WO2007043590A1 - フェーズドアレイアンテナ - Google Patents

フェーズドアレイアンテナ Download PDF

Info

Publication number
WO2007043590A1
WO2007043590A1 PCT/JP2006/320344 JP2006320344W WO2007043590A1 WO 2007043590 A1 WO2007043590 A1 WO 2007043590A1 JP 2006320344 W JP2006320344 W JP 2006320344W WO 2007043590 A1 WO2007043590 A1 WO 2007043590A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable
line
layer
dielectric constant
phased array
Prior art date
Application number
PCT/JP2006/320344
Other languages
English (en)
French (fr)
Inventor
Hideki Kirino
Kouichi Hiranaka
Takeshi Hatakeyama
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005296863A external-priority patent/JP2007110256A/ja
Priority claimed from JP2006117262A external-priority patent/JP2007295044A/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US12/090,024 priority Critical patent/US20090278744A1/en
Publication of WO2007043590A1 publication Critical patent/WO2007043590A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • H01Q21/0093Monolithic arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means

Definitions

  • the present invention relates to a phased array antenna.
  • the present invention relates to a technology that makes it possible to realize an antenna that can maintain a high directivity gain.
  • variable phase shifter configured using a variable dielectric constant dielectric whose dielectric constant changes depending on an applied electric field
  • the variable phase shifter is divided into two for right side tilt and left side tilt.
  • variable phase shifter region has a two-layer microstrip line structure, and a variable dielectric constant dielectric is used as a supporting insulator for one layer, thereby forming a propagation characteristic variable line.
  • the line conductors are connected by through holes (see Embodiment 1 of Patent Document 1 and FIG. 1), or the line conductors of both layers are connected by electromagnetic coupling (Embodiment 2 of Patent Document 1). And see Fig. 2), applying a voltage between the variable transmission line conductor and the ground conductor By changing the propagation characteristics of the variable transmission line, the amount of phase shift of the variable phase shifter can be controlled.
  • FIG. 3 is a diagram showing an example of a dielectric constant change characteristic when a variable dielectric constant dielectric is applied with an electric field
  • FIG. 4 is a perspective view of a variable phase shifter using the variable dielectric constant dielectric.
  • a variable dielectric constant dielectric such as a ferroelectric has a property that the dielectric constant changes depending on an applied electric field, as shown in FIG.
  • a waveguide conductor is laminated on a waveguide insulator 402 on a waveguide ground conductor 401.
  • a hybrid cab 404 having input / output lines 403a and 403b is fabricated, and an open-ended line 405 having the same length is connected to a pair of isolation ports of the hybrid force bra 404.
  • a variable dielectric constant dielectric may be used only for the waveguide insulator 406 that forms the open-ended line.
  • the bias voltage applied between the waveguide conductor 405 and the waveguide ground conductor 401 on the variable dielectric constant dielectric 406 is the waveguide conductors 403 to 4 constituting the variable phase shifter 400. Since 05 is a continuous conductor that is connected in a direct current, it can be input from any position on the waveguide conductor.
  • the waveguide insulator in the region where the input / output line 403 and the hybrid force bra 404 are formed is a normal insulator whose dielectric constant does not change by the applied electric field. It functions as a propagation characteristic fixed line whose characteristics do not change.
  • variable phase shifter 400 configured as described above, a high-frequency signal input from one input / output line 403 a of the input / output line 403 is transmitted to two propagation characteristics variable line 405 via a hybrid force bra 404. Is output. Two propagation characteristics variable line Reflected by the open end of 405 The high-frequency signal is subjected to a propagation phase delay reflecting the applied noise voltage and re-input to the hybrid cabling 404, and the high-frequency signals passing through the hybrid force bra 404 are combined with each other in the other input / output line 403b. Is output.
  • variable phase shifter 400 Since the propagation characteristic variable line 405 is also DC connected to the input / output line 403 via the hybrid force bra 404, a plurality of variable phase shifters 400 are connected in series with each other. Even when used, applying the bias voltage to any position on the continuous waveguide conductor of multiple variable phase shifters connected to each other results in the same bias voltage being applied to all variable phase shifters. Thus, it is possible to realize a multistage variable phase shifter that is added at the same time and thus has a simple bias circuit configuration.
  • FIG. 5 shows the principle of a phased array antenna using the above-described variable phase shifter. The operation when this antenna is used for reception will be described below.
  • W1 to W4 represent the wavefronts of the incoming waves arriving at the antenna.
  • the signal component received by the antenna element 501 is not subjected to phase shift in space, and in the feed phase shifter 500, three variable phase shifters 505, 506, By passing 507, the phase shifts by ⁇ and reaches the feed terminal 509 with a total phase shift of 3 ⁇ .
  • the signal component received by the antenna element 502 undergoes a phase shift of ⁇ while propagating in the space from the position W1 to the position W2, and in the feed phase shifter 500, two variable phase shifts
  • the phase shifts by ⁇ reaches the power supply terminal 509 with a total phase shift of 3 ⁇ .
  • the signal component received by the antenna element 503 undergoes a phase shift of 2 ⁇ while propagating in the space from the position W1 to the position W3.
  • the feed phase shifter 500 one variable phase shift is performed. 508 Passing through, the phase shift of ⁇ is reached, and the power supply terminal 509 is reached with a total phase shift amount of 3 ⁇ .
  • the signal component received by antenna element 504 undergoes a phase shift of 3 ⁇ while propagating from W1 to W4 in the space.
  • the phase shifter does not pass through, so it does not undergo phase shift and reaches the power supply terminal 509 with a total phase shift amount of 3 ⁇ .
  • the above-described phased array antenna has a function of synthesizing incoming radio waves having the wavefront W1 in the same phase at the feeding terminal 509, and thus forms a main beam in the direction of arrival indicated by ⁇ in the figure. . That is, it operates as an antenna having directivity in the direction of arrival indicated by ⁇ .
  • phase shifters 505 to 508 in the power feeding phase shifter 500 are all variable phase shifters having the same characteristics, the same phase shift amount can be obtained for the same control voltage value. It has one main beam for any control voltage value. Furthermore, since the power feeding circuit unit 500 is composed of continuous conductors connected in a DC manner, the main beam direction can be changed by one bias voltage 510.
  • the main beam direction ⁇ depends on the phase shift amount ⁇ of the variable phase shifter and the antenna element spacing d.
  • variable phase shifter is divided into two groups for right side tilt and left side tilt while controlling the amount of phase shift independently of each other while having the above-described beam control principle.
  • Fig. 4 of Patent Document 1 shows an example of a system that suppresses variations in the power distributed to the antenna elements and variations in phase shift, and thus maintains a high directivity gain without breaking the sharp beam shape during beam tilt.
  • the phased array antenna shown will be explained using Fig. 6.
  • FIG. 6 is a self-arrangement diagram of the phased array antenna variable phase shifter disclosed in FIG. 4 of Patent Document 1.
  • FIG. 602 (602a to 602d) is a variable phase shifter group for right side tilt
  • 603 (603a to 603d) is a variable phase shifter group for left side tilt
  • 604 is bias voltage for right side tilt
  • 605 is left side
  • 606 (606a to 606d) is an antenna element
  • 607 is a high-frequency signal. Both are DC blocking elements for separating the right tilt bias voltage and the left tilt bias voltage.
  • 608 is a high frequency blocking element for applying a bias voltage to each variable phase shifter and blocking a high frequency signal. It is.
  • variable phase shifters are arranged asymmetrically in the left-right direction. In this configuration, however, the variable phase shifters are provided between the feed terminal and each antenna element. The number of phase shifters is different, and each variable phase shifter has dielectric loss, passing loss due to conductor loss, and reflection loss due to mismatching. It was difficult to obtain a symmetrical beam shape because the distributed power and phase shift varied.
  • variable phase shifter provided between the feeding terminal 601 and each of the antenna elements 606a to 606d is used. All routes are of the same type and number, and the variable phase shifters are placed symmetrically.
  • variable phase shifters For beam control, all the variable phase shifters are divided into two groups, a variable phase shifter for right side tilt and a variable phase shifter for left side tilt. Independent bias voltages 604 and 605 are used for control.
  • the wavefront W1 is the power supply terminal.
  • the total amount of phase shift received in space and in the power feeding phase shift unit 600 before reaching 601 is
  • FIG. 7 (a) is a plan view and a sectional view of a phased array antenna having a multilayer structure disclosed in Patent Document 2.
  • FIG. 7 (a) is a plan view and a sectional view of a phased array antenna having a multilayer structure disclosed in Patent Document 2.
  • FIG. 7 (a) the uppermost position in the figure is a plan view showing the antenna viewed from the radiation surface side.
  • the A-A line cross section and BB line cross section showing the state of the cross section when the antenna is cut along the A-A, B-B, and C-C lines in the plan view in order toward the bottom in the figure.
  • the figure shows a cross-sectional view along line CC.
  • the A-A cross-sectional view, the B-B cross-sectional view, and the CC line cross-sectional view are obtained by dividing the cross-sectional view of the active phased array antenna shown in FIG. This is a more detailed representation.
  • plan view in FIG. 7 (a) is an extraction of only the area of the broken line portion 609 in FIG. 6, and the display direction of the plan view is rotated 90 degrees clockwise in FIG. It is facing.
  • plan view includes patterns 704 and 705 included in the phase shifter 602 shown in FIG. 6, that is, corresponding to the noble-coupled coupler 404 and the propagation characteristic variable line 405 shown in FIG.
  • a pattern 706 corresponding to the DC blocking element 607 shown in FIG. 6 and a pattern 707 corresponding to the high frequency blocking element 608 shown in FIG. 6 are indicated by broken lines.
  • 708 is an antenna element
  • 709 is an input terminal
  • 710 is a bias terminal
  • 711 is a feed line pattern
  • 712 is a coupling window between the feed line pattern 711 and the antenna element 708.
  • the AA line cross-sectional view, BB line cross-sectional view, and CC line cross-sectional view in FIG. 7 (a) show the layer structure constituting the antenna and its member type (component). It is shown.
  • A-A cross-sectional view, B-B cross-sectional view, and C-C cross-sectional view It consists of a planar waveguide structure for constructing the antenna part, 713 is an insulator layer for supporting the antenna element, 714 is a conductor layer that becomes the antenna element, and 715 is necessary to construct a planar waveguide structure An insulating air layer 716 is a grounding conductor layer necessary for forming a planar waveguide structure.
  • reference numerals 716 to 719 form a planar waveguide structure for constituting the feeding phase shift section
  • 716 is a ground conductor layer necessary for constituting the planar waveguide structure, which is an antenna. Shared with Nabe.
  • 717 is an air layer for an insulator necessary for constructing a planar waveguide structure
  • 718 is a conductor layer in each pattern of the power feeding phase shift section
  • 719 is an insulator for supporting the pattern of the power feeding phase shift section.
  • the layer 720 is a variable dielectric constant dielectric for a propagation characteristic variable line.
  • the first inverted type (also called suspended type) microstrip structure for the antenna section becomes the ground conductor layer 716, air layer 717, conductor
  • a second inverted type microstrip structure for the feeding phase shift section is constituted by the four layers of the layer 718 and the insulator layer 719, respectively.
  • the antenna element 708 (714 in the A-A cross-sectional view) and the feed line pattern 711 (718 in the A-A cross-sectional view) include the antenna section and the feed phase shift. They are electromagnetically coupled to each other via a coupling window 712 (coupling window 721 in the A-A cross-sectional view) formed on the ground conductor layer 716 shared by the unit, and high-frequency power is transferred. It ’s a sea urchin.
  • the bias voltage is applied between the noisy terminal 710 fabricated on the conductor layer 718 and the ground conductor layer 716, whereby the high frequency blocking element pattern 707, the feed line pattern 711, and the hybrid are applied. It is applied to the propagation characteristic variable line 705 via the force bra pattern 704.
  • the direction force between the electric field (quasi-TEM mode) created by the high-frequency power propagating through the propagation characteristic variable line 705 and the electric field (TEM mode) created by the bias voltage are substantially parallel to each other.
  • FIG. 8A is a plan view and a cross-sectional view of a phased array antenna having a multilayer structure disclosed in Embodiment 1 of Patent Document 1.
  • Fig. 8 (a) the uppermost position in the figure is a plan view showing the antenna viewed from the radiation surface side. Below, the A-A line and B-
  • a cross-sectional view taken along the line A-A, a cross-sectional view taken along the line B-B, and a cross-sectional view taken along the line C-C are shown.
  • the A-A line cross-sectional view, the B-B line cross-sectional view, and the CC line cross-sectional view are based on the structure of the antenna portion of the active phased array antenna shown in FIG. Each area is divided into sections and shown in more detail.
  • the display area of the plan view in FIG. 8 (a) is the same as that in FIG. 7.
  • the plan view shows the pattern 804 of the hybrid force bra and the propagation characteristic variable line.
  • a pattern 805, a direct current blocking element pattern 806, and a high frequency blocking element pattern 807 are represented by broken lines.
  • 808 is an antenna element
  • 809 is an input terminal
  • 810 is a bias terminal
  • 811 is a feed line pattern
  • 812 is a coupling window between the feed line pattern 811 and the antenna element 8 08
  • 813 Represents through-holes that connect the feed line pattern 811 and the propagation characteristic variable line pattern 805.
  • the AA line cross-sectional view, the BB line cross-sectional view, and the CC line cross-sectional view in FIG. 8 (a) show the layer structure constituting the antenna and its constituent members.
  • 814 to 817 constitute a planar waveguide structure for constituting the antenna portion, and 814 denotes an antenna.
  • Insulator layer for supporting the element 815 is a conductor layer that becomes an antenna element, 816 is an air layer for an insulator necessary for constructing a planar waveguide structure, and 817 is for constructing a planar waveguide structure It is a grounding conductor layer necessary for this.
  • Reference numerals 819 to 821 form a planar waveguide structure for constructing a feeding phase shift section other than the propagation characteristic variable line.
  • Reference numeral 819 denotes each butter of the feeding phase shift section other than the propagation characteristic variable line.
  • 820 is a dielectric layer for an insulator necessary for constructing the planar waveguide structure, and 821 is a ground conductor layer necessary for constructing the planar waveguide structure.
  • 821 to 823 constitute a planar waveguide structure for constructing a variable propagation characteristic line
  • 821 is a ground conductor layer necessary for constructing the planar waveguide structure, which is a power supply Shared with the phase shift section.
  • Reference numeral 822 denotes a variable dielectric constant dielectric layer necessary for constructing a planar waveguide structure
  • reference numeral 823 denotes a conductor layer for producing a propagation characteristic variable line.
  • Reference numeral 818 denotes an air layer that is an intermediate layer that connects the planar waveguide structure of the antenna unit and the planar waveguide structure of the feeding phase shift unit to each other.
  • Insulator layer 814, conductor layer 815, air layer 816, ground conductor layer 817, the first inverted type (also known as suspended type) microstrip structural force conductor layer 819, dielectric layer for antenna parts 820 and ground conductor layer 821 are the second microstrip structural force for the power-feeding phase shifter other than the variable transmission line, and ground conductor layer 821, variable dielectric constant dielectric layer 822, and conductor layer 823 3
  • Each layer constitutes a third microstrip structure for the variable propagation characteristics line.
  • the antenna element 808 (815 in the A—A sectional view) and the feed line pattern 811 (819 in the A—A sectional view) are composed of the ground conductor layer of the antenna section.
  • the coupling window 812 (24 in the A—A cross-sectional view) formed on the 817, they are electromagnetically coupled to each other to transfer high-frequency power, and further to the feed line pattern 811 (819 in the AA cross-sectional view).
  • the propagation characteristic variable line pattern 805 (823 in the CC line sectional view) are coupled through a through hole 813 (825 in the BB sectional view).
  • the bias voltage is applied between the bias terminal 810 fabricated on the conductor layer 819 and the ground conductor layer 821, so that the high frequency blocking element pattern 807, the feed line pattern 811, and the hybrid force are applied. This is applied to the propagation characteristic variable line 805 via the bra pattern 804.
  • FIG. 9 (a) is a plan view and a sectional view of a phased array antenna having a multilayer structure disclosed in Embodiment 2 of Patent Document 1.
  • FIG. 9 (a) the uppermost position in the drawing is a plan view showing the antenna viewed from the radiation surface side.
  • the A-A line cross section and BB line cross section showing the state of the cross section when the antenna is cut along the A-A, B-B, and C-C lines in the plan view in order toward the bottom in the figure.
  • the figure shows a cross-sectional view along line CC.
  • the A-A line cross-sectional view, the BB line cross-sectional view, and the CC line cross-sectional view are obtained by adding the structure of the antenna unit to the structure of the phase shifter shown in FIG. It is shown in more detail by dividing into sections for each region.
  • the display area of the plan view is the same as that of FIG.
  • 906 is an antenna element
  • 907 is an input terminal
  • 908 is a bias terminal
  • 909 is a feed line pattern
  • 910 is a coupling window between the feed line pattern 909 and the antenna element 906,
  • 911 is a DC blocking element.
  • 912 is a coupling window for electromagnetically coupling the DC blocking element pattern 911 and the propagation characteristic variable line pattern 905 to each other
  • 913 is a pattern corresponding to the high frequency blocking element.
  • This region, together with the region of the hybrid force bra 904 is a propagation characteristic fixed line in which the propagation characteristic against high frequency does not change even when a bias voltage is applied.
  • 914 to 917 constitute a planar waveguide structure for constituting an antenna portion, and 914 is for supporting an antenna element.
  • 915 is a conductor layer for manufacturing an antenna element
  • 916 is an air layer for an insulator necessary for constructing a planar waveguide structure
  • 917 is a grounding necessary for constructing a planar waveguide structure It is a conductor layer.
  • 919 to 921 constitute a planar waveguide structure for configuring a feed phase shifter other than the propagation characteristic variable line
  • 919 represents each butter of the feed phase shifter other than the propagation characteristic variable line
  • 920 is a dielectric layer for an insulator necessary for constructing the planar waveguide structure
  • 921 is a ground conductor layer necessary for constructing the planar waveguide structure.
  • Sarako, 921 to 923 constitute a planar waveguide structure for constructing a variable propagation characteristic line
  • 921 is a grounding conductor layer necessary for constructing the planar waveguide structure. Is shared with the feeding phase shift section.
  • 922 is a variable dielectric constant dielectric layer necessary for constructing a planar waveguide structure
  • 923 is a conductor layer for producing a variable propagation characteristic line.
  • Reference numeral 918 denotes an air layer that is an intermediate layer that connects the planar waveguide structure of the antenna section and the planar waveguide structure of the feeding phase shift section.
  • Insulation layer 914, conductor layer 915, air layer 916, and ground conductor layer 917 are the first inverted type (also called suspended type) microstrip structure force for the antenna section.
  • Conductor layer 919, dielectric layer 920 and ground conductor layer 921 make it possible to provide a second microstrip structural force for the power supply phase shift section other than the variable transmission line.
  • ground conductor layer 921, variable dielectric constant dielectric layer 922, and conductor layer 923 3 The layer constitutes the third microstrip structure for the variable propagation characteristics line.
  • the antenna element 906 (915 in the A—A sectional view) and the feed line pattern 909 (919 in the A—A sectional view) are ground conductors of the antenna section.
  • the coupling window 910 924 in the A—A sectional view formed on the layer 917, they are electromagnetically coupled to each other to deliver high-frequency power, and the feed line pattern 909 (in the sectional view of the AA line) 919) and the propagation characteristic variable line pattern 905 (923 in the CC line cross-sectional view) are formed on the ground conductor layer 921 (shared with the feeding phase shifter) necessary for constructing the planar waveguide structure.
  • the pattern 911 corresponding to the DC blocking element (925 in the B—B cross section) and the propagation characteristics variable line pattern 905 (C—C cross section) 923) are coupled to each other in an electromagnetic field to block direct current (bias voltage), which is the control voltage of the variable phase shifter, and to transfer high-frequency power.
  • the bias voltage is applied between the bias terminal 908 fabricated on the conductor layer 923 and the ground conductor layer 921, so that the bias voltage is applied to the propagation characteristic variable line 905 via the high frequency blocking element pattern 913.
  • the propagation characteristic depends on the bias voltage. It is possible to control the propagation characteristics of the high-frequency power propagating on the variable line 905.
  • a variable phase shifter configured using a variable dielectric constant dielectric whose dielectric constant varies depending on the applied voltage is a microstrip line that can be regarded as a dielectric substrate.
  • variable dielectric constant dielectric has dielectric anisotropy due to molecular orientation
  • the dielectric constant for electromagnetic waves propagating through the microstrip line changes.
  • the phase delay ⁇ based on the propagation delay is
  • ⁇ eff is the equivalent dielectric constant of the microstrip line
  • variable phase shifter As a conventional phased array antenna having this variable phase shifter, the variable phase shifter is divided into two groups for right side tilt and left side tilt, and these phase shift amounts are controlled independently of each other. In this way, there is a device that suppresses variations in power distributed to each antenna element and variations in phase shift, and thus maintains a high directivity gain without breaking the sharp beam shape even during beam tilt (for example, (See Patent Document 1).
  • variable phase shifter configured using a variable dielectric constant dielectric whose dielectric constant changes depending on an applied voltage
  • an open-ended line in the variable phase shifter A variable dielectric constant dielectric is used as the supporting insulator of the transmission line, and the propagation characteristic variable line is configured, and by applying a voltage between the propagation characteristic variable line conductor and the ground conductor, the propagation characteristic of the propagation characteristic variable line is There is one that controls the amount of phase shift of the variable phase shifter (for example, see Patent Document 2).
  • variable phase shifter region has a two-layer microstrip line structure, and a variable dielectric constant dielectric is used as a supporting insulator of one layer to form a variable propagation characteristic variable line.
  • a variable dielectric constant dielectric is used as a supporting insulator of one layer to form a variable propagation characteristic variable line.
  • Non-Patent Document 1 a nematic liquid crystal is sandwiched between two ceramic substrates, and a main conductor (line) formed on one ceramic substrate and a ground conductor formed on the other ceramic substrate.
  • a phase shifter can be realized by applying a control voltage to cause a phase delay in the electromagnetic wave propagating through the microstrip line made of the nematic liquid crystal.
  • phase shifter in order to scan the radiation beam at a predetermined time interval, liquid crystal induction is performed. It is necessary to change the electric power at a predetermined speed.
  • the liquid crystal is dispersed in the resin instead of the liquid crystal known in the field of liquid crystal display devices.
  • a method for realizing this by arranging a resin composite between conductors on two substrates (for example, see Patent Document 3).
  • variable phase shifter including the liquid crystal is a resonator type phase shifter, and the liquid crystal layer is formed as a flat plate member.
  • the porous film is composed of a fiber dielectric material impregnated with liquid crystal (for example,
  • a waveguide conductor is placed on a waveguide insulator 402 on a waveguide ground conductor 401.
  • a hybrid coupler 404 having input / output lines 403a and 403b is fabricated, and a tip open line 405 having the same length is connected to a pair of isolation ports of the hybrid coupler 404, and the tip is opened.
  • a variable dielectric constant dielectric may be used only for the waveguide insulator 406 in the region where the line is formed.
  • the open-ended line 405 can control the phase of the electromagnetic wave propagating by the bias voltage. Functions as a possible propagation characteristic variable line 405.
  • variable phase shifter 400 configured as described above, the electromagnetic wave input from one input / output line 403a of the input / output line 403 is transmitted through the two-wavelength 404 and the two propagation characteristic variable lines 405. Is output.
  • the electromagnetic waves reflected at the open ends of the two propagation characteristics variable lines 405 are subjected to propagation phase delay reflecting the applied bias voltage and re-input to the hybrid coupler 404, and the electromagnetic waves passing through the hybrid force bra 404 are
  • the other input / output line 403b is combined with each other and output.
  • the propagation characteristic variable line 405 is also connected to the input / output line 403 in a DC manner via the hybrid force bra 404, a plurality of variable phase shifters 400 are connected in series with each other. Even when used, the waveguide for continuous waveguides of multiple variable phase shifters connected to each other By applying a bias voltage to any position on the body, the same bias voltage is simultaneously applied to all the variable phase shifters, thus realizing a multistage variable phase shifter with a simple bias circuit configuration. It becomes possible.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-23228
  • Patent Document 2 JP 2000-236207 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-315902
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2003-17912
  • Non-Patent Document 1 D. Dom, M. Labeyrie, P. Joffre and P. Huiqard, "Liquid crystal microwave phase shifter, Electron. Lett., Vol. 2 9, No. 10, pp. 926-927, 1999
  • Patent Document 2 In order to achieve high directivity gain with a bilaterally symmetric beam shape, a variable phase shifter is used as shown in FIG. Patent Document 2 and Patent Document 2 are used to separate the power bias voltage, which is divided into a phase shifter group and a left-side tilt variable phase shifter group so that the amount of phase shift can be controlled independently of each other.
  • a pattern for a DC blocking element is required on the power supply line pattern.
  • the feed phase shifter disclosed in Embodiment 2 of Patent Document 1 requires a pattern for a DC blocking element that electromagnetically couples the feed line and the propagation characteristic variable line to each other.
  • the beam tilt amount is zero, that is, the beam is Even if the feed phase shifter is designed to have high directivity gain when it is in the front direction, it simply cancels mismatch accumulation due to DC blocking elements by adding elements or optimizing line parameters. Because there is only that, it is irregular at the time of beam tilt When the total accumulation state changes, the misalignment accumulation cancellation state collapses, and therefore the beam shape collapses, making it difficult to maintain a high directivity gain.
  • variable phase shifter liquid crystal or a material containing liquid crystal, that is, a composite of liquid crystal and resin, or a fiber dielectric material in which liquid crystal is impregnated in a flat member or a porous film is used as a variable dielectric constant.
  • a dielectric layer it is necessary to uniformly inject liquid crystal into the variable dielectric constant dielectric layer, but the above-mentioned background art does not show any measures for enabling this point.
  • the phase characteristics vary, the variable dielectric constant characteristics of a plurality of variable phase shifters vary, the beam shape collapses even during beam tilt, and the beam directivity is reduced. There was a problem of lowering.
  • the beam shape is not deformed even at the time of beam tilt.
  • the feeding phase shift part is a plurality of isolated variable dielectric constant dielectric layers
  • variable dielectric constant dielectric is preferably a low dielectric loss material with respect to the characteristics of the material.
  • a material having good electromagnetic coupling between the variable dielectric constant dielectric and the fixed dielectric constant dielectric that is a normal substrate that is, a material in which the dielectric constant of the variable dielectric constant dielectric is close to the dielectric constant of the substrate is preferable.
  • the voltage applied to the variable dielectric constant dielectric also depends on the actual antenna application. A material that can change the dielectric constant with a low voltage drive of 100V or less is desirable.
  • the present invention has been made to solve the above-described conventional problem 1, and includes a variable phase shifter configured using a variable dielectric constant dielectric whose dielectric constant changes depending on an applied electric field.
  • variable phase shifters are divided into a variable phase shifter group for the right tilt and a variable phase shifter group for the left tilt as shown in FIG.
  • a direct current blocking element that causes mismatching is not required, so that even when the beam is tilted, a high directivity gain with little collapse of the beam shape can be maintained.
  • the purpose is to provide a phased array antenna.
  • the present invention has been devised in view of the above-mentioned conventional problem 2, and an object of the present invention is to apply an applied voltage variable dielectric constant of a plurality of variable phase shifters constituting a phased array antenna.
  • the dielectric in particular, liquid crystal or a material containing liquid crystal, for example, a composite of liquid crystal and an inorganic material, a composite of liquid crystal and a resin that is an organic material, or a liquid crystal in a flat member or a porous film.
  • the object is to provide a phased array antenna capable of maintaining the gain.
  • the phased array antenna according to the invention of claim 1 of the present application is a variable dielectric composed of a variable dielectric constant dielectric whose dielectric constant is changed by an applied electric field.
  • a phased array antenna having a phase shifter at least a ground conductor layer, an insulator layer, a main conductor layer, a variable dielectric constant dielectric layer, and a sub conductor layer are stacked in this order to feed a feed. A phase portion is provided.
  • the phased array antenna according to claim 2 of the present application is the phased array antenna according to claim 1, wherein the feeding phase shifter does not change a propagation characteristic of the high-frequency power. It has a propagation characteristic fixed line and a propagation characteristic variable line that varies the propagation characteristic of high-frequency power.
  • the phased array antenna that works for the invention of claim 3 of the present application is described in claim 2.
  • the fixed propagation characteristic line does not have a line in a region on the sub conductor layer corresponding to the line provided on the main conductor layer, and propagates on the line provided on the main conductor layer.
  • An electric field generated by the high-frequency power is concentrated and propagated between the main conductor layer and the ground conductor layer, and the propagation characteristic variable line is on the sub-conductor layer corresponding to the line provided on the main conductor layer.
  • An electric field generated by high-frequency power propagating through the line provided on the main conductor layer is distributed between the main conductor layer and the ground conductor layer, and between the main conductor layer and the sub conductor layer.
  • the propagation characteristic fixed line and the propagation characteristic variable line are configured as continuous conductors on the main conductor layer.
  • phased array antenna according to the invention of claim 4 of the present application is the phased array antenna according to claim 3, wherein the propagation characteristic variable line has a bias voltage between the main conductor layer and the sub conductor layer. Is applied to change the dielectric constant of the variable dielectric constant dielectric that constitutes the variable dielectric constant dielectric layer, thereby controlling the propagation characteristics of the high-frequency power.
  • phased array antenna according to claim 5 of the present application is the phased array antenna according to claim 1, wherein the variable dielectric constant dielectric layer also has a material force including liquid crystal or liquid crystal. It is characterized by.
  • the phased array antenna according to claim 6 of the present application is the phased array antenna according to claim 1, wherein the laminated structure is different from the variable dielectric constant dielectric layer of the sub conductor layer.
  • the second dielectric layer is provided on the opposite side, and the variable dielectric constant dielectric layer is held in a sealed space formed between the insulating layer and the second insulating layer. It is what.
  • the food array antenna according to claim 7 of the present invention is configured by using a variable dielectric constant dielectric whose dielectric constant is changed by an applied voltage.
  • a variable dielectric constant dielectric whose dielectric constant is changed by an applied voltage.
  • the power supply phase shifting section includes a plurality of isolated variable dielectric constant dielectric layers, each of the variable dielectric constant dielectric layers having an opening, The opening is formed in a direction perpendicular to the main surface of the phased array antenna, and has an opening on the main surface opposite to the main surface.
  • the phased array antenna according to claim 8 of the present invention is the phased array antenna according to claim 7, wherein the feeding phase-shifting portion propagates in the variable dielectric constant dielectric layer.
  • One variable characteristic line is included, and at least one pair of the openings is formed at positions facing each other with respect to the center of the variable propagation characteristic line.
  • phased array antenna according to claim 9 of the present invention is the phased array antenna according to claim 7, wherein the feeding phase-shifting portion is propagated in the variable dielectric constant dielectric layer.
  • a plurality of characteristic variable lines are included, and at least a pair of the openings are formed opposite to each other at positions outside the plurality of propagation characteristic variable lines.
  • the phased array antenna according to claim 10 of the present invention is the phased array antenna according to any one of claims 7 and 9, wherein the opening is the center of the propagation characteristic variable line. And the variable dielectric constant dielectric layer outside the arc whose radius is a straight line connecting the end of the transmission characteristic variable line and the transmission characteristic variable line end.
  • the phased array antenna according to claim 11 of the present invention is the phased array antenna according to any one of claims 7 and 9, wherein the opening is formed of the variable dielectric constant dielectric layer. And at least three times the distance corresponding to the wavelength of the electromagnetic wave propagating through the propagation characteristic variable line, at a position away from the propagation characteristic variable line.
  • a phased array antenna according to claim 12 of the present invention is the phased array antenna according to any one of claims 7 and 11, wherein the variable dielectric constant dielectric layer is Is characterized by being composed of the liquid crystal or a material containing liquid crystal.
  • the phased array antenna according to claim 13 of the present invention is the phased array antenna according to claim 12, wherein the variable dielectric constant dielectric layer is connected to the liquid crystal or the liquid crystal via the opening. It is characterized by injecting a material containing liquid crystal.
  • the invention's effect [0106] According to the present invention, a high directional gain is realized in a phased array antenna having a variable phase shifter configured using a variable dielectric constant dielectric whose dielectric constant varies with an applied electric field.
  • variable phase shifter group for the right tilt and the variable phase shifter group for the left tilt are configured so that the amount of phase shift can be controlled independently of each other, two factors that cause inconsistencies It is possible to realize an antenna that does not require a DC blocking element for DC-separating the noise voltage and can maintain a high directivity gain with little beam shape collapse even during beam tilt.
  • the phased array antenna includes: Since a liquid crystal or a composite material containing liquid crystal is injected into the variable dielectric constant dielectric layer constituting the variable phase shifter by vacuum injection or capillary injection, it becomes a variable dielectric constant dielectric layer. Liquid crystal or a composite material containing liquid crystal can be uniformly injected into the liquid crystal container, thereby suppressing variation in the dielectric constant of the variable dielectric constant dielectric layer, and less beam shape collapse even during beam tilt. This has the effect of realizing a phased array antenna that can maintain a high directivity gain.
  • FIG. 1 (a) is a plan view and a cross-sectional view of a phased array antenna according to Embodiment 1 of the present invention.
  • FIG. 1 (b) is a plan view of each conductor layer of the phased array antenna according to Embodiment 1 of the present invention.
  • FIG. 1 (c) is an electric field distribution diagram in the vicinity of the main layer and the sub conductor layer of the phased array antenna according to the first embodiment of the present invention.
  • FIG. 2 (a) is a plan view and a sectional view of a phased array antenna according to Embodiment 2 of the present invention.
  • FIG. 2 (b) is an electric field distribution diagram in the vicinity of the main conductor layer and the sub conductor layer of the phased array antenna according to the second embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of characteristics of a variable dielectric constant dielectric.
  • FIG. 4 is a diagram showing the principle of a phase shifter.
  • FIG. 5 is a diagram showing the principle of a phased array antenna.
  • FIG. 6 is a diagram showing an arrangement of phase shifters of a high gain phased array antenna.
  • FIG. 7 (a) is a plan view and a cross-sectional view of a conventional phased array antenna disclosed in Patent Document 2.
  • FIG. 7 (a) is a plan view and a cross-sectional view of a conventional phased array antenna disclosed in Patent Document 2.
  • FIG. 7 (b) is a plan view of each conductor layer of the conventional phased array antenna disclosed in Patent Document 2.
  • FIG. 8 (a) is a plan view and a cross-sectional view of a conventional phased array antenna shown in claim 1 of Patent Document 1.
  • FIG. 8 (a) is a plan view and a cross-sectional view of a conventional phased array antenna shown in claim 1 of Patent Document 1.
  • FIG. 8 (b) is a plan view of each conductor layer of the conventional phased array antenna shown in claim 1 of Patent Document 1.
  • FIG. 8 (b) is a plan view of each conductor layer of the conventional phased array antenna shown in claim 1 of Patent Document 1.
  • FIG. 9 (a) is a plan view and a cross-sectional view of a conventional phased array antenna shown in claim 2 of Patent Document 1.
  • FIG. 9 (b) is a plan view of each conductor layer of the conventional phased array antenna shown in claim 2 of Patent Document 1.
  • FIG. 10 is a plan view of a phased array antenna according to Embodiment 3 of the present invention.
  • FIG. 11 is a plan view of a variable phase shifter according to Embodiment 3 of the present invention.
  • FIG. 12 is a plan view of a variable phase shifter in which a liquid crystal injection hole is provided for each propagation characteristic variable line in Embodiment 4 of the present invention.
  • FIG. 13 is a cross-sectional view showing an overall outline of a phased array antenna according to Embodiment 3 of the present invention.
  • FIG. 14 is a diagram showing each cross section of FIG. 10 in Embodiment 3 of the present invention.
  • FIG. 15 is a cross-sectional view showing a method for manufacturing the phased array antenna in the third embodiment of the present invention.
  • FIG. 16 is a plan view of a variable phase shifter according to the fifth embodiment of the present invention.
  • FIG. 17 is a diagram showing another example of the variable phase shifter in the fifth embodiment of the present invention.
  • FIG. 18 is a diagram showing still another example of the variable phase shifter in the fifth embodiment of the present invention. It is.
  • FIG. 19 is a diagram for explaining the operating principle of the variable phase shifter.
  • Hybrid coupler 205 Variable propagation characteristics line
  • phased array antenna of the present invention will be described with reference to an embodiment in which a solid dielectric is used as the variable dielectric constant dielectric layer.
  • FIG. 1 (a) is a plan view and a cross-sectional view of the phased array antenna according to Embodiment 1 of the present invention.
  • Fig. 1 (a) the uppermost position in the figure is a plan view showing the antenna viewed from the radiation surface side.
  • the A-A line cross section and BB line cross section showing the state of the cross section when the antenna is cut along the A-A, B-B, and C-C lines in the plan view in order toward the bottom in the figure.
  • Figure shows a cross-sectional view along the line CC.
  • the display area of the plan view is the same as that of FIG. 7 of the conventional antenna.
  • 106 is an antenna element
  • 107 is an input terminal
  • 108 is a bias terminal
  • 109 is a feed line pattern
  • 110 is a bias line
  • 111 is a bias voltage supply through hole
  • 112 is a through hole.
  • the land 113 represents a coupling window for electromagnetically coupling the feed line pattern 109 and the antenna element 106 to each other.
  • the AA line cross-sectional view, the BB line cross-sectional view, and the CC line cross-sectional view of Fig. 1 (a) show the layer structure and the components constituting the antenna.
  • 114 to 117 constitute a planar waveguide structure for constituting an antenna portion, and 114 is for supporting an antenna element.
  • Insulator layer, 115 is a conductor layer that became an antenna element, 116 has a planar waveguide structure
  • An air layer as an insulator layer necessary for construction, 117 is a ground conductor layer necessary for constructing a planar waveguide structure.
  • 117 to 123 constitute a planar waveguide structure for constituting the feeding phase shift section 130, and 117 is a ground conductor layer necessary for constructing the planar waveguide structure. Shared with the antenna section.
  • 118 is an air layer as an insulator layer necessary for constructing a planar waveguide structure
  • 119 is a main conductor layer that forms each pattern of a feeding phase shift section
  • 120 is a variable dielectric for a propagation characteristic variable line.
  • the dielectric layer 121 is a sub-conductor layer that becomes a bias line that changes the electric field distribution state of the variable propagation characteristic line
  • 122 is an insulator layer that electromagnetically isolates the bias voltage supply circuit from the main conductor layer 119.
  • 123 are conductor layers for producing the wiring pattern of the bias voltage supply circuit.
  • the insulator layer 114 In the phased array antenna of the present embodiment configured as described above, as shown in the AA line cross-sectional view, the BB line cross-sectional view, and the CC line cross-sectional view, the insulator layer 114, the conductor layer 115, air layer 116, ground conductor layer 117, the first inverted type (also known as suspended type) microstrip structural force for antenna parts Ground conductor layer 117, air layer 118, main conductor layer 119, variable dielectric
  • the second inverted microstrip structure for the feeding phase shift part is configured by the four layers of the dielectric constant layer 120. However, the second inverted microstrip structure includes the ground conductor layer 117 and the second inverted microstrip structure. This is an improved line with three additional layers, the sub-conductor layer 121, the insulator layer 122, and the conductor layer 123, on the opposite side of the main conductor layer 119 (the lower side in the C-C cross section). Yes.
  • the ground conductor layer 117, the insulator layer 118 that is an air layer, the main conductor layer 119, the variable dielectric constant dielectric layer 120, the sub conductor Feeding phase shifters 117 to 121 having a laminated structure formed by laminating layers 121 in this order are provided.
  • the antenna element 106 (115 in the A—A sectional view) and the feed line pattern 109 (119 in the BB sectional view) Department and salary They are coupled electromagnetically through a coupling window 113 (coupling window 124 in the A-A cross-sectional view) formed on the ground conductor layer 117 shared by the phase-shifting section, and transfer high-frequency power. To do.
  • the bias voltage is applied between the negative terminal 108 formed on the conductor layer 123 and the main conductor layer 119 and the ground conductor layer 117 (provided that the main conductor layer 119 and the ground conductor layer 117 Are applied to the noise line 110 via the through-hole land 112 to the bias voltage supply through-hole 111.
  • the feed phase shifters 117 to 123 have the propagation characteristics fixed lines 104 and 109 that propagate high-frequency power without changing the propagation characteristics, and the high-frequency power.
  • a propagation characteristic variable line 105 that propagates electric power with propagation characteristics according to the bias voltage is provided on the main conductor layer 119 by continuous conductors, and the sub conductor layer is formed in the area where the propagation characteristics fixed lines 104 and 109 are formed.
  • Fig. 1 (c) is an enlarged view of the periphery of the main conductor in the B-B cross-sectional view and CC line cross-sectional view
  • the operation of the propagation characteristic fixed line and the propagation characteristic variable line is described in more detail.
  • Fig. 1 (c) is an enlarged view of the periphery of the main conductor in the B-B cross-sectional view and CC line cross-sectional view
  • Fig. 1 (c) shows the electric field distribution of the high-frequency power propagating on the main conductor layer 119 in the B-B line cross section and on the main conductor layer 119 and the sub conductor layer 121 in the B-B line cross section. Show and speak.
  • 117 is a ground conductor layer
  • 118 is an air layer for an insulator
  • 120 is a variable dielectric constant dielectric layer
  • 122 is an insulator layer.
  • 125 indicates the electric field generated by the high-frequency power propagating on the main conductor layer in the BB line cross section
  • 126 propagates on the main conductor layer and the sub conductor layer in the CC line cross section. Show the electric field created by high-frequency power! /
  • the area of the cross-sectional view along the line BB is biased on the sub-conductor layer in the area overlapping the line provided on the main conductor layer. Since no lines are provided, the electric lines of force that emerge from the main conductor layer propagate in a concentrated manner between the main conductor layer and the ground conductor layer, while few things pass through the variable dielectric constant dielectric layer! [0127] Therefore, when a bias voltage is applied to the phase shifter, an electric field due to the bias voltage is not generated in the variable dielectric constant dielectric layer around the main conductor layer. Since the dielectric constant does not change and the propagation characteristics for high-frequency power propagating on the main conductor layer do not change, the main conductor in this region constitutes a fixed propagation characteristic line.
  • a bias line is provided on the sub-conductor layer in the area of the CC line cross-sectional area in a region that overlaps the line provided on the main conductor layer.
  • the dielectric constant of the variable dielectric constant dielectric layer of the propagation characteristic variable line is changed by changing the bias voltage applied between the main conductor layer and the sub conductor layer. Therefore, the phase shift amount is controlled by changing the propagation rate of the variable propagation characteristics line.
  • a variable dielectric constant dielectric layer is interposed between the main conductor layer and the sub conductor layer, and therefore, between the ground conductor layer and the sub conductor layer. Even if a bias voltage is applied, no DC voltage is applied between the main conductor layer and the sub conductor layer. For this reason, the right tilt control voltage and the left tilt control voltage do not collide with each other through the main conductor layer, so that a DC blocking element is unnecessary.
  • the feeding phase-shifting portion includes the ground conductor layer, the insulator layer, the main conductor layer, the variable dielectric constant dielectric layer, and the sub conductor layer. Since it has a laminated structure formed by laminating in this order, the bias voltage force of the line through which high-frequency power propagates without the DC blocking element being provided on the line through which high-frequency power propagates is also eliminated. It becomes possible to rim. Therefore, in order to achieve high directivity gain, the variable phase shifter is divided into a variable phase shifter group for right tilt and a variable phase shifter group for left tilt, and the phase shift amount is controlled independently of each other. When configured, it is possible to realize an antenna capable of maintaining high directivity gain with little collapse of the beam shape even at the time of beam tilt because accumulation of mismatch due to the DC blocking element is eliminated.
  • the phased array antenna according to the first embodiment may be provided with a line pattern corresponding to the high-frequency blocking element shown in Patent Document 2 and Patent Document 1.
  • the high-frequency current flowing on the bias line 110 is concentrated on the surface facing the main conductor layer 119, power is supplied from the main conductor layer 119 side and the opposite side as shown in FIG. This is because a high-frequency blocking element can be eliminated by adopting a laminated structure.
  • BaTiO or BaSrTiO is used as the variable dielectric constant dielectric layer.
  • thermosetting epoxy resin urethane urethane resin ultraviolet curable acrylic resin epoxy resin, phenol resin, and polytetrafluoroethylene
  • PTFE thermosetting epoxy resin urethane urethane resin
  • liquid crystal polymer polyimide resin, polyamide, epoxy resin, or a composite material thereof, glass, ceramics, photopolymerizable polymer, thermopolymerizable polymer, or the like.
  • phased array antenna of the present invention will be described with reference to an embodiment in which a liquid dielectric such as a liquid crystal is used as the variable dielectric constant dielectric layer.
  • FIG. 2 (a) is a plan view and a sectional view of the phased array antenna according to Embodiment 2 of the present invention.
  • Fig. 2 (a) the uppermost position in the figure is a plan view showing the antenna viewed from the radiation surface side.
  • the A-A line cross section and BB line cross section showing the state of the cross section when the antenna is cut along the A-A, B-B, and C-C lines in the plan view in order toward the bottom in the figure.
  • the figure shows a cross-sectional view along line CC.
  • the display area of the plan view is the same as that of FIG. 7 showing the conventional antenna. It has become.
  • the AA line cross-sectional view, the BB line cross-sectional view, and the CC line cross-sectional view show the layer structure constituting the antenna and its components.
  • A-A cross-sectional view, B-B cross-sectional view, and CC line cross-sectional view, 214 to 217 constitute a planar waveguide structure for constituting the antenna portion.
  • the configuration is the same as in FIG.
  • 217 to 223 constitute a planar waveguide structure for constituting the feeding phase shift section 230, and 217 is a ground conductor layer necessary for constructing the planar waveguide structure. Shared with the antenna section.
  • 218 is an insulating layer necessary for constructing a planar waveguide structure
  • 219 is a main conductor layer that has each pattern of a feeding phase shift section
  • 220 is a variable dielectric constant dielectric layer for a propagation characteristic variable line
  • 221 is a sub-conductor layer that is a bias line that changes the electric field distribution state of the propagation characteristic variable line
  • 222 is an insulator layer for electromagnetically isolating the bias voltage supply circuit from the main conductor layer 219
  • 223 is a bias It is a conductor layer that forms the wiring pattern of the voltage supply circuit.
  • Embodiment 2 shows the case where a liquid such as liquid crystal is used as the variable dielectric constant dielectric layer 220, and the two insulator layers 218 and 222 have the end portions of the insulator layers. 218, 222 are connected to each other by a spacer 240 having the same material force, and the liquid is surrounded and held at the antenna end as shown in the A—A line, BB line, and CC line cross sections.
  • the variable dielectric constant dielectric layer 220 which is a liquid dielectric such as liquid crystal, is stably held (accommodated) in the sealed space 250 inside the box-shaped insulator layer. Yes.
  • the main conductor layer 219 cannot be formed on the liquid, it is formed on the surface of the insulator layer 218.
  • the insulator layer 214 In the phased array antenna of the present embodiment configured as described above, as shown in the AA line cross-sectional view, the BB line cross-sectional view, and the CC line cross-sectional view, the insulator layer 214,
  • the first inverted type (also called suspended type) microstrip structural force for the antenna section is formed by four layers of conductor layer 215, air layer 216, and ground conductor layer 217.
  • Ground conductor layer 217, insulator layer 218, main conductor layer 219 Therefore, the second inverted microstrip structure for the feeding phase shift section is configured by the four layers of the variable dielectric constant dielectric layer 220. However, the second inverted microstrip structure is grounded.
  • FIG. 2 (b) is an enlarged view of the periphery of the main conductor in the B-B cross-sectional view and CC line cross-sectional view
  • the operation of the propagation characteristic fixed line and propagation characteristic variable line is described in more detail. explain.
  • Figure 2 (b) shows the electric field distribution of the high-frequency power propagating on the main conductor layer 219 in the B-B cross-sectional view and on the main conductor layer 219 and the sub-conductor layer 221 in the C-C cross-sectional view. Show.
  • 217 is a ground conductor layer
  • 218 is an insulator layer
  • 220 is a variable dielectric constant dielectric layer
  • 222 is an insulator layer.
  • 225 shows the electric field generated by the high-frequency power propagating on the main conductor layer 219 in the B-B line cross section
  • 226 shows the main conductor layer 219 and the sub conductor layer 221 in the CC line cross section. It shows the electric field created by the high-frequency power that propagates above.
  • the CC line cross-sectional area is provided on the main conductor layer. Since the bias line is provided on the sub conductor layer in the area that overlaps the surface of the main conductor layer, the electric field lines coming from the main conductor layer are connected only between the main conductor layer and the ground conductor layer. It is distributed and propagated between the layers. Many of the electric field lines that are distributed and propagated pass through the variable dielectric constant dielectric layer.
  • the phased array antenna of the second embodiment by changing the bias voltage applied between the main conductor layer and the sub conductor layer, the propagation characteristics of the variable line
  • the configuration is such that the amount of phase shift is controlled by changing the dielectric constant of the variable dielectric constant dielectric and changing the propagation characteristic of the variable propagation characteristic line.
  • the propagation characteristic fixed line has a structure in which a variable dielectric constant dielectric layer is interposed between the main conductor layer and the sub conductor layer, a bias voltage is applied to the sub conductor layer. Bias voltage is not directly applied to the main conductor layer. For this reason, the right tilt control voltage and the left tilt control voltage do not collide with each other via the main conductor layer, so that a DC blocking element is unnecessary.
  • the power feeding phase-shifting portion includes the ground conductor layer, the insulator layer, the main conductor layer, the variable dielectric constant dielectric layer, Since it has a laminated structure in which the sub conductor layers are laminated in this order, it is possible to insulate the bias voltage from the line through which high-frequency power propagates without providing a DC blocking element on the line through which high-frequency power propagates. It becomes. Therefore, in order to achieve high directivity gain, the variable phase shifter is divided into a variable phase shifter group for right tilt and a variable phase shifter group for left tilt, and the phase shift amount is controlled independently of each other.
  • phased array antenna that does not accumulate mismatches due to the DC blocking element, and that can maintain a high directivity gain with little beam shape collapse even during beam tilt.
  • the liquid crystal is used as the variable dielectric constant dielectric layer, a phased array antenna that can easily change the dielectric constant of the variable dielectric constant dielectric layer is realized. It becomes possible.
  • liquid variable dielectric constant dielectric layer nematic liquid crystal, smectic liquid crystal, cholesteric liquid crystal, discotic liquid crystal, ferroelectric liquid crystal, etc.
  • a composite material with fat can be used as the liquid variable dielectric constant dielectric layer.
  • insulator layers 218, 222 and spacer 240 are connected to form a box-shaped insulator layer having a space 250 for accommodating variable dielectric constant dielectric layer 220 therein. This may be integrally formed as long as the liquid variable dielectric constant dielectric layer 220 can be stably held.
  • liquid variable dielectric constant dielectric layer 220 can be stably held, a structure different from that of the second embodiment may be adopted.
  • variable dielectric constant dielectric layer in which the liquid crystal in the second embodiment is stably held can be used as the variable dielectric constant dielectric layer in the first embodiment.
  • air with a very low dielectric loss can be used as the insulator layer of the main conductor line, and liquid crystal can be used as the variable dielectric constant dielectric, thereby expanding the selection range of the variable dielectric constant dielectric material.
  • the line shapes of the main conductor layer and the sub conductor layer in the propagation characteristic variable line portion are defined as a straight line having a length of 1Z2 wavelength or an integer multiple thereof. Needless to say, the variable propagation characteristics can be obtained in the same way even when the shape of the resonance line is a ring, or when the resonance line is a ring or disk.
  • a buffer layer may be provided on the surfaces of both conductor layers in order to prevent the conductor metals of the main conductor line layer and the sub conductor layer from touching the liquid crystal directly.
  • FIG. 10 is a plan view showing an example of a phased array antenna according to Embodiment 3 of the present invention.
  • the phased array antenna also has a laminated structural force of a feeding phase shifter 308 and an antenna 309.
  • the feed phase shifter 308 includes a feed port 301, a variable phase shifter 302 in which two propagation characteristic variable lines 115 are arranged substantially parallel to each other as shown in FIG. In addition, a variable phase shifter 303 in which two propagation characteristic variable lines 115 are arranged on substantially the same straight line, a phase shift amount control unit (not shown), a high frequency circuit 307, and a voltage for a variable dielectric And a generation circuit (not shown).
  • Reference numeral 305 denotes an opening provided in a variable dielectric constant dielectric layer of each variable phase shifter described later
  • 306 denotes an assembly of variable phase shifters described later.
  • the phased array antenna shown in FIG. 10 has a plurality of variable phase shifters 302 and 303 including a plurality of dielectric constant dielectric layers isolated from each other as shown in FIG.
  • the phased array antenna of FIG. 10 includes 48 variable phase shifters (each phase shifter is 302) shown in FIG. 11 and variable phase shifters (each phase shifter) shown in FIG.
  • the vessel has 303) 16 pieces.
  • the number of phase shifters is not limited to the above number, and the number of phase shifters is determined by the frequency of the electromagnetic wave used, the beam directivity gain of the antenna, and the beam contact angle.
  • the shape of the propagation characteristic variable phase shift line 115 which will be described later, also has the same variable phase shift characteristic in units of rows (lateral direction in Fig. 11). It is not limited.
  • Each dielectric constant dielectric layer has an opening 122 for liquid crystal injection.
  • the variable dielectric constant dielectric does not require a split structure in which the feeding phase shift section is made of a plurality of isolated variable dielectric constant dielectric layers as in the present invention, and is not provided on the entire surface of the phased array antenna.
  • a variable dielectric constant dielectric can be formed integrally.
  • the dielectric loss can be reduced as much as possible by arranging the variable dielectric constant dielectric layer only in the region where the variable phase shifter is formed.
  • Anne The tenor section has a plurality of antenna patch rows each composed of a plurality of antenna patches 304, and the antenna notches 304 of each antenna patch row are connected to each other in the vertical direction in FIG. Configure the patch train.
  • variable phase shifter 302 in the phased array antenna of the present invention is an input terminal for a propagation signal
  • 111 is a feeder line
  • 112 is a hybrid force bra
  • 113 is an antenna element
  • 114 is a coupling window
  • 115 is a propagation characteristic variable line
  • 116 is a bias voltage supply through hole
  • 117 is a through-hole land
  • 118 is a bias electrode surface (sub conductor)
  • 119 is a bias line
  • 120 is a bias terminal
  • 121 is a variable dielectric constant dielectric layer
  • 122 is an opening of an opening 144 described later.
  • the phase shifter 302 in FIG. 10 includes the feed line 111, the hybrid coupler 112, and the two propagation characteristic variable lines 115 having substantially the same propagation characteristics in FIG.
  • the variable dielectric constant dielectric layer 121 of the present invention may be formed at least in a region including one propagation characteristic variable line 115 constituting the one variable phase shifter.
  • variable dielectric constant dielectric layer 12 1 (a region surrounded by a broken line in FIG. 11) is formed in a region including two propagation characteristic variable lines 115.
  • the variable dielectric constant dielectric layer 121 needs to be formed so as to have uniform dielectric characteristics over the entire propagation characteristic variable line 115. For this reason, when a liquid crystal or a material containing liquid crystal is used as the variable dielectric constant dielectric material, it is necessary to inject liquid crystal from the opening 122 so as to have uniform dielectric characteristics.
  • At least one opening 122 may be provided in each variable dielectric constant dielectric layer 121.
  • the position force outside the part of the circular arc with the center 116 of the propagation characteristic variable line 115 as the center and the radius connecting the center 116 and the propagation characteristic variable line end 124 is a radius.
  • the wavelength of the propagated electromagnetic wave signal is ⁇ (the distance at which the electromagnetic signal intensity is attenuated by 3 dB), avoiding the propagation characteristic variable line 115, and in each variable dielectric constant dielectric layer 121, A position that satisfies at least one of the distances of 3 ⁇ or more from the center 116 of the propagation characteristic variable line 115 is preferable.
  • liquid crystal injection method vacuum injection, which is known as an injection method in a liquid crystal display device Method or capillary injection method can be used.
  • FIG. 11 is a plan view of a variable phase shifter when liquid crystal is injected by the vacuum injection method of the present invention.
  • the manufacturing method is as follows.After the substrates constituting the phased array antenna are bonded together by thermocompression bonding, the antenna surface (antenna portion 309) is placed at a position corresponding to each dielectric constant dielectric layer. An opening 144 (see Fig. 14) is formed on the substrate surface opposite to the substrate surface by cutting in a direction perpendicular thereto. An opening 122 having an opening 144 is formed on the substrate surface.
  • a tube (not shown) for injecting liquid crystal is connected to the opening 122 of each variable phase shifter.
  • the phased array antenna in which a tube is connected to the opening 122 of each variable dielectric constant dielectric layer 121 is placed in a vacuum chamber, and the pressure is reduced to 10 ⁇ ⁇ orr or less.
  • variable dielectric constant dielectric 121 is provided in a region where the propagation characteristic variable line 115 is formed (hereinafter referred to as a propagation characteristic variable line portion) from the viewpoint of dielectric loss, conductor loss, and insertion loss. It is preferable. Therefore, in order to avoid providing the variable dielectric constant dielectric layer 121 as much as possible in the power supply line 111 other than the propagation characteristic variable line 115, each phase shifter 302, 303 is provided with a cell of the variable dielectric constant dielectric layer 121. It is necessary to divide and enclose the liquid crystal. Therefore, coupling loss (consisting of dielectric loss, conductor loss, and insertion loss) can be reduced by dividing the variable dielectric constant dielectric layer 121 into a plurality of groups as will be described later.
  • FIG. 14 shows details of the A—A line cross section, the B—B line cross section, the CC line cross section, and the D—D line cross section of the variable phase shifter shown in FIG. 11 constituting the phased array antenna of the present invention. make use of explain.
  • reference numeral 130 denotes a first insulator layer.
  • 131 is a conductor layer and functions as the antenna element 113 in FIG.
  • a substrate made of Teflon (registered trademark) (hereinafter referred to as a Teflon (registered trademark) substrate) is preferable from the viewpoint of low dielectric loss.
  • a substrate in which glass cloth is impregnated with Teflon (registered trademark) a liquid crystal polymer substrate, an alumina ceramic substrate, an alumina composite substrate, or a sapphire substrate can also be used.
  • the first insulator layer 130 when a glass epoxy substrate as a substrate, for example, FR4 is used as the substrate, the upper part of the antenna element has an insulating layer as an opening and an air layer.
  • the shape must be devised.
  • a metal electrode or a metal or metal alloy having a high conductivity such as copper, silver, or gold, a metal multilayer film, or a thin film or a thick film of a metal composite material is used.
  • Reference numeral 132 denotes a coupling window, which is formed of an air layer and corresponds to the coupling window 114 in FIG. 133 is a second insulator layer, and a Teflon (registered trademark) substrate is preferable from the viewpoint of low dielectric loss.
  • a substrate in which glass cloth is impregnated with Teflon (registered trademark) a liquid crystal polymer substrate, an alumina ceramic substrate, an alumina composite substrate, or a sapphire substrate can be used as the second insulator layer 133.
  • 134 is a grounding conductor layer, which is a metal electrode, using a thin film or thick film of metal or metal alloy, metal multilayer film, metal composite material having high conductivity such as copper, silver, gold, etc. .
  • Reference numeral 135 denotes a main conductor layer, which acts as a feed line for the propagation characteristic fixed line and the propagation characteristic variable line 115.
  • 136 is a third insulator layer, and a Teflon (registered trademark) substrate is preferable from the viewpoint of low dielectric loss.
  • the third insulator layer 136 a substrate in which glass cloth is impregnated with Teflon (registered trademark), a liquid crystal polymer substrate, an alumina ceramic substrate, an alumina composite substrate, or a sapphire substrate can also be used. .
  • 135 is the main conductor layer.
  • the main conductor layer 135 is arranged in the direction along the line A-A.
  • the force shown in the figure is a cross-sectional view taken along the line B-B. It is shown.
  • 137 is a main conductor layer as in the cross-sectional view taken along the line A-A, but acts as the propagation characteristic variable line 115 in FIG.
  • a metal or metal alloy having a high conductivity such as copper, silver, or gold, a metal multilayer film, a thin film or a thick film of a metal composite material is used.
  • Reference numeral 138 denotes a variable dielectric constant dielectric layer, which is configured using liquid crystal or a material containing liquid crystal.
  • liquid crystal nematic liquid crystal, cholesteric liquid crystal, smectic liquid crystal, or mixed liquid crystal that has a large dielectric anisotropy, or mixed with inorganic or organic materials to improve voltage response. A mixture is used.
  • the inorganic materials include metal oxides such as magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), barium oxide (BaO), and aluminum oxide (A1).
  • MgO magnesium oxide
  • CaO calcium oxide
  • SrO strontium oxide
  • BaO barium oxide
  • A1 aluminum oxide
  • ZrO zirconium oxide
  • TiO titanium oxide
  • ZnO zinc oxide
  • a mixture of 2 2 3 2 2 3 2 2 2 2 can be used.
  • These inorganic materials may be dispersed in liquid crystals as fine particles, or may be inorganic materials having a porous structure.
  • organic material acrylic resin, methacrylic resin, epoxy resin, urethane resin, polystyrene, polyvinyl alcohol, fluorine resin, or a copolymer thereof can be used.
  • Reference numeral 139 denotes a sub-conductor layer which acts as a bias electrode surface 118 for the variable dielectric constant dielectric.
  • a metal electrode a metal or metal alloy having a high conductivity such as copper, silver, or gold, a metal multilayer film, a thin film or a thick film of a metal composite material is used.
  • the sub conductor 139 is connected to the conductor layer 141 through the metal contacts of the bias electrode supply through hole 140 (116 in FIG. 11) provided in the third insulator layer 136.
  • 144 is an opening for injecting liquid crystal.
  • the opening 144 has a variable dielectric constant dielectric layer as a starting point, is formed perpendicular to the substrate surface, and has an opening 122 on the substrate surface facing the antenna surface having the antenna element 113 formed of the conductor layer 131. To do.
  • the bias voltage applied to the propagation characteristic variable line 137 is the secondary conductor via the bias terminal 120 force and the noise line 119 and the metal voltage of the bias voltage supply through hole 140. 139 (bias line 119 in FIG. 11).
  • variable dielectric constant dielectric 138 between the bias line 119 and the propagation characteristic variable line 115, and the orientation of the liquid crystal constituting the variable dielectric constant dielectric 138 is adjusted by the bias voltage.
  • the dielectric constant can be varied, thereby enabling phase shift control.
  • the liquid crystal or the material containing liquid crystal may be subjected to alignment treatment on the surfaces 142 and 143 parallel to the line.
  • alignment treatment By performing the alignment treatment, the dielectric anisotropy can be maximized and the variable phase shift amount can be maximized.
  • the alignment treatment is performed by a method known in the field of liquid crystal display devices, for example, before forming a phased array antenna, by applying an insulator surface 142 and 143 mm, polyimide or polybular coal, and rubbing treatment. Or a method of stretching the resin containing liquid crystal so that it is substantially parallel to the insulator surfaces 142 and 143, or by physically sliding the resin surface containing liquid crystal in one direction, Can be used.
  • the liquid crystal that has been subjected to the alignment treatment is sealed from the opening 122, and then sealed, thereby forming a variable dielectric constant dielectric layer having an alignment when the voltage is off.
  • the ground conductor layer 134 is formed on the second insulator layer 133 (see FIGS. 1A and 1B).
  • a conductor layer is formed on the entire main surface of the second insulator layer 133 opposite to the main surface on which the ground conductor layer 134 is formed, and propagation is performed by patterning the conductor layer.
  • a fixed characteristic line 135 is formed (see (c) in the figure). However, a groove is formed in advance at a position where the propagation characteristic fixed line 135 of the second insulator layer 133 is formed.
  • the second insulator layer 133 is joined to the main surface of the second insulator layer 133 on the side where the propagation characteristic fixed line 135 is formed (see FIG. 4D).
  • the portion of the second insulating layer 133 that becomes the variable dielectric constant dielectric layer 138 has a concave portion that becomes a liquid crystal container by molding. It is formed (see the left side of figure (d)).
  • a third insulator layer 136 is formed below the second insulator layer 133 formed in the step of FIG. 15D (see FIG. 15E). Then, a groove is formed on the main surface of the third insulator layer 136 on the second insulator layer 133 side, a conductor layer is formed on the entire surface including the groove, and patterning is performed. 139 is formed (see the left side of the figure (e)).
  • a through-hole 140 filled with a conductor is formed in the third insulator layer 136 (see the left side of Fig. 5 (f)), and the sub conductor layer of the third insulator layer 136 is formed.
  • a through-hole land 141 is formed on the main surface opposite to the main surface on which 139 is formed so as to cover the exposed surface of the through-hole 140 (see the left side of the same figure (g)).
  • a second insulator layer 133 to be arranged on the ground conductor layer 134 in FIG. 15B is prepared (see FIG. 15H), and the first insulator layer 130 is formed thereon. (See (i) in the figure), and then thermocompression-bonded onto Fig. 15 (g) to complete the phased array antenna.
  • variable dielectric constant dielectric layer 138 From the main surface of the phased array antenna thus completed on which the land 141 is formed, an opening reaching the cavity (recess) serving as the variable dielectric constant dielectric layer 138 is formed.
  • a material containing liquid crystal by injecting a material containing liquid crystal by a vacuum injection method or a capillary injection method, it is possible to form the variable dielectric constant dielectric layer 138 with suppressed variation in dielectric constant.
  • variable dielectric constant dielectric layer is formed by injecting in the same manner, so that variations in the dielectric constant of multiple variable phase shifters can be reduced, and multiple variable phase shifters that can be controlled by a single applied voltage.
  • variable dielectric constant dielectric layer in contact with the propagation characteristic variable line is arranged only in the region where the variable phase shifter is formed, the beam directivity gain with reduced dielectric loss is improved.
  • a flat antenna can be provided.
  • Embodiment 4 of the present invention will be described with reference to FIG. 12 (FIG. 12).
  • the shape of the propagation characteristic variable line 115 is different from that of the third embodiment (FIG. 11).
  • FIG. 12 shows a plan view of the variable phase shifter 303 of FIG. 10 used for the phased array antenna.
  • the difference from FIG. 11 is that the pair of propagation characteristic variable lines 115 are arranged so as to be separated from each other on the same straight line. Further, as the pair of propagation characteristic variable lines 115 are arranged away from each other, the variable dielectric constant dielectric layer 121 constituting the variable phase shifter is divided into two.
  • 110 is a propagation signal input terminal
  • 111 is a feed line
  • 112 is a hybrid force bra
  • 113 is an antenna element
  • 114 is a coupling window
  • 115 is a variable propagation characteristic line
  • 116 is a bias voltage supply.
  • Through-holes, 117 are lands for through-holes, 118 are bias electrode surfaces ( ⁇ IJ conductors), 119 are noisy lines, 121a and 121b are variable dielectric constant dielectric layers, and 122a and 122b are openings.
  • the phase shifter 303 includes the feed line 111, the hybrid coupler 112, and two propagation characteristic variable lines 115 having substantially the same propagation characteristics in FIG. Openings 122a and 122b are formed on the substrate surface facing the antenna element 113 surface, with openings formed perpendicular to each dielectric constant dielectric layer starting from the dielectric constant dielectric layers 121a and 121b, respectively. Formed in a generally vertical direction.
  • the phase shifter 303 can be manufactured by injecting and sealing liquid crystal by a vacuum injection method as in the first embodiment.
  • variable dielectric constituting the variable phase shifter of the phased array antenna. Since liquid crystal or composite material containing liquid crystal is injected into the dielectric constant layer by vacuum injection or capillary injection, variations in the dielectric constant of multiple variable phase shifters can be reduced, and a single By realizing a plurality of variable phase shifters that can be controlled by the applied voltage, a planar antenna having excellent beam tilt characteristics can be provided.
  • variable dielectric constant dielectric layer in contact with the variable propagation characteristic line is arranged only in the region where the variable phase shifter is formed, the beam directivity gain with reduced dielectric loss is improved.
  • a favorable planar antenna can be provided.
  • Embodiment 5 of the present invention will be described with reference to FIG.
  • the difference between the fifth embodiment (FIG. 16) and the fourth embodiment (FIG. 12) lies in the number of openings 122 in the variable dielectric constant dielectric layer.
  • the capillary method is used as the liquid crystal sealing method, at least two openings 122 of an exhaust port and a liquid crystal suction port are required as is well known in the liquid crystal injection method of a liquid crystal display device.
  • the opening when the opening includes one variable propagation characteristic line in the variable dielectric constant dielectric layer, at least one pair of openings is formed at a position generally opposed to the center of the propagation characteristic variable line. .
  • these variable phase shifter openings correspond to the first opening 122 with respect to the bias voltage supply through hole 116, which is the center of the propagation characteristic variable line 115.
  • the second opening 123 may be formed so as to be in a position facing the. It should be noted that which of the opening 122 and the opening 123 is used as the exhaust port or the liquid crystal suction port is arbitrary.
  • the pair of openings are formed on the diagonal line of the region forming the liquid crystal container, the pair of openings is opened compared to the case where the pair of openings are formed at other positions. Since the distance between them becomes long, even if bubbles remain in the injected liquid crystal, the adverse effect of the bubbles on the variation in dielectric constant can be minimized.
  • FIG. 17 illustrates the arrangement of a pair of openings 122 when a plurality of variable propagation characteristics lines 115 (two in the example of FIG. 8) are included in the variable dielectric constant dielectric layer 121. It is.
  • 215a is a first propagation characteristic variable line
  • 215b is a second propagation characteristic variable line.
  • the opening 122 is disposed diagonally opposite to the outside of the region formed by the variable dielectric constant dielectric layer 121 and the propagation characteristic variable lines 215a and 215b.
  • the positions of the openings 122a and 122b are preferably provided in the variable dielectric constant dielectric layer 121 outside the propagation characteristic variable lines 215a and 215b.
  • is the wavelength of the electromagnetic wave signal propagating through the variable propagation characteristic line. This is because the electromagnetic wave signal intensity decreases by 3 dB when 3 ⁇ away from the propagation characteristic variable lines 215a and 215b, and the influence of the openings 122 and 123 on the propagation characteristic variable line can be suppressed.
  • the case where two propagation characteristic variable lines are included has been described, but it is needless to say that even three or more propagation characteristic variable lines can be applied.
  • FIG. 18 shows the case where the variable dielectric constant dielectric layer constituting two variable phase shifters adjacent to each other is constituted by one variable dielectric constant dielectric layer 121.
  • the number of variable phase shifters that share the variable dielectric constant dielectric layer 121 is the propagation characteristic fixed line 135, that is, the variable dielectric constant dielectric layer 121 in the feed line 111 other than the propagation characteristic variable line 115. If is not crossed, it is optional.
  • the number of openings 122 may be at least one for each variable dielectric constant dielectric layer 121.
  • the position of the opening 122 may be provided on the substrate surface facing the antenna surface.
  • 121 is a variable dielectric constant dielectric layer
  • 122 is a first opening
  • 123 is a second opening
  • 250 is the center of the first opening 122
  • 251 is The center of the second opening 123
  • 260 is the end of the first propagation characteristic variable line
  • 270 is a straight line connecting the center 250 of the first opening and the intersection 260, and has a length L1.
  • reference numeral 261 denotes a second propagation characteristic variable line end, which is the second intersection of the propagation characteristic variable line that is second closest to the first opening 122 and the variable dielectric constant dielectric layer 121.
  • . 271 is a straight line connecting the center 250 of the first opening and the intersection 261, and has a length L2.
  • 262 and 263 are the third and fourth propagation characteristic variable line ends, which are third and fourth closest to the first opening 122, respectively. This is an intersection of the variable propagation characteristic line and the variable dielectric constant dielectric layer 121 in contact with each other.
  • the straight lines connecting the first opening ′, 250 and the intersections 262, 263 are 272, 273, the length of the straight line 272 is L3, and the length of the straight line 273 is L4.
  • [0222] 280 is a straight line connecting the center 250 of the first opening 122 and the center 251 of the second opening 23, and has a length LO.
  • a curved line 281 is an arc having a center of the first opening 250 and a radius of a straight line having a length LO in the variable dielectric constant dielectric layer 121.
  • the position of the second opening 123 is L0> L4> L3> L2> L1
  • the influence of the variable propagation characteristics line on the electromagnetic waves can be suppressed.
  • liquid crystal can be uniformly and uniformly injected into the common variable dielectric constant dielectric layer 121.
  • a pair of openings reaching the variable dielectric constant dielectric layer constituting the variable phase shifter of the phased array antenna is provided, and liquid crystal or liquid crystal is obtained by capillary injection.
  • liquid crystal or liquid crystal is obtained by capillary injection.
  • variable dielectric constant dielectric layer in contact with the propagation characteristic variable line is arranged only in the region where the variable phase shifter is formed, a good plane of beam directivity gain with suppressed dielectric loss is achieved.
  • An antenna can be provided.
  • a microstrip line is exemplified as an example of a variable phase shifter.
  • the transmission line in the present invention is not limited to a microstrip line, and a plurality of isolated lines. It can be applied to all transmission lines that use a dielectric as a transmission medium for high-frequency signals such as coplanar lines and strip lines with variable phase shifters.
  • the present invention provides a variable dielectric constant dielectric whose dielectric constant changes with an applied electric field.
  • a phased array antenna having a variable phase shifter configured by using a variable phase shifter for realizing a high directivity gain, a variable phase shifter group for right tilt, and a left tilt
  • the phase shift amount is controlled independently of each other in the variable phase shifter group, there is no need for a DC blocking element that causes mismatching, so that the beam shape is less distorted even during beam tilt. It has the feature that an antenna capable of maintaining a high directivity gain can be realized, and is useful as an in-vehicle radar or satellite communication antenna.
  • variable dielectric constant dielectric that constitutes each variable phase shifter can be uniformly formed of liquid crystal or a material containing liquid crystal, and dielectric loss can be reduced as much as possible. Therefore, it is possible to provide a phased array antenna that can maintain a high directional gain with little beam shape collapse even during beam tilt, and is useful as an on-vehicle radar, satellite communication antenna, millimeter wave sensor, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

 印加電界により誘電率が変化する可変誘電率誘電体を用いて構成された可変移相器を有するフェーズドアレイアンテナにおいて、可変移相器を右側,左側チルト用のグループに分けて独立に移相量を制御する構成とした場合に、不整合の要因となる直流阻止素子を不要とし、ビームチルト時にビーム形状の崩れが少ないものを実現する。  少なくとも接地導体層(117)、絶縁体層(118)、主導体層(119)、可変誘電率誘電体層(120)、副導体層(121)をこの順に積層して形成した積層構造を有する給電移相部(130)を備え、給電移相部には主導体層上の線路と面的に重なる領域に副導体層上に線路を有する伝播特性可変線路(105)を設ける。主導体層と副導体層間にバイアス電圧を印加することにより、伝播特性可変線路部分の可変誘電率誘電体の誘電率を変化させ伝搬特性を制御する。これにより、給電線路に直列に挿入される直流阻止素子を不要とする。

Description

明 細 書
フェーズドアレイアンテナ 技術分野
[0001] 本発明は、フェーズドアレイアンテナに関するものである。
より詳細には、印加電界により誘電率が変化する可変誘電率誘電体を用いて構成 された可変移相器を有するフェーズドアレイアンテナにお 、て、ビームチルト時でもビ ーム形状の崩れが少なぐ高い指向性利得が維持できるアンテナを実現可能とする 技術に関する。
背景技術
[0002] 1)まず、背景技術 1につ 、て説明する。
従来、印加電界により誘電率が変化する可変誘電率誘電体を用いて構成された可 変移相器を有するフェーズドアレイアンテナとして、可変移相器を右側チルト用、およ び左側チルト用の 2つのグループに分けてこれらの移相量を互いに独立に制御する ことにより、各アンテナ素子へ分配する電力のバラツキと、移相のバラツキとを抑える ことにより、ビームチルト時にも先鋭なビーム形状を崩さず高い指向性利得を維持す ることができるものがある(例えば、特許文献 1の図 4参照)。
[0003] また、従来、印加電界により誘電率が変化する可変誘電率誘電体を用いて構成さ れた可変移相器を有するフェーズドアレイアンテナの構造として、例えば、可変移相 器内の先端開放線路の支持絶縁体として可変誘電率誘電体を用いることにより、伝 播特性可変線路を構成し、伝播特性可変線路導体と、接地導体との間に電圧を印 加することで、伝播特性可変線路の伝搬特性を変化させ、可変移相器の移相量を制 御できるものがある(例えば、特許文献 2参照)。
[0004] さらに、可変移相器領域を 2層のマイクロストリップ線路構造として、一方の層の支 持絶縁体として可変誘電率誘電体を用いることで、伝播特性可変線路を構成し、両 層の線路導体間をスルーホールにて接続し (特許文献 1の実施の形態 1および図 1 参照)、あるいは両層の線路導体間を、電磁界結合にて接続し (特許文献 1の実施の 形態 2および図 2参照)、伝播特性可変線路導体と、接地導体との間に電圧を印加 することにより、伝播特性可変線路の伝播特性を変化せしめて可変移相器の移相量 を制御できるものがある。
[0005] ここで、前記従来のフェーズドアレイアンテナについて、図を用いて説明する。
図 3は、可変誘電率誘電体の電界印加時の誘電率変化特性の一例を示す図、図 4 は、可変誘電率誘電体を用いた可変移相器の斜視図である。
[0006] 一般に、強誘電体等の可変誘電率誘電体は、図 3に示すように、印加する電界に より誘電率が変化する性質を有して ヽる。この可変誘電率誘電体を用いて可変移相 器を構成するには、例えば図 4に示すように、導波路用接地導体 401上の導波路用 絶縁体 402上に導波路用導体を積層したマイクロストリップ線路構造において、入出 力線路 403a, 403bを有するノ、イブリツドカブラ 404を作製するとともに、ハイブリッド 力ブラ 404の 1対のアイソレーションポートに同じ長さの先端開放線路 405を接続す るが、この先端開放線路を形成する導波路用絶縁体 406のみに可変誘電率誘電体 を使用すれば良い。
[0007] ここで、可変移相器 400の導波路用導体 403〜405と、接地導体 401との間にバイ ァス電圧を印加することによりバイアス電圧が作る電界 (TEMモード)と、マイクロスト リップ線路を伝播する高周波電力が作る電界 (準 TEMモード)とは、これらの向きが、 略平行となることから、先端開放線路 405は、バイアス電圧により伝播する高周波電 力の伝播特性を制御することが可能な伝播特性可変線路 405として機能する。
[0008] なお、可変誘電率誘電体 406上の導波路用導体 405と導波路用接地導体 401と の間に印加するバイアス電圧は、可変移相器 400を構成する導波路用導体 403〜4 05がすべて直流的に接続されている連続導体であるので、これら導波路用導体上 の任意の位置から入力すれば良 、。
[0009] ここで、入出力線路 403およびハイブリッド力ブラ 404を形成した領域の導波路用 絶縁体は、印加電界により誘電率が変化しない通常の絶縁体であることから、高周 波電力の伝播特性が変化しない伝播特性固定線路として機能する。
[0010] このように構成された可変移相器 400では、入出力線路 403の一方の入出力線路 403aから入力された高周波信号は、ハイブリッド力ブラ 404を介して 2つの伝播特性 可変線路 405に出力される。 2つの伝播特性可変線路 405の開放先端で反射され た高周波信号は、印加されたノ ィァス電圧を反映した伝播位相遅延を受けてハイブ リツドカブラ 404に再入力され、ハイブリッド力ブラ 404を通った高周波信号は、他方 の入出力線路 403bにおいて互いに合成されて出力される。
[0011] また、他方の入出力線路 403bから高周波信号が入力された場合には、入出力が 逆転するだけで、高周波信号は、同様の伝播位相遅延を受けて一方の入出力線路 403a〖こ出力される。
[0012] そして、伝播特性可変線路 405は、ハイブリッド力ブラ 404を介して入出力線路 40 3にも直流的に接続されているので、複数の可変移相器 400を相互に直列に接続し て使用する場合でも、互いに接続された複数の可変移相器の連続する導波路用導 体上の任意の位置にバイアス電圧を印加することで、全ての可変移相器に同じバイ ァス電圧が同時に加わり、よってバイアス回路の構成が簡単な、多段可変移相器を 実現することが可能となる。
[0013] つぎに、上記の可変移相器を用いたフェーズドアレイアンテナの原理を、以下に示 す。
図 5は、上述の可変移相器を用いたフェーズドアレイアンテナの原理を示して 、る。 以下、本アンテナを受信に用いる場合における動作を説明する。
W1〜W4は、アンテナに到来する到来波の波面を表しており、各波面は、 W1から
W2、 W2から W3、 W3から W4へと空間中を伝播する間に、それぞれ Φの移相(伝 播位相遅延)を受ける。
[0014] 今、波面 W1に注目すると、アンテナ素子 501で受信される信号成分は、空間中で は移相を受けず、給電移相部 500内では、 3つの可変移相器 505, 506, 507を通 ることで、 Φずつ移相を受け、合計 3 Φの移相量にて給電端子 509へ到達する。
[0015] また、アンテナ素子 502で受信される信号成分は、空間中で W1から W2の位置へ 伝播する間に、 Φの移相を受け、給電移相部 500内では、 2つの可変移相器 506, 5 07を通ることで、 Φずつ移相を受け、合計 3 Φの移相量にて給電端子 509へ到達す る。
[0016] また、アンテナ素子 503で受信される信号成分は、空間中で W1から W3の位置へ 伝播する間に、 2Φの移相を受け、給電移相部 500内では、 1つの可変移相器 508 を通ることで、 Φの移相を受け、合計 3 Φの移相量にて給電端子 509へ到達する。
[0017] さらに、アンテナ素子 504で受信される信号成分は、空間中で W1から W4の位置 へ伝播する間に、 3 Φの移相を受け、給電移相部 500内では、 1つの可変移相器も 通らないので移相を受けず、合計 3 Φの移相量にて、給電端子 509へ到達する。
[0018] つまり、上記のフェーズドアレイアンテナは、波面 W1を有する到来電波を給電端子 509にお 、て同相で合成する機能を有し、よって図中に Θで示す到来方向にメイン ビームを形成する。即ち、 Θで示す到来方向に指向性を有するアンテナとして動作 する。
[0019] そして、給電移相部 500内の移相器 505〜508は、全て同一特性を有する可変移 相器であることから、同じ制御電圧値に対して同じ移相量が得られ、よって如何なる 制御電圧値に対しても、 1つのメインビームを有する。さらに、給電回路部 500は直流 的に接続された連続導体で構成されているので、 1つのバイアス電圧 510によって、 メインビーム方向を変えることが可能となっている。
[0020] なお、図 5からわ力るように、メインビーム方向 Θは、可変移相器の移相量 Φとアン テナ素子間隔 dにより、
Θ =arccos ( / d)
t 、う関係を満たすものとなって 、る。
[0021] 次に上記のビーム制御の原理を有しながら、可変移相器を、右側チルト用、および 左側チルト用の 2つのグループに分けて互いに独立に移相量を制御することで、各 アンテナ素子へ分配する電力のバラツキと、移相のバラツキとを抑え、よってビーム チルト時にも先鋭なビーム形状を崩さず高い指向性利得を維持できる方式の例とし て、特許文献 1の図 4に示されたフェーズドアレイアンテナについて、図 6を用いて説 明する。
[0022] 図 6は、特許文献 1の図 4に開示されたフェーズドアレイアンテナの可変移相器の 酉己置図であり、図【こお!ヽて、 600ίま給電移ネ目咅、 601ίま給電端子、 602 (602a〜60 2d)は右側チルト用の可変移相器グループ、 603 (603a〜603d)は左側チルト用の 可変移相器グループ、 604は右側チルト用バイアス電圧、 605は左側チルト用バイ ァス電圧、 606 (606a〜606d)はアンテナ素子、 607は高周波信号を通過させると ともに、右側チルト用バイアス電圧と、左側チルト用バイアス電圧とを分離するための 直流阻止素子、 608はバイアス電圧を各可変移相器に印加するとともに、高周波信 号を阻止するための高周波阻止素子である。
[0023] 前述の図 5に示したフェーズドアレイアンテナの原理では、可変移相器は、左右非 対称に配置されていたが、この構成では、給電端子から各アンテナ素子までの間に 設けられる可変移相器の個数が異なるものとなっており、また、各可変移相器には、 誘電体損失や、導体損失による通過損失、さらに不整合による反射損失が存在する ために、各アンテナ素子に分配される電力と、移相にバラツキが生じてしまい、左右 対称なビーム形状を得ることが困難であった。
[0024] この問題を解決する方法として、図 6に示す、特許文献 1の図 4と同様の構成では、 給電端子 601から各アンテナ素子 606a〜606dまでの間に設ける可変移相器を、す ベての経路について同一種類、かつ同数とするとともに、可変移相器の配置を、左 右対称としている。
[0025] そして、ビーム制御にっ 、ては、全可変移相器を、右側チルト用の可変移相器、お よび左側チルト用の可変移相器の 2つのグループに分け、それぞれのグループを、 独立したバイアス電圧 604と、 605にて制御する方法を採って 、る。
[0026] なお、図 6からわ力るように、右側チルト用可変移相器の移相量を R、左側チルト 用可変移相器の移相量を Φ Lとすると、波面 W1が給電端子 601に到達するまでに 空間中と、給電移相部 600内とで受ける移相量の合計は、
[0027] アンテナ素子 606aで受信した成分につ!、ては、
OX ( R- L) [空間中] +3X R+OX L [給電移相部内] =3 R アンテナ素子 606bで受信した成分にっ 、ては、
IX ( R- L) [空間中] +2X R+1X L [給電移相部内] =3 R アンテナ素子 606cで受信した成分にっ 、ては、
2X ( R- L) [空間中] + 1X R+2X L [給電移相部内] =3 R アンテナ素子 606dで受信した成分にっ 、ては、
3X ( R- L) [空間中] +OX R+3X L [給電移相部内] =3 R となり、全て 3 Rの同相で合成されることから、図 5の場合と同様に、メインビーム方 向 Θは、アンテナ素子間隔を dとすると、
0 =arccos ( ( R- L) /ά)
t 、う関係を満たすものとなって 、る。
[0028] 次に、上記の原理を有する、特許文献 2、および特許文献 1のフェーズドアレイアン テナの構造について、図 7を用いて説明する。
図 7 (a)は特許文献 2に開示された多層構造によるフェーズドアレイアンテナの平面 図と、断面図である。
図 7 (a)において、図中、最も上側に位置するのはアンテナを放射面側から見た様 子を示す平面図である。以下、図中の下側に向かって順に平面図の A— A線, B— B線, C— C線でアンテナを切断したときの断面の様子を示す A— A線断面図, B-B 線断面図, C— C線断面図が示されている。
[0029] 即ち、 A— A線断面図, B— B線断面図, C C線断面図は、特許文献 2の図 4に示 すアクティブフェイズドアレイアンテナの断面図を、各領域ごとの断面に分けてより詳 細に表したものとなっている。
[0030] また、図 7 (a)中の平面図は、図 6の破線部 609の領域のみを抜き出したものであり 、平面図の表示方向は、図 6を時計回り方向に 90度回転した向きとなっている。
[0031] さらに、該平面図には、図 6に示した移相器 602に含まれる、つまり図 4に示したノヽ イブリツドカプラ 404、伝播特性可変線路 405に対応するパターン 704、 705、および 図 6に示した直流阻止素子 607に対応するパターン 706、さらに図 6に示した高周波 阻止素子 608に対応するパターン 707が、破線にて示されている。
[0032] また、該平面図において、 708はアンテナ素子、 709は入力端子、 710はバイアス 端子、 711は給電線路パターン、 712は給電線路パターン 711と、アンテナ素子 708 との結合窓を表しており、これらの領域は、ハイブリッド力ブラ 704の領域とともに、バ ィァス電圧が印加されても高周波に対する伝播特性が変化しない伝播特性固定線 路となっている。
[0033] 一方、図 7 (a)中の A— A線断面図, B— B線断面図, C C線断面図には、アンテ ナを構成する層構造と、その部材種 (構成部材)が示してある。
[0034] これら A— A線断面図, B—B線断面図, C— C線断面図において、 713〜716は アンテナ部を構成するための平面導波路構造を構成しており、 713はアンテナ素子 支持用の絶縁体層、 714はアンテナ素子となった導体層、 715は平面導波路構造を 構成するために必要な絶縁体用の空気層、 716は平面導波路構造を構成するため に必要な接地導体層である。
[0035] また、 716〜719は給電移相部を構成するための平面導波路構造を構成しており 、 716は平面導波路構造を構成するために必要な接地導体層であり、これはアンテ ナ部と共用する。また、 717は平面導波路構造を構成するために必要な絶縁体用の 空気層、 718は給電移相部の各パターンとなった導体層、 719は給電移相部パター ン支持用の絶縁体層、 720は伝播特性可変線路用の可変誘電率誘電体である。
[0036] なお、 714, 716, 718の 3つの導体層については、各層のパターン形状がわかり 易いように、図 7 (b)に各層ごとに独立して表示している。
[0037] 上記のように構成された特許文献 2に開示されたフェーズドアレイアンテナでは、 A —A線断面図, B— B線断面図, C— C線断面図に示すように、絶縁体層 713,導体 層 714,空気層 715,接地導体層 716の 4層により、アンテナ部用の第 1のインバー テッド型 (別称:サスペンデッド型)マイクロストリップ構造が、接地導体層 716,空気 層 717,導体層 718,絶縁体層 719の 4層により、給電移相部用の第 2のインバーテ ッド型マイクロストリップ構造が、それぞれ構成されて 、る。
[0038] また、平面図に示すように、アンテナ素子 708 (A— A線断面図における 714)と、 給電線路パターン 711 (A— A線断面図における 718)とは、アンテナ部と給電移相 部とで共用する接地導体層 716上に形成された結合窓 712 (A— A線断面図におけ る結合窓 721)を介して、互いに電磁界的に結合し、高周波電力の受け渡しを行うよ うになつている。
[0039] さらに、バイアス電圧は、これを導体層 718上に作製したノ ィァス端子 710と、接地 導体層 716との間に印加することにより、高周波阻止素子パターン 707,給電線路パ ターン 711,ハイブリッド力ブラパターン 704を経由して、伝播特性可変線路 705に 印加される。
[0040] そして、伝播特性可変線路 705を伝播する高周波電力が作る電界(準 TEMモード )と、バイアス電圧が作る電界 (TEMモード)との向き力 互いに略平行となることから 、バイアス電圧により伝播特性可変線路 705上を伝播する高周波電力の伝播特性を 制御することが可能となって 、る。
[0041] また、図 8 (a)は、特許文献 1の実施の形態 1に開示された多層構造によるフェーズ ドアレイアンテナの平面図と、断面図である。
[0042] 図 8 (a)にお ヽて、図中、最も上側に位置するのはアンテナを放射面側から見た様 子を示す平面図である。以下、図中の下側に向かって順に平面図の A— A線, B—
B線, C— C線でアンテナを切断したときの断面の様子を示す A— A線断面図, B-B 線断面図, C— C線断面図が示されている。
[0043] 即ち、 A— A線断面図, B— B線断面図, C C線断面図は、特許文献 2の図 1に示 されたアクティブフェイズドアレイアンテナの、アンテナ部の構造をカ卩え、各領域ごと の断面に分けてより詳細に表したものとなっている。
[0044] ここで、図 8 (a)中の平面図の表示領域については、図 7のそれと同様となっている また、該平面図には、ハイブリッド力ブラのパターン 804、伝播特性可変線路のパタ ーン 805、直流阻止素子のパターン 806、高周波阻止素子のパターン 807が、破線 にて表されている。
[0045] さらに、該平面図において、 808はアンテナ素子、 809は入力端子、 810はバイァ ス端子、 811は給電線路パターン、 812は給電線路パターン 811と、アンテナ素子 8 08との結合窓、 813は給電線路パターン 811と、伝播特性可変線路パターン 805と を接続するスルーホールを表しており、これらの領域は、ハイブリッドカプラ 804の領 域とともに、バイアス電圧が印加されても高周波に対する伝播特性が変化しない、伝 播特性固定線路となって 、る。
[0046] 一方、図 8 (a)中の A— A線断面図, B— B線断面図, C C線断面図には、アンテ ナを構成する層構造と、その構成部材が示してある。
[0047] これら A— A線断面図, B—B線断面図, C— C線断面図において、 814〜817は アンテナ部を構成するための平面導波路構造を構成しており、 814はアンテナ素子 支持用の絶縁体層、 815はアンテナ素子となった導体層、 816は平面導波路構造を 構成するために必要な絶縁体用の空気層、 817は平面導波路構造を構成するため に必要な接地導体層である。
[0048] また、 819〜821は伝播特性可変線路以外の給電移相部を構成するための平面 導波路構造を構成しており、 819は伝播特性可変線路以外の給電移相部の各バタ ーンとなった導体層、 820は平面導波路構造を構成するために必要な絶縁体用の 誘電体層、 821は平面導波路構造を構成するために必要な接地導体層である。
[0049] さらに、 821〜823は伝播特性可変線路を構成するための平面導波路構造を構成 しており、 821は平面導波路構造を構成するために必要な接地導体層であり、これ は給電移相部と共用する。また、 822は平面導波路構造を構成するために必要な可 変誘電率誘電体層、 823は伝播特性可変線路を作製する導体層である。
[0050] また、 818は、アンテナ部の平面導波路構造と、給電移相部の平面導波路構造と を互いに接続する中間層である空気層である。
[0051] なお、 815, 817, 819, 821, 823の 5つの導体層【こつ!ヽて ίま、各層のノターン形 状がわ力り易 、ように、図 8 (b)に各層ごとに独立して表示して 、る。
[0052] 上記のように構成された特許文献 1の実施の形態 1に開示されたフェーズドアレイ アンテナでは、 A— A線断面図, B— B線断面図, C C線断面図に示すように、絶 縁体層 814,導体層 815,空気層 816,接地導体層 817の 4層により、アンテナ部用 の第 1のインバーテッド型 (別称:サスペンデッド型)マイクロストリップ構造力 導体層 819,誘電体層 820,接地導体層 821の 3層により、伝播特性可変線路以外の給電 移相部用の第 2のマイクロストリップ構造力 さらに接地導体層 821,可変誘電率誘 電体層 822,導体層 823の 3層により、伝播特性可変線路用の第 3のマイクロストリツ プ構造が、それぞれ構成されている。
[0053] また、平面図に示すように、アンテナ素子 808 (A— A線断面図における 815)と、 給電線路パターン 811 (A— A線断面図における 819)とは、アンテナ部の接地導体 層 817上に形成された結合窓 812 (A— A線断面図における 824)を介して、互いに 電磁界的に結合し、高周波電力の受け渡しを行い、さらに給電線路パターン 811 (A A線断面図における 819)と、伝播特性可変線路パターン 805 (C C線断面図に おける 823)とは、スルーホール 813 (B— B線断面図における 825)を介して、結合さ れている。 [0054] さらに、バイアス電圧は、導体層 819上に作製したバイアス端子 810と、接地導体 層 821との間に、印加することにより、高周波阻止素子パターン 807,給電線路バタ ーン 811,ハイブリッド力ブラパターン 804を経由して、伝播特性可変線路 805に印 加される。
[0055] そして、伝播特性可変線路 805を伝播する高周波電力が作る電界(準 TEMモード )と、バイアス電圧が作る電界 (TEMモード)との向き力 互いに略平行となることから 、バイアス電圧により、伝播特性可変線路 805上を伝播する高周波電力の伝播特性 を、制御することが可能となっている。
[0056] また、図 9 (a)は、特許文献 1の実施の形態 2に開示された多層構造によるフェーズ ドアレイアンテナの平面図と、断面図である。
図 9 (a)において、図中、最も上側に位置するのはアンテナを放射面側から見た様 子を示す平面図である。以下、図中の下側に向かって順に平面図の A— A線, B— B線, C— C線でアンテナを切断したときの断面の様子を示す A— A線断面図, B-B 線断面図, C— C線断面図が示されている。
[0057] 即ち、 A— A線断面図, B— B線断面図, C C線断面図は、特許文献 2の図 2に示 された移相器の構造に、アンテナ部の構造を加え、各領域ごとの断面に分けてより詳 細に表したものとなっている。
[0058] ここで、平面図の表示領域については、図 7のそれと同様となっている。
また、平面図には、ハイブリッド力ブラのパターン 904、伝播特性可変線路のパター ン 905が破線にて表されて!/、る。
[0059] さらに、平面図において、 906はアンテナ素子、 907は入力端子、 908はバイアス 端子、 909は給電線路パターン、 910は給電線路パターン 909とアンテナ素子 906 との結合窓、 911は直流阻止素子に対応するパターン、 912は直流阻止素子パター ン 911と伝播特性可変線路パターン 905とを互 、に電磁界的に結合する結合窓、 9 13は高周波阻止素子に対応するパターンを表しており、これらの領域はハイブリッド 力ブラ 904の領域とともに、バイアス電圧が印加されても高周波に対する伝播特性が 変化しない、伝播特性固定線路となっている。
[0060] 一方、図 9 (a)中の A— A線断面図, B— B線断面図, C C線断面図には、アンテ ナを構成する層構造と、その構成部材が示してある。
これら A— A線断面図, B—B線断面図, C— C線断面図において、 914〜917は アンテナ部を構成するための平面導波路構造を構成しており、 914はアンテナ素子 支持用の絶縁体層、 915はアンテナ素子を作製する導体層、 916は平面導波路構 造を構成するために必要な絶縁体用の空気層、 917は平面導波路構造を構成する ために必要な接地導体層である。
[0061] また、 919〜921は伝播特性可変線路以外の給電移相部を構成するための平面 導波路構造を構成しており、 919は伝播特性可変線路以外の給電移相部の各バタ ーンを作製する導体層、 920は平面導波路構造を構成するために必要な絶縁体用 の誘電体層、 921は平面導波路構造を構成するために必要な接地導体層である。
[0062] さら〖こ、 921〜923は伝播特性可変線路を構成するための平面導波路構造を構成 しており、 921は平面導波路構造を構成するために必要な接地導体層であり、これ は給電移相部と共用する。また、 922は平面導波路構造を構成するために必要な可 変誘電率誘電体層、 923は伝播特性可変線路を作製する導体層である。
[0063] また、 918はアンテナ部の平面導波路構造と、給電移相部の平面導波路構造とを 接続する中間層である空気層である。
[0064] なお、 915, 917, 919, 921, 923の 5つの導体層【こつ!/、て ίま、各層のノターン形 状がわ力り易 、ように、図 9 (b)に各層ごとに独立して表示して 、る。
[0065] 上記のように構成された特許文献 1の実施の形態 2に開示されたフェーズドアレイ アンテナでは、 A— A線断面図, B— B線断面図, C C線断面図に示すように、絶 縁体層 914,導体層 915,空気層 916,接地導体層 917の 4層により、アンテナ部用 の第 1のインバーテッド型 (別称:サスペンデッド型)マイクロストリップ構造力 導体層 919,誘電体層 920,接地導体層 921の 3層により、伝播特性可変線路以外の給電 移相部用の第 2のマイクロストリップ構造力 さらに接地導体層 921,可変誘電率誘 電体層 922,導体層 923の 3層により、伝播特性可変線路用の第 3のマイクロストリツ プ構造が構成されている。
[0066] また、平面図に示すように、アンテナ素子 906 (A— A線断面図における 915)と、 給電線路パターン 909 (A— A線断面図における 919)とは、アンテナ部の接地導体 層 917上に形成された結合窓 910 (A— A線断面図における 924)を介して、互いに 電磁界的に結合し、高周波電力の受け渡しを行い、さらに給電線路パターン 909 (A A線断面図における 919)と、伝播特性可変線路パターン 905 (C C線断面図に おける 923)とは、平面導波路構造を構成するために必要な接地導体層 921 (給電 移相部と共用)上に形成された結合窓 912 (B— B線断面図における 926)を介して、 直流阻止素子に対応するパターン 911 (B— B線断面図における 925)と、伝播特性 可変線路パターン 905 (C— C線断面図における 923)とが、互いに電磁界的に結合 し、可変移相器の制御電圧である直流 (バイアス電圧)を阻止するとともに高周波電 力の受け渡しを行うようになって 、る。
[0067] さらに、バイアス電圧は、導体層 923上に作製したバイアス端子 908と、接地導体 層 921間に印加することにより、高周波阻止素子パターン 913を経由して、伝播特性 可変線路 905に印加される。
[0068] そして、伝播特性可変線路 905を伝播する高周波電力が作る電界(準 TEMモード )と、バイアス電圧が作る電界 (TEMモード)の向き力 略平行となることから、バイァ ス電圧により伝播特性可変線路 905上を伝播する高周波電力の伝播特性を、制御 することが可能となって 、る。
[0069] 2)次に、背景技術 2について説明する。
印加電圧により誘電率が変化する可変誘電率誘電体を用いて構成された可変移 相器は、その可変誘電率誘電体が、誘電体基板と見なし得るマイクロストリップ線路と なる。力かるマイクロストリップ線路と、地導体 (グランド面)となる金属電極との間に、 制御電圧を加えることにより、可変誘電率誘電体はその分子の配向が変化する。
[0070] この場合、可変誘電率誘電体には分子配向による誘電異方性があるため、分子の 配向が変化すると、マイクロストリップ線路を伝播する電磁波に対する誘電率が変化 する。電磁波が長さ 1のマイクロストリップ線路を伝播するときの、伝播遅延に基づく位 相遅れ φは、
= 2 π ί·^ ( ε eff) -l/c - - - (l)
但し、 ε eff :マイクロストリップ線路の等価誘電率
f :マイクロストリップ線路を伝播する電磁波の周波数 c :真空中の光の速度
で表される。
[0071] この可変移相器を有する従来のフェーズドアレイアンテナとして、可変移相器を、右 側チルト用、および左側チルト用の 2つのグループに分けてこれらの移相量を互いに 独立に制御することにより、各アンテナ素子へ分配する電力のバラツキと、移相のバ ラツキとを抑え、よってビームチルト時にも先鋭なビーム形状を崩さず、高い指向性利 得を維持できるものがある (例えば、特許文献 1参照)。
[0072] また、印加電圧により誘電率が変化する可変誘電率誘電体を用いて構成された可 変移相器を有する従来のフェーズドアレイアンテナの構造として、例えば、可変移相 器内の先端開放線路の支持絶縁体として、可変誘電率誘電体を用いて伝播特性可 変線路を構成し、伝播特性可変線路導体と、接地導体との間に電圧を印加すること により、伝播特性可変線路の伝搬特性を変化させ、可変移相器の移相量を制御する ものがある(例えば、特許文献 2参照)。
[0073] さらに、可変移相器領域を 2層のマイクロストリップ線路構造として、一方の層の支 持絶縁体として可変誘電率誘電体を用いて伝播特性可変線路を構成し、両層の線 路導体間をスルーホールにて接続し、あるいは両層の線路導体間を電磁界結合に て接続し、伝播特性可変線路と、接地導体との間に電圧を印加することにより、伝播 特性可変線路の電磁波に位相遅延を生じさせて、可変移相器の移相量を制御する ものがある(例えば、特許文献 1参照)。
[0074] 一方、可変誘電率誘電体としてネマティック液晶を利用した可変移相器は、マイク 口波帯可変移相器として、 D. Dolfi, M. Labeyrie, P. Joffre and P. H uiqardにより報告されて ヽる(非特許文献 1参照)。
[0075] 本非特許文献 1では、ネマティック液晶を 2枚のセラミックス基板間に挟み、一方の セラミックス基板上に形成した主導体 (線路)と、他方のセラミックス基板上に形成した 地導体との間に、制御電圧を印加することにより、前記ネマティック液晶からなるマイ クロストリップ線路を伝搬する電磁波に位相遅延を生じることで、移相器を実現できる ことを示している。
[0076] かかる移相器では、所定の時間間隔で放射ビームを走査するためには、液晶の誘 電率を所定の速度で変化させる必要がある。
[0077] 電圧オフ時の液晶分子の電圧応答性を向上させるためには、可変移相器におい て、液晶表示装置の分野で公知である液晶に代えて、液晶を榭脂中に分散させた榭 脂複合体を、 2つの基板上の導体間に配置することにより、これを実現する方法があ る (例えば、特許文献 3参照)。
[0078] また、液晶を含む可変移相器を共振器型移相器とし、その液晶層を、平板状部材
、あるいは多孔質膜に液晶を含浸させた繊維誘電体により構成する例がある(例えば
、特許文献 4参照)。
[0079] 可変誘電率誘電体を用いて可変移相器を構成するには、例えば図 19に示すよう に、導波路用接地導体 401上の導波路用絶縁体 402上に導波路用導体を積層した マイクロストリップ線路構造において、入出力線路 403a, 403bを有するハイブリッド カプラ 404を作製するとともに、ハイブリッドカプラ 404の 1対のアイソレーションポート に同じ長さの先端開放線路 405を接続し、この先端開放線路を形成する領域の導波 路用絶縁体 406のみに、可変誘電率誘電体を使用すれば良い。
[0080] ここで、可変移相器 400の導波路用導体 403〜405と、接地導体 401との間にバイ ァス電圧を印加することにより、バイアス電圧が作る電界 (TEMモード)と、マイクロス トリップ線路を伝播する電磁波が作る電界 (準 TEMモード)とは、これらの向きが互い に略平行となることから、先端開放線路 405は、バイアス電圧により伝播する電磁波 の位相を制御することが可能な伝播特性可変線路 405として機能する。
[0081] このように構成された可変移相器 400では、入出力線路 403の一方の入出力線路 403aから入力された電磁波は、ノ、イブリツドカブラ 404を介して 2つの伝播特性可変 線路 405〖こ出力される。 2つの伝播特性可変線路 405の開放先端で反射された電 磁波は、印加されたバイアス電圧を反映した伝播位相遅延を受けてハイブリッドカブ ラ 404に再入力され、ハイブリッド力ブラ 404を通った電磁波は、他方の入出力線路 403bにお!/、て互いに合成されて出力される。
[0082] そして、伝播特性可変線路 405は、ハイブリッド力ブラ 404を介して入出力線路 40 3にも直流的に接続されているので、複数の可変移相器 400を相互に直列に接続し て使用する場合でも、互いに接続された複数の可変移相器の連続する導波路用導 体上の任意の位置にバイアス電圧を印加することで、全ての可変移相器に同じバイ ァス電圧が同時に加わり、よってバイアス回路の構成が簡単な多段可変移相器を実 現することが可能となる。
特許文献 1:特開 2004— 23228号公報
特許文献 2:特開 2000 - 236207号公報
特許文献 3:特開 2000 - 315902号公報
特許文献 4:特開 2003— 17912号公報
非特許文献 1 : D. Dom, M. Labeyrie, P. Joffre and P. Huiqard, " Liquid crystal microwave phase shifter, Electron. Lett. , Vol. 2 9, No. 10, pp. 926 - 927, 1999
発明の開示
発明が解決しょうとする課題
[0083] し力しながら、前記背景技術 1で述べた従来のフェーズドアレイアンテナの構成で は、ビームチルト時でもビーム形状が崩れずに高い指向性利得を保つことが困難で あるという課題 1があった。
[0084] つまり、前記従来のフェーズドアレイアンテナでは、左右対称なビーム形状で高 ヽ 指向性利得を実現するために、図 6に示したように可変移相器を、右側チルト用の可 変移相器グループと、左側チルト用の可変移相器グループとに分けて、互いに独立 に移相量を制御可能な構成としている力 両バイアス電圧を直流的に分離するため に、特許文献 2および特許文献 1の実施の形態 1に開示された給電移相部では、給 電線路パターン上に直流阻止素子用のパターンが必要となる。また、特許文献 1の 実施の形態 2に開示された給電移相部では、給電線路と伝播特性可変線路とを互!、 に電磁界的に結合する直流阻止素子用のパターンが必要となる。
[0085] し力しながら、これらの場合、高周波信号を伝播させる線路上に多数挿入された直 流阻止素子における不整合が累積してしまうので、たとえビームチルト量がゼロ、即 ち、ビームが正面方向にあるときに高 ヽ指向性利得を有するように給電移相部を設 計したとしても、それは単に直流阻止素子による不整合累積を、素子の追加や線路 パラメータの最適化によりキャンセルしているに過ぎないので、ビームチルト時に不整 合の累積状態が変化すると、不整合累積のキャンセル状態が崩れ、よってビーム形 状が崩れてしまって高い指向性利得を維持することが困難であった。
[0086] また、本件発明者らは、前記背景技術 2で説明した従来技術を検討した結果、以下 の問題点 (課題 2)を見出した。
従来の可変移相器として、液晶または、液晶を含む材料、すなわち、液晶と榭脂と の複合体、あるいは、液晶を平板状部材あるいは多孔質膜に含浸させた繊維誘電体 を、可変誘電率誘電体層として用いる場合に、可変誘電率誘電体層に一様に液晶 を注入する必要があるが、前記背景技術ではこの点を可能とする方策は全く示され ていない。
[0087] 従って、前記背景技術をそのまま実施したとすると、位相特性がばらつき、複数の 可変移相器の可変誘電率特性にばらつきを生じ、ビームチルト時でもビーム形状が 崩れたり、ビーム指向性が低下するという問題があった。
[0088] 具体的には、可変移相器となる容器に液晶を注入する際、気泡が入り、この状態で 電界が印加されると、電界に応じて気泡が移動するため、個々の可変移相器の位相 特性にばらつきが生じる。また液晶に配向処理を行う場合、注入後にその方向を一 定にできない。また、液晶と榭脂との複合体を形成する場合には、その反応を同じ割 合で実現できない、という問題があった。
[0089] このように、印加電圧により誘電率が変化する可変誘電率誘電体を用いて構成され た可変移相器を複数有するフェーズドアレイアンテナにお 、て、ビームチルト時でも ビーム形状の崩れが少なぐ高い指向性利得が維持できるアンテナを実現するため には、
第一に、給電移相部を複数の孤立した可変誘電率誘電体層とする、
第二に、同一の可変誘電率特性を有する可変移相器を形成する、
必要がある。
[0090] また、可変誘電率誘電体はその材料の特性に関して、低誘電損失の材料が好まし い。さらに、可変誘電率誘電体と通常の基板である固定誘電率誘電体との電磁結合 性がよい材料、すなわち、可変誘電率誘電体の誘電率が基板の誘電率に近い材料 が好ましい。可変誘電率誘電体に印加する電圧は、実際のアンテナ用途にも依存す る力 100V以下の低電圧駆動で誘電率を可変できる材料が望ま 、。
[0091] 本発明は、前記従来の課題 1を解決するためになされたもので、印加電界により誘 電率が変化する可変誘電率誘電体を用いて構成された可変移相器を有するフエ一 ズドアレイアンテナにおいて、高い指向性利得を実現するために、図 6に示すように、 可変移相器を、右側チルト用の可変移相器グループと、左側チルト用の可変移相器 グループとに、分けて互いに移相量を独立に制御する構成とした場合に、不整合の 要因となる直流阻止素子を不要とし、よってビームチルト時にもビーム形状の崩れが 少なぐ高い指向性利得を維持できるフェーズドアレイアンテナを提供することを目的 とする。
[0092] また、本発明は、前記従来の課題 2に鑑みて案出されたものであり、その目的は、フ ヱーズドアレイアンテナを構成する複数の可変移相器の印加電圧可変誘電率誘電 体として、特に液晶、または液晶を含む材料、たとえば液晶と無機材料との複合体、 または液晶と有機材料である樹脂との複合体、あるいは、液晶を平板状部材あるい は多孔質膜に含浸させた繊維誘電体、を用いたものにおいて、複数の可変移相器 間の可変誘電率誘電体層の誘電率のばらつきを低減し、ビームチルト時にもビーム 形状の崩れが少なぐ高い指向性利得を維持できるフェーズドアレイアンテナを提供 することにある。
課題を解決するための手段
[0093] 前記従来の課題 1を解決するために、本願の請求項 1の発明に力かるフェーズドア レイアンテナは、印加電界により誘電率が変化する可変誘電率誘電体を用いて構成 された可変移相器を有するフェーズドアレイアンテナにお ヽて、少なくとも接地導体 層、絶縁体層、主導体層、可変誘電率誘電体層、副導体層をこの順に積層して形成 した積層構造を有する給電移相部を備えた、ことを特徴とするものである。
[0094] また、本願の請求項 2の発明に力かるフェーズドアレイアンテナは、請求項 1に記載 のフェーズドアレイアンテナにおいて、前記給電移相部は、高周波電力の伝播特性 を変化させな!/ヽ伝播特性固定線路と、高周波電力の伝播特性を可変させる伝播特 性可変線路とを有する、ことを特徴とするものである。
[0095] また、本願の請求項 3の発明に力かるフェーズドアレイアンテナは、請求項 2に記載 のフェーズドアレイアンテナにおいて、前記伝播特性固定線路は、前記主導体層上 に設けた線路に相当する前記副導体層上の領域に線路を有さず、該主導体層上に 設けた線路を伝播する高周波電力が作る電界を、前記主導体層と前記接地導体層 間に集中して伝播させ、前記伝播特性可変線路は、前記主導体層上に設けた線路 に相当する前記副導体層上の領域に線路を有し、該主導体層上に設けた線路を伝 播する高周波電力が作る電界を、前記主導体層と前記接地導体層間、および前記 主導体層と前記副導体層間に分配して伝播させ、前記主導体層上に、前記伝播特 性固定線路と前記伝播特性可変線路とを互いに連続した導体として構成した、ことを 特徴とするものである。
[0096] また、本願の請求項 4の発明に力かるフェーズドアレイアンテナは、請求項 3記載の フェーズドアレイアンテナにおいて、前記伝播特性可変線路は、前記主導体層と前 記副導体層間にバイアス電圧を印加することにより、前記可変誘電率誘電体層を構 成する可変誘電率誘電体の誘電率を変化させ、高周波電力の伝播特性を制御する 、ことを特徴とするものである。
[0097] また、本願の請求項 5の発明に力かるフェーズドアレイアンテナは、請求項 1記載の フェーズドアレイアンテナにおいて、前記可変誘電率誘電体層は、液晶あるいは液 晶を含む材料力もなる、ことを特徴とするものである。
[0098] また、本願の請求項 6の発明に力かるフェーズドアレイアンテナは、請求項 1記載の フェーズドアレイアンテナにおいて、前記積層構造は、前記副導体層の前記可変誘 電率誘電体層とは反対側に第 2の絶縁層を有し、前記絶縁層および前記第 2の絶縁 層の間に形成される密閉された空間内に前記可変誘電率誘電体層が保持される、こ とを特徴とするものである。
[0099] また、前記従来の課題 2を解決するために、本発明の請求項 7に発明にかかるフ ーズドアレイアンテナは、印加電圧により誘電率が変化する可変誘電率誘電体を用 いて構成されたフェーズドアレイアンテナにおいて、少なくとも、接地導体層、絶縁体 層、伝播特性可変移相線路、可変誘電率誘電体層、バイアス電極層をこの順に積 層して形成した積層構造を有する給電移相部を備え、前記給電移相部は複数の孤 立した可変誘電率誘電体層を含み、前記各可変誘電率誘電体層は、開孔を有し、 前記開孔は本フェーズドアレイアンテナの主面に対し垂直方向に形成され、該主面 と反対側の主面にその開口を有することを特徴としている。
[0100] また、本発明の請求項 8に発明に力かるフェーズドアレイアンテナは、請求項 7に記 載のフェーズドアレイアンテナにおいて、前記給電移相部は、前記可変誘電率誘電 体層内に伝播特性可変線路を 1本含み、前記開口は、伝播特性可変線路の中心に 対して互いに対向する位置に少なくとも 1対形成されて 、ることを特徴として 、る。
[0101] また、本発明の請求項 9に発明に力かるフェーズドアレイアンテナは、請求項 7に記 載のフェーズドアレイアンテナにおいて、前記給電移相部は、前記可変誘電率誘電 体層内に伝播特性可変線路を複数本含み、前記開口は、複数の伝播特性可変線 路の外側の位置に互いに対向して少なくとも一対形成されて 、ることを特徴として ヽ る。
[0102] また、本発明の請求項 10に発明に力かるフェーズドアレイアンテナは、請求項 7な いし 9のいずれかに記載のフェーズドアレイアンテナにおいて、前記開口は、前記伝 播特性可変線路の中心と該伝播特性可変線路端とを結ぶ直線を半径とする円弧の 外側の前記可変誘電率誘電体層に設けられて 、ることを特徴として 、る。
[0103] また、本発明の請求項 11に発明に力かるフェーズドアレイアンテナは、請求項 7な いし 9のいずれかに記載のフェーズドアレイアンテナにおいて、前記開口は、前記可 変誘電率誘電体層内であって、前記伝播特性可変線路を伝播する電磁波の波長に 相当する距離の少なくとも 3倍、該伝播特性可変線路より離れた位置に設けられてい ることを特徴としている。
[0104] また、本発明の請求項 12に発明に力かるフェーズドアレイアンテナは、請求項 7な いし 11の 、ずれかに記載のフェーズドアレイアンテナにお 、て、前記可変誘電率誘 電体層は、前記液晶あるいは液晶を含む材料により構成されていることを特徴として いる。
[0105] また、本発明の請求項 13に発明に力かるフェーズドアレイアンテナは、請求項 12 に記載のフェーズドアレイアンテナにおいて、前記可変誘電率誘電体層は、前記開 口を介して前記液晶または液晶を含む材料を注入してなることを特徴として 、る。 発明の効果 [0106] 本発明によれば、印加電界により誘電率が変化する可変誘電率誘電体を用いて構 成された可変移相器を有するフェーズドアレイアンテナにお 、て、高 、指向性利得を 実現するために右側チルト用の可変移相器グループと左側チルト用の可変移相器グ ループを互いに独立して移相量を制御可能な構成とした場合に、不整合の要因とな る 2つのノ ィァス電圧を直流的に分離するための直流阻止素子を不要とし、よってビ ームチルト時にもビーム形状の崩れが少なぐ高い指向性利得を維持できるアンテナ を実現することができる。
[0107] また、本発明によれば、印加電圧により誘電率が変化する可変誘電率誘電体を用 V、て構成された可変移相器を有するフェーズドアレイアンテナにお 、て、フェーズド アレイアンテナの可変移相器を構成する可変誘電率誘電体層に、真空注入法ある いは毛細管注入法により液晶、あるいは液晶を含む複合材を注入するようにしたの で、可変誘電率誘電体層となる液晶容器内に液晶、あるいは液晶を含む複合材を均 一に注入でき、これにより、可変誘電率誘電体層の誘電率のばらつきを抑えることが でき、ビームチルト時にもビーム形状の崩れが少なぐ高い指向性利得を維持できる フェーズドアレイアンテナを実現できる効果がある。
図面の簡単な説明
[0108] [図 1(a)]図 1 (a)は、本発明の実施の形態 1におけるフェーズドアレイアンテナの平面 図および断面図である。
[図 1(b)]図 1 (b)は、本発明の実施の形態 1におけるフェーズドアレイアンテナの各導 体層の平面図である。
[図 1(c)]図 1 (c)は、本発明の実施の形態 1におけるフェーズドアレイアンテナの主導 体層と副導体層近傍の電界分布図である。
[図 2(a)]図 2 (a)は、本発明の実施の形態 2におけるフェーズドアレイアンテナの平面 図および断面図である。
[図 2(b)]図 2 (b)は、本発明の実施の形態 2におけるフェーズドアレイアンテナの主導 体層と副導体層近傍の電界分布図である。
[図 3]図 3は、可変誘電率誘電体の特性例を示す図である。
[図 4]図 4は、移相器の原理を示す図である。 [図 5]図 5は、フェーズドアレイアンテナの原理を示す図である。
[図 6]図 6は、高利得フェーズドアレイアンテナの移相器の配置を示す図である。
[図 7(a)]図 7 (a)は、特許文献 2に示された従来のフェーズドアレイアンテナの平面図 および断面図である。
[図 7(b)]図 7 (b)は、特許文献 2に示された従来のフェーズドアレイアンテナの各導体 層の平面図である。
[図 8(a)]図 8 (a)は、特許文献 1の請求項 1に示された従来のフェーズドアレイアンテ ナの平面図および断面図である。
[図 8(b)]図 8 (b)は、特許文献 1の請求項 1に示された従来のフェーズドアレイアンテ ナの各導体層の平面図である。
[図 9(a)]図 9 (a)は、特許文献 1の請求項 2に示された従来のフェーズドアレイアンテ ナの平面図および断面図である。
[図 9(b)]図 9 (b)は、特許文献 1の請求項 2に示された従来のフェーズドアレイアンテ ナの各導体層の平面図である。
[図 10]図 10は、本発明の実施の形態 3におけるフェーズドアレイアンテナの平面図 である。
[図 11]図 11は、本発明の実施の形態 3における可変移相器の平面図である。
[図 12]図 12は、本発明の実施の形態 4における伝播特性可変線路毎に液晶注入孔 を設けた可変移相器の平面図である。
[図 13]図 13は、本発明の実施の形態 3におけるフェーズドアレイアンテナの全体的な 概要を示す断面図である。
[図 14]図 14は、本発明の実施の形態 3における図 10の各断面を示す図である。
[図 15]図 15は、本発明の実施の形態 3におけるフェーズドアレイアンテナの製造方 法を示す断面図である。
[図 16]図 16は、本発明の実施の形態 5における可変移相器の平面図である。
[図 17]図 17は、本発明の実施の形態 5における可変移相器の他の例を示す図であ る。
[図 18]図 18は、本発明の実施の形態 5における可変移相器のさらに他の例を示す図 である。
[図寸 19]図 19は、可変移相器の動作原理を説明するための図である 符号の説明
ハイブリッドカプラ
105 伝播特性可変線路
106 アンテナ素子
107 入力端子
108 バイアス端子
109 給電線路
110 バイアス線路
111 バイアス電圧供給スルーホール
112 スルーホール用ランド
113 結合窓
114 絶縁体層
115 導体層
116 絶縁体用の空気層
117 接地導体層
118 絶縁体用の空気層
119 主導体層
120 可変誘電率誘電体層
121 副導体層
122 絶縁体層
123 導体層
124 結合窓
125 主導体層上を伝播する高周波電力が作る電界
126 主導体層と副導体層上を伝播する高周波電力が作る電界
130 給電移相部
204 ハイブリッドカプラ 205 伝播特性可変線路
206 アンテナ素子
207 入力端子
208 バイアス端子
209 給電線路
210 バイアス線路
211 バイアス電圧供給スルーホール
212 スルーホール用ランド
213 結合窓
214 絶縁体層
215 導体層
216 絶縁体用の空気層
217 接地導体層
218 絶縁体層
219 主導体層
220 可変誘電率誘電体層
221 副導体層
222 絶縁体層
223 導体層
224 結合窓
225 主導体層上を伝播する高周波電力が作る電界
226 主導体層と副導体層上を伝播する高周波電力が作る電界
230 給電移相部
240 スぺーサ
250 空間
401 導波路用接地導体
402 導波路用絶縁体
403 入出力線路 404 ハイブリッドカプラ
405 先端開放線路
406 先端開放線路の導波路用絶縁体
500 給電移相部
501〜504 アンテナ素子
505〜508 可変移相器
509 給電端子
510 バイアス電圧
600 給電移相部
601 給電端子
602 右側チルト用の可変移相器グループ
603 左側チルト用の可変移相器グループ
604 右側チルト用ノィァス電圧
605 左側チルト用バイアス電圧
606 アンテナ素子
607 直流阻止素子
608 高周波阻止素子
609 図 1,図 2,図 7,図 8,図 9に抜粋した領域
704 ハイブリッドカプラ
705 伝播特性可変線路
706 直流阻止素子
707 高周波阻止素子
708 アンテナ素子
709 入力端子
710 ノィァス端子
711 給電線路
712 結合窓
713 絶縁体層 714 導体層
715 絶縁体用の空気層
716 接地導体層
717 絶縁体用の空気層
718 導体層
719 絶縁体層
720 可変誘電率誘電体
721 八
口 'せ、
804 ハイブリッドカプラ
805 伝播特性可変線路
806 直流阻止素子
807 高周波阻止素子
808 アンテナ素子
809 入力端子
810 ノ ィァス端子
811 給電線路
812 結合窓
813 スノレーホ一ノレ
814 絶縁体層
815 導体層
816 絶縁体用の空気層
817 接地導体層
818 空気層
819 導体層
820 絶縁体用の誘電体層
821 接地導体層
822 可変誘電率誘電体層
823 導体層 824 Γ>Β Π 、
825 スノレーホ一ノレ
904 ハイブリッドカプラ
905 伝播特性可変線路
906 アンテナ素子
907 入力端子
908 ノ ィァス端子
909 給電線路
910 結合窓
911 直流阻止素子
912 結合窓
913 高周波阻止素子
914 絶縁体層
915 導体層
916 絶縁体用の空気層
917 接地導体層
918 空気層
919 導体層
920 誘電体層
921 接地導体層
922 可変誘電率誘電体層
923 導体層
924 結合窓
925 直流阻止素子
926 i:八お
Γ>Β口 、
110 入力端子
111 給電線路
112 ハイブリッドカプラ 113 アンテナ素子
114 結合窓
115 伝播特性可変線路
116 バイアス電圧供給スルーホール
117 スルーホール用ランド
118 副導体 (バイアス電極面)
119 バイアス線路
120 バイアス端子
121 可変誘電率誘電体層
122 開口
123 第 2の開口
124 伝播特性可変線路端
130 第 1の絶縁体層
131 導体層(アンテナ素子)
132 結合窓
133 第 2の絶縁体層
134 接地導体層
135 伝播特性固定線路
136 第 3の絶縁体層
137 伝播特性可変線路
138 可変誘電率誘電体層
139 副導体層(バイアス線路)
140 バイアス電圧供給スルーホール
141 スルーホール用ランド
142 第 2の絶縁体層で可変誘電率誘電体層に接する面 143 第 3の絶縁体層で可変誘電率誘電体層に接する面 144 開孔
215 伝播特性可変線路 250 第 1の開口中心
251 第 2の開口中心
260 第 1の伝播特性可変線路端
261 第 2の伝播特性可変線路端
262 第 3の伝播特性可変線路端
263 第 4の伝播特性可変線路端
270 第 1の開口の中心 250と、交点 260を結ぶ直線
271 第 1の開口の中心 250と、交点 261を結ぶ直線
272 第 1の開口の中心 250と、交点 262を結ぶ直線
273 第 1の開口の中心 250と、交点 263を結ぶ直線
280 第 1の開口 122の中'、250と第 2の開口 123の中'、251とを結ぶ直線
281 第 1の開口 122の中心 250と交点 263を半径とし、可変誘電率誘電体層 121 内の円弧曲線
301 給電口
302 第 1の可変移相器
303 第 2の可変移相器
304 アンテナパッチ
305 開口(注入孔)
306 可変移相器の集合体
307 高周波回路
308 給電移相部
309 アンテナ部
310 接続線路
401 導波路用接地導体
402 導波路用絶縁体
403 入出力線路
404 ハイブリッドカプラ
405 先端開放線路 406 先端開放線路の導波路用絶縁体
発明を実施するための最良の形態
[0110] 以下に、本発明のフェーズドアレイアンテナの実施の形態を図面とともに詳細に説 明する。
(実施の形態 1)
まず、本発明のフェーズドアレイアンテナについて、可変誘電率誘電体層として固 体の誘電体を用いた場合の実施の形態にっ 、て説明する。
[0111] 図 1 (a)は本発明の実施の形態 1におけるフェーズドアレイアンテナの平面図と断 面図である。
図 1 (a)において、図中、最も上側に位置するのはアンテナを放射面側から見た様 子を示す平面図である。以下、図中の下側に向かって順に平面図の A— A線, B— B線, C— C線でアンテナを切断したときの断面の様子を示す A— A線断面図, B-B 線断面図, C— C線断面図を示している。
[0112] ここで、平面図の表示領域については、従来例のアンテナの図 7のそれと同様とな つている。
また、平面図には、ハイブリッド力ブラのパターン 104、伝播特性可変線路のパター ン 105が破線にて表されて!/、る。
[0113] さらに、該平面図において、 106はアンテナ素子、 107は入力端子、 108はバイァ ス端子、 109は給電線路パターン、 110はバイアス線路、 111はバイアス電圧供給ス ルーホール、 112はスルーホール用ランド、 113は給電線路パターン 109とアンテナ 素子 106とを互いに電磁界的に結合させる結合窓を表しており、これらの領域はノ、ィ ブリツドカブラ 104の領域とともに、バイアス電圧が印加されても高周波に対する伝播 特性が変化しな 、伝播特性固定線路となって 、る。
[0114] 一方、図 1 (a)の A— A線断面図, B— B線断面図, C C線断面図にはアンテナを 構成する層構造とその構成部材が示してある。
これら A— A線断面図, B— B線断面図, C— C線断面図において、 114〜117は アンテナ部を構成するための平面導波路構造を構成しており、 114はアンテナ素子 支持用の絶縁体層、 115はアンテナ素子となった導体層、 116は平面導波路構造を 構成するために必要な絶縁体層としての空気層、 117は平面導波路構造を構成す るために必要な接地導体層である。
[0115] また、 117〜 123は給電移相部 130を構成するための平面導波路構造を構成して おり、 117は平面導波路構造を構成するために必要な接地導体層であり、これはァ ンテナ部と共用する。また、 118は平面導波路構造を構成するために必要な絶縁体 層としての空気層、 119は給電移相部の各パターンとなったる主導体層、 120は伝 播特性可変線路用の可変誘電率誘電体層、 121は伝播特性可変線路の電界分布 状態を変化させるバイアス線路となった副導体層、 122はバイアス電圧供給回路を 主導体層 119と電磁界的に隔離するための絶縁体層、 123はバイアス電圧供給回 路の配線パターンを作製する導体層である。
[0116] なお、導体層 115,接地導体層 117,主導体層 119,副導体層 121,導体層 123 の 5つの導体層については、各層のパターン形状がわ力り易いように、図 1 (b)に各 層ごとに独立して表示している。
[0117] 上記のように構成された本実施の形態のフェーズドアレイアンテナでは、 A—A線 断面図, B—B線断面図, C C線断面図に示すように、絶縁体層 114,導体層 115 ,空気層 116,接地導体層 117の 4層によりアンテナ部用の第 1のインバーテッド型( 別称:サスペンデッド型)マイクロストリップ構造力 接地導体層 117,空気層 118,主 導体層 119,可変誘電率誘電体層 120の 4層により給電移相部用の第 2のインバー テッド型マイクロストリップ構造が構成されて 、るが、第 2のインバーテッド型マイクロス トリップ構造には、接地導体層 117と主導体層 119とを挟んで反対側 (C - C線断面 図では下側)に、副導体層 121と絶縁体層 122と導体層 123との 3層を追加した改良 型の線路となっている。
[0118] 以上のように、本実施の形態 1のフェーズドアレイアンテナでは、少なくとも接地導 体層 117、空気層である絶縁体層 118、主導体層 119、可変誘電率誘電体層 120、 副導体層 121をこの順に積層して形成した積層構造を有する給電移相部 117〜 12 1を備えている。
[0119] また、図 1 (a)の平面図に示すように、アンテナ素子 106 (A— A線断面図における 115)と給電線路パターン 109 (B— B線断面図における 119)とは、アンテナ部と給 電移相部とで共用する接地導体層 117上に形成された結合窓 113 (A— A線断面図 における結合窓 124)を介して互 ヽに電磁界的に結合し、高周波電力の受け渡しを 行うようになっている。
[0120] さらに、バイアス電圧は、これを導体層 123上に作製したノ ィァス端子 108と、主導 体層 119および接地導体層 117との間(但し、主導体層 119と接地導体層 117との 間は同電位とする)に印加することにより、スルーホール用ランド 112〜バイアス電圧 供給スルーホール 111を経由してノ ィァス線路 110に印加される。
[0121] 以上のように、本実施の形態 1のフェーズドアレイアンテナでは、給電移相部 117 〜123は、高周波電力を伝播特性を変化させることなく伝播する伝播特性固定線路 104および 109と、高周波電力をバイアス電圧に応じた伝播特性により伝播する伝 播特性可変線路 105とを互いに連続した導体により主導体層 119上に設け、伝播特 性固定線路 104および 109を形成する領域には副導体層 121上にバイアス線路を 有さず、伝播特性可変線路 105を形成する領域には副導体層 121上にバイアス線 路 110を有している。
[0122] ここで、 B— B線断面図および C C線断面図の主導体の周辺部を拡大した図 1 (c )を用いて、伝播特性固定線路と伝播特性可変線路の動作について、より詳細に説 明する。
[0123] 図 1 (c)は、 B— B線断面図の主導体層 119と、 B— B線断面図の主導体層 119お よび副導体層 121上を伝播する高周波電力の電界分布を示して ヽる。
[0124] 図 1 (c)において、 117は接地導体層、 118は絶縁体用の空気層、 120は可変誘 電率誘電体層、 122は絶縁体層である。
[0125] さらに、 125は B— B線断面図での主導体層上を伝播する高周波電力が作る電界 を示しており、 126は C C線断面図での主導体層と副導体層上を伝播する高周波 電力が作る電界を示して!/、る。
[0126] ここで、図 1 (c)に示すように、 B— B線断面図の領域には、主導体層上に設けた線 路と面的に重なる領域には副導体層上にバイアス線路が設けられていないので、主 導体層から出る電気力線は可変誘電率誘電体層中を通るものは少なぐ主導体層と 接地導体層間に集中して伝播して!/ヽる。 [0127] このため、移相器にバイアス電圧が印加されると、主導体層の周囲の可変誘電率 誘電体層中にはバイアス電圧による電界は発生せず、よって可変誘電率誘電体層 の誘電率は変化せず、主導体層上を伝播する高周波電力に対する伝播特性も変化 しな 、ので、この領域の主導体は伝播特性固定線路を構成するものとなる。
[0128] 一方、図 1 (c)に示すように、 C C線断面図の領域には、主導体層上に設けた線 路と面的に重なる領域には副導体層上にバイアス線路が設けられているので、主導 体層から出る電気力線は主導体層と接地導体層間だけでなぐ主導体層と副導体層 間にも分配されて伝播している。この分配されて伝播する電気力線は、可変誘電率 誘電体層中を通るものが多い。
[0129] このため、移相器にバイアス電圧が印加されると、主導体層とバイアス線路との間に はバイアス電圧による電界が発生するが、このバイアス電圧による電界と、主導体層 119と副導体層間に分配された高周波電力が作る電界 126成分とは、互いに略並 行となることから、主導体層とバイアス線路との間の可変誘電率誘電体層の誘電率は 変化し、主導体層上を伝播する高周波電力に対する伝播特性が変化し、この領域の 主導体層は伝播特性可変線路を構成するものとなって 1ヽる。
[0130] 即ち、本実施の形態 1のフェーズドアレイアンテナでは、主導体層と副導体層との 間に印加するバイアス電圧を変化させることにより、伝播特性可変線路の可変誘電 率誘電体層の誘電率を変化させ、よって伝播特性可変線路の伝搬特性を変化せし めて移相量を制御する構成となって 、る。
[0131] また、伝播特性固定線路では、主導体層と副導体層との間に可変誘電率誘電体層 が介在する構造となって ヽるので、接地導体層と副導体層との間にバイアス電圧が 印加されても主導体層と副導体層との間には直流電圧は力からない。このため、主 導体層を介して右側チルト用制御電圧と左側チルト用制御電圧とが衝突することが な!、ので、直流阻止素子が不要な構成となって!/、る。
[0132] このように、本実施の形態 1のフェーズドアレイアンテナによれば、その給電移相部 を、接地導体層、絶縁体層、主導体層、可変誘電率誘電体層、副導体層をこの順に 積層して形成した積層構造を有するものとしたので、高周波電力が伝播する線路上 に直流阻止素子を設けることなぐ高周波電力が伝播する線路をバイアス電圧力も絶 縁することが可能となる。よって高い指向性利得を実現するために、可変移相器を右 側チルト用の可変移相器グループと、左側チルト用の可変移相器グループとに分け て互いに独立に移相量を制御する構成とした場合に、直流阻止素子による不整合の 累積がなくなり、よってビームチルト時にもビーム形状の崩れが少なぐ高い指向性利 得を維持できるアンテナを実現することが可能となる。
[0133] また、図 1 (a)の平面図において、本実施の形態 1のフェーズドアレイアンテナは、 特許文献 2および特許文献 1に示した高周波阻止素子に相当する線路パターンを設 けて ヽな 、が、これはバイアス線路 110上を流れる高周波電流はそのほとんどが主 導体層 119側に面した表面に集中するため、図 1に示すように、主導体層 119側と反 対側から給電する積層構造を採ることにより、高周波阻止素子を不要とすることが可 能なためである。
[0134] なお、本実施の形態 1にお 、て、可変誘電率誘電体層として BaTiOや BaSrTiO
3 3 MgOなどの強誘電体材料が使用可能である。
また、絶縁体層として空気層のほか、熱硬化型のエポキシ榭脂ゃウレタン榭脂ゃキ シレン樹脂、紫外線硬化型のアクリル榭脂ゃエポキシ榭脂ゃフエノール榭脂、および ポリテトラフルォロエチレン(PTFE)や液晶ポリマーやポリイミドゃポリアミドやェポキ シなどの榭脂またはそれらの複合材料、ガラスやセラミックス、光重合性ポリマーや熱 重合性ポリマー等力 なる層が使用可能であることは言うまでもない。
[0135] (実施の形態 2)
次に、本発明のフェーズドアレイアンテナについて、可変誘電率誘電体層として液 晶等の液体誘電体を用いた場合の実施の形態にっ 、て説明する。
[0136] 図 2 (a)は本発明の実施の形態 2におけるフェーズドアレイアンテナの平面図と断 面図である。
図 2 (a)において、図中、最も上側に位置するのはアンテナを放射面側から見た様 子を示す平面図である。以下、図中の下側に向かって順に平面図の A— A線, B— B線, C— C線でアンテナを切断したときの断面の様子を示す A— A線断面図, B-B 線断面図, C— C線断面図が示されている。
[0137] ここで、平面図の表示領域については、従来例のアンテナを示す図 7のそれと同様 となっている。
また、平面図には、ハイブリッド力ブラのパターン 204、伝播特性可変線路のパター ン 205が破線にて示されて!/、る。
さらに、平面図における各要素 206〜213は、実施の形態 1の図 1のそれと同様と なっている。
[0138] 一方、 A— A線断面図, B— B線断面図, C C線断面図にはアンテナを構成する 層構造とその構成部材が示してある。
[0139] A— A線断面図, B— B線断面図, C C線断面図において、 214〜217はアンテ ナ部を構成するための平面導波路構造を構成しており、この部分については実施の 形態 1の図 1と同様の構成となっている。
[0140] また、 217〜223は給電移相部 230を構成するための平面導波路構造を構成して おり、 217は平面導波路構造を構成するために必要な接地導体層であり、これはァ ンテナ部と共用する。また、 218は平面導波路構造を構成するために必要な絶縁体 層、 219は給電移相部の各パターンとなった主導体層、 220は伝播特性可変線路用 の可変誘電率誘電体層、 221は伝播特性可変線路の電界分布状態を変化させるバ ィァス線路となった副導体層、 222はバイアス電圧供給回路を主導体層 219と電磁 界的に隔離するための絶縁体層、 223はバイアス電圧供給回路の配線パターンとな つた導体層である。
[0141] ここで、本実施の形態 2では可変誘電率誘電体層 220として液晶等の液体を用い る場合を示しており、 218と 222の 2つの絶縁体層はその端部が絶縁体層 218, 222 と同じ材料力 なるスぺーサ 240により互いに連接されており、 A— A線断面図, B- B線断面図, C C線断面図に示すようにアンテナ端において液体を囲って保持す る箱形状を構成しており、これにより液晶等の液体誘電体である可変誘電率誘電体 層 220は箱形状の絶縁体層内部の密閉された空間 250内に安定に保持 (収容)され ている。
また、主導体層 219は、液体上に形成することができないことから、絶縁体層 218の 表面に形成されている。
[0142] なお、 215, 217, 219, 221, 223の 5つの導体層につ!ヽては、実施の形態 1と同 一であり、各層のパターン形状は図 1 (b)と同様である。
[0143] 上記のように構成された本実施の形態のフェーズドアレイアンテナでは、 A—A線 断面図, B— B線断面図, C— C線断面図に示すように、絶縁体層 214,導体層 215 ,空気層 216,接地導体層 217の 4層によりアンテナ部用の第 1のインバーテッド型( 別称:サスペンデッド型)マイクロストリップ構造力 接地導体層 217,絶縁体層 218, 主導体層 219,可変誘電率誘電体層 220の 4層により給電移相部用の第 2のインバ 一テッド型マイクロストリップ構造が構成されて 、るが、第 2のインバーテッド型マイク ロストリップ構造には、接地導体層 217と主導体層 219とを挟んで反対側(C— C線断 面図では下側)に、副導体層 221と絶縁体層 222と導体層 223との 3層を追加した改 良型の線路となっている。
[0144] ここで、 B— B線断面図, C C線断面図の主導体の周辺部を拡大した図 2 (b)を用 いて、伝播特性固定線路および伝播特性可変線路の動作をより詳細に説明する。
[0145] 図 2 (b)は、 B— B線断面図の主導体層 219と、 C— C線断面図の主導体層 219お よび副導体層 221上を伝播する高周波電力の電界分布を示している。
[0146] また、図 2 (b)において、 217は接地導体層、 218は絶縁体層、 220は可変誘電率 誘電体層、 222は絶縁体層である。
[0147] さらに、 225は B— B線断面図での主導体層 219上を伝播する高周波電力が作る 電界を示しており、 226は C C線断面図での主導体層 219と副導体層 221上を伝 播する高周波電力が作る電界を示している。
[0148] ここで、図 2 (b)に示すように、 B— B線断面図の領域には、主導体層上に設けられ た線路と面的に重なる領域には副導体層上にバイアス線路が設けられていないので 、主導体層から出る電気力線は可変誘電率誘電体層中を通るものは少なぐ主導体 層と接地導体層間に集中して伝播して 、る。
[0149] このため、移相器にバイアス電圧が印加されると、主導体層の周囲の可変誘電率 誘電体層中にはバイアス電圧による電界は発生せず、よって可変誘電率誘電体層 の誘電率は変化せず、主導体層上を伝播する高周波電力に対する伝播特性も変化 しな 、ので、この領域の主導体層は伝播特性固定線路を構成するものとなって 、る。
[0150] 一方、図 2 (b)に示すように、 C C線断面図の領域には、主導体層上に設けられ た線路と面的に重なる領域には副導体層上にバイアス線路が設けられているので、 主導体層から出る電気力線は主導体層と接地導体層間だけでなぐ主導体層と副導 体層間にも分配されて伝播している。この分配されて伝播する電気力線は、可変誘 電率誘電体層中を通るものが多い。
[0151] このため、移相器にバイアス電圧が印加されると、主導体層とバイアス線路との間に はバイアス電圧による電界が発生するが、このバイアス電圧による電界と、主導体層 219と副導体層間に分配された高周波電力が作る電界 226成分とは、互いに略並 行となることから、主導体層とバイアス線路間の可変誘電率誘電体層の誘電率は変 化し、主導体層上を伝播する高周波電力に対する伝播特性が変化し、この領域の主 導体層は伝播特性可変線路を構成するものとなって ヽる。
[0152] 即ち、本実施の形態 2のフェーズドアレイアンテナでは、実施の形態 1と同様に、主 導体層と副導体層との間に印加するバイアス電圧を変化させることにより、伝播特性 可変線路の可変誘電率誘電体の誘電率を変化させ、伝播特性可変線路の伝搬特 性を変化せしめて移相量を制御する構成となっている。
[0153] また、伝播特性固定線路では、主導体層と副導体層との間に可変誘電率誘電体層 が介在する構造となって ヽるので、副導体層にバイアス電圧が印加されても主導体 層には直接バイアス電圧は力からない。このため、主導体層を介して右側チルト用制 御電圧と左側チルト用制御電圧とが衝突することがな!、ので、直流阻止素子が不要 な構成となっている。
[0154] このように、本実施の形態 2によれば、実施の形態 1と同様、その給電移相部を、接 地導体層、絶縁体層、主導体層、可変誘電率誘電体層、副導体層をこの順に積層し て形成した積層構造を有するものとしたので、高周波電力が伝播する線路上に直流 阻止素子を設けることなぐ高周波電力が伝播する線路からバイアス電圧を絶縁する ことが可能となる。よって高!、指向性利得を実現するために可変移相器を右側チルト 用の可変移相器グループと、左側チルト用の可変移相器グループとに分けて互いに 独立に移相量を制御する構成とした場合に、直流阻止素子による不整合の累積がな くなり、よってビームチルト時にもビーム形状の崩れが少なぐ高い指向性利得を維持 できるフェーズドアレイアンテナを実現することが可能となる。 [0155] また、本実施の形態 2によれば、可変誘電率誘電体層として、液晶を用いるようにし たので、可変誘電率誘電体層の誘電率の可変が容易なフェーズドアレイアンテナを 実現することが可能となる。
[0156] なお、本実施の形態 2にお 、て、液体状の可変誘電率誘電体層として、ネマチック 液晶やスメクチック液晶ゃコレステリック液晶やディスコティック液晶や強誘電性液晶 等、さらには液晶と榭脂との複合材が使用可能であることは言うまでもない。
[0157] また、別体の絶縁体層 218, 222およびスぺーサ 240を接続して内部に可変誘電 率誘電体層 220を収容する空間 250を有する箱形状の絶縁体層を形成するようにし た力 これは液体の可変誘電率誘電体層 220を安定に保持できるのであれば一体 で形成してもよい。
さらに、液体の可変誘電率誘電体層 220を安定に保持できるのであれば、本実施 の形態 2とは別の構造を採ってもょ 、。
[0158] さらに、実施の形態 2における液晶が安定に保持された箱形状の可変誘電率誘電 体層を、実施の形態 1における可変誘電率誘電体層として用いることが可能であるこ とも言うまでもなぐこの場合は、主導体線路の絶縁体層として誘電損失が極めて少 ない空気が使用できるとともに、可変誘電率誘電体として液晶が使用できて可変誘 電率誘電体材料の選択範囲が広がるという、 2つのメリットが得られることは言うまでも ない。
[0159] また、実施の形態 1および実施の形態 2にお 、て、伝播特性可変線路部における 主導体層および副導体層の線路形状を、 1Z2波長やその整数倍の長さを有する直 線状共振線路形状、さらにリング状やディスク状の共振線路形状としても、伝播特性 可変特性が同様に得られることは言うまでもない。
[0160] また、実施の形態 2において、主導体線層および副導体層の導体金属が液晶に直 接に触れることを避けるために、両導体層表面にバッファ層を設けてもよい。
[0161] (実施の形態 3)
次に、本発明のフェーズドアレイアンテナについて、積層構造を有するフェーズドア レイアンテナを構成した後、液晶、または液晶を含有する材料を一様に注入して可変 誘電率誘電体層を構成するようにした場合の実施の形態にっ ヽて説明する。 [0162] 図 10は、本発明の実施の形態 3によるフェーズドアレイアンテナの一例を示す平面 図である。図 10において、フェーズドアレイアンテナは、給電移相部 308と、アンテナ 部 309との積層構造力もなる。
[0163] 給電移相部 308は、給電口 301と、図 11に示すように 2本の伝播特性可変線路 11 5が互いに略平行に配置された可変移相器 302と、図 12に示すように 2本の伝播特 性可変線路 115が互いに略同一直線上に配置された可変移相器 303と、移相量制 御部(図示せず)と、高周波回路 307と、可変誘電体用電圧発生回路(図示せず)と で構成される。
[0164] 305は、後述する各可変移相器の可変誘電率誘電体層に設けられた開口、 306は 、後述する可変移相器の集合体である。図 10のフェーズドアレイアンテナは、図 11 に示される互いに孤立した複数の誘電率誘電体層、を含む複数の可変移相器 302 と 303とを有する。
[0165] 具体的には、図 10のフェーズドアレイアンテナは、図 11に示される可変移相器 (各 移相器は 302) 48個と、図 12に示される可変移相器 (各移相器は 303) 16個とを有 する。なお、移相器の数は、上記の数に限定されず、使用する電磁波の周波数ゃァ ンテナのビーム指向性利得、ビームの触れ角により移相器の数は決定される。
[0166] また、後述する伝播特性可変移相線路 115の形状も行単位 (図 11の横方向)で同 一の可変移相特性であればよぐ図 11、及び図 12に示す形状には限定されない。
[0167] 各誘電率誘電体層は液晶注入のために開口 122を有する。可変誘電率誘電体は 、一般には、誘電損失が小さければ、本発明のような給電移相部を複数の孤立した 可変誘電率誘電体層とする分割構造は不要であり、フェーズドアレイアンテナ全面に 可変誘電率誘電体を一体に成形できる。
[0168] し力しながら、前述の、同一の可変誘電率特性を有する可変移相器を形成するとい う要望を満足する可変誘電率誘電体としての液晶、または液晶を含む材料の誘電損 失は、 1つの移相器あたり約 0. 5dBと大きく、可変誘電率誘電体を伝播特性固定線 路部分にまで設けると、アンテナの電力利得が得られな!/、。
[0169] そこで本発明(実施の形態 3)は、可変誘電率誘電体層を可変移相器が形成される 領域のみに配置することで、誘電損失を極力低減することが可能となる。一方、アン テナ部は、複数のアンテナパッチ 304で構成されるアンテナパッチ列を複数有し、各 アンテナパッチ列の各アンテナノツチ 304同士は接続線路 310を介して互いに図 10 中の縦方向に接続されてアンテナパッチ列を構成する。
[0170] 図 11を用いて、本発明のフェーズドアレイアンテナにおける可変移相器 302の具 体的構造を説明する。図 11において、 110は、伝播信号の入力端子、 111は給電線 路、 112はハイブリッド力ブラ、 113はアンテナ素子、 114は結合窓、 115は伝播特性 可変線路、 116はバイアス電圧供給スルーホール、 117はスルーホール用ランド、 1 18はバイアス電極面(副導体)、 119はバイアス線路、 120はバイアス端子、 121は 可変誘電率誘電体層、 122は後に述べる開孔 144の開口である。
[0171] 図 10における移相器 302は、図 11における、給電線路 111と、ハイブリッドカプラ 1 12と、互いに概ね同等の伝播特性を有する 2本の伝播特性可変線路 115とで構成さ れる。本発明の可変誘電率誘電体層 121は、少なくとも、上記 1つの可変移相器を 構成する 1本の伝播特性可変線路 115を含む領域に形成されればよい。
[0172] 図 11では、 2本の伝播特性可変線路 115を含む領域に、可変誘電率誘電体層 12 1 (図 11中の破線で囲まれる領域)が形成されて!ヽる。可変誘電率誘電体層 121は、 伝播特性可変線路 115全域にわたり均一な誘電特性を有するように形成される必要 がある。このため、その可変誘電率誘電体として、液晶、または液晶を含む材料を用 いる場合には、開口 122より、均一な誘電特性を有するように、液晶を注入する必要 がある。
[0173] 開口 122は、図 11のように、各可変誘電率誘電体層 121に少なくとも 1つあればよ い。開口 122の位置に関しては、伝播特性可変線路 115の中心 116を該開口の中 心として、前記中心 116と伝播特性可変線路端 124とを結ぶ直線を半径とする円弧 の一部より外側の位置力、あるいは、好ましくは、伝播特性可変線路 115を避け、伝 播する電磁波信号の波長を λ (電磁信号強度が 3dB減衰する距離)とすると、各可 変誘電率誘電体層 121内であって、伝播特性可変線路 115の中心 116から距離 3 λ以上離れた位置、の少なくともどちらか一方を満たす位置が好ましい。
[0174] これは、開口 122の線路を伝播する電磁波への影響を極力低減するためである。
液晶の注入方法としては、液晶表示装置における注入法として公知である真空注入 法、あるいは毛細管注入法、を用いることができる。
[0175] なお、図 11は、本発明の真空注入法で液晶を注入する場合の可変移相器の平面 図である。その製造方法は、図 10のように、フェーズドアレイアンテナを構成する各 基板を熱圧着で張合わせた後に、前記各誘電率誘電体層内に対応する位置に、ァ ンテナ面 (アンテナ部 309)とは反対側の基板面に、これに垂直方向に切削を行うこ とにより開孔 144 (図 14参照)を形成する。基板面には開孔 144の開口 122が形成さ れる。
[0176] 次に液晶注入方法の具体的方法を説明する。液晶を注入するための管(図示せず )を各可変移相器の開口 122に接続する。次に各可変誘電率誘電体層 121の開口 1 22に管を接続した状態のフェーズドアレイアンテナを、真空槽に入れ、真空度 10— ^ orr以下に減圧する。
[0177] 次に、可変誘電率誘電体層に設けたすべての管を真空槽内に設けた容器に入つ た液晶面に漬けることで、開口に向けて液晶が吸入され、その後大気圧に戻すこと により、すべての可変誘電率誘電体層 121に液晶を注入できる。然る後に管を外し、 開口 122を急速硬化エポキシ系強力接着剤、例えば、製品名:「Rapid Aralditej ( ハンツマン ·アドバンスト ·マテリアルズ (株)製、販売:昭和高分子 (株))で封止するこ とにより、可変誘電率誘電体 121が形成されたフェーズドアレイアンテナが完成する 。図 13はこのフェーズドアレイアンテナの全体的な概要を示す断面図である。
[0178] ところで、可変誘電率誘電体 121は、誘電体損失及び導体損失の及び挿入損失 の観点から、伝播特性可変線路 115を形成する領域 (以下、伝播特性可変線路部 分と称す)に設けることが好ましい。したがって伝播特性可変線路 115部分以外の給 電線路 111には、可変誘電率誘電体層 121を極力設けないために、各移相器 302、 303毎に、可変誘電率誘電体層 121のセルに分割し、液晶を封入する必要がある。 したがって、後述するように可変誘電率誘電体層 121を複数のグループに分けること で、結合損失 (誘電体損失,導体損失,及び挿入損失からなる)を低減することがで きる。
[0179] 次に、本発明のフェーズドアレイアンテナを構成する図 11の可変移相器の A— A 線断面、 B— B線断面、 C C線断面、 D— D線断面の詳細について図 14を用いて 説明する。
図 14の A— A線断面図において、 130は第 1の絶縁体層である。 131は導体層で あり、図 10のアンテナ素子 113として機能する。第 1の絶縁体層 130としては、テフ口 ン (登録商標)製基板 (以下、テフロン (登録商標)基板と称す)が低誘電損失の観点 力も好ましい。さらに第 1の絶縁体層 130としては、テフロン (登録商標)をガラスクロス に含浸した基板や、液晶ポリマー基板や、アルミナセラミックス基板や、アルミナコン ポジット基板、サファイア基板も用いることができる。
[0180] 第 1の絶縁体層 130として、誘電損失のやや高 、基板であるガラスエポキシ基板、 例えば FR4を使用する場合には、アンテナ素子上部は、絶縁体層を開口とし空気層 にするなど形状の工夫が必要である。導体層 131としては、金属電極である、銅や、 銀、金など高導電率を有する金属または金属合金、金属多層膜、金属複合材料の 薄膜または厚膜が使用される。
[0181] 132は、結合窓であり、空気層からなり、図 11の結合窓 114に相当する。 133は第 2の絶縁体層であり、テフロン (登録商標)基板が低誘電損失の観点力 好ましい。さ らに、第 2の絶縁体層 133としてはテフロン (登録商標)をガラスクロスに含浸した基板 や、液晶ポリマー基板や、アルミナセラミックス基板や、アルミナコンポジット基板、サ ファイア基板も用いることができる。
[0182] 134は接地導体層であり、金属電極で、銅や、銀、金など高導電率を有する金属ま たは金属合金、金属多層膜、金属複合材料の薄膜または厚膜が使用される。 135は 主導体層であり、伝播特性固定線路や、伝播特性可変線路 115の給電線路として 作用する。 136は第 3の絶縁体層であり、テフロン (登録商標)基板が低誘電損失の 観点から好ましい。
[0183] なお、第 3の絶縁体層 136としてはテフロン (登録商標)をガラスクロスに含浸した基 板や、液晶ポリマー基板や、アルミナセラミックス基板や、アルミナコンポジット基板、 サファイア基板を用いることもできる。
[0184] 図 14の B— B線断面図において、 135は主導体層であり、 A— A線断面図では主 導体層 135は A— A線に沿う方向に配設されているため幅広に図示されている力 こ の B— B線断面図では B— B線線と直交する方法に配設されて 、るため、幅狭に図 示されている。
[0185] 図 14の C— C線断面図において、 137は、 A— A線断面図の 135と同様に主導体 層であるが、図 11の伝播特性可変線路 115として作用する。伝播特性可変線路 13 7としては、金属電極である、銅や、銀、金など高導電率を有する金属または金属合 金、金属多層膜、金属複合材料の薄膜または厚膜が使用される。
[0186] 138は、可変誘電率誘電体層であり、液晶、または液晶を含有する材料を用いて 構成される。液晶としては、誘電異方性が大きな液晶であるネマティック液晶、コレス テリック液晶、スメクティック液晶、またはこれらの混合液晶や、電圧応答性を向上さ せるためにこれら液晶に無機材料や有機材料を混合した混合物が用いられる。
[0187] その無機材料としては、金属酸ィ匕物である酸ィ匕マグネシウム (MgO)、酸化カルシ ゥム(CaO) ,酸化ストロンチウム(SrO)、酸化バリウム(BaO)、酸化アルミニウム(A1
2
O )、酸化ジルコニウム(ZrO )、酸化チタン (TiO )、酸化亜鉛 (ZnO)や、金属硫ィ匕
3 2 2
物である硫ィ匕カドミウム(CdS)、硫ィ匕亜鉛 (ZnS)や、複合酸ィ匕物である SiO -MgO
2
、 SiO -CaO, Al O -MgO, SiO — Al O、 SiO—TiO、 TiO— ZrOや、これら
2 2 3 2 2 3 2 2 2 2 の混合物が用いることができる。
[0188] これら無機材料は、微粒子として液晶に分散させてもよぐまたは多孔質構造を持 つ無機材料であってもよい。有機材料としては、アクリル榭脂、メタクリル樹脂、ェポキ シ榭脂、ウレタン榭脂、ポリスチレン、ポリビニルアルコール、ふつ素榭脂、またはこれ らの共重合体を用いることができる。
[0189] また、前記液晶とこれら無機材料と有機材料との混合物を用いることもできる。 139 は、副導体層であり、可変誘電率誘電体へのバイアス電極面 118として作用する。副 導体層 139としては、金属電極である、銅や、銀、金など高導電率を有する金属また は金属合金、金属多層膜、金属複合材料の薄膜または厚膜が使用される。副導体 1 39は、第 3の絶縁体層 136に施されたバイアス電極供給スルーホール 140 (図 11に おける 116)の金属めつきを介して導体層 141に接続される。
[0190] 図 14の D— D線断面図において、 144は液晶を注入するための開孔である。開孔 144は、可変誘電率誘電体層を起点とし、基板面に垂直に形成され、導体層 131で 形成されるアンテナ素子 113を有するアンテナ面に対向する基板面に開口 122を有 する。
[0191] 伝播特性可変線路 137 (図 11における 115)に印加されるバイアス電圧は、バイァ ス端子 120力らノィァス線路 119と、バイアス電圧供給スルーホール 140の金属めつ きを介して、副導体 139 (図 11におけるバイアス線路 119)に印加される。
[0192] したがって、バイアス線路 119と、伝播特性可変線路 115との間の可変誘電率誘電 体 138への電圧制御が可能となり、バイアス電圧によって、可変誘電率誘電体 138 を構成する液晶の配向を制御することによりその誘電率を可変でき、これにより、移 相制御が可能となる。
[0193] 液晶、または液晶を含有する材料は、線路に平行な面 142、及び 143に配向処理 を行ってもよい。配向処理を行うことで誘電異方性を最大にし、可変移相量を最大に することができる。
[0194] 前記配向処理は、液晶表示装置の分野で公知である手法、例えば、フェーズドア レイアンテナを形成する前に、絶縁体面 142、及び 143〖こ、ポリイミドゃポリビュルァ ルコールを塗布し、ラビング処理する手法や、液晶を含有する榭脂を絶縁体面 142 及び 143に略平行となるように延伸させる手法や、あるいは、液晶を含有する榭脂面 を一方向に摺ることで物理的に微細な擦り傷を形成した榭脂を用いることができる。
[0195] そして、配向処理を行った液晶を開口 122より封入し、その後、封止を行うことで、 電圧オフ時に配向を有する可変誘電率誘電体層を形成できる。
[0196] 以下では、以上のようなフェーズドアレイアンテナの詳細な製造方法を、図 15を用 いて説明する。
まず、第 2の絶縁体層 133上に接地導体層 134を形成する(同図 (a) , (b)参照)。
[0197] 次に、第 2の絶縁体層 133の接地導体層 134が形成された主面とは反対側の主面 上の全面に導体層を形成し、これをパターユングすることで、伝播特性固定線路 135 を形成する(同図(c)参照)。但し、第 2の絶縁体層 133の伝播特性固定線路 135が 形成される位置には、予め溝を形成する。
[0198] 次いで、第 2の絶縁体層 133の伝播特性固定線路 135が形成された側の主面上に 、第 2の絶縁体層 133を接合する(同図(d)参照)。但し、この別の第 2の絶縁体層 13 3の可変誘電率誘電体層 138となる部分には、型成形により液晶容器となる凹部が 形成されて ヽる(同図(d)の左側参照)。
[0199] 次に、この図 15 (d)の工程で形成した第 2の絶縁体層 133の下側に第 3の絶縁体 層 136を形成する(同図(e)参照)。そして、この第 3の絶縁体層 136の第 2の絶縁体 層 133側の主面に溝を形成し、この溝を含む全面に導体層を形成し、パターユング を行うことで、副導体層 139を形成する(同図 (e)の左側参照)。
[0200] 次いで、第 3の絶縁体層 136内に、内部に導体が充填されたスルーホール 140を 形成し(同図 (f)の左側参照)、第 3の絶縁体層 136の副導体層 139が形成された主 面とは反対側の主面に、スルーホール 140の露出面を覆うようにスルーホール用ラン ド 141を形成する(同図 (g)の左側参照)。
[0201] その後、図 15 (b)の接地導体層 134上に配置する第 2の絶縁体層 133を用意し( 同図 (h)参照)、その上に第 1の絶縁体層 130を形成し(同図 (i)参照)、その後、図 1 5 (g)の上に熱圧着することにより、フェーズドアレイアンテナが完成する。
[0202] そして、このようにして完成したフェーズドアレイアンテナの、ランド 141が形成され た側の主面より、可変誘電率誘電体層 138となる空洞(凹部)に達する開孔を形成し 、液晶、あるいは液晶を含む材料を真空注入法あるいは毛細管注入法により注入す ることにより、誘電率のばらつきを抑えた可変誘電率誘電体層 138を形成することが 可能となる。
[0203] なお、図 15 (a)ないし (g)の工程と、図 15 (h)ないし (i)の工程とは、並行して行つ てもよい。
[0204] このように、本実施の形態 3によれば、
(1)液晶誘電体、または液晶と無機材料との複合体、または榭脂との複合体、ある いは、液晶層を平板状部材あるいは多孔質膜に液晶を含浸させた繊維誘電体を一 様に注入して可変誘電率誘電体層を構成するようにしたので、複数の可変移相器の 誘電率のばらつきを低減でき、単一の印加電圧により制御可能な複数の可変移相器 を実現することにより、ビームチルト特性の優れた平面アンテナを提供できる。
[0205] (2)また、伝播特性可変線路に接する可変誘電率誘電体層を可変移相器が形成 される領域のみに配置するようにしたので、誘電損失を抑制したビーム指向性利得 の良好な平面アンテナを提供できる。 [0206] (実施の形態 4)
以下、本発明の実施の形態 4を、図 12 (図 12)を用いて説明する。この実施の形態 4は、伝播特性可変線路 115の形状が実施の形態 3 (図 11)と異なる。
図 12に、フェーズドアレイアンテナに使用される図 10の可変移相器 303の平面図 を示す。図 11との違いは、一対の伝播特性可変線路 115が同一直線上に互いに離 れて配置されるように構成された点である。さらに、一対の伝搬特性可変線路 115が 離れて配置されたのに伴い、可変移相器を構成する可変誘電率誘電体層 121を、 2 つに分割する構成として 、る。
[0207] 図 12において、 110は伝播信号の入力端子、 111は給電線路、 112はハイブリッド 力ブラ、 113はアンテナ素子、 114は結合窓、 115は伝播特性可変線路、 116はバイ ァス電圧供給スルーホール、 117はスルーホール用ランド、 118はバイアス電極面( 畐 IJ導体)、 119はノ ィァス線路、 121a, 121bは可変誘電率誘電体層、 122a, 122b は開口である。
[0208] 移相器 303は、図 12における、給電線路 111と、ハイブリッドカプラ 112と、概ね同 等の伝播特性を有する 2本の伝播特性可変線路 115で構成される。開口 122a及び 122bは、それぞれ誘電率誘電体層 121a及び 121bを起点とし、各誘電率誘電体層 に垂直に形成された開孔を形成し、アンテナ素子 113面に対して対向する基板面に 作製された概ね垂直方向に形成される。 1つの可変誘電率誘電体層 121にっき開口 122を 1つ形成する場合には、実施の形態 1と同様に真空注入法で液晶を注入し封 止することで移相器 303を作製できる。
[0209] このように、本実施の形態 4によれば、伝播特性可変線路 115の形状が実施の形 態 1とは異なるフェーズドアレイアンテナにおいて、フェーズドアレイアンテナの可変 移相器を構成する可変誘電率誘電体層に、真空注入法あるいは毛細管注入法によ り液晶、あるいは液晶を含む複合材を注入するようにしたので、複数の可変移相器の 誘電率のばらつきを低減でき、単一の印加電圧により制御可能な複数の可変移相器 を実現することにより、ビームチルト特性の優れた平面アンテナを提供できる。
[0210] また、伝播特性可変線路に接する可変誘電率誘電体層を可変移相器が形成され る領域のみに配置するようにしたので、誘電損失を抑制したビーム指向性利得の良 好な平面アンテナを提供できる。
[0211] (実施の形態 5)
以下、本発明の実施の形態 5を、図 16を用いて説明する。
この実施の形態 5 (図 16)と実施の形態 4 (図 12)との違いは、可変誘電率誘電体層 の開口 122の個数にある。液晶封入法として毛細管法を用いる場合には、液晶表示 装置の液晶注入法で公知のように排気口と液晶吸入口の少なくとも 2つの開口 122 が必要となる。
[0212] すなわち、開口は可変誘電率誘電体層内に伝播特性可変線路を 1本含む場合に は、伝播特性可変線路の中心に対して概ね対向する位置に少なくとも 1対の開口が 形成される。第 1の開口を 122、第 2の開口を 123とすると、これらの可変移相器用開 口は、伝播特性可変線路 115の中心となる、バイアス電圧供給スルーホール 116に 関して第 1の開口 122と対向する位置となるように第 2の開口 123を形成すればよい 。なお、開口 122、及び開口 123のどちらを排気口、液晶吸入口とするかは任意であ る。
[0213] そして、排気口力も減圧しながら、吸入口から液晶、あるいは液晶を含んだ材料を 注入することにより、液晶容器内に液晶あるいは液晶を含んだ材料を均一に注入す ることが可能である。
[0214] また、図 16に示すように、 1対の開口が液晶容器を形成する領域の対角線上に形 成されること〖こより、 1対の開口を他の位置に形成する場合に比べ開口間の距離が 長くなることから、仮に注入した液晶中に気泡が残存したとしても、この気泡が誘電率 のばらつきに与える悪影響を最小限に抑えることができる。
[0215] 次に、図 17は、可変誘電率誘電体層 121内に伝播特性可変線路 115を複数本( 図 8の例では 2本)含む場合の 1対の開口 122の配置について説明するものである。 図 17において、 215aは第 1の伝播特性可変線路であり、 215bは第 2の伝播特性 可変線路である。開口 122は、可変誘電率誘電体層 121の伝播特性可変線路 215 aと 215bで構成される領域の外側に、互いに対角線上で対向して配置される。開口 122aと 122bの位置は、それぞれの伝播特性可変線路 215a、 215bの外側の可変 誘電率誘電体層 121内に設ける方が好ま ヽ。 [0216] さらに好ましくは、近接する伝播特性可変線路から距離 3 λ以上離れた位置に配 置する。但し、 λは伝播特性可変線路を伝播する電磁波信号の波長である。伝播特 性可変線路 215a、 215bから 3 λ離れると電磁波信号強度は 3dB減少し、開口 122 、及び 123から伝播特性可変線路への影響を抑制できるからである。ここでは伝播 特性可変線路として 2本含む場合につ ヽて説明したが、伝播特性可変線路が 3本以 上でも適用できることは勿論である。
[0217] また、図 18は、互いに隣り合う 2つの可変移相器を構成する可変誘電率誘電体層 を、 1つの可変誘電率誘電体層 121により構成する場合を示す。可変誘電率誘電体 層 121を共通とする可変移相器の個数は、伝播特性固定線路 135、即ち、給電線路 111であって伝播特性可変線路 115以外の線路、に可変誘電率誘電体層 121が交 差しなければ任意である。
[0218] 可変誘電率誘電体 121として液晶を真空注入法で注入する場合には、開口 122の 数は、各可変誘電率誘電体層 121あたり少なくとも 1つであればよい。開口 122の位 置はアンテナ面に対向する基板面に設ければよい。
[0219] 一方、液晶を毛細管法で注入する場合には、開口 122は、各可変誘電率誘電体 層 121あたり、排気口と注入口の少なくとも 2つ設ける必要がある。毛細管法により液 晶を注入する場合の開口 122の好ましい位置について図 18を用いて詳細に説明す る。
[0220] 図 18において、 121は可変誘電率誘電体層であり、 122は第 1の開口であり、 123 は第 2の開口であり、 250は第 1の開口 122の中心であり、 251は第 2の開口 123の 中心であり、 260は第 1の伝播特性可変線路端であり、第 1の開口部 122に最も近接 した伝播特性可変線路と可変誘電率誘電体層 121との交点 (最近接伝播特性可変 線路端)である。 270は、第 1の開口の中心 250と、交点 260を結ぶ直線であり、長さ L1を持つ。
[0221] 同様に、 261は第 2の伝播特性可変線路端であり、第 1の開口 122に 2番目に近接 する伝播特性可変線路と可変誘電率誘電体層 121との第 2の交点である。 271は第 1の開口の中心 250と、交点 261を結ぶ直線であり、長さ L2を持つ。同様に、 262、 2 63は第 3、第 4の伝播特性可変線路端であり、第 1の開口 122に 3番目、 4番目に近 接する伝播特性可変線路と可変誘電率誘電体層 121との交点である。第 1の開口の 中'、250と、交点、 262、 263をそれぞれ結ぶ直線を 272、 273とし、直線 272の長さ を L3,直線 273の長さを L4とする。
[0222] 280は第 1の開口 122の中心 250と第 2の開口 23の中心 251とを結ぶ直線であり、 長さ LOを有する。曲線 281は、第 1の開口の中心 250とし、可変誘電率誘電体層 12 1内の長さ LOの直線を半径とする円弧である。
[0223] 第 2の開口 123を可変誘電率誘電体層 121内で円弧 281の外側に配置することに より、すなわち、第 2の開口 123の位置を L0>L4>L3 >L2>L1の関係を満たすよ うに配置することにより、伝播特性可変線路の電磁波への影響を抑制できる。
[0224] 以上の配置と製造方法により、共通とする可変誘電率誘電体層 121に一様に、均 一に液晶を注入できる。
[0225] このように、本実施の形態 5によれば、フェーズドアレイアンテナの可変移相器を構 成する可変誘電率誘電体層に達する一対の開口を設け、毛細管注入法により液晶、 あるいは液晶を含む複合材を注入するようにしたので、複数の可変移相器の誘電率 のばらつきを低減し、単一の印加電圧により制御可能な複数の可変移相器を実現す ることにより、ビームチルト特性の優れた平面アンテナを提供できる。
[0226] また、伝播特性可変線路に接する可変誘電率誘電体層を可変移相器が形成され る領域のみに配置するようにしたので、誘電損失を抑制したビーム指向性利得の良 好な平面アンテナを提供できる。
[0227] なお、実施の形態 3な 、し 5では、可変移相器の例として、マイクロストリップ線路を 例示したが、本発明における伝送線路はマイクロストリップ線路だけに限られるもので なぐ複数の孤立した可変移相器を有するコプレーナ線路、ストリップ線路などの高 周波信号の伝送媒体として誘電体を使った伝送線路すべてに応用可能である。
[0228] 以上、本発明を、前記実施の形態 1ないし 5に基づき具体的に示したが、本発明は 、前記実施の形態 1〜5に限定されるものではなぐその主旨を逸脱しない範囲にお V、て種々変更可能であることは勿論である。
産業上の利用可能性
[0229] 以上のように、本発明は、印加電界により誘電率が変化する可変誘電率誘電体を 用いて構成された可変移相器を有するフェーズドアレイアンテナにお 、て、高 、指向 性利得を実現するために可変移相器を、右側チルト用の可変移相器グループと、左 側チルト用の可変移相器グループとに分けて互いに独立に移相量を制御する構成と した場合に、不整合の要因となる直流阻止素子を不要とし、よってビームチルト時に もビーム形状の崩れが少なぐ高い指向性利得を維持できるアンテナを実現できると いう特長を有し、車載レーダや衛星通信用アンテナ等として有用である。
また、本発明のフェーズドアレイアンテナは、液晶、または液晶を含む材料により、 各可変移相器を構成する可変誘電率誘電体を一様に構成することができ、誘電損 失を極力低減できるとともに、ビームチルト時にもビーム形状の崩れが少なぐ高い指 向性利得を維持できるフェーズドアレイアンテナを提供でき、車載レーダや衛星通信 用アンテナ、ミリ波センサ等として有用である。

Claims

請求の範囲
[1] 印加電界により誘電率が変化する可変誘電率誘電体を用いて構成された可変移 相器を有するフェーズドアレイアンテナにお 、て、
少なくとも接地導体層、絶縁体層、主導体層、可変誘電率誘電体層、副導体層をこ の順に積層して形成した積層構造を有する給電移相部を備えた、
ことを特徴とするフェーズドアレイアンテナ。
[2] 請求項 1に記載のフェーズドアレイアンテナにお 、て、
前記給電移相部は、
高周波電力の伝播特性を変化させない伝播特性固定線路と、
高周波電力の伝播特性を可変させる伝播特性可変線路とを有する、
ことを特徴とするフェーズドアレイアンテナ。
[3] 請求項 2に記載のフェーズドアレイアンテナにおいて、
前記伝播特性固定線路は、
前記主導体層上に設けた線路に相当する前記副導体層上の領域に線路を有さず 、該主導体層上に設けた線路を伝播する高周波電力が作る電界を、前記主導体層 と前記接地導体層間に集中して伝播させ、
前記伝播特性可変線路は、
前記主導体層上に設けた線路に相当する前記副導体層上の領域に線路を有し、 該主導体層上に設けた線路を伝播する高周波電力が作る電界を、前記主導体層と 前記接地導体層間、および前記主導体層と前記副導体層間に、分配して伝播させ、 前記主導体層上に、前記伝播特性固定線路と前記伝播特性可変線路とを互いに 連続した導体として構成した、
ことを特徴とするフェーズドアレイアンテナ。
[4] 請求項 3記載のフェーズドアレイアンテナにお 、て、
前記伝播特性可変線路は、
前記主導体層と前記副導体層間にバイアス電圧を印加することにより、前記可変誘 電率誘電体層を構成する可変誘電率誘電体の誘電率を変化させ、高周波電力の伝 播特性を制御する、 ことを特徴とするフェーズドアレイアンテナ。
[5] 請求項 1記載のフェーズドアレイアンテナにおいて、
前記可変誘電率誘電体層は、液晶あるいは液晶を含む材料力 なる、 ことを特徴とするフェーズドアレイアンテナ。
[6] 請求項 1記載のフェーズドアレイアンテナにおいて、
前記積層構造は、前記副導体層の前記可変誘電率誘電体層とは反対側に第 2の 絶縁層を有し、
前記絶縁層および前記第 2の絶縁層の間に形成される密閉された空間内に前記 可変誘電率誘電体層が保持される、
ことを特徴とするフェーズドアレイアンテナ。
[7] 印加電圧により誘電率が変化する可変誘電率誘電体を用いて構成された可変移 相器を有するフェーズドアレイアンテナにお 、て、
少なくとも、接地導体層、絶縁体層、伝播特性可変線路、可変誘電率誘電体層、 バイアス電極層を、この順に積層して形成した積層構造を有する給電移相部を備え 前記給電移相部は、複数の孤立した可変誘電率誘電体層を含み、
前記各可変誘電率誘電体層は、開孔を有し、
前記開孔は、本フェーズドアレイアンテナの主面に対し垂直方向に形成され、該主 面と反対側の主面にその開口を有する、
ことを特徴とするフェーズドアレイアンテナ。
[8] 請求項 7に記載のフェーズドアレイアンテナにおいて、
前記給電移相部は、前記可変誘電率誘電体層内に伝播特性可変線路を 1本含み 前記開口は、伝播特性可変線路の中心に対して互いに対向する位置に少なくとも 1対形成されている、
ことを特徴とするフェーズドアレイアンテナ。
[9] 請求項 7に記載のフェーズドアレイアンテナにおいて、
前記給電移相部は、前記可変誘電率誘電体層内に伝播特性可変線路を複数本 含み、
前記開口は、複数の伝播特性可変線路の外側の位置に互いに対向して少なくとも 一対形成されている、
ことを特徴とするフェーズドアレイアンテナ。
[10] 請求項 7な!、し 9の!、ずれかに記載のフェーズドアレイアンテナにお 、て、
前記開口は、前記伝播特性可変線路の中心と該伝播特性可変線路端とを結ぶ直 線を半径とする円弧の外側の前記可変誘電率誘電体層に設けられて!/ヽる、 ことを特徴とするフェーズドアレイアンテナ。
[11] 請求項 7な!、し 9の!、ずれかに記載のフェーズドアレイアンテナにお 、て、
前記開口は、前記可変誘電率誘電体層内であって、前記伝播特性可変線路を伝 播する電磁波の波長に相当する距離の少なくとも 3倍、該伝播特性可変線路より離 れた位置に設けられている、
ことを特徴とするフェーズドアレイアンテナ。
[12] 請求項 7な!、し 9の!、ずれかに記載のフェーズドアレイアンテナにお 、て、
前記可変誘電率誘電体層は、前記液晶あるいは液晶を含む材料により構成されて いる、
ことを特徴とするフェーズドアレイアンテナ。
[13] 請求項 12に記載のフェーズドアレイアンテナにおいて、
前記可変誘電率誘電体層は、前記開口を介して前記液晶または液晶を含む材料 を注入してなる、
ことを特徴とするフェーズドアレイアンテナ。
PCT/JP2006/320344 2005-10-11 2006-10-11 フェーズドアレイアンテナ WO2007043590A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/090,024 US20090278744A1 (en) 2005-10-11 2006-10-11 Phased array antenna

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-296863 2005-10-11
JP2005296863A JP2007110256A (ja) 2005-10-11 2005-10-11 フェーズドアレイアンテナ
JP2006-117262 2006-04-20
JP2006117262A JP2007295044A (ja) 2006-04-20 2006-04-20 フェーズドアレイアンテナ

Publications (1)

Publication Number Publication Date
WO2007043590A1 true WO2007043590A1 (ja) 2007-04-19

Family

ID=37942820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320344 WO2007043590A1 (ja) 2005-10-11 2006-10-11 フェーズドアレイアンテナ

Country Status (2)

Country Link
US (1) US20090278744A1 (ja)
WO (1) WO2007043590A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508697A (ja) * 2013-02-15 2016-03-22 テヒニッシェ・ウニヴェルジテート・ダルムシュタット 移相器
WO2019134488A1 (zh) * 2018-01-05 2019-07-11 京东方科技集团股份有限公司 相控阵天线、显示面板及显示装置
WO2020030788A1 (de) * 2018-08-10 2020-02-13 Alcan Systems Gmbh Gruppenantenne aus einem dielektrischen material
JP7087215B1 (ja) 2022-02-16 2022-06-20 株式会社フジクラ デジタル移相器

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510891B (zh) * 2009-09-25 2016-05-25 默克专利股份有限公司 用于高频技术的组件和液晶介质
US9752076B2 (en) * 2009-11-04 2017-09-05 Merck Patent Gmbh Compounds for a liquid-crystalline medium, and the use thereof for high-frequency components
JP5790648B2 (ja) * 2010-06-02 2015-10-07 日本電気株式会社 構造体
EP2500977B1 (en) 2011-03-16 2015-09-16 Alcatel Lucent Phase shifting device
DE102012003867A1 (de) * 2011-03-24 2012-09-27 Merck Patent Gmbh Mesogene Verbindungen, flüssigkristalline Medien und Bauteile für die Hochfrequenztechnik
DE102012003939A1 (de) * 2011-03-24 2012-09-27 Merck Patent Gmbh Mesogene Verbindungen, flüssigkristalline Medien und Bauteile für die Hochfrequenztechnik
EP2688980B1 (de) * 2011-03-24 2016-11-02 Merck Patent GmbH Mesogene verbindungen, flüssigkristalline medien und bauteile für die hochfrequenztechnik
WO2013034227A1 (en) * 2011-09-05 2013-03-14 Merck Patent Gmbh Liquid-crystalline medium and high-frequency components comprising same
EP2575211B1 (en) 2011-09-27 2014-11-05 Technische Universität Darmstadt Electronically steerable planar phased array antenna
RU2510551C1 (ru) * 2012-09-11 2014-03-27 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Малогабаритный фазовращатель свч-диапазона
RU2510106C1 (ru) * 2012-11-21 2014-03-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Фазовращатель
US11245185B2 (en) * 2016-06-14 2022-02-08 Miles Space, Inc. Portable phased aperture array antenna
US10326205B2 (en) 2016-09-01 2019-06-18 Wafer Llc Multi-layered software defined antenna and method of manufacture
US10320070B2 (en) 2016-09-01 2019-06-11 Wafer Llc Variable dielectric constant antenna having split ground electrode
US10686257B2 (en) 2016-09-01 2020-06-16 Wafer Llc Method of manufacturing software controlled antenna
CN106684551B (zh) 2017-01-24 2019-07-23 京东方科技集团股份有限公司 一种移相单元、天线阵、显示面板和显示装置
US10705391B2 (en) * 2017-08-30 2020-07-07 Wafer Llc Multi-state control of liquid crystals
JP7441471B2 (ja) 2017-10-19 2024-03-01 ウェハー エルエルシー 高分子分散型/せん断配向型位相変調器デバイス
CN111316500B (zh) * 2017-10-30 2024-01-30 韦弗有限责任公司 多层液晶相位调制器
US10511096B2 (en) 2018-05-01 2019-12-17 Wafer Llc Low cost dielectric for electrical transmission and antenna using same
CN108493592B (zh) * 2018-05-03 2019-12-20 京东方科技集团股份有限公司 微带天线及其制备方法和电子设备
CN108490270B (zh) * 2018-07-02 2020-01-24 京东方科技集团股份有限公司 液晶介电常数的测量装置、测量系统、测量方法
US10862182B2 (en) 2018-08-06 2020-12-08 Alcan Systems Gmbh RF phase shifter comprising a differential transmission line having overlapping sections with tunable dielectric material for phase shifting signals
CN109164608B (zh) * 2018-09-25 2022-02-25 京东方科技集团股份有限公司 移相器、天线及移相器的控制方法
JP2020053759A (ja) * 2018-09-25 2020-04-02 シャープ株式会社 走査アンテナおよびtft基板
US10854970B2 (en) 2018-11-06 2020-12-01 Alcan Systems Gmbh Phased array antenna
US10651920B1 (en) * 2019-08-30 2020-05-12 Cth Lending Company, Llc Methods for formation of antenna array using asymmetry
CN111817001B (zh) * 2020-07-14 2022-05-10 电子科技大学 一种Ka波段基于液晶反射式移相器的1×4平面相控阵
TWI749987B (zh) * 2021-01-05 2021-12-11 友達光電股份有限公司 天線結構及陣列天線模組
WO2022178805A1 (zh) * 2021-02-26 2022-09-01 京东方科技集团股份有限公司 移相器及天线
CN113054437B (zh) * 2021-05-26 2021-08-13 南京迪钛飞光电科技有限公司 一种多功能多波段电磁调控装置
US20230187836A1 (en) * 2021-11-19 2023-06-15 Sderotech, Inc. Variable dielectric based antenna with improved response time
US20240222844A1 (en) * 2022-12-29 2024-07-04 Industrial Technology Research Institute Antenna device based on transparent substrate and method of configuring antenna device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243804A (ja) * 1992-02-29 1993-09-21 Nec Corp マイクロストリップライン
JPH09307307A (ja) * 1995-05-25 1997-11-28 Toshiba Corp 高周波デバイス
JPH1127015A (ja) * 1997-06-30 1999-01-29 Toshiba Corp 超電導素子
JPH11103201A (ja) * 1997-09-29 1999-04-13 Mitsui Chem Inc 移相器、移相器アレイおよびフェーズドアレイアンテナ装置
JPH11251823A (ja) * 1998-03-05 1999-09-17 Sumitomo Electric Ind Ltd 走査アンテナ
JPH11282022A (ja) * 1998-03-30 1999-10-15 Nippon Mitsubishi Oil Corp エレクトロクロミック素子の製造方法
JP2000236207A (ja) * 1998-12-14 2000-08-29 Matsushita Electric Ind Co Ltd アクティブフェイズドアレイアンテナ及びアンテナ制御装置
JP2001237604A (ja) * 2000-02-21 2001-08-31 Stanley Electric Co Ltd 位相可変装置
JP2003298306A (ja) * 2002-03-29 2003-10-17 Hidehisa Shiomi 位相変調素子および位相変調装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965494A (en) * 1995-05-25 1999-10-12 Kabushiki Kaisha Toshiba Tunable resonance device controlled by separate permittivity adjusting electrodes
EP1150380B1 (en) * 1998-12-14 2006-05-31 Matsushita Electric Industrial Co., Ltd. Active phased array antenna and antenna controller
US7466269B2 (en) * 2006-05-24 2008-12-16 Wavebender, Inc. Variable dielectric constant-based antenna and array

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243804A (ja) * 1992-02-29 1993-09-21 Nec Corp マイクロストリップライン
JPH09307307A (ja) * 1995-05-25 1997-11-28 Toshiba Corp 高周波デバイス
JPH1127015A (ja) * 1997-06-30 1999-01-29 Toshiba Corp 超電導素子
JPH11103201A (ja) * 1997-09-29 1999-04-13 Mitsui Chem Inc 移相器、移相器アレイおよびフェーズドアレイアンテナ装置
JPH11251823A (ja) * 1998-03-05 1999-09-17 Sumitomo Electric Ind Ltd 走査アンテナ
JPH11282022A (ja) * 1998-03-30 1999-10-15 Nippon Mitsubishi Oil Corp エレクトロクロミック素子の製造方法
JP2000236207A (ja) * 1998-12-14 2000-08-29 Matsushita Electric Ind Co Ltd アクティブフェイズドアレイアンテナ及びアンテナ制御装置
JP2001237604A (ja) * 2000-02-21 2001-08-31 Stanley Electric Co Ltd 位相可変装置
JP2003298306A (ja) * 2002-03-29 2003-10-17 Hidehisa Shiomi 位相変調素子および位相変調装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508697A (ja) * 2013-02-15 2016-03-22 テヒニッシェ・ウニヴェルジテート・ダルムシュタット 移相器
WO2019134488A1 (zh) * 2018-01-05 2019-07-11 京东方科技集团股份有限公司 相控阵天线、显示面板及显示装置
WO2020030788A1 (de) * 2018-08-10 2020-02-13 Alcan Systems Gmbh Gruppenantenne aus einem dielektrischen material
JP7087215B1 (ja) 2022-02-16 2022-06-20 株式会社フジクラ デジタル移相器
JP2023119385A (ja) * 2022-02-16 2023-08-28 株式会社フジクラ デジタル移相器

Also Published As

Publication number Publication date
US20090278744A1 (en) 2009-11-12

Similar Documents

Publication Publication Date Title
WO2007043590A1 (ja) フェーズドアレイアンテナ
JP2007295044A (ja) フェーズドアレイアンテナ
JP2007110256A (ja) フェーズドアレイアンテナ
TWI672859B (zh) 具有分離的接地電極的可變介電常數天線
JP5172481B2 (ja) ポスト壁導波路によるショートスロット方向性結合器とこれを用いたバトラーマトリクス及び車載レーダアンテナ
US6320547B1 (en) Switch structure for antennas formed on multilayer ceramic substrates
US7619568B2 (en) Patch antenna including septa for bandwidth control
US8907744B2 (en) Multi-line phase shifter having a fixed plate and a mobile plate in slideable engagement to provide vertical beam-tilt
EP3224898B1 (en) System and method for variable microwave phase shifter
CN110649356A (zh) 功率分配网络、液晶天线和通信设备
WO2022110013A1 (zh) 移相器及天线
WO2011152055A1 (ja) 構造体
US20240235020A1 (en) Antenna, manufacturing method, driving method, and antenna system
JP7039347B2 (ja) アンテナ装置
US20170093005A1 (en) High-density stacked grounded coplanar waveguides
JP2000059113A (ja) 伝送線路および伝送線路共振器
JP2008503179A (ja) 低プロファイルのサーキュレータ
US11688942B2 (en) Antenna and fabricating method thereof, and antenna device and fabricating method thereof
US11984633B2 (en) Phase shifter and antenna
JP2006279519A (ja) 高周波線路−導波管変換器
JP5217947B2 (ja) 高周波機能素子構造及び高周波機能部品
US20240154303A1 (en) Antenna
US11742560B2 (en) T-junction with high isolation and method for fabricating the same
JP6889764B2 (ja) フィルタ装置
JP3517140B2 (ja) 誘電体導波管線路と高周波線路との接続構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680037870.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12090024

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06821841

Country of ref document: EP

Kind code of ref document: A1