WO2023206443A1 - 压电致动器及触觉反馈装置 - Google Patents

压电致动器及触觉反馈装置 Download PDF

Info

Publication number
WO2023206443A1
WO2023206443A1 PCT/CN2022/090502 CN2022090502W WO2023206443A1 WO 2023206443 A1 WO2023206443 A1 WO 2023206443A1 CN 2022090502 W CN2022090502 W CN 2022090502W WO 2023206443 A1 WO2023206443 A1 WO 2023206443A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
piezoelectric
layer
piezoelectric actuator
electrode
Prior art date
Application number
PCT/CN2022/090502
Other languages
English (en)
French (fr)
Inventor
陈右儒
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280001050.4A priority Critical patent/CN117356198A/zh
Priority to PCT/CN2022/090502 priority patent/WO2023206443A1/zh
Publication of WO2023206443A1 publication Critical patent/WO2023206443A1/zh

Links

Images

Definitions

  • the present disclosure relates to the technical field of tactile feedback, and in particular to a piezoelectric actuator and a tactile feedback device.
  • Tactile feedback (Haptics) is the focus of current technology development. Specifically, tactile feedback can enable the terminal to interact with the human body through the sense of touch. Tactile feedback can be divided into two categories, one is vibration feedback and the other is tactile reproduction technology.
  • surface tactile reproduction technology can perceive the characteristics of objects through bare finger touch screen and achieve efficient and natural interaction on multimedia terminals. It has huge research value and has received widespread attention from domestic and foreign researchers.
  • surface tactility refers to the interaction between the surface roughness of an object and the surface of the skin (fingertips), forming different friction forces due to different surface structures. Therefore, by controlling surface friction, different tactile/tactile sensations can be simulated.
  • Embodiments of the present disclosure provide a piezoelectric actuator and tactile feedback device.
  • the specific solutions are as follows:
  • a piezoelectric device is located on the base substrate; the piezoelectric device includes at least one piezoelectric unit, and each piezoelectric unit includes a first electrode and a piezoelectric layer that are sequentially stacked on the base substrate. and a second electrode;
  • a first heat dissipation layer is located on the side of the piezoelectric device facing away from the base substrate.
  • the first heat dissipation layer has a first via hole, and the orthogonal projection of the first via hole on the base substrate is equal to The orthographic projections of the second electrodes on the base substrate overlap each other;
  • a wiring layer is located on the side of the first heat dissipation layer away from the base substrate.
  • the wiring layer includes wiring, and one end of the wiring is electrically connected to the second electrode through the first via hole. connect.
  • the first heat dissipation layer is an integral structure.
  • the first heat dissipation layer includes a plurality of first heat dissipation parts corresponding to the piezoelectric unit one-to-one, each of which The first heat dissipation part has the first via hole.
  • the above-mentioned piezoelectric actuator provided by the embodiment of the present disclosure further includes a second heat dissipation layer located between the piezoelectric unit and the substrate substrate.
  • the second heat dissipation layer is a structure provided on the entire surface.
  • the second heat dissipation layer includes a plurality of second heat dissipation parts corresponding to the piezoelectric unit one-to-one.
  • the above-mentioned piezoelectric actuator provided by the embodiment of the present disclosure further includes a first insulating layer located between the piezoelectric device and the first heat dissipation layer, and the third heat dissipation layer is An insulating layer has a second via hole, and an orthographic projection of the second via hole on the base substrate and an orthographic projection of the first via hole on the base substrate at least partially overlap each other.
  • the orthographic projection of the second via hole on the substrate substrate is the same as the orthographic projection of the first via hole on the substrate.
  • the orthographic projections on the base substrate substantially overlap, and the first heat dissipation layer covers the sidewall of the second via hole and extends to contact the second electrode.
  • the first heat dissipation layer and the second electrode are The contact boundary is the first boundary, the contact boundary between the first insulating layer and the second electrode is the second boundary, and the distance between the first boundary and the second boundary is greater than the thickness of the piezoelectric layer. 30% and less than 60% of the thickness of the piezoelectric layer.
  • the first heat dissipation layer covers the side wall of the second via hole and covers the exposed side of the second via hole.
  • the second electrode, the portion of the first heat dissipation layer covering the second electrode has at least one first via hole, and the wiring layer is connected to the second electrode through the second via hole and the first via hole.
  • the second electrode is electrically connected.
  • the material of the first insulating layer is an organic material.
  • the above-mentioned piezoelectric actuator provided by the embodiment of the present disclosure further includes a third heat dissipation layer located between the first insulation layer and the piezoelectric unit, and the third heat dissipation layer is
  • the three heat dissipation layers have third via holes, and the third via holes, the first via holes, and the second via holes at least partially overlap each other.
  • the third heat dissipation layer is an integral structure.
  • the third heat dissipation layer includes a plurality of third heat dissipation parts corresponding to the piezoelectric unit one-to-one, each of which The third heat dissipation part has the third via hole.
  • the material of the first heat dissipation layer is an insulating material
  • the material of the second heat dissipation layer is an insulating material
  • the material of the third heat dissipation layer is an insulating material.
  • the insulating material includes at least one of AlN, Al 2 O 3 or Si 3 N 4 .
  • the thickness of the first heat dissipation layer is 300nm-2000nm
  • the thickness of the second heat dissipation layer is 300nm-2000nm
  • the thickness of the third heat dissipation layer is 300nm-2000nm.
  • the above-mentioned piezoelectric actuator provided by the embodiment of the present disclosure further includes a second insulating layer located between the first heat dissipation layer and the wiring layer.
  • the material of the two insulating layers is inorganic material, and the pattern of the second insulating layer is the same as the pattern of the first heat dissipation layer.
  • the material of the second insulating layer includes SiO 2 , Al 2 O 3 or Si 3 N 4 .
  • the above-mentioned piezoelectric actuator provided by the embodiment of the present disclosure further includes: a binding electrode arranged in the same layer as the first electrode, the binding electrode being close to the lining
  • the binding electrode is arranged on the edge of the base substrate, and the binding electrode is used to connect the driving voltage input terminal.
  • the voltage signal input by the driving voltage input terminal is an AC voltage signal; the other end of the wiring is provided on the first heat dissipation layer. and a fourth via hole on the first insulating layer is electrically connected to the binding electrode;
  • It also includes: a lead electrode arranged in the same layer as the first electrode, the lead electrode is electrically connected to the first electrode, the lead electrode is used to connect a ground voltage input terminal, and the voltage input by the ground voltage input terminal
  • the signal is a ground voltage signal.
  • the number of the piezoelectric units is multiple, and a plurality of the piezoelectric unit arrays are arranged on the substrate. On one side of the substrate, the first electrodes of all the piezoelectric units are connected to each other, and the second electrodes of all the piezoelectric units are connected to the same trace of the wiring layer.
  • the number of the piezoelectric units is multiple, and a plurality of the piezoelectric unit arrays are arranged on the substrate. On one side of the substrate, the first electrodes of all the piezoelectric units are connected to each other, and the second electrodes of all the piezoelectric units are connected to different wirings of the wiring layer.
  • the number of the piezoelectric units is multiple, and a plurality of the piezoelectric unit arrays are arranged on the substrate.
  • the first electrodes of all the piezoelectric units are connected to each other, and the second electrodes of each of the piezoelectric units located in the same column are connected to the same trace of the wiring layer.
  • the materials of the first electrode and the second electrode are both transparent conductive materials.
  • the orthographic projection of the trace on the substrate is at least in line with an edge area of the second electrode.
  • the orthographic projection on the base substrate has an overlapping area, and the first heat dissipation layer is provided with a plurality of first via holes in the overlapping area.
  • the orthographic projection of the wiring on the substrate substrate is also located at the center area of the second electrode.
  • the orthographic projection on the base substrate has an overlapping area, and the shape of the traces is a grid-like structure, and the first heat dissipation layer under each grid line of the grid-like structure is provided with a plurality of third heat dissipation layers.
  • the material of the wiring is Ti/Ni/Au, Ti/Au or Ti/Al/Ti.
  • the thickness of the piezoelectric layer is 500 nm to 2000 nm.
  • the material of the piezoelectric layer includes lead zirconate titanate, aluminum nitride, zinc oxide, barium titanate, titanate At least one of lead, potassium niobate, lithium niobate, lithium tantalate, and gallium lanthanum silicate.
  • an embodiment of the present disclosure also provides a tactile feedback device, including the piezoelectric actuator described in any of the above provided by the embodiment of the present disclosure.
  • Figure 1 is a schematic diagram of the relationship between temperature and vibration time when the piezoelectric actuator vibrates
  • Figure 2 is a schematic structural diagram of a piezoelectric actuator provided in the related art
  • Figure 3 is a schematic plan view of a piezoelectric actuator provided by an embodiment of the present disclosure
  • FIGS. 4 to 23 are respectively schematic cross-sectional structural diagrams of the piezoelectric actuator provided by embodiments of the present disclosure.
  • Figure 24 is a schematic plan view of wiring arranged above a piezoelectric unit
  • Figure 25 is another plan view of wiring arranged above a piezoelectric unit
  • FIG. 26 is an enlarged schematic diagram within the dotted box in FIG. 25 .
  • Thin film piezoelectric materials have high dielectric constant and transparent properties, making them very suitable for use in screen-integrated vibrator structures.
  • lead zirconate titanate piezoelectric ceramic PZT
  • the piezoelectric actuator based on PZT has a physical vibration structure. When the vibration occurs, the base material lattice/molecules vibrate, which will inevitably emit heat energy and cause the temperature of the piezoelectric device to increase, as shown in Figure 1.
  • Figure 1 shows the piezoelectric actuator. The temperature changes curve with vibration time when the electric actuator vibrates.
  • Curve A is the temperature change curve between the piezoelectric device and the piezoelectric device with vibration time at a vibration frequency of 21KHz.
  • Curve B is the temperature change curve between the piezoelectric device and the piezoelectric device at a vibration frequency of 21KHz.
  • the temperature above the piezoelectric device changes with vibration time at 21KHz.
  • Curve C is the temperature above the piezoelectric device with vibration time at a vibration frequency of 32KHz. It can be seen that as the vibration time increases, the pressure The temperature of the electric actuator will increase significantly when it vibrates. This temperature will degrade the breakdown characteristics (internal resistance) of the piezoelectric device and the resonant frequency of the resonant body, thus damaging the performance of the piezoelectric device and affecting the characteristics of the final tactile experience.
  • FIG. 2 is a schematic structural diagram of a piezoelectric actuator in the related art.
  • the piezoelectric actuator includes a first electrode 211, a piezoelectric layer 212, and a first electrode 211, a piezoelectric layer 212, and a first electrode 211, a piezoelectric layer 212, and a piezoelectric actuator in the related art.
  • the wiring layer 4 is electrically connected to the second electrode 213 through a via hole penetrating the insulating layer 6.
  • the first electrode 211 and the second electrode 213 are generally made of transparent conductive materials such as ITO
  • the substrate substrate 1 is generally a glass substrate
  • the wiring layer 4 is generally a grid. shaped metal.
  • FIG. 3 is a top view of the piezoelectric actuator.
  • Figures 4 and 5 are respectively the middle edge of Figure 3.
  • a schematic cross-sectional view in the CC' direction, the piezoelectric actuator may include:
  • the piezoelectric device 2 is located on the base substrate 1; the piezoelectric device 2 includes at least one piezoelectric unit 21, and each piezoelectric unit 21 includes a first electrode 211, a piezoelectric layer 212 and a piezoelectric layer 212 that are sequentially stacked on the base substrate.
  • the first heat dissipation layer 3 is located on the side of the piezoelectric device 2 facing away from the base substrate 1.
  • the first heat dissipation layer 4 has a first via V1.
  • the orthographic projection of the first via V1 on the base substrate 1 is in contact with the second electrode.
  • the orthographic projections of 213 on the base substrate 1 overlap with each other;
  • the wiring layer 4 is located on the side of the first heat dissipation layer 3 facing away from the base substrate 1 .
  • the wiring layer 4 includes a wiring 41 , and one end of the wiring 41 is electrically connected to the second electrode 213 through the first via V1 .
  • the first heat dissipation layer 3 can solve the problem of top heating of the piezoelectric actuator. Improve and enhance the lateral heat conduction capability to avoid the heat generated when the piezoelectric actuator vibrates from accumulating on the top, which can effectively reduce the temperature effect.
  • the first heat dissipation layer 3 provided by the embodiment of the present disclosure can be made of insulating material, which can reduce the production of one layer of insulating layer (made between the second electrode 213 and the wiring layer 4 in the related art), and can reduce the piezoelectricity. Brake thickness.
  • the substrate substrate may be a substrate made of glass, a substrate made of silicon or silicon dioxide (SiO 2 ), a substrate made of sapphire, or a substrate made of metal.
  • the substrate made of wafer is not limited here, and those skilled in the art can set the substrate according to actual application needs.
  • the first heat dissipation layer may be an integral structure. Specifically, when making the first heat dissipation layer, a whole layer of heat dissipation film can be deposited on top of the piezoelectric device, and then the heat dissipation film can be patterned to produce a plurality of overlapping second electrodes of each piezoelectric unit. The first heat dissipation layer of the first via hole.
  • the first heat dissipation layer may include a plurality of first heat dissipation parts corresponding to the piezoelectric units, and each first heat dissipation part has a first pass. hole.
  • a whole layer of heat dissipation film can be deposited on top of the piezoelectric device, and then a patterning process is used on the heat dissipation film to produce multiple first heat dissipation films corresponding to each piezoelectric unit. portion, and each first heat dissipation portion has a plurality of first via holes that overlap with the second electrodes of each piezoelectric unit.
  • the first heat dissipation layer in the embodiment of the present disclosure adopts an integrated structure.
  • the above-mentioned piezoelectric actuator provided by the embodiment of the present disclosure also includes a second heat dissipation layer 5 located between the piezoelectric unit 21 and the substrate substrate 1 .
  • the second heat dissipation layer 5 can dissipate the heat generated by the first electrode 211, improve the lateral heat conduction capacity of the first electrode 211 side, and prevent the heat generated when the piezoelectric actuator vibrates from accumulating at the first electrode 211, which can further effectively reduce the energy consumption of the first electrode 211. Characteristics of temperature effects.
  • the second heat dissipation layer may be a structure provided on the entire surface. Specifically, when making the second heat dissipation layer, a whole layer of the second heat dissipation layer can be deposited between the piezoelectric unit and the base substrate without patterning.
  • the second heat dissipation layer may also include a plurality of second heat dissipation parts corresponding to the piezoelectric units.
  • a whole layer of heat dissipation film can be deposited between the piezoelectric unit and the base substrate, and then the heat dissipation film can be patterned to produce multiple heat dissipation films corresponding to each piezoelectric unit.
  • the second heat dissipation part when making the second heat dissipation layer, a whole layer of heat dissipation film can be deposited between the piezoelectric unit and the base substrate, and then the heat dissipation film can be patterned to produce multiple heat dissipation films corresponding to each piezoelectric unit. The second heat dissipation part.
  • the second heat dissipation layer in the embodiment of the present disclosure adopts a structure arranged on the entire surface.
  • the piezoelectric actuator in order to prevent the first heat dissipation layer from affecting the performance of the piezoelectric device, in the above-mentioned piezoelectric actuator provided by the embodiment of the present disclosure, as shown in FIGS. 8-11, it also includes a device located between the piezoelectric device 2 and The first insulating layer 6 between the first heat dissipation layer 3 has a second via hole V2.
  • the orthogonal projection of the second via hole V2 on the base substrate 1 is the same as the first through hole V1 on the base substrate. Orthographic projections on 1 at least partially overlap each other.
  • the material of the first insulating layer 6 is an organic material.
  • the manufacturing process of the piezoelectric layer 212 (such as PZT material) generally includes dry etching and wet etching. When using the wet etching process, the piezoelectric layer 212 is very easy to form a chamfer structure, and the chamfer angle ⁇ It is generally 60° to 85°; when dry etching is used to make the piezoelectric layer 212, the chamfer angle ⁇ is generally 85° to 95°.
  • the piezoelectric layer 212 is produced using a wet etching process as an example, and the chamfer angle ⁇ is generally 60° to 85°. Since the chamfer ⁇ easily leads to the risk of disconnection of the wiring layer 4 , the chamfer ⁇ of the piezoelectric layer 212 needs to be filled. Therefore, the embodiment of the present disclosure uses organic insulation between the wiring layer 4 and the second electrode 213 Layer 6 fills the chamfer ⁇ of the piezoelectric layer 212. The role of the organic insulating layer 8 is to cover part of the first electrode 211 to avoid short circuits with other structures through the wiring layer 4 and fill the chamfer of the piezoelectric layer 212 to avoid subsequent The produced wiring layer 4 is broken.
  • the orthographic projection of the second via hole V2 on the substrate substrate 1 is the same as the orthogonal projection of the first via hole V1 on the substrate 1 .
  • the orthographic projections on the base substrate substantially overlap, and the first heat dissipation layer 3 covers the sidewall of the second via hole V2 and extends to contact the second electrode 213 . Due to the influence of the manufacturing process, the cross-section of the second via hole V2 along the thickness direction of the piezoelectric actuator is generally an inverted trapezoidal structure.
  • the first heat dissipation layer 3 is arranged to cover the side wall of the second via hole V2 and extend to the second via hole V2.
  • the electrodes 213 are in contact, so that the first heat dissipation layer 3 has a buffering effect in the second via hole V2, so that the subsequently produced wiring layer 4 will not have a disconnection problem at the second via hole V2.
  • the first heat dissipation layer 3 and the second electrode is the first boundary
  • the contact boundary of the first insulating layer 6 and the second electrode 213 is the second boundary
  • the distance d between the first boundary and the second boundary is greater than 30% of the thickness of the piezoelectric layer 22 and less than 60% of the piezoelectric layer 212 thickness.
  • the thickness of the piezoelectric layer 212 is generally 500nm to 2000nm.
  • the thickness of the piezoelectric layer is 500nm, 600nm, 700nm, 800nm, 900nm, 1000nm, 1100nm, 1200nm, 1300nm, 1400nm, 15000nm, 1600nm, 1700nm, 1800nm , 1900nm or 2000nm.
  • d is greater than 180 nm and less than 360 nm; if the thickness of the piezoelectric layer 212 is 900 nm, then d is greater than 270 nm and less than 540 nm; if the thickness of the piezoelectric layer 212 is Taking 1500nm as an example, d is greater than 450nm and less than 900nm; and so on.
  • the material of the wiring layer is generally a metal material
  • the material of the second electrode is generally indium tin oxide (ITO)
  • ITO indium tin oxide
  • the adhesion between the metal and ITO is poor, in order to prevent the wiring layer from being in contact with the second electrode. Peeling between electrodes causes the problem of inability to transmit electrical signals.
  • the first heat dissipation layer 3 covers the second via V2
  • the side wall covers the exposed second electrode 213 of the second via hole V2.
  • the part of the first heat dissipation layer 3 covering the second electrode 213 has at least one first via hole V1.
  • the wiring layer 4 passes through the first via hole V1 and the second via hole V1.
  • the two via holes V2 are electrically connected to the second electrode 213 .
  • part of the wiring layer 4 and the exposed second electrode 213 is in contact with the first heat dissipation layer 3, and part of it is electrically connected to the second electrode 213 through the first via hole V1 and the second via hole V2.
  • the adhesion between the first heat dissipation layers 3 is strong, so the adhesion between the wiring layer 4 and the second electrode 213 can be improved on the basis of ensuring the electrical connection between the wiring layer 4 and the second electrode 213 .
  • the above-mentioned piezoelectric actuator provided by the embodiment of the present disclosure also includes a third heat dissipation layer 7 located between the first insulating layer 6 and the piezoelectric unit 21 , the third heat dissipation layer 7 has a third via hole V3, and the third via hole V3, the first via hole V1 and the second via hole V2 at least partially overlap each other.
  • the third heat dissipation layer 7 can dissipate the heat generated by the second electrode 213 to prevent the heat generated when the piezoelectric actuator vibrates from accumulating on the second electrode 213, which can further effectively reduce the temperature effect characteristics.
  • the third heat dissipation layer may be an integral structure. Specifically, when making the third heat dissipation layer, a whole layer of heat dissipation film can be deposited between the first insulating layer and the piezoelectric device, and then the heat dissipation film is patterned to produce a structure with the first via hole and the second via hole. The holes at least partially overlap each other in the third heat dissipation layer of the third via hole.
  • the third heat dissipation layer may include a plurality of third heat dissipation parts corresponding to the piezoelectric unit one-to-one, and each third heat dissipation part has a third pass. hole.
  • a whole layer of heat dissipation film can be deposited between the first insulating layer and the piezoelectric device, and then a patterning process is used on the heat dissipation film to produce a one-to-one correspondence with each piezoelectric unit.
  • a plurality of third heat dissipation parts, and each third heat dissipation part has a third via hole.
  • the third heat dissipation layer in the embodiment of the present disclosure adopts an integrated structure.
  • a third piezoelectric actuator is also provided in the piezoelectric actuator.
  • a heat dissipation layer 3, a second heat dissipation layer 5 and a third heat dissipation layer 7 can optimize the heat conduction effect and improve the vibration performance of the piezoelectric device.
  • the material of the first heat dissipation layer 3 can be an insulating material; Figures 6, 7, and 10 As shown in Figures 11, 14 and 15, the material of the second heat dissipation layer 5 may be an insulating material; as shown in Figures 12 to 15, the material of the third heat dissipation layer 7 may be an insulating material.
  • a piezoelectric actuator is generally combined with a display device to achieve tactile reproduction.
  • the material of the first heat dissipation layer 3, the material of the second heat dissipation layer 5, the third heat dissipation layer may all be transparent insulating materials.
  • the transparent insulating material may include at least one of AlN, Al 2 O 3 or Si 3 N 4 .
  • the thermal conductivity of AlN is 321W/(m ⁇ K)
  • the thermal conductivity of Al 2 O 3 is 60W/(m ⁇ K)
  • the thermal conductivity of Si 3 N 4 is 80W/(m ⁇ K)
  • the preferred transparent insulating material in the embodiment of the present disclosure is AlN.
  • the first heat dissipation layer 3 can also be reused as an adhesive layer to enhance the adhesion between the wiring layer 4 and the base substrate 1 and avoid the risk of the wiring layer 4 falling off.
  • the thickness of the first heat dissipation layer 3 may be 300nm-2000nm
  • the thickness of the second heat dissipation layer 5 may be 300nm-2000nm
  • the thickness of the third heat dissipation layer 7 may be 300nm-2000nm. This can ensure the heat dissipation performance of each heat dissipation layer without affecting the transmittance.
  • the above-mentioned piezoelectric actuator provided by the embodiment of the present disclosure, as shown in Figure 16 to Figure 23 As shown, it also includes a second insulating layer 8 located between the first heat dissipation layer 3 and the wiring layer 4.
  • the material of the second insulating layer 8 is an inorganic material, and the pattern of the second insulating layer 8 is consistent with the first heat dissipation layer 4.
  • the graphics are the same.
  • the material of the second insulating layer 8 may include but is not limited to SiO 2 , Al 2 O 3 or Si 3 N 4 .
  • the piezoelectric actuator provided by the embodiment of the present disclosure, as shown in Figures 4-23, it also includes: a binding electrode 214 arranged in the same layer as the first electrode 211.
  • the binding electrode 214 Set close to the edge of the substrate substrate 1, the binding electrode 214 is used to connect the driving voltage input terminal, and the voltage signal input by the driving voltage input terminal is an AC voltage signal; specifically, as shown in Figures 4 to 11, the wiring 41 The other end of the trace 41 is electrically connected to the binding electrode 214 through the fourth via hole V4 provided on the first heat dissipation layer 3 and the first insulating layer 6; as shown in FIGS.
  • a fourth via hole V4 on the heat dissipation layer 3 , the first insulation layer 6 and the second insulation layer 8 is electrically connected to the binding electrode 214 .
  • the piezoelectric actuator in the above-mentioned piezoelectric actuator provided by the embodiment of the present disclosure, as shown in FIGS. 4-23, it also includes: a lead electrode (not shown) arranged in the same layer as the first electrode 211, a lead electrode The electrode is electrically connected to the first electrode 211, and the lead electrode is used to connect to the ground voltage input terminal.
  • the voltage signal input to the ground voltage input terminal is a ground voltage signal.
  • the ground voltage signal is input to the first electrode 211 through the ground voltage input terminal, and the AC voltage signal (V AC ) is loaded to the second electrode 213 through the driving voltage input terminal.
  • the frequency of the alternating electric field is the same as the frequency of the AC voltage signal.
  • the piezoelectric layer 212 deforms and generates a vibration signal.
  • the frequency of the vibration signal is the same as the frequency of the alternating electric field.
  • the lining The base substrate 1 resonates, the amplitude increases, and a tactile feedback signal is generated.
  • the friction force on the surface of the base substrate 1 can be adjusted through the resonance generated between the piezoelectric layer 212 and the base substrate 1 , thereby realizing texture reproduction of the object on the surface of the base substrate 1 .
  • the first electrode 211, the bonding electrode 214 and the lead electrode can be formed of the same material and the same patterning process.
  • the edge of the second electrode 213 may be indented relative to the edge of the piezoelectric layer 212 .
  • the indentation amount of the edge of the second electrode 213 relative to the edge of the piezoelectric layer 212 is greater than or equal to 100 micrometers and less than or equal to 500 micrometers.
  • the indentation may be 150 microns.
  • the edges of the piezoelectric layer 212 may be indented relative to the edges of the first electrode 211 .
  • the number of piezoelectric units 21 is multiple, and the multiple piezoelectric units 21 are arranged in an array on the lining.
  • the first electrodes 211 of all piezoelectric units 21 may be connected to each other, and the second electrodes 213 of all piezoelectric units 21 may be connected to the same trace 41 of the wiring layer 4 . This enables integral driving of the piezoelectric actuator.
  • the number of piezoelectric units 21 is multiple, and the multiple piezoelectric units 21 are arranged in an array on the lining.
  • the first electrodes 211 of all piezoelectric units 21 may be connected to each other, and the second electrodes 213 of all piezoelectric units 21 may be connected to different traces 41 of the wiring layer 4 .
  • each piezoelectric unit 21 can be driven individually, so that only the piezoelectric unit 21 at the vibrating position can be loaded with a driving signal, thereby reducing power consumption.
  • the number of piezoelectric units 21 is multiple, and the multiple piezoelectric units 21 are arranged in an array on the lining.
  • the first electrodes 211 of all piezoelectric units 21 can be connected to each other, and the second electrodes 212 of each piezoelectric unit 21 located in the same column are connected to the same trace of the wiring layer 4 .
  • column driving can be achieved, driving signals can be loaded on the piezoelectric units 21 of corresponding columns as needed, and power consumption can be reduced.
  • piezoelectric actuators are generally combined with display devices to achieve tactile reproduction.
  • the materials of the first electrode and the second electrode are both transparent conductive materials.
  • the first electrode and the second electrode may be made of indium tin oxide (ITO) or indium zinc oxide (IZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • Those skilled in the art can set the above-mentioned electrodes according to actual application needs.
  • the first electrode and the second electrode are not limited here.
  • Figure 24 is a plan view of a wiring 41 arranged above a piezoelectric unit 21, and the wiring 41 is on the lining.
  • the orthographic projection on the base substrate 1 at least has an overlapping area DD with the orthographic projection of an edge area of the second electrode 213 on the base substrate 1.
  • the first heat dissipation layer 3 is provided with a plurality of first passes corresponding to the overlapping area DD. Hole V1. In this way, the wiring 41 does not cover the central area of the piezoelectric unit 21, which can improve the transmittance.
  • the orthographic projection of the trace 41 on the base substrate 1 and the orthographic projection of the four-side edge areas of the second electrode 213 on the base substrate 1 both have The overlapping area DD is taken as an example for explanation.
  • FIGS. 4 to 23 are all based on the example that the orthographic projection of the first via V1 on the second electrode 213 is located in an edge area of the second electrode 213 .
  • Figure 25 is another plan view of a wiring 41 arranged above a piezoelectric unit 21, and Figure 26 is an enlarged schematic diagram within the dotted line frame in Figure 25.
  • the wiring The orthographic projection of the line 41 on the base substrate 1 also has an overlapping area with the orthographic projection of the central area of the second electrode 213 on the base substrate 1 , and the shape of the trace 41 is a grid-like structure, and the grid-like structure A plurality of first vias V1 are provided in the first heat dissipation layer 3 under each grid line. Specifically, by arranging the traces 41 in a grid-like structure, the grid-like structure will not affect the transmittance, and the first heat dissipation layer 3 under each grid line of the grid-like structure is provided with a plurality of first passes.
  • the transmittance can also reduce the resistance of the second electrode 213, thereby improving the signal transmission performance.
  • the material of the wiring layer can be Ti/Ni/Au, where Ti can be 10nm, Ni can be 400nm, and Au can be 100nm; or, the material of the wiring layer can be Ti/Au, where Ti can be It can be 10nm, and Au can be 400nm; or, the material of the wiring layer can be Ti/Al/Ti, where Ti can be 10nm, and Al can be 300nm.
  • the materials of the first electrode and the second electrode are both transparent conductive materials.
  • the materials of the first electrode and the second electrode can also be metal materials. Metal materials have low resistance, which can improve signal transmission performance.
  • Those skilled in the art can select the materials of the first electrode and the second electrode according to actual needs.
  • the first electrode may include a plurality of patterned first electrodes, or may be a whole-surface structure; the second electrode may include a plurality of patterned second electrodes.
  • the material of the piezoelectric layer can be lead zirconate titanate (Pb(Zr,Ti)O 3 , PZT), aluminum nitride (AlN), ZnO (zinc oxide), barium titanate (BaTiO 3 ), at least one of lead titanate (PbTiO 3 ), potassium niobate (KNbO 3 ), lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), and lanthanum gallium silicate (La 3 Ga 5 SiO 14 )
  • the material for making the piezoelectric layer can be selected according to the actual needs of those skilled in the art, and is not limited here.
  • PZT when PZT is used to make the piezoelectric layer, since PZT has a high voltage coefficient, the piezoelectric characteristics of the corresponding piezoelectric actuator are guaranteed, and the corresponding piezoelectric actuator can be applied to tactile feedback devices. Moreover, PZT has high light transmittance and does not affect the display quality of the display device when it is integrated into the display device.
  • the piezoelectric actuator provided by the embodiment of the present disclosure can be applied to fields such as medical treatment, automotive electronics, and sports tracking systems. It is especially suitable for use in the field of wearable devices, monitoring and treatment outside medical devices or implanted inside the human body, or in fields such as artificial intelligence electronic skin. Specifically, piezoelectric actuators can be applied to brake pads, keyboards, mobile terminals, game controllers, vehicles and other devices that can produce vibration and mechanical properties.
  • an embodiment of the present disclosure also provides a tactile feedback device, including the above-mentioned piezoelectric actuator provided by the embodiment of the present disclosure. Since the problem-solving principle of the tactile feedback device is similar to that of the aforementioned piezoelectric actuator, the implementation of the tactile feedback device can be referred to the implementation of the aforementioned piezoelectric actuator, and repeated details will not be repeated.
  • the tactile feedback device can be any product or component with display or touch functions such as mobile phones, tablet computers, televisions, monitors, notebook computers, digital photo frames, and navigators.
  • the above-mentioned tactile feedback device provided by the embodiments of the present disclosure may also include other functional structures well known to those skilled in the art, which will not be described in detail here.
  • the tactile feedback device can be combined with the touch screen, and the touch screen can determine the position of the human body's touch, thereby generating the corresponding vibration waveform, amplitude and frequency, and realizing human-computer interaction.
  • the piezoelectric actuator in the tactile feedback device determines the position of the human body's touch, thereby generating the corresponding vibration waveform, amplitude and frequency, which can realize human-computer interaction.
  • the tactile feedback device can also be applied in medical, automotive electronics, sports tracking systems and other fields according to actual needs, which will not be described in detail here.
  • Embodiments of the present disclosure provide a piezoelectric actuator and a tactile feedback device.
  • the first heat dissipation layer can solve the problem of heat generation on the top of the piezoelectric actuator. Improvements are made to increase the lateral heat conduction capability and prevent the heat generated when the piezoelectric actuator vibrates from accumulating on the top, which can effectively reduce the temperature effect.
  • the first heat dissipation layer provided by the embodiment of the present disclosure can be made of insulating material, thereby reducing the production of an insulating layer (made between the second electrode and the wiring layer in the related art), and reducing the thickness of the piezoelectric actuator. .

Landscapes

  • Micromachines (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

本公开实施例提供了一种压电致动器及触觉反馈装置,该压电致动器包括:衬底基板;压电器件,位于衬底基板上;压电器件包括至少一个压电单元,每一压电单元包括依次层叠设置在衬底基板上的第一电极、压电层和第二电极;第一散热层,位于压电器件背离衬底基板的一侧,第一散热层具有第一过孔,第一过孔在衬底基板上的正投影与第二电极在衬底基板上的正投影相互交叠;走线层,位于第一散热层背离衬底基板的一侧,走线层包括走线,走线的一端通过第一过孔与第二电极电连接。

Description

压电致动器及触觉反馈装置 技术领域
本公开涉及触觉反馈技术领域,特别涉及一种压电致动器及触觉反馈装置。
背景技术
触觉反馈(Haptics)为现今科技开发的重点,具体地,触觉反馈能够透过触觉,使终端跟人体产生交互。触觉反馈又可以分为两类,一类为振动反馈,一类为触觉再现技术。
表面触觉再现技术可以通过裸指触控屏幕来感知物体特性,在多媒体终端实现高效自然的交互,具有巨大的研究价值,因而得到国内外研究学者的广泛关注。表面触觉物理意义上,为物体表面粗糙度与皮肤(指尖)的表面产生作用,因表面结构不同而形成不同的摩擦力。因此透过控制表面摩擦力,即可实现不同触觉/触感之模拟。
发明内容
本公开实施例提供了一种压电致动器及触觉反馈装置,具体方案如下:
本公开实施例提供的一种压电致动器,包括:
衬底基板;
压电器件,位于所述衬底基板上;所述压电器件包括至少一个压电单元,每一所述压电单元包括依次层叠设置在所述衬底基板上的第一电极、压电层和第二电极;
第一散热层,位于所述压电器件背离所述衬底基板的一侧,所述第一散热层具有第一过孔,所述第一过孔在所述衬底基板上的正投影与所述第二电极在所述衬底基板上的正投影相互交叠;
走线层,位于所述第一散热层背离所述衬底基板的一侧,所述走线层包括走线,所述走线的一端通过所述第一过孔与所述第二电极电连接。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,所述第一散热层为一体结构。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,所述第一散热层包括与所述压电单元一一对应的多个第一散热部,各所述第一散热部具有所述第一过孔。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,还包括位于所述压电单元和所述衬底基板之间的第二散热层。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,所述第二散热层为整面设置的结构。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,所述第二散热层包括与所述压电单元一一对应的多个第二散热部。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,还包括位于所述压电器件和所述第一散热层之间的第一绝缘层,所述第一绝缘层具有第二过孔,所述第二过孔在所述衬底基板上的正投影与所述第一过孔在所述衬底基板上的正投影至少部分相互交叠。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,所述第二过孔在所述衬底基板上的正投影与所述第一过孔在所述衬底基板上的正投影大致重叠,且所述第一散热层覆盖所述第二过孔的侧壁且延伸至与所述第二电极接触。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,在所述第二过孔的同一侧壁处,所述第一散热层和所述第二电极的接触边界为第一边界,所第一述绝缘层和所述第二电极的接触边界为第二边界,所述第一边界和所述第二边界之间的距离大于所述压电层厚度的30%且小于所述压电层厚度的60%。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中, 所述第一散热层覆盖所述第二过孔的侧壁且覆盖所述第二过孔露出的第二电极,所述第一散热层中覆盖所述第二电极的部分具有至少一个所述第一过孔,所述走线层通过所述第二过孔和所述第一过孔与所述第二电极电连接。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,所述第一绝缘层的材料为有机材料。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,还包括位于所述第一绝缘层和所述压电单元之间的第三散热层,所述第三散热层具有第三过孔,所述第三过孔、所述第一过孔和所述第二过孔三者之间至少部分相互交叠。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,所述第三散热层为一体结构。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,所述第三散热层包括与所述压电单元一一对应的多个第三散热部,各所述第三散热部具有所述第三过孔。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,所述第一散热层的材料为绝缘材料;
所述压电致动器包括所述第二散热层时,所述第二散热层的材料为绝缘材料;
所述压电致动器包括所述第三散热层时,所述第三散热层的材料为绝缘材料。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,所述绝缘材料包括AlN、Al 2O 3或Si 3N 4至少其中之一。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,所述第一散热层的厚度为300nm-2000nm,所述第二散热层的厚度为300nm-2000nm,所述第三散热层的厚度为300nm-2000nm。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,还包括位于所述第一散热层和所述走线层之间的第二绝缘层,所述第二绝缘 层的材料为无机材料,且所述第二绝缘层的图形与所述第一散热层的图形相同。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,所述第二绝缘层的材料包括SiO 2、Al 2O 3或Si 3N 4
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,还包括:与所述第一电极同层设置的绑定电极,所述绑定电极靠近所述衬底基板的边缘设置,所述绑定电极用于连接驱动电压输入端,所述驱动电压输入端输入的电压信号为交流电压信号;所述走线的另一端通过设置在所述第一散热层和所述第一绝缘层上的第四过孔与所述绑定电极电连接;
还包括:与所述第一电极同层设置的引线电极,所述引线电极与所述第一电极电连接,所述引线电极用于连接地电压输入端,所述地电压输入端输入的电压信号为接地电压信号。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,所述压电单元的数量为多个,多个所述压电单元阵列排布在所述衬底基板的一侧,所有所述压电单元的第一电极之间相互连通,所有所述压电单元的第二电极均连接至所述走线层的同一条走线。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,所述压电单元的数量为多个,多个所述压电单元阵列排布在所述衬底基板的一侧,所有所述压电单元的第一电极之间相互连通,所有所述压电单元的第二电极均连接至所述走线层的不同走线。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,所述压电单元的数量为多个,多个所述压电单元阵列排布在所述衬底基板的一侧,所有所述压电单元的第一电极之间相互连通,位于同一列的各所述压电单元的第二电极均连接至所述走线层的同一条走线。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,所述第一电极和所述第二电极的材料均为透明导电材料。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中, 所述走线在所述衬底基板上的正投影至少与所述第二电极的一个边缘区域在所述衬底基板上的正投影具有交叠区域,所述第一散热层在所述交叠区域对应设置有多个所述第一过孔。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,所述走线在所述衬底基板上的正投影还与所述第二电极的中心区域在所述衬底基板上的正投影具有交叠区域,且所述走线的形状为网格状结构,所述网格状结构的每一条网格线下方的所述第一散热层设置多个第一过孔。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,所述走线的材料为Ti/Ni/Au、Ti/Au或Ti/Al/Ti。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,所述压电层的厚度为500nm~2000nm。
在一种可能的实现方式中,在本公开实施例提供的上述压电致动器中,所述压电层的材料包括锆钛酸铅、氮化铝、氧化锌、钛酸钡、钛酸铅、铌酸钾、铌酸锂、钽酸锂、硅酸镓镧中的至少一种。
相应地,本公开实施例还提供了一种触觉反馈装置,包括如本公开实施例提供的上述任一项所述的压电致动器。
附图说明
图1为压电致动器振动时的温度与振动时间的关系示意图;
图2为相关技术中提供的一种压电致动器的结构示意图;
图3为本公开实施例提供的压电致动器的平面结构示意图;
图4-图23分别为本公开实施例提供的压电致动器的截面结构示意图;
图24为在一个压电单元上方设置走线的一种平面示意图;
图25为在一个压电单元上方设置走线的又一种平面图;
图26为图25中的虚线框内的放大示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
薄膜压电材料具有高介电常数与透明的特性,非常适合用于屏幕集成的振动器结构。其中,锆钛酸铅压电陶瓷(PZT)由于优异的压电性能,目前应用的较多。基于PZT的压电致动器,因为其结构为物理振动,振动时因为基材晶格/分子产生振动,必定发出热能致使压电器件的温度升高,如图1所示,图1为压电致动器振动时的温度随振动时间的变化曲线,其中曲线A为在振动频率为21KHz下压电器件-压电器件之间的温度随振动时间的变化曲线,曲线B为在振动频率为21KHz下压电器件上方的温度随振动时间的变化曲线,曲线C为在振动频率为32KHz下压电器件上方的温度随振动时间的变化曲线,可以看出,随着振动时间的增大,压电致动器振动时的温度会明显升高,此 温度会劣化压电器件的击穿特性(内阻)与共振体的谐振频率,从而损坏压电器件的性能,影响最终触觉体验的特性。
经本案的发明人研究发现,压电致动器振动时的温度升高与压电致动器中的电路走线发热尤为相关。如图2所示,图2为相关技术中压电致动器的结构示意图,该压电致动器包括设置于衬底基板1上依次层叠设置的第一电极211、压电层212、第二电极213、绝缘层6和走线层4,走线层4通过贯穿绝缘层6的过孔与第二电极213电连接。为了将压电致动器集成于屏幕显示器件中,其中第一电极211和第二电极213一般采用ITO等透明导电材料,衬底基板1一般为玻璃衬底,走线层4一般为网格状金属。压电致动器在振动时,ITO、走线层等均会产生热量,由于空气、玻璃、ITO、有机绝缘层等的导热率较低,导致在ITO-空气(箭头L1)、走线层-空气(箭头L2)、衬底基板-空气(箭头L3)、ITO-绝缘层(箭头L4)和绝缘层-走线层(箭头L5)的热量无法有效导出,致使压电致动器的温度升高。
有鉴于此,本公开实施例提供了一种压电致动器,如图3-图5所示,图3为压电致动器的俯视示意图,图4和图5分别为图3中沿CC’方向的截面示意图,该压电致动器可以包括:
衬底基板1;
压电器件2,位于衬底基板1上;压电器件2包括至少一个压电单元21,每一压电单元21包括依次层叠设置在衬底基板上的第一电极211、压电层212和第二电极213;本公开实施例以包括阵列排布的多个压电单元21为例;
第一散热层3,位于压电器件2背离衬底基板1的一侧,第一散热层4具有第一过孔V1,第一过孔V1在衬底基板1上的正投影与第二电极213在衬底基板1上的正投影相互交叠;
走线层4,位于第一散热层3背离衬底基板1的一侧,走线层4包括走线41,走线41的一端通过第一过孔V1与第二电极213电连接。
本公开实施例提供的上述压电致动器,通过在压电器件2和走线层4之间设置第一散热层3,第一散热层3可对压电致动器的顶部发热问题进行改善, 提升横向热传导能力,避免压电致动器振动时产生的热量累积在顶部,可以有效降低温度效应的特性。并且,本公开实施例提供的第一散热层3可以采用绝缘材料,从而可以减少一层绝缘层(相关技术中制作在第二电极213和走线层4之间)的制作,可以降低压电制动器的厚度。
在具体实施时,衬底基板可以为由玻璃制成的基板,还可以为由硅或二氧化硅(SiO 2)制成的基板,还可以为由蓝宝石制成的基板,还可以为由金属晶圆制成的基板,在此不做限定,本领域技术人员可以根据实际应用需要来设置衬底基板。
在具体实施时,在本公开实施例提供的上述压电致动器中,第一散热层可以为一体结构。具体地,在制作第一散热层时,可以在压电器件上方沉积一整层的散热薄膜,然后对散热薄膜进行构图,制作得到具有与各压电单元的第二电极相互交叠的多个第一过孔的第一散热层。
在具体实施时,在本公开实施例提供的上述压电致动器中,第一散热层可以包括与压电单元一一对应的多个第一散热部,各第一散热部具有第一过孔。具体地,在制作第一散热层时,可以在压电器件上方沉积一整层的散热薄膜,然后对散热薄膜采用一次构图工艺,制作得到与各压电单元一一对应的多个第一散热部,且每一第一散热部具有与各压电单元的第二电极相互交叠的多个第一过孔。
优选地,为了尽可能的将压电致动器振动时产生的热量全部导出,且降低制作工艺,本公开实施例中的第一散热层采用一体结构。
在具体实施时,在本公开实施例提供的上述压电致动器中,如图6和图7所示,还包括位于压电单元21和衬底基板1之间的第二散热层5。第二散热层5可将第一电极211产生的热量进行导出,提升第一电极211侧横向热传导能力,避免压电致动器振动时产生的热量累积在第一电极211处,可以进一步有效降低温度效应的特性。
在具体实施时,在本公开实施例提供的上述压电致动器中,第二散热层可以为整面设置的结构。具体地,在制作第二散热层时,可以在压电单元和 衬底基板之间沉积一整层的第二散热层,无需构图。
当然,在具体实施时,第二散热层也可以包括与压电单元一一对应的多个第二散热部。具体地,在制作第二散热层时,可以在压电单元和衬底基板之间沉积一整层的散热薄膜,然后对散热薄膜进行构图,制作得到与各压电单元一一对应的多个第二散热部。
优选地,为了尽可能的将压电致动器振动时产生的热量全部导出,本公开实施例中的第二散热层采用整面设置的结构。
在具体实施时,为了避免第一散热层影响压电器件的性能,在本公开实施例提供的上述压电致动器中,如图8-图11所示,还包括位于压电器件2和第一散热层3之间的第一绝缘层6,第一绝缘层6具有第二过孔V2,第二过孔V2在衬底基板1上的正投影与第一过孔V1在衬底基板1上的正投影至少部分相互交叠。
在具体实施时,在本公开实施例提供的上述压电致动器中,如图8-图11所示,第一绝缘层6的材料为有机材料。具体地,压电层212(例如PZT材料)的制作工艺一般包括干法刻蚀和湿法刻蚀,在采用湿法刻蚀工艺时,压电层212非常容易形成倒角结构,倒角θ一般为60°~85°;在采用干法刻蚀工艺制作压电层212时,倒角θ一般为85°~95°。需要说明的是,本公开实施例是以采用湿法刻蚀工艺制作压电层212为例,倒角θ一般为60°~85°。由于倒角θ的存在容易导致走线层4断线的风险,因此需要将压电层212的倒角θ填充,因此本公开实施例在走线层4和第二电极213之间采用有机绝缘层6填充压电层212的倒角θ,有机绝缘层8的作用是可以覆盖住部分第一电极211以避免通过走线层4与其他结构短路以及填充压电层212的倒角,避免后续制作的走线层4断裂。
在具体实施时,在本公开实施例提供的上述压电致动器中,如图8和图10所示,第二过孔V2在衬底基板1上的正投影与第一过孔V1在衬底基板上的正投影大致重叠,且第一散热层3覆盖第二过孔V2的侧壁且延伸至与第二电极213接触。由于制作工艺的影响,第二过孔V2沿压电致动器厚度方向的 截面一般为倒梯形结构,将第一散热层3设置成覆盖第二过孔V2的侧壁且延伸至与第二电极213接触,这样第一散热层3在第二过孔V2内具有缓冲作用,使得后续制作的走线层4在第二过孔V2处不会发生断线的问题。
在具体实施时,在本公开实施例提供的上述压电致动器中,如图8和图10所示,在第二过孔V2的同一侧壁处,第一散热层3和第二电极213的接触边界为第一边界,第一绝缘层6和第二电极213的接触边界为第二边界,第一边界和第二边界之间的距离d大于压电层22厚度的30%且小于压电层212厚度的60%。具体地,压电层212的厚度一般为500nm~2000nm,例如,压电层的厚度为500nm、600nm、700nm、800nm、900nm、1000nm、1100nm、1200nm、1300nm、1400nm、15000nm、1600nm、1700nm、1800nm、1900nm或2000nm。例如,以压电层212的厚度为600nm为例,则d大于180nm且小于360nm;以压电层212的厚度为900nm为例,则d大于270nm且小于540nm;以压电层212的厚度为1500nm为例,则d大于450nm且小于900nm;等等。
在具体实施时,由于走线层的材料一般为金属材料,第二电极的材料一般为氧化铟锡(ITO),金属与ITO之间的粘附性不佳,为了防止走线层与第二电极之间发生剥离导致无法进行电信号传输的问题,在本公开实施例提供的上述压电致动器中,如图9和图11所示,第一散热层3覆盖第二过孔V2的侧壁且覆盖第二过孔V2露出的第二电极213,第一散热层3中覆盖第二电极213的部分具有至少一个第一过孔V1,走线层4通过第一过孔V1和第二过孔V2与第二电极213电连接。这样走线层4与露出的第二电极213之间部分与第一散热层3接触,部分通过第一过孔V1和第二过孔V2与第二电极213电连接,由于走线层4与第一散热层3之间的粘附性较强,因此可以在保证走线层4与第二电极213电连接的基础上,提高走线层4与第二电极213之间的粘附性。
在具体实施时,在本公开实施例提供的上述压电致动器中,如图16-图19所示,还包括位于第一绝缘层6和压电单元21之间的第三散热层7,第三散热层7具有第三过孔V3,第三过孔V3、第一过孔V1和第二过孔V2三者之 间至少部分相互交叠。第三散热层7可将第二电极213产生的热量进行导出,避免压电致动器振动时产生的热量累积在第二电极213处,可以进一步有效降低温度效应的特性。
在具体实施时,在本公开实施例提供的上述压电致动器中,第三散热层可以为一体结构。具体地,在制作第三散热层时,可以在第一绝缘层和压电器件之间沉积一整层的散热薄膜,然后对散热薄膜进行构图,制作得到具有与第一过孔和第二过孔至少部分相互交叠的第三过孔的第三散热层。
在具体实施时,在本公开实施例提供的上述压电致动器中,第三散热层可以包括与压电单元一一对应的多个第三散热部,各第三散热部具有第三过孔。具体地,在制作第三散热层时,可以在第一绝缘层和压电器件之间沉积一整层的散热薄膜,然后对散热薄膜采用一次构图工艺,制作得到与各压电单元一一对应的多个第三散热部,且每一第三散热部具有第三过孔。
优选地,为了尽可能的将压电致动器振动时产生的热量全部导出,本公开实施例中的第三散热层采用一体结构。
在具体实施时,为了使得本公开实施例提供的压电致动器在振动时产生的热量能够尽可能的全部导出,如图18和图19所示,在压电致动器中同时设置第一散热层3、第二散热层5和第三散热层7,这样可以使得导热效果达到最佳,提高压电器件的振动性能。
在具体实施时,在本公开实施例提供的上述压电致动器中,如图4-图19所示,第一散热层3的材料可以为绝缘材料;如图6、图7、图10、图11、图14和图15所示,第二散热层5的材料可以为绝缘材料;如图12-图15所示,第三散热层7的材料可以为绝缘材料。
进一步地,一般将实现压电致动器与显示器件结合实现触觉再现,为了提高压电致动器的透过率,第一散热层3的材料、第二散热层5的材料、第三散热层7的材料可以均为透明绝缘材料。
具体地,压电致动器中的热平衡与散热特性相关:T=(Q/t)*L/(A*k);其中,k为热导率、Q为热量、t为时间、L为长度、A为面积、T为温度;其中Q、 t、L和A皆为常数;若要使得压电致动器的温度T足够小(快速导热-维持不发热),热导率k需越大越好,因此本公开实施例中的第一散热层3、第二散热层5和第三散热层7的材料可以选择既透明热导率又高的透明绝缘材料。因此,在本公开实施例提供的上述压电致动器中,透明绝缘材料可以包括AlN、Al 2O 3或Si 3N 4至少其中之一。具体地,AlN的热导率为321W/(m·K),Al 2O 3的热导率为60W/(m·K),Si 3N 4的热导率为80W/(m·K),本公开实施例优选透明绝缘材料为AlN。
具体地,由于AlN、Al 2O 3或Si 3N 4与走线层4之间的粘附性强于有机的第一绝缘层6与走线层4之间的粘附性,因此如图4-图15所示,第一散热层3还可以复用为粘附层,以增强走线层4与衬底基板1的粘附性,避免走线层4脱落的风险。
在具体实施时,由于压电致动器一般与显示器件结合实现触觉再现,为了防止各散热层影响透过率,在本公开实施例提供的上述压电致动器中,如图4-图15所示,第一散热层3的厚度可以为300nm-2000nm,第二散热层5的厚度可以为300nm-2000nm,第三散热层7的厚度可以为300nm-2000nm。这样既可以保证各散热层的散热性能,又可以不影响透过率。
在具体实施时,为了进一步提高走线层与第二电极之间的粘附性,以避免走线层脱落,在本公开实施例提供的上述压电致动器中,如图16-图23所示,还包括位于第一散热层3和走线层4之间的第二绝缘层8,第二绝缘层8的材料为无机材料,且第二绝缘层8的图形与第一散热层4的图形相同。
在具体实施时,在本公开实施例提供的上述压电致动器中,如图16-图23所示,第二绝缘层8的材料可以包括但不限于SiO 2、Al 2O 3或Si 3N 4
在具体实施时,在本公开实施例提供的上述压电致动器中,如图4-图23所示,还包括:与第一电极211同层设置的绑定电极214,绑定电极214靠近衬底基板1的边缘设置,绑定电极214用于连接驱动电压输入端,驱动电压输入端输入的电压信号为交流电压信号;具体地,如图4-图11所示,走线41的另一端通过设置在第一散热层3和第一绝缘层6上的第四过孔V4与绑定电 极214电连接;如图16-图23所示,走线41的另一端通过设置在第一散热层3、第一绝缘层6和第二绝缘层8上的第四过孔V4与绑定电极214电连接。
在具体实施时,在本公开实施例提供的上述压电致动器中,如图4-图23所示,还包括:与第一电极211同层设置的引线电极(未示出),引线电极与第一电极211电连接,引线电极用于连接地电压输入端,地电压输入端输入的电压信号为接地电压信号。在具体实施时,通过地电压输入端向第一电极211输入接地电压信号,通过驱动电压输入端向第二电极213加载交流电压信号(V AC),这样在第一电极211和第二电极213之间可以形成交变电场,交变电场的频率与交流电压信号的频率相同。在交变电场的作用下,压电层212发生形变并产生振动信号,该振动信号的频率与交变电场的频率相同,当振动信号的频率接近或等于衬底基板1的固有频率时,衬底基板1发生共振,振幅增强,产生触觉反馈信号,当手指触摸衬底基板1的表面时,可以明显感受到摩擦力的变化。在实际应用中,可以通过压电层212与衬底基板1之间产生的共振来调节衬底基板1表面的摩擦力,从而在衬底基板1的表面实现物体的纹理再现。
本实施例中,第一电极211、绑定电极214以及引线电极可以材料相同且同一构图工艺形成。
为了降低短路风险,参照图4-图23,第二电极213的边缘可以相对于压电层212的边缘缩进。在具体实现中,第二电极213的边缘相对于压电层212的边缘的缩进量大于或等于100微米,且小于或等于500微米。例如,缩进量可以为150微米。
为了进一步降低短路风险,压电层212的边缘可以相对于第一电极211的边缘缩进。
在具体实施时,在本公开实施例提供的上述压电致动器中,如图3-图23所示,压电单元21的数量为多个,多个压电单元21阵列排布在衬底基板1的一侧,所有压电单元21的第一电极211之间可以相互连通,所有压电单元21的第二电极213可以均连接至走线层4的同一条走线41。这样可以实现压 电致动器的整体驱动。
在具体实施时,在本公开实施例提供的上述压电致动器中,如图3-图23所示,压电单元21的数量为多个,多个压电单元21阵列排布在衬底基板1的一侧,所有压电单元21的第一电极211之间可以相互连通,所有压电单元21的第二电极213可以均连接至走线层4的不同走线41。这样可以实现单独驱动每一压电单元21,从而可以仅对振动的位置的压电单元21加载驱动信号,可以降低功耗。
在具体实施时,在本公开实施例提供的上述压电致动器中,如图3-图23所示,压电单元21的数量为多个,多个压电单元21阵列排布在衬底基板1的一侧,所有压电单元21的第一电极211之间可以相互连通,位于同一列的各压电单元21的第二电极212均连接至走线层4的同一条走线。这样可以实现列驱动,也可以根据需要对相应列的压电单元21加载驱动信号,也可以降低功耗。
需要说明的是,本公开实施例仅是列举其中几种可能的驱动方式,当然根据实际需要,还可以有别的驱动方式,均属于本公开实施例保护的范围。
在具体实施时,压电致动器一般与显示器件结合实现触觉再现,为了提高压电致动器的透过率,第一电极和第二电极的材料均为透明导电材料。
在具体实施过程中,第一电极和第二电极可以是由氧化铟锡(ITO)制成,还可以是由氧化铟锌(IZO)制成,本领域技术人员可以根据实际应用需要来设置上述第一电极和第二电极,在此不做限定。
在具体实施时,在本公开实施例提供的上述压电致动器中,如图24所示,图24为一个压电单元21上方设置走线41的一种平面图,该走线41在衬底基板1上的正投影至少与第二电极213的一个边缘区域在衬底基板1上的正投影具有交叠区域DD,第一散热层3在交叠区域DD对应设置有多个第一过孔V1。这样走线41没有覆盖压电单元21的中心区域,可以提高透过率。
需要说明的是,如图24所示,本公开实施例是以走线41在衬底基板1上的正投影与第二电极213的四侧边缘区域在衬底基板1上的正投影均具有 交叠区域DD为例进行说明。
需要说明的是,图4-图23均是以第一过孔V1在第二电极213上的正投影位于第二电极213的一个边缘区域为例。
在具体实施时,当第一电极和第二电极的材料均为透明导电材料(例如ITO)时,由于ITO的电阻较大,会影响信号传输性能,因此,在本公开实施例提供的上述压电致动器中,如图25和图26所示,图25为一个压电单元21上方设置走线41的又一种平面图,图26为图25中的虚线框内的放大示意图,该走线41在衬底基板1上的正投影还与第二电极213的中心区域在衬底基板1上的正投影具有交叠区域,且走线41的形状为网格状结构,网格状结构的每一条网格线下方的第一散热层3设置多个第一过孔V1。具体地,通过将走线41设置为网格状结构,网格状结构不会影响透过率,并且网格状结构的每一条网格线下方的第一散热层3设置多个第一过孔V1,这样网格线可以通过第一过孔V1与第二电极213电连接,相当于第二电极213与各网格线并联,从而可以降低第二电极213的电阻,因此既可以不影响透过率,又可以降低第二电极213的电阻,从而可以提高信号传输性能。
在具体实施时,走线层的材料可以为Ti/Ni/Au,其中Ti可以为10nm,Ni可以为400nm,Au可以为100nm;或,走线层的材料可以为Ti/Au,其中Ti可以为10nm,Au可以为400nm;或,走线层的材料可以为Ti/Al/Ti,其中Ti可以为10nm,Al可以为300nm。
需要说明的是,本公开实施例是以第一电极和第二电极的材料均为透明导电材料为例进行说明的。当然,在具体实施时,当压电致动器无需透过率要求时,第一电极和第二电极的材料也可以均为金属材料,金属材料的电阻低,可以提高信号传输性能。本领域技术人员可以根据实际需要进行选择第一电极和第二电极的材料。
需要说明的是,第一电极可以包括图案化的多个第一电极,也可以为一整面的结构;第二电极包括图案化的多个第二电极。
在具体实施时,压电层的材料可以为锆钛酸铅(Pb(Zr,Ti)O 3,PZT),还 可以为氮化铝(AlN)、ZnO(氧化锌)、钛酸钡(BaTiO 3)、钛酸铅(PbTiO 3)、铌酸钾(KNbO 3)、铌酸锂(LiNbO 3)、钽酸锂(LiTaO 3)、硅酸镓镧(La 3Ga 5SiO 14)中的至少一种,具体可以根据本领域技术人员的实际使用需要来选择制作压电层的材料,在此不做限定。其中,在使用PZT制成压电层时,由于PZT具有高压电系数,保证了相应的压电致动器的压电特性,可以将相应的压电致动器应用到触觉反馈器件中,而且PZT具有较高的透光性,在将其集成到显示器件中时,不影响显示器件的显示质量。
本公开实施例提供的压电致动器可应用于医疗,汽车电子,运动追踪系统等领域。尤其适用于可穿戴设备领域,医疗体外或植入人体内部的监测及治疗使用,或者应用于人工智能的电子皮肤等领域。具体地,可以将压电致动器应用于刹车片、键盘、移动终端、游戏手柄、车载等可产生振动和力学特性的装置中。
基于同一发明构思,本公开实施例还提供了一种触觉反馈装置,包括本公开实施例提供的上述压电致动器。由于该触觉反馈装置解决问题的原理与前述一种压电致动器相似,因此该触觉反馈装置的实施可以参见前述压电致动器的实施,重复之处不再赘述。该触觉反馈装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示或触控功能的产品或部件。
在具体实施时,本公开实施例提供的上述触觉反馈装置还可以包括本领域技术人员熟知的其他功能结构,在此不做详述。
在具体实施时,可以将触觉反馈装置与触控屏在一起,通过触控屏可以确定人体触控的位置,从而产生对应的振动波形、振幅和频率,可以实现人机交互。再比如,通过触觉反馈装置中的压电致动器确定人体触控的位置,从而产生对应的振动波形、振幅和频率,可以实现人机交互。当然,还可以根据实际需要将触觉反馈装置应用在医疗,汽车电子,运动追踪系统等领域,在此不再详述。
本公开实施例提供了一种压电致动器及触觉反馈装置,通过在压电器件 和走线层之间设置第一散热层,第一散热层可对压电致动器的顶部发热问题进行改善,提升横向热传导能力,避免压电致动器振动时产生的热量累积在顶部,可以有效降低温度效应的特性。并且,本公开实施例提供的第一散热层可以采用绝缘材料,从而可以减少一层绝缘层(相关技术中制作在第二电极和走线层之间)的制作,可以降低压电制动器的厚度。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (30)

  1. 一种压电致动器,其中,包括:
    衬底基板;
    压电器件,位于所述衬底基板上;所述压电器件包括至少一个压电单元,每一所述压电单元包括依次层叠设置在所述衬底基板上的第一电极、压电层和第二电极;
    第一散热层,位于所述压电器件背离所述衬底基板的一侧,所述第一散热层具有第一过孔,所述第一过孔在所述衬底基板上的正投影与所述第二电极在所述衬底基板上的正投影相互交叠;
    走线层,位于所述第一散热层背离所述衬底基板的一侧,所述走线层包括走线,所述走线的一端通过所述第一过孔与所述第二电极电连接。
  2. 如权利要求1所述的压电致动器,其中,所述第一散热层为一体结构。
  3. 如权利要求1所述的压电致动器,其中,所述第一散热层包括与所述压电单元一一对应的多个第一散热部,各所述第一散热部具有所述第一过孔。
  4. 如权利要求1-3任一项所述的压电致动器,其中,还包括位于所述压电单元和所述衬底基板之间的第二散热层。
  5. 如权利要求4所述的压电致动器,其中,所述第二散热层为整面设置的结构。
  6. 如权利要求4所述的压电致动器,其中,所述第二散热层包括与所述压电单元一一对应的多个第二散热部。
  7. 如权利要求1-6任一项所述的压电致动器,其中,还包括位于所述压电器件和所述第一散热层之间的第一绝缘层,所述第一绝缘层具有第二过孔,所述第二过孔在所述衬底基板上的正投影与所述第一过孔在所述衬底基板上的正投影至少部分相互交叠。
  8. 如权利要求7所述的压电致动器,其中,所述第二过孔在所述衬底基板上的正投影与所述第一过孔在所述衬底基板上的正投影大致重叠,且所述 第一散热层覆盖所述第二过孔的侧壁且延伸至与所述第二电极接触。
  9. 如权利要求8所述的压电致动器,其中,在所述第二过孔的同一侧壁处,所述第一散热层和所述第二电极的接触边界为第一边界,所第一述绝缘层和所述第二电极的接触边界为第二边界,所述第一边界和所述第二边界之间的距离大于所述压电层厚度的30%且小于所述压电层厚度的60%。
  10. 如权利要求7所述的压电致动器,其中,所述第一散热层覆盖所述第二过孔的侧壁且覆盖所述第二过孔露出的第二电极,所述第一散热层中覆盖所述第二电极的部分具有至少一个所述第一过孔,所述走线层通过所述第二过孔和所述第一过孔与所述第二电极电连接。
  11. 如权利要求7-10任一项所述的压电致动器,其中,所述第一绝缘层的材料为有机材料。
  12. 如权利要求7-11任一项所述的压电致动器,其中,还包括位于所述第一绝缘层和所述压电单元之间的第三散热层,所述第三散热层具有第三过孔,所述第三过孔、所述第一过孔和所述第二过孔三者之间至少部分相互交叠。
  13. 如权利要求12所述的压电致动器,其中,所述第三散热层为一体结构。
  14. 如权利要求12所述的压电致动器,其中,所述第三散热层包括与所述压电单元一一对应的多个第三散热部,各所述第三散热部具有所述第三过孔。
  15. 如权利要求1-14任一项所述的压电致动器,其中,所述第一散热层的材料为绝缘材料;
    所述压电致动器包括所述第二散热层时,所述第二散热层的材料为绝缘材料;
    所述压电致动器包括所述第三散热层时,所述第三散热层的材料为绝缘材料。
  16. 如权利要求15所述的压电致动器,其中,所述绝缘材料包括AlN、 Al 2O 3或Si 3N 4至少其中之一。
  17. 如权利要求15所述的压电致动器,其中,所述第一散热层的厚度为300nm-2000nm,所述第二散热层的厚度为300nm-2000nm,所述第三散热层的厚度为300nm-2000nm。
  18. 如权利要求1-17任一项所述的压电致动器,其中,还包括位于所述第一散热层和所述走线层之间的第二绝缘层,所述第二绝缘层的材料为无机材料,且所述第二绝缘层的图形与所述第一散热层的图形相同。
  19. 如权利要求18所述的压电致动器,其中,所述第二绝缘层的材料包括SiO 2、Al 2O 3或Si 3N 4
  20. 如权利要求1-19任一项所述的压电致动器,其中,还包括:与所述第一电极同层设置的绑定电极,所述绑定电极靠近所述衬底基板的边缘设置,所述绑定电极用于连接驱动电压输入端,所述驱动电压输入端输入的电压信号为交流电压信号;所述走线的另一端通过设置在所述第一散热层和所述第一绝缘层上的第四过孔与所述绑定电极电连接;
    还包括:与所述第一电极同层设置的引线电极,所述引线电极与所述第一电极电连接,所述引线电极用于连接地电压输入端,所述地电压输入端输入的电压信号为接地电压信号。
  21. 如权利要求20所述的压电致动器,其中,所述压电单元的数量为多个,多个所述压电单元阵列排布在所述衬底基板的一侧,所有所述压电单元的第一电极之间相互连通,所有所述压电单元的第二电极均连接至所述走线层的同一条走线。
  22. 如权利要求20所述的压电致动器,其中,所述压电单元的数量为多个,多个所述压电单元阵列排布在所述衬底基板的一侧,所有所述压电单元的第一电极之间相互连通,所有所述压电单元的第二电极均连接至所述走线层的不同走线。
  23. 如权利要求20所述的压电致动器,其中,所述压电单元的数量为多个,多个所述压电单元阵列排布在所述衬底基板的一侧,所有所述压电单元 的第一电极之间相互连通,位于同一列的各所述压电单元的第二电极均连接至所述走线层的同一条走线。
  24. 如权利要求21-23任一项所述的压电致动器,其中,所述第一电极和所述第二电极的材料均为透明导电材料。
  25. 如权利要求24所述的压电致动器,其中,所述走线在所述衬底基板上的正投影至少与所述第二电极的一个边缘区域在所述衬底基板上的正投影具有交叠区域,所述第一散热层在所述交叠区域对应设置有多个所述第一过孔。
  26. 如权利要求25所述的压电致动器,其中,所述走线在所述衬底基板上的正投影还与所述第二电极的中心区域在所述衬底基板上的正投影具有交叠区域,且所述走线的形状为网格状结构,所述网格状结构的每一条网格线下方的所述第一散热层设置多个所述第一过孔。
  27. 如权利要求26所述的压电致动器,其中,所述走线的材料为Ti/Ni/Au、Ti/Au或Ti/Al/Ti。
  28. 如权利要求1-27任一项所述的压电致动器,其中,所述压电层的厚度为500nm~2000nm。
  29. 如权利要求1-28任一项所述的压电致动器,其中,所述压电层的材料包括锆钛酸铅、氮化铝、氧化锌、钛酸钡、钛酸铅、铌酸钾、铌酸锂、钽酸锂、硅酸镓镧中的至少一种。
  30. 一种触觉反馈装置,其中,包括如权利要求1-29任一项所述的压电致动器。
PCT/CN2022/090502 2022-04-29 2022-04-29 压电致动器及触觉反馈装置 WO2023206443A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001050.4A CN117356198A (zh) 2022-04-29 2022-04-29 压电致动器及触觉反馈装置
PCT/CN2022/090502 WO2023206443A1 (zh) 2022-04-29 2022-04-29 压电致动器及触觉反馈装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090502 WO2023206443A1 (zh) 2022-04-29 2022-04-29 压电致动器及触觉反馈装置

Publications (1)

Publication Number Publication Date
WO2023206443A1 true WO2023206443A1 (zh) 2023-11-02

Family

ID=88516755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090502 WO2023206443A1 (zh) 2022-04-29 2022-04-29 压电致动器及触觉反馈装置

Country Status (2)

Country Link
CN (1) CN117356198A (zh)
WO (1) WO2023206443A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151638A (ja) * 2010-01-22 2011-08-04 Murata Mfg Co Ltd 弾性境界波装置
CN107017334A (zh) * 2015-09-29 2017-08-04 精工爱普生株式会社 压电驱动装置及其制造方法、马达、机器人以及泵
CN109075768A (zh) * 2016-04-14 2018-12-21 株式会社村田制作所 弹性波装置及其制造方法
CN109460142A (zh) * 2017-09-06 2019-03-12 苹果公司 在集成模块中具有触摸传感器、力传感器和触觉致动器的电子设备
WO2021065512A1 (ja) * 2019-10-04 2021-04-08 株式会社ジャパンディスプレイ 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151638A (ja) * 2010-01-22 2011-08-04 Murata Mfg Co Ltd 弾性境界波装置
CN107017334A (zh) * 2015-09-29 2017-08-04 精工爱普生株式会社 压电驱动装置及其制造方法、马达、机器人以及泵
CN109075768A (zh) * 2016-04-14 2018-12-21 株式会社村田制作所 弹性波装置及其制造方法
CN109460142A (zh) * 2017-09-06 2019-03-12 苹果公司 在集成模块中具有触摸传感器、力传感器和触觉致动器的电子设备
WO2021065512A1 (ja) * 2019-10-04 2021-04-08 株式会社ジャパンディスプレイ 半導体装置

Also Published As

Publication number Publication date
CN117356198A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
WO2020156257A1 (zh) 指纹识别模组及其制作方法和电子装置
CN106778691B (zh) 声波式指纹识别装置及其制作方法以及应用其的电子装置
US11120243B2 (en) Fingerprint identification module, manufacturing method and driving method thereof, display device
US10509470B2 (en) Vibrating device
KR101216892B1 (ko) 햅틱 디바이스 구동용 압전 액추에이터
WO2020259297A1 (zh) 超声模组、超声传感器及显示屏
CN110458135B (zh) 一种超声波传感器及其制备方法、显示装置
TWI621982B (zh) 指紋識別裝置、其製造方法、顯示裝置
WO2022179219A1 (zh) 压电传感器及触觉反馈装置
TWI831032B (zh) 超聲波指紋識別模組、電子設備及超聲波指紋識別方法
WO2023206443A1 (zh) 压电致动器及触觉反馈装置
WO2023184298A1 (zh) 压电传感器、其驱动方法及触觉反馈装置
CN116243796A (zh) 一种触觉反馈基板、其驱动方法及触控装置
TWI764361B (zh) 觸控辨識裝置、顯示裝置及其製造方法
WO2023142037A1 (zh) 触控面板及触控装置
CN112269485B (zh) 一种显示面板及其制备方法
WO2023178676A1 (zh) 触觉反馈基板及触觉反馈装置
CN115933865A (zh) 振动面板及振动装置
CN220872983U (zh) 一种屏幕
CN117412659A (zh) 一种触觉再现器件、其制作方法及触觉再现装置
WO2024082255A1 (zh) 一种触觉反馈基板及触觉反馈装置
WO2023159440A1 (zh) 振动面板及触控显示装置
US20240349612A1 (en) Piezoelectric sensor and tactile feedback device
CN115454249A (zh) 压电元件、压电振动器及电子设备
CN115686248A (zh) 触控面板及其驱动方法、触控装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001050.4

Country of ref document: CN