WO2022179240A1 - 一种光谱发热阻燃抗菌多功能纤维及其制备方法 - Google Patents

一种光谱发热阻燃抗菌多功能纤维及其制备方法 Download PDF

Info

Publication number
WO2022179240A1
WO2022179240A1 PCT/CN2021/136222 CN2021136222W WO2022179240A1 WO 2022179240 A1 WO2022179240 A1 WO 2022179240A1 CN 2021136222 W CN2021136222 W CN 2021136222W WO 2022179240 A1 WO2022179240 A1 WO 2022179240A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
antibacterial
retardant
flame
moisture content
Prior art date
Application number
PCT/CN2021/136222
Other languages
English (en)
French (fr)
Inventor
李圣军
张守运
孙燕琳
刘艳丽
钱婷婷
楼梦娜
杨伟星
Original Assignee
浙江桐昆新材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江桐昆新材料研究院有限公司 filed Critical 浙江桐昆新材料研究院有限公司
Priority to US17/920,393 priority Critical patent/US20240102205A1/en
Publication of WO2022179240A1 publication Critical patent/WO2022179240A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/04Melting filament-forming substances
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/07Addition of substances to the spinning solution or to the melt for making fire- or flame-proof filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/106Radiation shielding agents, e.g. absorbing, reflecting agents
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/90Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/02Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist
    • D02G1/0206Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist by false-twisting
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2248Oxides; Hydroxides of metals of copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2255Oxides; Hydroxides of metals of molybdenum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/529Esters containing heterocyclic rings not representing cyclic esters of phosphoric or phosphorous acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/12Applications used for fibers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/13Physical properties anti-allergenic or anti-bacterial

Definitions

  • the invention relates to the technical field of textiles, in particular to a spectrum heating, flame-retardant, antibacterial multifunctional fiber and a preparation method thereof.
  • Polyester and nylon are the most widely used raw materials for clothing fabrics. Their fabrics have good strength and easy-to-wash effect. They are widely used in civilian fields such as textiles and clothing, but their applications in special fields such as military industry and protective clothing are relatively small. , the performance needs to be greatly improved to meet the needs.
  • the multi-functionalization of the product has become a bottleneck restricting the development of the industry, but the current product functionalization rate is low, and because different modifiers are added and used at the same time, it is easy to affect each other or occur. Agglomeration or reaction occurs, the functionality is reduced, and the comprehensive functionality cannot be exerted.
  • traditional production methods such as the addition of many types and quantities of modifiers make spinning difficult, and it is easy to fly and break ends, and it is difficult to form fibers.
  • the present invention provides a spectrum heating, flame-retardant and antibacterial multifunctional fiber and a preparation method thereof to solve the above problems.
  • the purpose of the present invention is to provide a spectrum heating, flame retardant and antibacterial multifunctional fiber and a preparation method for the defects of the prior art.
  • the present invention adopts following technical scheme for realizing the above-mentioned purpose:
  • a spectrum heating, flame-retardant and antibacterial multifunctional fiber calculated in mass %, the multifunctional fiber comprises 10-12% composite masterbatch with a moisture content of 30-50 ppm, and 88-90% of a composite masterbatch with a moisture content of 25-30 ppm.
  • Polyethylene terephthalate or polycaprolactam 6 polymer with a moisture content of 50-70 ppm.
  • the composite masterbatch comprises 40-50% polybutylene terephthalate with a moisture content of 23-27 ppm, 6.7-10.0% nano-molybdenum dioxide, 3.3-5.0% of nano-zinc oxide, 3.3-5.0% of nano-cuprous oxide, 6.7-10.0% of melamine phosphate with a moisture content of 25ppm-30ppm.
  • the nano-molybdenum dioxide is a far-infrared emitting agent of a spectrum exothermic agent
  • the nano-zinc oxide and the nano-cuprous oxide are antibacterial and antiviral agents
  • the melamine phosphate is a flame retardant. agent.
  • the nano-molybdenum dioxide When the nano-molybdenum dioxide is illuminated, the electron movement orbits transition, thereby emitting heat, which has a good spectral heating effect.
  • the nano-molybdenum dioxide also has a better function of emitting infrared rays under normal conditions, so it also has far-infrared warmth retention.
  • Nano-zinc oxide and nano-cuprous oxide both have antibacterial effects, and the composite application of the two, combined with the addition ratio provided by the present invention, has a good antiviral effect on coronavirus and influenza virus; melamine phosphate has a good antiviral effect. Therefore, the coating composite method is used to comprehensively apply its properties to obtain multifunctional composite masterbatches with good spinnability and strong functionality.
  • the present invention also provides a method for preparing a spectrum heating, flame-retardant and antibacterial multifunctional fiber, comprising the following steps:
  • Modifier treatment Weigh the required materials and modify the surface of the modifier
  • Fiber preparation Spectral heating, flame-retardant, antibacterial and multi-functional fibers are prepared by spinning and texturing processes;
  • the inorganic modifier is nano-molybdenum dioxide, nano-zinc oxide and nano-cuprous oxide, and the organic modifier is melamine phosphate.
  • the inorganic modifier and the organic modifier are mechanically stirred by the ball milling method in turn, and PBT (polybutylene terephthalate) is used for layered coating treatment, which refers to the use of a ball mill.
  • the inorganic modifier is coated respectively, the powder of the inorganic modifier is preferentially coated, and the powder of the inorganic modifier with a small average particle size is preferentially coated; the powder of the organic modifier is coated last, and the organic modifier is coated last.
  • the powder of the modifier is coated in the order of thermal stability; after the inorganic modifier and organic modifier are coated with PBT, they are uniformly dispersed in PET (polyethylene terephthalate) or PA6 (polycaprolactam). 6) In the melt, the composite masterbatch is prepared after melt blending.
  • the present invention optimizes the spinning and texturing process on the basis of the prior art, and the specific performance is as follows: the initial pressure of the spinning assembly is 80-100 kgf/cm2, and the processing speed of spinning and false twisting is lower than that of the existing fabric. 20-30%, the spinning temperature, false-twist texturing temperature, and false-twist qualitative temperature are 15-20°C lower than those of the existing fabrics, the spinning adopts double oiling and the oiling rate is increased by 40%, and the false-twisting process is oiled Increase by 10%, the addition of multifunctional composite masterbatch accounts for 10%-15% of the total mass of spinning fibers.
  • the average particle size of the powders of the nano-molybdenum dioxide, nano-zinc oxide and nano-cuprous oxide is controlled at 100-400 nm.
  • step S1 the inorganic modifier is first modified on the surface, and the specific steps are: using a ball milling method to mechanically stir the nano-molybdenum dioxide with a dodecylbenzenesulfonic acid surfactant for surface modification, Zinc oxide and nano-cuprous oxide were surface-modified with stearic acid complex, and melamine phosphate was surface-modified with ArC 3 H 5 low-temperature plasma using a rotary jet plasma sprayer.
  • the coating temperature is 265-275°C, and the coating time is 30-50 min after each modifier is added to the ball mill.
  • the mass ratio of the nano-molybdenum dioxide, nano-zinc oxide, nano-cuprous oxide and melamine phosphate is 2:1:1:2.
  • the present invention adopts nano-molybdenum dioxide, nano-zinc oxide, nano-cuprous oxide, and melamine phosphate as modifiers, and firstly uses dodecylbenzene sulfonic acid surfactant to carry out surface modification to nano-molybdenum dioxide.
  • Zinc oxide and nano-copper oxide are surface modified with stearic acid complex and ArC 3 H 5 low temperature plasma to improve their dispersibility, and then the above modifiers are layered and coated with PBT by mechanical stirring by ball milling method. It is added to the masterbatch in a certain proportion to prepare a composite masterbatch with various functions such as photothermal heating, infrared heat preservation, flame retardant, antibacterial, etc.
  • the false-twist texturing process prepares functional fibers with photo-induced heating, infrared heat preservation, flame retardant, antibacterial, antiviral and other composite functional integration.
  • the present invention optimizes the spinning and texturing process, and the spinning and false twisting process adopts the reduction of component pressure, production speed, drawing ratio, heating temperature, etc. to ensure the stability of the coating structure and avoid different modifications.
  • the interaction, reaction or agglomeration between the agents ensures that the different modifiers do not interfere with each other. While ensuring that various functionalities can meet the requirements of use, it reduces spinning breaks and improves spinnability.
  • the fibers and their fabrics prepared by the present invention have multiple functions such as spectrum heating, flame retardant, antibacterial, antiviral, etc. Compared with the existing fabrics, the fabrics are illuminated for 5-10min, the temperature difference is higher than 15-20°C, and the far-infrared The emissivity is greater than 98%, the radiation temperature rise is greater than 3.0°C, the Cro value is greater than 0.5, the heat transfer coefficient is greater than 18.0W/(m2•k), and the thermal resistance is less than 0.05(m2•k)/w.
  • the antibacterial rates of , Candida albicans and Pneumococcus are all greater than 99.0%, and have good antiviral effects on influenza and coronavirus.
  • the antiviral activity value is greater than 2.5, the antiviral activity rate is greater than 99.5%, and the limiting oxygen index is greater than 35 %, the smoldering time and afterburning time are both 0, and the damage length is 90-100cm.
  • the invention only needs to optimize the production process in the existing equipment, and can be produced without equipment modification, is beneficial to expand the application space of polyester and nylon, enriches and optimizes the lightweight and protective performance of clothing fabrics, and has significant economic and social benefits. benefit.
  • test methods or test methods described in the following examples are conventional methods unless otherwise specified; the reagents and materials, unless otherwise specified, are obtained from conventional commercial channels or prepared by conventional methods.
  • the multi-functional fiber comprises 10-12% composite masterbatch with a moisture content of 30-50 ppm, 88-90% moisture content in 25ppm-30ppm of polyethylene terephthalate or polycaprolactam 6 high polymer with a moisture content of 50-70ppm; by mass %, the composite masterbatch contains 40-50% of a moisture content of 23ppm-27ppm of polybutylene terephthalate, 6.7-10.0% nano-molybdenum dioxide, 3.3-5.0% nano-zinc oxide, 3.3-5.0% nano-cuprous oxide, 6.7-10.0% moisture content at 25ppm- 30ppm of melamine phosphate; the multifunctional fibers were prepared as follows:
  • Modifier treatment Weigh the required materials, first carry out surface modification on the inorganic modifier, and the specific steps are as follows: use the dodecylbenzenesulfonic acid surfactant on the nano-molybdenum dioxide by means of mechanical stirring by the ball milling method Surface modification, using stearic acid complex for surface modification of nano-zinc oxide and nano-cuprous oxide, and ArC 3 H 5 low-temperature plasma surface modification for melamine phosphate using a rotary jet plasma sprayer;
  • Fiber preparation Spectral heating, flame-retardant, antibacterial and multi-functional fibers are prepared by optimized spinning and texturing processes;
  • the inorganic modifier is nano-molybdenum dioxide, nano-zinc oxide, nano-cuprous oxide, and the organic modifier is melamine phosphate; in step S2, the coating temperature is 265-275 ° C, each The coating time is 30-50min after the modifier is added to the ball mill.
  • nano-molybdenum dioxide, nano-zinc oxide, nano-cuprous oxide, and melamine phosphate are used as modifiers, and the average particle sizes of nano-molybdenum dioxide, nano-zinc oxide, and nano-cuprous oxide powder are controlled At 200nm, 100nm, and 100nm, the ball milling method was used for mechanical stirring, and the nano-molybdenum dioxide was surface-modified with dodecylbenzenesulfonic acid surfactant by a vacuum high-temperature vibration ball mill, and the nano-zinc oxide and nano-copper oxide were surface-modified with stearic acid.
  • the surface modification of the complex is carried out by using a rotary jet plasma sprayer, using ArC 3 H 5 to modify the surface of the melamine phosphate low-temperature plasma, and then using the ball milling method to mechanically stir for PBT coating and compounding. Put PBT slices into the vacuum high-temperature vibrating ball mill, and heat up to 265 ° C under stirring. When the PBT is completely melted, add nano-zinc oxide powder to the PBT according to 3.3% of the total amount of the prepared composite masterbatch.
  • Ball milling after mechanical stirring for 40min, adding 3.3% of the total composite masterbatch nano cuprous oxide powder, high temperature ball milling, after mechanical stirring for 30min, adding 6.7% of the total composite masterbatch nano molybdenum dioxide, after ball milling for 30min , add 6.7% melamine phosphate of the total amount of the composite masterbatch, ball mill for 30min, and finally add 40% of the total amount of the composite masterbatch PA6 slices, after ball milling and stirring for 30min, carry out strips, polytape, water cooling, and pelletizing to obtain effective Multifunctional composite masterbatch with 20% composition.
  • the spinning temperature is 250 °C, and the spinning speed is 3800 m/min, to obtain 52dtex/24f nylon 6 Spectrum heating, flame retardant and antibacterial fiber POY, and then processed in Barmag EFK-1000V false twist texturing machine to obtain 44dtex/24f nylon 6 spectrum heating flame retardant and antibacterial multi-functional fiber DTY.
  • Its fabric is the same as conventional 44dtex/24f Compared with nylon 6 fiber fabric, the temperature difference is 16°C higher when illuminated for 5 minutes, and the temperature difference is 18°C higher when illuminated for 10 minutes.
  • the bacteriostatic rate of Escherichia coli and Staphylococcus aureus were 99.6%
  • the bacteriostatic rate of Candida albicans was 99.3%
  • the bacteriostatic rate of Bacillus pneumoniae was 99.1%
  • the antiviral activity value of influenza virus is 2.5
  • the antiviral activity rate is 99.5%
  • the limiting oxygen index is 35.1%
  • the smoldering time and afterburning time are both 0S
  • the damage length is 93cm.
  • nano-molybdenum dioxide, nano-zinc oxide, nano-cuprous oxide, and melamine phosphate are used as modifiers, and the average particle sizes of nano-molybdenum dioxide, nano-zinc oxide, and nano-cuprous oxide powder are controlled At 100nm, 200nm, and 400nm, the ball milling method was used for mechanical stirring, and the nano-molybdenum dioxide was surface-modified with dodecylbenzenesulfonic acid surfactant by a vacuum high-temperature vibration ball mill, and the nano-zinc oxide and nano-copper oxide were surface-modified with stearic acid.
  • the surface of the complex is modified, using a rotary spray plasma sprayer, using ArC 3 H 5 to modify the surface of the melamine phosphate low-temperature plasma, and then using the ball milling method to mechanically stir for PBT coating and compounding. Put 50% of the mass of PBT into the vacuum high-temperature vibrating ball mill, and heat it up to 275 ° C under stirring. When the PBT is completely melted, add nano-molybdenum dioxide powder to the PBT according to 10.0% of the total amount of the prepared composite masterbatch.
  • the spinning temperature is 250 °C, and the spinning speed is 3800 m/min, to obtain 52dtex/24f nylon.
  • 6 spectrum heating flame retardant and antibacterial fiber POY and then processed in Barmag Efk-1000V false-twist texturing machine to obtain 44dtex/24f nylon 6 spectrum heating flame retardant and antibacterial multifunctional fiber DTY, its fabric is the same as conventional 44dtex/ Compared with 24f nylon 6 fiber fabric, the temperature difference is 17°C higher when illuminated for 5 minutes, and the temperature difference is 20°C higher when illuminated for 10 minutes.
  • the bacteriostatic rate of Escherichia coli and Staphylococcus aureus were 99.9%
  • the bacteriostatic rate of Candida albicans was 99.6%
  • the bacteriostatic rate of Bacillus pneumoniae was 99.5 %
  • the antiviral activity value against influenza virus is 3.6
  • the antiviral activity rate is 99.8%
  • the limiting oxygen index is 37.8%
  • the smoldering time and afterburning time are both 0S
  • the damage length is 90cm.
  • nano-molybdenum dioxide, nano-zinc oxide, nano-cuprous oxide, and melamine phosphate are used as modifiers, and the average particle sizes of nano-molybdenum dioxide, nano-zinc oxide, and nano-cuprous oxide powder are controlled At 100nm, 300nm, and 200nm, the ball milling method was used for mechanical stirring first, and the nano-molybdenum dioxide was surface-modified with dodecylbenzenesulfonic acid surfactant through a vacuum high-temperature vibration ball mill, and the nano-zinc oxide and nano-copper oxide were surface-modified with stearic acid.
  • the surface of the complex is modified, using a rotary spray plasma sprayer, using ArC 3 H 5 to modify the surface of the melamine phosphate low-temperature plasma, and then using the ball milling method to mechanically stir for PBT coating and compounding. Put 45% of the mass of PBT into the vacuum high-temperature vibrating ball mill, and heat it up to 269 ° C under stirring. When the PBT is completely melted, add nano-molybdenum dioxide powder to the PBT according to 8.0% of the total amount of the prepared composite masterbatch.
  • PET chips are used as raw materials, 13% multifunctional composite masterbatch is melted and blended for spinning, the spinning temperature is 275 °C, and the spinning speed is 2500 m/min to obtain 265dtex/48f polyester.
  • Spectral heating, flame-retardant and antibacterial fiber POY, and then processed in Barmag EFK-1000V false-twist texturing machine to obtain 167dtex/48f polyester spectrum heating, flame-retardant and antibacterial multi-functional fiber DTY, and its fabric is the same as conventional 167dtex/48f polyester Compared with the fiber fabric, the temperature difference is 18°C higher when the light is illuminated for 5 minutes, and the temperature difference is 20°C higher when the light is 10 minutes.
  • the thermal resistance is less than 0.037(m2•k)/w
  • the bacteriostatic rates against Escherichia coli and Staphylococcus aureus were 99.8%
  • Candida albicans was 99.5%
  • Pneumococcus was 99.4%.
  • the antiviral activity value of influenza virus was 3.9, the antiviral activity rate was 99.7%, the limiting oxygen index was 35.7%, the smoldering time and afterburning time were both 0, and the damage length was 91cm.
  • nano-molybdenum dioxide, nano-zinc oxide, nano-cuprous oxide, and melamine phosphate are used as modifiers, and the average particle sizes of nano-molybdenum dioxide, nano-zinc oxide, and nano-cuprous oxide powder are controlled At 150nm, 200nm, and 270nm, first use the ball milling method for mechanical stirring, and use a vacuum high-temperature vibration ball mill to modify the surface of nano-molybdenum dioxide with dodecylbenzenesulfonic acid surfactant, and use stearin for nano-zinc dioxide and nano-copper oxide.
  • the acid complex is used for surface modification, using a rotary jet plasma sprayer, using ArC 3 H 5 to modify the surface of melamine phosphate by low temperature plasma, and then using the ball milling method to mechanically stir the PBT coating and compounding in stages, and prepare the composite masterbatch according to the Put 28% of the total mass into the vacuum high-temperature vibrating ball mill and put PBT slices into the vacuum high-temperature vibrating ball mill, and heat up to 272 ° C under stirring.
  • the PBT is completely melted, add nano molybdenum dioxide powder to the PBT according to 9.0% of the total amount of the prepared composite masterbatch.
  • 125dtex/772F polyester was prepared by using PET chips as raw materials, melting and adding 12% of multifunctional composite masterbatches for blending spinning at a spinning temperature of 280 °C and a spinning speed of 2700 m/min.
  • Spectral heating, flame-retardant and antibacterial fiber POY and then processed in a Barmag EFK-1000V false-twist texturing machine to obtain 83dtex/72F polyester spectral heating, flame-retardant and antibacterial multifunctional fiber DTY.
  • the temperature difference is 16°C higher when the light is illuminated for 5 minutes, and the temperature difference is 19°C higher when the light is 10 minutes.
  • the thermal resistance is less than 0.042(m2•k)/w
  • the bacteriostatic rate for Escherichia coli and Staphylococcus aureus is 99.9%
  • the bacteriostatic rate for Candida albicans is 99.5%
  • the bacteriostatic rate for Bacillus pneumoniae is 99.3%.
  • the antiviral activity value against influenza virus was 2.9
  • the antiviral activity rate was 99.4%
  • the limiting oxygen index was 36.8%
  • the smoldering time and afterburning time were both 0S
  • the damage length was 96cm.
  • the spectral heating, flame-retardant and antibacterial multifunctional fiber and its preparation method enable the prepared fiber and its fabric to have multiple functions such as spectral heating, flame retardant, antibacterial, antiviral, etc.
  • the light is 5-10min
  • the temperature difference is 15-20°C higher
  • the far-infrared emissivity is greater than 98%
  • the radiation temperature rise is greater than 3.0°C
  • the Cro value is greater than 0.5
  • the heat transfer coefficient is greater than 18.0W/(m2•k)
  • the thermal resistance is less than 0.05(m2•k)/w
  • the bacteriostatic rate against Escherichia coli, Staphylococcus aureus, Candida albicans and Pneumococcus are all greater than 99.0%, and it has good antiviral effect on influenza and coronavirus.
  • the virus activity value is greater than 2.5, the antiviral activity rate is greater than 99.5%, the limiting oxygen index is greater than 35%, the smoldering time and afterburning time are both 0, and the damage length is 90-100cm, which is worthy of wide application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

一种光谱发热阻燃抗菌多功能纤维,以质量%计,所述多功能纤维包含10-12%的含水率在30-50ppm的复合母粒、88-90%的含水率在25ppm-30ppm的聚对苯二甲酸乙二醇酯或含水率在50-70ppm的聚己内酰胺6高聚物。该纤维及其织物具有光谱发热、阻燃、抗菌、抗病毒等多重功能,其织物与现有的织物对比,光照5-10min,温差高出15-20℃,远红外发射率大于98%,辐射升温大于3.0℃,克罗值大于0.5,传热系数大于18.0W/(m2•k),热阻小于0.05(m2•k)/w,对大肠杆菌、金葡萄球、白念珠菌、肺炎杆菌的抑菌率均大于99.0%,对流感以及冠状病毒等具有较好的抗病毒效果,抗病毒活性值大于2.5,抗病毒活性率大于99.5%。该技术方案优化了纺丝及加弹工艺,丰富并优化服装面料的轻质化和防护性能,有着显著的经济效益和社会效益。

Description

一种光谱发热阻燃抗菌多功能纤维及其制备方法 技术领域
本发明涉及纺织技术领域,具体涉及一种光谱发热阻燃抗菌多功能纤维及其制备方法。
背景技术
涤纶和锦纶是使用量最大的服装面料原料,其织物具有很好的强度和易洗效果,在纺织服装等民用领域应用非常广泛,但是其在军工、防护服等特殊领域的应用却相对较少,需要对其性能进行大幅度的改进才能满足需要,产品的多功能化成为行业发展的制约瓶颈,但目前产品功能化率较低,而且由于不同改性剂同时添加使用,容易相互影响或发生团聚或发生反应,功能性降低,无法发挥综合功能性,同时传统的生产方法如改性剂添加种类和数量较多,造成纺丝难度大,容易飘丝断头,难以成纤。
基于此,本发明提供一种光谱发热阻燃抗菌多功能纤维及其制备方法来解决上述问题。
技术解决方案
本发明目的是针对现有技术存在的缺陷提供一种光谱发热阻燃抗菌多功能纤维及其制备方法,本方法可以制备出使用性能优异的光致发热、红外保暖、阻燃、抗菌等多种复合功能性的纤维。
本发明为实现上述目的,采用如下技术方案:
一种光谱发热阻燃抗菌多功能纤维,以质量%计,所述多功能纤维包含10-12%的含水率在30-50ppm的复合母粒、88-90%的含水率在25ppm-30ppm的聚对苯二甲酸乙二醇酯或含水率在50-70ppm的聚己内酰胺6高聚物。
优选的,以质量%计,所述复合母粒包含40-50%的含水率在23ppm-27ppm的聚对苯二甲酸丁二醇酯、6.7-10.0%的纳米二氧化钼、3.3-5.0%的纳米氧化锌、3.3-5.0%的纳米氧化亚铜、6.7-10.0%的含水率在25ppm-30ppm的三聚氰胺磷酸酯。
需说明的是,在本发明中,所述纳米二氧化钼为光谱发热剂远红外发射剂,所述纳米氧化锌和纳米氧化亚铜为抗菌、抗病毒剂,所述三聚氰胺磷酸酯为阻燃剂。纳米二氧化钼受到光照后电子运动轨道发生跃迁,从而发出热量,具有较好的光谱发热效果,同时纳米二氧化钼在常态下,还具有较好发射红外线的功能,因此还具有远红外保暖的效果,纳米氧化锌、纳米氧化亚铜均具有抗菌效果,二者的复合应用,再配合本发明提供的添加比例,对冠状病毒和流感病毒具有较好的抗病毒效果;三聚氰胺磷酸酯具有很好的阻燃性能,因此采用包覆复合方法把其性能综合应用,可制得可纺性好、功能性强的多重功能性复合母粒。
本发明还提供一种光谱发热阻燃抗菌多功能纤维的制备方法,包括如下步骤:
S1、改性剂处理:称取所需物料,对改性剂进行表面修饰;
S2、复合母粒制取:无机改性剂和有机改性剂依次通过球磨法机械搅拌,并且使用聚对苯二甲酸丁二醇酯分别进行分层包覆处理;包覆处理后的改性剂分散到聚对苯二甲酸乙二醇酯或聚己内酰胺6熔体中,获得复合母粒;
S3、纤维制备:采用纺丝及加弹工艺制备出光谱发热阻燃抗菌多功能纤维;
所述无机改性剂为纳米二氧化钼、纳米氧化锌、纳米氧化亚铜,所述有机改性剂为三聚氰胺磷酸酯。
需说明的是,无机改性剂和有机改性剂依次通过球磨法机械搅拌,并且使用PBT(聚对苯二甲酸丁二醇酯)分别进行分层包覆处理,是指采用球石研磨机分别对无机改性剂进行包覆,无机改性剂的粉体优先进行包覆且平均粒径小的无机改性剂的粉体优先包覆;有机改性剂的粉体最后包覆,有机改性剂的粉体按照热稳定性高低顺序包覆;无机改性剂和有机改性剂经PBT包覆后,均匀分散在PET(聚对苯二甲酸乙二醇酯)或PA6(聚己内酰胺6)熔体中,熔融共混后制备出复合母粒。
另外,本发明在现有技术的基础上优化了纺丝及加弹工艺,具体表现为:纺丝组件起始压力80-100kgf/cm2,纺丝和假捻变形加工速度比现有的织物降低20-30%,纺丝温度、假捻变形温度、假捻定性温度比现有的织物降低15-20℃,纺丝采用双道上油并且上油率提高40%,假捻变形加工过程上油提高10%,多重功能性复合母粒的添加量占纺丝纤维总质量的10%-15%。
优选的,所述纳米二氧化钼、纳米氧化锌、纳米氧化亚铜的粉体平均粒径控制在100-400nm。
优选的,在步骤S1中,先对无机改性剂进行表面修饰,具体步骤为:采用球磨法机械搅拌的方式对纳米二氧化钼使用十二烷基苯磺酸表面活性剂表面修饰,对纳米氧化锌以及纳米氧化亚铜使用硬脂酸复配体表面修饰,对三聚氰胺磷酸酯使用旋喷等离子喷涂机进行ArC 3H 5低温等离子表面修饰。
优选的,在步骤S2中,包覆温度为265-275℃,每一种改性剂加入球石研磨机后包覆时间为30-50min。
优选的,所述纳米二氧化钼、纳米氧化锌、纳米氧化亚铜、三聚氰胺磷酸酯的质量比为2:1:1:2。
有益效果
与现有技术相比,本发明的有益效果为:
1.  本发明采用纳米二氧化钼、纳米氧化锌、纳米氧化亚铜、三聚氰胺磷酸酯作为改性剂,首先对纳米二氧化钼使用十二烷基苯磺酸表面活性剂进行表面修饰,对纳米氧化锌以及纳米氧化铜使用硬脂酸复配体和ArC 3H 5低温等离子表面修饰,提高其分散性,然后采用球磨法机械搅拌对上述各改性剂分次使用PBT分层包覆,并按照一定比例添加到母粒中制备出具有光致发热、红外保暖、阻燃、抗菌等多种功能性复合母粒,然后采用低温、低起始压力、低拉、双道上油等纺丝及假捻变形工艺制备具有光致发热、红外保暖、阻燃、抗菌、抗病毒等多种复合功能性一体化的功能性纤维。
2.  本发明优化了纺丝及加弹工艺,纺丝及假捻变形加工过程采用降低组件压力、生产速度、拉伸比、加热温度等以保证包覆结构的稳定性,避免不同的改性剂之间相互作用、发生反应或发生团聚等,保证各不同改性剂互不干扰,在确保多种功能性都能够满足使用要求的同时,减少纺丝断头,提高可纺性。
3.  本发明制备的纤维及其织物具有光谱发热、阻燃、抗菌、抗病毒等多重功能性,其织物与现有的织物对比,光照5-10min,温差高出15-20℃,远红外发射率大于98%,辐射升温大于3.0℃,克罗值大于0.5,传热系数大于18.0W/(m²•k),热阻小于0.05(m²•k)/w,对大肠杆菌、金葡萄球、白念珠菌、肺炎杆菌的抑菌率均大于99.0%,对流感以及冠状病毒等具有较好的抗病毒效果,抗病毒活性值大于2.5,抗病毒活性率大于99.5%,极限氧指数大于35%,阴燃时间和续燃时间均为0,损坏长度90-100cm。
本发明只需在现有设备进行生产工艺优化,无需设备改造即可生产,有利于拓展涤纶和锦纶等应用空间,丰富并优化服装面料的轻质化和防护性能,有着显著的经济效益和社会效益。
本发明的最佳实施方式
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下述实施例中所述试验方法或测试方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均从常规商业途径获得,或以常规方法制备。
实施例 1
本实施例提供一种光谱发热阻燃抗菌多功能纤维,以质量%计,所述多功能纤维包含10-12%的含水率在30-50ppm的复合母粒、88-90%的含水率在25ppm-30ppm的聚对苯二甲酸乙二醇酯或含水率在50-70ppm的聚己内酰胺6高聚物;以质量%计,所述复合母粒包含40-50%的含水率在23ppm-27ppm的聚对苯二甲酸丁二醇酯、6.7-10.0%的纳米二氧化钼、3.3-5.0%的纳米氧化锌、3.3-5.0%的纳米氧化亚铜、6.7-10.0%的含水率在25ppm-30ppm的三聚氰胺磷酸酯;所述多功能纤维按照如下步骤制备:
S1、改性剂处理:称取所需物料,先对无机改性剂进行表面修饰,具体步骤为:采用球磨法机械搅拌的方式对纳米二氧化钼使用十二烷基苯磺酸表面活性剂表面修饰,对纳米氧化锌以及纳米氧化亚铜使用硬脂酸复配体表面修饰,对三聚氰胺磷酸酯使用旋喷等离子喷涂机进行ArC 3H 5低温等离子表面修饰;
S2、复合母粒制取:无机改性剂和有机改性剂依次通过球磨法机械搅拌,并且使用聚对苯二甲酸丁二醇酯分别进行分层包覆处理;包覆处理后的改性剂分散到聚对苯二甲酸乙二醇酯或聚己内酰胺6熔体中,熔融共混后制备出复合母粒;
S3、纤维制备:采用优化的纺丝及加弹工艺制备出光谱发热阻燃抗菌多功能纤维;
其中,所述无机改性剂为纳米二氧化钼、纳米氧化锌、纳米氧化亚铜,所述有机改性剂为三聚氰胺磷酸酯;在步骤S2中,包覆温度为265-275℃,每一种改性剂加入球石研磨机后包覆时间为30-50min。
实施例 2
在本实施例中,采用纳米二氧化钼、纳米氧化锌、纳米氧化亚铜、三聚氰胺磷酸酯作为改性剂,纳米二氧化钼、纳米氧化锌、纳米氧化亚铜粉体的平均粒径均控制在200nm、100nm、100nm,先采用球磨法机械搅拌,通过真空高温振动球磨机对纳米二氧化钼使用十二烷基苯磺酸表面活性剂表面修饰,对纳米氧化锌、纳米氧化铜使用硬脂酸复配体进行表面修饰,采用旋喷式等离子喷涂机,使用ArC 3H 5对三聚氰胺磷酸酯低温等离子表面修饰,然后采用球磨法机械搅拌分次进行PBT包覆复合,按照制备复合母粒总质量的40%向真空高温振动球磨机内放入PBT切片,在搅拌的状态下升温至265℃,当PBT完全熔融后,按照制备复合母粒总量的3.3%向PBT加入纳米氧化锌粉体,高温球磨,机械搅拌40min后,加入复合母粒总量的3.3%的纳米氧化亚铜粉体,高温球磨,机械搅拌30min后,加入复合母粒总量的6.7%的纳米二氧化钼,球磨30min后,加入复合母粒总量的6.7%三聚氰胺磷酸酯,球磨30min,最后加入复合母粒总量的40%的PA6切片,球磨搅拌30min 后,进行拉条、聚带、水冷,切粒制得有效成分20%的多重功能性复合母粒。
在现有的纺丝设备上,以PA6切片为原料,熔融添加15%的多重功能性母粒进行共混纺丝,纺丝温度250℃,纺丝速度3800m/min,制得52dtex/24f锦纶6光谱发热阻燃抗菌纤维POY,然后在巴马格EFK-1000V型假捻变形机进行加弹后加工制得44dtex/24f锦纶6光谱发热阻燃抗菌多功能纤维DTY,其织物与常规44dtex/24f锦纶6纤维织物相比,在光照5min时温度差高出16℃,光照10min时,温差高出18℃,远红外发射率98.3%,辐射升温3.2℃,克罗值0.53,传热系数18.6W/(m²•k),热阻0.048(m²•k)/w,对大肠杆菌、金葡萄球抑菌率均99.6%,白念珠菌抑菌率均99.3%、肺炎杆菌的抑菌率99.1%,对流感病毒抗病毒活性值2.5,抗病毒活性率99.5%,极限氧指数35.1%,阴燃时间和续燃时间均为0S,损坏长度93cm。
实施例 3
在本实施例中,采用纳米二氧化钼、纳米氧化锌、纳米氧化亚铜、三聚氰胺磷酸酯作为改性剂,纳米二氧化钼、纳米氧化锌、纳米氧化亚铜粉体的平均粒径均控制在100nm、200nm、400nm,先采用球磨法机械搅拌,通过真空高温振动球磨机对纳米二氧化钼使用十二烷基苯磺酸表面活性剂表面修饰,对纳米氧化锌、纳米氧化铜使用硬脂酸复配体进行表面你修饰,采用旋喷式等离子喷涂机,使用ArC 3H 5对三聚氰胺磷酸酯低温等离子表面修饰,然后采用球磨法机械搅拌分次进行PBT包覆复合,按照制备复合母粒总质量的50%向真空高温振动球磨机内放入PBT切片,在搅拌的状态下升温至275℃,当PBT完全熔融后,按照制备复合母粒总量的10.0%向PBT加入纳米二氧化钼粉体,高温球磨,机械搅拌50min后,再加入复合母粒总量的5.0%的纳米氧化锌粉体,高温球磨,机械搅拌40min后,加入复合母粒总量的5.0%的纳米氧化亚铜,球磨40min后,加入复合母粒总量的10.0%三聚氰胺磷酸酯,球磨32min,最后加入复合母粒总量的20%的PA6切片,球磨搅拌30min 后,进行拉条、聚带、水冷,切粒制得30%多重功能性复合母粒。
在现有的纺丝设备上,以PA6切片为原料,熔融添加10%的多重功能性复合母粒进行共混纺丝,纺丝温度250℃,纺丝速度3800m/min,制得52dtex/24f锦纶6光谱发热阻燃抗菌纤维POY,然后在巴马格Efk-1000V型假捻变形机进行加弹后加工制得44dtex/24f锦纶6光谱发热阻燃抗菌多功能纤维DTY,其织物与常规44dtex/24f锦纶6纤维织物相比,在光照5min时温度差高出17℃,光照10min时,温差高出20℃,远红外发射率99.0%,辐射升温3.5℃,克罗值0.56,传热系数19.8W/(m²•k),热阻0.036(m²•k)/w,对大肠杆菌、金葡萄球抑菌率均99.9%,白念珠菌抑菌率均99.6%、肺炎杆菌的抑菌率99.5%,对流感病毒抗病毒活性值3.6,抗病毒活性率99.8%,极限氧指数37.8%,阴燃时间和续燃时间均为0S,损坏长度90cm。
实施例 4
在本实施例中,采用纳米二氧化钼、纳米氧化锌、纳米氧化亚铜、三聚氰胺磷酸酯作为改性剂,纳米二氧化钼、纳米氧化锌、纳米氧化亚铜粉体的平均粒径均控制在100nm、300nm、200nm,先采用球磨法机械搅拌,通过真空高温振动球磨机对纳米二氧化钼使用十二烷基苯磺酸表面活性剂表面修饰,对纳米氧化锌、纳米氧化铜使用硬脂酸复配体进行表面你修饰,采用旋喷式等离子喷涂机,使用ArC 3H 5对三聚氰胺磷酸酯低温等离子表面修饰,然后采用球磨法机械搅拌分次进行PBT包覆复合,按照制备复合母粒总质量的45%向真空高温振动球磨机内放入PBT切片,在搅拌的状态下升温至269℃,当PBT完全熔融后,按照制备复合母粒总量的8.0%向PBT加入纳米二氧化钼粉体,高温球磨,机械搅拌36min后,加入复合母粒总量的4.0%的纳米氧化亚铜粉体,高温球磨,机械搅拌33min后,加入复合母粒总量4.0%的氧化锌,球磨39min后,加入复合母粒总量的8.0%三聚氰胺磷酸酯,球磨33min,最后加入复合母粒总量的31%的PET切片,球磨搅拌37min 后,进行拉条、聚带、水冷,切粒制得有效成份24%多重功能性复合母粒。
在现有的纺丝设备上,以PET切片为原料,熔融添加13%的多重功能性复合母粒进行共混纺丝,纺丝温度275℃,纺丝速度2500m/min,制得265dtex/48f涤纶光谱发热阻燃抗菌纤维POY,然后在巴马格EFK-1000V型假捻变形机进行加弹后加工制得167dtex/48f涤纶光谱发热阻燃抗菌多功能纤维DTY,其织物与常规167dtex/48f涤纶纤维织物相比,在光照5min时温度差高出18℃,光照10min时,温差高出20℃,远红外发射率99.0%,辐射升温3.5℃,克罗值0.55,传热系数18.9 W/(m²•k),热阻小于0.037(m²•k)/w对大肠杆菌、金葡萄球抑菌率均99.8%,白念珠菌抑菌率均99.5%、肺炎杆菌的抑菌率99.4%,对流感病毒抗病毒活性值3.9,抗病毒活性率99.7%,极限氧指数35.7%,阴燃时间和续燃时间均为0,损坏长度91cm。
实施例 5
在本实施例中,采用纳米二氧化钼、纳米氧化锌、纳米氧化亚铜、三聚氰胺磷酸酯作为改性剂,纳米二氧化钼、纳米氧化锌、纳米氧化亚铜粉体的平均粒径均控制在150nm、200nm、270nm,先采用球磨法机械搅拌,通过真空高温振动球磨机对纳米二氧化钼使用十二烷基苯磺酸表面活性剂表面修饰,对纳米二氧化锌、纳米氧化铜使用硬脂酸复配体进行表面你修饰,采用旋喷式等离子喷涂机,使用ArC 3H 5对三聚氰胺磷酸酯低温等离子表面修饰,然后采用球磨法机械搅拌分次进行PBT包覆复合,按照制备复合母粒总质量的28%向真空高温振动球磨机内放入PBT切片,在搅拌的状态下升温至272℃,当PBT完全熔融后,按照制备复合母粒总量的9.0%向PBT加入纳米二氧化钼粉体,高温球磨,机械搅拌40min后,加入复合母粒总量的4.5%的纳米二氧化锌粉体,高温球磨,机械搅拌30min后,再加入复合母粒总量的4.5%的纳米氧化亚铜,球磨34min后,加入复合母粒总量的9.0%三聚氰胺磷酸酯,球磨36min,最后加入复合母粒总量的28%的PET切片,球磨搅拌38min 后,进行拉条、聚带、水冷,切粒制得27%多重功能性复合母粒。
在现有的纺丝设备上,以PET切片为原料,熔融添加12%的多重功能性复合母粒进行共混纺丝,纺丝温度280℃,纺丝速度2700m/min,制得125dtex/772F涤纶光谱发热阻燃抗菌纤维POY,然后在巴马格EFK-1000V型假捻变形机进行加弹后加工制得83dtex/72F涤纶光谱发热阻燃抗菌多功能纤维DTY,其织物与常规83dtex/72f涤纶纤维织物相比,在光照5min时温度差高出16℃,光照10min时,温差高出19℃,远红外发射率98.6%,辐射升温3.3℃,克罗值0.55,传热系数18.9W/(m²•k),热阻小于0.042(m²•k)/w,对大肠杆菌、金葡萄球抑菌率均99.9%,白念珠菌抑菌率均99.5%、肺炎杆菌的抑菌率99.3%,对流感病毒抗病毒活性值2.9,抗病毒活性率99.4%,极限氧指数36.8%,阴燃时间和续燃时间均为0S,损坏长度96cm。
综上所述,本发明提供的光谱发热阻燃抗菌多功能纤维及其制备方法,使得制备的纤维及其织物具有光谱发热、阻燃、抗菌、抗病毒等多重功能性,其织物与现有的织物对比,光照5-10min,温差高出15-20℃,远红外发射率大于98%,辐射升温大于3.0℃,克罗值大于0.5,传热系数大于18.0W/(m²•k),热阻小于0.05(m²•k)/w,对大肠杆菌、金葡萄球、白念珠菌、肺炎杆菌的抑菌率均大于99.0%,对流感以及冠状病毒等具有较好的抗病毒效果,抗病毒活性值大于2.5,抗病毒活性率大于99.5%,极限氧指数大于35%,阴燃时间和续燃时间均为0,损坏长度90-100cm,值得广泛应用。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种光谱发热阻燃抗菌多功能纤维,其特征在于,以质量%计,所述多功能纤维包含10-12%的含水率在30-50ppm的复合母粒、88-90%的含水率在25ppm-30ppm的聚对苯二甲酸乙二醇酯或含水率在50-70ppm的聚己内酰胺6高聚物。
  2. 根据权利要求1所述的一种光谱发热阻燃抗菌多功能纤维,其特征在于,以质量%计,所述复合母粒包含40-50%的含水率在23ppm-27ppm的聚对苯二甲酸丁二醇酯、6.7-10.0%的纳米二氧化钼、3.3-5.0%的纳米氧化锌、3.3-5.0%的纳米氧化亚铜、6.7-10.0%的含水率在25ppm-30ppm的三聚氰胺磷酸酯。
  3. 一种光谱发热阻燃抗菌多功能纤维的制备方法,其特征在于,包括如下步骤:
    S1、改性剂处理:称取所需物料,对改性剂进行表面修饰;
    S2、复合母粒制取:无机改性剂和有机改性剂依次通过球磨法机械搅拌,并且使用聚对苯二甲酸丁二醇酯分别进行分层包覆处理;包覆处理后的改性剂分散到聚对苯二甲酸乙二醇酯或聚己内酰胺6熔体中,获得复合母粒;
    S3、纤维制备:采用纺丝及加弹工艺制备出光谱发热阻燃抗菌多功能纤维;
    所述无机改性剂为纳米二氧化钼、纳米氧化锌、纳米氧化亚铜,所述有机改性剂为三聚氰胺磷酸酯。
  4. 根据权利要求3所述的一种光谱发热阻燃抗菌多功能纤维的制备方法,其特征在于,所述纳米二氧化钼、纳米氧化锌、纳米氧化亚铜的粉体平均粒径控制在100-400nm。
  5. 根据权利要求3所述的一种光谱发热阻燃抗菌多功能纤维的制备方法,其特征在于,在步骤S1中,先对无机改性剂进行表面修饰,具体步骤为:采用球磨法机械搅拌的方式对纳米二氧化钼使用十二烷基苯磺酸表面活性剂表面修饰,对纳米氧化锌以及纳米氧化亚铜使用硬脂酸复配体表面修饰,对三聚氰胺磷酸酯使用旋喷等离子喷涂机进行ArC3H5低温等离子表面修饰。
  6. 根据权利要求3所述的一种光谱发热阻燃抗菌多功能纤维的制备方法,其特征在于,在步骤S2中,包覆温度为265-275℃,每一种改性剂加入球石研磨机后包覆时间为30-50min。
  7. 根据权利要求3所述的一种光谱发热阻燃抗菌多功能纤维的制备方法,其特征在于,所述纳米二氧化钼、纳米氧化锌、纳米氧化亚铜、三聚氰胺磷酸酯的质量比为2:1:1:2。
PCT/CN2021/136222 2021-02-23 2021-12-08 一种光谱发热阻燃抗菌多功能纤维及其制备方法 WO2022179240A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/920,393 US20240102205A1 (en) 2021-02-23 2021-12-08 Multifunctional fiber with full-spectrum infrared radiation, flame retardant and antibacterial functions and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110204345.9 2021-02-23
CN202110204345.9A CN112962169B (zh) 2021-02-23 2021-02-23 一种光谱发热阻燃抗菌多功能纤维及其制备方法

Publications (1)

Publication Number Publication Date
WO2022179240A1 true WO2022179240A1 (zh) 2022-09-01

Family

ID=76285832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136222 WO2022179240A1 (zh) 2021-02-23 2021-12-08 一种光谱发热阻燃抗菌多功能纤维及其制备方法

Country Status (3)

Country Link
US (1) US20240102205A1 (zh)
CN (1) CN112962169B (zh)
WO (1) WO2022179240A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112962169B (zh) * 2021-02-23 2021-10-08 浙江桐昆新材料研究院有限公司 一种光谱发热阻燃抗菌多功能纤维及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100221969A1 (en) * 2007-11-07 2010-09-02 Noveko Trading 2008 Llc Functional fiber, preparation method thereof and fabric made of it
CN103147164A (zh) * 2012-04-03 2013-06-12 陈曦 一种抗菌高效共混酯纤维及其制备方法
US20150292115A1 (en) * 2012-11-01 2015-10-15 Sung Jin Oh Preparation method for multifunctional polyester fibre and multifunctional polyester fibre prepared thereby
CN108660538A (zh) * 2018-06-08 2018-10-16 佛山市南海区佳妍内衣有限公司 一种抗菌型多功能聚酯纤维
CN112195531A (zh) * 2020-10-08 2021-01-08 张志明 一种阻燃抗菌抗病毒纤维及其制备方法
CN112962169A (zh) * 2021-02-23 2021-06-15 浙江桐昆新材料研究院有限公司 一种光谱发热阻燃抗菌多功能纤维及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1032875C (zh) * 1992-09-28 1996-09-25 营口化学纤维厂 聚酰胺类抗菌防臭纤维及其制造方法
JP2001055624A (ja) * 1999-08-09 2001-02-27 Unitika Ltd 抗菌性ポリアミド異繊度混繊糸及びその製造方法
JP2003073922A (ja) * 2001-08-31 2003-03-12 Unitica Fibers Ltd 染色性、耐洗濯性に優れた抗菌性ポリアミド繊維、抗菌性ポリアミド捲縮加工糸、抗菌性ポリアミド織編物及び抗菌性ポリアミド繊維の製造方法
JP2007254915A (ja) * 2006-03-23 2007-10-04 Teijin Techno Products Ltd 難燃性に優れたメタ型芳香族ポリアミド繊維
KR20080062863A (ko) * 2006-12-29 2008-07-03 주식회사 효성 난연성 폴리에스터 이형단면사 및 그 제조방법
CN105601112B (zh) * 2015-12-29 2019-03-29 广东美的厨房电器制造有限公司 远红外搪瓷材料及其制备方法和应用
CN111534885A (zh) * 2020-05-16 2020-08-14 许昌鸿洋生化实业发展有限公司 一种抗菌阻燃的皮芯涤棉复合假发纤维及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100221969A1 (en) * 2007-11-07 2010-09-02 Noveko Trading 2008 Llc Functional fiber, preparation method thereof and fabric made of it
CN103147164A (zh) * 2012-04-03 2013-06-12 陈曦 一种抗菌高效共混酯纤维及其制备方法
US20150292115A1 (en) * 2012-11-01 2015-10-15 Sung Jin Oh Preparation method for multifunctional polyester fibre and multifunctional polyester fibre prepared thereby
CN108660538A (zh) * 2018-06-08 2018-10-16 佛山市南海区佳妍内衣有限公司 一种抗菌型多功能聚酯纤维
CN112195531A (zh) * 2020-10-08 2021-01-08 张志明 一种阻燃抗菌抗病毒纤维及其制备方法
CN112962169A (zh) * 2021-02-23 2021-06-15 浙江桐昆新材料研究院有限公司 一种光谱发热阻燃抗菌多功能纤维及其制备方法

Also Published As

Publication number Publication date
CN112962169A (zh) 2021-06-15
CN112962169B (zh) 2021-10-08
US20240102205A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
EP3626758B1 (en) Graphene composite material and preparation method therefor
CN102643519B (zh) 一种超细聚酯纤维用纳米抗紫外功能母粒的制备方法
CN101629335B (zh) 一种抗紫外、抗菌、阻燃涤纶纤维及其制备方法与应用
CN107699980B (zh) 一种抗菌除臭锦纶6纤维及其制备方法
CN103409843A (zh) 具有抗紫外线功能的锦纶纤维的制备方法
CN104294398B (zh) 一种制备防熔滴聚酯纤维的方法
WO2022179240A1 (zh) 一种光谱发热阻燃抗菌多功能纤维及其制备方法
CN112430865B (zh) 一种浅色铜掺杂二氧化钛涤纶纤维的制备方法和产品及其应用
CN105256399A (zh) 一种低熔点功能性热粘合聚酰胺纤维长丝
CN114351280A (zh) 一种含气凝胶抗菌聚酯纤维的制备方法
CN114574996B (zh) 阻燃复合型涤纶长丝及其加工工艺
CN106757511B (zh) 一种含高分散性石墨烯片晶及液相表面导电膜的改性锦纶纤维及其制备工艺
CN109267168A (zh) 一种复合抗菌聚酯短纤维及其制备方法
TWI598482B (zh) 纖維、纖維母粒及其製造方法
CN105332086B (zh) 一种介孔磷酸锆负载纳米银抗菌聚乳酸纤维的制备方法
CN104047069A (zh) 一种光致变色纤维的制造方法
CN113201803A (zh) 一种气凝胶改性锦纶长丝及其制备方法
CN102560728A (zh) 一种抗紫外和阻燃型涤纶纤维及其制备方法与应用
CN111826740A (zh) 抗菌阻燃纤维防护服及其制备方法
CN111155199A (zh) 一种石墨烯复合纤维制备方法
CN113802212B (zh) 一种阻燃纤维及其制备方法以及阻燃面料
CN113527850A (zh) 一种凉感功能母粒、凉感纤维及其制备方法和应用
CN110358185A (zh) 改性玄武岩纤维增强聚丙烯及其制备方法
CN111234381A (zh) 一种抗菌母粒及抗菌纱线
CN111087630A (zh) 一种母粒的加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927664

Country of ref document: EP

Kind code of ref document: A1