供电。
图1中的虚线连接线表示为通讯线,即虚线连接线连接的两个节点可通过通讯实现信号传输。也就是说,电池模组102和第二变换器104、SCU 105之间通过功率线连接,SCU 105还通过功率线连接PCS 106。在储能系统10处于离网模式时,SCU 105可向第二变换器104和PCS 106发送指令。该指令可以为用于指示第二变换器104和PCS 106开机的指令,也可以是其他的指令等,在此不做限定。
本申请实施例中的通讯线可以是工业标准体系结构(Industry Standard Architecture,ISA) 总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该通讯线可以分为地址总线、数据总线、控制总线等,例如,485总线。
上述的黑启动控制器101、电池模组102、第一变换器103、第二变换器104可以集成于储能集装箱中,作为能量存储系统,为PCS 106提供电能。需要说明的是,在储能系统10中储能集装箱的数量可以为一个或多个。
在本申请实施例中,黑启动控制器101用于输出黑启动信号。黑启动信号用于指示实施本申请实施例提供的黑启动方法。黑启动信号可以是一个指令,也可以是电荷状态。黑启动控制器101可以为一个开关,通过设置该开关的状态,将黑启动控制器101输出电压从低电平切换为高电平,例如,开关的状态为闭合时,黑启动控制器101可切换为高电平,从而与黑启动控制器101连接的电池模组102和第一变换器103,可知黑启动控制器101输出黑启动信号。本申请对于黑启动控制器101的控制方法不做限定,可以是人主动控制的,还可以是接收到SCU 105发送的启动指令,该启动指令可以是SCU 105接收到人发送的指令,或者基于PCS 106侧的交流电压或负载107的交流电压所确定储能系统10处于离网模式时生成的指令等,在此也不做限定。
电池模组102用于基于黑启动信号产生输出电压,即提供储能系统10发电侧的直流电压。电池模组102(图中未示出)可包括电池可以是多个串联的电芯组成的电池包或整簇电池包,或者是光伏组串等,在此不做限定。电池模组102还可包括与电池连接的电池管理器(Battery Control Unit,BCU)等。BCU可用于对电池进行监控并测量该电池的相关数据。该相关数据可以为该电池内的电流信号、电压信号、工作温度、荷电状态、健康状态等数据,在此不做限定。BCU基于测量得到的相关数据对电池模组102可能出现的故障进行报警和应急保护处理,从而对电池模组102的运行进行优化控制,并保证电池模组102安全、可靠、稳定的运行。电池可基于黑启动信号产生输出电压,电池还可基于BCU传输的指令产生输出电压等。该BCU传输的指令可以是SCU 105发送的指令,或者基于测量电池的相关数据生成的指令等,在此不做限定。
第一变换器103用于基于电池模组102产生的输出电压给SCU 105供电。第一变换器103可以为DC/DC转换器,或DC/AC转换器等,在此不做限定。第一变换器103具体用于将电池模组102产生的输出电压(直流电)转换成满足SCU 105的所需电压形式的电压。在SCU 105所需电压形式为交流电压时,第一变换器103可以为DC/AC转换器。在SCU 105所需电压形式为直流电压时,第一变换器103可以为DC/DC转换器。
本申请实施例中,DC/DC转换器可包括以下至少一种:升压型DC/DC转换器、降压型DC/DC转换器以及升降压型DC/DC转换器。DC/DC转换器可以采用现有结构,即由第一H桥整流电路和第二H桥整流电路组成,将第一H桥整流电路的第一桥臂作为DC/DC转换器的第一直流端,将第二H桥整流电路的第二桥臂可以作为DC/DC转换器的第二直流端,实现直流电压转换。DC/AC转换器是将直流电源转化成交流电源,分为独立架或单体逆变器以及并联逆变器等,在此不做限定。
可以理解,在黑启动控制器101输出黑启动信号之后,输入端与黑启动控制器101的输出端连接的电池模组102可基于该黑启动信号产生输出电压,输入端与电池模组102的输出端连接的第一变换器103可基于电池模组102产生的输出电压进行启动,以输出第一变换器103的输出电压,从而输入端与第一变换器103的输出端连接的SCU 105可基于第一变换器103的输出电压进行启动,实现为SCU 105供电。且在第一变换器103接收到黑启动信号之 后,可控制SCU 105实现储能系统黑启动。如此,提高了SCU 105获取黑启动信号的效率,便于提高黑启动的成功率。需要说明的是,SCU 105还可基于第一变换器103的输出电压对储能系统10进行调试。
在一种可能的示例中,SCU 105用于向第二变换器104和PCS 106分别发送开机指令;第二变换器104用于基于开机指令和电池模组102产生的输出电压建立母线电压;PCS 106用于基于开机指令和母线电压给负载107供电。
其中,开机指令用于指示第二变换器104和PCS 106进行黑启动。第二变换器104可以为DC/DC转换器,具体用于将电池模组102产生的输出电压(直流电)转换成满足PCS 106的所需电压形式的电压(直流电)。
可以理解,在第一变换器103基于黑启动控制器101输出的黑启动信号和电池模组102产生的输出电压为SCU 105提供电压之后,SCU 105可向第二变换器104和PCS 106分别发送开机指令,从而使得第二变换器104基于电池模组102产生的输出电压建立用于系统供电的母线电压,从而为PCS 106提供母线电压,再由PCS 106基于开机指令和母线电压为负载107供电,以实现储能系统黑启动。
本申请对于PCS 106的数量不做限定,如图2所示,PCS 106包括主PCS 1061和至少一个从PCS 1062。本申请对于PCS中选取主PCS的方法不做限定,可以预先指定,或者根据PCS的状态信息进行确定等,在选取主PCS之后,剩余的PCS可作为从PCS。
本申请对于负载107的数量也不做限定,在图1和图2中,以一个负载进行举例说明。本申请对于PCS 106为负载107供电的方法不做限定,在一种可能的示例中,主PCS 1061用于响应于满足第一预设条件,基于开机指令和母线电压给负载107供电;从PCS 1062用于响应于满足第二预设条件,基于开机指令、母线电压和负载107的输出电压给负载107供电。
其中,第一预设条件可包括母线电压满足开机条件,以及储能系统10处于离网模式,且负载107没有输出电压等。开机条件可以是预先设置的母线电压的幅值大于一个阈值,或功率满足一个阈值等,在此不做限定。可以理解,在母线电压满足开机条件时,可支持PCS 106基于母线电压为负载107供电。当储能系统10处于离网模式,且负载107没有输出电压时,表示负载107需要进行供电。因此,在满足第一预设条件时,主PCS 1061可基于开机指令和母线电压给负载107供电,提高了黑启动的准确率,便于提高黑启动的成功率。
本申请对于主PCS 1061如何给负载107供电的方法不做限定,如图2所示,储能系统10还包括第一继电器1063,第一继电器1063的输入端与主PCS 1061的输出端连接,且输出端与负载107的输入端连接。在一种可能的示例中,主PCS 1061具体用于基于开机指令和母线电压产生输出电压;响应于主PCS 1061的输出电压达到目标值,闭合第一继电器1063,以使为负载107供电。
可以理解,在主PCS 1061接收到开机指令之后,可基于母线电压产生输出电压,即将直流电压进行功率转换,得到负载107所需的预设频率和幅值的交流电压。当交流电压的幅值达到目标值时,表示主PCS 1061产生满足预设要求的交流电压,从而闭合第一继电器1063,为负载107供电,可提高负载107运行的稳定性。
在本申请实施例中,第二预设条件可包括母线电压满足开机条件,以及储能系统10处于离网模式,且负载107的输出电压达到目标值。其中,目标值可以为预先设置的一个阈值,例如,220V等。目标值也可以为预先设置的一个范围,例如,220V±10%等。如上所述,在母线电压满足开机条件时,可支持PCS 106基于母线电压为负载107供电。而在储能系统10处于离网模式,且负载107的输出电压达到目标值时,表示负载107的运行为稳定状态,可 以接入从PCS 1062,以实现负载107的供电。也就是说,在满足第二预设条件时,从PCS 1062可基于开机指令、母线电压以及负载107的输出电压给负载107供电,提高了黑启动的准确率,便于提高黑启动的成功率。
本申请对于从PCS 1062如何给负载107供电的方法不做限定,如图2所示,储能系统10还包括至少一个第二继电器1064,第二继电器1064的输入端与从PCS 1062的输出端连接,且输出端与负载107的输入端连接。在一种可能的示例中,从PCS 1062具体用于基于开机指令和母线电压产生输出电压;对从PCS 1062产生的输出电压和负载107的输出电压进行锁相处理;响应于所述从PCS 1062的输出电压和负载107的输出电压之间的差值小于预设阈值,闭合第二继电器1064,以使为负载107供电。
其中,预设阈值不做限定,可以为10%,或者0.5等。需要说明的是,从PCS 1062的输出电压和负载107的输出电压可以是某一瞬间的输出电压,也可以是综合输出电压的相位、频率、幅值等确定的输出电压。
可以理解,在主PCS 1061先为负载107供电之后,负载107存在输出电压,再由从PCS 1062基于接收到的开机指令为负载107供电,可避免所有的PCS 106同时启动为负载107供电,导致负载107的电流过大,而负载107供电失败的情况发生。且从PCS 1062具体基于母线电压产生输出电压,并对负载107的输出电压进行锁相处理,从而可得到与负载107的输出电压同相位的输出电压。当从PCS 1062的输出电压和负载107的输出电压之间的差值小于预设阈值时,表示从PCS 1062可产生与负载107的输出电压同步的交流电压,从而闭合第二继电器1064,为负载107供电,可进一步提高负载107运行的稳定性。
请参见图3,图3是本申请实施例提供的一种黑启动方法,该方法应用于如图1的储能系统中,该方法包括但不限于如下步骤S301~S303,其中:
S301:黑启动控制器输出黑启动信号。
S302:电池模组基于黑启动信号产生输出电压。
S303:第一变换器基于黑启动信号和电池模组的输出电压给系统控制器供电。
在图3所描述的方法中,在黑启动控制器输出黑启动信号之后,电池模组可基于该黑启动信号产生输出电压,第一变换器可基于黑启动控制器输出的黑启动信号和电池模组产生的输出电压为系统控制器提供电压,以使系统控制器基于黑启动信号实现储能系统黑启动。如此,提高了系统控制器获取黑启动信号的效率,便于提高黑启动的成功率。
本申请对于系统控制器如何实现储能系统的黑启动方法不做限定,请参见图4,图4是本申请实施例提供的另一种黑启动方法,该方法应用于如图1的储能系统中,该方法包括但不限于如下步骤S401~S406,其中:
S401:黑启动控制器输出黑启动信号。
S402:电池模组基于黑启动信号产生输出电压。
S403:第一变换器基于黑启动信号和电池模组的输出电压给系统控制器供电。
S404:系统控制器向第二变换器和储能逆变器分别发送开机指令。
S405:第二变换器基于开机指令和电池模组的输出电压建立母线电压。
S406:储能逆变器基于开机指令和母线电压给负载供电。
在图4所描述的方法中,在第一变换器基于黑启动控制器输出的黑启动信号和电池模组产生的输出电压为系统控制器提供电压之后,系统控制器可向第二变换器和储能逆变器分别 发送开机指令,从而使得第二变换器基于开机指令和电池模组产生的输出电压建立用于系统供电的母线电压,再由储能逆变器基于开机指令和母线电压为负载供电,以实现储能系统黑启动。
本申请对于储能逆变器为负载供电的方法不做限定,请参见图5,图5是本申请实施例提供的另一种黑启动方法,该方法应用于如图2的储能系统中,该方法包括但不限于如下步骤S501~S507,其中:
S501:黑启动控制器输出黑启动信号。
S502:电池模组基于黑启动信号产生输出电压。
S503:第一变换器基于黑启动信号和电池模组的输出电压给系统控制器供电。
S504:系统控制器向第二变换器、主储能逆变器和从储能逆变器分别发送开机指令。
S505:第二变换器基于开机指令和电池模组的输出电压建立母线电压。
S506:响应于满足第一预设条件,主储能逆变器基于开机指令和母线电压给负载供电。
在一种可能的示例中,满足第一预设条件包括母线电压满足开机条件,以及储能系统处于离网模式,且负载没有输出电压。
可以理解,在母线电压满足开机条件时,可支持储能逆变器基于母线电压为负载供电。当储能系统处于离网模式,且负载没有输出电压时,表示负载需要进行供电。因此,在满足第一预设条件时,主储能逆变器可基于开机指令和母线电压给负载供电,提高了黑启动的准确率,便于提高黑启动的成功率。
在一种可能的示例中,储能系统还包括第一继电器,主储能逆变器基于开机指令和母线电压给负载供电,包括:主储能逆变器基于开机指令和母线电压产生输出电压;响应于主储能逆变器的输出电压达到目标值,主储能逆变器闭合第一继电器,以使为负载供电。
其中,目标值可以为预先设置的一个阈值,例如,220V等。目标值也可以为预先设置的一个范围,例如,220V±10%等。
可以理解,在主储能逆变器接收到开机指令之后,可基于母线电压产生输出电压,即将直流电压进行功率转换,得到负载所需的预设频率和幅值的交流电压。当交流电压的幅值达到目标值时,表示主储能逆变器产生满足预设要求的交流电压,从而闭合第一继电器,为负载供电,可提高负载运行的稳定性。
S507:响应于满足第二预设条件,从储能逆变器基于开机指令、母线电压和负载的输出电压给负载供电。
在一种可能的示例中,满足第二预设条件包括母线电压满足开机条件,以及储能系统处于离网模式,且负载的输出电压达到目标值。
其中,目标值可以为预先设置的一个阈值,例如,220V等。目标值也可以为预先设置的一个范围,例如,220V±10%等。
可以理解,在母线电压满足开机条件时,可支持储能逆变器基于母线电压为负载供电。而在储能系统处于离网模式,且负载的输出电压达到目标值时,表示负载的运行为稳定状态,可以接入从储能逆变器,以实现负载的供电。也就是说,在满足第二预设条件时,从储能逆变器可基于开机指令、母线电压以及负载的输出电压给负载供电,提高了黑启动的准确率,便于提高黑启动的成功率。
在一种可能的示例中,从储能逆变器基于开机指令、母线电压和负载的输出电压给负载供电,包括:从储能逆变器基于开机指令和母线电压产生输出电压;从储能逆变器对从储能 逆变器的输出电压和负载的输出电压进行锁相处理;响应于从储能逆变器的输出电压和负载的输出电压之间的差值小于预设阈值,从储能逆变器给负载供电。
其中,预设阈值不做限定,可以为10%,或者0.5等。
可以理解,在主储能逆变器先为负载供电之后,负载存在输出电压,再由从储能逆变器基于接收到的开机指令为负载供电,可避免所有的储能逆变器同时启动为负载供电,导致负载的电流过大,而负载供电失败的情况发生。且从储能逆变器具体基于母线电压产生输出电压,并对负载的输出电压进行锁相处理,从而可得到与负载的输出电压同相位的输出电压。当从储能逆变器的输出电压和负载的输出电压之间的差值小于预设阈值时,表示从储能逆变器可产生与负载的输出电压同步的交流电压,从而闭合第二继电器,为负载供电,可进一步提高负载运行的稳定性。
在图5所描述的方法中,在第一变换器基于黑启动控制器输出的黑启动信号和电池模组产生的输出电压为系统控制器提供电压之后,系统控制器可向第二变换器、主储能逆变器和从储能逆变器分别发送开机指令,从而使得第二变换器基于开机指令和电池模组产生的输出电压建立用于系统供电的母线电压。再在满足第一预设条件时,由主储能逆变器基于开机指令和母线电压为负载供电,然后在满足第二预设条件时,由从储能逆变器基于开机指令、母线电压和负载的输出电压给负载供电。如此,避免了储能系统中所有的储能逆变器同时启动为负载供电,导致负载的电流过大,而造成黑启动失败的事件发生,提高黑启动的成功率。
本发明实施例还提供一种芯片系统,所述芯片系统包括至少一个处理器,存储器和接口电路,所述存储器、所述收发器和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行时,图3~图5所示的方法流程得以实现。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在网络设备上运行时,图3~图5所示的方法流程得以实现。
本发明实施例还提供一种计算机程序产品,当所述计算机程序产品在终端上运行时,图3~图5所示的方法流程得以实现。
综上所述,通过实施本发明实施例,在黑启动控制器输出黑启动信号之后,电池模组可基于该黑启动信号产生输出电压,第一变换器可基于黑启动控制器输出的黑启动信号和电池模组产生的输出电压为系统控制器提供电压,以使系统控制器基于黑启动信号实现储能系统黑启动。如此,提高了系统控制器获取黑启动信号的效率,便于提高黑启动的成功率。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和各个单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法而言,由于其与实施例公开的装置相对应,所以描述的比较简单,相关之处参见装置部分说明即可。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某一些步骤可以采用其他顺序或者同时进行。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请的各实施方式可以任意进行组合,以实现不同的技术效果。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如,同轴电缆、光纤、数字用户线)或无线(例如,红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘Solid State Disk)等。
总之,以上所述仅为本发明技术方案的实施例而已,并非用于限定本发明的保护范围。凡根据本发明的揭露,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种储能系统,其特征在于,包括:
    黑启动控制器,用于输出黑启动信号;
    输入端与所述黑启动控制器的输出端连接的电池模组,用于基于所述黑启动信号产生输出电压;
    输入端与所述电池模组的输出端,以及与所述黑启动控制器的输出端连接的第一变换器,用于基于所述黑启动信号和所述电池模组的输出电压,给输入端与所述第一变换器的输出端连接的系统控制器供电,以使所述系统控制器基于所述黑启动信号实现所述储能系统黑启动。
  2. 根据权利要求1所述的储能系统,其特征在于,所述储能系统还包括至少两个储能逆变器和与所述至少两个储能逆变器并联连接的负载,以及输入端与所述电池模组的输出端连接,且输出端通过至少一条直流母线与所述储能逆变器的输入端连接的第二变换器,其中:
    所述系统控制器,用于向所述第二变换器和所述储能逆变器分别发送开机指令;
    所述第二变换器,用于基于所述开机指令和所述电池模组的输出电压建立母线电压;
    所述储能逆变器,用于基于所述开机指令和所述母线电压给所述负载供电。
  3. 根据权利要求2所述的储能系统,其特征在于,所述储能逆变器包括主储能逆变器和至少一个从储能逆变器,其中:
    所述主储能逆变器,用于响应于满足第一预设条件,基于所述开机指令和所述母线电压给所述负载供电;
    所述从储能逆变器,用于响应于满足第二预设条件,基于所述开机指令、所述母线电压和所述负载的输出电压给所述负载供电。
  4. 根据权利要求3所述的储能系统,其特征在于,所述满足第一预设条件包括所述母线电压满足开机条件,以及所述储能系统处于离网模式,且所述负载没有输出电压。
  5. 根据权利要求3所述的储能系统,其特征在于,所述满足第二预设条件包括所述母线电压满足开机条件,以及所述储能系统处于离网模式,且所述负载的输出电压达到目标值。
  6. 根据权利要求3所述的储能系统,其特征在于,所述储能系统还包括输入端与所述主储能逆变器的输出端和输出端与所述负载的输入端连接的第一继电器,所述主储能逆变器具体用于基于所述开机指令和所述母线电压产生输出电压;响应于所述主储能逆变器的输出电压达到目标值,闭合所述第一继电器,以使为所述负载供电。
  7. 根据权利要求3所述的储能系统,其特征在于,所述储能系统还包括输入端与所述从储能逆变器的输出端和输出端所述负载的输入端连接的第二继电器,所述从储能逆变器具体用于基于所述开机指令和所述母线电压产生输出电压;对所述从储能逆变器产生的输出电压和所述负载的输出电压进行锁相处理;响应于所述从储能逆变器的输出电压和所述负载的输出电压之间的差值小于预设阈值,闭合所述第二继电器,以使为所述负载供电。
  8. 一种黑启动方法,其特征在于,所述方法应用于储能系统中,所述储能系统包括黑启动控制器、电池模组、第一变换器和系统控制器,其中:
    所述黑启动控制器输出黑启动信号;
    所述电池模组基于所述黑启动信号产生输出电压;
    所述第一变换器基于所述黑启动信号和所述电池模组的输出电压给所述系统控制器供电,以使所述系统控制器基于所述黑启动信号实现所述储能系统黑启动。
  9. 根据权利要求8所述的方法,其特征在于,所述储能系统还包括至少两个储能逆变器、负载和第二变换器,所述黑启动方法还包括:
    所述系统控制器向所述第二变换器和所述储能逆变器分别发送开机指令;
    所述第二变换器基于所述开机指令和所述电池模组的输出电压建立母线电压;
    所述储能逆变器基于所述开机指令和所述母线电压给所述负载供电。
  10. 根据权利要求9所述的方法,其特征在于,所述储能逆变器包括主储能逆变器和至少一个从储能逆变器,所述储能逆变器基于所述开机指令和所述母线电压给所述负载供电,包括:
    响应于满足第一预设条件,所述主储能逆变器基于所述开机指令和所述母线电压给所述负载供电;
    响应于满足第二预设条件,所述从储能逆变器基于所述开机指令、所述母线电压和所述负载的输出电压给所述负载供电。
  11. 根据权利要求10所述的方法,其特征在于,所述满足第一预设条件包括所述母线电压满足开机条件,以及所述储能系统处于离网模式,且所述负载没有输出电压。
  12. 根据权利要求10所述的方法,其特征在于,所述满足第二预设条件包括所述母线电压满足开机条件,以及所述储能系统处于离网模式,且所述负载的输出电压达到目标值。
  13. 根据权利要求10所述的方法,其特征在于,所述储能系统还包括第一继电器,所述主储能逆变器基于所述开机指令和所述母线电压给所述负载供电,包括:
    所述主储能逆变器基于所述开机指令和所述母线电压产生输出电压;
    响应于所述主储能逆变器的输出电压达到目标值,所述主储能逆变器闭合所述第一继电器,以使为所述负载供电。
  14. 根据权利要求10所述的方法,其特征在于,所述从储能逆变器基于所述开机指令、所述母线电压和所述负载的输出电压给所述负载供电,包括:
    所述从储能逆变器基于所述开机指令和所述母线电压产生输出电压;
    所述从储能逆变器对所述从储能逆变器的输出电压和所述负载的输出电压进行锁相处理;
    响应于所述从储能逆变器的输出电压和所述负载的输出电压之间的差值小于预设阈值,所述从储能逆变器给所述负载供电。
PCT/CN2022/076013 2021-02-27 2022-02-11 储能系统和黑启动方法 WO2022179403A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2022225010A AU2022225010A1 (en) 2021-02-27 2022-02-11 Energy storage system and black start method
EP22758768.0A EP4290727A1 (en) 2021-02-27 2022-02-11 Energy storage system and black start method
US18/456,205 US20240006886A1 (en) 2021-02-27 2023-08-25 Energy storage system and black start method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110223426.3A CN114977351A (zh) 2021-02-27 2021-02-27 储能系统和黑启动方法
CN202110223426.3 2021-02-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/456,205 Continuation US20240006886A1 (en) 2021-02-27 2023-08-25 Energy storage system and black start method

Publications (1)

Publication Number Publication Date
WO2022179403A1 true WO2022179403A1 (zh) 2022-09-01

Family

ID=82972642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076013 WO2022179403A1 (zh) 2021-02-27 2022-02-11 储能系统和黑启动方法

Country Status (5)

Country Link
US (1) US20240006886A1 (zh)
EP (1) EP4290727A1 (zh)
CN (1) CN114977351A (zh)
AU (1) AU2022225010A1 (zh)
WO (1) WO2022179403A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115833251A (zh) * 2023-02-14 2023-03-21 深圳市德兰明海新能源股份有限公司 储能逆变器集中管理方法、装置及储能逆变系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105490392A (zh) * 2015-12-31 2016-04-13 深圳市科陆电子科技股份有限公司 一种储能系统的黑启动控制系统及方法
US20180248378A1 (en) * 2017-02-27 2018-08-30 General Electric Company Battery energy storage design with black starting capability
CN111130102A (zh) * 2020-01-06 2020-05-08 阳光电源股份有限公司 基于储能系统的电网黑启动方法及系统
CN211908651U (zh) * 2020-05-06 2020-11-10 深圳市格睿德电气有限公司 一种储能变流器的黑启动电路
CN112039100A (zh) * 2020-08-18 2020-12-04 量道(深圳)储能科技有限公司 具有黑启动功能的储能装置以及黑启动方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105490392A (zh) * 2015-12-31 2016-04-13 深圳市科陆电子科技股份有限公司 一种储能系统的黑启动控制系统及方法
US20180248378A1 (en) * 2017-02-27 2018-08-30 General Electric Company Battery energy storage design with black starting capability
CN111130102A (zh) * 2020-01-06 2020-05-08 阳光电源股份有限公司 基于储能系统的电网黑启动方法及系统
CN211908651U (zh) * 2020-05-06 2020-11-10 深圳市格睿德电气有限公司 一种储能变流器的黑启动电路
CN112039100A (zh) * 2020-08-18 2020-12-04 量道(深圳)储能科技有限公司 具有黑启动功能的储能装置以及黑启动方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115833251A (zh) * 2023-02-14 2023-03-21 深圳市德兰明海新能源股份有限公司 储能逆变器集中管理方法、装置及储能逆变系统
CN115833251B (zh) * 2023-02-14 2023-04-14 深圳市德兰明海新能源股份有限公司 储能逆变器集中管理方法、装置及储能逆变系统

Also Published As

Publication number Publication date
AU2022225010A1 (en) 2023-09-28
EP4290727A1 (en) 2023-12-13
US20240006886A1 (en) 2024-01-04
CN114977351A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
KR102213689B1 (ko) 충전 대기 설비 및 충전 방법
KR102121543B1 (ko) 균형 회로, 충전 대기 기기 및 충전 제어방법
US10516270B2 (en) Method and apparatus for coordination of generators in droop controlled microgrids using hysteresis
JP6029270B2 (ja) 高性能マイクログリッド
US20160134160A1 (en) Systems and methods for battery management
US9362750B2 (en) Energy storage system and method for controlling the same
WO2017163625A1 (ja) 発電システム、パワーコンディショナ、電力制御装置、電力制御方法及び電力制御プログラム
US20090256422A1 (en) Ac and dc uninterruptible online power supplies
WO2022166289A1 (zh) 一种新能源发电系统离网启动方法及系统
US10326270B2 (en) DC power transmission device, DC power reception device, and DC power transmission system
JP2015070746A (ja) 制御装置および蓄電システム
US20240006886A1 (en) Energy storage system and black start method
JP2017085867A (ja) エネルギー貯蔵システム
Ahmed et al. A novel hybrid AC/DC microgrid architecture with a central energy storage system
JP2023535099A (ja) 充放電装置、電池の充電及び放電方法、並びに充放電システム
KR20150013072A (ko) 배터리 히터 시스템 및 방법
KR20180099279A (ko) 에너지 저장 장치를 포함하는 에너지 저장 시스템
CN116846016A (zh) 过压保护方法、储能设备及电池包
EP4068550A1 (en) Power system and control method
JP2014140282A (ja) 蓄電システムおよびその制御方法
JP2012135207A (ja) 電力変換装置
CN108281983A (zh) 基于电源管理总线的光伏逆变器监控控制系统及方法
KR20180099277A (ko) 에너지 저장 장치를 포함하는 무정전 전원 공급 시스템
JP6799026B2 (ja) 複合型蓄電貯蔵システムおよび電力貯蔵方法
WO2021253257A1 (zh) 电力储能系统以及储能供电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22758768

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022225010

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022758768

Country of ref document: EP

Effective date: 20230905

ENP Entry into the national phase

Ref document number: 2022225010

Country of ref document: AU

Date of ref document: 20220211

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE