WO2022179043A1 - 功率控制方法、功率控制装置和车辆 - Google Patents

功率控制方法、功率控制装置和车辆 Download PDF

Info

Publication number
WO2022179043A1
WO2022179043A1 PCT/CN2021/107638 CN2021107638W WO2022179043A1 WO 2022179043 A1 WO2022179043 A1 WO 2022179043A1 CN 2021107638 W CN2021107638 W CN 2021107638W WO 2022179043 A1 WO2022179043 A1 WO 2022179043A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
power
threshold
usage
control method
Prior art date
Application number
PCT/CN2021/107638
Other languages
English (en)
French (fr)
Inventor
文明
容航
龙成冰
Original Assignee
三一汽车制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三一汽车制造有限公司 filed Critical 三一汽车制造有限公司
Publication of WO2022179043A1 publication Critical patent/WO2022179043A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of vehicle control, and in particular, to a power control method, a power control device, and a vehicle.
  • the battery overcurrent protection function is triggered.
  • the actual power is limited below the maximum allowable pulse power of the battery.
  • the output power changes more suddenly, which is easy to cause the vehicle to shake, and the mechanism needs to be restored to ensure the normal use requirements, which seriously affects the driving experience and even creates potential safety hazards.
  • the present application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • a first aspect of the present application provides a power control method.
  • a second aspect of the present application also provides a power control device.
  • a third aspect of the present application also provides a vehicle.
  • a fourth aspect of the present application also provides a readable storage medium.
  • a first aspect of the present application proposes a power control method, including: determining a battery usage power and a battery power threshold of a battery assembly; and controlling the battery usage power to decrease to the battery power based on the battery usage power being greater than the battery power threshold threshold.
  • the power control method provided by the present application obtains the current battery usage power of the battery assembly, that is, the available power of the motor that needs to be powered by the battery assembly, and determines the battery power threshold of the battery assembly, that is, the maximum allowable pulse that the battery assembly can withstand power or the maximum allowable pulse power to trigger the overcurrent protection.
  • the battery power threshold of the battery assembly that is, the maximum allowable pulse that the battery assembly can withstand power or the maximum allowable pulse power to trigger the overcurrent protection.
  • the advantage of the battery component being able to output a large pulse power in a short time can be fully utilized, and the response speed of the output of the battery component can be improved.
  • controlling the battery usage power to decrease to the battery power threshold value includes: controlling the battery usage power to decrease to less than or equal to the battery power threshold value within a preset time period, and the preset time period includes the adjustment of the maximum allowable pulse power of the battery duration.
  • the power used by the battery when adjusting the power used by the battery, the power used by the battery is limited to be reduced to less than or equal to the battery power threshold within a preset time period. Therefore, by limiting the power usage of the battery to be adjusted within a preset time period, the user's perception of changes in the power supply of the battery components is weakened, and the user experience is improved.
  • the preset duration includes the adjustment duration for the battery to adjust to the maximum allowable pulse power.
  • the preset duration may also be shorter than the adjustment duration for the maximum allowable pulse power.
  • controlling the battery usage power to be reduced to less than or equal to the battery power threshold within a preset time period includes: obtaining a proportional-integral adjustment strategy for the battery usage power; calculating the battery usage according to the proportional-integral adjustment strategy Adjustment amount of power; calculate the target power according to the battery power threshold and adjustment amount; adjust the battery usage power to the target power within a preset time period.
  • a preset proportional-integral regulation strategy for adjusting the battery usage power is acquired.
  • PI control strategy for adjusting the battery usage power.
  • the regulation amount of the battery used power relative to the battery power threshold is calculated.
  • the difference operation is performed between the battery power threshold and the calculated adjustment amount, the target power is determined, and the battery used power is adjusted to the target power within a preset time period, so that the battery used power is lower than the battery power threshold.
  • calculating the adjustment amount of the battery used power includes: calculating the difference between the battery used power and the battery power threshold; adjusting according to the difference and the proportional-integral value strategy, determine the amount of adjustment.
  • the difference between the battery used power and the battery power threshold is calculated, and the product of the calculated difference and the proportional-integral adjustment strategy is used as the adjustment amount of the battery used power, so as to facilitate the use of the battery by the adjustment amount. Power is adjusted.
  • the following formula is used to determine the adjustment amount of the battery power used:
  • ⁇ P is the difference between the battery power and the battery power threshold
  • Pact is the battery power
  • Pbat is the battery power threshold
  • Pmot is the target power, that is, the power output to the motor
  • ⁇ P(P+I) is the adjustment Quantity
  • P is the proportional link in PI control
  • I is the integral link in PI control.
  • the method before adjusting the battery usage power to the target power within the preset time period, the method further includes: determining the preset time period according to the difference value and the proportional-integral adjustment strategy.
  • the adjustment strength based on the proportional-integral adjustment strategy is larger, so that the power of the battery assembly can be adjusted to the power threshold of the battery within a preset time period.
  • controlling the battery usage power to decrease to the battery power threshold includes: timing the duration of the battery usage power greater than the battery power threshold; and controlling the battery usage power to decrease based on the duration greater than or equal to the duration threshold to the battery power threshold.
  • the duration of the battery usage power greater than the battery power threshold is started to be counted. If the duration is greater than or equal to the duration threshold, it is determined that the battery assembly has been in an overloaded output state. At this time, the power used by the battery is controlled to gradually decrease to below the battery power threshold. Therefore, the relationship between the battery usage power and the battery power threshold is further judged by the duration, so as to avoid the floating error caused by the power detection, ensure the accuracy of the overcurrent judgment, and facilitate the subsequent precise adjustment of the battery usage power.
  • determining the battery usage power includes: collecting battery current and battery voltage; and calculating battery usage power according to the battery current and battery voltage.
  • the current bus current and battery voltage of the battery assembly are collected in real time, and the current actual battery usage power of the battery assembly is calculated, that is, the user's power demand.
  • the power used by the battery includes discharge power or feedback power.
  • the following formula is used to calculate the battery usage power:
  • Ubat is the battery voltage
  • Ibat is the battery current
  • the battery voltage may be the total battery voltage required by the multiple assemblies.
  • determining the battery power threshold includes: collecting battery state of charge and battery temperature; according to the corresponding relationship among the preset state of charge, preset battery temperature and preset power threshold , battery state of charge, battery temperature, and determine the battery power threshold.
  • the battery power threshold that is, the charge and discharge capability of the battery component
  • the capacity of the battery component is not only related to the state of charge (SOC) of the battery, but also to The battery temperature is related, so it is necessary to detect the battery temperature.
  • the maximum allowable pulse power can be used to accurately calculate the capacity of the battery component by using the battery state of charge and the battery temperature, and then accurately calculate the battery power threshold, and the calculation of the power of the battery component is simple and convenient, without the need to build a complex model, which can be widely used.
  • the two-dimensional discharge power table can be generated by testing the battery components. Specifically, the discharge capabilities (preset power thresholds) of the battery components under different preset states of charge and different preset battery temperatures are pre-tested, And generate a test result, and generate a two-dimensional discharge power table based on the corresponding relationship among the preset state of charge, the preset battery temperature and the preset power threshold according to the test result.
  • a power control device which includes a processor, a memory, and a program or instruction stored in the memory and executable on the processor.
  • the program or instruction is executed by the processor, the first Steps of the proposed power control method. Therefore, the power control apparatus has all the beneficial effects of the power control method of the first aspect.
  • a vehicle including: a battery assembly; and the power control device proposed in the second aspect, the control device being connected to the battery assembly.
  • the vehicle has all the benefits of the power control device of the second aspect.
  • a readable storage medium on which programs or instructions are stored, and when the programs or instructions are executed by a processor, the power control method of any one of the technical solutions of the first aspect is performed. Therefore, the readable storage medium has all the beneficial effects of the power control method of the first aspect.
  • FIG. 1 shows a schematic flowchart of a power control method according to an embodiment of the present application
  • FIG. 2 shows a schematic flowchart of a power control method according to another embodiment of the present application
  • FIG. 3 shows a schematic flowchart of a power control method according to another embodiment of the present application.
  • FIG. 4 shows a schematic flowchart of a power control method according to still another embodiment of the present application.
  • FIG. 5 shows a schematic flowchart of a power control method according to still another embodiment of the present application.
  • FIG. 6 shows a schematic flowchart of a power control method according to still another embodiment of the present application.
  • FIG. 7 shows a schematic flowchart of a power control method according to a specific embodiment of the present application.
  • FIG. 8 shows a schematic block diagram of a power control apparatus according to an embodiment of the present application.
  • a power control method including:
  • Step 102 determining battery usage power and battery power threshold
  • Step 104 based on the fact that the battery usage power is greater than the battery power threshold, control the battery usage power to decrease to the battery power threshold.
  • the current battery usage power of the battery assembly that is, the available power of the motor that needs to be powered by the battery assembly
  • the battery power threshold of the battery assembly is determined, that is, the maximum allowable pulse power that the battery assembly can withstand or Maximum allowable pulse power to trigger overcurrent protection.
  • the advantage of the battery component being able to output a large pulse power in a short time can be fully utilized, and the response speed of the output of the battery component can be improved.
  • the power used by the battery is adjusted by controlling the voltage and current of the battery.
  • a power control method including:
  • Step 202 determining battery usage power and battery power threshold
  • Step 204 whether the battery usage power is greater than the battery power threshold, if yes, go to Step 206, if not, go to Step 202;
  • Step 206 obtaining the proportional-integral adjustment strategy of battery power usage
  • Step 208 calculate the adjustment amount of the battery used power
  • Step 210 Calculate the target power according to the battery power threshold and the adjustment amount
  • Step 212 Adjust the battery usage power to the target power within a preset time period.
  • a preset proportional-integral regulation strategy for adjusting the battery usage power is acquired.
  • PI control strategy for adjusting the battery usage power.
  • the regulation amount of the battery usage power relative to the battery power threshold is calculated.
  • the difference operation is performed between the battery power threshold and the calculated adjustment amount, the target power is determined, and the battery used power is adjusted to the target power within a preset time period, so that the battery used power is lower than the battery power threshold.
  • the preset duration includes the adjustment duration for the battery to adjust to the maximum allowable pulse power.
  • the preset duration may also be shorter than the adjustment duration for the maximum allowable pulse power.
  • the battery usage power is controlled to decrease stepwise according to the preset duration.
  • the adjustment amount can be divided into multiple groups to reduce the value of the battery usage power.
  • the battery usage power is controlled to decrease each time. Decrease this value until the total reduction amount reaches the adjustment amount after the preset duration, and completes the gradual transition from the battery usage power to the target power.
  • multiple sets of values can be the same or different.
  • the preset duration is 10s and the adjustment amount is 60W/h, that is, the battery usage power is reduced by 60W/h, the adjustment period is set to 1s, and the power usage is controlled every time The second is reduced by 6W/h, and it can also be reduced by 1W/h in the 1s adjustment, 2W/h in the 2s adjustment, 4W/h in the 3s adjustment, and the reduction of the adjustment period increases sequentially until 10s After the battery usage power is reduced by 60W/h.
  • a power control method including:
  • Step 302 determining battery usage power and battery power threshold
  • Step 304 whether the battery usage power is greater than the battery power threshold, if yes, go to Step 306, if not, go to Step 302;
  • Step 306 obtaining the proportional-integral adjustment strategy of the battery usage power
  • Step 308 calculating the difference between the battery usage power and the battery power threshold
  • Step 310 according to the difference value and the proportional-integral adjustment strategy, determine the adjustment amount and the preset duration
  • Step 312 Calculate the target power according to the battery power threshold and the adjustment amount
  • Step 314 Adjust the battery usage power to the target power within a preset time period.
  • the difference between the battery usage power and the battery power threshold is calculated, and the product of the calculated difference and the proportional-integral adjustment strategy is used as the adjustment amount of the battery usage power, so that the battery usage can be adjusted by the adjustment amount. Power is adjusted.
  • the following formula is used to determine the adjustment amount of the battery power used:
  • ⁇ P is the difference between the battery power and the battery power threshold
  • Pact is the battery power
  • Pbat is the battery power threshold
  • Pmot is the target power, that is, the power output to the motor
  • ⁇ P(P+I) is the adjustment Quantity
  • P is the proportional link in PI control
  • I is the integral link in PI control.
  • the calculated difference ⁇ P is greater than 0, and the adjustment amount ⁇ P(P+I) is also greater than 0, and the difference between the battery power threshold and the adjustment amount is the target power.
  • the target power Pmot Pbat+ ⁇ P(P+I).
  • the adjustment strength based on the proportional-integral adjustment strategy is larger, so that the power of the battery assembly can be adjusted to the power threshold of the battery within a preset time period.
  • a power control method including:
  • Step 402 determining battery usage power and battery power threshold
  • Step 404 whether the battery usage power is greater than the battery power threshold, if yes, go to Step 406, if not, go to Step 402;
  • Step 406 timing the duration that the battery usage power is greater than the battery power threshold
  • Step 408 whether the duration is greater than or equal to the duration threshold, if yes, go to Step 410, if not, go to Step 406;
  • Step 410 Control the battery usage power to be reduced to less than or equal to the battery power threshold within a preset time period.
  • the time duration for which the battery usage power is greater than the battery power threshold is started to be counted. If the duration is greater than or equal to the duration threshold, it is determined that the battery assembly has been in an overloaded output state. At this time, the power used by the battery is controlled to gradually decrease below the battery power threshold within a preset time period. Therefore, the relationship between the battery usage power and the battery power threshold is further judged by the duration, so as to avoid the floating error caused by the power detection, ensure the accuracy of the overcurrent judgment, and facilitate the subsequent precise adjustment of the battery usage power.
  • a power control method including:
  • Step 502 determining a battery power threshold
  • Step 504 collecting battery current and battery voltage
  • Step 506 Calculate the battery usage power according to the battery current and the battery voltage
  • Step 508 check whether the battery usage power is greater than the battery power threshold, if yes, go to Step 510, if not, go to Step 504;
  • Step 510 Control the battery usage power to decrease to less than or equal to the battery power threshold within a preset time period.
  • the current bus current and battery voltage of the battery assembly are collected in real time, and the current actual battery usage power of the battery assembly is calculated, that is, the user's power demand.
  • the power used by the battery includes discharge power or feedback power.
  • the following formula is used to calculate the battery usage power:
  • Ubat is the battery voltage
  • Ibat is the battery current
  • the battery voltage may be the total battery voltage required by the multiple assemblies.
  • a power control method including:
  • Step 602 collecting battery state of charge and battery temperature
  • Step 604 Determine the battery power threshold according to the correspondence between the preset state of charge, the preset battery temperature and the preset power threshold, the battery state of charge, and the battery temperature;
  • Step 606 obtaining battery usage power
  • Step 608 whether the battery usage power is greater than the battery power threshold, if yes, go to Step 610, if not, go to Step 606;
  • Step 610 Control the battery usage power to decrease to less than or equal to the battery power threshold within a preset time period.
  • the battery power threshold that is, the charging and discharging capability of the battery assembly
  • the capacity of the battery assembly is not only related to the state of charge (SOC) of the battery, but also to The battery temperature is related, so it is necessary to detect the battery temperature.
  • SOC state of charge
  • Collect the battery state of charge and battery temperature of the battery component find the battery power threshold corresponding to the battery state of charge and battery temperature type of the battery component from the pre-stored two-dimensional table of discharge power, and use this as the theory of the battery component
  • the maximum allowable power can be used to accurately calculate the capacity of the battery components by using the battery state of charge and battery temperature, and then accurately calculate the battery power threshold.
  • the calculation of the power of the battery components is simple and convenient, without the need to build a complex model, and can be widely used.
  • the battery state of charge is usually expressed as a percentage, and its value ranges from 0 to 1.
  • the two-dimensional discharge power table records the correspondence between the preset state of charge, the preset battery temperature and the preset power threshold.
  • the two-dimensional discharge power table can be generated by testing the battery components. Specifically, the discharge capabilities (preset power thresholds) of the battery components under different preset states of charge and different preset battery temperatures are pre-tested, And generate a test result, and generate a two-dimensional discharge power table based on the corresponding relationship among the preset state of charge, the preset battery temperature and the preset power threshold according to the test result.
  • a power control method including:
  • Step 702 Determine a battery power threshold according to the battery temperature and the battery SOC
  • Step 704 calculating the actual used power of the battery
  • Step 706 compare the used power with the battery power threshold, and take the difference between the two as ⁇ P;
  • Step 708 whether ⁇ P is greater than 0, if yes, go to step 710, if not, go to step 704;
  • Step 710 Trigger the proportional-integral adjustment link to smoothly adjust the used power to within the battery power threshold within the adjustment time of the maximum allowable pulse power.
  • the overshoot link is specifically to adjust the used power to the battery power threshold - the overshoot amount.
  • the power adjustment amount used is the PI control link, that is, the larger the ⁇ P, the shorter the adjustment time (preset time length), and the faster the response to power reduction.
  • the power used by the battery components is limited to the maximum pulse power of the battery, and the vehicle overcurrent fault will not be triggered.
  • the power adjustment is relatively smooth and will not affect the driving experience. And it can make full use of the short-term large pulse power advantage of the battery to improve the driving response speed.
  • a power control apparatus 800 including: a processor 804 , a memory 802 and a program stored in the memory 802 and executable on the processor 804 or When the instructions, programs or instructions are executed by the processor 804, the steps of the power control method proposed in the embodiment of the first aspect are implemented. Therefore, the power control apparatus 800 has all the beneficial effects of the power control method of the embodiment of the first aspect.
  • a vehicle including: a battery assembly; and the power control device provided in the embodiment of the second aspect, where the power control device is connected to the battery assembly. Therefore, the vehicle has all the beneficial effects of the power control device of the embodiment of the second aspect.
  • the vehicles include electric vehicles and hybrid vehicles.
  • a readable storage medium which stores a program or an instruction, and the program or instruction executes the power control method of the first aspect embodiment when the program or instruction is executed by a processor. Therefore, the readable storage medium has all the beneficial effects of the power control method of the embodiment of the first aspect.
  • the term “plurality” refers to two or more, unless expressly defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed”, etc. should be understood in a broad sense.
  • “connected” may be a fixed connection, a detachable connection, or an integral connection;
  • “connected” may be a Directly connected or indirectly connected through an intermediary.
  • the specific meanings of the above terms in this application can be understood according to specific situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

一种功率控制方法,包括:确定电池使用功率和电池功率阈值(102);基于电池使用功率大于电池功率阈值,则控制电池使用功率降低至电池功率阈值(104)。从而能够在避免电池组件超负荷运行,保证电池组件的使用安全的同时,不触发电池的过流故障,进而保证用户的良好使用感受。而且能够在调节电池使用功率的过程中,充分的利用了电池组件能够在短时间内输出较大脉冲功率的优势,提升电池组件的响应速度。还公开了一种功率控制装置和一种车辆。

Description

功率控制方法、功率控制装置和车辆
本申请要求于2021年02月26日提交中国国家知识产权局、申请号为“202110216940.4”、发明名称为“功率控制方法、功率控制装置和车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆控制技术领域,具体而言,涉及一种功率控制方法、一种功率控制装置和一种车辆。
背景技术
相关技术中,当整车功率持续达到电池最大允许脉冲功率,则触发电池过流保护功能,此时控制器会对车辆按某种比例进行可用功率限制,或者进行下电处理,以使行车的实际功率限制在电池的最大允许脉冲功率之下。但采用限功率的措施后,输出的功率变化较为突然,易造成车辆的抖动,而且需要重新恢复机制来保证正常的使用需求,严重影响驾驶感受,甚至产生安全隐患。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一方面提供了一种功率控制方法。
本申请的第二方面还提供了一种功率控制装置。
本申请的第三方面还提供了一种车辆。
本申请的第四方面还提供了一种可读存储介质。
有鉴于此,本申请的第一方面提出了一种功率控制方法,包括:确定电池组件的电池使用功率和电池功率阈值;基于电池使用功率大于电池功率阈值,则控制电池使用功率降低至电池功率阈值。
本申请提供的功率控制方法,通过获取电池组件当前的电池使用功率,也即需要电池组件供电的电机的可用功率,以及确定该电池组件的电池功 率阈值,也即电池组件能够承受的最大允许脉冲功率或触发过流保护的最大允许脉冲功率。当检测到电池使用功率大于电池功率阈值时,说明此时电池组件的实际功率已经超出电池功率阈值,电池组件处于超负荷供电状态,若不及时进行电流限制,容易引起触电、漏电等安全隐患。故而控制电池使用功率降低至小于或等于电池功率阈值,以使电池使用功率能够过渡至电池功率阈值以下。一方面,能够在避免电池组件超负荷运行,保证电池组件安全的同时,避免触发电池的过流故障,进而保证用户的良好使用感受。另一方面,能够在调节电池使用功率的过程中,充分的利用了电池组件能够在短时间内输出较大脉冲功率的优势,提升电池组件输出的响应速度。
根据本申请提供的上述的功率控制方法,还可以具有以下附加技术特征:
在上述技术方案中,进一步地,控制电池使用功率降低至电池功率阈值,包括:控制电池使用功率在预设时长内降低至小于或等于电池功率阈值,预设时长包括电池最大允许脉冲功率的调节时长。
在该技术方案中,在进行电池使用功率的调节时,限定在预设时长内将电池使用功率降低至小于或等于电池功率阈值。从而通过限制预设时长内完成调节电池使用功率,削弱了用户对电池组件供电变化的感知,提升用户使用体验。
其中,预设时长包括电池调节至最大允许脉冲功率的调节时长,当然预设时长也可以小于最大允许脉冲功率的调节时长。
在上述技术方案中,进一步地,控制电池使用功率在预设时长内降低至小于或等于电池功率阈值,包括:获取电池使用功率的比例-积分调节策略;根据比例-积分调节策略,计算电池使用功率的调节量;根据电池功率阈值和调节量,计算目标功率;在预设时长内调节电池使用功率至目标功率。
在该技术方案中,在检测到电池使用功率大于电池功率阈值之后,获取预先设置的用于调整电池使用功率的比例-积分调节策略(PI控制策略)。利用该比例-积分调节策略,计算出电池使用功率相对于电池功率阈值的调 节量。将电池功率阈值和计算得到的调节量进行差值运算,确定出目标功率,并在预设时长内将电池使用功率调节至目标功率,以使电池使用功率低于电池功率阈值。从而避免触发电池的过流故障,而且通过比例-积分控制来消除系统稳态误差,有效避免电池使用功率的突变,保证预设时长内电池使用功率调节的稳定性,使得功率的调节更加平滑,削弱了用户对电池组件供电变化的感知,进而保证用户的良好使用感受。
在上述任一技术方案中,进一步地,根据比例-积分调节策略,计算电池使用功率的调节量,包括:计算电池使用功率和电池功率阈值之间的差值;根据差值和比例-积分调节策略,确定调节量。
在该技术方案中,计算电池使用功率和电池功率阈值之间的差值,将计算得到的差值与比例-积分调节策略的乘积作为电池使用功率的调节量,以便于通过调节量对电池使用功率进行调节。
具体地,根据差值和比例-积分调节策略,确定电池使用功率的调节量采用如下公式:
ΔP=Pact-Pbat;  (1)
Pmot=Pbat-ΔP(P+I);  (2)
其中,ΔP为电池使用功率和电池功率阈值之间的差值,Pact为电池使用功率,Pbat为电池功率阈值,Pmot为目标功率,也即输出到电机的功率,ΔP(P+I)为调节量,P为PI控制中比例环节,I为PI控制中积分环节。
在上述任一技术方案中,进一步地,在预设时长内调节电池使用功率至目标功率之前,还包括:根据差值和比例-积分调节策略,确定预设时长。
在该技术方案中,在进行电池使用功率调节之前,需要先根据电池使用功率和电池功率阈值之间的差值和比例-积分调节策略,确定调节所需的预设时长。从而实现不同电池供电情况下的动态调整,使得功率的调节比较平滑,且响应迅速,避免触发下电处理等过流保护措施。
具体地,当差值越大,基于比例-积分调节策略的调节力度越大,使得电池组件的功率能够在预设时长内调节到电池的功率阈值内。
在上述任一技术方案中,进一步地,控制电池使用功率降低至电池功 率阈值,包括:计时电池使用功率大于电池功率阈值的持续时长;基于持续时长大于或等于时长阈值,则控制电池使用功率降低至电池功率阈值。
在该技术方案中,在确认当前的电池使用功率大于电池功率阈值后,开始计时电池使用功率大于电池功率阈值的持续时长。若持续时长大于或等于时长阈值,则判定电池组件已经处于超负荷输出状态。此时控制电池使用功率逐渐减小至电池功率阈值以下。从而通过持续时长进一步判断电池使用功率与电池功率阈值之间的关系,避免功率检测使得浮动误差,保证过流判断准确度,有利于后续对电池使用功率进行精准的调节。
在上述任一技术方案中,进一步地,确定电池使用功率,包括:采集电池电流和电池电压;根据电池电流和电池电压,计算电池使用功率。
在该技术方案中,实时采集电池组件当前的母线电流和电池电压,并计算电池组件当前实际的电池使用功率,也即用户的功率需求。其中,电池使用功率包括放电功率或回馈功率。
具体地,根据电池电流和电池电压,计算电池使用功率采用如下公式:
Pact=Ubat×Ibat;  (3)
其中,Ubat为电池电压,Ibat为电池电流。
可以理解的是,考虑到电池组件能够同时为车辆中的多个组件供电,则电池电压可以为多个组件供电需求的电池总压。
在上述任一技术方案中,进一步地,确定电池功率阈值,包括:采集电池荷电状态和电池温度;根据预设荷电状态、预设电池温度和预设功率阈值三者之间的对应关系、电池荷电状态、电池温度,确定电池功率阈值。
在该技术方案中,电池功率阈值,也即电池组件的充放电能力,是影响电池组件使用效果的重要因素,电池组件的容量不仅与电池荷电状态(State of charge,SOC)有关,还与电池温度有关,因此需要检测电池温度。在采集电池组件的电池荷电状态和电池温度,从预先存储的放电功率二维表中查找与电池组件的电池荷电状态和电池温度型对应的电池功率阈值,并以此作为电池组件的理论最大允许脉冲功率,从而利用电池荷电状态和电池温度,准确计算电池组件的容量,进而准确计算电池功率阈值,而且对于电池组件的功率的计算简单方便,无需搭建复杂模型,可以得到 广泛应用。
进一步地,放电功率二维表可以通过对电池组件进行测试生成,具体的,预先测试电池组件在不同的预设荷电状态和不同的预设电池温度下的放电能力(预设功率阈值),并生成测试结果,根据该测试结果生成基于预设荷电状态、预设电池温度和预设功率阈值三者之间的对应关系的放电功率二维表。
根据本申请的第二方面,还提出了一种功率控制装置,包括处理器,存储器及存储在存储器上并可在处理器上运行的程序或指令,程序或指令被处理器执行时实现第一方面提出的功率控制方法的步骤。因此,该功率控制装置具有第一方面的功率控制方法的全部有益效果。
根据本申请的第三方面,还提出了一种车辆,包括:电池组件;第二方面提出的功率控制装置,控制装置与电池组件连接。因此,该车辆具有第二方面的功率控制装置的全部有益效果。
根据本申请的第四方面,还提出了一种可读存储介质,其上存储有程序或指令,程序或指令被处理器执行时执行第一方面的任一技术方案的功率控制方法。因此,该可读存储介质具有第一方面的功率控制方法的全部有益效果。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本申请一个实施例的功率控制方法的流程示意图;
图2示出了本申请又一个实施例的功率控制方法的流程示意图;
图3示出了本申请又一个实施例的功率控制方法的流程示意图;
图4示出了本申请又一个实施例的功率控制方法的流程示意图;
图5示出了本申请又一个实施例的功率控制方法的流程示意图;
图6示出了本申请又一个实施例的功率控制方法的流程示意图;
图7示出了本申请一个具体实施例的功率控制方法的流程示意图;
图8示出了本申请一个实施例的功率控制装置的示意框图。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图8描述根据本申请一些实施例所述的功率控制方法、功率控制装置和车辆。
实施例1:
如图1所示,根据本申请的第一方面的一个实施例,提出了一种功率控制方法,包括:
步骤102,确定电池使用功率和电池功率阈值;
步骤104,基于电池使用功率大于电池功率阈值,则控制电池使用功率降低至电池功率阈值。
在该实施例中,通过获取电池组件当前的电池使用功率,也即需要电池组件供电的电机的可用功率,以及确定该电池组件的电池功率阈值,也即电池组件能够承受的最大允许脉冲功率或触发过流保护的最大允许脉冲功率。当检测到电池使用功率大于电池功率阈值时,说明此时电池组件的实际功率已经超出电池功率阈值,电池组件处于超负荷供电状态,若不及时进行电流限制,容易引起触电、漏电等安全隐患。故而控制电池使用功率降低至小于或等于电池功率阈值,以使电池使用功率能够过渡至电池功率阈值以下。一方面,能够在避免电池组件超负荷运行,保证电池组件安全的同时,避免触发电池的过流故障,进而保证用户的良好使用感受。另一方面,能够在调节电池使用功率的过程中,充分的利用了电池组件能够在短时间内输出较大脉冲功率的优势,提升电池组件输出的响应速度。
具体地,通过控制电池的电压和电流来调节电池使用功率。
实施例2:
如图2所示,根据本申请的一个实施例,提出了一种功率控制方法, 包括:
步骤202,确定电池使用功率和电池功率阈值;
步骤204,电池使用功率是否大于电池功率阈值,若是,进入步骤206,若否,进入步骤202;
步骤206,获取电池使用功率的比例-积分调节策略;
步骤208,根据比例-积分调节策略,计算电池使用功率的调节量;
步骤210,根据电池功率阈值和调节量,计算目标功率;
步骤212,在预设时长内调节电池使用功率至目标功率。
在该实施例中,在检测到电池使用功率大于电池功率阈值之后,获取预先设置的用于调整电池使用功率的比例-积分调节策略(PI控制策略)。利用该比例-积分调节策略,计算出电池使用功率相对于电池功率阈值的调节量。将电池功率阈值和计算得到的调节量进行差值运算,确定出目标功率,并在预设时长内将电池使用功率调节至目标功率,以使电池使用功率低于电池功率阈值。从而避免触发电池的过流故障,而且通过比例-积分控制来消除系统稳态误差,有效避免电池使用功率的突变,保证预设时长内电池使用功率调节的稳定性,使得功率的调节更加平滑,削弱了用户对电池组件供电变化的感知,进而保证用户的良好使用感受。
其中,预设时长包括电池调节至最大允许脉冲功率的调节时长,当然预设时长也可以小于最大允许脉冲功率的调节时长。
进一步地,根据预设时长控制电池使用功率阶梯式降低,具体地,可以将调节量分成多组用于减小电池使用功率的数值,在进行电池使用功率调节时,控制电池使用功率每次减小该数值,直至预设时长后总的减小量达到调节量,完成电池使用功率至目标功率的逐渐过渡。当然多组数值可以是相同的,也可以是不同的,例如,预设时长为10s,调节量为60W/h,也即电池使用功率降低60W/h,调节周期设置为1s,控制使用功率每秒减小6W/h,还可以第1s调节时减小1W/h,第2s调节时减小2W/h,第3s调节时减小4W/h,调节周期的减小量依次增加,直至10s后电池使用功率降低了60W/h。
实施例3:
如图3所示,根据本申请的一个实施例,提出了一种功率控制方法,包括:
步骤302,确定电池使用功率和电池功率阈值;
步骤304,电池使用功率是否大于电池功率阈值,若是,进入步骤306,若否,进入步骤302;
步骤306,获取电池使用功率的比例-积分调节策略;
步骤308,计算电池使用功率和电池功率阈值之间的差值;
步骤310,根据差值和比例-积分调节策略,确定调节量和预设时长;
步骤312,根据电池功率阈值和调节量,计算目标功率;
步骤314,在预设时长内调节电池使用功率至目标功率。
在该实施例中,计算电池使用功率和电池功率阈值之间的差值,将计算得到的差值与比例-积分调节策略的乘积作为电池使用功率的调节量,以便于通过调节量对电池使用功率进行调节。
具体地,根据差值和比例-积分调节策略,确定电池使用功率的调节量采用如下公式:
ΔP=Pact-Pbat;  (1)
Pmot=Pbat-ΔP(P+I);  (2)
其中,ΔP为电池使用功率和电池功率阈值之间的差值,Pact为电池使用功率,Pbat为电池功率阈值,Pmot为目标功率,也即输出到电机的功率,ΔP(P+I)为调节量,P为PI控制中比例环节,I为PI控制中积分环节。
可以理解的是,由于电池使用功率大于电池功率阈值,那么计算出的差值ΔP大于0,则调节量ΔP(P+I)也大于0,电池功率阈值与调节量的差即为目标功率。当然,对于电池使用功率和电池功率阈值之间的差值运算也可以采用ΔP=Pbat-Pact,这时差值ΔP为负数。则目标功率Pmot=Pbat+ΔP(P+I)。
进一步地,在进行电池使用功率调节之前,需要先根据电池使用功率和电池功率阈值之间的差值和比例-积分调节策略,确定调节所需的预设时长。从而实现不同电池供电情况下的动态调整,使得功率的调节比较平滑, 且响应迅速,避免触发下电处理等过流保护措施,不会影响用户的使用感受。
具体地,当差值越大,基于比例-积分调节策略的调节力度越大,使得电池组件功率能够在预设时长内调节到电池的功率阈值内。
实施例4:
如图4所示,根据本申请的一个实施例,提出了一种功率控制方法,包括:
步骤402,确定电池使用功率和电池功率阈值;
步骤404,电池使用功率是否大于电池功率阈值,若是,进入步骤406,若否,进入步骤402;
步骤406,计时电池使用功率大于电池功率阈值的持续时长;
步骤408,持续时长是否大于或等于时长阈值,若是,进入步骤410,若否,进入步骤406;
步骤410,控制电池使用功率在预设时长内降低至小于或等于电池功率阈值。
在该实施例中,在确认当前的电池使用功率大于电池功率阈值后,开始计时电池使用功率大于电池功率阈值的持续时长。若持续时长大于或等于时长阈值,则判定电池组件已经处于超负荷输出状态。此时控制电池使用功率在预设时长内逐渐减小至电池功率阈值以下。从而通过持续时长进一步判断电池使用功率与电池功率阈值之间的关系,避免功率检测使得浮动误差,保证过流判断准确度,有利于后续对电池使用功率进行精准的调节。
实施例5:
如图5所示,根据本申请的一个实施例,提出了一种功率控制方法,包括:
步骤502,确定电池功率阈值;
步骤504,采集电池电流和电池电压;
步骤506,根据电池电流和电池电压,计算电池使用功率;
步骤508,电池使用功率是否大于电池功率阈值,若是,进入步骤510, 若否,进入步骤504;
步骤510,控制电池使用功率在预设时长内降低至小于或等于电池功率阈值。
在该实施例中,实时采集电池组件当前的母线电流和电池电压,并计算电池组件当前实际的电池使用功率,也即用户的功率需求。其中,电池使用功率包括放电功率或回馈功率。
具体地,根据电池电流和电池电压,计算电池使用功率采用如下公式:
Pact=Ubat×Ibat;  (3)
其中,Ubat为电池电压,Ibat为电池电流。
可以理解的是,考虑到电池组件能够同时为车辆中的多个组件供电,则电池电压可以为多个组件供电需求的电池总压。
实施例6:
如图6所示,根据本申请的一个实施例,提出了一种功率控制方法,包括:
步骤602,采集电池荷电状态和电池温度;
步骤604,根据预设荷电状态、预设电池温度和预设功率阈值三者之间的对应关系、电池荷电状态、电池温度,确定电池功率阈值;
步骤606,获取电池使用功率;
步骤608,电池使用功率是否大于电池功率阈值,若是,进入步骤610,若否,进入步骤606;
步骤610,控制电池使用功率在预设时长内降低至小于或等于电池功率阈值。
在该实施例中,电池功率阈值,也即电池组件的充放电能力,是影响电池组件使用效果的重要因素,电池组件的容量不仅与电池荷电状态(State of charge,SOC)有关,还与电池温度有关,因此需要检测电池温度。在采集电池组件的电池荷电状态和电池温度,从预先存储的放电功率二维表中查找与电池组件的电池荷电状态和电池温度型对应的电池功率阈值,并以此作为电池组件的理论最大允许功率,从而利用电池荷电状态和电池温度,准确计算电池组件的容量,进而准确计算电池功率阈值,而且对于电池组 件的功率的计算简单方便,无需搭建复杂模型,可以得到广泛应用。
其中,电池荷电状态(SOC)常用百分数表示,其取值范围为0~1,当SOC=0时表示电池放电完全,当SOC=1时表示电池充电完全。放电功率二维表记录了预设荷电状态、预设电池温度和预设功率阈值三者之间的对应关系。
进一步地,放电功率二维表可以通过对电池组件进行测试生成,具体的,预先测试电池组件在不同的预设荷电状态和不同的预设电池温度下的放电能力(预设功率阈值),并生成测试结果,根据该测试结果生成基于预设荷电状态、预设电池温度和预设功率阈值三者之间的对应关系的放电功率二维表。
实施例7:
如图7所示,根据本申请的一个具体实施例,以电动车为例,提出了一种功率控制方法,包括:
步骤702,根据电池温度和电池SOC,确定电池功率阈值;
步骤704,计算电池的实际使用功率;
步骤706,将使用功率与电池功率阈值进行比较,取二者的差值为ΔP;
步骤708,ΔP是否大于0,若是,进入步骤710,若否,进入步骤704;
步骤710,触发比例-积分调节环节,以将使用功率在最大允许脉冲功率的调节时间之内平滑调节至电池功率阈值之内。
在该实施例中,超调环节具体为将使用功率调节至电池功率阈值-超调量。其中,使用功率调节量为PI控制环节,也即ΔP越大,调节时间(预设时长)越短,那么响应降功率的速度越快。使得将电池组件的使用功率限制在电池最大的脉冲功率之内,且不会触发整车过流故障,功率的调节比较平滑,不会影响驾驶感受。而且可以充分的利用了电池短时间大的脉冲功率优势,提升驾驶响应速度。
实施例8:
如图8所示,根据本申请第二方面的实施例,提出了一种功率控制装置800,包括:处理器804,存储器802及存储在存储器802上并可在处理器804上运行的程序或指令,程序或指令被处理器804执行时实现第一方 面实施例提出的功率控制方法的步骤。因此,该功率控制装置800具有第一方面实施例的功率控制方法的全部有益效果。
实施例9:
根据本申请的第三方面的实施例,还提出了一种车辆,包括:电池组件;第二方面实施例提出的功率控制装置,功率控制装置与电池组件连接。因此,该车辆具有第二方面实施例的功率控制装置的全部有益效果。
具体地,车辆包括电动车、混合动力汽车。
实施例10:
根据本申请的第四方面的实施例,还提出了一种可读存储介质,其上存储有程序或指令,程序或指令被处理器执行时执行第一方面实施例的功率控制方法。因此,该可读存储介质具有第一方面实施例的功率控制方法的全部有益效果。
在本申请中,术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种功率控制方法,其中,包括:
    确定电池使用功率和电池功率阈值;
    基于所述电池使用功率大于所述电池功率阈值,则控制所述电池使用功率降低至所述电池功率阈值。
  2. 根据权利要求1所述的功率控制方法,其中,所述控制所述电池使用功率降低至所述电池功率阈值,包括:
    控制所述电池使用功率在预设时长内降低至小于或等于所述电池功率阈值,
    所述预设时长包括电池最大允许脉冲功率的调节时长。
  3. 根据权利要求2所述的功率控制方法,其中,所述控制所述电池使用功率在预设时长内降低至小于或等于所述电池功率阈值,包括:
    获取所述电池使用功率的比例-积分调节策略;
    根据所述比例-积分调节策略,计算电池使用功率的调节量;
    根据所述电池功率阈值和所述调节量,计算目标功率;
    在所述预设时长内调节所述电池使用功率至所述目标功率。
  4. 根据权利要求3所述的功率控制方法,其中,所述根据所述比例-积分调节策略,计算电池使用功率的调节量,包括:
    计算所述电池使用功率和所述电池功率阈值之间的差值;
    根据所述差值和所述比例-积分调节策略,确定所述调节量;
    所述根据所述电池功率阈值和所述调节量,计算目标功率采用如下公式:
    ΔP=Pact-Pbat;
    Pmot=Pbat-ΔP(P+I);
    其中,ΔP为所述差值,Pact为所述电池使用功率,Pbat为所述电池功率阈值,Pmot为所述目标功率,ΔP(P+I)为所述调节量。
  5. 根据权利要求4所述的功率控制方法,其中,所述在所述预设时长内调节所述电池使用功率至所述目标功率之前,还包括:
    根据所述差值和所述比例-积分调节策略,确定所述预设时长。
  6. 根据权利要求1至5中任一项所述的功率控制方法,其中,所述控制所述电池使用功率降低至所述电池功率阈值,包括:
    计时所述电池使用功率大于所述电池功率阈值的持续时长;
    基于所述持续时长大于或等于时长阈值,则控制所述电池使用功率降低至所述电池功率阈值。
  7. 根据权利要求1至5中任一项所述的功率控制方法,其中,所述确定电池使用功率,包括:
    采集电池电流和电池电压;
    根据所述电池电流和所述电池电压,计算所述电池使用功率。
  8. 根据权利要求1至5中任一项所述的功率控制方法,其中,所述确定电池功率阈值,包括:
    采集电池荷电状态和电池温度;
    根据所述预设荷电状态、预设电池温度和预设功率阈值三者之间的对应关系、所述电池荷电状态、所述电池温度,确定所述电池功率阈值。
  9. 一种功率控制装置,其中,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至8中任一项所述的功率控制方法的步骤。
  10. 一种车辆,其中,包括:
    电池组件;
    如权利要求9所述功率控制装置,与所述电池组件连接。
PCT/CN2021/107638 2021-02-26 2021-07-21 功率控制方法、功率控制装置和车辆 WO2022179043A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110216940.4A CN113022311B (zh) 2021-02-26 2021-02-26 功率控制方法、功率控制装置和车辆
CN202110216940.4 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022179043A1 true WO2022179043A1 (zh) 2022-09-01

Family

ID=76461708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107638 WO2022179043A1 (zh) 2021-02-26 2021-07-21 功率控制方法、功率控制装置和车辆

Country Status (2)

Country Link
CN (1) CN113022311B (zh)
WO (1) WO2022179043A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113022311B (zh) * 2021-02-26 2022-03-25 三一汽车制造有限公司 功率控制方法、功率控制装置和车辆
CN113829949B (zh) * 2021-09-17 2023-07-25 中国第一汽车股份有限公司 一种动力电池功率的修正方法
CN116131618B (zh) * 2022-12-13 2024-04-19 深圳麦格米特电气股份有限公司 一种老化测试装置、方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889388A (en) * 1996-06-06 1999-03-30 Heartstream, Inc. Circuitry for dynamically controlling capacitor charge based on battery capacity
CN104835989A (zh) * 2014-03-27 2015-08-12 北汽福田汽车股份有限公司 动力蓄电池的保护方法及装置
JP2016158412A (ja) * 2015-02-25 2016-09-01 京セラ株式会社 電力変換装置及び電力管理システム
CN109546238A (zh) * 2018-11-01 2019-03-29 东软睿驰汽车技术(沈阳)有限公司 一种控制电池功率的方法及装置
CN113022311A (zh) * 2021-02-26 2021-06-25 三一汽车制造有限公司 功率控制方法、功率控制装置和车辆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107539145B (zh) * 2017-08-21 2019-09-17 北京新能源汽车股份有限公司 一种电动汽车动力电池的保护方法、装置及电动汽车
CN109532515B (zh) * 2018-12-19 2020-09-08 深圳腾势新能源汽车有限公司 一种电动汽车动力电池的超限功率保护方法及系统
CN109823229B (zh) * 2019-01-31 2021-07-23 上海蔚来汽车有限公司 动力电池功率控制方法、装置、系统及车辆
CN111016734B (zh) * 2019-12-31 2021-07-23 中航锂电(洛阳)有限公司 一种电池功率的控制方法、控制装置及电动汽车

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889388A (en) * 1996-06-06 1999-03-30 Heartstream, Inc. Circuitry for dynamically controlling capacitor charge based on battery capacity
CN104835989A (zh) * 2014-03-27 2015-08-12 北汽福田汽车股份有限公司 动力蓄电池的保护方法及装置
JP2016158412A (ja) * 2015-02-25 2016-09-01 京セラ株式会社 電力変換装置及び電力管理システム
CN109546238A (zh) * 2018-11-01 2019-03-29 东软睿驰汽车技术(沈阳)有限公司 一种控制电池功率的方法及装置
CN113022311A (zh) * 2021-02-26 2021-06-25 三一汽车制造有限公司 功率控制方法、功率控制装置和车辆

Also Published As

Publication number Publication date
CN113022311B (zh) 2022-03-25
CN113022311A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
WO2022179043A1 (zh) 功率控制方法、功率控制装置和车辆
US20140176085A1 (en) Battery controller of vehicle
US9285432B2 (en) Method and system for controlling a vehicle battery
JP4494453B2 (ja) 二次電池の制御装置および制御方法
US9973018B2 (en) Electric storage system
JP5621818B2 (ja) 蓄電システムおよび均等化方法
JP4080817B2 (ja) 組電池の残容量均等化装置
US20140103859A1 (en) Electric storage system
WO2013046263A1 (ja) 非水二次電池の制御装置および制御方法
JP2010093875A (ja) 電源制御装置、車両走行制御システム及び蓄電池劣化状態検知方法
US9625531B2 (en) Apparatus and method for calculating precharge resistance of battery pack
JP2002142379A (ja) 電池の充電方法
US9758155B2 (en) Control apparatus for vehicle
JP2020195215A (ja) 電源システム
JP2004031014A (ja) 並列接続電池を含む組電池の最大充放電電力演算方法および装置
US11967851B2 (en) Electrified powertrain with method for determining battery limits based on cell factors
JP2016201956A (ja) バッテリ制御装置
JP2013088183A (ja) 電源装置の異常検出システム、異常検出装置及び異常検出方法
JP3865189B2 (ja) 自己発電型電気自動車用電池の制御方法
JP2011040237A (ja) 鉛蓄電池用充電装置
US11485234B2 (en) Power supply system
JP2005269825A (ja) ハイブリッドシステム
JP2006020401A (ja) ハイブリッド車のバッテリ管理システム
JP2004031123A (ja) 並列接続された組電池の容量演算方法および装置
JP2017192272A (ja) 電源制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927472

Country of ref document: EP

Kind code of ref document: A1