WO2022178805A1 - 移相器及天线 - Google Patents

移相器及天线 Download PDF

Info

Publication number
WO2022178805A1
WO2022178805A1 PCT/CN2021/078045 CN2021078045W WO2022178805A1 WO 2022178805 A1 WO2022178805 A1 WO 2022178805A1 CN 2021078045 W CN2021078045 W CN 2021078045W WO 2022178805 A1 WO2022178805 A1 WO 2022178805A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
waveguide structure
waveguide
port
feeding
Prior art date
Application number
PCT/CN2021/078045
Other languages
English (en)
French (fr)
Inventor
方家
曲峰
王熙元
郑洋
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/078045 priority Critical patent/WO2022178805A1/zh
Priority to US17/622,088 priority patent/US11984633B2/en
Priority to CN202180000318.8A priority patent/CN115250641A/zh
Publication of WO2022178805A1 publication Critical patent/WO2022178805A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/182Waveguide phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/181Phase-shifters using ferroelectric devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the invention belongs to the field of communications, and in particular relates to a phase shifter and an antenna.
  • Phase shifters are devices that can adjust the phase of microwave signals, and are widely used in radar, missile attitude control, accelerators, communications, instrumentation, and even music.
  • the phase shifter with adjustable dielectric layer is based on the characteristics of different dielectric constants of the dielectric layer under different electric field strengths. By changing the voltage between the signal line and the patch electrode, the dielectric constant of the dielectric layer between the two is changed to modulate the microwave. signal phase.
  • the present invention aims to solve at least one of the technical problems existing in the prior art, and provides a phase shifter, which realizes the input and output of signals of the phase shifter through the first feeding structure and the second feeding structure, Therefore, in the phase shifter using the coplanar waveguide transmission line, the problem of converting the transverse electric field of the coplanar waveguide transmission line into the longitudinal electric field can be solved, and a phase shifter with low transmission loss can be realized.
  • an embodiment of the present disclosure provides a phase shifter, which is divided into a first feeding area, a second feeding area, and a phase shifting area;
  • the phase shifter includes: a first substrate and a first substrate disposed opposite to each other. two substrates, and a dielectric layer disposed between the first substrate and the second substrate;
  • the first substrate includes: a first substrate, a signal line and a reference electrode arranged on a side of the first substrate close to the dielectric layer; and the signal line and the reference electrode are located in the phase-shifting region;
  • the signal line includes: a main structure and at least one branch structure connected to the main structure, and at least one of the branch structures is arranged along the extending direction of the main structure;
  • the second substrate includes: a second substrate, at least one patch electrode disposed on the side of the second substrate close to the dielectric layer; the patch electrode is located in the phase-shifting region; at least one patch The electrodes are arranged corresponding to at least one of the branch structures to form at least one variable capacitor; at least one of the patch electrodes at least partially overlaps with the orthographic projection of at least one of the branch structures on the first substrate;
  • phase shifter also includes:
  • first feeding structure is electrically connected to one end of the signal line
  • second feeding structure is electrically connected to the other end of the signal line
  • a feeding structure is located in the first feeding area
  • the second feeding structure is located in the second feeding area
  • An inner recess is formed on the first substrate and/or the second substrate; the inner recess is located at the edge of the first feeding area and/or at the edge of the second feeding area, and any A conductive structure is filled in the inner recess.
  • the phase shifter further includes a first waveguide structure located in the first feeding region; the inner recess includes a first inner recess located in the first feeding region; the first feeding structure is located in the first feeding region. an orthographic projection on the substrate at least partially overlapping the orthographic projection of the first port of the first waveguide structure on the first substrate;
  • the first port of the first waveguide structure When the first port of the first waveguide structure is connected to the surface of the first substrate facing away from the dielectric layer, the first concave portion is formed on the first substrate, and the first waveguide structure is the side wall covers the opening of the first inner recess;
  • the first concave portion is formed on the second substrate, and the first waveguide structure
  • the sidewall of the first inner recess covers the opening of the first inner recess.
  • the phase shifter further includes a second waveguide structure located in the second feeding region, and the inner recess further includes a second inner recess located in the second feeding region; the second feeding region the orthographic projection of the structure on the first substrate at least partially overlaps the orthographic projection of the first port of the second waveguide structure on the first substrate;
  • the second concave portion is formed on the first substrate, and the sidewall of the second waveguide structure covers the opening of the first inner recess;
  • the second concave portion is formed on the second substrate, and the second waveguide structure
  • the sidewall of the second inner recess covers the opening of the second inner recess.
  • the orthographic projection of the first feed structure on the first substrate is located in the orthographic projection of the first port of the first waveguide structure on the first substrate; and/or, The orthographic projection of the second feeding structure on the first substrate is located in the orthographic projection of the first port of the second waveguide structure on the first substrate.
  • the first waveguide structure is disposed on the side of the first substrate facing away from the dielectric layer, and the second waveguide structure is disposed on the side of the second substrate facing away from the dielectric layer;
  • both the first waveguide structure and the second waveguide structure are disposed on the side of the second substrate away from the dielectric layer, and the orthographic projection of the first waveguide structure on the second substrate is the same as The orthographic projections of the second waveguide structure on the second substrate do not overlap.
  • the phase shifter further includes: a first reflection structure and a second reflection structure;
  • the first reflection structure is arranged on the side of the first feeding structure away from the first waveguide structure, and the orthographic projection of the first reflection structure on the first substrate is the same as the first waveguide structure.
  • the orthographic projection of the first port on the first substrate at least partially overlaps and at least partially overlaps with the orthographic projection of the first feeding structure on the first substrate, and the first reflection structure is used to The microwave signal radiated toward the side away from the first waveguide structure by the first feeding structure is reflected back into the first waveguide structure;
  • the second reflection structure is disposed on the side of the second feeding structure away from the second waveguide structure, and the orthographic projection of the second reflection structure on the second substrate is the same as the second waveguide structure.
  • the orthographic projection of the first port on the second substrate at least partially overlaps and at least partially overlaps the orthographic projection of the second feeding structure on the second substrate, and the second reflecting structure is used to The microwave signal radiated toward the side away from the second waveguide structure by the second feeding structure is reflected back into the second waveguide structure.
  • the first reflection structure is a waveguide structure
  • the orthographic projection of the first port of the first reflection structure on the first substrate is where the first port of the first waveguide structure is located. the orthographic projections on the first substrate at least partially overlap;
  • the second reflection structure is a waveguide structure, and the orthographic projection of the first port of the second reflection structure on the second substrate and the first port of the second waveguide structure are on the second substrate
  • the inner recess further includes a third inner recess located in the first feeding region
  • the third concave portion is formed on the first substrate, and the first reflective structure is an opening of the side wall covering the third inner recess;
  • the third concave portion is formed on the second substrate, and the first reflective structure is The opening of the side wall covers the third inner recess.
  • the inner recess further includes a fourth inner recess located in the second feeding region;
  • the fourth concave portion is formed on the first substrate, and the second reflective structure is an opening of the side wall covering the fourth inner recess;
  • the fourth concave portion is formed on the second substrate, and the second reflective structure is The opening of the side wall covers the fourth inner recess.
  • the concave portion when the concave portion is located in the first feeding region and is formed on the first substrate, the concave portion is multiple and arranged in a ring shape; when the concave portion is located in the first substrate When the first feeding area is formed on the second substrate, there are a plurality of the inner recesses and are arranged in a ring shape;
  • the concave portions When the concave portions are located in the second feeding region and formed on the first substrate, the concave portions are multiple and arranged in a ring shape;
  • the inner recesses When the inner recesses are located in the second feeding region and formed on the second substrate, there are a plurality of the inner recesses and are arranged in a ring shape.
  • the first waveguide structure has at least one first sidewall connected to form a waveguide cavity of the first waveguide structure
  • the second waveguide structure has at least one second sidewall, and the at least one second sidewall is connected to form a waveguide cavity of the second waveguide structure.
  • the phase shifter further includes a first metal layer and a second metal layer; the first metal layer is disposed on a side of the first substrate away from the dielectric layer, and the first metal layer is in the first metal layer. and has a first cavity, the first cavity defines the first waveguide structure; the second metal layer is disposed on the side of the second substrate away from the dielectric layer, and the second metal layer has a second cavity defining the second waveguide structure;
  • the phase shifter further includes a second metal layer disposed on the side of the second substrate away from the dielectric layer; the second metal layer has a first cavity and a second cavity, and the first cavity and the second cavity are formed in the second metal layer.
  • a cavity defines the first waveguide structure, the second cavity defines the second waveguide structure; and the orthographic projection of the first cavity on the second substrate is the same as the second The orthographic projections of the cavity on the second substrate do not overlap.
  • the phase shifter further includes: a third substrate connected to the second port of the first waveguide structure; the third substrate includes a third substrate, and is disposed on the third substrate close to the a feeding transmission line on one side of the first waveguide structure; wherein,
  • a first end of the feeding transmission line is connected to an external signal line, and a second end thereof extends to a second port of the first waveguide structure to feed signals into the first waveguide structure.
  • the first feeding structure is a monopole electrode, which is provided in the same layer and made of the same material as the signal line; and/or, the second feeding structure is a monopole electrode, which is the same as the signal line.
  • the signal lines are arranged in the same layer and have the same material.
  • the signal line has at least one bending angle
  • the reference electrode has at least one bending angle
  • the bending angle of the reference electrode is set in a one-to-one correspondence with the bending angle of the signal line.
  • the reference electrode includes: a first sub-reference electrode and a second sub-reference electrode; the signal line is disposed between the first sub-reference electrode and the second sub-reference electrode; each of the The patch electrode and the orthographic projection of the first sub-reference electrode and the second sub-reference electrode of the reference electrode on the first substrate at least partially overlap.
  • the first waveguide structure and/or the second waveguide structure has a filling medium therein, and the filling medium is polytetrafluoroethylene.
  • an embodiment of the present disclosure further provides an antenna, which includes the above-mentioned phase shifter.
  • the phase shifter further includes: a second waveguide structure corresponding to the second feeding structure; the antenna further includes:
  • At least one radiation unit, and one of the radiation units is arranged corresponding to the second port of the second waveguide structure of the phase shifter.
  • the radiation unit is a third waveguide structure including a first port close to the second waveguide structure and a second port away from the second waveguide structure, the third waveguide structure having a first port A port is connected to the corresponding second port of the second waveguide structure;
  • the aperture of the second port of the third waveguide structure is larger than the aperture of the first port, and the aperture of the third waveguide structure relatively far from the second waveguide structure is not smaller than the aperture of the third waveguide structure relatively close to the second waveguide structure caliber.
  • the second waveguide structure includes four second sidewalls connected to define a waveguide cavity of the second waveguide structure
  • the third waveguide structure includes a third sidewall, and the third sidewall encloses a waveguide cavity of the third waveguide structure;
  • the shape of the waveguide cavity of the second waveguide structure gradually transitions to the shape of the first port of the third waveguide cavity.
  • the radiation unit is a radiation patch
  • the antenna further includes a fourth substrate, and the second port of the second waveguide structure of at least one of the phase shifters is connected to the fourth substrate, and the radiation patch the sheet is arranged on the side of the fourth substrate away from the second waveguide structure;
  • the orthographic projection of the radiation patch on the fourth substrate at least partially overlaps with the orthographic projection of the corresponding second port of the second waveguide structure on the fourth substrate.
  • the phase shifter further includes: a first waveguide structure disposed corresponding to the first feeding structure;
  • the antenna includes a plurality of radiating elements and a plurality of phase shifters, and one radiating element and one of the The second port of the second waveguide structure of the phase shifter is set correspondingly;
  • the first waveguide structures of a plurality of the phase shifters are connected to form a waveguide power division network, the waveguide power division network has a main port and a plurality of sub-ports, the main port of the waveguide power division network is connected to an external signal line, each The first port of the first waveguide structure serves as a sub-port of the waveguide power division network.
  • Figure 1 is an equivalent model of a transmission line periodically loading variable capacitors in parallel.
  • FIG. 2a is a top view of an embodiment of a phase shifter provided by an embodiment of the present disclosure.
  • Fig. 2b is a cross-sectional view of Fig. 2a along the A-B direction.
  • FIG. 2c is a top view (first waveguide structure) of another embodiment of the phase shifter provided by the embodiment of the present disclosure.
  • FIG. 2d is a cross-sectional view along the C-D direction of FIG. 2c.
  • FIG. 2e is a top view (second waveguide structure) of another embodiment of the phase shifter provided by the embodiment of the present disclosure.
  • Fig. 2f is a cross-sectional view of Fig. 2a along the direction E-F.
  • FIG. 2g is a top view (a first waveguide structure and a second waveguide structure) of another embodiment of the phase shifter provided by the embodiment of the present disclosure.
  • Fig. 3 is a cross-sectional view along the G-H direction of Fig. 2g.
  • FIG. 4 is a graph of impedance change of the phase shifter of FIG. 2 .
  • FIG. 5 is a side view of another embodiment of the phase shifter provided by the embodiment of the present disclosure.
  • FIG. 6 is a side view of another embodiment of the phase shifter provided by the embodiment of the present disclosure.
  • FIG. 7 is a top view of the third substrate in FIG. 6
  • FIG. 8 is a side view of another embodiment of the phase shifter provided by the embodiment of the present disclosure (the first waveguide structure and the second waveguide structure are arranged on opposite sides).
  • FIG. 9 is a side view of another embodiment of the phase shifter provided by the embodiment of the present disclosure (the first waveguide structure and the second waveguide structure are arranged on the same side).
  • FIG. 10 is a partial schematic diagram of a first waveguide structure in a phase shifter provided by an embodiment of the present disclosure.
  • FIG. 11 is a side view of another embodiment of the phase shifter provided by the embodiments of the present disclosure (the first waveguide structure and the second waveguide structure are disposed on opposite sides and are a cavity).
  • FIG. 12 is a side view of another embodiment of the phase shifter provided by the embodiment of the present disclosure (the first waveguide structure and the second waveguide structure are arranged on the same side and are a cavity).
  • FIG. 13 is a side view of another embodiment of the phase shifter provided by the embodiments of the present disclosure (the overlapping areas are inconsistent).
  • FIG. 14 is a cross-sectional view along the J-K direction of FIG. 13 .
  • FIG. 15 is a graph of impedance change of the phase shifter of FIG. 13 .
  • FIG. 16 is a top view (bending arrangement) of another embodiment of the phase shifter provided by the embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram (horn antenna) of an embodiment of a radiation unit of an antenna according to an embodiment of the present disclosure.
  • FIG. 18 is a side view of an embodiment of an antenna provided by an embodiment of the present disclosure.
  • FIG. 19 is a side view of an embodiment of an antenna provided by an embodiment of the present disclosure (a cavity in a metal layer forms a waveguide structure).
  • FIG. 20 is a side view of an embodiment of an antenna provided by an embodiment of the present disclosure (the waveguide power division network is arranged on the same side as the second waveguide structure and the radiation unit).
  • FIG. 21 is a top view of the antenna of FIG. 20 .
  • FIG. 22 is a side view (with a third substrate) of an embodiment of an antenna provided by an embodiment of the present disclosure.
  • FIG. 23 is a top view of the third substrate of the antenna of FIG. 22 .
  • FIG. 24 is a side view (radiating patch) of an embodiment of an antenna provided by an embodiment of the present disclosure.
  • FIG. 25 is a top view of the antenna of FIG. 24 .
  • FIG. 26 is a simulation graph of a dielectric constant and a transmission loss of an antenna provided by an embodiment of the present disclosure.
  • FIG. 27 is a simulation graph of a dielectric constant and a phase difference of an antenna provided by an embodiment of the present disclosure.
  • Embodiments of the present disclosure are not limited to the embodiments shown in the drawings, but include modifications of configurations formed based on manufacturing processes.
  • the regions illustrated in the figures have schematic properties and the shapes of regions illustrated in the figures are illustrative of the specific shapes of regions of elements and are not intended to be limiting.
  • the phase change can be achieved by changing the capacitance of the variable capacitor.
  • the equivalent model is shown in Figure 1.
  • Lt and Ct are the equivalent line inductance and line capacitance of the transmission line in the phase shifter, which depend on the characteristics of the transmission line and the substrate.
  • the variable capacitance Cvar(V) can be realized by a Micro-Electro-Mechanical System (MEMS) capacitance, a variable diode capacitance, and the like.
  • MEMS Micro-Electro-Mechanical System
  • an embodiment of the present disclosure provides a phase shifter, see FIGS. 2 and 3 , wherein FIG. 2 is a top view of the phase shifter without the first substrate 10 and the second substrate 20 , and FIG. 3 is a view along the lines of FIG. 2 . A cross-sectional view taken along the G-H direction of the phase shifter shown.
  • the phase shifter includes a first substrate and a second substrate disposed opposite to each other, and a dielectric layer 30 formed between the first substrate and the second substrate.
  • the phase shifter includes a first feeding region Q01, a second feeding region Q02 and a phase shifting region Q03; wherein, the first substrate Including the first substrate 10, the reference electrode 12 and the signal line 11 arranged on the side of the first substrate 10 close to the dielectric layer 30, the signal line 11 and the reference electrode 12 are located in the phase-shifting area Q03, and the two form a CPW transmission line;
  • the signal line 11 It may include a main structure 111 extending in the same direction as the reference electrode 12 , and a plurality of spaced branch structures 112 connected to the main structure 111 , wherein at least one branch structure 112 is disposed along the extending direction of the main structure 111 .
  • the second substrate includes a second substrate 20 , and at least one patch electrode 21 disposed on the side of the second substrate 20 close to the dielectric layer 30 .
  • the patch electrode 21 is located in the phase-shift region, and its extending direction is the same as the branch structure 112 of the signal line 11 .
  • the extending directions are the same, and the patch electrodes 21 and the branch structures 112 are arranged in a one-to-one correspondence, and the orthographic projections of each patch electrode 21 and the corresponding branch structure 112 on the first substrate 10 at least partially overlap.
  • the orthographic projection of each patch electrode 21 on the first substrate 10 and the orthographic projection of the reference electrode 12 on the first substrate 10 at least partially overlap.
  • the patch electrodes 21 and the branch structures 112 are arranged in a one-to-one correspondence, that is, a patch electrode 21 is arranged on a branch structure 112, and the patch electrode 21 and the branch structure 112 overlap to form a variable capacitance Cvra (V).
  • At least one variable capacitor Cvra(V) is perpendicular to the transmission direction of the electromagnetic wave, thus forming a parallel capacitor, and the phase shifter has an equivalent circuit model as shown in FIG. 1 .
  • the patch electrode 21 and the branch structure 112 have a certain overlap, when a microwave signal is input to the main structure 111, there is a certain voltage difference between the patch electrode 21 and the branch structure 112 by loading the voltage, so that the patch electrode is The dielectric constant of the dielectric layer 30 in the variable capacitor Cvra(V) formed by the overlapping of the signal line 21 and the signal line 11 changes, so that the capacitance value of the variable capacitor Cvra(V) changes to change the phase of the microwave signal.
  • each variable capacitor Cvra(V) formed in the phase shifter provided in this embodiment is the same, so when the same voltage is applied to the patch electrodes 21, each variable capacitor Cvra(V) formed
  • the equivalent impedance is also the same, as shown in Figure 4, the impedance of each variable capacitor Cvra (V) is Z1. It should be noted here that Z0 represents the impedance value formed between the two ends of the signal input (or output) of the signal line 11 and the reference electrode 12 .
  • the phase shifter may include multiple variable capacitors Cvra(V), or only one variable capacitor Cvra(V).
  • the second substrate 20 of the phase shifter is close to the dielectric layer 30 . Only one patch electrode 21 can be set on the side, or multiple patch electrodes 21 can be set, and the specific can be determined according to the required phase shift degree.
  • the phase shifter includes multiple patch electrodes 21.
  • the sheet electrode 21 overlaps with a branch structure 112 to form a variable capacitor Cvra(V), that is, the phase shifter includes a plurality of variable capacitors Cvra(V) as an example to illustrate, but does not limit the invention.
  • the reference electrode 12 in the phase shifter may include only one sub-reference electrode, for example, only any one of the first sub-reference electrode 121 and the second sub-reference electrode 122, and the reference electrode 12 of the phase shifter may also include It includes the first sub-reference electrode 121 and the second sub-reference electrode 122.
  • the reference electrode 12 includes the first sub-reference electrode 121 and the second sub-reference electrode 122 as an example for description, but the present invention is not limited. .
  • the reference electrode 12 includes a first sub-reference electrode 121 and a second sub-reference electrode 122
  • the signal line 11 is disposed between the first sub-reference electrode 121 and the second sub-reference electrode 122; each patch electrode 21 and its corresponding and the projections of the first sub-reference electrode 121 and the second sub-reference electrode 122 on the substrate at least partially overlap.
  • the signal line 11, the first reference electrode 121, and the second reference electrode 122 form a CPW transmission line. That is, the direction of the electric field is directed from the signal line 11 to the first reference electrode 121 or the second reference electrode 122 , and the microwave signal is confined between the signal line 11 and the first reference electrode 121 and the second reference electrode 122 . At both ends of the signal line 11, the microwave signal needs to be fed in or out. In some examples, a microstrip line is used to directly connect the two ends of the signal line 11 for power feeding.
  • the microstrip line may include a transmission electrode (not shown in the figure) provided on the same layer as the signal line 11 and provided on the first substrate 10
  • the third reference electrode (not shown in the figure) on the opposite side of the transmission electrode, since the transmission electrode is connected to both ends of the signal line 11, can feed the signal line 11 through the transmission electrode, but the transmission electrode of the microstrip line is connected to the signal line 11.
  • the electric field formed between the third reference electrodes is a longitudinal electric field, that is, the direction of the electric field is from the transmission electrode to the third reference electrode, which is approximately perpendicular to the first substrate 10. Therefore, the transverse electric field on the signal line 11 of the CPW transmission line cannot be directly converted into a microscopic electric field.
  • the microwave signal cannot be directly transmitted from the signal line 11 to the transmission electrode, and the transmission loss is relatively large.
  • the third reference electrode in order to convert the transverse electric field at both ends of the signal line 11 into a longitudinal electric field, can be connected to the reference electrode 12 of the CPW transmission line, and a through hole needs to be made on the first substrate 10, through the third reference electrode 12.
  • a through hole in the substrate 10 connects the third reference electrode disposed on both sides of the first substrate 10 with the reference electrode 12. This increases the complexity of the process on the one hand.
  • the first substrate 10 is a glass substrate
  • the Through holes cannot be formed on the glass substrate, and if a flowing medium such as liquid crystal molecules is used as the medium layer 30, the liquid crystal molecules will leak from the through holes, resulting in crystal leakage.
  • the phase shifter provided by the embodiment of the present disclosure further includes a first feeding structure 50 located in the first feeding region Q01 and a second feeding structure 60 located in the second feeding region Q02.
  • the first feeding structure 50 is connected to the CPW transmission line
  • One end of the signal line 11 of the CPW transmission line is electrically connected
  • the second feeding structure 60 is electrically connected to the other end of the signal line 11 of the CPW transmission line.
  • the first feeding structure 50 is used to change the transmission direction of the microwave signal transmitted by the signal line 11 of the CPW transmission line, so that the microwave signal transmitted by the signal line 11 is transmitted along the first direction, and the first direction intersects the plane where the first substrate 10 is located.
  • the second feeding structure 60 is used to change the transmission direction of the microwave signal transmitted by the signal line 11 of the CPW transmission line, so that the microwave signal transmitted by the signal line 11 is transmitted in the second direction, which intersects the plane where the first substrate 10 is located.
  • the first feeding structure 50 and the second feeding structure 60 are both feeding structures having a longitudinal electric field in a direction approximately perpendicular to the first substrate 10 , that is, the first feeding structure
  • the electric field direction of the electric field generated by the structure 50 at least partially intersects the plane where the first substrate 10 is located, and the electric field direction of the electric field generated by the second feeding structure 60 at least partially intersects the plane where the first substrate 10 is located.
  • the second feeding structure 60 is connected to both ends of the signal line 11, and can convert the transverse electric field at both ends of the signal line 11 into a longitudinal electric field, so that the microwave signal is transmitted along the longitudinal electric field, and the microwave signal is fed by the first feeding structure 50, Taking the feeding from the second feeding structure 60 as an example, the microwave signal is coupled to the first feeding structure 50 , and the first feeding structure 50 transmits the received microwave signal to the signal line 11 , and the microwave signal is along the extension direction of the signal line 11 . Propagation, and then transmitted to the second feed structure 60 at the other end of the signal line 11 after phase shifting.
  • the second feed structure 60 couples the microwave signal to the side of the second substrate 20 away from the dielectric layer 30 through the longitudinal electric field.
  • the second feeding structure 60 can couple the microwave signal to the radiation unit, and then radiate it out by the radiation unit. Since the first feeding structure 50 and the second feeding structure 60 are used to connect the two ends of the signal line 11 , the first feeding structure 50 and the second feeding structure 60 can convert the transverse electric field at both ends of the signal line 11 into the longitudinal direction electric field, thereby realizing the conversion of the transverse electric field at both ends of the coplanar waveguide transmission line to the longitudinal electric field.
  • first direction and the second direction are both directions intersecting with the plane where the first substrate 10 is located, that is, the transmission direction (the first direction) of the microwave signal changed by the first feeding structure 50 and the first substrate The plane where 10 is located intersects.
  • transmission direction (second direction) of the microwave signal changed by the electric field direction of the second feeding structure 60 intersects with the plane where the first substrate 10 is located.
  • first direction is the direction perpendicular to the plane where the first substrate 10 is located
  • the second direction is the direction perpendicular to the plane where the first substrate 10 is located
  • the first direction and the second direction are The same example is used to illustrate, but does not limit the present invention.
  • the antenna can be a transmitting antenna or a receiving antenna, and the radiating element is connected to the second feeding structure 60. If the antenna is used as a transmitting antenna, the first feeding structure 50 can receive The signal fed by the feedforward circuit is then input to the signal line 11, and the second feeding structure 60 receives the signal and couples it to the radiation unit, and the radiation unit transmits the signal.
  • the radiating element receives the signal and couples it to the second feeding structure 60 , the second feeding structure 60 receives the signal and transmits it to the signal line 11 , and the first feeding structure 50 connected to the other end of the signal line 11 receives the signal After the signal is received, it is coupled back to the feedforward circuit.
  • the first feeding structure 50 as the input end and the second feeding structure 60 as the output end of the phase shifter as an example.
  • the first feeding structure 50 and the second feeding structure 60 may be any feeding structure capable of transmitting microwave signals in a direction not parallel to the first substrate 10 , for example, the first feeding structure 50 may As a monopole electrode, the first feeding structure 50 can be provided in the same layer and made of the same material as the signal line 11 .
  • the second feeding structure 60 may also be a monopole electrode, and the second feeding structure 60 and the signal line 11 may be provided in the same layer and made of the same material.
  • monopole electrodes are used to connect both ends of the signal line 11, and the monopole electrodes can convert the transverse electric field of the signal line 11 of the CPW transmission line into a longitudinal electric field, and radiate microwave signals in a manner perpendicular to the first substrate 10, so as to realize microwave Incoming and outgoing of signals.
  • the specific structures of the monopole electrodes used as the first feeding structure 50 and/or the second feeding structure 60 may include various types, for example, both the first feeding structure 50 and the second feeding structure 60 may be monopoles
  • the sub-patch electrodes are disposed on the same layer as the signal line 11 , and, in some examples, the first feeding structure 50 and the second feeding structure 60 may be integrally formed with the signal line 11 , thereby simplifying the process.
  • the first feeding structure 50 and the second feeding structure 60 are both monopole patch electrodes as examples for description.
  • the width of the first feeding structure 50 is greater than the width of the signal line 11 of the CPW transmission line, and the second feeding structure The width of the structure 60 is also larger than the width of the signal line 11 of the CPW transmission line.
  • the branch structure 112 may be disposed through the main structure 111 .
  • the branch structure 112 and the main structure 111 can be designed as an integral molding structure, that is, as shown in FIG. 2 , the branch structure 112 and the main structure 111 are arranged on the same layer and are of the same material; in this way, the branch structure is convenient
  • the structure 112 and the main structure 111 are prepared, and the process cost is reduced.
  • the branch structure 112 and the main structure 111 may also be electrically connected together in any manner, which is not limited in this embodiment of the present invention.
  • an inner concave portion located in the first feeding area Q01 may be formed on the second substrate, and correspondingly, an inner concave portion located in the second feeding area Q02 may also be formed on the first substrate , and a conductive structure 105 is formed in the concave parts of the first substrate and the second substrate, so that the microwave signal is fed into the first feeding structure via the first feeding area Q01, and at the same time, the second feeding structure is fed via the second feeding structure.
  • Zone Q02 feeds out.
  • the phase shifter provided by the embodiments of the present disclosure may adopt a waveguide structure to transmit signals with the first feeding structure 50 and/or the second feeding structure 60 . See the examples below for specifics.
  • the phase shifter provided by the embodiment of the present disclosure may further include a first waveguide structure 70, the first waveguide structure 70 has a first port 701 and a second port 702, and the first waveguide structure 70 is arranged corresponding to the first feeding structure 50, that is, The orthographic projection of the first feeding structure 50 on the first substrate 10 at least partially overlaps the orthographic projection of the first port 701 of the first waveguide structure 70 on the first substrate 10 .
  • the first waveguide structure 70 can be disposed on the side of the first substrate 10 facing away from the dielectric layer 30 , or can be disposed on the side of the second substrate 20 facing away from the dielectric layer 30 , as long as the first feeding structure 50 is on the first substrate 10
  • the orthographic projection of at least partially overlaps with the orthographic projection of the first port 701 of the first waveguide structure 70 on the first substrate 10 .
  • the second port 702 of the first waveguide structure 70 receives the microwave signal transmitted by the external signal line, and the microwave signal
  • the waveguide cavity passing through the first waveguide structure 70 is coupled to the overlapping first feeding structure 50 by the first port 701 of the first waveguide structure 70 , and the first feeding structure 50 transmits the received microwave signal to the signal line 11 , the microwave signal propagates along the extension direction of the signal line 11, and is transmitted to the second feed structure 60 at the other end of the signal line 11 after phase shifting.
  • the second feed structure 60 couples the microwave signal out through the longitudinal electric field, and passes the first waveguide The transmission of the signal by the structure 60 can effectively reduce the transmission loss of the microwave signal.
  • a concave portion located on the first substrate 10 is formed in the first feeding region Q01.
  • the concave portion is referred to as the first concave portion 101.
  • the conductive structure 105 is formed in the first concave portion 101.
  • the first concave portion 101 includes but is not limited to a blind hole structure, and the number of the first concave portion 101 may be multiple, and a plurality of first concave portions 101 are arranged in a ring shape, and the bottom surface of the first port 701 of the first waveguide structure 70 (that is, the bottom surface of the side wall of the first waveguide structure 70 ) covers the first concave portion 101 .
  • the structure 70 extends in the direction of the first feeding structure 50, which can effectively reduce the loss of the fed microwave signal.
  • the phase shifter provided in this embodiment of the present disclosure may further include a second waveguide structure 80 , the second waveguide structure 80 has a first port 801 and a second port 802 , and the second waveguide structure 80 is disposed corresponding to the second feeding structure 60 , that is, The orthographic projection of the second feeding structure 60 on the first substrate 10 at least partially overlaps with the orthographic projection of the first port 801 of the second waveguide structure 80 on the first substrate 10 .
  • the second waveguide structure 80 may be disposed on the side of the second substrate 20 away from the dielectric layer 30 , and the second port 802 of the second waveguide structure 80 may be connected to the radiation unit.
  • the first feeding structure 50 is used.
  • the second feeding structure 60 is the output end, the first feeding structure 50 receives the microwave signal transmitted by the external signal line, the microwave signal propagates along the extension direction of the signal line 11, and is transmitted to the signal line after the phase shift 11
  • the second feeding structure 60 at the other end, the second feeding structure 60 couples the microwave signal to the first port 801 of the second waveguide structure 80 overlapping with it through the longitudinal electric field, and the microwave signal passes through the waveguide cavity of the second waveguide structure 80
  • the second port 802 of the second waveguide structure 80 is coupled to the radiation unit, and the transmission loss of the microwave signal can be effectively reduced by transmitting the signal through the second waveguide structure 80 .
  • a concave portion on the second substrate 20 is formed in the second feeding region Q02.
  • the concave portion is referred to as the second concave portion 102.
  • the conductive structure 105 is formed in the second concave portion 102.
  • the second concave portion 102 includes but is not limited to a blind hole structure, and the number of the second concave portion 102 can be multiple, and a plurality of the first concave portion 101 are arranged in a ring shape, and the bottom surface of the first port 801 of the second waveguide structure 80 (that is, the bottom surface of the side wall of the second waveguide structure 80 ) covers the second inner recess 102.
  • This arrangement is equivalent to placing the second waveguide
  • the structure 80 extends in the direction of the second feeding structure 60, which can effectively reduce the loss of the fed microwave signal.
  • phase shifter provided by the embodiment of the present disclosure may be provided with a waveguide structure at both the first feeding structure 50 and the second feeding structure 60 , that is, the phase shifter may further include a first waveguide structure 70 and a second waveguide structure 80.
  • the first feeding structure 50 and the second feeding structure 60 are respectively connected to two ends of the signal line 11 ;
  • the first waveguide structure 70 has a first port 701 and a second port 702 , and the first waveguide structure 70 and the first feeding structure 50
  • the second waveguide structure 80 has The first port 801 and the second port 802, the second waveguide structure 80 and the second feeding structure 60 are arranged correspondingly, that is, the orthographic projection of the second feeding structure 60 on the first substrate 10, and the second waveguide structure 80.
  • the orthographic projections of a port 801 on the first substrate 10 at least partially overlap.
  • a first inner recess 101 located on the first substrate 10 is formed in the first feeding region Q01, and a first inner recess 101 located on the second substrate is formed in the second feeding region Q02 20, and the conductive structures 105 are formed in both the first and second concave portions 101 and 102, and the first and second concave portions 101 and 102 are arranged in the same manner as the above, so The description is not repeated here.
  • the bottom surface of the first port 701 of the first waveguide structure 70 covers the first concave portion 101 , and this arrangement is equivalent to feeding the first waveguide structure 70 to the first feeder.
  • the electrical structure 50 extends in the direction, which can effectively reduce the loss of the fed microwave signal.
  • the bottom surface of the first port 801 of the second waveguide structure 80 covers the second concave portion 102 . This arrangement is equivalent to feeding the second waveguide structure 80 to the second feeding structure. 60 direction extension, can effectively reduce the loss of the microwave signal fed out.
  • the first feeding structure 50 and the second feeding structure 60 are both feeding structures having a longitudinal electric field in a direction approximately perpendicular to the first substrate 10 . Therefore, the first feeding structure 50 and the The second feeding structure 60 is connected to both ends of the signal line 11 , and can convert the transverse electric field at both ends of the signal line 11 into a longitudinal electric field, and feed the microwave signal through the first feeding structure 50 and the second feeding structure 60 .
  • the microwave signal is fed into the waveguide cavity of the first waveguide structure 70 through the second port 702 of the first waveguide structure 70, and then coupled to the first port 701 of the first waveguide structure 70 through the first concave portion 101 to the first port 701 of the first waveguide structure 70.
  • the first feeding structure 50 transmits the received microwave signal to the signal line 11, the microwave signal propagates along the extending direction of the signal line 11, and is transmitted to the second feeder at the other end of the signal line 11 after phase shifting
  • the second feeding structure 60 couples the microwave signal through the second inner recess 102 to the first port 801 of the second waveguide structure 80 through the longitudinal electric field, and then feeds out from the second port 802 of the second waveguide structure 80, Since the first feeding structure 50 and the second feeding structure 60 are used to connect the two ends of the signal line 11 , the first feeding structure 50 and the second feeding structure 60 can convert the transverse electric field at both ends of the signal line 11 into the longitudinal direction Therefore, the conversion of the transverse electric field at both ends of the coplanar waveguide transmission line to the longitudinal electric field is realized; and since the first waveguide structure 70, the first inner recess 101, the second waveguide structure 80, and the second inner recess 102 are used to transmit microwave signals, it is possible to transmit microwave signals. Effectively reduce the
  • the phase shifter may only be provided with the first waveguide structure 70 , or only the second waveguide structure 80 may be provided, or both the first waveguide structure 70 and the second waveguide structure may be provided at the same time.
  • the waveguide structure 80 is not limited here. The following descriptions are given by taking the first waveguide structure 70 and the second waveguide structure 80 disposed in the phase shifter as an example.
  • the dielectric layer 30 may adopt various types of tunable media.
  • the dielectric layer 30 may include tunable media such as liquid crystal molecules or ferroelectrics.
  • the dielectric layer 30 includes liquid crystal Molecules as an example.
  • the liquid crystal molecules in the dielectric layer 30 are positive liquid crystal molecules or negative liquid crystal molecules. It should be noted that when the liquid crystal molecules are positive liquid crystal molecules, the long axis direction of the liquid crystal molecules in the embodiments of the present disclosure is different from the The angle between the sheet electrodes 21 is greater than 0 degrees and less than or equal to 45 degrees. When the liquid crystal molecules are negative liquid crystal molecules, the angle between the long axis direction of the liquid crystal molecules and the patch electrode 21 in the embodiment of the present disclosure is greater than 45 degrees and less than 90 degrees, which ensures that after the liquid crystal molecules are deflected, the dielectric layer of the dielectric layer 30 is changed. Electric constant to achieve the purpose of phase shifting.
  • this embodiment further includes a signal connector 01, one end of the signal connector 01 is connected to an external signal line, the other end is connected to the second port 702 of the first waveguide structure 70, and a microwave signal is input to the first waveguide structure 70, The first waveguide structure 70 then couples the microwave signal to the first feeding structure 50.
  • the signal connector 01 can be of various types of connectors, such as SMA connectors, which are not limited herein.
  • the microwave signal may be a high-frequency signal
  • the control signal for periodically loading the parallel capacitor may be a low-frequency signal. Therefore, the control signal during microwave signal transmission and during capacitive loading Differently, the microwave signal is input to the signal line 11 through the first feeding structure 50 or the second feeding structure 60 , and the control signal when the capacitor is loaded is input to the patch electrode 21 and the signal line 11 through the signal line.
  • the phase shifter provided by the embodiments of the present disclosure may further include a first signal line and a second signal line (neither are shown in the figure), and the first signal line is used to periodically load the patch electrode 21 For the control signal of the parallel capacitor, the first signal line is electrically connected to the patch electrode 21 .
  • the second signal line is used to periodically load the control signal of the parallel capacitor on the signal line 11 , and the second signal line is electrically connected to the signal line 11 .
  • the phase shifter may include multiple phase adjustment units, each phase adjustment unit corresponds to one or more patch electrodes 21, and each phase adjustment unit and the signal line 11 of the CPW transmission line are applied After the voltage forms an electric field, the liquid crystal molecules of the driving medium layer 30 are deflected and the dielectric constant of the medium layer 30 is changed. Therefore, the phase of the microwave signal can be changed, and the patch electrodes 21 and the signal lines 11 in different phase adjustment units are applied After the voltage, the corresponding adjusted phase shift amounts are different, that is, each phase adjustment unit adjusts a corresponding phase shift amount, so when the phase shift amount is adjusted, the corresponding phase adjustment unit can be controlled according to the size of the phase shift amount to be adjusted.
  • the voltage is applied without applying voltage to all the phase adjustment units, so that the phase shifter in this embodiment is easy to control and consumes less power.
  • each patch electrode 21 in each phase adjustment unit can be controlled by using the same first signal line.
  • each patch electrode 21 in different phase adjustment units can be controlled by using different first signal lines, which is not limited here.
  • the orthographic projection of the first feeding structure 50 on the first substrate 10 is located at In the orthographic projection of the first port 701 of the first waveguide structure 70 on the first substrate 10; similarly, in order to ensure that the second feeding structure 60 can better transmit microwave signals with the second waveguide structure 80, the second The orthographic projection of the feeding structure 60 on the first substrate 10 is located in the orthographic projection of the first port 801 of the second waveguide structure 80 on the first substrate 10 .
  • the shape of the first feeding structure 50 can be a center-symmetrical figure
  • the first The shape of the port 701 may be a center-symmetrical figure
  • the orthographic projection of the symmetry center of the first feeding structure 50 on the first substrate 10 and the symmetry center of the first port 701 of the first waveguide structure 70 on the first substrate 10 .
  • the distance between the orthographic projections is not greater than the first preset value, and the first preset value should be as small as possible, for example, less than 0.1 cm.
  • the first feeding structure 50 and the first waveguide structure 70 are arranged exactly facing each other, and the symmetrical centers of the two coincide; similarly, in order to ensure the transmission efficiency of the second feeding structure 60 and the second waveguide structure 80, the two can be arranged facing each other, and the shape of the second feeding structure 60 can be
  • the shape of the first port 801 of the second waveguide structure 80 may be a centrosymmetric figure.
  • the distance between the orthographic projection of the center of symmetry of the second feeding structure 60 on the first substrate 10 and the orthographic projection of the center of symmetry of the first port 801 of the second waveguide structure 80 on the first substrate 10 is not greater than the second
  • the preset value, the first preset value should be as small as possible, for example, less than 0.1 cm. If the first preset value is 0, then the second feeding structure 60 and the second waveguide structure 80 are arranged completely facing each other, and the two are symmetrical. Centers coincide.
  • the first waveguide structure 70 is provided corresponding to the first feeding structure 50
  • the second waveguide structure 80 is provided corresponding to the second feeding structure 60
  • the first waveguide structure 70 and the second waveguide structure 80 may be arranged on opposite sides, that is, the first waveguide structure 70 is arranged on the side of the first substrate 10 facing away from the dielectric layer 30, and the second waveguide structure 80 is arranged on the second substrate 20 facing away from the medium layer side. It is known that, as shown in FIG.
  • the first waveguide structure 70 and the second waveguide structure 80 can be arranged on the same side, for example, both are arranged on the side of the second substrate 20 away from the dielectric layer 30 , in this case, the first waveguide structure
  • the orthographic projection of 70 on the second substrate 20 does not overlap with the orthographic projection of the second waveguide structure 80 on the second substrate 20, so as to ensure that the structures of the first waveguide structure 70 and the second waveguide structure 80 are independent of each other and do not affect each other.
  • the first concave portion 101 and the second concave portion 102 are both disposed on the second substrate.
  • the principle of arranging the first concave portion 101 and the second concave portion 102 is the same as the above-mentioned principle, so the description is not repeated here.
  • the phase shifter may further include a third substrate connected to the second port 702 of the first waveguide structure 70 .
  • the third substrate includes a third substrate 03 and a feeding transmission line 02, the third substrate 03 is connected to the second port 702 of the first waveguide structure 70, and the feeding transmission line 02 is arranged on the side of the third substrate 03 close to the first waveguide structure 70, 7 , the first end of the feeding transmission line 02 extends to the edge of the third substrate 03 to connect the external signal lines.
  • the signal connector 01 can be arranged on the edge of the third substrate 03, and one end is connected to the feeding transmission line 02 is connected, the other end is connected to the external signal line, and the signal is input to the feeding transmission line 02.
  • the second end of the feeding transmission line 02 extends to the second port 702 of the first waveguide structure 70 to feed the signal into the waveguide cavity of the first waveguide structure 70 , and the first waveguide structure 70 is then connected to the first port 701 of the first waveguide structure 70 .
  • the signal is coupled to the first feed structure 50 .
  • the second end of the feed transmission line 02 may extend into the second port 702 of the first waveguide structure 70 , that is, the orthographic projection of the second end of the feed transmission line 02 on the first substrate 10 is located in the second port 702 of the first waveguide structure 70 .
  • the second port 702 of a waveguide structure 70 is in an orthographic projection on the first substrate 10 .
  • the CPW transmission line may not enter the waveguide cavity of the first waveguide structure 70 and/or the second waveguide structure 80 , or may extend to a small portion of the first waveguide structure 70 and/or the second waveguide structure In the waveguide cavity of 80, if the CPW transmission line does not enter the waveguide cavity of the first waveguide structure 70 and/or the second waveguide structure 80, the orthographic projection of the signal line 11 of the CPW transmission line on the first substrate 10 is the same as that of the first waveguide.
  • the orthographic projections of the first port 701 of the structure 70 and the first port 801 of the second waveguide structure 80 on the first substrate 10 do not overlap.
  • the normal unity on the substrate 10 does not overlap with the orthographic projections of the first port 701 of the first waveguide structure 70 and the first port 801 of the second waveguide structure 80 on the first substrate 10 .
  • the phase shifter may further include a first connection structure 501 and a second connection structure 601 disposed on the side of the first substrate 10 close to the dielectric layer 30 .
  • the first connection structure 501 is connected between the first feeding structure 50 and the first end of the main body structure 111 of the signal line 11
  • the second connection structure 601 is connected between the second feeding structure 60 and the main body structure 111 of the signal line 11 . between the second ends.
  • the first connection structure 501 and the second connection structure 601 can be used as impedance matching structures.
  • the standing wave ratio standing wave ratio
  • the same Reason at the contact of the second feeding structure 60 at the load (eg, radiating element) end and the signal line 11 of the CPW transmission line, if the impedances of the two are different, the standing wave ratio (standing wave) is not 1, that is, there is a return Wave loss reduces performance, so impedance matching needs to be done.
  • impedance matching is performed between the second feeding structure 601 and the signal line 11 .
  • the impedances of the first feeding structure 50 , the second feeding structure 60 , and the signal line 11 are the same, for example, they are all 100 ⁇ , impedance matching is not required, and the first connection structure 501 and the second connection structure 601 can be
  • the width of the first connecting structure 501 may be the same as the width of the body structure 111 of the signal line 11
  • the width of the second connecting structure 601 may be the same as the width of the body structure 111 of the signal line 11 .
  • the first connection structure 501 , the second connection structure 601 , and the signal line 11 have the same width as an example for description.
  • the first connection structure 501 and the second connection structure 601 may be integrally formed with the signal line 11 to simplify the process.
  • first connection structure 501 or the second connection structure 601 is connected to the main body structure 111 of the signal line 11 of the CPW transmission line, while leaving a gap between the first sub-reference electrode 121 and the second sub-reference electrode 122 .
  • the phase shifter may further include a first reflection structure 04 and a second reflection structure 05 .
  • the first reflection structure 04 is disposed on the side of the first feeding structure 50 away from the first waveguide structure 70
  • the orthographic projection of the first reflection structure 04 on the first substrate 10 is at the first port 701 of the first waveguide structure 70 .
  • the orthographic projection on a substrate 10 at least partially overlaps and at least partially overlaps with the orthographic projection of the first feeding structure 50 on the first substrate 10.
  • the Both sides of a feeding structure 50 will radiate microwave signals, the signal on the side facing the first waveguide structure 70 is coupled into the first waveguide structure 70 , and the first feeding structure 50 radiates toward the side away from the first waveguide structure 70 The microwave signal is reflected back to the first waveguide structure 70 by the first reflection structure 04, thereby effectively increasing the radiation efficiency.
  • the second reflection structure 05 is disposed on the side of the second feeding structure 60 away from the second waveguide structure 80 .
  • the orthographic projection of the second reflection structure 05 on the second substrate 20 is the same as the first port of the second waveguide structure 80 .
  • the orthographic projection of 801 on the second substrate 20 at least partially overlaps and at least partially overlaps with the orthographic projection of the second feeding structure 60 on the second substrate 20. Since the electric field of the second feeding structure 60 is a longitudinal electric field, in the longitudinal direction The microwave signals are radiated on both sides of the second feeding structure 60 in the direction, and the signals on the side facing the second waveguide structure 80 are coupled into the second waveguide structure 80 , and the second feeding structure 60 faces away from the second waveguide structure 80 . The microwave signal radiated on one side is reflected back into the second waveguide structure 80 by the second reflection structure 05, thereby effectively increasing the radiation efficiency.
  • the first waveguide structure 70 and the second waveguide structure 80 are arranged on different sides, the first waveguide structure 70 is arranged on the side of the first substrate 10 away from the dielectric layer 30 , and the first reflection structure 04 is arranged on the second substrate 20 On the side facing away from the dielectric layer 30 , the second waveguide structure 80 is disposed on the side of the second substrate 20 facing away from the dielectric layer 30 , and the second reflective structure 05 is disposed on the side of the first substrate 20 facing away from the dielectric layer 30 .
  • first waveguide structure 70 and the second waveguide structure 80 are arranged on the same side, for example, both are arranged on the side of the second substrate 20 away from the dielectric layer 30, then the first reflection structure 04 and the second reflection structure 05 are both arranged at the A substrate 10 faces away from the dielectric layer 30 .
  • the first reflection structure 04 may adopt a waveguide structure, the waveguide cavity of the first reflection structure 04 has a first port 041 and a second port 042, and the first port 041 of the first reflection structure 04 faces the first waveguide
  • the first port 701 of the structure 70, the orthographic projection of the first port 041 of the first reflection structure 04 on the first substrate 10 is at least the orthographic projection of the first port 701 of the first waveguide structure 70 on the first substrate 10 Partially overlapping or completely overlapping;
  • the second reflection structure 05 can also use a waveguide structure, the waveguide cavity of the second reflection structure 05 has a first port 051 and a second port 052, and the first port 051 of the second reflection structure 05 is facing the first port 051.
  • the orthographic projection of the first port 051 of the second reflection structure 05 on the second substrate 20 is the same as the orthographic projection of the first port 801 of the second waveguide structure 80 on the second substrate 20
  • the projections overlap at least partially or completely.
  • the first reflection structure 04 opposite to the first waveguide structure 70 is provided in the first feeding region Q01 , for example, the first waveguide structure 70 is provided on the first substrate 10 away from the dielectric layer 30, the first reflective structure 04 is disposed on the surface of the second substrate 20 away from the dielectric layer 30, and a first recess 101 located in the first feeding region Q01 is formed on the first substrate 10 at this time.
  • a third inner recess 103 located in the first feeding region Q01 is also formed on the two substrates 20 , and the third inner recess 103 and the first inner recess 101 are arranged in the same manner; the first port 701 of the first waveguide structure 70 The bottom surface covers the first concave portion 101 , and the bottom surface of the first port 041 of the first reflective structure 04 (the bottom surface of the sidewall of the first reflective structure 04 ) covers the third concave portion 103 .
  • both the first inner recess 101 and the third inner recess 103 are filled with metal conductive structures 105 .
  • the second reflection structure 05 disposed opposite to the second waveguide structure 80 is disposed in the second feeding region Q02, for example, when the second waveguide structure 80 is disposed on the surface of the second substrate 20 facing away from the dielectric layer 30, The second reflective structure 05 is disposed on the surface of the first substrate 10 facing away from the dielectric layer.
  • a second concave portion 102 located in the second feeding area Q02 is formed on the second substrate 20 , and a second concave portion 102 is also formed on the first substrate 10 .
  • the fourth inner recess 104 is located in the first feeding region Q01, and the fourth inner recess 104 and the second inner recess 102 are arranged in the same manner; the bottom surface of the first port 701 of the second waveguide structure 80 connects the second inner recess 102 Covering, the bottom surface of the first port 051 of the second reflective structure 05 (the bottom surface of the sidewall of the second reflective structure 05 ) covers the fourth inner recess 104 .
  • the metal conductive structures 105 are filled in both the second inner recess 102 and the fourth inner recess 104 .
  • the second concave portion 102 is formed on the second substrate 20 corresponding to the second waveguide structure 80 , but also the corresponding A third concave portion 103 is formed on the second substrate 20 on which the first reflective structure 04 is disposed, and a fourth concave portion 104 is also formed on the first substrate 10 correspondingly disposed with the second reflective structure 05.
  • the second inner recess 102 , the third inner recess 103 , and the fourth inner recess 104 are all filled with the conductive structure 105 .
  • the microwave signal fed through the second port 702 of the first waveguide structure 70 passes through the first
  • the inner recess 101 and the conductive structure 105 therein are coupled to the first feeding structure 50 , wherein the microwave signal transmitted upward is coupled to the first through the third inner recess 103 and the conductive structure 105 therein through the reflection of the first reflection structure 04 .
  • the feeding structure 50 is then transmitted to the second feeding structure 60 through the transmission line, and the second feeding structure 60 feeds out the microwave signal transmitted downward through the second inner recess 102 and the conductive structure 105 therein coupled to the second waveguide structure 80 .
  • the second reflective structure 05 Under the reflection of the second reflective structure 05 , it is coupled to the second feeding structure 60 via the fourth inner recess 104 and the conductive structure 105 therein, and is coupled to the second waveguide structure through the second inner recess 102 and the conductive structure 105 therein again. 80 feed out. In this process, it can be seen that the loss of microwave signal energy is greatly reduced.
  • the first reflection structure 04 and the second reflection structure 05 are also located on the same side.
  • the first reflection structure can also be set in the above-mentioned manner.
  • a third concave portion 103 is formed on the first substrate 10 of the structure 04
  • a fourth concave portion 104 is formed on the first substrate 10 on which the second reflective structure 05 is disposed.
  • the first concave portion 101 , the second concave portion 102 , the third concave portion 103 , and the fourth concave portion are formed in the phase shifter shown in FIG. 8 . 104, and the specific manner of the conductive structure 105 will be described.
  • the size of the blind holes is usually 0.05mm-1mm, and the center spacing of the blind holes is less than ten One-half wavelength, the smaller the better.
  • Both the first substrate 10 and the second substrate 20 may adopt a glass substrate (eg, white glass).
  • a glass substrate eg, white glass
  • an alignment mark can be formed on the first substrate 10 first, and then laser drilling, sandblasting, mechanical drilling, etc. are used to obtain the first inner recess 101 located in the first feeding area Q01 and the first inner recess 101 located in the first feeding area Q01.
  • the third inner recess 103 located in the first feeding area Q01 and the second inner recess 102 located in the second feeding area Q02 may be formed on the second substrate 20 .
  • the conductive structure 105 in each concave portion can be prepared with a metal layer by electroplating, vapor deposition, magnetron sputtering, etc. It is not required that the blind hole be completely filled with metal, and it is better to cover the sidewall. However, if the sidewall cannot be completely covered due to the limitation of the process, the power feeding efficiency can still be improved compared with the structure that does not adopt this method. Due to the existence of metallized blind holes, which are located in the first feeding region and formed on the glass substrate, the blind holes can be equivalent to ideal electric walls, so that the energy radiated by the monopole excitation is as much as possible to be bound in the waveguide structure. inside, so that more energy is collected and the conversion efficiency is improved.
  • the way of making blind holes in the glass avoids the problem of liquid crystal leakage caused by through holes, and it is easy to obtain a high-performance feeding structure.
  • the transmission loss of the second concave portion 102 , the third concave portion 103 , the fourth concave portion 104 , and the phase shifter of the conductive structure 105 in the entire operating frequency band is reduced to a certain extent.
  • the first waveguide structure 70 and the second waveguide structure 80 may be formed of hollow metal walls.
  • the first waveguide structure 70 may have at least one first sidewall, and the at least one first sidewall is connected to form a first sidewall.
  • a waveguide cavity of the waveguide structure 70 , and/or the second waveguide structure 80 has at least one second sidewall, and the at least one second sidewall is connected to form the waveguide cavity of the second waveguide structure 80 .
  • the first waveguide structure 70 has only one first sidewall, the first waveguide structure 70 is a circular waveguide structure, and the first sidewall encloses a circular hollow tube to form a waveguide cavity of the first waveguide structure 70 .
  • the first waveguide structure 70 may further include a plurality of first sidewalls to form waveguide cavities of various shapes.
  • the first waveguide structure 70 may include four first sidewalls 70a ⁇ 70d.
  • the wall 70a is arranged opposite to the first side wall 70b, the first side wall 70c is arranged opposite to the first side wall 70d, and the four first side walls 70a-70d are connected to a rectangular waveguide cavity, so the first waveguide structure 70 is rectangular waveguide.
  • the second port 702 of the first waveguide structure 70 may include a bottom surface 70e, the bottom surface 70e covers the entire second port 702, the bottom surface 70e has an opening 0701, the opening 0701 and the signal connector 01 One end is matched, the signal connector 01 is inserted into the first waveguide structure 70 through the opening 0701 , and the other end is connected to an external signal line to input the signal into the first waveguide structure 70 .
  • the structure of the second waveguide structure 80 is the same as that of the first waveguide structure 70. If the second waveguide structure 80 has only one second side wall, the second waveguide structure 80 is a circular waveguide structure. Two sidewalls, a plurality of second sidewalls enclose a second waveguide structure 80 with a corresponding shape.
  • the first waveguide structure 70 and the second waveguide structure 80 are rectangular waveguides as an example for description, which is not limited herein.
  • the thickness of the first sidewall of the first waveguide structure 70 may be 4-6 times the skin depth of the microwave signal transmitted by the phase shifter; the thickness of the second sidewall of the second waveguide structure 80 may be The skin depth of the microwave signal transmitted by the phase shifter is 4 to 6 times, which is not limited here.
  • the first waveguide structure 70 and the second waveguide structure 80 may be formed by cavities in the metal block.
  • the phase shifter may further include a first metal layer 001 and a second metal layer 002, the first metal layer 001 is disposed on the side of the first substrate 10 away from the dielectric layer 30, and the first metal layer 001 has a hollow first cavity,
  • the shape of the first cavity is like the shape of the first waveguide structure 70 , which defines the first waveguide structure 70 .
  • the first cavity runs through the entire first metal layer 001 , and the opening near the first substrate 10 serves as the first waveguide structure 70 .
  • a port 701 is connected to the side of the first substrate 10 away from the dielectric layer 30, and the opening of the first cavity away from the first substrate 10 is used as the second port 702 of the first waveguide structure 70, and is connected to the signal connector 01;
  • the metal layer 002 is disposed on the side of the second substrate 20 away from the dielectric layer 30 , the second metal layer 002 has a hollow second cavity, and the shape of the second cavity is like the shape of the second waveguide structure 80 , which defines the second waveguide In the structure 80, the second cavity runs through the entire second metal layer 002, and the opening near the second substrate 20 serves as the first port 801 of the second waveguide structure 80, connecting the side of the second substrate 10 away from the dielectric layer 30, the second cavity
  • the opening facing away from the second substrate 20 serves as the second port 802 of the second waveguide structure 80 to connect a load (eg, an antenna).
  • a load eg, an antenna
  • the phase shifter has the first reflection structure 04 and the second reflection structure 05
  • the second metal layer 002 also has a third cavity to define the first reflection structure 04
  • the first metal layer 001 also has a third cavity.
  • Four cavities define the second reflection structure 05 .
  • the phase shifter may only include the second metal layer 002 , and the second metal layer 002 is disposed on the side of the second substrate 20 away from the dielectric layer 30 , the second metal layer 002 has a first cavity and a second cavity, the shape of the first cavity is like the shape of the first waveguide structure 70, and the first waveguide structure 70 is defined, and the shape of the second cavity is like the shape of the second cavity
  • the shape of the waveguide structure 80 defines the second waveguide structure 80 in such a way that the orthographic projection of the first cavity on the second substrate 20 does not overlap with the orthographic projection of the second cavity on the second substrate 20 , so as to ensure that the waveguide cavities of the first waveguide structure 70 and the second waveguide structure 80 are independent of each other and do not affect each other.
  • a third metal layer 003 may be provided on the side of the first substrate 10 away from the dielectric layer 30, and the third metal layer 003 has a third cavity and The fourth cavity, the third cavity defines the first reflection structure 04 , and the fourth cavity defines the second reflection structure 05 . Since the lengths of the first reflection structure 04 and the second reflection structure 05 are smaller than the lengths of the first waveguide structure 70 and the second waveguide structure 80 , the thickness of the first metal layer 003 is also smaller than that of the second metal layer 002 .
  • the phase difference adjustable range of each phase shifter is required. It must be greater than 360°, so in order to achieve this value, to place and reasonably arrange the phase shifter in a limited area, the overall length of the phase shifter should not be too long, so the variable capacitance Cvra (V) in each cycle The value must be large enough to achieve a finite difference in length. However, if the change value of the variable capacitor Cvra (V) is large, the impedance of the equivalent transmission line will change greatly, which will bring about a big problem that the port performance will deteriorate, thereby increasing the transmission loss.
  • the phase shifter may be divided into a first region Q1, a second region Q2 and a third region Q3 (that is, a second region Q2 and a third region Q3 on both sides of the first region Q1) As shown in FIG. 13 and FIG. 14 , in the embodiment of the present disclosure, the phase shifter may be divided into a first region Q1, a second region Q2 and a third region Q3 (that is, a second region Q2 and a third region Q3 on both sides of the first region Q1) As shown in FIG.
  • each of the second area Q2 and the third area Q3 forms a variable capacitance Cvra
  • the overlapping area of the patch electrode 21 and the branch structure 112 of (V) is smaller than the overlapping area of the patch electrode 21 and the branch structure 112 of the variable capacitance Cvra(V) formed in the first region Q1; and
  • the first region Q1 only has a variable capacitance Cvra(V) of one overlapping area.
  • the overlapping area refers to the overlapping area of the orthographic projection of the patch electrode 21 and the branch structure 112 on the first substrate 10 (or the second substrate 20 ).
  • the patch electrode 21 and the branch structure 112 close to the variable capacitor Cvra(V) in the first region Q1
  • the overlapping area is greater than or equal to the overlapping area of the patch electrode 21 and the branch structure 112 of the variable capacitance Cvra (V) far away from the first region Q1, that is, along the length direction of the main structure 111, the formed
  • the capacitance value of the periodic variable capacitor Cvra(V) shows a trend of first increasing and then decreasing.
  • the capacitance value of the variable capacitor Cvra(V) is positively correlated with the impedance value.
  • the The impedance shows a trend of first increasing and then decreasing (as shown in Figure 15, the impedance along the length direction of the main structure 111 is from Z0-Z3-Z2-Z1-Z2-Z3-Z0; wherein Z1>Z2>Z3>Z0 ), at the same time, it can be understood that the microwave signal is introduced by the two ends of the main structure 111 of the signal line 11, so that it can be avoided as much as possible due to the large capacitance value of each variable capacitor Cvra (V). The microwave signal is reflected after passing through the periodic variable capacitor Cvra (V), resulting in a large transmission loss.
  • the number of variable capacitors Cvra(V) located in the first region Q1 is only one, that is, only one chip capacitor and one branch structure 112 are provided in the first region Q1, and the two are located in the first region Q1.
  • the orthographic projections on the substrate overlap at least partially to form a variable capacitor Cvra(V), and the capacitance value of the variable capacitor Cvra(V), that is, the overlapping area of the chip capacitor and the branch structure 112, should satisfy the microwave signal passing through the first.
  • the first region Q1, the second region Q2, and the third region Q3 can achieve a phase shift of not less than 360°.
  • the overlapping areas of the variable capacitors Cvra(V) formed in the second region Q2 are all different, and/or the overlapping areas of the variable capacitors Cvra(V) formed in the third region Q3 Areas are not the same.
  • the overlapping area of the variable capacitors Cvra(V) formed in the second region Q2 and the third region Q3 increases monotonically, that is, along the direction close to the first region In the direction of Q1, the capacitance values of the variable capacitors Cvra(V) formed in the second area Q2 and the third area Q3 increase according to a certain law, so that the microwave signal transmission can be made more stable, as far as possible reduces the transmission loss.
  • the number of variable capacitors Cvra(V) formed in the second region Q2 and the third region Q3 is the same, and the variable capacitors Cvra(V) formed in the two regions are along the first region Q1 Symmetrical arrangement, that is, the capacitance value (or overlapping area) of the variable capacitor Cvra(V) formed in the second region Q2 and the third region Q3, along the direction close to the first region Q1, has the same variation law. In this way, the transmission of the microwave signal can be made more stable, and the transmission loss can be reduced as much as possible.
  • the lengths of the branch structures 112 are set to be the same.
  • the width of the branch structure 112 By setting different variable capacitors Cvra (V) V) the width of the branch structure 112 to realize any two variable capacitors Cvra(V) located on the same side of the first region Q1, and the patch electrodes 21 and branches of the variable capacitor Cvra(V) close to the first region Q1
  • the overlapping area of the structure 112 is greater than or equal to the overlapping area of the patch electrode 21 and the branch structure 112 that are far away from the variable capacitance Cvra (V) of the first region Q1 .
  • the spacing between the variable capacitors Cvra(V) is the same.
  • the spacing d between the patch electrodes 21 can be set to the same spacing, and the spacing between the branch structures 112 can also be set to the same spacing.
  • the spacing between each variable capacitor Cvra (V) (or each patch electrode 21 and each branch structure 112 ) can also be designed to monotonically increase or decrease according to a certain rule; (V) (or in other words, the spacing between the patch electrodes 21 and the branch structures 112 ) is designed to be different, and does not have a certain arrangement rule, which is not limited in the embodiment of the present invention.
  • the spacing between the array antennas is required, which is generally 0.5 ⁇ -0.6 ⁇ , where ⁇ corresponds to the operating frequency of the phase shifter.
  • the vacuum wavelength of microwave signal in order to meet this requirement, the layout area of the phase shifter under each radiation unit is only 0.5*0.5 ⁇ , and the phase shifter needs to achieve a phase shift angle of 360°, so the CPW transmission line needs to be Certain bending arrangements.
  • the signal line 11 of the CPW transmission line has at least one bend angle
  • the reference electrode 12 (including the first sub-reference electrode 121 and the second sub-reference electrode 122 ) also has at least one bend angle. Bending angle, the bending angle of the reference electrode 12 and the bending angle of the signal line 11 are set in one-to-one correspondence, that is, at a bending angle of the signal line 11, the reference electrode 12 is also bent along the bending direction of the bending angle. For example, as shown in FIG.
  • the signal line 11 has two bending angles and can be divided into three parts, the first part and the second part extend along the third direction, and the third part is arranged between the first part and the second part,
  • the third part extends along the fourth direction, the third direction and the fourth direction can be approximately perpendicular, the connection between the first part and the third part forms the first bending angle, and the connection between the second part and the third part forms the second bending angle Bending the corner, the first part, the second part and the third part are connected to make the signal lines 11 arranged in a U shape, and the reference electrodes 12 are also arranged in a U shape along the arrangement direction of the signal lines 11 .
  • the signal line 11 and the reference electrode 12 can also be arranged in a ring shape, an S shape, etc.
  • a U shape structure it has 2 sub-corner regions; when it is a ring structure, it has four sub corner regions;
  • S shape structure When it is an S shape structure , which has multiple sub-corner regions, which is not limited here.
  • the first waveguide structure 70 and/or the second waveguide structure 80 may have a filling medium to increase the overall dielectric constant thereof, so that the size of the first waveguide structure 70 and the second waveguide structure 80 may be reduced Small.
  • the filling medium may include various media, for example, the filling medium may be polytetrafluoroethylene.
  • the first substrate 10, the second substrate 20, and the third substrate 03 may use various types of dielectric substrates, for example, a glass substrate with a thickness of 100-1000 microns, a sapphire substrate, or a Use polyethylene terephthalate substrates, triallyl cyanurate substrates and polyimide transparent flexible substrates with a thickness of 10-500 microns, foam substrates, printed circuit boards (Printed Circuit Board) , PCB) etc.
  • dielectric substrates for example, a glass substrate with a thickness of 100-1000 microns, a sapphire substrate, or a Use polyethylene terephthalate substrates, triallyl cyanurate substrates and polyimide transparent flexible substrates with a thickness of 10-500 microns, foam substrates, printed circuit boards (Printed Circuit Board) , PCB) etc.
  • the materials of the patch electrode 21 , the branch structure 112 , the main structure 111 , the reference electrode 12 , the first feeding structure 50 , the second feeding structure 60 , the first connecting structure 501 , and the second connecting structure 601 are all Can be made of metals such as aluminum, silver, gold, chromium, molybdenum, nickel or iron.
  • an embodiment of the present disclosure provides an antenna, wherein the antenna includes at least one of the above-mentioned phase shifters.
  • the antenna may further include at least one radiating element 90, and one radiating element 90 is disposed corresponding to the second port 802 of the second waveguide structure 80 of a phase shifter, that is, if the antenna is used as a transmitting antenna, the signal is transmitted by The second feeding structure 60 is coupled to the first port 801 of the second waveguide structure 80 , and then transmitted from the second port 802 of the second waveguide structure 80 to the radiation unit 90 corresponding to the second port 802 of the second waveguide structure 80 If the antenna is used as a receiving antenna, after the radiation unit 90 receives the signal, it is transmitted to the second port 802 of the second waveguide structure 80 corresponding to the radiation unit 90, and then coupled to the second port 801 by the first port 801 of the second waveguide structure 80 Feed structure 60 .
  • any number of radiation elements 90 may be included.
  • each radiation element 90 is connected to a phase shifter, and one phase shifter adjusts the phase of one radiation element 90, so that in the array antenna,
  • the phases of the plurality of radiating elements 90 are adjusted to control the emission directions of the beams to form a phased array antenna.
  • the following description will be given by taking the radiation units 90 arranged in a 1 ⁇ 3 array as an example.
  • the radiation unit 90 may include various structures, for example, it may be a waveguide structure or a radiation patch. Taking the radiation unit 90 as a waveguide structure as an example, the radiation unit 90 It can be a third waveguide structure.
  • the third waveguide structure (radiation unit 90) includes a first port 901 close to the second waveguide structure 80 and a second port 902 away from the second waveguide structure 80.
  • the first port of the third waveguide structure 901 is connected to the second port 802 of the second waveguide structure 80 corresponding to the third waveguide structure.
  • the third waveguide structure 90 wherein,
  • the aperture of the second port of the third waveguide structure is larger than the aperture of the first port, and the third waveguide structure (radiating element 90 ) can be a horn antenna.
  • the third waveguide structure is relatively far away from the second waveguide structure 80
  • the aperture at 90 is not less than the aperture at 90 relatively close to the second waveguide structure, that is to say, in the direction from the first port 901 of the third waveguide structure to the second port 902, the aperture of the third waveguide structure gradually increases, forming Horn-shaped cavity.
  • the third waveguide structure may be integrally formed with the second waveguide structure to simplify the process.
  • the second waveguide structure 80 is a rectangular waveguide, that is, the second waveguide structure 80 includes four second sidewalls, and the four second sidewalls are connected to define a waveguide cavity of the second waveguide structure 80
  • the first port 901 of the third waveguide structure is connected to the second port 802 of the second waveguide structure 80 corresponding to the third waveguide structure, and the waveguide cavity of the first waveguide structure is horn-shaped, and the third waveguide structure includes A third sidewall, the third sidewall encloses the waveguide cavity of the third waveguide structure, and the extension direction of the third sidewall intersects with the extension direction of the second substrate 20, because the first port 901 of the third waveguide structure and The second port 802 of the second waveguide structure 80 corresponding to the third waveguide structure is connected, so the direction from the second waveguide cavity 80 to the third waveguide cavity (radiation unit 90 ), the waveguide cavity of the second waveguide structure 80
  • the shape of the body gradually transitions to the shape of the first port 90
  • the rectangle transitions to a circle to form an integrated waveguide cavity, so that when transmitting microwave signals, the rectangular-circle conversion can be realized.
  • the transmission loss of the rectangular waveguide cavity of the second waveguide structure 80 at the lower end is small, and it gradually transitions to the upper trumpet shape.
  • the waveguide cavity of the third waveguide structure 80 realizes the circularly polarized microwave signal, that is, the angle between the polarization plane of the microwave signal and the normal plane of the earth changes periodically from 0 to 360°.
  • protruding electrodes may be provided on the inner wall of the third waveguide cavity to realize a left-hand circularly polarized or right-handed circularly polarized antenna.
  • each Each of the phase shifters has a first waveguide structure 70, and the first waveguide structures 70 of a plurality of phase shifters are connected to form a waveguide power division network 100, and the waveguide power division network has a main port 100a and a plurality of sub-ports 100b,
  • the main port 100a of the waveguide power division network 100 is connected to an external signal line, for example, the main port 100a can be connected to the signal connector 01 .
  • the main port 100a receives the signal transmitted by the external signal line, and then divides the signal into a plurality of sub-signals, and each sub-signal is output through a sub-port 100b.
  • the waveguide power division network 100 may have a main waveguide structure 1001, the main waveguide structure 1001 extends in a direction parallel (or approximately parallel) to the first substrate 10, and the main port 100a may be disposed in the extending direction of the main waveguide structure 1001 At the midpoint of the length of the plurality of first waveguide structures 70, the plurality of first waveguide structures 70 may extend in a direction perpendicular (or approximately perpendicular) to the first substrate 10, and the second ports 702 of the plurality of first waveguide structures 70 are connected to the main waveguide structure 1001 In the above, the first port 701 of each first waveguide structure 70 is used as a sub-port 100b of the waveguide power division network.
  • the power is divided into multiple sub-signals, and each sub-signal enters a first waveguide structure 70 and passes through
  • the first port 701 of the first waveguide structure 70 is coupled to the first feeding structure 50 corresponding to the first waveguide structure 70 .
  • the first waveguide structure 70 , the second waveguide structure 80 of the plurality of phase shifters, and the plurality of radiation units 90 of the third waveguide structure can all pass through the metal block.
  • the antenna may include a first metal layer 001 and a second metal layer 002, and the first metal layer 001 is arranged on the first substrate 10
  • the first metal layer 001 has a plurality of hollow first cavities, and the shape of the plurality of first cavities is like the shape of the first waveguide structure 70, which defines the first cavities of the plurality of phase shifters.
  • a waveguide structure 70, and a plurality of first cavities are connected to form a waveguide power division network; similarly, the second metal layer 002 is disposed on the side of the second substrate 20 away from the dielectric layer 30, and the second metal layer 002 has a hollow space therein.
  • a plurality of second cavities and a plurality of fifth cavities, the shape of the plurality of second cavities is such as the shape of the second waveguide structure 80, and the second waveguide structure 80 of the plurality of phase shifters is defined, and the plurality of fifth The shape of the cavity is like the shape of the third waveguide structure, which defines a plurality of radiating elements 90 of the third waveguide structure.
  • the second waveguide structure 80 and the third waveguide structure may be integrally formed, and the connected second waveguide structure 80 and the third waveguide structure are formed in the second metal layer 002 in one process. If the phase shifter of the antenna has the first reflection structure 04 and the second reflection structure 05, the second metal layer 002 also has a third cavity, which defines the first reflection structure 04, and the first metal layer 001 also has a third cavity. There is a fourth cavity defining a second reflection structure 05 .
  • the antenna may only include the second metal layer 002 in the same way as above, and the second metal layer 002 is arranged on the side of the second substrate 20 away from the dielectric layer 30 , the second metal layer 002 has a plurality of first cavities, a plurality of second cavities, and a plurality of fifth cavities.
  • Waveguide structure 70, and a plurality of first cavities are connected to form a waveguide power division network, a plurality of second cavities are shaped like the shape of the second waveguide structure 80, define a second waveguide structure 80, and a plurality of fifth cavities
  • the shape of the volume such as the third waveguide structure, defines the radiating element 90 .
  • the orthographic projections of the plurality of first cavities on the second substrate 20 do not overlap with the orthographic projections of the plurality of second cavities on the second substrate 20, and the plurality of first cavities and the plurality of The orthographic projections of the fifth cavity on the second substrate 20 also do not overlap to ensure that the waveguide cavities of the first waveguide structure 70 and the second waveguide structure 80 (and the third waveguide structure) are independent of each other and do not affect each other.
  • a third metal layer 003 may be provided on the side of the first substrate 10 away from the dielectric layer 30, and the third metal layer 003 has a third cavity and The fourth cavity, the third cavity defines the first reflection structure 04 , and the fourth cavity defines the second reflection structure 05 . Since the lengths of the first reflection structure 04 and the second reflection structure 05 are smaller than the lengths of the first waveguide structure 70 and the second waveguide structure 80 , the thickness of the first metal layer 003 is also smaller than that of the second metal layer 002 .
  • first waveguide structure 70 and the second waveguide structure 80 in the phase shifter and the radiation unit 90 of the third waveguide structure are formed by using hollow pipes composed of metal walls, that is, It is formed by connecting at least one side wall, and the first waveguide structure 70 and the second waveguide structure 80 are arranged on the same side, then a plurality of first waveguide structures 70 are connected through the main waveguide structure 1001 to form a waveguide power division network 100, and the waveguide power division network 100 is formed.
  • the main waveguide structure 1001 of the network 100 has an opening as the main port 100 a , and the signal connector 01 is inserted into the waveguide power division network 100 through the main port 100 a to input signals to the waveguide power division network 100 .
  • the waveguide power division network 100 is arranged on the side of the second substrate 20 facing away from the dielectric layer 30 , and the plurality of radiation units 90 are connected to the corresponding second waveguide structure 80 , and are also arranged on the side of the second substrate 20 facing away from the dielectric layer 30 , see FIG.
  • the orthographic projection of the waveguide power division network 100 on the second substrate 20 does not overlap with the orthographic projections of the plurality of second waveguide structures 80 and the plurality of radiation units 90 on the second substrate 20 to ensure that the waveguide power division network 100 and the The plurality of second waveguide structures 80 and the plurality of radiation units 90 are independent of each other and do not affect each other.
  • the arrangement of the waveguide power division network in FIGS. 20 and 21 is only an example, and the waveguide power division network can be arranged on the second substrate 20 in all directions, as long as it is connected with the plurality of second waveguide structures 80 and The plurality of radiation units 90 may be independent of each other, which is not limited here.
  • the antenna provided by the embodiment of the present disclosure may further include a third substrate, and the third substrate is connected to the second ports 702 of the plurality of first waveguide structures 70 .
  • the third substrate includes a third substrate 03 and a feeding transmission line 02 .
  • the third substrate 03 is connected to the second ports 702 of the plurality of first waveguide structures 70 , and the feeding transmission lines 02 are arranged on the third substrate 03 close to the first waveguide structures 70 .
  • the feed transmission line 02 is arranged as a power division feed structure, with a main line segment and a plurality of sub-line segments, the main line segment is the main port 100a at the midpoint in the length direction, and the main line end extends to the first
  • the edges of the three substrates 03 are used to connect external signal lines.
  • the signal connector 01 can be arranged on the edge of the third substrate 03, one end is connected to the main port 100a of the power division feeding structure formed by the feeding transmission line 02, and the other end is connected External signal line, input signal to the power division feeding structure.
  • the first ends of the multiple sub-line segments of the power-dividing feed structure formed by the feeding transmission line 02 are connected to the main line segment, and the second ends of the sub-line segments are used as sub-ports 100b to extend to a second port 702 of the first waveguide structure 70, In order to feed the sub-signal into the waveguide cavity of the first waveguide structure 70 .
  • the second end of each sub-line segment may extend into the second port 702 of the first waveguide structure 70 to which the signal is to be fed, that is, the orthographic projection of the second end of the sub-line segment on the first substrate 10,
  • the second port 702 of the first waveguide structure 70 is in an orthographic projection on the first substrate 10 .
  • the antenna provided by the embodiment of the present disclosure may also adopt a radiation patch, and the antenna may further include a fourth substrate 40 .
  • the second port 802 of the second waveguide structure 80 of a phase shifter in the antenna corresponds to a radiation element 90, that is, the second waveguide structure 80 of a phase shifter outputs a signal (or receives radiation) to a radiation element 90 that is a radiation patch.
  • the signal transmitted by the unit 90), the second port 802 of the second waveguide structure 80 of the at least one phase shifter is connected to the fourth substrate 40, and the radiation patch can be arranged on the second port 802 of the fourth substrate 40 away from the second waveguide structure 80
  • the second waveguide structure 80 feeds the radiation unit 90 by means of aperture coupling, that is, the orthographic projection of the radiation unit 90 of the radiation patch on the fourth substrate 40, and the second waveguide corresponding to the radiation patch
  • the orthographic projection of the second port 802 of the waveguide structure 80 on the fourth substrate at least partially overlaps, so that the microwave signal output at the second port 802 of the second waveguide structure 80 can be coupled to the second waveguide after passing through the fourth substrate 40
  • the radiation unit 90 disposed on the second port 802 of the structure 80 overlaps the radiation unit 90 and then radiates the signal, or after the radiation unit 90 receives the signal, the radiation unit 90 is coupled to the second waveguide structure 80 overlapped with the radiation unit 90 through the fourth substrate 90 the second port 802.
  • the orthographic projection of the radiation elements 90 of the radiation patch on the fourth substrate 40 may cover the orthographic projection of the second port 802 of the second waveguide structure 80 on the fourth substrate 40 .
  • the shape of the radiation unit 90 is a center-symmetrical figure, and the shape of the second port 802 of the second waveguide structure 80 is a midline-symmetrical figure, then the orthographic projection of the symmetry center of the radiation unit 90 on the fourth substrate 40.
  • the distance from the orthographic projection of the center of symmetry of the second port 802 of the second waveguide structure 80 on the fourth substrate 40 is not greater than a third preset value, and the third preset value should be as small as possible, for example, less than 0.1 cm, If the third preset value is 0, the radiation unit 90 and the second port 802 of the second waveguide structure 80 are arranged exactly opposite to each other, and the symmetry centers of the two are coincident.
  • the fourth substrate 40 may be various types of dielectric substrates, for example, a glass substrate with a thickness of 100-1000 microns, a sapphire substrate, or a cluster with a thickness of 10-500 microns may be used Ethylene phthalate substrate, triallyl cyanurate substrate and polyimide transparent flexible substrate, foam substrate, Printed Circuit Board (PCB), etc.
  • a glass substrate with a thickness of 100-1000 microns a sapphire substrate, or a cluster with a thickness of 10-500 microns
  • Ethylene phthalate substrate triallyl cyanurate substrate and polyimide transparent flexible substrate
  • foam substrate Printed Circuit Board (PCB), etc.
  • PCB Printed Circuit Board
  • Fig. 26 and Fig. 27 are illustrations of the simulation results of the simulation by taking the antenna shown in Fig. 18 as an example, wherein Fig. 26 is a graph of the dielectric constant and transmission loss of the antenna, and Fig. 27 is a graph of A plot of the dielectric constant versus phase difference of an antenna. It can be seen from the above figure that the fluctuation of the transmission loss of the antenna provided by the embodiment of the present disclosure is only 1.8 under various dielectric constants, and the phase shift degree can be maintained, so it can be seen that the waveguide structure (including the first waveguide structure 70 and the second waveguide structure) is adopted. The manner of signal transmission between the structure 80) and the feeding structure (including the first feeding structure 50 and the second feeding structure 60) can effectively reduce the transmission loss.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本公开提供一种移相器及天线,属于通信技术领域。本公开实施例提供的移相器包括移相器,其划分为第一馈电区、第二馈电区,以及移相区;所述移相器包括:相对设置的第一基板和第二基板,设置在所述第一基板和所述第二基板之间的介质层,以及第一馈电结构和第二馈电结构,所述第一馈电结构与所述信号线的一端电连接,所述第二馈电结构与所述信号线的另一端电连接;所述第一馈电结构位于所述第一馈电区;所述第二馈电结构位于所述第二馈电区;在所述第一基底和/或所述第二基底上形成有内凹部;所述内凹部位于所述第一馈电区的边缘和/或位于所述第二馈电区的边缘,且任一所述内凹部中填充有导电结构。

Description

移相器及天线 技术领域
本发明属于通信领域,具体涉及一种移相器及天线。
背景技术
移相器是能够对微波信号的相位进行调整的装置,在雷达、导弹姿态控制、加速器、通信、仪器仪表甚至于音乐等领域都有着广泛的应用。介质层可调的移相器是基于介质层在不同电场强度下介电常数不同的特性,通过改变信号线与贴片电极之间的电压,改变二者间的介质层的介电常数调制微波信号相位。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提供一种移相器,其通过第一馈电结构、第二馈电结构实现移相器的信号的馈入和馈出,从而能够解决采用共面波导传输线的移相器中,共面波导传输线的横向电场转换为纵向电场的问题,并能够实现一种低传输损耗的移相器。
第一方面,本公开实施例提供一种移相器,其划分为第一馈电区、第二馈电区,以及移相区;所述移相器包括:相对设置的第一基板和第二基板,以及设置在所述第一基板和所述第二基板之间的介质层;
所述第一基板包括:第一基底,设置在所述第一基底靠近所述介质层一侧的信号线和参考电极;且所述信号线和所述参考电极位于所述移相区;所述信号线包括:主体结构和连接在所述主体结构上的至少一个分支结构,至少一个所述分支结构沿所述主体结构的延伸方向设置;
所述第二基板包括:第二基底,设置在所述第二基底靠近所述介质层一侧的至少一个贴片电极;所述贴片电极位于所述移相区;至少一个所述贴片 电极与至少一个所述分支结构对应设置,形成至少一个可变电容;至少一个所述贴片电极与至少一个所述分支结构在所述第一基底上的正投影至少部分重叠;
其中,所述移相器还包括:
第一馈电结构和第二馈电结构,所述第一馈电结构与所述信号线的一端电连接,所述第二馈电结构与所述信号线的另一端电连接;所述第一馈电结构位于所述第一馈电区;所述第二馈电结构位于所述第二馈电区;
在所述第一基底和/或所述第二基底上形成有内凹部;所述内凹部位于所述第一馈电区的边缘和/或位于所述第二馈电区的边缘,且任一所述内凹部中填充有导电结构。
在一些示例中,所述移相器还包括位于第一馈电区的第一波导结构;所述内凹部包括位于第一馈电区的第一内凹部;第一馈电结构在所述第一基底上的正投影,与所述第一波导结构的第一端口在所述第一基底上的正投影至少部分重叠;
当所述第一波导结构的第一端口连接在所述第一基底背离所述介质层的表面时,所述第一内凹部形成在所述第一基底上,且所述第一波导结构的侧壁覆盖所述第一内凹部的开口;
当所述第一波导结构的第一端口连接在所述第二基底背离所述介质层的一侧时,所述第一内凹部形成在所述第二基底上,且所述第一波导结构的侧壁覆盖所述第一内凹部的开口。
在一些示例中,所述移相器还包括位于所述第二馈电区的第二波导结构,所述内凹部还包括位于第二馈电区的第二内凹部;所述第二馈电结构在所述第一基底上的正投影,与所述第二波导结构的第一端口在所述第一基底上的正投影至少部分重叠;
当所述第二波导结构连接在所述第一基底背离所述介质层的表面上时,所述第二内凹部形成在所述第一基底上,且所述第二波导结构的侧壁覆盖所 述第一内凹部的开口;
当所述第二波导结构的第一端口连接在所述第二基底背离所述介质层的一侧时,所述第二内凹部形成在所述第二基底上,且所述第二波导结构的侧壁覆盖所述第二内凹部的开口。
在一些示例中,所述第一馈电结构在所述第一基底上的正投影,位于所述第一波导结构的第一端口在所述第一基底上的正投影中;和/或,所述第二馈电结构在所述第一基底上的正投影,位于所述第二波导结构的第一端口在所述第一基底上的正投影中。
在一些示例中,所述第一波导结构设置在所述第一基底背离所述介质层一侧,所述第二波导结构设置在所述第二基底背离所述介质层一侧;
或,所述第一波导结构和所述第二波导结构均设置在所述第二基底背离所述介质层一侧,且所述第一波导结构在所述第二基底上的正投影,与所述第二波导结构在所述第二基底上的正投影无重叠。
在一些示例中,所述移相器还包括:第一反射结构和第二反射结构;
所述第一反射结构设置在所述第一馈电结构背离所述第一波导结构一侧,所述第一反射结构在所述第一基底上的正投影,与所述第一波导结构的第一端口在所述第一基底上的正投影至少部分重叠,且与所述第一馈电结构在所述第一基底上的正投影至少部分重叠,所述第一反射结构用于将所述第一馈电结构朝向背离所述第一波导结构一侧辐射的微波信号反射回所述第一波导结构中;
所述第二反射结构设置在所述第二馈电结构背离所述第二波导结构一侧,所述第二反射结构在所述第二基底上的正投影,与所述第二波导结构的第一端口在所述第二基底上的正投影至少部分重叠,且与所述第二馈电结构在所述第二基底上的正投影至少部分重叠,所述第二反射结构用于将所述第二馈电结构朝向背离所述第二波导结构一侧辐射的微波信号反射回所述第二波导结构中。
在一些示例中,所述第一反射结构为波导结构,且所述第一反射结构的第一端口在所述第一基底上的正投影,与所述第一波导结构的第一端口在所述第一基底上的正投影至少部分重叠;
所述第二反射结构为波导结构,且所述第二反射结构的第一端口在所述第二基底上的正投影,与所述第二波导结构的第一端口在所述第二基底上的正投影至少部分重叠。
在一些示例中,所述内凹部还包括位于所述第一馈电区的第三内凹部;
当所述第一反射结构的第一端口连接在所述第一基底背离所述介质层的表面时,所述第三内凹部形成在所述第一基底上,且所述第一反射结构的侧壁的覆盖所述第三内凹部的开口;
当所述第一反射结构的第一端口连接在所述第二基底背离所述介质层的表面时,所述第三内凹部形成在所述第二基底上,且所述第一反射结构的侧壁的覆盖所述第三内凹部的开口。
在一些示例中,所述内凹部还包括位于所述第二馈电区的第四内凹部;
当所述第二反射结构的第一端口连接在所述第一基底背离所述介质层的表面时,所述第四内凹部形成在所述第一基底上,且所述第二反射结构的侧壁的覆盖所述第四内凹部的开口;
当所述第二反射结构的第一端口连接在所述第二基底背离所述介质层的表面时,所述第四内凹部形成在所述第二基底上,且所述第二反射结构的侧壁的覆盖所述第四内凹部的开口。
在一些示例中,当所述内凹部位于所述第一馈电区,且形成在所述第一基底上时,所述内凹部为多个,且呈环形排布;当所述内凹部位于所述第一馈电区,且形成在所述第二基底上时,所述内凹部为多个,且呈环形排布;
当所述内凹部位于所述第二馈电区,且形成在所述第一基底上时,所述内凹部为多个,且呈环形排布;
当所述内凹部位于所述第二馈电区,且形成在所述第二基底上时,所述 内凹部为多个,且呈环形排布。
在一些示例中,所述第一波导结构具有至少一个第一侧壁,所述至少一个第一侧壁相连形成所述第一波导结构的波导腔体;
和/或,所述第二波导结构具有至少一个第二侧壁,所述至少一个第二侧壁相连形成所述第二波导结构的波导腔体。
在一些示例中,所述移相器还包括第一金属层和第二金属层;所述第一金属层设置在所述第一基底背离所述介质层一侧,所述第一金属层中具有第一腔体,所述第一腔体限定出所述第一波导结构;所述第二金属层设置在所述第二基底背离所述介质层一侧,所述第二金属层中具有第二腔体,所述第二腔体限定出所述第二波导结构;
或者,所述移相器还包括第二金属层,设置在所述第二基底背离所述介质层一侧;所述第二金属层中具有第一腔体和第二腔体,所述第一腔体限定出所述第一波导结构,所述第二腔体限定出所述第二波导结构;且所述第一腔体在所述第二基底上的正投影,与所述第二腔体在所述第二基底上的正投影无重叠。
在一些示例中,所述移相器还包括:第三基板,连接所述第一波导结构的第二端口;所述第三基板包括第三基底,和设置在所述第三基底靠近所述第一波导结构一侧的馈电传输线;其中,
所述馈电传输线的第一端连接外部信号线,其第二端延伸至所述第一波导结构的第二端口以将信号馈入所述第一波导结构中。
在一些示例中,所述信号线在所述第一基底上的正投影,与所述第一波导结构的第一端口以及所述第二波导结构的第一端口在所述第一基底上的正投影均无重叠。
在一些示例中,所述第一馈电结构为单极子电极,其与所述信号线同层设置且材料相同;和/或,所述第二馈电结构为单极子电极,其与所述信号线同层设置且材料相同。
在一些示例中,所述信号线具有至少一个弯折角,所述参考电极具有至少一个弯折角,所述参考电极的弯折角与所述信号线的弯折角一一对应设置。
在一些示例中,所述参考电极包括:第一子参考电极和第二子参考电极;所述信号线设置于所述第一子参考电极和所述第二子参考电极之间;每一所述贴片电极与所述参考电极的所述第一子参考电极和所述第二子参考电极在所述第一基底上的正投影至少部分重叠。
在一些示例中,所述第一波导结构和/或第二波导结构中具有填充介质,所述填充介质为聚四氟乙烯。
第二方面,本公开实施例还提供一种天线,其中,包括上述移相器。
在一些示例中,所述移相器还包括:与第二馈电结构对应设置的第二波导结构;所述天线还包括:
至少一个辐射单元,且一个所述辐射单元与一个所述移相器的第二波导结构的第二端口对应设置。
在一些示例中,所述辐射单元为第三波导结构,其包括靠近所述第二波导结构的第一端口,和远离所述第二波导结构的第二端口,所述第三波导结构的第一端口和与之对应的所述第二波导结构的第二端口连接;其中,
所述第三波导结构的第二端口的口径大于第一端口的口径,并且,所述第三波导结构相对远离所述第二波导结构处的口径,不小于相对靠近所述第二波导结构处的口径。
在一些示例中,所述第二波导结构包括四个第二侧壁,所述四个第二侧壁相连限定出所述第二波导结构的波导腔体;
所述第三波导结构包括一个第三侧壁,所述第三侧壁围出所述第三波导结构的波导腔体;其中,
由所述第二波导腔体指向所述第三波导腔体的方向,所述第二波导结构的波导腔体的形状逐渐向所述第三波导腔体的第一端口的形状过渡。
在一些示例中,所述辐射单元为辐射贴片;所述天线还包括第四基板,至少一个所述移相器的第二波导结构的第二端口连接所述第四基板,所述辐射贴片设置在所述第四基板背离所述第二波导结构一侧;
所述辐射贴片在所述第四基板上的正投影,和与之对应的所述第二波导结构的第二端口在所述第四基板上的正投影至少部分重叠。
在一些示例中,所述移相器还包括:与第一馈电结构对应设置的第一波导结构;所述天线包括多个辐射单元和多个移相器,且一个辐射单元与一个所述移相器的第二波导结构的第二端口对应设置;
多个所述移相器的第一波导结构相连形成波导功分网络,所述波导功分网络具有一个主端口和多个子端口,所述波导功分网络的主端口连接外部信号线,每个所述第一波导结构的第一端口作为所述波导功分网络的一个子端口。
附图说明
图1为一种传输线周期性并联加载可变电容的等效模型。
图2a为本公开实施例提供的移相器的一种实施例的俯视图。
图2b为图2a沿A-B方向的截面图。
图2c为本公开实施例提供的移相器的另一种实施例的俯视图(第一波导结构)。
图2d为图2c沿C-D方向的截面图。
图2e为本公开实施例提供的移相器的另一种实施例的俯视图(第二波导结构)。
图2f为图2a沿E-F方向的截面图。
图2g为本公开实施例提供的移相器的另一种实施例的俯视图(第一波导结构和第二波导结构)。
图3为图2g沿G-H方向的截面图。
图4为图2移相器的阻抗变化图。
图5为本公开实施例提供的移相器的另一种实施例的侧视图。
图6为本公开实施例提供的移相器的另一种实施例的侧视图。
图7为图6中第三基板处的俯视图
图8为本公开实施例提供的移相器的另一种实施例的侧视图(第一波导结构、第二波导结构设置在对侧)。
图9为本公开实施例提供的移相器的另一种实施例的侧视图(第一波导结构、第二波导结构设置在同侧)。
图10为本公开实施例提供的移相器中第一波导结构的局部示意图。
图11为本公开实施例提供的移相器的另一种实施例的侧视图(第一波导结构、第二波导结构设置在对侧且为腔体)。
图12为本公开实施例提供的移相器的另一种实施例的侧视图(第一波导结构、第二波导结构设置在同侧且为腔体)。
图13为本公开实施例提供的移相器的另一种实施例的侧视图(交叠面积不一致)。
图14为图13沿J-K方向的截面图。
图15为图13移相器的阻抗变化图。
图16为本公开实施例提供的移相器的另一种实施例的俯视图(弯折排布)。
图17为本公开实施例提供的天线的辐射单元的一种实施例的结构示意图(喇叭天线)。
图18为本公开实施例提供的天线的一种实施例的侧视图。
图19为本公开实施例提供的天线的一种实施例的侧视图(金属层内的腔体形成波导结构)。
图20为本公开实施例提供的天线的一种实施例的侧视图(波导功分网络与第二波导结构、辐射单元设置在同侧)。
图21为图20的天线的俯视图。
图22为本公开实施例提供的天线的一种实施例的侧视图(具有第三基板)。
图23为图22的天线的第三基板处的俯视图。
图24为本公开实施例提供的天线的一种实施例的侧视图(辐射贴片)。
图25为图24的天线的俯视图。
图26为本公开实施例提供的天线的介电常数与传输损耗的仿真曲线图。
图27为本公开实施例提供的天线的介电常数与相位差的仿真曲线图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅是本发明的部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
附图中各部件的形状和大小不反映真实比例,目的只是为了便于对本发明实施例的内容的理解。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系, 当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开实施例不限于附图中所示的实施例,而是包括基于制造工艺而形成的配置的修改。因此,附图中例示的区具有示意性属性,并且图中所示区的形状例示了元件的区的具体形状,但并不是旨在限制性的。
在此需要说明的是,若移相器中的传输线周期性并联加载可变电容,通过改变可变电容的容值,可以实现相位的变化,其等效模型如图1所示。其中,Lt、Ct为移相器中传输线等效的线电感和线电容,取决于传输线及基板的特性。可变电容Cvar(V)可以通过微机电系统(Micro-Electro-Mechanical System,MEMS)电容、可变二极管电容等来实现。
第一方面,本公开实施例提供一种移相器,参见图2、图3,其中,图2为该移相器省略第一基底10、第二基底20的俯视图,图3为沿图2所示的移相器的G-H方向剖切剖面图。该移相器包括相对设置的第一基板和第二基板,以及形成在第一基板和第二基板之间的介质层30。
其中,以该移相器采用共面波导(Coplanar Waveguide,CPW)传输线为例,该移相器包括第一馈电区Q01、第二馈电区Q02和移相区Q03;其中,第一基板包括第一基底10,设置在第一基底10靠近介质层30一侧的参考电极12和信号线11,信号线11和参考电极12位于移相区Q03,且二者组成CPW传输线;信号线11可以包括与参考电极12延伸方向相同的主体结构111,以及连接在主体结构111上的多个间隔设置的分支结构112,其中至少一个分支结构112沿主体结构111的延伸方向设置。
第二基板包括第二基底20,以及设置在第二基底20靠近介质层30一侧的至少一个贴片电极21,贴片电极21位于移相区,其延伸方向与信号线11的分支结构112的延伸方向相同,且贴片电极21与分支结构112一一对应设置,并且,每个贴片电极21和与之对应的分支结构112在第一基底10上的正投影均至少部分重叠。并且,在一些示例中,每个贴片电极21在第一基底10上的正投影,与以及参考电极12在第一基底10上的正投影至少部 分重叠。其中,贴片电极21与分支结构112一一对应设置,即一个贴片电极21设置在一个分支结构112上,该贴片电极21与该分支结构112相交叠形成可变电容Cvra(V),至少一个可变电容Cvra(V)垂直于电磁波传输方向,因此形成并联电容,移相器具有如图1所示的等效电路模型。而由于贴片电极21与分支结构112存在一定的交叠,因此在给主体结构111输入微波信号时,通过加载贴片电极21与分支结构112的电压存在一定的压差,而使得贴片电极21和信号线11交叠所形成的可变电容Cvra(V)中的介质层30的介电常数发生改变,从而可变电容Cvra(V)的电容值改变,以改变微波信号的相位。而在本实施例提供的移相器中所形成的可变电容Cvra(V)的交叠面积相同,故在给贴片电极21施加相同电压,所形成的每个可变电容Cvra(V)的等效阻抗也是相同的,如图4所示,每个可变电容Cvra(V)阻抗为Z1。在此需要说明的是,Z0代表信号线11的信号引入(或输出)的两端与参考电极12之间所形成的阻抗值。
需要说明的是,移相器中可以包括多个可变电容Cvra(V),也可以仅包括一个可变电容Cvra(V),相应地,移相器的第二基板20靠近介质层30一侧可以仅设置一个贴片电极21,也可以设置多个贴片电极21,具体的可以根据所需的移相度而定,以下皆以移相器包括多个贴片电极21,每个贴片电极21与一个分支结构112相交叠形成一个可变电容Cvra(V),即移相器包括多个可变电容Cvra(V)为例进行说明,但不对本发明构成限制。
需要说明的是,移相器中参考电极12可以仅包括一个子参考电极,例如仅包括第一子参考电极121和第二子参考电极122中的任一个,移相器的参考电极12也可以包括第一子参考电极121和第二子参考电极122,在以下描述中,皆以参考电极12包括第一子参考电极121和第二子参考电极122为例进行描述,但不对本发明构成限制。若参考电极12包括第一子参考电极121和第二子参考电极122,信号线11设置在第一子参考电极121和第二子参考电极122之间;每个贴片电极21和与之对应的分支结构112,以及第 一子参考电极121和第二子参考电极122在基底上的投影均至少部分重叠。
在上述移相器中,信号线11与第一参考电极121、第二参考电极122组成CPW传输线,信号由信号线11的两端的一端馈入,另一端馈出,CPW传输线的电场为横向电场,即电场方向由信号线11指向第一参考电极121或第二参考电极122,微波信号被限制在信号线11与第一参考电极121、第二参考电极122之间。而在信号线11的两端,需要将微波信号馈入或馈出。在一些示例中,采用微带线直接连接在信号线11两端进行馈电,微带线可以包括与信号线11同层设置传输电极(图中未示出),以及设置在第一基底10与传输电极相对一侧的第三参考电极(图中未示出),由于传输电极连接在信号线11两端,可以通过传输电极向信号线11馈电,但是,微带线的传输电极与第三参考电极之间形成的电场为纵向电场,即电场方向由传输电极指向第三参考电极,近似垂直于第一基底10,因此CPW传输线的信号线11上的横向电场,无法直接转换为微带线上的纵向电场,因此微波信号无法良好地从信号线11直接传输到传输电极,且传输损耗较大。在另一些实施例中,为了将信号线11两端的横向电场转换为纵向电场,可以将第三参考电极与CPW传输线的参考电极12相连,则需要在第一基底10上制作通孔,通过第一基底10中的通孔将设置在第一基底10两侧的第三参考电极与参考电极12相连,这样做一方面增加了工艺复杂度,另一方面若第一基底10为玻璃基板,则无法在玻璃基板上制作通孔,且若采用液晶分子等流动介质作为介质层30,液晶分子会由通孔中泄露,造成漏晶。
为了解决上述问题,本公开实施例提供如下技术方案。继续参见图2a、图2b所示,其中,图2b为沿图2a的A-B方向剖切的截面图。本公开实施例提供的移相器还包括位于第一馈电区Q01的第一馈电结构50和位于第二馈电区Q02的第二馈电结构60,第一馈电结构50与CPW传输线的信号线11的一端电连接,第二馈电结构60与CPW传输线的信号线11的另一端电连接。第一馈电结构50用于改变经由CPW传输线的信号线11传输的微波信号的传 输方向,使信号线11传输的微波信号沿第一方向传输,第一方向与第一基底10所在平面相交。第二馈电结构60用于改变经由CPW传输线的信号线11传输的微波信号的传输方向,使信号线11传输的微波信号沿第二方向传输,第二方向与第一基底10所在平面相交。具体地,在该移相器中,第一馈电结构50与第二馈电结构60均为在近似垂直于第一基底10的方向上具有纵向电场的馈电结构,也即第一馈电结构50产生的电场的电场方向至少部分与第一基底10所在平面相交,第二馈电结构60产生的电场的电场方向至少部分第一基底10所在平面相交,因此,第一馈电结构50与第二馈电结构60连接在信号线11的两端,能够将信号线11两端的横向电场转换为纵向电场,使微波信号沿纵向电场传输,以微波信号由第一馈电结构50馈入,由第二馈电结构60馈出为例,微波信号耦合至第一馈电结构50,第一馈电结构50将接收到的微波信号传输至信号线11,微波信号沿信号线11的延伸方向传播,经过移相后传输至信号线11另一端的第二馈电结构60,第二馈电结构60通过纵向电场将微波信号耦合第二基底20背离介质层30一侧,若第二基底20上设置有辐射单元,第二馈电结构60可以将微波信号耦合至辐射单元,再由辐射单元辐射出去。由于采用第一馈电结构50和第二馈电结构60连接在信号线11的两端,因此第一馈电结构50和第二馈电结构60能够将信号线11两端的横向电场转换为纵向电场,从而实现共面波导传输线两端的横向电场到纵向电场的转换。
需要说明的是,第一方向与第二方向均为与第一基底10所在平面相交的方向,也即第一馈电结构50所改变的微波信号的传输方向(第一方向)与第一基底10所在平面相交,同理,第二馈电结构60的电场方向所改变的微波信号的传输方向(第二方向)与第一基底10所在平面相交,第一方向、第二方向可以为满足上述特征的任意方向,为了便于说明,以下皆以第一方向为垂直于第一基底10所在平面的方向,第二方向为垂直于第一基底10所在平面的方向,且第一方向和第二方向相同为例进行说明,但不对本发明构 成限制。
需要说明的是,若移相器应用到天线中,天线可以为发射天线,也可以为接收天线,辐射单元连接第二馈电结构60,若天线作为发射天线,第一馈电结构50可以接收前馈电路馈入的信号,再向信号线11输入信号,第二馈电结构60接收信号后耦合至辐射单元,辐射单元将信号发射出去。若天线作为接收天线,辐射单元接收信号后耦合至第二馈电结构60,第二馈电结构60接收信号后传输至信号线11,连接在信号线11另一端的第一馈电结构50接收到信号后,再耦合回前馈电路。为了便于说明,以下皆以移相器的第一馈电结构50为输入端,第二馈电结构60为输出端为例进行说明。
在一些示例中,第一馈电结构50和第二馈电结构60可以为任何能够将微波信号向不平行于第一基底10方向上传输的馈电结构,例如,第一馈电结构50可以为单极子电极,第一馈电结构50可以与信号线11同层设置且材料相同。第二馈电结构60也可以为单极子电极,第二馈电结构60可以与信号线11同层设置且材料相同。从而采用单极子电极连接在信号线11两端,单极子电极能够将CPW传输线的信号线11的横向电场转换为纵向电场,向垂直于第一基底10的方式辐射微波信号,从而实现微波信号的馈入和馈出。作为第一馈电结构50和/或第二馈电结构60的单极子电极的具体结构可以包括多种类型,例如,第一馈电结构50和第二馈电结构60均可以为单极子贴片电极,与信号线11同层设置,并且,在一些示例中,第一馈电结构50和第二馈电结构60可以与信号线11一体成型,从而可以简化工艺。以下皆以第一馈电结构50、第二馈电结构60均为单极子贴片电极为例进行说明。
在一些示例中,若第一馈电结构50、第二馈电结构60均为单极子贴片电极,第一馈电结构50的宽度大于CPW传输线的信号线11的宽度,第二馈电结构60的宽度也大于CPW传输线的信号线11的宽度。
在一些示例中,为了使得微波信号传输平稳,在上述结构的基础上,可以将分支结构112贯穿主体结构111设置。在一些实施例中,分支结构112 和主体结构111可以设计为一体成型结构,也即,如图2所示,分支结构112和主体结构111同层设置,且材料相同;这样一来,方便分支结构112和主体结构111的制备,且降低工艺成本。当然,分支结构112和主体结构111也可以是通过任何方式电连接在一起,在本发明实施例中并不对此做出任何限定。此时,在给主体结构111输入微波信号时,通过加载贴片电极21与分支结构112的电压存在一定的压差,而使得贴片电极21和信号线11交叠所形成的液晶电容中的介质层30的介电常数发生改变,以改变微波信号的相位。
继续参照图2b,为了减少微波信号的能量损耗,可以在第二基底上形成位于第一馈电区Q01的内凹部,相应的还可以在第一基底形成位于第二馈电区Q02的内凹部,并在第一基底和第二基底的内凹部中形成导电结构105,以便微波信号经由第一馈电区Q01馈入至第一馈电结构,同时经由第二馈电结构经由第二馈电区Q02馈出。
在一些示例中,参见图2C-图3,本公开实施例提供的移相器可以采用波导结构与第一馈电结构50和/或第二馈电结构60传输信号。具体地参见以下示例。
在一些示例中,参见图2c-2d,其中,图2d为沿图2c的C-D方向剖切的截面图。本公开实施例提供的移相器还可以包括第一波导结构70,第一波导结构70具有第一端口701和第二端口702,第一波导结构70与第一馈电结构50对应设置,即第一馈电结构50在第一基底10上的正投影,与第一波导结构70的第一端口701在第一基底10上的正投影至少部分重叠。具体地,第一波导结构70可以设置在第一基底10背离介质层30一侧,也可以设置在第二基底20背离介质层30一侧,只要第一馈电结构50在第一基底10上的正投影,与第一波导结构70的第一端口701在第一基底10上的正投影至少部分重叠即可。在本实施例中,以第一馈电结构50为输入端,第二馈电结构60为输出端为例,第一波导结构70的第二端口702接收外部信号 线传输的微波信号,微波信号经过第一波导结构70的波导腔体由第一波导结构70的第一端口701耦合至与其重叠的第一馈电结构50,第一馈电结构50将接收到的微波信号传输至信号线11,微波信号沿信号线11的延伸方向传播,经过移相后传输至信号线11另一端的第二馈电结构60,第二馈电结构60通过纵向电场将微波信号耦合出去,通过第一波导结构60传输信号能够有效减少微波信号的传输损耗。
继续参见图2c-2d,在该种情况下,在第一馈电区Q01中形成有位于第一基底10上的内凹部,为了便于描述,将该内凹部称之为第一内凹部101,且在第一内凹部101中形成导电结构105,在一些示例中,第一内凹部101包括但不限于盲孔结构,且第一内凹部101的数量可以为多个,多个第一内凹部101呈环状排布,且第一波导结构70的第一端口701的底面(也即第一波导结构70侧壁的底面)覆盖第一内凹部101,该种设置方式相当于将第一波导结构70向第一馈电结构50方向延伸,可以有效的减少所馈入的微波信号的损失。
在一些示例中,参见图2e-2f,其中,图2f为沿图2e的E-F方向剖切的截面图。本公开实施例提供的移相器还可以包括第二波导结构80,第二波导结构80具有第一端口801和第二端口802,第二波导结构80与第二馈电结构60对应设置,即第二馈电结构60在第一基底10上的正投影,与第二波导结构80的第一端口801在第一基底10上的正投影至少部分重叠。具体地,第二波导结构80可以设置在第二基底20背离介质层30一侧,第二波导结构80的第二端口802可以连接辐射单元,在本实施例中,以第一馈电结构50为输入端,第二馈电结构60为输出端为例,第一馈电结构50接收外部信号线传输的微波信号,微波信号沿信号线11的延伸方向传播,经过移相后传输至信号线11另一端的第二馈电结构60,第二馈电结构60通过纵向电场将微波信号耦合至与其重叠第二波导结构80的第一端口801,微波信号经过第二波导结构80的波导腔体由第二波导结构80的第二端口802耦合 至辐射单元,通过第二波导结构80传输信号能够有效减少微波信号的传输损耗。
继续参见图2e-2f,在该种情况下,在第二馈电区Q02中形成有位于第二基底20上的内凹部,为了便于描述,将该内凹部称之为第二内凹部102,且在第二内凹部102中形成导电结构105,在一些示例中,第二内凹部102包括但不限于盲孔结构,且第二内凹部102的数量可以为多个,多个第一内凹部101呈环状排布,且第二波导结构80的第一端口801的底面(也即第二波导结构80侧壁的底面)覆盖第二内凹部102,该种设置方式相当于将第二波导结构80向第二馈电结构60方向延伸,可以有效的减少所馈出的微波信号的损失。
在一些示例中,参见图2g-图3,其中,图3为沿图2g的G-H方向剖切的截面图。本公开实施例提供的移相器可以在第一馈电结构50和第二馈电结构60处均设置波导结构,也就是说,移相器还可以包括第一波导结构70和第二波导结构80。第一馈电结构50和第二馈电结构60分别连接信号线11的两端;第一波导结构70具有第一端口701和第二端口702,第一波导结构70与第一馈电结构50对应设置,即第一馈电结构50在第一基底10上的正投影,与第一波导结构70的第一端口701在第一基底10上的正投影至少部分重叠;第二波导结构80具有第一端口801和第二端口802,第二波导结构80与第二馈电结构60对应设置,即第二馈电结构60在第一基底10上的正投影,与第二波导结构80的第一端口801在第一基底10上的正投影至少部分重叠。
继续参见图2g-图3,在该种情况下,在第一馈电区Q01中形成有位于第一基底10上第一内凹部101,在第二馈电区Q02中形成有位于第二基底20上的第二内凹部102,且在第一内凹部101和第二内凹部102中均形成导电结构105,且第一内凹部101和第二内凹部102与上述的排布方式相同,故在此不再重复描述。其中,第一波导结构70的第一端口701的底面(也 即第一波导结构70侧壁的底面)覆盖第一内凹部101,该种设置方式相当于将第一波导结构70向第一馈电结构50方向延伸,可以有效的减少所馈入的微波信号的损失。第二波导结构80的第一端口801的底面(也即第二波导结构80侧壁的底面)覆盖第二内凹部102,该种设置方式相当于将第二波导结构80向第二馈电结构60方向延伸,可以有效的减少所馈出的微波信号的损失。
在该移相器中,第一馈电结构50与第二馈电结构60均为在近似垂直于第一基底10的方向上具有纵向电场的馈电结构,因此,第一馈电结构50与第二馈电结构60连接在信号线11的两端,能够将信号线11两端的横向电场转换为纵向电场,以微波信号由第一馈电结构50馈入,由第二馈电结构60馈出为例,微波信号由第一波导结构70的第二端口702馈入第一波导结构70的波导腔体,再由第一波导结构70的第一端口701通过第一内凹部101耦合至第一馈电结构50,第一馈电结构50将接收到的微波信号传输至信号线11,微波信号沿信号线11的延伸方向传播,经过移相后传输至信号线11另一端的第二馈电结构60,第二馈电结构60通过纵向电场将微波信号通过第二内凹部102耦合至第二波导结构80的第一端口801,再由第二波导结构80的第二端口802馈出,由于采用第一馈电结构50和第二馈电结构60连接在信号线11的两端,因此第一馈电结构50和第二馈电结构60能够将信号线11两端的横向电场转换为纵向电场,从而实现共面波导传输线两端的横向电场到纵向电场的转换;并且由于采用第一波导结构70、第一内凹部101、第二波导结构80、第二内凹部102传输微波信号,从而能够有效减少微波信号的传输损耗。
需要说明的是,在本公开实施例提供的移相器中,移相器可以仅设置第一波导结构70,也可以仅设置第二波导结构80,或同时设置第一波导结构70和第二波导结构80,在此不做限定。以下皆以移相器中设置第一波导结构70和第二波导结构80为例进行说明。
在本公开实施例提供的移相器中,介质层30可以采用各种类型可调介质,例如,介质层30可以包括液晶分子或铁电体等可调介质,以下皆以介质层30包括液晶分子为例进行说明。通过给贴片电极21和CPW传输线加载电压,能够改变液晶分子的偏转角度,从而改变液晶层30的介电常数,以达到移相的目的。
在一些示例中,介质层30中的液晶分子为正性液晶分子或负性液晶分子,需要说明的是,当液晶分子为正性液晶分子时,本公开实施例中液晶分子长轴方向与贴片电极21之间的夹角大于0度小于等于45度。当液晶分子为负向液晶分子时,本公开实施例液晶分子长轴方向与贴片电极21之间的夹角大于45度小于90度,保证了液晶分子发生偏转后,改变介质层30的介电常数,以达到移相的目的。
在一些示例中,本实施例还包括信号连接器01,信号连接器01的一端连接外部信号线,另一端连接第一波导结构70的第二端口702,向第一波导结构70输入微波信号,第一波导结构70再将微波信号耦合至第一馈电结构50,信号连接器01可以为多种类型的连接器,例如SMA连接器等,在此不做限制。
需要说明的是,本公开实施例所提供的移相器中,微波信号可以为高频信号,周期加载并联电容的控制信号可以为低频信号,因此,微波信号传输时和电容加载时的控制信号不同,微波信号通过第一馈电结构50或第二馈电结构60输入信号线11,电容加载时的控制信号则通过信号线输入贴片电极21和信号线11。
在一些示例中,本公开实施例提供的移相器中还可以包括第一信号线和第二信号线(图中均未示出),第一信号线用于向贴片电极21上周期加载并联电容的控制信号,第一信号线与贴片电极21电连接。第二信号线用于向信号线11上周期加载并联电容的控制信号,第二信号线与信号线11电连接。
此外,需要说明的是,移相器中可包括多个相位调整单元,每一相位调 整单元中对应一个或多个贴片电极21,每个相位调整单元和CPW传输线的信号线11在被施加电压形成电场后,驱动介质层30的液晶分子偏转,改变介质层30的介电常数,因此,可以改变微波信号的相位,且不同的相位调整单元中贴片电极21和信号线11在被施加电压后,对应调整的相移量是不同,也即每一个相位调整单元则对应调整一个相移量,故可以相移量调整时,根据要调整的相移量的大小控制相应的相位调整单元施加电压,而无需对所有的相位调整单元施加电压,从而使得本实施例中的移相器方便控制,且功耗较小。
此外,为了方便控制,以及布线简单,每个相位调整单元中的各个贴片电极21可采用同一第一信号线进行控制。当然,也可以根据实际需求,不同相位调整单元中的各个贴片电极21采用不同第一信号线进行控制,在此不做限制。
在一些示例中,参见图2,为了保证第一馈电结构50能够更好地与第一波导结构70进行微波信号的传输,第一馈电结构50在第一基底10上的正投影,位于第一波导结构70的第一端口701在第一基底10上的正投影中;同理,为了保证第二馈电结构60能够更好地与第二波导结构80进行微波信号的传输,第二馈电结构60在第一基底10上的正投影,位于第二波导结构80的第一端口801在第一基底10上的正投影中。
进一步地,为了保证第一馈电结构50与第一波导结构70的传输效率,二者可以正对设置,第一馈电结构50的形状可以为中心对称图形,第一波导结构70的第一端口701的形状可以为中心对称图形,第一馈电结构50的对称中心在第一基底10上的正投影,与第一波导结构70的第一端口701的对称中心在第一基底10上的正投影之间的距离不大于第一预设值,第一预设值应当尽可能小,例如小于0.1厘米,若第一预设值为0,则第一馈电结构50与第一波导结构70完全正对设置,二者的对称中心重合;同理,为了保证第二馈电结构60与第二波导结构80的传输效率,二者可以正对设置, 第二馈电结构60的形状可以为中心对称图形,第二波导结构80的第一端口801的形状可以为中心对称图形。第二馈电结构60的对称中心在第一基底10上的正投影,与第二波导结构80的第一端口801的对称中心在第一基底10上的正投影之间的距离不大于第二预设值,第一预设值应当尽可能小,例如小于0.1厘米,若第一预设值为0,则第二馈电结构60与第二波导结构80完全正对设置,二者的对称中心重合。
在一些示例中,参见图3、图5,第一波导结构70与第一馈电结构50对应设置,第二波导结构80与第二馈电结构60对应设置,具体地,如图3所示,第一波导结构70与第二波导结构80可以设置在对侧,即第一波导结构70设置在第一基底10背离介质层30一侧,第二波导结构80设置在第二基底20背离介质层一侧。获知,如图5所示,第一波导结构70和第二波导结构80可以设置在同一侧,例如均设置在第二基底20背离介质层30一侧,在这种情况下,第一波导结构70在第二基底20上的正投影,与第二波导结构80在第二基底20上的正投影无重叠,以保证第一波导结构70与第二波导结构80的结构互相独立,互不影响。与此同时,第一内凹部101和第二内凹部102均设置在第二基底上。设置第一内凹部101和第二内凹部102的原理与上述原理相同,故在此不再重复描述。
在一些示例中,参见图6、图7,移相器还可以包括第三基板,第三基板连接第一波导结构70的第二端口702。第三基板包括第三基底03和馈电传输线02,第三基底03连接在第一波导结构70的第二端口702,馈电传输线02设置在第三基底03靠近第一波导结构70一侧,其中,参见图7,馈电传输线02的第一端延伸至第三基底03的边缘以连接外部信号线,具体地,信号连接器01可以设置在第三基底03的边缘,一端与馈电传输线02连接,另一端连接外部信号线,向馈电传输线02输入信号。馈电传输线02的第二端延伸至第一波导结构70的第二端口702处,以将信号馈入第一波导结构70的波导腔体中,第一波导结构70再由其第一端口701将信号耦合至第一 馈电结构50。具体地,馈电传输线02的第二端可以延伸至第一波导结构70的第二端口702内,也就是说,馈电传输线02的第二端在第一基底10上的正投影,位于第一波导结构70的第二端口702在第一基底10上的正投影中。
在一些示例中,参见图2,CPW传输线可以不进入第一波导结构70和/或第二波导结构80的波导腔体内,也可以少部分延伸至第一波导结构70和/或第二波导结构80的波导腔体内,若CPW传输线不进入第一波导结构70和/或第二波导结构80的波导腔体内,则CPW传输线的信号线11在第一基底10上的正投影,与第一波导结构70的第一端口701以及第二波导结构80的第一端口801在第一基底10上的正投影均无重叠,同理,第一子参考电极121和第二子参考电极122在第一基底10上的正统一,均与第一波导结构70的第一端口701以及第二波导结构80的第一端口801在第一基底10上的正投影均无重叠。
在一些示例中,移相器还可以包括设置在第一基底10靠近介质层30一侧的第一连接结构501和第二连接结构601。第一连接结构501连接在第一馈电结构50与信号线11的主体结构111的第一端之间,第二连接结构601连接在第二馈电结构60与信号线11的主体结构111的第二端之间。第一连接结构501和第二连接结构601可以作为阻抗匹配结构,在微波信号输入端的第一馈电结构50和信号线11的接触处,若两者的阻抗不相同,驻波比(驻波)不为1,即有回波损耗,使性能下降,因此需要做好阻抗匹配,通过设置第一连接结构501,使得所述第一馈电结构50和信号线11之间进行阻抗匹配;同理,在负载(例如,辐射单元)端的第二馈电结构60和CPW传输线的信号线11的接触处,若两者的阻抗不相同,驻波比(驻波)不为1,即有回波损耗,使性能下降,因此需要做好阻抗匹配,通过设置第二连接结构601的结构,使得第二馈电结构601和信号线11之间进行阻抗匹配。
在一些示例中,若第一馈电结构50、第二馈电结构60、信号线11的阻抗一致,例如都为100Ω,则无需进行阻抗匹配,第一连接结构501与第二 连接结构601可以为连接线,第一连接结构501的宽度可以与信号线11的主体结构111的宽度一致,第二连接结构601可以与信号线11的主体结构111的宽度一致。在本实施例中,皆以第一连接结构501、第二连接结构601、信号线11的宽度一致为例进行说明。在一些示例中,第一连接结构501、第二连接结构601可以与信号线11一体成型,以简化工艺。
需要说明的是,第一连接结构501或第二连接结构601与CPW传输线的信号线11的主体结构111连接,而与第一子参考电极121和第二子参考电极122之间保留间隙。
在一些示例中,参见图8、图9,移相器还可以包括第一反射结构04和第二反射结构05。第一反射结构04设置在第一馈电结构50背离第一波导结构70一侧,第一反射结构04在第一基底10上的正投影,与第一波导结构70的第一端口701在第一基底10上的正投影至少部分重叠,且与第一馈电结构50在第一基底10上的正投影至少部分重叠,由于第一馈电结构50的电场为纵向电场,在纵向方向上第一馈电结构50的两侧均会辐射微波信号,朝向第一波导结构70一侧的信号耦合至第一波导结构70内,而第一馈电结构50朝向背离第一波导结构70一侧辐射的微波信号,则由第一反射结构04反射回第一波导结构70中,从而有效增加辐射效率。同理,第二反射结构05设置在第二馈电结构60背离第二波导结构80一侧,第二反射结构05在第二基底20上的正投影,与第二波导结构80的第一端口801在第二基底20上的正投影至少部分重叠,且与第二馈电结构60在第二基底20上的正投影至少部分重叠,由于第二馈电结构60的电场为纵向电场,在纵向方向上第二馈电结构60的两侧均会辐射微波信号,朝向第二波导结构80一侧的信号耦合至第二波导结构80内,而第二馈电结构60朝向背离第二波导结构80一侧辐射的微波信号,则由第二反射结构05反射回第二波导结构80中,从而有效增加辐射效率。
具体地,若第一波导结构70与第二波导结构80设置在不同侧,第一波 导结构70设置在第一基底10背离介质层30一侧,则第一反射结构04设置在第二基底20背离介质层30一侧,第二波导结构80设置在第二基底20背离介质层30一侧,则第二反射结构05设置在第一基底20背离介质层30一侧。若第一波导结构70与第二波导结构80设置在同一侧,例如二者均设置在第二基底20背离介质层30一侧,则第一反射结构04、第二反射结构05均设置在第一基底10背离介质层30一侧。
在一些示例中,第一反射结构04可以采用波导结构,第一反射结构04的波导腔体具有第一端口041和第二端口042,第一反射结构04的第一端口041正对第一波导结构70的第一端口701,则第一反射结构04的第一端口041在第一基底10上的正投影,与第一波导结构70的第一端口701在第一基底10上的正投影至少部分重叠或完全重叠;第二反射结构05也可以采用波导结构,第二反射结构05的波导腔体具有第一端口051和第二端口052,第二反射结构05的第一端口051正对第二波导结构80的第一端口801,则第二反射结构05的第一端口051在第二基底20上的正投影,与第二波导结构80的第一端口801在第二基底20上的正投影至少部分重叠或完全重叠。
在一些示例中,参见图8,当在第一馈电区Q01设置与第一波导结构70相对设置的第一反射结构04时,例如:第一波导结构70设置在第一基底10背离介质层30的表面上时,第一反射结构04设置在第二基底20背离介质层30的表面上,此时在第一基底10上形成有位于第一馈电区Q01的第一内凹部101,第二基底20上还形成有位于第一馈电区Q01的第三内凹部103,且第三内凹部103与第一内凹部101的排布方式相同;第一波导结构70的第一端口701的底面将第一内凹部101覆盖,第一反射结构04的第一端口041的底面(第一反射结构04侧壁的底面)将第三内凹部103覆盖。另外,在第一内凹部101和第三内凹部103内均填充金属导电结构105。相应的,当在第二馈电区Q02设置与第二波导结构80相对设置的第二反射结构05时,例如:第二波导结构80设置在第二基底20背离介质层30的表面上时,第 二反射结构05设置在第一基底10背离介质层的表面上,此时在第二基底20上形成有位于第二馈电区Q02的第二内凹部102,第一基底10上还形成有位于第一馈电区Q01的第四内凹部104,且第四内凹部104与第二内凹部102的排布方式相同;第二波导结构80的第一端口701的底面将第二内凹部102覆盖,第二反射结构05的第一端口051的底面(第二反射结构05侧壁的底面)将第四内凹部104覆盖。另外,在第二内凹部102和第四内凹部104内均填充金属导电结构105。
也就是说,不仅在对应设置第一波导结构70的第一基底10上形成第一内凹部101,对应设置第二波导结构80的第二基底20上形成第二内凹部102,而且还在对应设置第一反射结构04的第二基底20上形成第三内凹部103,以及还在对应设置第二反射结构05的第一基底10上形成第四内凹部104,且第一内凹部101、第二内凹部102、第三内凹部103、第四内凹部104内均填充在导电结构105,在该种情况下,当经由第一波导结构70的第二端口702馈入的微波信号通过第一内凹部101和其中的导电结构105耦合至第一馈电结构50,其中向上传输的微波信号经由第一反射结构04的反射作用,通过第三内凹部103和其中的导电结构105耦合至第一馈电结构50,之后通过传输线传输至第二馈电结构60,第二馈电结构60通过第二内凹部102和其中导电结构105耦合至第二波导结构80馈出,向下传输的微波信号在第二反射结构05的反射作用下,经由第四内凹部104和其中的导电结构105耦合至第二馈电结构60,再次通过第二内凹部102和其中导电结构105耦合至第二波导结构80馈出。在该过程中,可以看出的是大大降低了微波信号能量的损失。
参照图9,当第一波导结构70和第二波导结构80位于同一侧时,第一反射结构04和第二反射结构05也位于同一侧,此时也可以按照上述的方式在设置第一反射结构04的第一基底10上形成第三内凹部103,在设置第二反射结构05的第一基底10上设置第四内凹部104。对于该种结构与上述结 构基本相同,原理相似,故在此不再重复赘述。
为了更清楚本公开实施例中的各内凹部的具体结构,以图8所示的移相器中所形成第一内凹部101、第二内凹部102、第三内凹部103、第四内凹部104,以及导电结构105的具体方式进行说明。其中,以第一内凹部101、第二内凹部102、第三内凹部103、第四内凹部104均为盲孔为例,通常盲孔的尺寸0.05mm-1mm,盲孔的中心间距小于十分之一波长,越小越好。当然可以将间距提高至八分之一至五分之一波长,由此会造成性能的略微恶化。盲孔的深度取决于设计,但小于玻璃厚度。第一基板10和第二基底20均可以采用玻璃基底(例如白玻璃)。在该种情况下,首先可以在第一基底10上形成对位标记,之后采用激光打孔、喷沙、机械打孔等方式来获得位于第一馈电区Q01的第一内凹部101和位于第二馈电区Q02的第四内凹部104。采用相同的方式,可以在第二基底20上形成位于第一馈电区Q01的第三内凹部103和位于第二馈电区Q02的第二内凹部102。
另外,对于每个内凹部中的导电结构105可以采通过电镀、蒸镀、磁控溅射等进行金属层制备,不要求金属完全填满盲孔,以覆盖满侧壁为好。但如果受工艺限制,无法将侧壁完全覆盖,相比于未采用该方式的结构,仍可以提升馈电效率。由于金属化盲孔的存在,位于第一馈电区,且形成同意玻璃基底上的盲孔可以等效为理想电壁,这样就使得单极子激励辐射的能量尽可能的背束缚在波导结构内,从而使得更多的能量被收集,提高转换效率。玻璃打盲孔的方式避免了通孔造成的液晶泄漏问题,易于获得高性能的馈电结构。通过仿真实验,对比形成有第一内凹部101、第二内凹部102、第三内凹部103、第四内凹部104,以及导电结构105的移相器,相比未设置第一内凹部101、第二内凹部102、第三内凹部103、第四内凹部104,以及导电结构105的移相器整个工作频段内的传输损耗都有一定的降低。在一些示例中,第一波导结构70和第二波导结构80可以采用中空的金属壁构成,具体地,第一波导结构70可以具有至少一个第一侧壁,至少一个第一侧壁相 连形成第一波导结构70的波导腔体,和/或,第二波导结构80具有至少一个第二侧壁,至少一个第二侧壁相连形成第二波导结构80的波导腔体。若第一波导结构70仅具有一个第一侧壁,则第一波导结构70为圆形波导结构,第一侧壁围出圆形的中空管道形成第一波导结构70的波导腔体。第一波导结构70还可以包括多个第一侧壁,形成多种形状的波导腔体,例如,参见图10,第一波导结构70可以包括四个第一侧壁70a~70d,第一侧壁70a与第一侧壁70b相对设置,第一侧壁70c与第一侧壁70d相对设置,四个第一侧壁70a~70d相连围处矩形波导腔体,则第一波导结构70为矩形波导。需要说明的是,在第一波导结构70的第二端口702处,可以包括一个底面70e,底面70e覆盖整个第二端口702,底面70e具有一个开孔0701,开孔0701与信号连接器01的一端相匹配,信号连接器01通过开孔0701插入第一波导结构70中,另一端连接外部信号线,以将信号输入第一波导结构70中。第二波导结构80的结构同第一波导结构70,若第二波导结构80仅具有一个第二侧壁,则第二波导结构80为圆形波导结构,若第二波导结构80包括多个第二侧壁,多个第二侧壁围出对应形状的第二波导结构80。以下皆以第一波导结构70、第二波导结构80为矩形波导为例进行说明,在此不做限定。
需要说明的是,第一波导结构70的第一侧壁的厚度可以为移相器传输的微波信号的趋肤深度的4~6倍;第二波导结构80的第二侧壁的厚度可以为移相器传输的微波信号的趋肤深度的4~6倍,在此不做限定。
在一些示例中,第一波导结构70和第二波导结构80可以通过金属块中的空腔形成,具体地,参见图11,若第一波导结构70、第二波导结构80设置在不同侧,移相器还可以包括第一金属层001和第二金属层002,第一金属层001设置在第一基底10背离介质层30一侧,第一金属层001中具有中空的第一腔体,第一腔体的形状如第一波导结构70的形状,限定出第一波导结构70,第一腔体贯穿整个第一金属层001,靠近第一基底10的开口作为第一波导结构70的第一端口701,连接第一基底10背离介质层30一侧, 第一腔体背离第一基底10的开口作为第一波导结构70的第二端口702,连接信号连接器01;同理,第二金属层002设置在第二基底20背离介质层30一侧,第二金属层002中具有中空的第二腔体,第二腔体的形状如第二波导结构80的形状,限定出第二波导结构80,第二腔体贯穿整个第二金属层002,靠近第二基底20的开口作为第二波导结构80的第一端口801,连接第二基底10背离介质层30一侧,第二腔体背离第二基底20的开口作为第二波导结构80的第二端口802,连接负载(例如天线)。若移相器中具有第一反射结构04和第二反射结构05,则在第二金属层002中还具有第三腔体,限定出第一反射结构04,第一金属层001中还具有第四腔体,限定出第二反射结构05。参见图12,若第一波导结构70和第二波导结构80形成在同一侧,移相器可以仅包括第二金属层002,第二金属层002设置在第二基底20背离介质层30一侧,第二金属层002中具有第一腔体和第二腔体,第一腔体的形状如第一波导结构70的形状,限定出第一波导结构70,第二腔体的形状如第二波导结构80的形状,限定出第二波导结构80,在这种方式中,第一腔体在第二基底20上的正投影,与第二腔体在第二基底20上的正投影无重叠,以保证第一波导结构70和第二波导结构80的波导腔体互相独立,互不影响。若移相器中具有第一反射结构04和第二反射结构05,则可以在第一基底10背离介质层30一侧设置第三金属层003,第三金属层003中具有第三腔体和第四腔体,第三腔体限定出第一反射结构04,第四腔体限定出第二反射结构05。由于第一反射结构04、第二反射结构05的长度小于第一波导结构70、第二波导结构80的长度,因此第一金属层003的厚度也小于第二金属层002的厚度。
在本公开实施例提供的移相器中,为了将CPW周期加载可变电容Cvra(V)结构用于相控阵天线,实现波束扫描的功能,因此要求每个移相器的相差可调范围必须大于360°,因此为了达到该值,在有限的面积内放置并合理排布移相器,则要求移相器的整体长度不宜过长,因此每个周期内可变电容 Cvra(V)的值必须足够的大,才能实现有限长内的相差。而若可变电容Cvra(V)变化值较大,则势必造成等效传输线的阻抗变化较大,则带来的很大问题是端口性能变差,从而使得传输损耗增大。
为了解决上述问题,参见图13、图14,在本公开实施例中移相器可划分为第一区域Q1,分设在第一区域Q1两侧的第二区域Q2和第三区域Q3(也即如图13所示,从左至右分为第二区域Q2、第一区域Q1、第三区域Q3);其中,位于第二区域Q2和第三区域Q3中的每个形成所可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积,均小于位于第一区域Q1的所形成可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积;且在第一区域Q1中仅具有一种交叠面积的可变电容Cvra(V)。
当第二区域Q2和第三区域Q3中的每个可变电容Cvra(V)的数量均为多个时,对于位于第一区域Q1同一侧的任意两个可变电容Cvra(V),靠近第一区域Q1的可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积,均大于或等于远离第一区域Q1的可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积。
在此需要说明的是,交叠面积是是指贴片电极21和分支结构112在第一基底10(或者第二基底20)上的正投影的交叠面积。
而且在本发明实施例中,对于位于第一区域Q1同一侧的任意两个可变电容Cvra(V),靠近第一区域Q1的可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积,均大于或等于远离第一区域Q1的可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积,也即,沿主体结构111的长度方向,所形成的周期可变电容Cvra(V)的电容值呈先增大后减小的趋势,可变电容Cvra(V)的电容值与阻抗值正相关,故沿主体结构111的长度方向,移相器的阻抗呈先增大后减小的趋势(如图15所示,沿主体结构111的长度方向阻抗向由Z0-Z3-Z2-Z1-Z2-Z3-Z0;其中,Z1>Z2>Z3>Z0),同时,可以理解的是,微波信号是由信号线11的主体结构111的两端引入的,这 样一来,可以尽可能避免由于每个可变电容Cvra(V)的电容值较大而造成微波信号经过周期可变电容Cvra(V)后发生反射,造成传输损耗较大的问题。
在一些实施例中,位于第一区域Q1中的可变电容Cvra(V)的数量仅为一个,也即在第一区域Q1中仅设置一个贴片电容和一个分支结构112,且二者在基底上的正投影至少部分重叠,形成一可变电容Cvra(V),该可变电容Cvra(V)的电容值,也即贴片电容和分支结构112的交叠面积应当满足微波信号经过第一区域Q1、第二区域Q2、第三区域Q3后可以实现不小于360°移相。
在一些实施例中,第二区域Q2中所形成的可变电容Cvra(V)的交叠面积均不相同,和/或第三区域Q3中所形成的可变电容Cvra(V)的交叠面积均不相同。优选的,沿靠近第一区域Q1的方向上,第二区域Q2和第三区域Q3中所形成的可变电容Cvra(V)的交叠面积呈单调递增,也就是说,沿靠近第一区域Q1的方向上,第二区域Q2和第三区域Q3中所形成的可变电容Cvra(V)的电容值均按照一定规律增大,这样一来,可以使得微波信号传输的更加平稳,尽可能的降低了传输损耗。
在一些实施例中,第二区域Q2和第三区域Q3中所形成的可变电容Cvra(V)的数量相同,且两个区域中所形成的可变电容Cvra(V)沿第一区域Q1对称设置,也即第二区域Q2和第三区域Q3中所形成的可变电容Cvra(V)的电容值(或者说交叠面积),沿靠近第一区域Q1的方向上,变化规律相同。这样一来,可以使得微波信号传输的更加平稳,尽可能的降低了传输损耗。
在一些实施例中,如图13、图14所示,为实现各个可变电容Cvra(V)的交叠面积不同,将各个分支结构112设置长度设置为相同,通过设置不同可变电容Cvra(V)中分支结构112的宽度,以实现位于第一区域Q1同一侧的任意两个可变电容Cvra(V),靠近第一区域Q1的可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积,均大于或等于远离第一区域Q1的可变电容Cvra(V)的贴片电极21和分支结构112的交叠面积。
在一些实施例中,各个可变电容Cvra(V)之间的间距相同。此时,可以将各个贴片电极21之间的间距d设置为相同间距,同时将各个分支结构112之间的间距也设置为相同间距。当然,也可以将各个可变电容Cvra(V)(或者说各个贴片电极21、各个分支结构112)之间的间距设计为按照一定规律单调增或者单调减;也可以将各个可变电容Cvra(V)(或者说各个贴片电极21、各个分支结构112)之间的间距设计为不同,且不具有一定的排布规律,在本发明实施例中对此不做限定。
若本公开实施例提供的CPW周期加载可变电容移相器制备应用到阵列天线,由于阵列天线之间的间距有要求,一般为0.5λ-0.6λ,λ为移相器的工作频率对应的微波信号的真空波长,为了满足该要求,每个辐射单元下的移相器的可布局面积仅为0.5*0.5λ,同时移相器需达到360°的移相角度,所以需要将CPW传输线进行一定的弯折排布。
在一些示例中,如图16所示,CPW传输线的信号线11具有至少一个弯折角,相应地,参考电极12(包括第一子参考电极121和第二子参考电极122)也具有至少一个弯折角,参考电极12的弯折角与信号线11的弯折角一一对应设置,即信号线11的一个弯折角处,参考电极12也沿该弯折角的弯折方向弯折。例如,如图16所示,信号线11具有两个弯折角,可分为三个部分,第一部分、第二部分沿第三方向延伸,第三部分设置在第一部分、第二部分之间,第三部分沿第四方向延伸,第三方向与第四方向可以近似垂直,第一部分、第三部分的连接处构成第一个弯折角,第二部分、第三部分的连接处构成第二个弯折角,第一部分、第二部分、第三部分相连使信号线11呈U型排布,则参考电极12也沿信号线11的排布方向呈U型排布。信号线11、参考电极12还可以呈环形、S型等结构排布,当为U型结构时,具有2个子拐角区;当为环形结构时,具有四个子拐角区;当为S型结构时,具有多个子拐角区,在此不做限定。
在一些示例中,第一波导结构70和/或第二波导结构80中可以具有填 充介质,以增大其整体的介电常数,从而第一波导结构70、第二波导结构80的尺寸可以减小。填充介质可以包括多种介质,例如填充介质可以为聚四氟乙烯。
在一些实施例中,第一基底10、第二基底20、第三基底03可以采用各类型的介质基板,例如可以采用厚度为100-1000微米的玻璃基板,也可采用蓝宝石衬底,还可以使用厚度为10-500微米的聚对苯二甲酸乙二酯基板、三聚氰酸三烯丙酯基板和聚酰亚胺透明柔性基板,还可以采用泡沫基板、印制电路板(Printed Circuit Board,PCB)等。
在一些实施例,贴片电极21、分支结构112、主体结构111、参考电极12、第一馈电结构50、第二馈电结构60、第一连接结构501、第二连接结构601的材料均可以采用铝、银、金、铬、钼、镍或铁等金属制成。
第二方面,本公开实施例提供一种天线,其中,天线包括至少一个上述移相器。在一些示例中,天线还可以包括至少一个辐射单元90,一个辐射单元90与一个移相器的第二波导结构80的第二端口802对应设置,也就是说,若天线作为发射天线,信号由第二馈电结构60耦合至第二波导结构80的第一端口801,再由第二波导结构80的第二端口802传输至与该第二波导结构80的第二端口802对应的辐射单元90;若天线作为接收天线,辐射单元90接收信号后,传输至与该辐射单元90对应的第二波导结构80的第二端口802,再由第二波导结构80的第一端口801耦合至第二馈电结构60。在本公开实施例提供的天线中,可以包括任意个辐射单元90,相应地,每个辐射单元90连接一个移相器,一个移相器调整一个辐射单元90的相位,从而在阵列天线中,调整多个辐射单元90的相位以控制波束的发射方向,形成相控阵天线。以下皆以1×3阵列排布的辐射单元90为例进行说明。
在一些示例中,其中,参见图17、图18,辐射单元90可以包括多种结构,例如,可以为波导结构,也可以为辐射贴片,以辐射单元90为波导结构为例,辐射单元90可以为第三波导结构,第三波导结构(辐射单元90) 包括靠近第二波导结构80的第一端口901,和远离第二波导结构80的第二端口902,第三波导结构的第一端口901和与该第三波导结构对应的第二波导结构80的第二端口802连接。第三波导结构90其中,
第三波导结构的第二端口的口径大于第一端口的口径,并且,第三波导结构(辐射单元90)可以为一喇叭天线,具体参见图17,第三波导结构相对远离第二波导结构80处的口径,不小于相对靠近第二波导结构处90的口径,也就是说,由第三波导结构的第一端口901指向第二端口902的方向,第三波导结构的口径逐渐增大,形成喇叭型腔体。在一些示例中,第三波导结构可以与第二波导结构一体成型,以简化工艺。
在一些示例中,参见图17,若第二波导结构80为矩形波导,即第二波导结构80包括四个第二侧壁,四个第二侧壁相连限定出第二波导结构80的波导腔体,第三波导结构的第一端口901和与该第三波导结构对应的第二波导结构80的第二端口802连接,第一波导结构的波导腔体为喇叭型,则第三波导结构包括一个第三侧壁,第三侧壁围出第三波导结构的波导腔体,且第三侧壁的延伸方向与第二基底20的延伸方向相交,由于第三波导结构的第一端口901和与该第三波导结构对应的第二波导结构80的第二端口802连接,因此由第二波导腔体80指向第三波导腔体(辐射单元90)的方向,第二波导结构80的波导腔体的形状逐渐向第三波导腔体的第一端口901的形状过渡,也就是说,第二波导结构80的矩形腔体,逐渐向第三波导腔体下端的圆形开口的形状过渡,由矩形过渡至圆形,形成一体的波导腔体,从而传输微波信号时,能够实现矩圆转换,下端的第二波导结构80的矩形波导腔体的传输损耗小,而逐渐过渡到上方的喇叭形第三波导结构80的波导腔体,实现圆极化的微波信号,也就是说,微波信号的极化面与大地法线面之间的夹角从0~360°周期的变化。在一些示例中,可以在第三波导腔体的内壁设置凸起的电极,以实现左旋圆极化或右旋圆极化的天线。
在一些示例中,继续参见图18,若天线包括多个辐射单元90和多个移 相器,且一个辐射单元90与一个移相器的第一波导结构的第二端口702对应设置,每个移相器均具有一个第一波导结构70,多个移相器的第一波导结构70相连形成波导功分网络100,波导功分网络具有一个主端口100a和多个子端口100b,
波导功分网络100的主端口100a连接外部信号线,例如,主端口100a可以连接信号连接器01。主端口100a接收到外部信号线传输的信号,再将信号分为多个子信号,每个子信号通过一个子端口100b输出。具体地,波导功分网络100可以具有一个主波导结构1001,主波导结构1001沿平行(或近似平行)于第一基底10的方向延伸,主端口100a可以设置在主波导结构1001的延伸方向上的长度的中点处,多个第一波导结构70可以沿垂直(或近似垂直)与第一基底10的方向延伸,且多个第一波导结构70的第二端口702连接在主波导结构1001上,每个第一波导结构70的第一端口701作为波导功分网络的一个子端口100b,主端口100a接收信号后功分为多个子信号,每个子信号进入一个第一波导结构70,通过第一波导结构70的第一端口701耦合至该第一波导结构70对应的第一馈电结构50。
在一些示例中,与上述同理,参见图19,多个移相器的第一波导结构70、第二波导结构80,以及多个为第三波导结构的辐射单元90均可通过金属块中的空腔形成,以第一波导结构70与第二波导结构80设置在不同侧为例,天线可以包括包括第一金属层001和第二金属层002,第一金属层001设置在第一基底10背离介质层30一侧,第一金属层001中具有中空的多个第一腔体,多个第一腔体的形状如第一波导结构70的形状,限定出多个移相器的第一波导结构70,且多个第一腔体相连形成限定出波导功分网络;同理,第二金属层002设置在第二基底20背离介质层30一侧,第二金属层002中具有中空的多个第二腔体和多个第五腔体,多个第二腔体的形状如第二波导结构80的形状,限定出多个移相器的第二波导结构80,多个第五腔体的形状如第三波导结构的形状,限定出为第三波导结构的多个辐射单元90。在 一些示例中,第二波导结构80和第三波导结构可以一体成型,通过一次工艺在第二金属层002中形成相连的第二波导结构80和第三波导结构。若天线的移相器中具有第一反射结构04和第二反射结构05,则在第二金属层002中还具有第三腔体,限定出第一反射结构04,第一金属层001中还具有第四腔体,限定出第二反射结构05。若第一波导结构70和第二波导结构80设置在同一侧,则与上述同理,天线可以仅包括第二金属层002,第二金属层002设置在第二基底20背离介质层30一侧,第二金属层002中具有多个第一腔体、多个第二腔体、多个第五腔体,多个第一腔体的形状如第一波导结构70的形状,限定出第一波导结构70,且多个第一腔体相连形成限定出波导功分网络,多个第二腔体的形状如第二波导结构80的形状,限定出第二波导结构80,多个第五腔体如第三波导结构的形状,限定出辐射单元90。在这种方式中,多个第一腔体在第二基底20上的正投影,与多个第二腔体在第二基底20上的正投影无重叠,多个第一腔体与多个第五腔体在第二基底20上的正投影也不重叠,以保证第一波导结构70和第二波导结构80(以及第三波导结构)的波导腔体互相独立,互不影响。若移相器中具有第一反射结构04和第二反射结构05,则可以在第一基底10背离介质层30一侧设置第三金属层003,第三金属层003中具有第三腔体和第四腔体,第三腔体限定出第一反射结构04,第四腔体限定出第二反射结构05。由于第一反射结构04、第二反射结构05的长度小于第一波导结构70、第二波导结构80的长度,因此第一金属层003的厚度也小于第二金属层002的厚度。
在一些示例中,参见图20、图21,若移相器中的第一波导结构70和第二波导结构80、为第三波导结构的辐射单元90采用金属壁构成的中空管道形成,也即由至少一个侧壁相连形成,且第一波导结构70、第二波导结构80设置在同一侧,则多个第一波导结构70通过主波导结构1001相连,形成波导功分网络100,波导功分网络100的主波导结构1001上具有一开口,作为主端口100a,信号连接器01通过主端口100a插入波导功分网络100,向 波导功分网络100输入信号。波导功分网络100设置在第二基底20背离介质层30一侧,多个辐射单元90与对应的第二波导结构80相连,也设置在第二基底20背离介质层30一侧,参见图21,波导功分网络100在第二基底20上的正投影,与多个第二波导结构80以及多个辐射单元90在第二基底20上的正投影无重叠,以保证波导功分网络100与多个第二波导结构80以及多个辐射单元90互相独立,互不影响。需要说明的是,图20、21中波导功分网络的排布方式仅为一个示例,波导功分网络可以沿各方向排布在第二基底20上,只要与多个第二波导结构80以及多个辐射单元90互相独立即可,在此不做限定。
在一些示例中,参见图22、图23,与上述同理,本公开实施例提供的天线还可以包括第三基板,第三基板连接多个第一波导结构70的第二端口702。第三基板包括第三基底03和馈电传输线02,第三基底03连接在多个第一波导结构70的第二端口702,馈电传输线02设置在第三基底03靠近第一波导结构70一侧,其中,参见图21,馈电传输线02排布为一个功分馈电结构,具有一个主线段和多个子线段,主线段在长度方向上中点处为主端口100a,主线端延伸至第三基底03的边缘以连接外部信号线,具体地,信号连接器01可以设置在第三基底03的边缘,一端与馈电传输线02构成的功分馈电结构的主端口100a连接,另一端连接外部信号线,向功分馈电结构输入信号。馈电传输线02构成的功分馈电结构的多个子线段的第一端连接在主线段上,子线段的第二端作为子端口100b延伸至一个第一波导结构70的第二端口702处,以将子信号馈入第一波导结构70的波导腔体中。具体地,每条子线段的第二端可以延伸至其要馈信号的第一波导结构70的第二端口702内,也就是说,子线段的第二端在第一基底10上的正投影,位于第一波导结构70的第二端口702在第一基底10上的正投影中。
在一些示例中,参见图24、图25,其中,图25中的虚线框表示第二波导结构80的第二端口802在第四基板40上的正投影的位置,本公开实施例 提供的天线中,至少一个辐射单元90也可以采用辐射贴片,则天线还可以包括第四基板40。天线中一个移相器的第二波导结构80的第二端口802对应一个辐射单元90,即一个移相器的第二波导结构80向一个为辐射贴片的辐射单元90输出信号(或接收辐射单元90传输的信号),至少一个移相器的第二波导结构80的第二端口802连接第四基板40,辐射贴片可以设置在第四基板40背离第二波导结构80的第二端口802的一侧,第二波导结构80通过口径耦合的方式向辐射单元90馈电,即为辐射贴片的辐射单元90在第四基板40上的正投影,和与该辐射贴片对应的第二波导结构80的第二端口802在第四基板上的正投影至少部分重叠,从而第二波导结构80的第二端口802处输出的微波信号能够通过第四基板40后,耦合向与第二波导结构80的第二端口802重叠设置的辐射单元90辐射单元90再将信号辐射出去,或辐射单元90接收信号后,通过第四基板90耦合至与该辐射单元90重叠设置的第二波导结构80的第二端口802。在一些示例中,辐射贴片的辐射单元90在第四基板40上的正投影可以覆盖第二波导结构80的第二端口802在第四基板40上的正投影。在一些示例中,若辐射单元90的形状为中心对称图形,第二波导结构80的第二端口802的形状为中线对称图形,则辐射单元90的对称中心在第四基板40上的正投影,与第二波导结构80的第二端口802的对称中心在第四基板40上的正投影之间的距离不大于第三预设值,第三预设值应当尽可能小,例如小于0.1厘米,若第三预设值为0,则辐射单元90与第二波导结构80的第二端口802完全正对设置,二者的对称中心重合。
在一些示例中,第四基板40可以为各种类型的介质基板,例如可以采用厚度为100-1000微米的玻璃基板,也可采用蓝宝石衬底,还可以使用厚度为10-500微米的聚对苯二甲酸乙二酯基板、三聚氰酸三烯丙酯基板和聚酰亚胺透明柔性基板,还可以采用泡沫基板、印制电路板(Printed Circuit Board,PCB)等
参见图26、图27,图26、图27为以图18所示的天线为例进行仿真的仿真结果图示,其中,图26为天线的介电常数与传输损耗的曲线图,图27为天线的介电常数与相位差的曲线图。由上图可知,本公开实施例提供的天线在各个介电常数下,传输损耗的波动仅为1.8,且能够保持移相度,从而可知采用波导结构(包括第一波导结构70和第二波导结构80)与馈电结构(包括第一馈电结构50和第二馈电结构60)进行信号传输的方式能够有效减少传输损耗。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (24)

  1. 一种移相器,其划分为第一馈电区、第二馈电区,以及移相区;所述移相器包括:相对设置的第一基板和第二基板,以及设置在所述第一基板和所述第二基板之间的介质层;
    所述第一基板包括:第一基底,设置在所述第一基底靠近所述介质层一侧的信号线和参考电极;且所述信号线和所述参考电极位于所述移相区;所述信号线包括:主体结构和连接在所述主体结构上的至少一个分支结构,至少一个所述分支结构沿所述主体结构的延伸方向设置;
    所述第二基板包括:第二基底,设置在所述第二基底靠近所述介质层一侧的至少一个贴片电极;所述贴片电极位于所述移相区;至少一个所述贴片电极与至少一个所述分支结构对应设置,形成至少一个可变电容;至少一个所述贴片电极与至少一个所述分支结构在所述第一基底上的正投影至少部分重叠;
    其中,所述移相器还包括:
    第一馈电结构和第二馈电结构,所述第一馈电结构与所述信号线的一端电连接,所述第二馈电结构与所述信号线的另一端电连接;所述第一馈电结构位于所述第一馈电区;所述第二馈电结构位于所述第二馈电区;
    在所述第一基底和/或所述第二基底上形成有内凹部;所述内凹部位于所述第一馈电区的边缘和/或位于所述第二馈电区的边缘,且任一所述内凹部中填充有导电结构。
  2. 根据权利要求1所述的移相器,其中,所述移相器还包括位于第一馈电区的第一波导结构;所述内凹部包括位于第一馈电区的第一内凹部;第一馈电结构在所述第一基底上的正投影,与所述第一波导结构的第一端口在所述第一基底上的正投影至少部分重叠;
    当所述第一波导结构的第一端口连接在所述第一基底背离所述介质层的表面时,所述第一内凹部形成在所述第一基底上,且所述第一波导结构的 侧壁覆盖所述第一内凹部的开口;
    当所述第一波导结构的第一端口连接在所述第二基底背离所述介质层的一侧时,所述第一内凹部形成在所述第二基底上,且所述第一波导结构的侧壁覆盖所述第一内凹部的开口。
  3. 根据权利要求2所述的移相器,其中,所述移相器还包括位于所述第二馈电区的第二波导结构,所述内凹部还包括位于第二馈电区的第二内凹部;所述第二馈电结构在所述第一基底上的正投影,与所述第二波导结构的第一端口在所述第一基底上的正投影至少部分重叠;
    当所述第二波导结构连接在所述第一基底背离所述介质层的表面上时,所述第二内凹部形成在所述第一基底上,且所述第二波导结构的侧壁覆盖所述第一内凹部的开口;
    当所述第二波导结构的第一端口连接在所述第二基底背离所述介质层的一侧时,所述第二内凹部形成在所述第二基底上,且所述第二波导结构的侧壁覆盖所述第二内凹部的开口。
  4. 根据权利要求3所述的移相器,其中,所述第一馈电结构在所述第一基底上的正投影,位于所述第一波导结构的第一端口在所述第一基底上的正投影中;和/或,所述第二馈电结构在所述第一基底上的正投影,位于所述第二波导结构的第一端口在所述第一基底上的正投影中。
  5. 根据权利要求3所述的移相器,其中,所述第一波导结构设置在所述第一基底背离所述介质层一侧,所述第二波导结构设置在所述第二基底背离所述介质层一侧;
    或,所述第一波导结构和所述第二波导结构均设置在所述第二基底背离所述介质层一侧,且所述第一波导结构在所述第二基底上的正投影,与所述第二波导结构在所述第二基底上的正投影无重叠。
  6. 根据权利要求3所述的移相器,其中,所述移相器还包括:第一反射结构和第二反射结构;
    所述第一反射结构设置在所述第一馈电结构背离所述第一波导结构一侧,所述第一反射结构在所述第一基底上的正投影,与所述第一波导结构的第一端口在所述第一基底上的正投影至少部分重叠,且与所述第一馈电结构在所述第一基底上的正投影至少部分重叠,所述第一反射结构用于将所述第一馈电结构朝向背离所述第一波导结构一侧辐射的微波信号反射回所述第一波导结构中;
    所述第二反射结构设置在所述第二馈电结构背离所述第二波导结构一侧,所述第二反射结构在所述第二基底上的正投影,与所述第二波导结构的第一端口在所述第二基底上的正投影至少部分重叠,且与所述第二馈电结构在所述第二基底上的正投影至少部分重叠,所述第二反射结构用于将所述第二馈电结构朝向背离所述第二波导结构一侧辐射的微波信号反射回所述第二波导结构中。
  7. 根据权利要求6所述的移相器,其中,所述第一反射结构为波导结构,且所述第一反射结构的第一端口在所述第一基底上的正投影,与所述第一波导结构的第一端口在所述第一基底上的正投影至少部分重叠;
    所述第二反射结构为波导结构,且所述第二反射结构的第一端口在所述第二基底上的正投影,与所述第二波导结构的第一端口在所述第二基底上的正投影至少部分重叠。
  8. 根据权利要求7所述的移相器,其中,所述内凹部还包括位于所述第一馈电区的第三内凹部;
    当所述第一反射结构的第一端口连接在所述第一基底背离所述介质层的表面时,所述第三内凹部形成在所述第一基底上,且所述第一反射结构的侧壁的覆盖所述第三内凹部的开口;
    当所述第一反射结构的第一端口连接在所述第二基底背离所述介质层的表面时,所述第三内凹部形成在所述第二基底上,且所述第一反射结构的侧壁的覆盖所述第三内凹部的开口。
  9. 根据权利要求7所述的移相器,其中,所述内凹部还包括位于所述第二馈电区的第四内凹部;
    当所述第二反射结构的第一端口连接在所述第一基底背离所述介质层的表面时,所述第四内凹部形成在所述第一基底上,且所述第二反射结构的侧壁的覆盖所述第四内凹部的开口;
    当所述第二反射结构的第一端口连接在所述第二基底背离所述介质层的表面时,所述第四内凹部形成在所述第二基底上,且所述第二反射结构的侧壁的覆盖所述第四内凹部的开口。
  10. 根据权利要求1-9中任一项所述的移相器,其中,当所述内凹部位于所述第一馈电区,且形成在所述第一基底上时,所述内凹部为多个,且呈环形排布;当所述内凹部位于所述第一馈电区,且形成在所述第二基底上时,所述内凹部为多个,且呈环形排布;
    当所述内凹部位于所述第二馈电区,且形成在所述第一基底上时,所述内凹部为多个,且呈环形排布;
    当所述内凹部位于所述第二馈电区,且形成在所述第二基底上时,所述内凹部为多个,且呈环形排布。
  11. 根据权利要求3所述的移相器,其中,所述第一波导结构具有至少一个第一侧壁,所述至少一个第一侧壁相连形成所述第一波导结构的波导腔体;
    和/或,所述第二波导结构具有至少一个第二侧壁,所述至少一个第二侧壁相连形成所述第二波导结构的波导腔体。
  12. 根据权利要求3任一所述的移相器,其中,所述移相器还包括第一金属层和第二金属层;所述第一金属层设置在所述第一基底背离所述介质层一侧,所述第一金属层中具有第一腔体,所述第一腔体限定出所述第一波导结构;所述第二金属层设置在所述第二基底背离所述介质层一侧,所述第二金属层中具有第二腔体,所述第二腔体限定出所述第二波导结构;
    或者,所述移相器还包括第二金属层,设置在所述第二基底背离所述介质层一侧;所述第二金属层中具有第一腔体和第二腔体,所述第一腔体限定出所述第一波导结构,所述第二腔体限定出所述第二波导结构;且所述第一腔体在所述第二基底上的正投影,与所述第二腔体在所述第二基底上的正投影无重叠。
  13. 根据权利要求2所述的移相器,其中,所述移相器还包括:第三基板,连接所述第一波导结构的第二端口;所述第三基板包括第三基底,和设置在所述第三基底靠近所述第一波导结构一侧的馈电传输线;其中,
    所述馈电传输线的第一端连接外部信号线,其第二端延伸至所述第一波导结构的第二端口以将信号馈入所述第一波导结构中。
  14. 根据权利要求2任一所述的移相器,其中,所述信号线在所述第一基底上的正投影,与所述第一波导结构的第一端口以及所述第二波导结构的第一端口在所述第一基底上的正投影均无重叠。
  15. 根据权利要求1所述的移相器,其中,所述第一馈电结构为单极子电极,其与所述信号线同层设置且材料相同;和/或,所述第二馈电结构为单极子电极,其与所述信号线同层设置且材料相同。
  16. 根据权利要求1-15任一所述的移相器,其中,所述信号线具有至少一个弯折角,所述参考电极具有至少一个弯折角,所述参考电极的弯折角与所述信号线的弯折角一一对应设置。
  17. 根据权利要求1-15任一所述的移相器,其中,所述参考电极包括:第一子参考电极和第二子参考电极;所述信号线设置于所述第一子参考电极和所述第二子参考电极之间;每一所述贴片电极与所述参考电极的所述第一子参考电极和所述第二子参考电极在所述第一基底上的正投影至少部分重叠。
  18. 根据权利要求3-17任一所述的移相器,其中,所述第一波导结构和/或第二波导结构中具有填充介质,所述填充介质为聚四氟乙烯。
  19. 一种天线,其中,包括至少一个权利要求1-18任一所述的移相器。
  20. 根据权利要求19所述的天线,其中,所述移相器还包括:与第二馈电结构对应设置的第二波导结构;所述天线还包括:
    至少一个辐射单元,且一个所述辐射单元与一个所述移相器的第二波导结构的第二端口对应设置。
  21. 根据权利要求20所述的天线,其中,所述辐射单元为第三波导结构,其包括靠近所述第二波导结构的第一端口,和远离所述第二波导结构的第二端口,所述第三波导结构的第一端口和与之对应的所述第二波导结构的第二端口连接;其中,
    所述第三波导结构的第二端口的口径大于第一端口的口径,并且,所述第三波导结构相对远离所述第二波导结构处的口径,不小于相对靠近所述第二波导结构处的口径。
  22. 根据权利要求21所述的天线,其中,所述第二波导结构包括四个第二侧壁,所述四个第二侧壁相连限定出所述第二波导结构的波导腔体;
    所述第三波导结构包括一个第三侧壁,所述第三侧壁围出所述第三波导结构的波导腔体;其中,
    由所述第二波导腔体指向所述第三波导腔体的方向,所述第二波导结构的波导腔体的形状逐渐向所述第三波导腔体的第一端口的形状过渡。
  23. 根据权利要求20所述的天线,其中,所述辐射单元为辐射贴片;所述天线还包括第四基板,至少一个所述移相器的第二波导结构的第二端口连接所述第四基板,所述辐射贴片设置在所述第四基板背离所述第二波导结构一侧;
    所述辐射贴片在所述第四基板上的正投影,和与之对应的所述第二波导结构的第二端口在所述第四基板上的正投影至少部分重叠。
  24. 根据权利要求20-23任一所述的天线,其中,所述移相器还包括:与第一馈电结构对应设置的第一波导结构;所述天线包括多个辐射单元和多 个移相器,且一个辐射单元与一个所述移相器的第二波导结构的第二端口对应设置;
    多个所述移相器的第一波导结构相连形成波导功分网络,所述波导功分网络具有一个主端口和多个子端口,所述波导功分网络的主端口连接外部信号线,每个所述第一波导结构的第一端口作为所述波导功分网络的一个子端口。
PCT/CN2021/078045 2021-02-26 2021-02-26 移相器及天线 WO2022178805A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/078045 WO2022178805A1 (zh) 2021-02-26 2021-02-26 移相器及天线
US17/622,088 US11984633B2 (en) 2021-02-26 2021-02-26 Phase shifter and antenna
CN202180000318.8A CN115250641A (zh) 2021-02-26 2021-02-26 移相器及天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/078045 WO2022178805A1 (zh) 2021-02-26 2021-02-26 移相器及天线

Publications (1)

Publication Number Publication Date
WO2022178805A1 true WO2022178805A1 (zh) 2022-09-01

Family

ID=83047604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078045 WO2022178805A1 (zh) 2021-02-26 2021-02-26 移相器及天线

Country Status (3)

Country Link
US (1) US11984633B2 (zh)
CN (1) CN115250641A (zh)
WO (1) WO2022178805A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024098275A1 (zh) * 2022-11-09 2024-05-16 京东方科技集团股份有限公司 移相器、移相器阵列、天线阵列及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108563050A (zh) * 2018-05-31 2018-09-21 成都天马微电子有限公司 液晶移相器和天线
US20190363452A1 (en) * 2018-05-28 2019-11-28 Beijing Boe Optoelectronics Technology Co., Ltd. Antenna and method of manufacturing the same, display panel
US20200381824A1 (en) * 2019-05-29 2020-12-03 Hon Hai Precision Industry Co., Ltd. Antenna array and liquid crystal display using the same
CN112271420A (zh) * 2020-11-03 2021-01-26 深圳市深大唯同科技有限公司 微带移相器
CN112397893A (zh) * 2019-08-14 2021-02-23 京东方科技集团股份有限公司 馈电结构、微波射频器件及天线

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043590A1 (ja) * 2005-10-11 2007-04-19 Matsushita Electric Industrial Co., Ltd. フェーズドアレイアンテナ
US9742077B2 (en) * 2011-03-15 2017-08-22 Intel Corporation Mm-wave phased array antenna with beam tilting radiation pattern
EP2768072A1 (en) * 2013-02-15 2014-08-20 Technische Universität Darmstadt Phase shifting device
CN105977583B (zh) * 2016-06-28 2019-07-19 华为技术有限公司 一种移相器及馈电网络
CN110192306B (zh) * 2017-01-13 2021-02-05 夏普株式会社 扫描天线和扫描天线的制造方法
WO2019054063A1 (ja) * 2017-09-14 2019-03-21 株式会社村田製作所 アンテナモジュールおよび通信装置
CN107706502A (zh) * 2017-09-29 2018-02-16 京东方科技集团股份有限公司 天线单元及其制造方法、液晶天线、通信设备
CN108803096B (zh) * 2018-06-27 2020-06-26 成都天马微电子有限公司 一种液晶移相单元及其制作方法、液晶移相器及天线
JP7169914B2 (ja) * 2019-03-15 2022-11-11 株式会社ジャパンディスプレイ アンテナ装置及びフェーズドアレイアンテナ装置
CN111864317B (zh) * 2020-06-23 2022-03-01 京东方科技集团股份有限公司 移相器及天线
CN113871818B (zh) * 2020-06-30 2022-07-26 上海天马微电子有限公司 移相器及其制作方法、天线及其制作方法
CN114156641B (zh) * 2020-09-08 2024-04-19 京东方科技集团股份有限公司 天线及其制作方法、天线装置及其制作方法
EP4131637A4 (en) * 2021-01-08 2023-06-07 BOE Technology Group Co., Ltd. PHASE SHIFTER AND ANTENNA

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190363452A1 (en) * 2018-05-28 2019-11-28 Beijing Boe Optoelectronics Technology Co., Ltd. Antenna and method of manufacturing the same, display panel
CN108563050A (zh) * 2018-05-31 2018-09-21 成都天马微电子有限公司 液晶移相器和天线
US20200381824A1 (en) * 2019-05-29 2020-12-03 Hon Hai Precision Industry Co., Ltd. Antenna array and liquid crystal display using the same
CN112397893A (zh) * 2019-08-14 2021-02-23 京东方科技集团股份有限公司 馈电结构、微波射频器件及天线
CN112271420A (zh) * 2020-11-03 2021-01-26 深圳市深大唯同科技有限公司 微带移相器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024098275A1 (zh) * 2022-11-09 2024-05-16 京东方科技集团股份有限公司 移相器、移相器阵列、天线阵列及电子设备

Also Published As

Publication number Publication date
CN115250641A (zh) 2022-10-28
US11984633B2 (en) 2024-05-14
US20230155266A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
CN113169457B (zh) 脊间隙波导以及包括其的多层天线阵列
WO2022110013A1 (zh) 移相器及天线
US5406292A (en) Crossed-slot antenna having infinite balun feed means
JPH0677723A (ja) 連続横断スタブ素子装置およびその製造方法
JP2000261235A (ja) トリプレート線路給電型マイクロストリップアンテナ
CN108258401A (zh) 一种基于sicl谐振腔缝隙的非对称双极化天线装置
JP2001320229A (ja) 誘電体漏れ波アンテナ
JP2001320228A (ja) 誘電体漏れ波アンテナ
WO2021189238A1 (zh) 移相器及天线
WO2022147747A1 (zh) 移相器及天线
US7839349B1 (en) Tunable substrate phase scanned reflector antenna
CN113889757B (zh) 一种基于液晶的多重极化可重构贴片天线
Sbarra et al. A novel Rotman lens in SIW technology
CN109149117A (zh) 一种复合左右手漏波天线
WO2022178805A1 (zh) 移相器及天线
CN103594807B (zh) 薄基片幅度校正宽带差波束平面喇叭天线
WO2022111170A1 (zh) 天线及其制作、驱动方法、天线系统
WO2023070350A1 (zh) 一种天线
CN103594816A (zh) 薄基片相位校正槽线平面喇叭天线
Ye et al. High-gain dual-circularly polarized leaky-wave antenna for point-to-point communications
CN113471680A (zh) 一种基于多层平行板波导的宽带线源
CN103606752B (zh) 薄基片相位校正宽带差波束平面喇叭天线
CN103594806A (zh) 薄基片幅度校正槽线平面喇叭天线
WO2023184138A1 (zh) 天线及电子设备
US20240222869A1 (en) Antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04.01.2024)