WO2021253257A1 - 电力储能系统以及储能供电系统 - Google Patents

电力储能系统以及储能供电系统 Download PDF

Info

Publication number
WO2021253257A1
WO2021253257A1 PCT/CN2020/096468 CN2020096468W WO2021253257A1 WO 2021253257 A1 WO2021253257 A1 WO 2021253257A1 CN 2020096468 W CN2020096468 W CN 2020096468W WO 2021253257 A1 WO2021253257 A1 WO 2021253257A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
vbus
power
power generation
energy storage
Prior art date
Application number
PCT/CN2020/096468
Other languages
English (en)
French (fr)
Inventor
周岿
陈富文
杨文科
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to PCT/CN2020/096468 priority Critical patent/WO2021253257A1/zh
Priority to CN202080012506.8A priority patent/CN113424388A/zh
Priority to AU2020454251A priority patent/AU2020454251A1/en
Priority to CN202311021305.6A priority patent/CN117200289A/zh
Priority to EP20940597.6A priority patent/EP4027476A4/en
Publication of WO2021253257A1 publication Critical patent/WO2021253257A1/zh
Priority to US17/870,790 priority patent/US11749995B2/en
Priority to US18/362,728 priority patent/US20230378757A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells

Definitions

  • This application relates to the field of power supply, in particular to electric energy storage systems and energy storage power supply systems.
  • the electric energy storage system can store the electric energy generated by the power generation system in the battery, and draw electricity from the battery when needed.
  • the power generation system may be a new energy power generation system, such as a wind power generation system or a photovoltaic power generation system.
  • the power generation system can output direct current or alternating current.
  • DC power can be provided to the power storage system for storage, and AC power can be provided to the AC grid or AC load.
  • the AC voltage output by the power generation system includes different voltage levels.
  • AC voltage levels can generally include single-phase 220Vac and three-phase 380Vac.
  • AC/DC alternating current to direct current
  • the magnitude of the DC voltage is also very different.
  • a single-phase 220Vac corresponds to a DC voltage of 311Vdc
  • a three-phase 380Vac corresponds to a DC voltage of 537Vdc.
  • Vac represents the maximum amplitude of the AC voltage
  • Vdc represents the magnitude of the DC voltage.
  • the direct current to direct current (DC/DC) converter in the power storage system is used to receive the direct current output by the power generation system, and after the direct current voltage is converted, the direct current is input into the battery pack for energy storage. Therefore, the DC/DC converter needs to be designed to adapt its input voltage range to the output voltage range of the power generation system.
  • the input voltage range of the DC/DC converter in the electric energy storage system is usually designed to match the voltage level of the alternating current of the power generation system.
  • the AC voltage level of the power generation system changes, for example, from single-phase 220Vac to three-phase 380Vac, since the DC/DC input voltage range is designed to support single-phase 220Vac, it cannot support three-phase 220Vac.
  • the input voltage range corresponding to the phase 380Vac causes the electric energy storage system to be incompatible with different voltage levels, which affects the application flexibility of the electric energy storage system.
  • This application provides an electric energy storage system and an energy storage power supply system, which can improve the application flexibility of the electric energy storage system.
  • a power storage system including: M battery packs; M first DC-to-DC DC/DC converters, the first terminals of the M first DC/DC converters are connected to The M battery packs are connected, the M first DC/DC converters are divided into N first DC/DC converter sets, M is an integer greater than 1, N is an integer greater than 0; Two DC/DC converters, corresponding to the N first DC/DC converter sets one-to-one, and the first end of each second DC/DC converter corresponds to one of the first DC/DC converter sets The second end of the first DC/DC converter is connected, and the second end of each second DC/DC converter is connected to the first interface of the power storage system, and the first interface is used to receive from the power generation system Direct current or direct current output to the power generation system, N is an integer greater than 1.
  • the power storage system includes two types of DC/DC converters, where N second DC/DC converters are arranged between the power generation system and the first DC/DC.
  • N second DC/DC converters are arranged between the power generation system and the first DC/DC.
  • the second DC/DC converter can be used for voltage conversion of the input voltage of the power generation system.
  • the output voltage is adapted to the input range of the first DC/DC converter.
  • the second DC/DC converter may perform voltage conversion on the voltage input by the first DC/DC, so that the voltage range output to the power generation system is adapted to the voltage level of the power generation system. Therefore, the electric energy storage system can be compatible with different voltage levels of the power generation system, and the application flexibility of the electric energy storage system is improved.
  • the electric energy storage system can be compatible with different voltage levels of the power generation system, the electric energy storage system can be adapted to inverters of different voltage levels in the power generation system.
  • a unified standard can be used to produce power energy storage systems corresponding to power generation systems of different voltage levels. Increase productivity.
  • the second DC/DC converter when Vinv-Vbus>Vth and the battery pack is discharged, the second DC/DC converter is used to boost Vbus to Output Vinv; in the case of Vinv-Vbus>Vth and the battery pack is charged, the second DC/DC converter is used to step down Vinv to output Vbus; where Vinv represents the second DC/DC conversion
  • Vbus represents the rated voltage of the first terminal of the second DC/DC converter
  • Vth represents the preset threshold voltage.
  • the second DC/DC converter works in a through mode; where Vinv represents all For the rated voltage of the second terminal of the second DC/DC converter, Vbus represents the rated voltage of the first terminal of the second DC/DC converter, and Vth represents a preset threshold voltage.
  • the second DC/DC converter when Vinv-Vbus ⁇ -Vth and the battery pack is discharged, the second DC/DC converter is used to perform step-down processing on Vbus, To output Vinv; in the case of Vinv-Vbus>Vth and the battery pack is charged, the second DC/DC converter is used to boost Vinv to output Vbus; where Vinv represents the second DC/DC The rated voltage of the second terminal of the converter, Vbus represents the rated voltage of the first terminal of the second DC/DC converter, and Vth represents a preset threshold voltage.
  • the first DC/DC converter when Vbus>Vbat and the battery pack is discharged, the first DC/DC converter is used to boost Vbat to output Vbus ; In the case of Vbus>Vbat and the battery pack is charged, the first DC/DC converter is used to step down Vbus to output Vbat; where Vbus represents the first of the second DC/DC converter The rated voltage of the terminal, Vbat represents the rated voltage of the anode of the battery pack.
  • the first DC/DC converter works in a through mode; where Vbus represents the second DC/ The voltage at the first terminal of the DC converter, Vbat represents the rated voltage of the anode of the battery pack.
  • the first DC/DC converter when Vbus ⁇ Vbat and the battery pack is discharged, the first DC/DC converter is used to step down Vbat to output Vbus ; In the case of Vbus ⁇ Vbat and the battery pack is charged, the first DC/DC converter is used to boost Vbus to output Vbat; where Vbus represents the first of the second DC/DC converter The terminal voltage, Vbat represents the rated voltage of the anode of the battery pack.
  • the power generation system includes an inverter, and the first end of the inverter is connected to the first interface of the power storage system, so The second end of the inverter is used to connect to an AC load or an AC power grid.
  • the power generation system is a photovoltaic power generation system
  • the power generation system includes a photovoltaic inverter
  • the photovoltaic inverter includes a maximum power point tracking MPPT module
  • a DC/AC converter the inverter is the DC/AC converter; the first end of the DC/AC converter is used to connect to the first interface of the power storage system, and the DC The first end of the /AC converter is also used to connect to the MPPT module, and the second end of the DC/AC converter is used to connect to an AC load or an AC power grid.
  • an energy storage power supply system in a second aspect, includes the electric energy storage system and the power generation system as described in the first aspect.
  • Fig. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • Fig. 2 is a schematic diagram of an application scenario of an embodiment of the present application.
  • Fig. 3 is a schematic diagram of an application scenario of an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of an energy storage power supply system according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the control logic of the power storage system 100 according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the control logic of the power energy storage system 100 according to an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of an energy storage power supply system according to an embodiment of the present application.
  • Fig. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the power generation system 200 can generate alternating current or direct current, and provide the alternating current to an alternating current grid or an alternating current load.
  • the power generation system 200 may also provide the generated direct current power to the power storage system 100, and the power storage system 100 stores electrical energy.
  • the power storage system 100 can output DC power to the power generation system 200, and the DC power is processed by the (direct current to alternating current, DC/AC) converter in the power generation system 200 to obtain AC power , And provide to AC load or AC grid.
  • DC/AC direct current to alternating current
  • the power generation system 200 may be a new energy power generation system, such as a wind power generation system or a photovoltaic power generation system.
  • the power generation system 200 includes a power generation module, and the power generation module can generate direct current or alternating current.
  • the power generation module in the wind power generation system usually generates AC power
  • the power generation module in the photovoltaic power generation system usually generates DC power.
  • the power generation system 200 further includes a voltage stabilization module, which can realize the function of stabilizing the voltage output by the power generation module. If the current output by the power generation module is alternating current, the voltage stabilizing module is also used to convert the alternating current to direct current.
  • the voltage stabilization module in a wind power generation system is usually an AC/DC converter
  • the voltage stabilization module in a photovoltaic power generation system is usually a DC/DC converter.
  • the DC/DC converter can be set in the maximum power point tracking (MPPT) module of the photovoltaic inverter (see Figure 2).
  • MPPT maximum power point tracking
  • the power generation system 200 further includes an inverter.
  • the inverter is usually arranged between the voltage stabilizing module and the AC load (or the AC power grid), and it can realize the conversion from DC to AC.
  • the inverter can also be called a DC/AC converter.
  • the inverter includes a first terminal A1 and a second terminal A2.
  • the first terminal A1 is used to receive DC power
  • the second terminal A2 is used to connect to an AC load or an AC power grid.
  • the inverter can realize DC/AC conversion from the first end A1 to the second end A2, and provide the obtained AC power to the AC load or AC power grid.
  • the first terminal A1 of the inverter is also used to connect to the first interface F of the electric energy storage system 100 to output direct current to the electric energy storage system 100.
  • the inverter can also implement AC/DC conversion from the second end A2 to the first end A1.
  • the AC power input from the AC power grid may be converted into DC power and provided to the power storage system 100.
  • the inverter may be a DC/AC converter in a photovoltaic inverter (see FIG. 2).
  • Fig. 2 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the scenario in Figure 2 can be applied to the scenario of photovoltaic power generation.
  • the application scenario includes a power generation system 200 and a power storage system 100.
  • the power generation system 200 includes a photovoltaic (PV) module and a photovoltaic inverter.
  • PV photovoltaic
  • the photovoltaic inverter is a special inverter designed for photovoltaic power generation systems.
  • the core of photovoltaic power generation is to use photovoltaic modules (ie, solar panels) to convert solar energy into electrical energy.
  • photovoltaic modules ie, solar panels
  • photovoltaic modules can only generate direct current, it is necessary to convert direct current to alternating current through a photovoltaic inverter to facilitate the transmission and utilization of electricity.
  • photovoltaic inverters Compared with ordinary inverters, in addition to DC/AC converters, photovoltaic inverters also include MPPT modules.
  • the MPPT module includes a DC/DC converter.
  • the MPPT module can be used to track the highest voltage and current value, so that the power generation system 200 can output current at the maximum power.
  • the MPPT module and the DC/DC module in the photovoltaic inverter can be installed in the same packaged device or in different packaged devices.
  • the MPPT can perform voltage conversion on the direct current generated by the PV module and then output it to the power energy storage system 100.
  • the first end A1 of the DC/AC converter can be used to connect the MPPT module and the power storage system 100, and the second end A2 is used to connect to the AC grid or AC load to convert the DC power output by the MPPT module or the power storage system 100 It is AC power and is supplied to AC load or AC grid.
  • the power energy storage system 100 generally includes one or more DC/DCs, one or more battery packs, and one or more battery management systems (BMS). Each battery pack corresponds to a BMS. BMS is usually used to implement functions such as dynamic monitoring of battery charging and discharging, battery balancing, and evaluation of battery state of charge.
  • BMS battery management systems
  • Fig. 3 is a schematic diagram of an application scenario of another embodiment of the present application.
  • the scenario in Figure 3 can be applied to the scenario of wind power generation.
  • the application scenario includes a power generation system 200 and an electric energy storage system 100.
  • the power generation system 200 includes a wind turbine system, an AC/DC converter, and a DC/AC converter (ie, an inverter).
  • the fan system is used to generate alternating current.
  • the AC/DC converter can be used to convert the alternating current generated by the fan system into direct current and realize the function of voltage stabilization.
  • the AC/DC converter can also output direct current to the electric energy storage system 100, so that the electric energy storage system 100 can store electric energy.
  • the DC/AC converter can be used to receive the direct current output by the AC/DC converter and convert it to alternating current to provide it to an alternating current load or an alternating current grid.
  • the DC/AC converter can also be used to receive the direct current output from the power storage system 100 and convert it to alternating current to provide it to an alternating current load or an alternating current grid.
  • FIGS. 1 to 3 are merely examples, and not limitation, and the electric energy storage system and energy storage power supply system of the embodiments of the present application may also be applied to other power generation types of application scenarios.
  • Fig. 4 is a schematic structural diagram of an energy storage power supply system according to an embodiment of the present application.
  • the energy storage power supply system includes a power generation system 200 and an electric energy storage system 100.
  • the power storage system 100 includes: M battery packs, M first DC/DC converters (indicated as DC/DC_1 in the figure), and N second DC/DC converters (in the figure Denoted as DC/DC_2) and M BMS.
  • M is an integer greater than 1
  • N is an integer greater than zero.
  • the M battery packs have a one-to-one correspondence with M BMSs, and each BMS is used to manage a corresponding battery pack. For example, perform functions such as dynamic monitoring of battery charging and discharging of the battery pack, battery balancing, and evaluation of battery state of charge.
  • each battery pack corresponds to the M first DC/DC converters in a one-to-one correspondence.
  • each battery pack is connected to the first end of the corresponding first DC/DC converter.
  • the foregoing M first DC/DC converters may be divided into N first DC/DC converter sets.
  • the N first DC/DC converter sets are in one-to-one correspondence with the N second DC/DC converters.
  • Each first DC/DC converter set includes one or more first DC/DC converters.
  • the number of first DC/DC converters included in different first DC/DC converter sets may be the same or different.
  • the foregoing M battery packs are also divided into N battery pack sets.
  • the N battery pack sets, the N first DC/DC converter sets, and the N second DC/DC converters have a one-to-one correspondence with each other.
  • each second DC/DC converter is connected to the first interface F of the power storage system 100, and the first interface F is used to receive direct current from the power generation system 200 or output direct current to the power generation system 200, N is an integer greater than 1.
  • both the first terminal and the second terminal of the above-mentioned first DC/DC converter include positive and negative terminals.
  • the positive and negative terminals of the first end of the first DC/DC converter are respectively connected to the anode and the cathode of the battery pack.
  • both the first terminal and the second terminal of the second DC/DC converter include positive and negative terminals.
  • the first interface F is used to connect the first terminal A1 of the inverter in the power generation system 200.
  • Both the first DC/DC converter and the second DC/DC converter can implement bidirectional boost or step-down functions.
  • the first DC/DC converter and the second DC/DC converter can also work in a through mode. In the through mode, the first DC/DC converter and the second DC/DC converter do not perform the step-up/step-down function, which is equivalent to a power switch.
  • the N second DC/DCs are in a parallel relationship.
  • a certain set of the N first DC/DC converter sets includes a plurality of first DC/DC converters
  • the plurality of first DC/DC converters in the set are in a parallel relationship.
  • the first DC/DC converter may adopt an isolated power conversion mode or a non-isolated power conversion mode.
  • the second DC/DC converter may adopt an isolated power conversion mode or a non-isolated power conversion mode.
  • isolated power conversion means that a transformer is provided in the DC/DC converter
  • non-isolated power conversion means that a transformer is not provided in the DC/DC converter
  • battery packs in different battery pack sets may belong to the same model. Or, they can belong to different manufacturers or different models. In other words, the power storage system of the embodiment of the present application can be compatible with different types of battery packs.
  • the power generation system 200 includes an inverter (or a DC/AC converter), and the first end A1 of the inverter is connected to the first interface F of the electric energy storage system 100, The second end A2 of the inverter is used to connect to an AC load or an AC power grid.
  • the inverter can output DC power to the power energy storage system 100 through the first interface F of the power energy storage system 100.
  • the power generation system 200 may be a new energy power generation system, such as a wind power generation system or a photovoltaic power generation system.
  • the power generation system 200 may also be connected to an AC power grid. Wherein, the AC power provided by the AC power grid can be rectified by the inverter in the power generation system 200 to obtain DC power, and the DC power is provided to the power storage system 100.
  • the power generation system 200 further includes a power generation module and a voltage stabilization module.
  • the power generation module is used to generate direct current or alternating current.
  • the above-mentioned direct current or alternating current is direct current after passing through the voltage stabilizing module.
  • the first terminal A1 of the inverter is used to receive the DC power output by the voltage stabilizing module.
  • the inverter can implement DC/AC conversion from the first terminal A1 to the second terminal A2, and provide the obtained AC power to the AC load.
  • the inverter can also implement AC/DC conversion from the second end A2 to the first end A1.
  • the AC power input from the AC power grid may be converted into DC power and provided to the power storage system 100.
  • the inverter may be a DC/AC converter in the photovoltaic inverter.
  • the voltage stabilizing module is an MPPT module in a photovoltaic inverter.
  • the power storage system includes two types of DC/DC converters, and N second DC/DC converters are arranged between the power generation system 200 and the first DC/DC.
  • the second DC/DC converter can be used for voltage conversion of the input voltage of the power generation system , To adapt the output voltage to the input range of the first DC/DC converter.
  • the second DC/DC converter may perform voltage conversion on the voltage input by the first DC/DC, so that the voltage range output to the power generation system is adapted to the voltage level of the power generation system. Therefore, the electric energy storage system can be compatible with different voltage levels of the power generation system, and the application flexibility of the electric energy storage system is improved.
  • the electric energy storage system can be compatible with different voltage levels of the power generation system, the electric energy storage system can be adapted to inverters of different voltage levels in the power generation system.
  • a unified standard can be used to produce power energy storage systems corresponding to power generation systems of different voltage levels. Increase productivity.
  • the electric energy storage system adopts a parallel connection of multiple battery packs. Therefore, if a certain battery pack fails, the normal operation of other battery packs will not be affected, and the reliability of the circuit energy storage system can be improved. sex.
  • FIG. 5 is a schematic diagram of the control logic of the power storage system 100 according to an embodiment of the present application.
  • Vbus represents the rated voltage of the first terminal of any second DC/DC converter (or the rated voltage of the second terminal of the first DC/DC converter), and Vbat represents the rated voltage of the battery pack.
  • Voltage or the rated voltage of the first terminal of the first DC/DC converter.
  • the rated voltage can refer to the best voltage when the electrical equipment works normally for a long time.
  • the control logic of the first DC/DC is as follows.
  • Vbus Vbat
  • the first DC/DC converter is used to boost Vbat to output Vbus. If the battery pack is charged, the first DC/DC converter is used to step down Vbus to output Vbat.
  • the first DC/DC converter works in the through mode.
  • Vbus Vbat
  • the first DC/DC converter is used to step down Vbat to output Vbus. If the battery pack is charged, the first DC/DC converter is used to boost Vbus to output Vbat.
  • FIG. 6 is a schematic diagram of the control logic of the power energy storage system 100 according to an embodiment of the present application.
  • Vinv represents the rated voltage of the second terminal of any second DC/DC converter (or the rated voltage at the first interface F)
  • Vbus represents any second DC/DC converter
  • Vth represents the preset threshold voltage.
  • the control logic of the second DC/DC is as follows.
  • Vinv-Vbus>Vth if the battery pack is discharged, the second DC/DC converter is used to boost Vbus to output Vinv. If the battery pack is charged, the second DC/DC converter is used to step down Vinv to output Vbus.
  • the second DC/DC converter works in the through mode.
  • the second DC/DC converter In the case of Vinv-Vbus ⁇ -Vth, if the battery pack is discharged, the second DC/DC converter is used to step down Vbus to output Vinv. If the battery pack is charged, the second DC/DC converter is used to boost Vinv to output Vbus.
  • the specific value of Vth can be determined according to practice.
  • the specific value of Vth may be related to the input voltage range of the first DC/DC converter.
  • Vinv When Vinv ⁇ [Vbus-Vth, Vbus+Vth], it falls into the input voltage range of the first DC/DC converter. Therefore, the second DC/DC converter works in the through mode, and Vinv can be directly used as the input voltage of the second DC/DC converter.
  • Vth is 5V or 10V.
  • Vinv 1000V
  • Vbus 350V
  • Vth 10V. That is, Vinv-Vbus>Vth.
  • the second DC/DC converter is used to boost Vbus to output Vinv.
  • the second DC/DC converter is used to step-down Vinv to output Vbus.
  • Fig. 7 is a schematic structural diagram of an energy storage power supply system according to an embodiment of the present application.
  • the energy storage power supply system includes: a schematic structural diagram of an electric energy storage system 100 and a power generation system 200.
  • the power generation system 200 in FIG. 7 is a photovoltaic power generation system.
  • the power generation system 200 includes a photovoltaic inverter, which includes an MPPT module and a DC/AC converter.
  • the inverter in Fig. 4 may be the DC/AC converter, and the voltage stabilizing module may be an MPPT module.
  • the first terminal A1 of the DC/AC converter is used to connect to the first interface F of the power storage system 100, and the first terminal A1 of the DC/AC converter is also used to connect to the MPPT module to receive the photovoltaic ( PV) The direct current of the module.
  • the second end A2 of the DC/AC converter is used to connect to an AC load or an AC power grid.
  • the DC/AC converter can receive the DC power output by the MPPT module, realize the DC/AC conversion in the direction from the first end A1 to the second end A2, and provide the obtained AC power to the AC load.
  • the first terminal A1 of the DC/AC converter is also used to output direct current to the power energy storage system 100 through the first interface F.
  • the DC/AC converter can also implement AC/DC conversion in the direction from the second end A2 to the first end A1.
  • the AC power input from the AC power grid may be converted into DC power and provided to the power storage system 100.
  • the function of the power storage system 100 is similar to that in FIG.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

一种电力储能系统(100)以及储能供电系统,能够提高电力储能系统的应用灵活度。该电力储能系统(100)包括:M个电池包;M个第一DC/DC变换器(DC/DC_1),M个第一DC/DC变换器(DC/DC_1)的第一端分别与M个电池包相连,M个第一DC/DC变换器(DC/DC_1)被划分为N个第一DC/DC变换器集合,M为大于1的整数,N为大于0的整数;N个第二DC/DC变换器(DC/DC_2),与N个第一DC/DC变换器集合一一对应,每个第二DC/DC变换器(DC/DC_2)的第一端与其对应的第一DC/DC变换器集合中的第一DC/DC变换器(DC/DC_1)的第二端相连,每个第二DC/DC变换器(DC/DC_2)的第二端与电力储能系统(100)的第一接口(F)相连,第一接口(F)用于从发电系统(200)接收直流电或向发电系统(200)输出直流电,N为大于1的整数。

Description

电力储能系统以及储能供电系统 技术领域
本申请涉及供电领域,尤其涉及电力储能系统以及储能供电系统。
背景技术
电力储能系统可以将发电系统产生的电能储存于电池之中,并在需要使用时从电池中取电。其中,发电系统可以是新能源发电系统,例如风力发电系统或者光伏发电系统。
发电系统可以输出直流电或交流电。直流电可以提供给电力储能系统进行存储,交流电用于提供给交流电网或交流负载。发电系统输出的交流电压包括不同的电压等级。例如,交流电压等级通常可包括单相220Vac和三相380Vac。不同等级的交流电压在经过交流转直流(alternating current to direct current,AC/DC)转换为直流电压之后,直流电压的大小也存在很大不同。例如,单相220Vac对应的直流电压311Vdc,三相380Vac对应的直流电压为537Vdc。其中,Vac表示交流电压的最大幅值,Vdc表示直流电压的大小。
电力储能系统中的直流转直流(direct current to direct current,DC/DC)变换器用于接收发电系统输出的直流电,并在进行直流电压转换后,将直流电输入电池包中进行储能。因此,需要对DC/DC变换器进行设计以使其输入电压范围与发电系统的输出电压范围相适应。
在现有技术中,电力储能系统中的DC/DC变换器的输入电压范围通常被设计为与发电系统的交流电的电压等级相匹配。但是,在一些场景下,若发电系统的交流电压等级发生变化,例如,由单相220Vac变为三相380Vac,则由于DC/DC的输入电压范围被设计为支持单相220Vac,因此不能支持三相380Vac对应的输入电压范围,从而导致电力储能系统不能兼容不同的电压等级,影响了电力储能系统的应用灵活性。
发明内容
本申请提供了一种电力储能系统以及储能供电系统,能够提高电力储能系统的应用灵活性。
第一方面,提供了一种电力储能系统,包括:M个电池包;M个第一直流转直流DC/DC变换器,所述M个第一DC/DC变换器的第一端分别与所述M个电池包相连,所述M个第一DC/DC变换器被划分为N个第一DC/DC变换器集合,M为大于1的整数,N为大于0的整数;N个第二DC/DC变换器,与所述N个第一DC/DC变换器集合一一对应,每个第二DC/DC变换器的第一端与其对应的第一DC/DC变换器集合中的第一DC/DC变换器的第二端相连,每个第二DC/DC变换器的第二端与所述电力储能系统的第一接口相连,所述第一接口用于从发电系统接收直流电或向所述发电系统输出直流电,N为大于1的整数。
在本申请实施例中,电力储能系统中包括两类DC/DC变换器,其中N个第二DC/DC 变换器设置于发电系统和第一DC/DC之间。当发电系统输出的电压范围与第一DC/DC变换器的输入电压范围不匹配时,在电池充电的情况下,第二DC/DC变换器可以用于对发电系统输入的电压进行电压变换,使输出的电压适应第一DC/DC变换器的输入范围。在电池放电的情况下,第二DC/DC变换器可以对第一DC/DC输入的电压进行电压变换,使得向发电系统输出的电压范围适应于发电系统的电压等级。从而电力储能系统可以兼容发电系统的不同的电压等级,提高了电力储能系统的应用灵活性。
在本申请实施例中,由于电力储能系统可以兼容发电系统的不同电压等级,因此该电力储能系统可以适配发电系统中的不同电压等级的逆变器。或者说,在电力储能系统和发电系统的生产过程中,由于其可以适配不同电压等级的发电系统,因此可以采用统一的标准生产对应于不同电压等级的发电系统的电力储能系统,从而提高生产效率。
结合第一方面,在第一方面的一种可能的实现方式中,在Vinv-Vbus>Vth且电池包放电的情况下,所述第二DC/DC变换器用于对Vbus进行升压处理,以输出Vinv;在Vinv-Vbus>Vth且电池包充电的情况下,所述第二DC/DC变换器用于对Vinv进行降压处理,以输出Vbus;其中,Vinv表示所述第二DC/DC变换器的第二端的额定电压,Vbus表示所述第二DC/DC变换器的第一端的额定电压,Vth表示预设的阈值电压。
结合第一方面,在第一方面的一种可能的实现方式中,在-Vth≤Vinv-Vbus<Vth的情况下,所述第二DC/DC变换器工作在直通模式;其中,Vinv表示所述第二DC/DC变换器的第二端的额定电压,Vbus表示所述第二DC/DC变换器的第一端的额定电压,Vth表示预设的阈值电压。
结合第一方面,在第一方面的一种可能的实现方式中,在Vinv-Vbus<-Vth且电池包放电的情况下,所述第二DC/DC变换器用于对Vbus进行降压处理,以输出Vinv;在Vinv-Vbus>Vth且电池包充电的情况下,所述第二DC/DC变换器用于对Vinv进行升压处理,以输出Vbus;其中,Vinv表示所述第二DC/DC变换器的第二端的额定电压,Vbus表示所述第二DC/DC变换器的第一端的额定电压,Vth表示预设的阈值电压。
结合第一方面,在第一方面的一种可能的实现方式中,在Vbus>Vbat且电池包放电的情况下,所述第一DC/DC变换器用于对Vbat进行升压处理,以输出Vbus;在Vbus>Vbat且电池包充电的情况下,所述第一DC/DC变换器用于对Vbus进行降压处理,以输出Vbat;其中,Vbus表示所述第二DC/DC变换器的第一端的额定电压,Vbat表示电池包阳极的额定电压。
结合第一方面,在第一方面的一种可能的实现方式中,在Vbus=Vbat的情况下,所述第一DC/DC变换器工作在直通模式;其中,Vbus表示所述第二DC/DC变换器的第一端的电压,Vbat表示电池包阳极的额定电压。
结合第一方面,在第一方面的一种可能的实现方式中,在Vbus<Vbat且电池包放电的情况下,所述第一DC/DC变换器用于对Vbat进行降压处理,以输出Vbus;在Vbus<Vbat且电池包充电的情况下,所述第一DC/DC变换器用于对Vbus进行升压处理,以输出Vbat;其中,Vbus表示所述第二DC/DC变换器的第一端的电压,Vbat表示电池包阳极的额定电压。
结合第一方面,在第一方面的一种可能的实现方式中,所述发电系统包括逆变器,所述逆变器的第一端与所述电力储能系统的第一接口相连,所述逆变器的第二端用于与交流 负载或交流电网相连。
结合第一方面,在第一方面的一种可能的实现方式中,所述发电系统为光伏发电系统,所述发电系统包括光伏逆变器,所述光伏逆变器包括最大功率点追踪MPPT模块和DC/AC变换器,所述逆变器为所述DC/AC变换器;所述DC/AC变换器的第一端用于与所述电力储能系统的第一接口相连,所述DC/AC变换器的第一端还用于与所述MPPT模块相连,所述DC/AC变换器的第二端用于与交流负载或交流电网相连。
第二方面,提供了一种储能供电系统,所述系统包括如第一方面所述的电力储能系统以及发电系统。
附图说明
图1是本申请一实施例的应用场景的示意图。
图2是本申请一实施例的应用场景的示意图。
图3是本申请一实施例的应用场景的示意图。
图4是本申请一实施例的储能供电系统的结构示意图。
图5是本申请一实施例的电力储能系统100的控制逻辑示意图。
图6是本申请一实施例的电力储能系统100的控制逻辑示意图。
图7是本申请一实施例的储能供电系统的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为了便于理解本申请实施例的方案,首先介绍本申请实施例涉及的若干术语。
图1是本申请一实施例的应用场景的示意图。如图1所示,发电系统200可以生成交流电或者直流电,并且将交流电提供给交流电网或者交流负载。发电系统200还可以将产生的直流电提供给电力储能系统100,由电力储能系统100储存电能。在交流负载需要供电时,电力储能系统100可以向发电系统200输出直流电,该直流电经过发电系统200中的直流转交流((direct current to alternating current,DC/AC)变换器处理之后,得到交流电,并提供给交流负载或交流电网。
可选地,发电系统200可以是新能源发电系统,例如风力发电系统或者光伏发电系统。
可选地,发电系统200中包括发电模块,发电模块可以产生直流电或者交流电。例如,风力发电系统中的发电模块通常产生交流电,光伏发电系统中的发电模块通常产生直流电。
可选地,发电系统200中还包括稳压模块,稳压模块可以实现对发电模块输出的电压的稳压功能。若发电模块输出的电流为交流电,稳压模块还用于将交流电转为直流电。作为示例,风力发电系统中的稳压模块通常为AC/DC变换器,光伏发电系统中的稳压模块通常为DC/DC变换器。作为示例,DC/DC变换器可设置于光伏逆变器中的最大功率点跟踪(maximum power point tracking,MPPT)模块中(参见图2)。
可选地,发电系统200中还包括逆变器。逆变器通常设置于稳压模块与交流负载(或者交流电网)之间,其可以实现直流转交流的变换。逆变器也可以称为DC/AC变换器。
逆变器包括第一端A1和第二端A2,第一端A1用于接收直流电,其第二端A2用于 与交流负载或者交流电网相连。逆变器可以在第一端A1到第二端A2的方向实现DC/AC转换,并将得到的交流电提供给交流负载或交流电网。
可选地,逆变器的第一端A1还用于与电力储能系统100的第一接口F相连,以向电力储能系统100输出直流电。
可选地,逆变器也可以在第二端A2到第一端A1的方向实现AC/DC转换。例如,在发电系统200与交流电网相连的情况下,可以将交流电网输入的交流电转换为直流电,并提供给电力储能系统100。
作为示例,在光伏发电系统中,该逆变器可以是光伏逆变器中的DC/AC变换器(参见图2)。
图2是本申请一实施例的应用场景的示意图。图2的场景可应用于光伏发电的场景。
如图2所示,该应用场景包括发电系统200和电力储能系统100。发电系统200包括光伏(photovoltaic,PV)组件和光伏逆变器。
其中,光伏逆变器是针对光伏发电系统设计的一种特殊逆变器。光伏发电的核心是利用光伏组件(即太阳能电池板)将太阳能转化为电能。但由于光伏组件只能生成直流电,因此需要通过光伏逆变器将直流电转换为交流电,方便电力的传输与利用。
与普通逆变器相比,除了DC/AC变换器之外,光伏逆变器还包括MPPT模块。MPPT模块中包括DC/DC变换器。MPPT模块可以用于追踪最高电压电流值,以使得发电系统200以最大功率输出电流。
可选地,光伏逆变器中的MPPT模块和DC/DC模块可以设置于同一封装器件中,也可以设置于不同的封装器件中。
MPPT可以对PV组件生成的直流电进行电压变换之后输出至电力储能系统100中。DC/AC变换器的第一端A1可用于连接MPPT模块以及电力储能系统100,第二端A2用于与交流电网或交流负载相连,以将MPPT模块或者电力储能系统100输出的直流电转换为交流电,并提供给交流负载或交流电网。
电力储能系统100通常包括一个或多个DC/DC、一个或多个电池包以及一个或多个电池管理系统(battery management system,BMS)。每个电池包对应一个BMS。BMS通常用于实现电池充放电的动态监测、电池均衡以及评估电池荷电状态等功能。下文中将结合附图,继续介绍电力储能系统100的具体结构。
图3是本申请另一实施例的应用场景的示意图。图3的场景可应用于风力发电的场景。
如图3所示,该应用场景包括发电系统200和电力储能系统100。发电系统200包括风机系统、AC/DC变换器和DC/AC变换器(即逆变器)。
其中,风机系统用于产生交流电。AC/DC变换器可用于将风机系统产生的交流电转换为直流电,并实现稳压功能。AC/DC变换器还可以向电力储能系统100输出直流电,以便于电力储能系统100储存电能。DC/AC变换器可用于接收AC/DC变换器输出的直流电,并转换为交流电,以提供给交流负载或交流电网。DC/AC变换器还可以用于接收电力储能系统100输出的直流电,并转换为交流电,以提供给交流负载或交流电网。
应理解,图1至图3所示的场景仅仅作为示例,而非限定,本申请实施例的电力储能系统和储能供电系统还可以应用于其它发电类型的应用场景中。
图4是本申请一实施例的储能供电系统的结构示意图。该储能供电系统包括发电系统 200和电力储能系统100。
如图4所示,该电力储能系统100包括:M个电池包、M个第一DC/DC变换器(图中表示为DC/DC_1)、N个第二DC/DC变换器(图中表示为DC/DC_2)以及M个BMS。其中M为大于1的整数,N为大于0的整数。
其中,所述M个电池包与M个BMS一一对应,每个BMS用于管理对应的电池包。例如,执行该电池包的电池充放电的动态监测、电池均衡以及评估电池荷电状态等功能。
上述M个电池包与M个第一DC/DC变换器一一对应。其中,每个电池包与对应的第一DC/DC变换器的第一端相连。
上述M个第一DC/DC变换器可以被划分为N个第一DC/DC变换器集合。N个第一DC/DC变换器集合与N个第二DC/DC变换器一一对应。每个第一DC/DC变换器集合包括一个或多个第一DC/DC变换器。不同第一DC/DC变换器集合中包括的第一DC/DC变换器的数量可以相同,也可以不同。
对应的,上述M个电池包也被划分为N个电池包集合。N个电池包集合、N个第一DC/DC变换器集合以及N个第二DC/DC变换器互为一一对应的关系。
可选地,上述N个第二DC/DC变换器中的每个第二DC/DC变换器的第一端与其对应的第一DC/DC变换器集合中的所有第一DC/DC变换器的第二端相连。
每个第二DC/DC变换器的第二端与电力储能系统100的第一接口F相连,所述第一接口F用于从发电系统200接收直流电或向所述发电系统200输出直流电,N为大于1的整数。
可选地,上述第一DC/DC变换器的第一端和第二端均包括正负两个端子。例如,第一DC/DC变换器的第一端的正负两个端子分别与电池包的阳极和阴极相连。
可选地,上述第二DC/DC变换器的第一端和第二端均包括正负两个端子。
在一些示例中,所述第一接口F用于连接发电系统200中的逆变器的第一端A1。
第一DC/DC变换器和第二DC/DC变换器均可以实现双向的升压或降压功能。第一DC/DC变换器和第二DC/DC变换器还可以工作在直通模式。在直通模式下,第一DC/DC变换器和第二DC/DC变换器不执行升压/降压功能,相当于一个功率开关。
可选地,可以理解为N个第二DC/DC为并联关系。N个第一DC/DC变换器集合中的某一集合中包括多个第一DC/DC变换器的情况下,该集合中的多个第一DC/DC为并联关系。
可选地,第一DC/DC变换器可以采用隔离功率变换方式,也可以采用非隔离功率变换方式。
可选地,第二DC/DC变换器可以采用隔离功率变换方式,也可以采用非隔离功率变换方式。
其中,隔离功率变换是指DC/DC变换器中设置有变压器,非隔离功率变换是指DC/DC变换器中未设置有变压器。
可选地,在本申请实施例中,不同电池包集合中的电池包可以属于相同型号。或者,可以属于不同的厂家或属于不同的型号。也就是说,本申请实施例的电力储能系统可以兼容不同类型的电池包。
如图4所示,发电系统200中包括逆变器(或者说,DC/AC变换器),所述逆变器 的第一端A1与所述电力储能系统100的第一接口F相连,所述逆变器的第二端A2用于与交流负载或交流电网相连。该逆变器可通过电力储能系统100的第一接口F向电力储能系统100输出直流电。
可选地,发电系统200可以是新能源发电系统,例如风力发电系统或者光伏发电系统。
发电系统200还可以与交流电网相连。其中,交流电网提供的交流电可以通过发电系统200中的逆变器进行整流,以得到直流电,并向电力储能系统100提供该直流电。
可选地,发电系统200中还包括发电模块和稳压模块。发电模块用于生成直流电或交流电。上述直流电或交流电在通过稳压模块之后为直流电。逆变器的第一端A1用于接收稳压模块输出的直流电,逆变器可以在第一端A1到第二端A2的方向实现DC/AC转换,并将得到的交流电提供给交流负载。
可选地,该逆变器也可以在第二端A2到第一端A1的方向实现AC/DC转换。例如,在发电系统200与交流电网相连的情况下,可以将交流电网输入的交流电转换为直流电,并提供给电力储能系统100。
可选地,若发电系统200为光伏发电系统,发电模块可以包括PV组件,则所述逆变器可以为光伏逆变器中的DC/AC变换器。所述稳压模块为光伏逆变器中的MPPT模块。
在本申请实施例中,电力储能系统中包括两类DC/DC变换器,其中N个第二DC/DC变换器设置于发电系统200和第一DC/DC之间。当发电系统200输出的电压范围与第一DC/DC变换器的输入电压范围不匹配时,在电池充电的情况下,第二DC/DC变换器可以用于对发电系统输入的电压进行电压变换,使输出的电压适应第一DC/DC变换器的输入范围。在电池放电的情况下,第二DC/DC变换器可以对第一DC/DC输入的电压进行电压变换,使得向发电系统输出的电压范围适应于发电系统的电压等级。从而电力储能系统可以兼容发电系统的不同的电压等级,提高了电力储能系统的应用灵活性。
在本申请实施例中,由于电力储能系统可以兼容发电系统的不同电压等级,因此该电力储能系统可以适配发电系统中的不同电压等级的逆变器。或者说,在电力储能系统和发电系统的生产过程中,由于其可以适配不同电压等级的发电系统,因此可以采用统一的标准生产对应于不同电压等级的发电系统的电力储能系统,从而提高生产效率。
在本申请实施例中,电力储能系统采用了多个电池包并联的方式,因此在某个电池包失效的情况下,也不影响其它电池包的正常工作,可以提高电路储能系统的可靠性。
图5是本申请一实施例的电力储能系统100的控制逻辑示意图。结合图4和图5,假设Vbus表示任一第二DC/DC变换器的第一端的额定电压(或者说,第一DC/DC变换器第二端的额定电压),Vbat表示电池包的额定电压(或者说,第一DC/DC变换器第一端的额定电压)。其中,额定电压可以指电气设备长时间正常工作时的最佳电压。则第一DC/DC的控制逻辑如下。
在Vbus>Vbat的情况下,若电池包放电,第一DC/DC变换器用于对Vbat进行升压处理,以输出Vbus。若电池包充电,第一DC/DC变换器用于对Vbus进行降压处理,以输出Vbat。
在Vbus=Vbat的情况下,第一DC/DC变换器工作在直通模式。
在Vbus<Vbat的情况下,若电池包放电,第一DC/DC变换器用于对Vbat进行降压处理,以输出Vbus。若电池包充电,第一DC/DC变换器用于对Vbus进行升压处理,以 输出Vbat。
作为一个示例,假设Vbus=350Vdc,Vbat=48Vdc。即Vbus>Vbat,则在电池包放电时,第一DC/DC变换器用于对Vbat进行升压处理,以输出Vbus。在电池包充电时,第一DC/DC变换器用于对Vbus进行降压处理,以输出Vbat。
图6是本申请一实施例的电力储能系统100的控制逻辑示意图。结合图4和图6,假设Vinv表示任一第二DC/DC变换器的第二端的额定电压(或者说,第一接口F处的额定电压),Vbus表示任一第二DC/DC变换器的第一端的额定电压(或者说,第一DC/DC变换器第二端的额定电压),Vth表示预设的阈值电压。则第二DC/DC的控制逻辑如下所述。
在Vinv-Vbus>Vth的情况下,若电池包放电,第二DC/DC变换器用于对Vbus进行升压处理,以输出Vinv。若电池包充电,第二DC/DC变换器用于对Vinv进行降压处理,以输出Vbus。
在-Vth≤Vinv-Vbus<Vth的情况下,第二DC/DC变换器工作在直通模式。
在Vinv-Vbus<-Vth的情况下,若电池包放电,第二DC/DC变换器用于对Vbus进行降压处理,以输出Vinv。若电池包充电,第二DC/DC变换器用于对Vinv进行升压处理,以输出Vbus。
可选地,Vth的具体取值可根据实践确定。例如,Vth的具体取值可以与第一DC/DC变换器的输入电压范围相关。在Vinv∈[Vbus-Vth,Vbus+Vth]时,其落入了第一DC/DC变换器的输入电压范围之中。因此,第二DC/DC变换器工作在直通模式,Vinv可以直接作为第二DC/DC变换器的输入电压。作为示例,Vth为5V或10V。
作为一个示例,假设Vinv=1000V,Vbus=350V,Vth=10V。即Vinv-Vbus>Vth。则在电池包放电的情况下,第二DC/DC变换器用于对Vbus进行升压处理,以输出Vinv。在电池包充电的情况下,第二DC/DC变换器用于对Vinv进行降压处理,以输出Vbus。
图7是本申请一实施例的储能供电系统的结构示意图。该储能供电系统包括:电力储能系统100和发电系统200的结构示意图。图7中的发电系统200为光伏发电系统。
如图7所示,发电系统200包括光伏逆变器,所述光伏逆变器包括MPPT模块和DC/AC变换器。图4中的逆变器可以为该DC/AC变换器,稳压模块可以为MPPT模块。DC/AC变换器的第一端A1用于与所述电力储能系统100的第一接口F相连,DC/AC变换器的第一端A1还用于与MPPT模块相连,以接收来自光伏(PV)组件的直流电。DC/AC变换器的第二端A2用于与交流负载或交流电网相连。
所述DC/AC变换器可以接收MPPT模块输出的直流电,并在第一端A1到第二端A2的方向实现DC/AC转换,并将得到的交流电提供给交流负载。
可选地,DC/AC变换器的第一端A1还用于通过第一接口F向电力储能系统100输出直流电。
可选地,DC/AC变换器也可以在第二端A2到第一端A1的方向实现AC/DC转换。例如,在发电系统200与交流电网相连的情况下,可以将交流电网输入的交流电转换为直流电,并提供给电力储能系统100。
其中,电力储能系统100的功能与图4中类似,为了简洁,此处不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及 算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种电力储能系统,其特征在于,包括:
    M个电池包;
    M个第一直流转直流DC/DC变换器,所述M个第一DC/DC变换器的第一端分别与所述M个电池包相连,所述M个第一DC/DC变换器被划分为N个第一DC/DC变换器集合,M为大于1的整数,N为大于0的整数;
    N个第二DC/DC变换器,与所述N个第一DC/DC变换器集合一一对应,每个第二DC/DC变换器的第一端与其对应的第一DC/DC变换器集合中的第一DC/DC变换器的第二端相连,每个第二DC/DC变换器的第二端与所述电力储能系统的第一接口相连,所述第一接口用于从发电系统接收直流电或向所述发电系统输出直流电,N为大于1的整数。
  2. 如权利要求1所述的系统,其特征在于,
    在Vinv-Vbus>Vth且电池包放电的情况下,所述第二DC/DC变换器用于对Vbus进行升压处理,以输出Vinv;
    在Vinv-Vbus>Vth且电池包充电的情况下,所述第二DC/DC变换器用于对Vinv进行降压处理,以输出Vbus;
    其中,Vinv表示所述第二DC/DC变换器的第二端的额定电压,Vbus表示所述第二DC/DC变换器的第一端的额定电压,Vth表示预设的阈值电压。
  3. 如权利要求1或2所述的系统,其特征在于,在-Vth≤Vinv-Vbus<Vth的情况下,所述第二DC/DC变换器工作在直通模式;
    其中,Vinv表示所述第二DC/DC变换器的第二端的额定电压,Vbus表示所述第二DC/DC变换器的第一端的额定电压,Vth表示预设的阈值电压。
  4. 如权利要求1至3中任一项所述的系统,其特征在于,
    在Vinv-Vbus<-Vth且电池包放电的情况下,所述第二DC/DC变换器用于对Vbus进行降压处理,以输出Vinv;
    在Vinv-Vbus>Vth且电池包充电的情况下,所述第二DC/DC变换器用于对Vinv进行升压处理,以输出Vbus;
    其中,Vinv表示所述第二DC/DC变换器的第二端的额定电压,Vbus表示所述第二DC/DC变换器的第一端的额定电压,Vth表示预设的阈值电压。
  5. 如权利要求1至4中任一项所述的系统,其特征在于,
    在Vbus>Vbat且电池包放电的情况下,所述第一DC/DC变换器用于对Vbat进行升压处理,以输出Vbus;
    在Vbus>Vbat且电池包充电的情况下,所述第一DC/DC变换器用于对Vbus进行降压处理,以输出Vbat;
    其中,Vbus表示所述第二DC/DC变换器的第一端的额定电压,Vbat表示电池包阳极的额定电压。
  6. 如权利要求1至5中任一项所述的系统,其特征在于,在Vbus=Vbat的情况下,所述第一DC/DC变换器工作在直通模式;
    其中,Vbus表示所述第二DC/DC变换器的第一端的电压,Vbat表示电池包阳极的额定电压。
  7. 如权利要求1至6中任一项所述的系统,其特征在于,
    在Vbus<Vbat且电池包放电的情况下,所述第一DC/DC变换器用于对Vbat进行降压处理,以输出Vbus;
    在Vbus<Vbat且电池包充电的情况下,所述第一DC/DC变换器用于对Vbus进行升压处理,以输出Vbat;
    其中,Vbus表示所述第二DC/DC变换器的第一端的电压,Vbat表示电池包阳极的额定电压。
  8. 如权利要求1至7中任一项所述的系统,其特征在于,所述发电系统包括逆变器,所述逆变器的第一端与所述电力储能系统的第一接口相连,所述逆变器的第二端用于与交流负载或交流电网相连。
  9. 如权利要求8所述的系统,其特征在于,所述发电系统为光伏发电系统,所述发电系统包括光伏逆变器,所述光伏逆变器包括最大功率点追踪MPPT模块和DC/AC变换器,所述逆变器为所述DC/AC变换器;
    所述DC/AC变换器的第一端用于与所述电力储能系统的第一接口相连,所述DC/AC变换器的第一端还用于与所述MPPT模块相连,所述DC/AC变换器的第二端用于与交流负载或交流电网相连。
  10. 一种储能供电系统,其特征在于,所述系统包括如权利要求1至9中任一项所述的电力储能系统以及发电系统。
PCT/CN2020/096468 2020-06-17 2020-06-17 电力储能系统以及储能供电系统 WO2021253257A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2020/096468 WO2021253257A1 (zh) 2020-06-17 2020-06-17 电力储能系统以及储能供电系统
CN202080012506.8A CN113424388A (zh) 2020-06-17 2020-06-17 电力储能系统以及储能供电系统
AU2020454251A AU2020454251A1 (en) 2020-06-17 2020-06-17 Electrical energy storage system and energy storage system
CN202311021305.6A CN117200289A (zh) 2020-06-17 2020-06-17 电力储能系统以及储能供电系统
EP20940597.6A EP4027476A4 (en) 2020-06-17 2020-06-17 ELECTRICITY ENERGY STORAGE SYSTEM AND ENERGY STORAGE POWER SUPPLY SYSTEM
US17/870,790 US11749995B2 (en) 2020-06-17 2022-07-21 Electrical energy storage system and energy storage system
US18/362,728 US20230378757A1 (en) 2020-06-17 2023-07-31 Electrical energy storage system and energy storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096468 WO2021253257A1 (zh) 2020-06-17 2020-06-17 电力储能系统以及储能供电系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/870,790 Continuation US11749995B2 (en) 2020-06-17 2022-07-21 Electrical energy storage system and energy storage system

Publications (1)

Publication Number Publication Date
WO2021253257A1 true WO2021253257A1 (zh) 2021-12-23

Family

ID=77712091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096468 WO2021253257A1 (zh) 2020-06-17 2020-06-17 电力储能系统以及储能供电系统

Country Status (5)

Country Link
US (2) US11749995B2 (zh)
EP (1) EP4027476A4 (zh)
CN (2) CN117200289A (zh)
AU (1) AU2020454251A1 (zh)
WO (1) WO2021253257A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178553A (zh) * 2013-03-08 2013-06-26 沃太能源南通有限公司 一种家用混合供电系统
CN204230948U (zh) * 2014-09-30 2015-03-25 深圳市盛弘电气有限公司 一种新能源馈电式充放电机
CN107404149A (zh) * 2017-09-04 2017-11-28 广州泓淮能源科技有限公司 一种基于直流系统的蓄电池并联供电系统
US20190190400A1 (en) * 2017-12-15 2019-06-20 Ess Tech, Inc. Power conversion system and method
CN110912235A (zh) * 2019-12-13 2020-03-24 阳光电源股份有限公司 储能系统及其均流方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US7911079B2 (en) * 2007-07-31 2011-03-22 Caterpillar Inc Electrical system architecture having high voltage bus
KR20160023169A (ko) 2014-08-21 2016-03-03 주식회사 엘지씨엔에스 에너지 저장 시스템의 전력 관리 장치
WO2019102565A1 (ja) * 2017-11-24 2019-05-31 Tdk株式会社 直流給電システム
US10951040B2 (en) * 2018-04-27 2021-03-16 Nextracker Inc. DC/DC converter for distributed storage and solar systems
US11387659B2 (en) * 2018-06-26 2022-07-12 Texas Instruments Incorporated Switching mode charger with pass through mode
CN109193614B (zh) * 2018-08-29 2020-01-24 微控物理储能研究开发(深圳)有限公司 飞轮储能再生制动能量回馈系统及其控制方法
CN109921409B (zh) * 2019-04-16 2024-01-16 清华大学 一种建筑全直流供电和蓄电系统及控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178553A (zh) * 2013-03-08 2013-06-26 沃太能源南通有限公司 一种家用混合供电系统
CN204230948U (zh) * 2014-09-30 2015-03-25 深圳市盛弘电气有限公司 一种新能源馈电式充放电机
CN107404149A (zh) * 2017-09-04 2017-11-28 广州泓淮能源科技有限公司 一种基于直流系统的蓄电池并联供电系统
US20190190400A1 (en) * 2017-12-15 2019-06-20 Ess Tech, Inc. Power conversion system and method
CN110912235A (zh) * 2019-12-13 2020-03-24 阳光电源股份有限公司 储能系统及其均流方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4027476A4 *

Also Published As

Publication number Publication date
US20230378757A1 (en) 2023-11-23
AU2020454251A1 (en) 2022-04-21
EP4027476A1 (en) 2022-07-13
EP4027476A4 (en) 2022-12-07
US11749995B2 (en) 2023-09-05
US20220360086A1 (en) 2022-11-10
CN113424388A (zh) 2021-09-21
CN117200289A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
TWI542988B (zh) 不斷電系統及其供應方法、具體非暫態的電腦可使用媒體
EP3148037B1 (en) Energy storage system
KR101369633B1 (ko) 전력 저장 시스템 및 그 제어방법
US10547173B2 (en) Power generation system
KR20130099022A (ko) 에너지 저장 시스템용 전력 변환 시스템 및 이의 제어방법
JP2013085459A (ja) 電力貯蔵システムおよびその制御方法
CN104578389A (zh) 一种电力控制方法、装置及系统
Chiu et al. Design and implementation of a high‐efficiency bidirectional DC‐DC Converter for DC micro‐grid system applications
US11031808B2 (en) Power supply system
AU2018401837B2 (en) System for powering auxiliary loads of an energy storage system
JP2014140282A (ja) 蓄電システムおよびその制御方法
WO2021253257A1 (zh) 电力储能系统以及储能供电系统
CN116316939A (zh) 供电系统、电源电路及其控制方法
Li et al. Energy management strategy for renewable backup supply
Vieira et al. Hybrid PV-UPS system with multilevel structure of power converters and reliability improvment
CN113437790A (zh) 一种光伏储能发电设备及其控制方法
CN109599898B (zh) 提高分布式电源消纳的控制方法及装置
US20200259330A1 (en) Energy storage system with string balance function
CN110912169A (zh) 一种交直流微网设计方法及拓扑结构
CN219960136U (zh) 风力发电机组、风电场及风电输电系统
CN216451179U (zh) 一种光伏储能发电设备
CN211127222U (zh) 自适应微型供电系统及其交流电池模块
TWI666852B (zh) 蓄電系統、變壓裝置以及蓄電電力調整器
Garg et al. Overview of real-time power management strategies in DC microgrids with emphasis on distributed control
CN113839426A (zh) 一种零碳排放建筑的电能供给系统及其能量管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940597

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020940597

Country of ref document: EP

Effective date: 20220406

ENP Entry into the national phase

Ref document number: 2020454251

Country of ref document: AU

Date of ref document: 20200617

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE