WO2022179219A1 - 压电传感器及触觉反馈装置 - Google Patents

压电传感器及触觉反馈装置 Download PDF

Info

Publication number
WO2022179219A1
WO2022179219A1 PCT/CN2021/133249 CN2021133249W WO2022179219A1 WO 2022179219 A1 WO2022179219 A1 WO 2022179219A1 CN 2021133249 W CN2021133249 W CN 2021133249W WO 2022179219 A1 WO2022179219 A1 WO 2022179219A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
electrode
insulating layer
layer
via hole
Prior art date
Application number
PCT/CN2021/133249
Other languages
English (en)
French (fr)
Inventor
陈右儒
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP21927643.3A priority Critical patent/EP4163986A4/en
Priority to CN202180003572.3A priority patent/CN115250640A/zh
Publication of WO2022179219A1 publication Critical patent/WO2022179219A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • H10N30/878Conductive materials the principal material being non-metallic, e.g. oxide or carbon based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/875Further connection or lead arrangements, e.g. flexible wiring boards, terminal pins
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings

Definitions

  • the present disclosure relates to the field of sensor technology, and in particular, to a piezoelectric sensor and a tactile feedback device.
  • Haptics is the focus of current technology development. Specifically, haptic feedback enables terminals to interact with the human body through touch. Haptic feedback can be divided into two categories, one is vibration feedback, and the other is tactile reproduction technology.
  • Surface tactile reproduction technology can sense the characteristics of objects by touching the screen with bare fingers, and realize efficient and natural interaction in multimedia terminals.
  • the surface roughness of the object interacts with the surface of the skin (fingertip), and different frictional forces are formed due to different surface structures. Therefore, by controlling the friction force of the surface, the simulation of different touch/tactile sensations can be realized.
  • the embodiments of the present disclosure provide a piezoelectric sensor and a tactile feedback device, and the specific solutions are as follows:
  • an organic insulating layer located on the side of the piezoelectric device away from the base substrate; the organic insulating layer has a first via hole, and the orthographic projection of the first via hole on the base substrate is the same as the Orthographic projections of the piezoelectric device on the base substrate overlap each other;
  • an inorganic insulating layer located on a side of the organic insulating layer away from the base substrate; the inorganic insulating layer and the first via hole at least partially do not overlap;
  • the wiring layer located on the side of the inorganic insulating layer away from the base substrate; the wiring layer includes a wiring, and one end of the wiring is electrically connected to the piezoelectric device through at least part of the first via hole .
  • the piezoelectric device includes: a first electrode located between the base substrate and the organic insulating layer, located in the a piezoelectric layer between the first electrode and the organic insulating layer, and a second electrode between the piezoelectric layer and the organic insulating layer;
  • the inorganic insulating layer covers the sidewall of the first via hole and extends to contact the second electrode.
  • the contact boundary between the inorganic insulating layer and the second electrode is a first boundary
  • the contact boundary between the organic insulating layer and the second electrode is a second boundary
  • the distance between the first boundary and the second boundary is greater than 30% of the thickness of the piezoelectric layer and less than 60% of the thickness of the piezoelectric layer.
  • the piezoelectric device includes: a first electrode located between the base substrate and the organic insulating layer, located in the a piezoelectric layer between the first electrode and the organic insulating layer, and a second electrode between the piezoelectric layer and the organic insulating layer;
  • the inorganic insulating layer covers the sidewall of the first via hole and covers the second electrode exposed by the first via hole, and the portion of the inorganic insulating layer covering the second electrode has at least one second via hole , the wiring layer is electrically connected to the second electrode through the first via hole and the second via hole.
  • the above-mentioned piezoelectric sensor provided in the embodiment of the present disclosure further includes: a binding electrode provided in the same layer as the first electrode, and the binding electrode is close to the base substrate
  • the binding electrode is used to connect the driving voltage input terminal, and the voltage signal input by the driving voltage input terminal is an AC voltage signal; the other end of the trace is arranged on the inorganic insulating layer and the the third via hole on the organic insulating layer is electrically connected to the binding electrode;
  • It also includes: a lead electrode arranged on the same layer as the first electrode, the lead electrode is electrically connected to the first electrode, the lead electrode is used to connect a ground voltage input terminal, and the voltage input by the ground voltage input terminal
  • the signal is a ground voltage signal.
  • the number of the piezoelectric devices is multiple, and the multiple piezoelectric device arrays are arranged on the base plate.
  • the first electrodes of the piezoelectric devices located in the same column communicate with each other, and the second electrodes of the piezoelectric devices located in the same column are all connected to the same trace of the trace layer.
  • the number of the inorganic insulating layers is one layer.
  • the material of the inorganic insulating layer includes SiO 2 , Al 2 O 3 or Si 3 N 4 .
  • the inorganic insulating layer includes at least two sub-layers arranged in layers, and the materials of the two sub-layers are different.
  • the material of each of the sub-layers includes SiO 2 , Al 2 O 3 or Si 3 N 4 .
  • the shape of the wiring layer is a grid-like structure, and the material of the wiring layer is Ti/Ni/Au, Ti /Au or Ti/Al/Ti.
  • the thickness of the inorganic insulating layer is 100 nm ⁇ 300 nm.
  • the thickness of the piezoelectric layer is 500 nm ⁇ 2000 nm.
  • the piezoelectric layer includes lead zirconate titanate, aluminum nitride, zinc oxide, barium titanate, lead titanate, niobate At least one of potassium, lithium niobate, lithium tantalate, and lanthanum silicate.
  • an embodiment of the present disclosure also provides a haptic feedback device, including the piezoelectric sensor according to any one of the above-mentioned embodiments of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a piezoelectric sensor provided in the related art
  • Fig. 2 is the scanning electron microscope schematic diagram of piezoelectric layer and organic insulating layer in Fig. 1;
  • Figure 3 is a schematic diagram of the effect of piezoelectric sensor vibration
  • FIG. 4 is a schematic structural diagram of a piezoelectric sensor according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another piezoelectric sensor provided by an embodiment of the present disclosure.
  • 6A is a schematic top view of a part of the film layer in the piezoelectric device
  • FIG. 6B is a partially enlarged schematic diagram in FIG. 6A;
  • FIG. 7 is a schematic structural diagram of another piezoelectric sensor provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another piezoelectric sensor provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic plan view of a piezoelectric sensor according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic plan view of a first electrode provided by an embodiment of the present disclosure.
  • FIG. 11 is a schematic plan view of the insulating layer removal part provided in an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a plane structure of a wiring layer provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic plan view of a piezoelectric layer provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic plan view of a second electrode according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic plan view of the structure of a completed piezoelectric layer provided by an embodiment of the present disclosure.
  • FIG. 16 is a schematic plan view of the structure of the completed second electrode according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic plan view of the structure of the completed wiring layer according to an embodiment of the present disclosure.
  • FIG. 19 is a flowchart of a method for fabricating a piezoelectric device according to an embodiment of the present disclosure.
  • Thin-film piezoelectric materials have high dielectric constant and transparency, making them ideal for vibrator structures for screen integration.
  • lead zirconate titanate piezoelectric ceramics PZT are widely used due to their excellent piezoelectric properties.
  • a PZT piezoelectric sensor including a base substrate 1 and a bottom electrode 2, a piezoelectric layer 3, a top electrode 4, an insulating substrate 1 and a bottom electrode 2, a piezoelectric layer 3, a top electrode 4, an insulating layer, and Layer 5 and wiring layer 6, the wiring layer 6 is electrically connected to the top electrode 4 through the via hole passing through the insulating layer 5, and the material of the insulating layer 5 is an inorganic material.
  • an insulating layer 5 needs to be provided between the top electrode 4 and the wiring layer 6 for isolation, but in the process of making the piezoelectric layer 3 (PZT), especially when wet etching is used to make thick film PZT,
  • the piezoelectric layer 3 is very easy to form a chamfered structure, so in the related art, an organic insulating material is used to make the insulating layer 5 in FIG. 1 , and the organic insulating layer 5 can fill the chamfer of the piezoelectric layer 3 . As shown in FIG.
  • the material of the wiring layer 6 is generally a metal material, and the adhesion between the metal material and the organic material is not good, and it is easy to cause the wiring layer 6 to interact with the organic material.
  • an embodiment of the present disclosure provides a piezoelectric sensor, as shown in FIG. 4 and FIG. 5 , including:
  • At least one piezoelectric device 20 is located on the base substrate 10; FIG. 4 and FIG. 5 both take one piezoelectric device 20 as an example for description;
  • the organic insulating layer 30 is located on the side of the piezoelectric device 20 away from the base substrate 10; the organic insulating layer 30 has a first via hole V1, and the orthographic projection of the first via hole V1 on the base substrate 10 is on the side of the piezoelectric device 20.
  • the orthographic projections on the base substrate 10 overlap each other;
  • the inorganic insulating layer 40 is located on the side of the organic insulating layer 30 away from the base substrate 10; the inorganic insulating layer 40 and the first via hole V1 at least partially do not overlap;
  • the wiring layer 50 is located on the side of the inorganic insulating layer 40 away from the base substrate 10; the wiring layer 50 includes a wiring, one end of which is electrically connected to the piezoelectric device 20 through at least part of the first via V1.
  • the inorganic insulating layer 40 by disposing the inorganic insulating layer 40 between the wiring layer 50 and the organic insulating layer 30, due to the strong adhesion between the inorganic insulating layer 40 and the wiring layer 50, the organic
  • the inorganic insulating layer 40 can solve the problem of poor adhesion between the organic insulating layer 30 and the wiring layer 50, thereby The problem of peeling off of the wiring layer 50 can be prevented, thereby avoiding the problem of the wiring layer 50 being blown off and generating high heat under voltage driving.
  • the base substrate can be a substrate made of glass, a substrate made of silicon or silicon dioxide (SiO2), a substrate made of sapphire, or a substrate made of metal crystal
  • the substrate made of a circle is not limited here, and those skilled in the art can set the substrate substrate according to actual application requirements.
  • the piezoelectric device 20 includes: a first electrode 21 located between the base substrate 10 and the organic insulating layer 30 . , the piezoelectric layer 22 between the first electrode 21 and the organic insulating layer 30 , and the second electrode 23 between the piezoelectric layer 22 and the organic insulating layer 30 .
  • the inorganic insulating layer 40 covers the sidewall of the first via hole V1 and extends to contact the second electrode 23 . Due to the influence of the manufacturing process, the cross section of the first via hole V1 along the thickness direction of the piezoelectric sensor is generally an inverted trapezoid structure, and the inorganic insulating layer 40 is arranged to cover the sidewall of the first via hole V1 and extend to contact the second electrode 23 . In this way, the inorganic insulating layer 40 has a buffering function in the first via hole V1, so that the wiring layer 50 produced subsequently will not be disconnected at the first via hole V1.
  • the contact boundary between the inorganic insulating layer 40 and the second electrode 23 is the first A boundary B1
  • the contact boundary between the organic insulating layer 30 and the second electrode 23 is the second boundary B2
  • the distance d between the first boundary B1 and the second boundary B2 may be greater than 30% of the thickness of the piezoelectric layer 22 and less than the piezoelectric 60% of layer 22 thickness.
  • the thickness of the piezoelectric layer 22 is generally 500 nm ⁇ 2000 nm, for example, the thickness of the piezoelectric layer is 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1000 nm, 1100 nm, 1200 nm, 1300 nm, 1400 nm, 15000 nm, 1600 nm, 1700 nm, 1800 nm , 1900nm or 2000nm.
  • d is greater than 180 nm and less than 360 nm; if the thickness of the piezoelectric layer 22 is 900 nm, then d is greater than 270 nm and less than 540 nm; the thickness of the piezoelectric layer 22 is Taking 1500 nm as an example, then d is greater than 450 nm and less than 900 nm; and so on.
  • the material of the wiring layer is generally a metal material
  • the material of the second electrode is generally indium tin oxide (ITO)
  • ITO indium tin oxide
  • the adhesion between the metal and ITO is not good.
  • electrical signal transmission cannot be performed due to peeling between electrodes.
  • the inorganic insulating layer 40 covers the sidewall of the first via V1 and the first via V1.
  • the second electrode 23 exposed by the via hole V1, the portion of the inorganic insulating layer 40 covering the second electrode 23 has at least one second via hole V2, and the wiring layer 50 communicates with the second via hole V1 and the second via hole V2 through the first via hole V1 and the second via hole V2.
  • the electrodes 23 are electrically connected. In this way, part of the wiring layer 50 and the exposed second electrode 23 is in contact with the inorganic insulating layer 40, and part is electrically connected to the second electrode 23 through the first via V1 and the second via V2.
  • the adhesion between the insulating layers 40 is strong, so the adhesion between the wiring layer 50 and the second electrode 23 can be improved on the basis of ensuring the electrical connection between the wiring layer 50 and the second electrode 23 .
  • the wiring layer 50 is electrically connected to the second electrode 23 through the second via hole V2, as shown in FIG. 6A and FIG. 6B .
  • a schematic top view of the hole V2 and the wiring layer 50, and FIG. 6B is an enlarged schematic diagram of the dotted frame in FIG. 6A.
  • the piezoelectric sensor is generally combined with a display device to achieve tactile reproduction.
  • the wiring layer 50 The shape of the grid-like structure can be a grid-like structure, and each grid line of the grid-like structure can be provided with a plurality of second via holes V2 corresponding to the underlying inorganic insulating layer 40, so that the wiring layer 50 can communicate with the first via V2 through the second via hole V2.
  • the two electrodes 23 are electrically connected.
  • the first electrode may include a plurality of patterned first electrodes, or may be a structure of a whole surface; the second electrode includes a plurality of patterned second electrodes.
  • the first electrode and the second electrode may be made of indium tin oxide (ITO), indium zinc oxide (IZO), and of course titanium gold (Ti-Au) Alloy, titanium-aluminum-titanium (Ti-Al-Ti) alloy, titanium-molybdenum (Ti-Mo) alloy, in addition, can also be made of titanium (Ti), gold (Au), silver (Ag), It is made of one of molybdenum (Mo), copper (Cu), tungsten (W), and chromium (Cr).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • Ti-Au titanium-aluminum-titanium
  • Ti-Mo titanium-molybdenum alloy
  • the material of the piezoelectric layer may be lead zirconate titanate (Pb(Zr,Ti)O 3 , PZT), or aluminum nitride (AlN), ZnO (zinc oxide), barium titanate (BaTiO) 3 ), at least one of lead titanate (PbTiO 3 ), potassium niobate (KNbO 3 ), lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), lanthanum gallium silicate (La 3 Ga 5 SiO 14 )
  • the material for making the piezoelectric layer can be specifically selected according to the actual use needs of those skilled in the art, which is not limited here.
  • the number of the inorganic insulating layers 40 may be one layer.
  • the material of the inorganic insulating layer 40 may include, but is not limited to, SiO 2 , Al 2 O 3 or Si 3 N 4 .
  • the inorganic insulating layer 40 may include at least two sub-layers (with the two sub-layers 41 and 42 as the Example), the materials of the two sublayers (41 and 42) are different.
  • the material of the outermost sub-layer 42 can be made of a material with better adhesion to the wiring layer 50 .
  • the material of each sub-layer (41 and 42) may include, but is not limited to, SiO 2 , Al 2 O 3 or Si 3 N 4 .
  • the material of the wiring layer 50 is Cr
  • the material of the outermost sub-layer 42 may be Si 3 N 4 .
  • FIG. 7 and FIG. 4 the difference between FIG. 7 and FIG. 4 is that the number of layers of the inorganic insulating layer 40 is different, and the rest of the structure is the same as that of FIG. 4 ; the difference between FIG. 8 and FIG. 5 is that the number of layers of the inorganic insulating layer 40 is different, and the rest of the structure is the same as that of FIG. 5 . ;
  • the specific structure description of FIG. 7 and FIG. 8 can refer to the description of FIG. 4 and FIG. 5 .
  • each piezoelectric device 20 may be independently driven, or the piezoelectric devices 20 in the same column may be driven in a row (column driving), or the piezoelectric devices 20 may be driven in a row. All piezoelectric devices 20 are driven as a whole, and the specific driving manner of the plurality of piezoelectric devices 20 is not limited in this embodiment. Subsequent embodiments will introduce the specific structure of the column driver in detail.
  • the plurality of piezoelectric devices 20 shown in FIG. 9 are arranged axially symmetrically on the base substrate 10 .
  • Nine rows of piezoelectric devices 20 are provided on the base substrate 10 .
  • the number of piezoelectric devices 20 located in odd-numbered columns is six, and the number of piezoelectric devices 20 located in even-numbered columns is two, which are located in the first row and the last row of the even-numbered column, respectively.
  • the number of piezoelectric devices 20 to be set in the piezoelectric sensor can be determined according to factors such as wiring space, and as many piezoelectric devices 20 can be set as possible if the wiring space allows.
  • the specific number of 20 is not limited.
  • the piezoelectric sensor further includes: a binding electrode 24 arranged on the same layer as the first electrode 21 , The binding electrode 24 is disposed close to the edge of the base substrate 10, and the binding electrode 24 is used to connect the driving voltage input terminal, the voltage signal input by the driving voltage input terminal is an AC voltage signal, and the other end of the trace is disposed on the inorganic insulating layer 40 through the and the third via V3 on the organic insulating layer 30 is connected to the binding electrode 24; the piezoelectric sensor further includes: a lead electrode 25 arranged on the same layer as the first electrode 21, the lead electrode 25 is electrically connected to the first electrode 21, and the lead electrode 25 is electrically connected to the first electrode 21.
  • the electrode 25 is used to connect the ground voltage input terminal, and the voltage signal input by the ground voltage input terminal is the ground voltage signal.
  • the ground voltage signal is input to the first electrode 21 through the ground voltage input terminal, and the AC voltage signal (V AC ) is applied to the second electrode 23 through the driving voltage input terminal, so that the first electrode 21 and the second electrode 23 An alternating electric field can be formed between them, and the frequency of the alternating electric field is the same as that of the alternating voltage signal.
  • the piezoelectric layer 22 is deformed and a vibration signal is generated.
  • the frequency of the vibration signal is the same as the frequency of the alternating electric field.
  • the base substrate 10 When the frequency of the vibration signal is close to or equal to the natural frequency of the substrate 10, the The base substrate 10 resonates, the amplitude increases, and a tactile feedback signal is generated. When a finger touches the surface of the base substrate 10 , the change of the friction force can be clearly felt. In practical applications, the friction force on the surface of the base substrate 10 can be adjusted by the resonance generated between the piezoelectric layer 22 and the base substrate 10 , thereby realizing the texture reproduction of the object on the surface of the base substrate 10 .
  • the first electrode 21 , the binding electrode 24 and the lead electrode 25 may be formed of the same material and the same patterning process.
  • the inorganic insulating layer 40 and the organic insulating layer 30 may be removed by coating the entire surface or after depositing the insulating layer material, and then removing the pattern area shown in FIG. 11 .
  • the purpose of arranging the organic insulating layer 30 is to cover part of the first electrode 21 to avoid short circuits with other structures through the wiring layer and to fill the chamfer of the piezoelectric layer 22 , and to form a first via V1 at the position of the second electrode 23 .
  • a third via V3 is formed at the position of the binding electrode 24, so that one end of the wiring in the wiring layer is connected to the second electrode 23 through the first via V1, and the other end of the wiring is connected to the binding electrode 24 through the The third via V3 is connected.
  • a lead electrode via hole 41 may also be formed at the position of the lead electrode 25, so that the external lead and the lead electrode 25 are connected by means of silver glue or the like.
  • FIG. 12 a schematic diagram of the structure of the wiring layer is shown.
  • the wiring 51 in the wiring layer 50 is used to connect the second electrode 23 to the bonding electrode 24 .
  • the first electrodes 21 of all piezoelectric devices 20 may be connected to each other.
  • the first electrodes 21 of the same column are set to be connected to each other, as shown in FIG. 10 . shown.
  • the piezoelectric layers 22 and the second electrodes 23 of each piezoelectric device 20 may be discrete. Referring to FIG. 13, a schematic structural diagram of the piezoelectric layers is shown, and FIG. 14 is a schematic structural diagram of the second electrode. This makes maintenance easier. For example, when a short circuit occurs in a certain piezoelectric device 20 , the second electrode 23 of the piezoelectric device 20 at the short circuit position can be isolated to prevent the short circuit point from affecting other piezoelectric devices 20 .
  • the edge of the second electrode 23 may be indented relative to the edge of the piezoelectric layer 22 .
  • the indentation of the edge of the second electrode 23 relative to the edge of the piezoelectric layer 22 is greater than or equal to 100 microns and less than or equal to 500 microns.
  • the indentation can be 150 microns.
  • the edge of the piezoelectric layer 22 may be set back relative to the edge of the first electrode 21 .
  • the first electrode 21 , the piezoelectric layer 22 , the second electrode 23 , the organic insulating layer 30 , the inorganic insulating layer 40 and the wiring layer 50 may be sequentially formed on the base substrate 10 .
  • FIG. 10 a schematic diagram of the plane structure of the first electrode is shown
  • FIG. 15 is a schematic diagram of the plane structure of the preparation of the piezoelectric layer
  • FIG. 16 is a schematic diagram of the plane structure of the preparation of the second electrode.
  • 17 shows a schematic diagram of the plane structure after the preparation of the wiring layer is completed. The schematic diagram of the cross-sectional structure at the position of the bold black line in FIG. 17 is shown in FIG. 1 .
  • the first electrodes 21 of the piezoelectric devices 20 located in the same column are connected to each other (as shown in FIG. 10 ), and the first electrodes 21 of the piezoelectric devices 20 located in the same column
  • the second electrodes 23 are all connected to the same trace 51 of the trace layer 50 (as shown in FIG. 12 ), that is, the same trace through the trace layer 50 between the second electrodes 23 of the piezoelectric devices 20 located in the same column
  • the lines 51 communicate with each other.
  • the piezoelectric devices 20 that communicate with each other between the first electrodes 21 and the second electrodes 23 in the same column can be driven as a whole, thereby realizing column driving.
  • all the second electrodes 23 may be communicated with each other through the wiring in the wiring layer 50 .
  • the material of the wiring layer may be Ti/Ni/Au, wherein Ti may be 10 nm, Ni may be 400 nm, and Au may be 100 nm;
  • the wire layer may be made of Ti/Au, where Ti may be 10 nm and Au may be 400 nm; or, the wiring layer may be Ti/Al/Ti, where Ti may be 10 nm and Al may be 300 nm.
  • the thickness of the inorganic insulating layer 40 may be 100 nm ⁇ 300 nm, for example, the inorganic insulating layer 40 may have a thickness of 100 nm to 300 nm. The thickness is 100nm, 200nm or 300nm.
  • the piezoelectric sensor provided by the embodiments of the present disclosure can be applied to fields such as medical treatment, automotive electronics, and motion tracking systems. It is especially suitable for the field of wearable devices, monitoring and treatment in vitro or implanted in the human body, or electronic skin for artificial intelligence and other fields. Specifically, piezoelectric sensors can be applied to brake pads, keyboards, mobile terminals, gamepads, vehicles, and other devices that can generate vibration and mechanical properties.
  • an embodiment of the present disclosure also provides a method for manufacturing the above piezoelectric sensor, as shown in FIG. 18 , including:
  • an organic insulating layer is formed on the side of the piezoelectric device away from the base substrate, the organic insulating layer has a first via hole, and the orthographic projection of the first via hole on the base substrate is the same as that of the piezoelectric device on the base substrate. The projections overlap each other;
  • an inorganic insulating layer is arranged between the wiring layer and the organic insulating layer.
  • the inorganic insulating layer can solve the problem of poor adhesion between the organic insulating layer and the wiring layer, so as to prevent the problem of stripping of the wiring layer, and then Avoid the problem of burnout and high heat generation of the trace layer under voltage driving.
  • forming a piezoelectric device may specifically include:
  • the first electrode may include a plurality of patterned first electrodes, or may be a whole-surface structure; the second electrode includes a plurality of patterned second electrodes.
  • a strong direct current electric field is applied to the piezoelectric material film layer, so that the electric domains in the piezoelectric material film layer are oriented and arranged along the direction of the electric field.
  • the patterned piezoelectric layer may be formed by means of dry coating (sputtering, Sputter) or wet coating (sol-gel, Sol-Gel).
  • an embodiment of the present disclosure further provides a haptic feedback device, including the piezoelectric sensor provided by the embodiment of the present disclosure. Since the principle of solving the problem of the tactile feedback device is similar to that of the aforementioned piezoelectric sensor, the implementation of the tactile feedback device can refer to the implementation of the aforementioned piezoelectric sensor, and the repetition will not be repeated.
  • the haptic feedback device can be any product or component with display or touch function, such as a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.
  • the above-mentioned tactile feedback device provided by the embodiments of the present disclosure may further include other functional structures well known to those skilled in the art, which will not be described in detail here.
  • the haptic feedback device can be combined with the touch screen, and the touch screen can determine the position touched by the human body, thereby generating the corresponding vibration waveform, amplitude and frequency, which can realize human-computer interaction.
  • the position of the human touch is determined by the piezoelectric sensor in the haptic feedback device, thereby generating the corresponding vibration waveform, amplitude and frequency, which can realize human-computer interaction.
  • the haptic feedback device can also be applied to fields such as medical treatment, automotive electronics, and motion tracking systems according to actual needs, which will not be described in detail here.
  • the embodiments of the present disclosure provide a piezoelectric sensor and a tactile feedback device.
  • the inorganic insulating layer By arranging an inorganic insulating layer between the wiring layer and the organic insulating layer, due to the strong adhesion between the inorganic insulating layer and the wiring layer, the On the basis of the organic insulating layer solving the chamfering problem of the piezoelectric layer of the piezoelectric device, the inorganic insulating layer can solve the problem of poor adhesion between the organic insulating layer and the wiring layer, thereby preventing the problem of stripping of the wiring layer. , so as to avoid the problem of burnout and high heat generation of the wiring layer under voltage driving.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • User Interface Of Digital Computer (AREA)
  • Pressure Sensors (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

本公开实施例提供了一种压电传感器及触觉反馈装置,该压电传感器包括:衬底基板;至少一个压电器件,位于衬底基板上;有机绝缘层,位于压电器件背离衬底基板的一侧,有机绝缘层具有第一过孔,第一过孔在衬底基板上的正投影与压电器件在衬底基板上的正投影相互交叠;无机绝缘层,位于有机绝缘层背离衬底基板的一侧,无机绝缘层与第一过孔至少部分不交叠;走线层,位于无机绝缘层背离衬底基板的一侧,走线层包括走线,走线的一端通过至少部分第一过孔与压电器件电连接。

Description

压电传感器及触觉反馈装置
相关申请的交叉引用
本申请要求在2021年2月26日提交中国专利局、PCT申请号为PCT/CN2021/078073、申请名称为“触觉反馈基板、触觉反馈装置及触觉反馈方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及传感器技术领域,特别涉及一种压电传感器及触觉反馈装置。
背景技术
触觉反馈(Haptics)为现今科技开发的重点,具体地,触觉反馈能够透过触觉,使终端跟人体产生交互。触觉反馈又可以分为两类,一类为振动反馈,一类为触觉再现技术。
表面触觉再现技术可以通过裸指触控屏幕来感知物体特性,在多媒体终端实现高效自然的交互,具有巨大的研究价值,因而得到国内外研究学者的广泛关注。表面触觉物理意义上,为物体表面粗糙度与皮肤(指尖)的表面产生作用,因表面结构不同而形成不同的摩擦力。因此透过控制表面摩擦力,即可实现不同触觉/触感之模拟。
发明内容
本公开实施例提供了一种压电传感器及触觉反馈装置,具体方案如下:
本公开实施例提供的一种压电传感器,包括:
衬底基板;
至少一个压电器件,位于所述衬底基板上;
有机绝缘层,位于所述压电器件背离所述衬底基板的一侧;所述有机绝 缘层具有第一过孔,所述第一过孔在所述衬底基板上的正投影与所述压电器件在所述衬底基板上的正投影相互交叠;
无机绝缘层,位于所述有机绝缘层背离所述衬底基板的一侧;所述无机绝缘层与所述第一过孔至少部分不交叠;
走线层,位于所述无机绝缘层背离所述衬底基板的一侧;所述走线层包括走线,走线的一端通过至少部分所述第一过孔与所述压电器件电连接。
在一种可能的实现方式中,在本公开实施例提供的上述压电传感器中,所述压电器件包括:位于所述衬底基板和所述有机绝缘层之间的第一电极,位于所述第一电极和所述有机绝缘层之间的压电层,以及位于所述压电层和所述有机绝缘层之间的第二电极;其中,
所述无机绝缘层覆盖所述第一过孔的侧壁且延伸至与所述第二电极接触。
在一种可能的实现方式中,在本公开实施例提供的上述压电传感器中,在所述第一过孔的同一侧壁处,所述无机绝缘层和所述第二电极的接触边界为第一边界,所述有机绝缘层和所述第二电极的接触边界为第二边界,所述第一边界和所述第二边界之间的距离大于所述压电层厚度的30%且小于所述压电层厚度的60%。
在一种可能的实现方式中,在本公开实施例提供的上述压电传感器中,所述压电器件包括:位于所述衬底基板和所述有机绝缘层之间的第一电极,位于所述第一电极和所述有机绝缘层之间的压电层,以及位于所述压电层和所述有机绝缘层之间的第二电极;其中,
所述无机绝缘层覆盖所述第一过孔的侧壁且覆盖所述第一过孔露出的第二电极,所述无机绝缘层中覆盖所述第二电极的部分具有至少一个第二过孔,所述走线层通过所述第一过孔和所述第二过孔与所述第二电极电连接。
在一种可能的实现方式中,在本公开实施例提供的上述压电传感器中,还包括:与所述第一电极同层设置的绑定电极,所述绑定电极靠近所述衬底基板的边缘设置,所述绑定电极用于连接驱动电压输入端,所述驱动电压输入端输入的电压信号为交流电压信号;所述走线的另一端通过设置在所述无 机绝缘层和所述有机绝缘层上的第三过孔与所述绑定电极电连接;
还包括:与所述第一电极同层设置的引线电极,所述引线电极与所述第一电极电连接,所述引线电极用于连接地电压输入端,所述地电压输入端输入的电压信号为接地电压信号。
在一种可能的实现方式中,在本公开实施例提供的上述压电传感器中,所述压电器件的数量为多个,多个所述压电器件阵列排布在所述衬底基板的一侧,位于同一列的各压电器件的第一电极之间相互连通,位于同一列的各压电器件的第二电极均连接至所述走线层的同一条走线。
在一种可能的实现方式中,在本公开实施例提供的上述压电传感器中,所述无机绝缘层的数量为一层。
在一种可能的实现方式中,在本公开实施例提供的上述压电传感器中,所述无机绝缘层的材料包括SiO 2、Al 2O 3或Si 3N 4
在一种可能的实现方式中,在本公开实施例提供的上述压电传感器中,所述无机绝缘层包括叠层设置的至少两个子层,所述两个子层的材料不同。
在一种可能的实现方式中,在本公开实施例提供的上述压电传感器中,各所述子层的材料包括SiO 2、Al 2O 3或Si 3N 4
在一种可能的实现方式中,在本公开实施例提供的上述压电传感器中,所述走线层的形状为网格状结构,所述走线层的材料为Ti/Ni/Au、Ti/Au或Ti/Al/Ti。
在一种可能的实现方式中,在本公开实施例提供的上述压电传感器中,所述无机绝缘层的厚度为100nm~300nm。
在一种可能的实现方式中,在本公开实施例提供的上述压电传感器中,所述压电层的厚度为500nm~2000nm。
在一种可能的实现方式中,在本公开实施例提供的上述压电传感器中,所述压电层包括锆钛酸铅、氮化铝、氧化锌、钛酸钡、钛酸铅、铌酸钾、铌酸锂、钽酸锂、硅酸镓镧中的至少一种。
相应地,本公开实施例还提供了一种触觉反馈装置,包括如本公开实施 例提供的上述任一项所述的压电传感器。
附图说明
图1为相关技术中提供的压电传感器的结构示意图;
图2为图1中压电层和有机的绝缘层的扫描电镜示意图;
图3为压电传感器震动的效果示意图;
图4为本公开实施例提供的一种压电传感器的结构示意图;
图5为本公开实施例提供的又一种压电传感器的结构示意图;
图6A为压电器件中部分膜层的俯视示意图;
图6B为图6A中的局部放大示意图;
图7为本公开实施例提供的又一种压电传感器的结构示意图;
图8为本公开实施例提供的又一种压电传感器的结构示意图;
图9为本公开实施例提供的一种压电传感器的平面结构示意图;
图10为本公开实施例提供的第一电极的平面结构示意图;
图11为本公开实施例提供的绝缘层去除部分的平面结构示意图;
图12为本公开实施例提供的走线层的平面结构示意图;
图13为本公开实施例提供的压电层的平面结构示意图;
图14为本公开实施例提供的第二电极的平面结构示意图;
图15为本公开施例提供的完成压电层制备的平面结构示意图;
图16为本公开实施例提供的完成第二电极制备的平面结构示意图;
图17为本公开实施例提供的完成走线层制备的平面结构示意图;
图18为本公开实施例提供的压电传感器的制作方法流程图;
图19为本公开实施例提供的压电器件的制作方法流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公 开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
薄膜压电材料具有高介电常数与透明的特性,非常适合用于屏幕集成的振动器结构。其中,锆钛酸铅压电陶瓷(PZT)由于优异的压电性能,目前应用的较多。相关技术中,如图1所示,图1为PZT压电传感器的结构,包括衬底基板1以及位于衬底基板1上依次层叠设置的底电极2、压电层3、顶电极4、绝缘层5和走线层6,走线层6通过贯穿绝缘层5的过孔与顶电极4电连接,绝缘层5的材料为无机材料。由于为避免短路问题,顶电极4与走线层6之间需要设置绝缘层5隔离,但制作压电层3(PZT)的工艺过程中,尤其是采用湿法刻蚀制作厚膜PZT时,压电层3非常容易形成倒角结构,因此相关技术中采用有机绝缘材料制作图1中的绝缘层5,有机的绝缘层5可以填充压电层3的倒角。如图2所示,图2为压电层3和有机的绝缘层5的扫描电镜(SEM)测试结构,可以看出有机的绝缘层5将压电层3的倒角填充。但是 采用有机的绝缘层5导致以下两个问题:(1)走线层6的材料一般为金属材料,金属材料与有机材料之间的黏附性不佳,极易发生走线层6与有机的绝缘层5之间发生剥离(peeling)的问题;(2)由于压电传感器主要用于高频震动激励用,利用逆压电效应,将底电极2接地,通过向顶电极4加载高频交流电压信号(V AC),实现对压电层3的高频交流电压信号的施加,从而产生高频振动,如图3所示,图3为压电传感器的震动效果示意图,压电传感器震动后,随着驱动电压的增大,振幅增大,走线层6发生peeling的风险也增高。由于走线层6本身不具机械强度,一旦走线层6发生peeling,在电压驱动下容易发生烧断并产生高热的问题,从而损坏压电传感器的性能。
有鉴于此,本公开实施例提供了一种压电传感器,如图4和图5所示,包括:
衬底基板10;
至少一个压电器件20,位于衬底基板10上;图4和图5均以一个压电器件20为例进行说明;
有机绝缘层30,位于压电器件20背离衬底基板10的一侧;有机绝缘层30具有第一过孔V1,第一过孔V1在衬底基板10上的正投影与压电器件20在衬底基板10上的正投影相互交叠;
无机绝缘层40,位于有机绝缘层30背离衬底基板10的一侧;无机绝缘层40与第一过孔V1至少部分不交叠;
走线层50,位于无机绝缘层40背离衬底基板10的一侧;走线层50包括走线,走线的一端通过至少部分第一过孔V1与压电器件20电连接。
本公开实施例提供的压电传感器,通过在走线层50和有机绝缘层30之间设置无机绝缘层40,由于无机绝缘层40与走线层50之间的粘附性较强,在有机绝缘层30解决压电器件20的压电层(后续介绍)的倒角问题的基础上,无机绝缘层40可以解决有机绝缘层30与走线层50之间粘附性不佳的问题,从而可以防止走线层50剥离的问题,进而避免走线层50在电压驱动下发生烧断并产生高热的问题。
在具体实施时,衬底基板可以为由玻璃制成的基板,还可以为由硅或二氧化硅(SiO2)制成的基板,还可以为由蓝宝石制成的基板,还可以为由金属晶圆制成的基板,在此不做限定,本领域技术人员可以根据实际应用需要来设置衬底基板。
在具体实施时,在本公开实施例提供的上述压电传感器中,如图4和图5所示,压电器件20包括:位于衬底基板10和有机绝缘层30之间的第一电极21,位于第一电极21和有机绝缘层30之间的压电层22,以及位于压电层22和有机绝缘层30之间的第二电极23。
在具体实施时,在本公开实施例提供的上述压电传感器中,如图4所示,无机绝缘层40覆盖第一过孔V1的侧壁且延伸至与第二电极23接触。由于制作工艺的影响,第一过孔V1沿压电传感器厚度方向的截面一般为倒梯形结构,将无机绝缘层40设置成覆盖第一过孔V1的侧壁且延伸至与第二电极23接触,这样无机绝缘层40在第一过孔V1内具有缓冲作用,使得后续制作的走线层50在第一过孔V1处不会发生断线的问题。
在具体实施时,在本公开实施例提供的上述压电传感器中,如图4所示,在第一过孔V1的同一侧壁处,无机绝缘层40和第二电极23的接触边界为第一边界B1,有机绝缘层30和第二电极23的接触边界为第二边界B2,第一边界B1和第二边界B2之间的距离d可以大于压电层22厚度的30%且小于压电层22厚度的60%。具体地,压电层22的厚度一般为500nm~2000nm,例如,压电层的厚度为500nm、600nm、700nm、800nm、900nm、1000nm、1100nm、1200nm、1300nm、1400nm、15000nm、1600nm、1700nm、1800nm、1900nm或2000nm。例如,以压电层22的厚度为600nm为例,则d大于180nm且小于360nm;以压电层22的厚度为900nm为例,则d大于270nm且小于540nm;以压电层22的厚度为1500nm为例,则d大于450nm且小于900nm;等等。
在具体实施时,由于走线层的材料一般为金属材料,第二电极的材料一般为氧化铟锡(ITO),金属与ITO之间的粘附性不佳,为了防止走线层与第二电极之间发生剥离导致无法进行电信号传输的问题,在本公开实施例提供 的上述压电传感器中,如图5所示,无机绝缘层40覆盖第一过孔V1的侧壁且覆盖第一过孔V1露出的第二电极23,无机绝缘层40中覆盖第二电极23的部分具有至少一个第二过孔V2,走线层50通过第一过孔V1和第二过孔V2与第二电极23电连接。这样走线层50与露出的第二电极23之间部分与无机绝缘层40接触,部分通过第一过孔V1和第二过孔V2与第二电极23电连接,由于走线层50与无机绝缘层40之间的粘附性较强,因此可以在保证走线层50与第二电极23电连接的基础上,提高走线层50与第二电极23之间的粘附性。
在具体实施时,为了更清楚的示意图5中走线层50通过第二过孔V2与第二电极23电连接,如图6A和图6B所示,图6A为第二电极23、第二过孔V2和走线层50的俯视示意图,图6B为图6A中虚线框内的放大示意图,压电传感器一般与显示器件结合实现触觉再现,为了提高压电传感器的透过率,走线层50的形状可以为网格状结构,网格状结构的每一条网格线对应下方的无机绝缘层40可以设置多个第二过孔V2,以实现走线层50通过第二过孔V2与第二电极23电连接。
需要说明的是,第一电极可以包括图案化的多个第一电极,也可以为一整面的结构;第二电极包括图案化的多个第二电极。
在具体实施过程中,第一电极和第二电极可以是由氧化铟锡(ITO)制成,还可以是由氧化铟锌(IZO)制成,当然还可以是由钛金(Ti-Au)合金、钛铝钛(Ti-Al-Ti)合金、钛钼(Ti-Mo)合金中的一种制成,此外,还可以是由钛(Ti)、金(Au)、银(Ag)、钼(Mo)、铜(Cu)、钨(W)、铬(Cr)中的一种制成,本领域技术人员可以根据实际应用需要来设置上述第一电极和第二电极,在此不做限定。
在具体实施时,压电层的材料可以为锆钛酸铅(Pb(Zr,Ti)O 3,PZT),还可以为氮化铝(AlN)、ZnO(氧化锌)、钛酸钡(BaTiO 3)、钛酸铅(PbTiO 3)、铌酸钾(KNbO 3)、铌酸锂(LiNbO 3)、钽酸锂(LiTaO 3)、硅酸镓镧(La 3Ga 5SiO 14)中的至少一种,具体可以根据本领域技术人员的实际使用需要来选择制作压 电层的材料,在此不做限定。其中,在使用PZT制成压电层时,由于PZT具有高压电系数,保证了相应的压电传感器的压电特性,可以将相应的压电传感器应用到触觉反馈器件中,而且PZT具有较高的透光性,在将其集成到显示器件中时,不影响显示器件的显示质量。
在具体实施时,在本公开实施例提供的上述压电传感器中,如图4和图5所示,无机绝缘层40的数量可以均为一层。具体地,无机绝缘层40的材料可以包括但不限于SiO 2、Al 2O 3或Si 3N 4
在具体实施时,在本公开实施例提供的上述压电传感器中,如图7和图8所示,无机绝缘层40可以包括叠层设置的至少两个子层(以两个子层41和42为例),两个子层(41和42)的材料不同。这样可以根据走线层50的材料,将最外侧的子层42的材料采用与走线层50的粘附性较好的材料。具体地,各子层(41和42)的材料可以包括但不限于SiO 2、Al 2O 3或Si 3N 4。例如走线层50的材料为Cr,则最外侧的子层42的材料可以为Si 3N 4
具体地,图7与图4的区别在于无机绝缘层40的层数不同,其余结构与图4相同;图8与图5的区别在于无机绝缘层40的层数不同,其余结构与图5相同;图7和图8的具体结构描述可以参见图4和图5的描述。
在具体实施时,在本公开实施例提供的上述压电传感器中,如图9所示,压电器件20的数量可以为多个,多个压电器件20阵列排布在衬底基板10的一侧。当压电器件20的数量为多个时,可以对每个压电器件20分别进行独立驱动,也可以以列为单位对同一列的压电器件20进行整列驱动(列驱动),还可以对所有的压电器件20进行整体驱动,本实施例对多个压电器件20的具体驱动方式不作限定。后续实施例会详细介绍列驱动的具体结构。
图9中示出的多个压电器件20在衬底基板10上为轴对称排布。衬底基板10上设置有9列压电器件20。其中,位于奇数列的压电器件20的数量为六个,位于偶数列的压电器件20的数量为两个,分别位于该偶数列的首行和尾行。具体地,压电传感器中所需设置的压电器件20的数量可以根据布线空间等因素确定,在布线空间允许的情况下可以尽量多地设置压电器件20,本 公开实施例对压电器件20的具体数量不作限定。
在具体实施时,在本公开实施例提供的上述压电传感器中,如图4、图5和图10所示,压电传感器还包括:与第一电极21同层设置的绑定电极24,绑定电极24靠近衬底基板10的边缘设置,绑定电极24用于连接驱动电压输入端,驱动电压输入端输入的电压信号为交流电压信号,走线的另一端通过设置在无机绝缘层40和有机绝缘层30上的第三过孔V3与绑定电极24连接;压电传感器还包括:与第一电极21同层设置的引线电极25,引线电极25与第一电极21电连接,引线电极25用于连接地电压输入端,地电压输入端输入的电压信号为接地电压信号。在具体实施时,通过地电压输入端向第一电极21输入接地电压信号,通过驱动电压输入端向第二电极23加载交流电压信号(V AC),这样在第一电极21和第二电极23之间可以形成交变电场,交变电场的频率与交流电压信号的频率相同。在交变电场的作用下,压电层22发生形变并产生振动信号,该振动信号的频率与交变电场的频率相同,当振动信号的频率接近或等于衬底基板10的固有频率时,衬底基板10发生共振,振幅增强,产生触觉反馈信号,当手指触摸衬底基板10的表面时,可以明显感受到摩擦力的变化。在实际应用中,可以通过压电层22与衬底基板10之间产生的共振来调节衬底基板10表面的摩擦力,从而在衬底基板10的表面实现物体的纹理再现。
本实施例中,第一电极21、绑定电极24以及引线电极25可以材料相同且同一构图工艺形成。
其中,无机绝缘层40和有机绝缘层30可以通过整面涂覆或者沉积完绝缘层材料后,对图11所示的图形区域进行去除。设置有机绝缘层30的目的是覆盖住部分第一电极21以避免通过走线层与其他结构短路以及填充压电层22的倒角,同时在第二电极23的位置处形成第一过孔V1,在绑定电极24的位置处形成第三过孔V3,以使走线层中走线的一端与第二电极23通过第一过孔V1连接,走线的另一端与绑定电极24通过第三过孔V3连接。同时,还可以在引线电极25的位置处形成引线电极过孔41,以使外接引线与引线电 极25通过银胶等方式连接。
如图12所示,示出了走线层的结构示意图。走线层50中的走线51用于将第二电极23连接至绑定电极24。
需要说明的是,所有压电器件20的第一电极21之间可以是相互连通的,本实施例中,为了减小寄生电容,设置同一列的第一电极21之间相互连通,如图10所示。各压电器件20的压电层22之间以及第二电极23之间可以是分立的,参照图13示出了压电层的结构示意图,参照图14示出了第二电极的结构示意图,这样可以方便维修。例如,当某个压电器件20发生短路时,可以将短路位置处的压电器件20的第二电极23进行隔离,避免短路点对其它压电器件20造成影响。
为了降低短路风险,参照图4和图5,第二电极23的边缘可以相对于压电层22的边缘缩进。在具体实现中,第二电极23的边缘相对于压电层22的边缘的缩进量大于或等于100微米,且小于或等于500微米。例如,缩进量可以为150微米。
为了进一步降低短路风险,压电层22的边缘可以相对于第一电极21的边缘缩进。
在实际制备的过程中,可以在衬底基板10上依次形成第一电极21、压电层22、第二电极23、有机绝缘层30、无机绝缘层40以及走线层50。参照图10示出了完成第一电极制备的平面结构示意图,参照图15示出了完成压电层制备的平面结构示意图,参照图16示出了完成第二电极制备的平面结构示意图,参照图17示出了完成走线层制备的平面结构示意图。其中,图17中的加粗黑线位置处的剖面结构示意图如图1所示。
在一种可选的实现方式中,如图9所示,位于同一列的压电器件20的第一电极21之间相互连通(如图10所示),位于同一列的压电器件20的第二电极23均连接至走线层50的同一条走线51(如图12所示),即位于同一列的压电器件20的第二电极23之间通过走线层50的同一条走线51相互连通。这样,同一列的第一电极21之间以及第二电极23之间相互连通的压电器件 20可以进行整体驱动,从而实现列驱动。需要说明的是,当需要对压电传感器上的压电器件20进行整体驱动时,可以通过走线层50中的走线将所有的第二电极23之间进行连通。
在具体实施时,在本公开实施例提供的上述压电传感器中,走线层的材料可以为Ti/Ni/Au,其中Ti可以为10nm,Ni可以为400nm,Au可以为100nm;或,走线层的材料可以为Ti/Au,其中Ti可以为10nm,Au可以为400nm;或,走线层的材料可以为Ti/Al/Ti,其中Ti可以为10nm,Al可以为300nm。
在具体实施时,在本公开实施例提供的上述压电传感器中,如图4、图5、图7和图8所示,无机绝缘层40的厚度可以为100nm~300nm,例如无机绝缘层40的厚度为100nm、200nm或300nm。
本公开实施例提供的压电传感器可应用于医疗,汽车电子,运动追踪系统等领域。尤其适用于可穿戴设备领域,医疗体外或植入人体内部的监测及治疗使用,或者应用于人工智能的电子皮肤等领域。具体地,可以将压电传感器应用于刹车片、键盘、移动终端、游戏手柄、车载等可产生振动和力学特性的装置中。
基于同一发明构思,本公开实施例还提供了一种上述压电传感器的制作方法,如图18所示,包括:
S1801、在衬底基板上形成至少一个压电器件;
S1802、在压电器件背离衬底基板的一侧形成有机绝缘层,有机绝缘层具有第一过孔,第一过孔在衬底基板上的正投影与压电器件在衬底基板上的正投影相互交叠;
S1803、在有机绝缘层背离衬底基板的一侧形成无机绝缘层,无机绝缘层与第一过孔至少部分不交叠;
S1804、在无机绝缘层背离衬底基板的一侧形成走线层,走线层通过至少部分第一过孔与压电器件电连接。
本公开实施例提供的上述压电传感器的制作方法,通过在走线层和有机绝缘层之间设置无机绝缘层,由于无机绝缘层与走线层之间的粘附性较强, 在有机绝缘层解决压电器件的压电层的倒角问题的基础上,无机绝缘层可以解决有机绝缘层与走线层之间粘附性不佳的问题,从而可以防止走线层剥离的问题,进而避免走线层在电压驱动下发生烧断并产生高热的问题。
在具体实施时,在本公开实施例提供的上述压电传感器的制作方法中,形成压电器件,如图19所示,具体可以包括:
S1901、在衬底基板上依次形成第一电极、压电材料膜层和第二电极;
具体地,第一电极可以包括图案化的多个第一电极,也可以为一整面的结构;第二电极包括图案化的多个第二电极。
S1902、对压电材料膜层进行极化处理;
具体地,在压电材料膜层上加一强直流电场,使压电材料膜层中的电畴沿电场方向取向排列。
S1903、对极化处理后的压电材料膜层进行图案化,形成位于第一电极和第二电极之间的压电层;
具体地,可以采用干法镀膜(溅射,Sputter)或湿法镀膜(溶胶-凝胶法,Sol-Gel)的方式形成图案化的压电层。
基于同一发明构思,本公开实施例还提供了一种触觉反馈装置,包括本公开实施例提供的上述压电传感器。由于该触觉反馈装置解决问题的原理与前述一种压电传感器相似,因此该触觉反馈装置的实施可以参见前述压电传感器的实施,重复之处不再赘述。该触觉反馈装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示或触控功能的产品或部件。
在具体实施时,本公开实施例提供的上述触觉反馈装置还可以包括本领域技术人员熟知的其他功能结构,在此不做详述。
在具体实施时,可以将触觉反馈装置与触控屏在一起,通过触控屏可以确定人体触控的位置,从而产生对应的振动波形、振幅和频率,可以实现人机交互。再比如,通过触觉反馈装置中的压电传感器确定人体触控的位置,从而产生对应的振动波形、振幅和频率,可以实现人机交互。当然,还可以 根据实际需要将触觉反馈装置应用在医疗,汽车电子,运动追踪系统等领域,在此不再详述。
本公开实施例提供了一种压电传感器及触觉反馈装置,通过在走线层和有机绝缘层之间设置无机绝缘层,由于无机绝缘层与走线层之间的粘附性较强,在有机绝缘层解决压电器件的压电层的倒角问题的基础上,无机绝缘层可以解决有机绝缘层与走线层之间粘附性不佳的问题,从而可以防止走线层剥离的问题,进而避免走线层在电压驱动下发生烧断并产生高热的问题。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (15)

  1. 一种压电传感器,其中,包括:
    衬底基板;
    至少一个压电器件,位于所述衬底基板上;
    有机绝缘层,位于所述压电器件背离所述衬底基板的一侧,所述有机绝缘层具有第一过孔,所述第一过孔在所述衬底基板上的正投影与所述压电器件在所述衬底基板上的正投影相互交叠;
    无机绝缘层,位于所述有机绝缘层背离所述衬底基板的一侧,所述无机绝缘层与所述第一过孔至少部分不交叠;
    走线层,位于所述无机绝缘层背离所述衬底基板的一侧,所述走线层包括走线,所述走线的一端通过至少部分所述第一过孔与所述压电器件电连接。
  2. 如权利要求1所述的压电传感器,其中,所述压电器件包括:位于所述衬底基板和所述有机绝缘层之间的第一电极,位于所述第一电极和所述有机绝缘层之间的压电层,以及位于所述压电层和所述有机绝缘层之间的第二电极;其中,
    所述无机绝缘层覆盖所述第一过孔的侧壁且延伸至与所述第二电极接触。
  3. 如权利要求2所述的压电传感器,其中,在所述第一过孔的同一侧壁处,所述无机绝缘层和所述第二电极的接触边界为第一边界,所述有机绝缘层和所述第二电极的接触边界为第二边界,所述第一边界和所述第二边界之间的距离大于所述压电层厚度的30%且小于所述压电层厚度的60%。
  4. 如权利要求1所述的压电传感器,其中,所述压电器件包括:位于所述衬底基板和所述有机绝缘层之间的第一电极,位于所述第一电极和所述有机绝缘层之间的压电层,以及位于所述压电层和所述有机绝缘层之间的第二电极;其中,
    所述无机绝缘层覆盖所述第一过孔的侧壁且覆盖所述第一过孔露出的第二电极,所述无机绝缘层中覆盖所述第二电极的部分具有至少一个第二过孔, 所述走线层通过所述第一过孔和所述第二过孔与所述第二电极电连接。
  5. 如权利要求2-4任一项所述的压电传感器,其中,还包括:与所述第一电极同层设置的绑定电极,所述绑定电极靠近所述衬底基板的边缘设置,所述绑定电极用于连接驱动电压输入端,所述驱动电压输入端输入的电压信号为交流电压信号;所述走线的另一端通过设置在所述无机绝缘层和所述有机绝缘层上的第三过孔与所述绑定电极电连接;
    还包括:与所述第一电极同层设置的引线电极,所述引线电极与所述第一电极电连接,所述引线电极用于连接地电压输入端,所述地电压输入端输入的电压信号为接地电压信号。
  6. 如权利要求5所述的压电传感器,其中,所述压电器件的数量为多个,多个所述压电器件阵列排布在所述衬底基板的一侧,位于同一列的各压电器件的第一电极之间相互连通,位于同一列的各压电器件的第二电极均连接至所述走线层的同一条走线。
  7. 如权利要求1-4任一项所述的压电传感器,其中,所述无机绝缘层的数量为一层。
  8. 如权利要求7所述的压电传感器,其中,所述无机绝缘层的材料包括SiO 2、Al 2O 3或Si 3N 4
  9. 如权利要求1-4任一项所述的压电传感器,其中,所述无机绝缘层包括叠层设置的至少两个子层,所述两个子层的材料不同。
  10. 如权利要求9所述的压电传感器,其中,各所述子层的材料包括SiO 2、Al 2O 3或Si 3N 4
  11. 如权利要求1-4任一项所述的压电传感器,其中,所述走线层的形状为网格状结构,所述走线层的材料为Ti/Ni/Au、Ti/Au或Ti/Al/Ti。
  12. 如权利要求1-4任一项所述的压电传感器,其中,所述无机绝缘层的厚度为100nm~300nm。
  13. 如权利要求2或4所述的压电传感器,其中,所述压电层的厚度为500nm~2000nm。
  14. 如权利要求2或4所述的压电传感器,其中,所述压电层包括锆钛酸铅、氮化铝、氧化锌、钛酸钡、钛酸铅、铌酸钾、铌酸锂、钽酸锂、硅酸镓镧中的至少一种。
  15. 一种触觉反馈装置,其中,包括如权利要求1-14任一项所述的压电传感器。
PCT/CN2021/133249 2021-02-26 2021-11-25 压电传感器及触觉反馈装置 WO2022179219A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21927643.3A EP4163986A4 (en) 2021-02-26 2021-11-25 PIEZOELECTRIC SENSOR AND HAPTIC DEVICE
CN202180003572.3A CN115250640A (zh) 2021-02-26 2021-11-25 压电传感器及触觉反馈装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2021/078073 2021-02-26
PCT/CN2021/078073 WO2022178807A1 (zh) 2021-02-26 2021-02-26 触觉反馈基板、触觉反馈装置及触觉反馈方法

Publications (1)

Publication Number Publication Date
WO2022179219A1 true WO2022179219A1 (zh) 2022-09-01

Family

ID=83047773

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/078073 WO2022178807A1 (zh) 2021-02-26 2021-02-26 触觉反馈基板、触觉反馈装置及触觉反馈方法
PCT/CN2021/133249 WO2022179219A1 (zh) 2021-02-26 2021-11-25 压电传感器及触觉反馈装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078073 WO2022178807A1 (zh) 2021-02-26 2021-02-26 触觉反馈基板、触觉反馈装置及触觉反馈方法

Country Status (4)

Country Link
US (1) US11847263B2 (zh)
EP (1) EP4163986A4 (zh)
CN (2) CN115250626B (zh)
WO (2) WO2022178807A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024082255A1 (zh) * 2022-10-21 2024-04-25 京东方科技集团股份有限公司 一种触觉反馈基板及触觉反馈装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100231657A1 (en) * 2009-03-13 2010-09-16 Fujifilm Corporation Piezoelectric element, method of manufacturing the same, and ink jet head
JP2014197576A (ja) * 2013-03-29 2014-10-16 セイコーエプソン株式会社 液体噴射ヘッド、液体噴射装置、圧電素子、超音波トランスデューサー及び超音波デバイス
CN107017334A (zh) * 2015-09-29 2017-08-04 精工爱普生株式会社 压电驱动装置及其制造方法、马达、机器人以及泵
CN111769080A (zh) * 2020-06-24 2020-10-13 武汉华星光电半导体显示技术有限公司 显示面板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3798287B2 (ja) * 2001-10-10 2006-07-19 Smk株式会社 タッチパネル入力装置
EP1956466B1 (fr) * 2007-02-12 2013-08-07 Universite Des Sciences Et Technologies De Lille Interface tactile vibrante
KR101070137B1 (ko) * 2009-08-21 2011-10-05 삼성전기주식회사 터치 피드백 패널, 이를 포함하는 터치 스크린 장치 및 전자 장치
JP2013161587A (ja) 2012-02-02 2013-08-19 Alps Electric Co Ltd メンブレンスイッチユニットおよびこのメンブレンスイッチユニットを用いたキーボード装置
JP6233581B2 (ja) * 2013-12-26 2017-11-22 セイコーエプソン株式会社 超音波センサー及びその製造方法
JP6641943B2 (ja) * 2015-12-03 2020-02-05 セイコーエプソン株式会社 モーター用圧電駆動装置およびその製造方法、モーター、ロボット、ならびにポンプ
JP6943563B2 (ja) 2016-11-30 2021-10-06 株式会社ジャパンディスプレイ 入力機能付き表示装置
US11132059B2 (en) * 2017-09-14 2021-09-28 Logitech Europe S.A. Input device with haptic interface
CN108846318B (zh) 2018-05-24 2021-08-31 业泓科技(成都)有限公司 超声波指纹识别装置及其制作方法以及应用其的电子装置
CN109240485B (zh) 2018-05-28 2020-11-13 厦门大学 一种纹理触觉再现装置、显示装置与弧度再现装置
CN111749874B (zh) 2019-03-29 2023-08-08 研能科技股份有限公司 微机电泵

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100231657A1 (en) * 2009-03-13 2010-09-16 Fujifilm Corporation Piezoelectric element, method of manufacturing the same, and ink jet head
JP2014197576A (ja) * 2013-03-29 2014-10-16 セイコーエプソン株式会社 液体噴射ヘッド、液体噴射装置、圧電素子、超音波トランスデューサー及び超音波デバイス
CN107017334A (zh) * 2015-09-29 2017-08-04 精工爱普生株式会社 压电驱动装置及其制造方法、马达、机器人以及泵
CN111769080A (zh) * 2020-06-24 2020-10-13 武汉华星光电半导体显示技术有限公司 显示面板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4163986A4 *

Also Published As

Publication number Publication date
CN115250626A (zh) 2022-10-28
EP4163986A4 (en) 2024-02-21
US11847263B2 (en) 2023-12-19
EP4163986A1 (en) 2023-04-12
US20230152892A1 (en) 2023-05-18
CN115250626B (zh) 2024-05-28
WO2022178807A1 (zh) 2022-09-01
CN115250640A (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
JP7456943B2 (ja) 指紋認識モジュール及びその作製方法並びに電子装置
US10361677B2 (en) Transverse bulk acoustic wave filter
US11139797B2 (en) Micro-transfer-printed acoustic wave filter device
US11120243B2 (en) Fingerprint identification module, manufacturing method and driving method thereof, display device
US20110156539A1 (en) Piezoelectric actuator for actuating haptic device
WO2022179219A1 (zh) 压电传感器及触觉反馈装置
TWI621982B (zh) 指紋識別裝置、其製造方法、顯示裝置
CN110458135B (zh) 一种超声波传感器及其制备方法、显示装置
JP2011228922A (ja) 振動片、振動片の製造方法、振動子および発振器
CN112181208B (zh) 触控辨识装置、显示装置及其制造方法
US10924083B2 (en) Piezoelectric device and method for manufacturing piezoelectric device
WO2023206443A1 (zh) 压电致动器及触觉反馈装置
WO2023142037A1 (zh) 触控面板及触控装置
WO2023087324A1 (zh) 压电器件、振动面板及触觉反馈装置
CN110765968B (zh) 一种指纹识别模组、显示装置及其制作方法
WO2023178676A1 (zh) 触觉反馈基板及触觉反馈装置
CN113238679A (zh) 触觉传感器及其制作方法、驱动方法、电子设备
CN115933865A (zh) 振动面板及振动装置
WO2023184298A1 (zh) 压电传感器、其驱动方法及触觉反馈装置
WO2022246821A1 (zh) 一种压电传感器、其制作方法及触觉反馈装置
CN117412659A (zh) 一种触觉再现器件、其制作方法及触觉再现装置
CN115454249A (zh) 压电元件、压电振动器及电子设备
CN212208318U (zh) 一种柔性超声波指纹识别模组、显示装置及电子设备
CN115686248A (zh) 触控面板及其驱动方法、触控装置
WO2024082255A1 (zh) 一种触觉反馈基板及触觉反馈装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17800589

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021927643

Country of ref document: EP

Effective date: 20230106

NENP Non-entry into the national phase

Ref country code: DE